blob: 01b971bf2f0a9402a06394a4ec68ffff9503b983 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000030 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000031 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000032 </ol>
33 </li>
Chris Lattner00950542001-06-06 20:29:01 +000034 <li><a href="#typesystem">Type System</a>
35 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000036 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000037 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000038 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000039 <li><a href="#t_floating">Floating Point Types</a></li>
40 <li><a href="#t_void">Void Type</a></li>
41 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000042 </ol>
43 </li>
Chris Lattner00950542001-06-06 20:29:01 +000044 <li><a href="#t_derived">Derived Types</a>
45 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000046 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000047 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000048 <li><a href="#t_function">Function Type</a></li>
49 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000051 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000052 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000053 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000054 </ol>
55 </li>
56 </ol>
57 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000058 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000059 <ol>
60 <li><a href="#simpleconstants">Simple Constants</a>
61 <li><a href="#aggregateconstants">Aggregate Constants</a>
62 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
63 <li><a href="#undefvalues">Undefined Values</a>
64 <li><a href="#constantexprs">Constant Expressions</a>
65 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000066 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000067 <li><a href="#othervalues">Other Values</a>
68 <ol>
69 <li><a href="#inlineasm">Inline Assembler Expressions</a>
70 </ol>
71 </li>
Chris Lattner00950542001-06-06 20:29:01 +000072 <li><a href="#instref">Instruction Reference</a>
73 <ol>
74 <li><a href="#terminators">Terminator Instructions</a>
75 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000076 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
77 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000078 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
79 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000080 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000081 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000082 </ol>
83 </li>
Chris Lattner00950542001-06-06 20:29:01 +000084 <li><a href="#binaryops">Binary Operations</a>
85 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000086 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
87 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
88 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000089 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
90 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
91 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000092 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
93 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
94 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 </ol>
96 </li>
Chris Lattner00950542001-06-06 20:29:01 +000097 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
98 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000099 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
100 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
101 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000102 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000104 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 </ol>
106 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000107 <li><a href="#vectorops">Vector Operations</a>
108 <ol>
109 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
110 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
111 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000112 </ol>
113 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000114 <li><a href="#aggregateops">Aggregate Operations</a>
115 <ol>
116 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
117 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
118 </ol>
119 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000120 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000121 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000122 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
123 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
124 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000125 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
126 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
127 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000128 </ol>
129 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000130 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000131 <ol>
132 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
133 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
134 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000137 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
139 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
140 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000141 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
142 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000143 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000144 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000145 <li><a href="#otherops">Other Operations</a>
146 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000147 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
148 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000149 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
150 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000151 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000152 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000154 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patelc3fc6df2008-03-10 20:49:15 +0000155 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000156 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000158 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000160 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
163 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000164 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
165 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </ol>
168 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000169 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
170 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000171 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
172 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000174 </ol>
175 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000176 <li><a href="#int_codegen">Code Generator Intrinsics</a>
177 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000178 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
179 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
181 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
182 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
183 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
184 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000185 </ol>
186 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000187 <li><a href="#int_libc">Standard C Library Intrinsics</a>
188 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000189 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
190 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000194 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000197 </ol>
198 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000199 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000200 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000201 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000202 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
203 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000205 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000207 </ol>
208 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000209 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000210 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000211 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000212 <ol>
213 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000214 </ol>
215 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000216 <li><a href="#int_atomics">Atomic intrinsics</a>
217 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000218 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
219 <li><a href="#int_atomic_lcs"><tt>llvm.atomic.lcs</tt></a></li>
220 <li><a href="#int_atomic_las"><tt>llvm.atomic.las</tt></a></li>
221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000222 </ol>
223 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000224 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000225 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000226 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000227 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000228 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000229 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000230 <li><a href="#int_trap">
231 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000232 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000233 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000234 </ol>
235 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000236</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000237
238<div class="doc_author">
239 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
240 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000241</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000242
Chris Lattner00950542001-06-06 20:29:01 +0000243<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000244<div class="doc_section"> <a name="abstract">Abstract </a></div>
245<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000246
Misha Brukman9d0919f2003-11-08 01:05:38 +0000247<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000248<p>This document is a reference manual for the LLVM assembly language.
249LLVM is an SSA based representation that provides type safety,
250low-level operations, flexibility, and the capability of representing
251'all' high-level languages cleanly. It is the common code
252representation used throughout all phases of the LLVM compilation
253strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000254</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000255
Chris Lattner00950542001-06-06 20:29:01 +0000256<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000257<div class="doc_section"> <a name="introduction">Introduction</a> </div>
258<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000259
Misha Brukman9d0919f2003-11-08 01:05:38 +0000260<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000261
Chris Lattner261efe92003-11-25 01:02:51 +0000262<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000263different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000264representation (suitable for fast loading by a Just-In-Time compiler),
265and as a human readable assembly language representation. This allows
266LLVM to provide a powerful intermediate representation for efficient
267compiler transformations and analysis, while providing a natural means
268to debug and visualize the transformations. The three different forms
269of LLVM are all equivalent. This document describes the human readable
270representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
John Criswellc1f786c2005-05-13 22:25:59 +0000272<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000273while being expressive, typed, and extensible at the same time. It
274aims to be a "universal IR" of sorts, by being at a low enough level
275that high-level ideas may be cleanly mapped to it (similar to how
276microprocessors are "universal IR's", allowing many source languages to
277be mapped to them). By providing type information, LLVM can be used as
278the target of optimizations: for example, through pointer analysis, it
279can be proven that a C automatic variable is never accessed outside of
280the current function... allowing it to be promoted to a simple SSA
281value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000282
Misha Brukman9d0919f2003-11-08 01:05:38 +0000283</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Chris Lattner00950542001-06-06 20:29:01 +0000285<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000286<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000287
Misha Brukman9d0919f2003-11-08 01:05:38 +0000288<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000289
Chris Lattner261efe92003-11-25 01:02:51 +0000290<p>It is important to note that this document describes 'well formed'
291LLVM assembly language. There is a difference between what the parser
292accepts and what is considered 'well formed'. For example, the
293following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000295<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000296<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000297%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000298</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000299</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
Chris Lattner261efe92003-11-25 01:02:51 +0000301<p>...because the definition of <tt>%x</tt> does not dominate all of
302its uses. The LLVM infrastructure provides a verification pass that may
303be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000304automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000305the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000306by the verifier pass indicate bugs in transformation passes or input to
307the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000308</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000309
Chris Lattnercc689392007-10-03 17:34:29 +0000310<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Chris Lattner00950542001-06-06 20:29:01 +0000312<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000313<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000314<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000315
Misha Brukman9d0919f2003-11-08 01:05:38 +0000316<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000317
Reid Spencer2c452282007-08-07 14:34:28 +0000318 <p>LLVM identifiers come in two basic types: global and local. Global
319 identifiers (functions, global variables) begin with the @ character. Local
320 identifiers (register names, types) begin with the % character. Additionally,
321 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000322
Chris Lattner00950542001-06-06 20:29:01 +0000323<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000324 <li>Named values are represented as a string of characters with their prefix.
325 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
326 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000327 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000328 with quotes. In this way, anything except a <tt>&quot;</tt> character can
329 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000330
Reid Spencer2c452282007-08-07 14:34:28 +0000331 <li>Unnamed values are represented as an unsigned numeric value with their
332 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000333
Reid Spencercc16dc32004-12-09 18:02:53 +0000334 <li>Constants, which are described in a <a href="#constants">section about
335 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000336</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337
Reid Spencer2c452282007-08-07 14:34:28 +0000338<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339don't need to worry about name clashes with reserved words, and the set of
340reserved words may be expanded in the future without penalty. Additionally,
341unnamed identifiers allow a compiler to quickly come up with a temporary
342variable without having to avoid symbol table conflicts.</p>
343
Chris Lattner261efe92003-11-25 01:02:51 +0000344<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000345languages. There are keywords for different opcodes
346('<tt><a href="#i_add">add</a></tt>',
347 '<tt><a href="#i_bitcast">bitcast</a></tt>',
348 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000349href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000351none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352
353<p>Here is an example of LLVM code to multiply the integer variable
354'<tt>%X</tt>' by 8:</p>
355
Misha Brukman9d0919f2003-11-08 01:05:38 +0000356<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000357
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000358<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000359<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000360%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000361</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000362</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
Misha Brukman9d0919f2003-11-08 01:05:38 +0000364<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000365
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000366<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000368%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000370</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000371
Misha Brukman9d0919f2003-11-08 01:05:38 +0000372<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000373
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000374<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000376<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
377<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
378%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000380</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381
Chris Lattner261efe92003-11-25 01:02:51 +0000382<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
383important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384
Chris Lattner00950542001-06-06 20:29:01 +0000385<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000386
387 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
388 line.</li>
389
390 <li>Unnamed temporaries are created when the result of a computation is not
391 assigned to a named value.</li>
392
Misha Brukman9d0919f2003-11-08 01:05:38 +0000393 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Misha Brukman9d0919f2003-11-08 01:05:38 +0000395</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
John Criswelle4c57cc2005-05-12 16:52:32 +0000397<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000398demonstrating instructions, we will follow an instruction with a comment that
399defines the type and name of value produced. Comments are shown in italic
400text.</p>
401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000403
404<!-- *********************************************************************** -->
405<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
406<!-- *********************************************************************** -->
407
408<!-- ======================================================================= -->
409<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
410</div>
411
412<div class="doc_text">
413
414<p>LLVM programs are composed of "Module"s, each of which is a
415translation unit of the input programs. Each module consists of
416functions, global variables, and symbol table entries. Modules may be
417combined together with the LLVM linker, which merges function (and
418global variable) definitions, resolves forward declarations, and merges
419symbol table entries. Here is an example of the "hello world" module:</p>
420
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000421<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000422<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000423<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
424 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000425
426<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000427<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000428
429<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000430define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000431 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000432 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000433 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000434
435 <i>; Call puts function to write out the string to stdout...</i>
436 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000437 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000439 href="#i_ret">ret</a> i32 0<br>}<br>
440</pre>
441</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000442
443<p>This example is made up of a <a href="#globalvars">global variable</a>
444named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
445function, and a <a href="#functionstructure">function definition</a>
446for "<tt>main</tt>".</p>
447
Chris Lattnere5d947b2004-12-09 16:36:40 +0000448<p>In general, a module is made up of a list of global values,
449where both functions and global variables are global values. Global values are
450represented by a pointer to a memory location (in this case, a pointer to an
451array of char, and a pointer to a function), and have one of the following <a
452href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000453
Chris Lattnere5d947b2004-12-09 16:36:40 +0000454</div>
455
456<!-- ======================================================================= -->
457<div class="doc_subsection">
458 <a name="linkage">Linkage Types</a>
459</div>
460
461<div class="doc_text">
462
463<p>
464All Global Variables and Functions have one of the following types of linkage:
465</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000466
467<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000468
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000469 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000470
471 <dd>Global values with internal linkage are only directly accessible by
472 objects in the current module. In particular, linking code into a module with
473 an internal global value may cause the internal to be renamed as necessary to
474 avoid collisions. Because the symbol is internal to the module, all
475 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000476 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000477 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478
Chris Lattnerfa730212004-12-09 16:11:40 +0000479 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
Chris Lattner4887bd82007-01-14 06:51:48 +0000481 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
482 the same name when linkage occurs. This is typically used to implement
483 inline functions, templates, or other code which must be generated in each
484 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
485 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000486 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000487
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000488 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
489
490 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
491 linkage, except that unreferenced <tt>common</tt> globals may not be
492 discarded. This is used for globals that may be emitted in multiple
493 translation units, but that are not guaranteed to be emitted into every
494 translation unit that uses them. One example of this is tentative
495 definitions in C, such as "<tt>int X;</tt>" at global scope.
496 </dd>
497
Chris Lattnerfa730212004-12-09 16:11:40 +0000498 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000499
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000500 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
501 that some targets may choose to emit different assembly sequences for them
502 for target-dependent reasons. This is used for globals that are declared
503 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000504 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000505
Chris Lattnerfa730212004-12-09 16:11:40 +0000506 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000507
508 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
509 pointer to array type. When two global variables with appending linkage are
510 linked together, the two global arrays are appended together. This is the
511 LLVM, typesafe, equivalent of having the system linker append together
512 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000513 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000514
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000515 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
516 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
517 until linked, if not linked, the symbol becomes null instead of being an
518 undefined reference.
519 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000520
Chris Lattnerfa730212004-12-09 16:11:40 +0000521 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000522
523 <dd>If none of the above identifiers are used, the global is externally
524 visible, meaning that it participates in linkage and can be used to resolve
525 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000526 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000527</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000528
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000529 <p>
530 The next two types of linkage are targeted for Microsoft Windows platform
531 only. They are designed to support importing (exporting) symbols from (to)
532 DLLs.
533 </p>
534
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000535 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000536 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
537
538 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
539 or variable via a global pointer to a pointer that is set up by the DLL
540 exporting the symbol. On Microsoft Windows targets, the pointer name is
541 formed by combining <code>_imp__</code> and the function or variable name.
542 </dd>
543
544 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
545
546 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
547 pointer to a pointer in a DLL, so that it can be referenced with the
548 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
549 name is formed by combining <code>_imp__</code> and the function or variable
550 name.
551 </dd>
552
Chris Lattnerfa730212004-12-09 16:11:40 +0000553</dl>
554
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000555<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000556variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
557variable and was linked with this one, one of the two would be renamed,
558preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
559external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000560outside of the current module.</p>
561<p>It is illegal for a function <i>declaration</i>
562to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000563or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000564<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
565linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000566</div>
567
568<!-- ======================================================================= -->
569<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000570 <a name="callingconv">Calling Conventions</a>
571</div>
572
573<div class="doc_text">
574
575<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
576and <a href="#i_invoke">invokes</a> can all have an optional calling convention
577specified for the call. The calling convention of any pair of dynamic
578caller/callee must match, or the behavior of the program is undefined. The
579following calling conventions are supported by LLVM, and more may be added in
580the future:</p>
581
582<dl>
583 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
584
585 <dd>This calling convention (the default if no other calling convention is
586 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000587 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000588 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000589 </dd>
590
591 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
592
593 <dd>This calling convention attempts to make calls as fast as possible
594 (e.g. by passing things in registers). This calling convention allows the
595 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000596 without having to conform to an externally specified ABI. Implementations of
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000597 this convention should allow arbitrary
598 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
599 supported. This calling convention does not support varargs and requires the
600 prototype of all callees to exactly match the prototype of the function
601 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000602 </dd>
603
604 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
605
606 <dd>This calling convention attempts to make code in the caller as efficient
607 as possible under the assumption that the call is not commonly executed. As
608 such, these calls often preserve all registers so that the call does not break
609 any live ranges in the caller side. This calling convention does not support
610 varargs and requires the prototype of all callees to exactly match the
611 prototype of the function definition.
612 </dd>
613
Chris Lattnercfe6b372005-05-07 01:46:40 +0000614 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000615
616 <dd>Any calling convention may be specified by number, allowing
617 target-specific calling conventions to be used. Target specific calling
618 conventions start at 64.
619 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000620</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000621
622<p>More calling conventions can be added/defined on an as-needed basis, to
623support pascal conventions or any other well-known target-independent
624convention.</p>
625
626</div>
627
628<!-- ======================================================================= -->
629<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000630 <a name="visibility">Visibility Styles</a>
631</div>
632
633<div class="doc_text">
634
635<p>
636All Global Variables and Functions have one of the following visibility styles:
637</p>
638
639<dl>
640 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
641
642 <dd>On ELF, default visibility means that the declaration is visible to other
643 modules and, in shared libraries, means that the declared entity may be
644 overridden. On Darwin, default visibility means that the declaration is
645 visible to other modules. Default visibility corresponds to "external
646 linkage" in the language.
647 </dd>
648
649 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
650
651 <dd>Two declarations of an object with hidden visibility refer to the same
652 object if they are in the same shared object. Usually, hidden visibility
653 indicates that the symbol will not be placed into the dynamic symbol table,
654 so no other module (executable or shared library) can reference it
655 directly.
656 </dd>
657
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000658 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
659
660 <dd>On ELF, protected visibility indicates that the symbol will be placed in
661 the dynamic symbol table, but that references within the defining module will
662 bind to the local symbol. That is, the symbol cannot be overridden by another
663 module.
664 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000665</dl>
666
667</div>
668
669<!-- ======================================================================= -->
670<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000671 <a name="globalvars">Global Variables</a>
672</div>
673
674<div class="doc_text">
675
Chris Lattner3689a342005-02-12 19:30:21 +0000676<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000677instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000678an explicit section to be placed in, and may have an optional explicit alignment
679specified. A variable may be defined as "thread_local", which means that it
680will not be shared by threads (each thread will have a separated copy of the
681variable). A variable may be defined as a global "constant," which indicates
682that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000683optimization, allowing the global data to be placed in the read-only section of
684an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000685cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000686
687<p>
688LLVM explicitly allows <em>declarations</em> of global variables to be marked
689constant, even if the final definition of the global is not. This capability
690can be used to enable slightly better optimization of the program, but requires
691the language definition to guarantee that optimizations based on the
692'constantness' are valid for the translation units that do not include the
693definition.
694</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000695
696<p>As SSA values, global variables define pointer values that are in
697scope (i.e. they dominate) all basic blocks in the program. Global
698variables always define a pointer to their "content" type because they
699describe a region of memory, and all memory objects in LLVM are
700accessed through pointers.</p>
701
Christopher Lamb284d9922007-12-11 09:31:00 +0000702<p>A global variable may be declared to reside in a target-specifc numbered
703address space. For targets that support them, address spaces may affect how
704optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000705the variable. The default address space is zero. The address space qualifier
706must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000707
Chris Lattner88f6c462005-11-12 00:45:07 +0000708<p>LLVM allows an explicit section to be specified for globals. If the target
709supports it, it will emit globals to the section specified.</p>
710
Chris Lattner2cbdc452005-11-06 08:02:57 +0000711<p>An explicit alignment may be specified for a global. If not present, or if
712the alignment is set to zero, the alignment of the global is set by the target
713to whatever it feels convenient. If an explicit alignment is specified, the
714global is forced to have at least that much alignment. All alignments must be
715a power of 2.</p>
716
Christopher Lamb284d9922007-12-11 09:31:00 +0000717<p>For example, the following defines a global in a numbered address space with
718an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000719
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000720<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000721<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000722@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000723</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000724</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000725
Chris Lattnerfa730212004-12-09 16:11:40 +0000726</div>
727
728
729<!-- ======================================================================= -->
730<div class="doc_subsection">
731 <a name="functionstructure">Functions</a>
732</div>
733
734<div class="doc_text">
735
Reid Spencerca86e162006-12-31 07:07:53 +0000736<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
737an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000738<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000739<a href="#callingconv">calling convention</a>, a return type, an optional
740<a href="#paramattrs">parameter attribute</a> for the return type, a function
741name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000742<a href="#paramattrs">parameter attributes</a>), an optional section, an
Gordon Henriksene754abe2007-12-10 03:30:21 +0000743optional alignment, an optional <a href="#gc">garbage collector name</a>, an
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000744opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000745
746LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
747optional <a href="#linkage">linkage type</a>, an optional
748<a href="#visibility">visibility style</a>, an optional
749<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000750<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000751name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000752<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000753
754<p>A function definition contains a list of basic blocks, forming the CFG for
755the function. Each basic block may optionally start with a label (giving the
756basic block a symbol table entry), contains a list of instructions, and ends
757with a <a href="#terminators">terminator</a> instruction (such as a branch or
758function return).</p>
759
Chris Lattner4a3c9012007-06-08 16:52:14 +0000760<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000761executed on entrance to the function, and it is not allowed to have predecessor
762basic blocks (i.e. there can not be any branches to the entry block of a
763function). Because the block can have no predecessors, it also cannot have any
764<a href="#i_phi">PHI nodes</a>.</p>
765
Chris Lattner88f6c462005-11-12 00:45:07 +0000766<p>LLVM allows an explicit section to be specified for functions. If the target
767supports it, it will emit functions to the section specified.</p>
768
Chris Lattner2cbdc452005-11-06 08:02:57 +0000769<p>An explicit alignment may be specified for a function. If not present, or if
770the alignment is set to zero, the alignment of the function is set by the target
771to whatever it feels convenient. If an explicit alignment is specified, the
772function is forced to have at least that much alignment. All alignments must be
773a power of 2.</p>
774
Chris Lattnerfa730212004-12-09 16:11:40 +0000775</div>
776
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000777
778<!-- ======================================================================= -->
779<div class="doc_subsection">
780 <a name="aliasstructure">Aliases</a>
781</div>
782<div class="doc_text">
783 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000784 function, global variable, another alias or bitcast of global value). Aliases
785 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000786 optional <a href="#visibility">visibility style</a>.</p>
787
788 <h5>Syntax:</h5>
789
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000790<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000791<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000792@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000793</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000794</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000795
796</div>
797
798
799
Chris Lattner4e9aba72006-01-23 23:23:47 +0000800<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000801<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
802<div class="doc_text">
803 <p>The return type and each parameter of a function type may have a set of
804 <i>parameter attributes</i> associated with them. Parameter attributes are
805 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000806 a function. Parameter attributes are considered to be part of the function,
807 not of the function type, so functions with different parameter attributes
808 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000809
Reid Spencer950e9f82007-01-15 18:27:39 +0000810 <p>Parameter attributes are simple keywords that follow the type specified. If
811 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000812 example:</p>
813
814<div class="doc_code">
815<pre>
Duncan Sandsdc024672007-11-27 13:23:08 +0000816declare i32 @printf(i8* noalias , ...) nounwind
817declare i32 @atoi(i8*) nounwind readonly
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000818</pre>
819</div>
820
Duncan Sandsdc024672007-11-27 13:23:08 +0000821 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
822 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000823
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000824 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000825 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000826 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000827 <dd>This indicates that the parameter should be zero extended just before
828 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000829
Reid Spencer9445e9a2007-07-19 23:13:04 +0000830 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000831 <dd>This indicates that the parameter should be sign extended just before
832 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000833
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000834 <dt><tt>inreg</tt></dt>
835 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000836 possible) during assembling function call. Support for this attribute is
837 target-specific</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000838
839 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000840 <dd>This indicates that the pointer parameter should really be passed by
841 value to the function. The attribute implies that a hidden copy of the
842 pointee is made between the caller and the callee, so the callee is unable
843 to modify the value in the callee. This attribute is only valid on llvm
844 pointer arguments. It is generally used to pass structs and arrays by
845 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000846
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000847 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000848 <dd>This indicates that the pointer parameter specifies the address of a
849 structure that is the return value of the function in the source program.
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000850 Loads and stores to the structure are assumed not to trap.
Duncan Sandse26dec62008-02-18 04:19:38 +0000851 May only be applied to the first parameter.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000852
Zhou Shengfebca342007-06-05 05:28:26 +0000853 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000854 <dd>This indicates that the parameter does not alias any global or any other
855 parameter. The caller is responsible for ensuring that this is the case,
856 usually by placing the value in a stack allocation.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000857
Reid Spencer2dc52012007-03-22 02:18:56 +0000858 <dt><tt>noreturn</tt></dt>
859 <dd>This function attribute indicates that the function never returns. This
860 indicates to LLVM that every call to this function should be treated as if
861 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000862
Reid Spencer67606122007-03-22 02:02:11 +0000863 <dt><tt>nounwind</tt></dt>
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000864 <dd>This function attribute indicates that no exceptions unwind out of the
865 function. Usually this is because the function makes no use of exceptions,
866 but it may also be that the function catches any exceptions thrown when
867 executing it.</dd>
868
Duncan Sands50f19f52007-07-27 19:57:41 +0000869 <dt><tt>nest</tt></dt>
870 <dd>This indicates that the parameter can be excised using the
871 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000872 <dt><tt>readonly</tt></dt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000873 <dd>This function attribute indicates that the function has no side-effects
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000874 except for producing a return value or throwing an exception. The value
875 returned must only depend on the function arguments and/or global variables.
876 It may use values obtained by dereferencing pointers.</dd>
877 <dt><tt>readnone</tt></dt>
878 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000879 function, but in addition it is not allowed to dereference any pointer arguments
880 or global variables.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000881 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000882
Reid Spencerca86e162006-12-31 07:07:53 +0000883</div>
884
885<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000886<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000887 <a name="gc">Garbage Collector Names</a>
888</div>
889
890<div class="doc_text">
891<p>Each function may specify a garbage collector name, which is simply a
892string.</p>
893
894<div class="doc_code"><pre
895>define void @f() gc "name" { ...</pre></div>
896
897<p>The compiler declares the supported values of <i>name</i>. Specifying a
898collector which will cause the compiler to alter its output in order to support
899the named garbage collection algorithm.</p>
900</div>
901
902<!-- ======================================================================= -->
903<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000904 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000905</div>
906
907<div class="doc_text">
908<p>
909Modules may contain "module-level inline asm" blocks, which corresponds to the
910GCC "file scope inline asm" blocks. These blocks are internally concatenated by
911LLVM and treated as a single unit, but may be separated in the .ll file if
912desired. The syntax is very simple:
913</p>
914
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000915<div class="doc_code">
916<pre>
917module asm "inline asm code goes here"
918module asm "more can go here"
919</pre>
920</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000921
922<p>The strings can contain any character by escaping non-printable characters.
923 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
924 for the number.
925</p>
926
927<p>
928 The inline asm code is simply printed to the machine code .s file when
929 assembly code is generated.
930</p>
931</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000932
Reid Spencerde151942007-02-19 23:54:10 +0000933<!-- ======================================================================= -->
934<div class="doc_subsection">
935 <a name="datalayout">Data Layout</a>
936</div>
937
938<div class="doc_text">
939<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000940data is to be laid out in memory. The syntax for the data layout is simply:</p>
941<pre> target datalayout = "<i>layout specification</i>"</pre>
942<p>The <i>layout specification</i> consists of a list of specifications
943separated by the minus sign character ('-'). Each specification starts with a
944letter and may include other information after the letter to define some
945aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000946<dl>
947 <dt><tt>E</tt></dt>
948 <dd>Specifies that the target lays out data in big-endian form. That is, the
949 bits with the most significance have the lowest address location.</dd>
950 <dt><tt>e</tt></dt>
951 <dd>Specifies that hte target lays out data in little-endian form. That is,
952 the bits with the least significance have the lowest address location.</dd>
953 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
954 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
955 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
956 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
957 too.</dd>
958 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
959 <dd>This specifies the alignment for an integer type of a given bit
960 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
961 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
962 <dd>This specifies the alignment for a vector type of a given bit
963 <i>size</i>.</dd>
964 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
965 <dd>This specifies the alignment for a floating point type of a given bit
966 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
967 (double).</dd>
968 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
969 <dd>This specifies the alignment for an aggregate type of a given bit
970 <i>size</i>.</dd>
971</dl>
972<p>When constructing the data layout for a given target, LLVM starts with a
973default set of specifications which are then (possibly) overriden by the
974specifications in the <tt>datalayout</tt> keyword. The default specifications
975are given in this list:</p>
976<ul>
977 <li><tt>E</tt> - big endian</li>
978 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
979 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
980 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
981 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
982 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
983 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
984 alignment of 64-bits</li>
985 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
986 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
987 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
988 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
989 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
990</ul>
991<p>When llvm is determining the alignment for a given type, it uses the
992following rules:
993<ol>
994 <li>If the type sought is an exact match for one of the specifications, that
995 specification is used.</li>
996 <li>If no match is found, and the type sought is an integer type, then the
997 smallest integer type that is larger than the bitwidth of the sought type is
998 used. If none of the specifications are larger than the bitwidth then the the
999 largest integer type is used. For example, given the default specifications
1000 above, the i7 type will use the alignment of i8 (next largest) while both
1001 i65 and i256 will use the alignment of i64 (largest specified).</li>
1002 <li>If no match is found, and the type sought is a vector type, then the
1003 largest vector type that is smaller than the sought vector type will be used
1004 as a fall back. This happens because <128 x double> can be implemented in
1005 terms of 64 <2 x double>, for example.</li>
1006</ol>
1007</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001008
Chris Lattner00950542001-06-06 20:29:01 +00001009<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001010<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1011<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001012
Misha Brukman9d0919f2003-11-08 01:05:38 +00001013<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001014
Misha Brukman9d0919f2003-11-08 01:05:38 +00001015<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001016intermediate representation. Being typed enables a number of
1017optimizations to be performed on the IR directly, without having to do
1018extra analyses on the side before the transformation. A strong type
1019system makes it easier to read the generated code and enables novel
1020analyses and transformations that are not feasible to perform on normal
1021three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001022
1023</div>
1024
Chris Lattner00950542001-06-06 20:29:01 +00001025<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001026<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001027Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001028<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001029<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001030classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001031
1032<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001033 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001034 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001035 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001036 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001037 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001038 </tr>
1039 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001040 <td><a href="#t_floating">floating point</a></td>
1041 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001042 </tr>
1043 <tr>
1044 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001045 <td><a href="#t_integer">integer</a>,
1046 <a href="#t_floating">floating point</a>,
1047 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001048 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001049 <a href="#t_struct">structure</a>,
1050 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001051 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001052 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001053 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001054 <tr>
1055 <td><a href="#t_primitive">primitive</a></td>
1056 <td><a href="#t_label">label</a>,
1057 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001058 <a href="#t_floating">floating point</a>.</td>
1059 </tr>
1060 <tr>
1061 <td><a href="#t_derived">derived</a></td>
1062 <td><a href="#t_integer">integer</a>,
1063 <a href="#t_array">array</a>,
1064 <a href="#t_function">function</a>,
1065 <a href="#t_pointer">pointer</a>,
1066 <a href="#t_struct">structure</a>,
1067 <a href="#t_pstruct">packed structure</a>,
1068 <a href="#t_vector">vector</a>,
1069 <a href="#t_opaque">opaque</a>.
1070 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001071 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001072</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001073
Chris Lattner261efe92003-11-25 01:02:51 +00001074<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1075most important. Values of these types are the only ones which can be
1076produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001077instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001078</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001079
Chris Lattner00950542001-06-06 20:29:01 +00001080<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001081<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001082
Chris Lattner4f69f462008-01-04 04:32:38 +00001083<div class="doc_text">
1084<p>The primitive types are the fundamental building blocks of the LLVM
1085system.</p>
1086
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001087</div>
1088
Chris Lattner4f69f462008-01-04 04:32:38 +00001089<!-- _______________________________________________________________________ -->
1090<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1091
1092<div class="doc_text">
1093 <table>
1094 <tbody>
1095 <tr><th>Type</th><th>Description</th></tr>
1096 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1097 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1098 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1099 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1100 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1101 </tbody>
1102 </table>
1103</div>
1104
1105<!-- _______________________________________________________________________ -->
1106<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1107
1108<div class="doc_text">
1109<h5>Overview:</h5>
1110<p>The void type does not represent any value and has no size.</p>
1111
1112<h5>Syntax:</h5>
1113
1114<pre>
1115 void
1116</pre>
1117</div>
1118
1119<!-- _______________________________________________________________________ -->
1120<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1121
1122<div class="doc_text">
1123<h5>Overview:</h5>
1124<p>The label type represents code labels.</p>
1125
1126<h5>Syntax:</h5>
1127
1128<pre>
1129 label
1130</pre>
1131</div>
1132
1133
1134<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001135<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001136
Misha Brukman9d0919f2003-11-08 01:05:38 +00001137<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001138
Chris Lattner261efe92003-11-25 01:02:51 +00001139<p>The real power in LLVM comes from the derived types in the system.
1140This is what allows a programmer to represent arrays, functions,
1141pointers, and other useful types. Note that these derived types may be
1142recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001143
Misha Brukman9d0919f2003-11-08 01:05:38 +00001144</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001145
Chris Lattner00950542001-06-06 20:29:01 +00001146<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001147<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1148
1149<div class="doc_text">
1150
1151<h5>Overview:</h5>
1152<p>The integer type is a very simple derived type that simply specifies an
1153arbitrary bit width for the integer type desired. Any bit width from 1 bit to
11542^23-1 (about 8 million) can be specified.</p>
1155
1156<h5>Syntax:</h5>
1157
1158<pre>
1159 iN
1160</pre>
1161
1162<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1163value.</p>
1164
1165<h5>Examples:</h5>
1166<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001167 <tbody>
1168 <tr>
1169 <td><tt>i1</tt></td>
1170 <td>a single-bit integer.</td>
1171 </tr><tr>
1172 <td><tt>i32</tt></td>
1173 <td>a 32-bit integer.</td>
1174 </tr><tr>
1175 <td><tt>i1942652</tt></td>
1176 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001177 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001178 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001179</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001180</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001181
1182<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001183<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001184
Misha Brukman9d0919f2003-11-08 01:05:38 +00001185<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001186
Chris Lattner00950542001-06-06 20:29:01 +00001187<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001188
Misha Brukman9d0919f2003-11-08 01:05:38 +00001189<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001190sequentially in memory. The array type requires a size (number of
1191elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001192
Chris Lattner7faa8832002-04-14 06:13:44 +00001193<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001194
1195<pre>
1196 [&lt;# elements&gt; x &lt;elementtype&gt;]
1197</pre>
1198
John Criswelle4c57cc2005-05-12 16:52:32 +00001199<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001200be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001201
Chris Lattner7faa8832002-04-14 06:13:44 +00001202<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001203<table class="layout">
1204 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001205 <td class="left"><tt>[40 x i32]</tt></td>
1206 <td class="left">Array of 40 32-bit integer values.</td>
1207 </tr>
1208 <tr class="layout">
1209 <td class="left"><tt>[41 x i32]</tt></td>
1210 <td class="left">Array of 41 32-bit integer values.</td>
1211 </tr>
1212 <tr class="layout">
1213 <td class="left"><tt>[4 x i8]</tt></td>
1214 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001215 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001216</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001217<p>Here are some examples of multidimensional arrays:</p>
1218<table class="layout">
1219 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001220 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1221 <td class="left">3x4 array of 32-bit integer values.</td>
1222 </tr>
1223 <tr class="layout">
1224 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1225 <td class="left">12x10 array of single precision floating point values.</td>
1226 </tr>
1227 <tr class="layout">
1228 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1229 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001230 </tr>
1231</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001232
John Criswell0ec250c2005-10-24 16:17:18 +00001233<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1234length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001235LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1236As a special case, however, zero length arrays are recognized to be variable
1237length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001238type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001239
Misha Brukman9d0919f2003-11-08 01:05:38 +00001240</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001241
Chris Lattner00950542001-06-06 20:29:01 +00001242<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001243<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001244<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001245
Chris Lattner00950542001-06-06 20:29:01 +00001246<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001247
Chris Lattner261efe92003-11-25 01:02:51 +00001248<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001249consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001250return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001251If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001252class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001253
Chris Lattner00950542001-06-06 20:29:01 +00001254<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001255
1256<pre>
1257 &lt;returntype list&gt; (&lt;parameter list&gt;)
1258</pre>
1259
John Criswell0ec250c2005-10-24 16:17:18 +00001260<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001261specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001262which indicates that the function takes a variable number of arguments.
1263Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001264 href="#int_varargs">variable argument handling intrinsic</a> functions.
1265'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1266<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001267
Chris Lattner00950542001-06-06 20:29:01 +00001268<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001269<table class="layout">
1270 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001271 <td class="left"><tt>i32 (i32)</tt></td>
1272 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001273 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001274 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001275 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001276 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001277 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1278 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001279 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001280 <tt>float</tt>.
1281 </td>
1282 </tr><tr class="layout">
1283 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1284 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001285 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001286 which returns an integer. This is the signature for <tt>printf</tt> in
1287 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001288 </td>
Devang Patela582f402008-03-24 05:35:41 +00001289 </tr><tr class="layout">
1290 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001291 <td class="left">A function taking an <tt>i32></tt>, returning two
1292 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001293 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001294 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001295</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001296
Misha Brukman9d0919f2003-11-08 01:05:38 +00001297</div>
Chris Lattner00950542001-06-06 20:29:01 +00001298<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001299<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001300<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001301<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001302<p>The structure type is used to represent a collection of data members
1303together in memory. The packing of the field types is defined to match
1304the ABI of the underlying processor. The elements of a structure may
1305be any type that has a size.</p>
1306<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1307and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1308field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1309instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001310<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001311<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001312<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001313<table class="layout">
1314 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001315 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1316 <td class="left">A triple of three <tt>i32</tt> values</td>
1317 </tr><tr class="layout">
1318 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1319 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1320 second element is a <a href="#t_pointer">pointer</a> to a
1321 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1322 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001323 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001324</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001325</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001326
Chris Lattner00950542001-06-06 20:29:01 +00001327<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001328<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1329</div>
1330<div class="doc_text">
1331<h5>Overview:</h5>
1332<p>The packed structure type is used to represent a collection of data members
1333together in memory. There is no padding between fields. Further, the alignment
1334of a packed structure is 1 byte. The elements of a packed structure may
1335be any type that has a size.</p>
1336<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1337and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1338field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1339instruction.</p>
1340<h5>Syntax:</h5>
1341<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1342<h5>Examples:</h5>
1343<table class="layout">
1344 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001345 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1346 <td class="left">A triple of three <tt>i32</tt> values</td>
1347 </tr><tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001348 <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001349 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1350 second element is a <a href="#t_pointer">pointer</a> to a
1351 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1352 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001353 </tr>
1354</table>
1355</div>
1356
1357<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001358<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001359<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001360<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001361<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001362reference to another object, which must live in memory. Pointer types may have
1363an optional address space attribute defining the target-specific numbered
1364address space where the pointed-to object resides. The default address space is
1365zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001366<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001367<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001368<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001369<table class="layout">
1370 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001371 <td class="left"><tt>[4x i32]*</tt></td>
1372 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1373 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1374 </tr>
1375 <tr class="layout">
1376 <td class="left"><tt>i32 (i32 *) *</tt></td>
1377 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001378 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001379 <tt>i32</tt>.</td>
1380 </tr>
1381 <tr class="layout">
1382 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1383 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1384 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001385 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001386</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001387</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001388
Chris Lattnera58561b2004-08-12 19:12:28 +00001389<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001390<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001391<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001392
Chris Lattnera58561b2004-08-12 19:12:28 +00001393<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001394
Reid Spencer485bad12007-02-15 03:07:05 +00001395<p>A vector type is a simple derived type that represents a vector
1396of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001397are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001398A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001399elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001400of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001401considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001402
Chris Lattnera58561b2004-08-12 19:12:28 +00001403<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001404
1405<pre>
1406 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1407</pre>
1408
John Criswellc1f786c2005-05-13 22:25:59 +00001409<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001410be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001411
Chris Lattnera58561b2004-08-12 19:12:28 +00001412<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001413
Reid Spencerd3f876c2004-11-01 08:19:36 +00001414<table class="layout">
1415 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001416 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1417 <td class="left">Vector of 4 32-bit integer values.</td>
1418 </tr>
1419 <tr class="layout">
1420 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1421 <td class="left">Vector of 8 32-bit floating-point values.</td>
1422 </tr>
1423 <tr class="layout">
1424 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1425 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001426 </tr>
1427</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001428</div>
1429
Chris Lattner69c11bb2005-04-25 17:34:15 +00001430<!-- _______________________________________________________________________ -->
1431<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1432<div class="doc_text">
1433
1434<h5>Overview:</h5>
1435
1436<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001437corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001438In LLVM, opaque types can eventually be resolved to any type (not just a
1439structure type).</p>
1440
1441<h5>Syntax:</h5>
1442
1443<pre>
1444 opaque
1445</pre>
1446
1447<h5>Examples:</h5>
1448
1449<table class="layout">
1450 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001451 <td class="left"><tt>opaque</tt></td>
1452 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001453 </tr>
1454</table>
1455</div>
1456
1457
Chris Lattnerc3f59762004-12-09 17:30:23 +00001458<!-- *********************************************************************** -->
1459<div class="doc_section"> <a name="constants">Constants</a> </div>
1460<!-- *********************************************************************** -->
1461
1462<div class="doc_text">
1463
1464<p>LLVM has several different basic types of constants. This section describes
1465them all and their syntax.</p>
1466
1467</div>
1468
1469<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001470<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001471
1472<div class="doc_text">
1473
1474<dl>
1475 <dt><b>Boolean constants</b></dt>
1476
1477 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001478 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001479 </dd>
1480
1481 <dt><b>Integer constants</b></dt>
1482
Reid Spencercc16dc32004-12-09 18:02:53 +00001483 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001484 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001485 integer types.
1486 </dd>
1487
1488 <dt><b>Floating point constants</b></dt>
1489
1490 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1491 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001492 notation (see below). The assembler requires the exact decimal value of
1493 a floating-point constant. For example, the assembler accepts 1.25 but
1494 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1495 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001496
1497 <dt><b>Null pointer constants</b></dt>
1498
John Criswell9e2485c2004-12-10 15:51:16 +00001499 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001500 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1501
1502</dl>
1503
John Criswell9e2485c2004-12-10 15:51:16 +00001504<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001505of floating point constants. For example, the form '<tt>double
15060x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15074.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001508(and the only time that they are generated by the disassembler) is when a
1509floating point constant must be emitted but it cannot be represented as a
1510decimal floating point number. For example, NaN's, infinities, and other
1511special values are represented in their IEEE hexadecimal format so that
1512assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001513
1514</div>
1515
1516<!-- ======================================================================= -->
1517<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1518</div>
1519
1520<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001521<p>Aggregate constants arise from aggregation of simple constants
1522and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001523
1524<dl>
1525 <dt><b>Structure constants</b></dt>
1526
1527 <dd>Structure constants are represented with notation similar to structure
1528 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001529 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1530 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001531 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001532 types of elements must match those specified by the type.
1533 </dd>
1534
1535 <dt><b>Array constants</b></dt>
1536
1537 <dd>Array constants are represented with notation similar to array type
1538 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001539 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001540 constants must have <a href="#t_array">array type</a>, and the number and
1541 types of elements must match those specified by the type.
1542 </dd>
1543
Reid Spencer485bad12007-02-15 03:07:05 +00001544 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001545
Reid Spencer485bad12007-02-15 03:07:05 +00001546 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001547 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001548 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001549 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001550 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001551 match those specified by the type.
1552 </dd>
1553
1554 <dt><b>Zero initialization</b></dt>
1555
1556 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1557 value to zero of <em>any</em> type, including scalar and aggregate types.
1558 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001559 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001560 initializers.
1561 </dd>
1562</dl>
1563
1564</div>
1565
1566<!-- ======================================================================= -->
1567<div class="doc_subsection">
1568 <a name="globalconstants">Global Variable and Function Addresses</a>
1569</div>
1570
1571<div class="doc_text">
1572
1573<p>The addresses of <a href="#globalvars">global variables</a> and <a
1574href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001575constants. These constants are explicitly referenced when the <a
1576href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001577href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1578file:</p>
1579
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001580<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001581<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001582@X = global i32 17
1583@Y = global i32 42
1584@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001585</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001586</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001587
1588</div>
1589
1590<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001591<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001592<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001593 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001594 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001595 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001596
Reid Spencer2dc45b82004-12-09 18:13:12 +00001597 <p>Undefined values indicate to the compiler that the program is well defined
1598 no matter what value is used, giving the compiler more freedom to optimize.
1599 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001600</div>
1601
1602<!-- ======================================================================= -->
1603<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1604</div>
1605
1606<div class="doc_text">
1607
1608<p>Constant expressions are used to allow expressions involving other constants
1609to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001610href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001611that does not have side effects (e.g. load and call are not supported). The
1612following is the syntax for constant expressions:</p>
1613
1614<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001615 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1616 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001617 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001618
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001619 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1620 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001621 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001622
1623 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1624 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001625 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001626
1627 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1628 <dd>Truncate a floating point constant to another floating point type. The
1629 size of CST must be larger than the size of TYPE. Both types must be
1630 floating point.</dd>
1631
1632 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1633 <dd>Floating point extend a constant to another type. The size of CST must be
1634 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1635
Reid Spencer1539a1c2007-07-31 14:40:14 +00001636 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001637 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001638 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1639 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1640 of the same number of elements. If the value won't fit in the integer type,
1641 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001642
Reid Spencerd4448792006-11-09 23:03:26 +00001643 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001644 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001645 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1646 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1647 of the same number of elements. If the value won't fit in the integer type,
1648 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001649
Reid Spencerd4448792006-11-09 23:03:26 +00001650 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001651 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001652 constant. TYPE must be a scalar or vector floating point type. CST must be of
1653 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1654 of the same number of elements. If the value won't fit in the floating point
1655 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001656
Reid Spencerd4448792006-11-09 23:03:26 +00001657 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001658 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001659 constant. TYPE must be a scalar or vector floating point type. CST must be of
1660 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1661 of the same number of elements. If the value won't fit in the floating point
1662 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001663
Reid Spencer5c0ef472006-11-11 23:08:07 +00001664 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1665 <dd>Convert a pointer typed constant to the corresponding integer constant
1666 TYPE must be an integer type. CST must be of pointer type. The CST value is
1667 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1668
1669 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1670 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1671 pointer type. CST must be of integer type. The CST value is zero extended,
1672 truncated, or unchanged to make it fit in a pointer size. This one is
1673 <i>really</i> dangerous!</dd>
1674
1675 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001676 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1677 identical (same number of bits). The conversion is done as if the CST value
1678 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001679 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001680 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001681 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001682 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001683
1684 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1685
1686 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1687 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1688 instruction, the index list may have zero or more indexes, which are required
1689 to make sense for the type of "CSTPTR".</dd>
1690
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001691 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1692
1693 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001694 constants.</dd>
1695
1696 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1697 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1698
1699 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1700 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001701
Nate Begemanac80ade2008-05-12 19:01:56 +00001702 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1703 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1704
1705 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1706 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1707
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001708 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1709
1710 <dd>Perform the <a href="#i_extractelement">extractelement
1711 operation</a> on constants.
1712
Robert Bocchino05ccd702006-01-15 20:48:27 +00001713 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1714
1715 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001716 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001717
Chris Lattnerc1989542006-04-08 00:13:41 +00001718
1719 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1720
1721 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001722 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001723
Chris Lattnerc3f59762004-12-09 17:30:23 +00001724 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1725
Reid Spencer2dc45b82004-12-09 18:13:12 +00001726 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1727 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001728 binary</a> operations. The constraints on operands are the same as those for
1729 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001730 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001731</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001732</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001733
Chris Lattner00950542001-06-06 20:29:01 +00001734<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001735<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1736<!-- *********************************************************************** -->
1737
1738<!-- ======================================================================= -->
1739<div class="doc_subsection">
1740<a name="inlineasm">Inline Assembler Expressions</a>
1741</div>
1742
1743<div class="doc_text">
1744
1745<p>
1746LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1747Module-Level Inline Assembly</a>) through the use of a special value. This
1748value represents the inline assembler as a string (containing the instructions
1749to emit), a list of operand constraints (stored as a string), and a flag that
1750indicates whether or not the inline asm expression has side effects. An example
1751inline assembler expression is:
1752</p>
1753
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001754<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001755<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001756i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001757</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001758</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001759
1760<p>
1761Inline assembler expressions may <b>only</b> be used as the callee operand of
1762a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1763</p>
1764
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001765<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001766<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001767%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001768</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001769</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001770
1771<p>
1772Inline asms with side effects not visible in the constraint list must be marked
1773as having side effects. This is done through the use of the
1774'<tt>sideeffect</tt>' keyword, like so:
1775</p>
1776
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001777<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001778<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001779call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001780</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001781</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001782
1783<p>TODO: The format of the asm and constraints string still need to be
1784documented here. Constraints on what can be done (e.g. duplication, moving, etc
1785need to be documented).
1786</p>
1787
1788</div>
1789
1790<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001791<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1792<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001793
Misha Brukman9d0919f2003-11-08 01:05:38 +00001794<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001795
Chris Lattner261efe92003-11-25 01:02:51 +00001796<p>The LLVM instruction set consists of several different
1797classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001798instructions</a>, <a href="#binaryops">binary instructions</a>,
1799<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001800 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1801instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001802
Misha Brukman9d0919f2003-11-08 01:05:38 +00001803</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001804
Chris Lattner00950542001-06-06 20:29:01 +00001805<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001806<div class="doc_subsection"> <a name="terminators">Terminator
1807Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001808
Misha Brukman9d0919f2003-11-08 01:05:38 +00001809<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001810
Chris Lattner261efe92003-11-25 01:02:51 +00001811<p>As mentioned <a href="#functionstructure">previously</a>, every
1812basic block in a program ends with a "Terminator" instruction, which
1813indicates which block should be executed after the current block is
1814finished. These terminator instructions typically yield a '<tt>void</tt>'
1815value: they produce control flow, not values (the one exception being
1816the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001817<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001818 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1819instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001820the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1821 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1822 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001823
Misha Brukman9d0919f2003-11-08 01:05:38 +00001824</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001825
Chris Lattner00950542001-06-06 20:29:01 +00001826<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001827<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1828Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001829<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001830<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001831<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001832 ret void <i>; Return from void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001833 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Chris Lattner00950542001-06-06 20:29:01 +00001834</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001835
Chris Lattner00950542001-06-06 20:29:01 +00001836<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001837
Chris Lattner261efe92003-11-25 01:02:51 +00001838<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001839value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001840<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001841returns value(s) and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001842control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001843
Chris Lattner00950542001-06-06 20:29:01 +00001844<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001845
1846<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1847The type of each return value must be a '<a href="#t_firstclass">first
1848class</a>' type. Note that a function is not <a href="#wellformed">well
1849formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1850function that returns values that do not match the return type of the
1851function.</p>
1852
Chris Lattner00950542001-06-06 20:29:01 +00001853<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001854
Chris Lattner261efe92003-11-25 01:02:51 +00001855<p>When the '<tt>ret</tt>' instruction is executed, control flow
1856returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001857 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001858the instruction after the call. If the caller was an "<a
1859 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001860at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001861returns a value, that value shall set the call or invoke instruction's
Devang Patelc3fc6df2008-03-10 20:49:15 +00001862return value. If the instruction returns multiple values then these
Devang Patel0dbb4a12008-03-11 05:51:59 +00001863values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1864</a>' instruction.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001865
Chris Lattner00950542001-06-06 20:29:01 +00001866<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001867
1868<pre>
1869 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001870 ret void <i>; Return from a void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001871 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Chris Lattner00950542001-06-06 20:29:01 +00001872</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001873</div>
Chris Lattner00950542001-06-06 20:29:01 +00001874<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001875<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001876<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001877<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001878<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001879</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001880<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001881<p>The '<tt>br</tt>' instruction is used to cause control flow to
1882transfer to a different basic block in the current function. There are
1883two forms of this instruction, corresponding to a conditional branch
1884and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001885<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001886<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001887single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001888unconditional form of the '<tt>br</tt>' instruction takes a single
1889'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001890<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001891<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001892argument is evaluated. If the value is <tt>true</tt>, control flows
1893to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1894control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001895<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001896<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001897 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001898</div>
Chris Lattner00950542001-06-06 20:29:01 +00001899<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001900<div class="doc_subsubsection">
1901 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1902</div>
1903
Misha Brukman9d0919f2003-11-08 01:05:38 +00001904<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001905<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001906
1907<pre>
1908 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1909</pre>
1910
Chris Lattner00950542001-06-06 20:29:01 +00001911<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001912
1913<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1914several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001915instruction, allowing a branch to occur to one of many possible
1916destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001917
1918
Chris Lattner00950542001-06-06 20:29:01 +00001919<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001920
1921<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1922comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1923an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1924table is not allowed to contain duplicate constant entries.</p>
1925
Chris Lattner00950542001-06-06 20:29:01 +00001926<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001927
Chris Lattner261efe92003-11-25 01:02:51 +00001928<p>The <tt>switch</tt> instruction specifies a table of values and
1929destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001930table is searched for the given value. If the value is found, control flow is
1931transfered to the corresponding destination; otherwise, control flow is
1932transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001933
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001934<h5>Implementation:</h5>
1935
1936<p>Depending on properties of the target machine and the particular
1937<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001938ways. For example, it could be generated as a series of chained conditional
1939branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001940
1941<h5>Example:</h5>
1942
1943<pre>
1944 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001945 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001946 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001947
1948 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001949 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001950
1951 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001952 switch i32 %val, label %otherwise [ i32 0, label %onzero
1953 i32 1, label %onone
1954 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001955</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001956</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001957
Chris Lattner00950542001-06-06 20:29:01 +00001958<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001959<div class="doc_subsubsection">
1960 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1961</div>
1962
Misha Brukman9d0919f2003-11-08 01:05:38 +00001963<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001964
Chris Lattner00950542001-06-06 20:29:01 +00001965<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001966
1967<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00001968 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001969 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001970</pre>
1971
Chris Lattner6536cfe2002-05-06 22:08:29 +00001972<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001973
1974<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1975function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001976'<tt>normal</tt>' label or the
1977'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001978"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1979"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001980href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patelc3fc6df2008-03-10 20:49:15 +00001981continued at the dynamically nearest "exception" label. If the callee function
Devang Patel0dbb4a12008-03-11 05:51:59 +00001982returns multiple values then individual return values are only accessible through
1983a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001984
Chris Lattner00950542001-06-06 20:29:01 +00001985<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001986
Misha Brukman9d0919f2003-11-08 01:05:38 +00001987<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001988
Chris Lattner00950542001-06-06 20:29:01 +00001989<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001990 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00001991 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001992 convention</a> the call should use. If none is specified, the call defaults
1993 to using C calling conventions.
1994 </li>
1995 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1996 function value being invoked. In most cases, this is a direct function
1997 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1998 an arbitrary pointer to function value.
1999 </li>
2000
2001 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2002 function to be invoked. </li>
2003
2004 <li>'<tt>function args</tt>': argument list whose types match the function
2005 signature argument types. If the function signature indicates the function
2006 accepts a variable number of arguments, the extra arguments can be
2007 specified. </li>
2008
2009 <li>'<tt>normal label</tt>': the label reached when the called function
2010 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2011
2012 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2013 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2014
Chris Lattner00950542001-06-06 20:29:01 +00002015</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002016
Chris Lattner00950542001-06-06 20:29:01 +00002017<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002018
Misha Brukman9d0919f2003-11-08 01:05:38 +00002019<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002020href="#i_call">call</a></tt>' instruction in most regards. The primary
2021difference is that it establishes an association with a label, which is used by
2022the runtime library to unwind the stack.</p>
2023
2024<p>This instruction is used in languages with destructors to ensure that proper
2025cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2026exception. Additionally, this is important for implementation of
2027'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2028
Chris Lattner00950542001-06-06 20:29:01 +00002029<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002030<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002031 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002032 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002033 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002034 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002035</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002036</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002037
2038
Chris Lattner27f71f22003-09-03 00:41:47 +00002039<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002040
Chris Lattner261efe92003-11-25 01:02:51 +00002041<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2042Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002043
Misha Brukman9d0919f2003-11-08 01:05:38 +00002044<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002045
Chris Lattner27f71f22003-09-03 00:41:47 +00002046<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002047<pre>
2048 unwind
2049</pre>
2050
Chris Lattner27f71f22003-09-03 00:41:47 +00002051<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002052
2053<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2054at the first callee in the dynamic call stack which used an <a
2055href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2056primarily used to implement exception handling.</p>
2057
Chris Lattner27f71f22003-09-03 00:41:47 +00002058<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002059
Chris Lattner72ed2002008-04-19 21:01:16 +00002060<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002061immediately halt. The dynamic call stack is then searched for the first <a
2062href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2063execution continues at the "exceptional" destination block specified by the
2064<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2065dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002066</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002067
2068<!-- _______________________________________________________________________ -->
2069
2070<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2071Instruction</a> </div>
2072
2073<div class="doc_text">
2074
2075<h5>Syntax:</h5>
2076<pre>
2077 unreachable
2078</pre>
2079
2080<h5>Overview:</h5>
2081
2082<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2083instruction is used to inform the optimizer that a particular portion of the
2084code is not reachable. This can be used to indicate that the code after a
2085no-return function cannot be reached, and other facts.</p>
2086
2087<h5>Semantics:</h5>
2088
2089<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2090</div>
2091
2092
2093
Chris Lattner00950542001-06-06 20:29:01 +00002094<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002095<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002096<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002097<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002098program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002099produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002100multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002101The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002102<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002103</div>
Chris Lattner00950542001-06-06 20:29:01 +00002104<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002105<div class="doc_subsubsection">
2106 <a name="i_add">'<tt>add</tt>' Instruction</a>
2107</div>
2108
Misha Brukman9d0919f2003-11-08 01:05:38 +00002109<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002110
Chris Lattner00950542001-06-06 20:29:01 +00002111<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002112
2113<pre>
2114 &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002115</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002116
Chris Lattner00950542001-06-06 20:29:01 +00002117<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002118
Misha Brukman9d0919f2003-11-08 01:05:38 +00002119<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002120
Chris Lattner00950542001-06-06 20:29:01 +00002121<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002122
2123<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2124 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2125 <a href="#t_vector">vector</a> values. Both arguments must have identical
2126 types.</p>
2127
Chris Lattner00950542001-06-06 20:29:01 +00002128<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002129
Misha Brukman9d0919f2003-11-08 01:05:38 +00002130<p>The value produced is the integer or floating point sum of the two
2131operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002132
Chris Lattner5ec89832008-01-28 00:36:27 +00002133<p>If an integer sum has unsigned overflow, the result returned is the
2134mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2135the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002136
Chris Lattner5ec89832008-01-28 00:36:27 +00002137<p>Because LLVM integers use a two's complement representation, this
2138instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002139
Chris Lattner00950542001-06-06 20:29:01 +00002140<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002141
2142<pre>
2143 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002144</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002145</div>
Chris Lattner00950542001-06-06 20:29:01 +00002146<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002147<div class="doc_subsubsection">
2148 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2149</div>
2150
Misha Brukman9d0919f2003-11-08 01:05:38 +00002151<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002152
Chris Lattner00950542001-06-06 20:29:01 +00002153<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002154
2155<pre>
2156 &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002157</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002158
Chris Lattner00950542001-06-06 20:29:01 +00002159<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002160
Misha Brukman9d0919f2003-11-08 01:05:38 +00002161<p>The '<tt>sub</tt>' instruction returns the difference of its two
2162operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002163
2164<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2165'<tt>neg</tt>' instruction present in most other intermediate
2166representations.</p>
2167
Chris Lattner00950542001-06-06 20:29:01 +00002168<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002169
2170<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2171 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2172 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2173 types.</p>
2174
Chris Lattner00950542001-06-06 20:29:01 +00002175<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002176
Chris Lattner261efe92003-11-25 01:02:51 +00002177<p>The value produced is the integer or floating point difference of
2178the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002179
Chris Lattner5ec89832008-01-28 00:36:27 +00002180<p>If an integer difference has unsigned overflow, the result returned is the
2181mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2182the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002183
Chris Lattner5ec89832008-01-28 00:36:27 +00002184<p>Because LLVM integers use a two's complement representation, this
2185instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002186
Chris Lattner00950542001-06-06 20:29:01 +00002187<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002188<pre>
2189 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002190 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002191</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002192</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002193
Chris Lattner00950542001-06-06 20:29:01 +00002194<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002195<div class="doc_subsubsection">
2196 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2197</div>
2198
Misha Brukman9d0919f2003-11-08 01:05:38 +00002199<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002200
Chris Lattner00950542001-06-06 20:29:01 +00002201<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002202<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002203</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002204<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002205<p>The '<tt>mul</tt>' instruction returns the product of its two
2206operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002207
Chris Lattner00950542001-06-06 20:29:01 +00002208<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002209
2210<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2211href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2212or <a href="#t_vector">vector</a> values. Both arguments must have identical
2213types.</p>
2214
Chris Lattner00950542001-06-06 20:29:01 +00002215<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002216
Chris Lattner261efe92003-11-25 01:02:51 +00002217<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002218two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002219
Chris Lattner5ec89832008-01-28 00:36:27 +00002220<p>If the result of an integer multiplication has unsigned overflow,
2221the result returned is the mathematical result modulo
22222<sup>n</sup>, where n is the bit width of the result.</p>
2223<p>Because LLVM integers use a two's complement representation, and the
2224result is the same width as the operands, this instruction returns the
2225correct result for both signed and unsigned integers. If a full product
2226(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2227should be sign-extended or zero-extended as appropriate to the
2228width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002229<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002230<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002231</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002232</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002233
Chris Lattner00950542001-06-06 20:29:01 +00002234<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002235<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2236</a></div>
2237<div class="doc_text">
2238<h5>Syntax:</h5>
2239<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2240</pre>
2241<h5>Overview:</h5>
2242<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2243operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002244
Reid Spencer1628cec2006-10-26 06:15:43 +00002245<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002246
Reid Spencer1628cec2006-10-26 06:15:43 +00002247<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002248<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2249values. Both arguments must have identical types.</p>
2250
Reid Spencer1628cec2006-10-26 06:15:43 +00002251<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002252
Chris Lattner5ec89832008-01-28 00:36:27 +00002253<p>The value produced is the unsigned integer quotient of the two operands.</p>
2254<p>Note that unsigned integer division and signed integer division are distinct
2255operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2256<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002257<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002258<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002259</pre>
2260</div>
2261<!-- _______________________________________________________________________ -->
2262<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2263</a> </div>
2264<div class="doc_text">
2265<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002266<pre>
2267 &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002268</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002269
Reid Spencer1628cec2006-10-26 06:15:43 +00002270<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002271
Reid Spencer1628cec2006-10-26 06:15:43 +00002272<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2273operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002274
Reid Spencer1628cec2006-10-26 06:15:43 +00002275<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002276
2277<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2278<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2279values. Both arguments must have identical types.</p>
2280
Reid Spencer1628cec2006-10-26 06:15:43 +00002281<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002282<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002283<p>Note that signed integer division and unsigned integer division are distinct
2284operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2285<p>Division by zero leads to undefined behavior. Overflow also leads to
2286undefined behavior; this is a rare case, but can occur, for example,
2287by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002288<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002289<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002290</pre>
2291</div>
2292<!-- _______________________________________________________________________ -->
2293<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002294Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002295<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002296<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002297<pre>
2298 &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002299</pre>
2300<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002301
Reid Spencer1628cec2006-10-26 06:15:43 +00002302<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002303operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002304
Chris Lattner261efe92003-11-25 01:02:51 +00002305<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002306
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002307<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002308<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2309of floating point values. Both arguments must have identical types.</p>
2310
Chris Lattner261efe92003-11-25 01:02:51 +00002311<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002312
Reid Spencer1628cec2006-10-26 06:15:43 +00002313<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002314
Chris Lattner261efe92003-11-25 01:02:51 +00002315<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002316
2317<pre>
2318 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002319</pre>
2320</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002321
Chris Lattner261efe92003-11-25 01:02:51 +00002322<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002323<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2324</div>
2325<div class="doc_text">
2326<h5>Syntax:</h5>
2327<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2328</pre>
2329<h5>Overview:</h5>
2330<p>The '<tt>urem</tt>' instruction returns the remainder from the
2331unsigned division of its two arguments.</p>
2332<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002333<p>The two arguments to the '<tt>urem</tt>' instruction must be
2334<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2335values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002336<h5>Semantics:</h5>
2337<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002338This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002339<p>Note that unsigned integer remainder and signed integer remainder are
2340distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2341<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002342<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002343<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002344</pre>
2345
2346</div>
2347<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002348<div class="doc_subsubsection">
2349 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2350</div>
2351
Chris Lattner261efe92003-11-25 01:02:51 +00002352<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002353
Chris Lattner261efe92003-11-25 01:02:51 +00002354<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002355
2356<pre>
2357 &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002358</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002359
Chris Lattner261efe92003-11-25 01:02:51 +00002360<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002361
Reid Spencer0a783f72006-11-02 01:53:59 +00002362<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002363signed division of its two operands. This instruction can also take
2364<a href="#t_vector">vector</a> versions of the values in which case
2365the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002366
Chris Lattner261efe92003-11-25 01:02:51 +00002367<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002368
Reid Spencer0a783f72006-11-02 01:53:59 +00002369<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002370<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2371values. Both arguments must have identical types.</p>
2372
Chris Lattner261efe92003-11-25 01:02:51 +00002373<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002374
Reid Spencer0a783f72006-11-02 01:53:59 +00002375<p>This instruction returns the <i>remainder</i> of a division (where the result
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002376has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2377operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2378a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002379 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002380Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002381please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002382Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002383<p>Note that signed integer remainder and unsigned integer remainder are
2384distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2385<p>Taking the remainder of a division by zero leads to undefined behavior.
2386Overflow also leads to undefined behavior; this is a rare case, but can occur,
2387for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2388(The remainder doesn't actually overflow, but this rule lets srem be
2389implemented using instructions that return both the result of the division
2390and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002391<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002392<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002393</pre>
2394
2395</div>
2396<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002397<div class="doc_subsubsection">
2398 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2399
Reid Spencer0a783f72006-11-02 01:53:59 +00002400<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002401
Reid Spencer0a783f72006-11-02 01:53:59 +00002402<h5>Syntax:</h5>
2403<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2404</pre>
2405<h5>Overview:</h5>
2406<p>The '<tt>frem</tt>' instruction returns the remainder from the
2407division of its two operands.</p>
2408<h5>Arguments:</h5>
2409<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002410<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2411of floating point values. Both arguments must have identical types.</p>
2412
Reid Spencer0a783f72006-11-02 01:53:59 +00002413<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002414
Chris Lattnera73afe02008-04-01 18:45:27 +00002415<p>This instruction returns the <i>remainder</i> of a division.
2416The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002417
Reid Spencer0a783f72006-11-02 01:53:59 +00002418<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002419
2420<pre>
2421 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002422</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002423</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002424
Reid Spencer8e11bf82007-02-02 13:57:07 +00002425<!-- ======================================================================= -->
2426<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2427Operations</a> </div>
2428<div class="doc_text">
2429<p>Bitwise binary operators are used to do various forms of
2430bit-twiddling in a program. They are generally very efficient
2431instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002432instructions. They require two operands of the same type, execute an operation on them,
2433and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002434</div>
2435
Reid Spencer569f2fa2007-01-31 21:39:12 +00002436<!-- _______________________________________________________________________ -->
2437<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2438Instruction</a> </div>
2439<div class="doc_text">
2440<h5>Syntax:</h5>
2441<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2442</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002443
Reid Spencer569f2fa2007-01-31 21:39:12 +00002444<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002445
Reid Spencer569f2fa2007-01-31 21:39:12 +00002446<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2447the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002448
Reid Spencer569f2fa2007-01-31 21:39:12 +00002449<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002450
Reid Spencer569f2fa2007-01-31 21:39:12 +00002451<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Chris Lattner72ed2002008-04-19 21:01:16 +00002452 href="#t_integer">integer</a> type. '<tt>var2</tt>' is treated as an
Chris Lattner5568e942008-05-20 20:48:21 +00002453unsigned value. This instruction does not support
2454<a href="#t_vector">vector</a> operands.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002455
Reid Spencer569f2fa2007-01-31 21:39:12 +00002456<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002457
Chris Lattnera73afe02008-04-01 18:45:27 +00002458<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup> mod 2<sup>n</sup>,
2459where n is the width of the result. If <tt>var2</tt> is (statically or dynamically) negative or
2460equal to or larger than the number of bits in <tt>var1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002461
Reid Spencer569f2fa2007-01-31 21:39:12 +00002462<h5>Example:</h5><pre>
2463 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2464 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2465 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002466 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002467</pre>
2468</div>
2469<!-- _______________________________________________________________________ -->
2470<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2471Instruction</a> </div>
2472<div class="doc_text">
2473<h5>Syntax:</h5>
2474<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2475</pre>
2476
2477<h5>Overview:</h5>
2478<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002479operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002480
2481<h5>Arguments:</h5>
2482<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Chris Lattner72ed2002008-04-19 21:01:16 +00002483<a href="#t_integer">integer</a> type. '<tt>var2</tt>' is treated as an
Chris Lattner5568e942008-05-20 20:48:21 +00002484unsigned value. This instruction does not support
2485<a href="#t_vector">vector</a> operands.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002486
2487<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002488
Reid Spencer569f2fa2007-01-31 21:39:12 +00002489<p>This instruction always performs a logical shift right operation. The most
2490significant bits of the result will be filled with zero bits after the
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002491shift. If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2492the number of bits in <tt>var1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002493
2494<h5>Example:</h5>
2495<pre>
2496 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2497 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2498 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2499 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002500 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002501</pre>
2502</div>
2503
Reid Spencer8e11bf82007-02-02 13:57:07 +00002504<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002505<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2506Instruction</a> </div>
2507<div class="doc_text">
2508
2509<h5>Syntax:</h5>
2510<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2511</pre>
2512
2513<h5>Overview:</h5>
2514<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002515operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002516
2517<h5>Arguments:</h5>
2518<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Chris Lattner72ed2002008-04-19 21:01:16 +00002519<a href="#t_integer">integer</a> type. '<tt>var2</tt>' is treated as an
Chris Lattner5568e942008-05-20 20:48:21 +00002520unsigned value. This instruction does not support
2521<a href="#t_vector">vector</a> operands.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002522
2523<h5>Semantics:</h5>
2524<p>This instruction always performs an arithmetic shift right operation,
2525The most significant bits of the result will be filled with the sign bit
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002526of <tt>var1</tt>. If <tt>var2</tt> is (statically or dynamically) equal to or
2527larger than the number of bits in <tt>var1</tt>, the result is undefined.
2528</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002529
2530<h5>Example:</h5>
2531<pre>
2532 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2533 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2534 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2535 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002536 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002537</pre>
2538</div>
2539
Chris Lattner00950542001-06-06 20:29:01 +00002540<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002541<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2542Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002543
Misha Brukman9d0919f2003-11-08 01:05:38 +00002544<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002545
Chris Lattner00950542001-06-06 20:29:01 +00002546<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002547
2548<pre>
2549 &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002550</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002551
Chris Lattner00950542001-06-06 20:29:01 +00002552<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002553
Chris Lattner261efe92003-11-25 01:02:51 +00002554<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2555its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002556
Chris Lattner00950542001-06-06 20:29:01 +00002557<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002558
2559<p>The two arguments to the '<tt>and</tt>' instruction must be
2560<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2561values. Both arguments must have identical types.</p>
2562
Chris Lattner00950542001-06-06 20:29:01 +00002563<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002564<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002565<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002566<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002567<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002568 <tbody>
2569 <tr>
2570 <td>In0</td>
2571 <td>In1</td>
2572 <td>Out</td>
2573 </tr>
2574 <tr>
2575 <td>0</td>
2576 <td>0</td>
2577 <td>0</td>
2578 </tr>
2579 <tr>
2580 <td>0</td>
2581 <td>1</td>
2582 <td>0</td>
2583 </tr>
2584 <tr>
2585 <td>1</td>
2586 <td>0</td>
2587 <td>0</td>
2588 </tr>
2589 <tr>
2590 <td>1</td>
2591 <td>1</td>
2592 <td>1</td>
2593 </tr>
2594 </tbody>
2595</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002596</div>
Chris Lattner00950542001-06-06 20:29:01 +00002597<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002598<pre>
2599 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002600 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2601 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002602</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002603</div>
Chris Lattner00950542001-06-06 20:29:01 +00002604<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002605<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002606<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002607<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002608<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002609</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002610<h5>Overview:</h5>
2611<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2612or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002613<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002614
2615<p>The two arguments to the '<tt>or</tt>' instruction must be
2616<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2617values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002618<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002619<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002620<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002621<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002622<table border="1" cellspacing="0" cellpadding="4">
2623 <tbody>
2624 <tr>
2625 <td>In0</td>
2626 <td>In1</td>
2627 <td>Out</td>
2628 </tr>
2629 <tr>
2630 <td>0</td>
2631 <td>0</td>
2632 <td>0</td>
2633 </tr>
2634 <tr>
2635 <td>0</td>
2636 <td>1</td>
2637 <td>1</td>
2638 </tr>
2639 <tr>
2640 <td>1</td>
2641 <td>0</td>
2642 <td>1</td>
2643 </tr>
2644 <tr>
2645 <td>1</td>
2646 <td>1</td>
2647 <td>1</td>
2648 </tr>
2649 </tbody>
2650</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002651</div>
Chris Lattner00950542001-06-06 20:29:01 +00002652<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002653<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2654 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2655 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002656</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002657</div>
Chris Lattner00950542001-06-06 20:29:01 +00002658<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002659<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2660Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002661<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002662<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002663<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002664</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002665<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002666<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2667or of its two operands. The <tt>xor</tt> is used to implement the
2668"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002669<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002670<p>The two arguments to the '<tt>xor</tt>' instruction must be
2671<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2672values. Both arguments must have identical types.</p>
2673
Chris Lattner00950542001-06-06 20:29:01 +00002674<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002675
Misha Brukman9d0919f2003-11-08 01:05:38 +00002676<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002677<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002678<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002679<table border="1" cellspacing="0" cellpadding="4">
2680 <tbody>
2681 <tr>
2682 <td>In0</td>
2683 <td>In1</td>
2684 <td>Out</td>
2685 </tr>
2686 <tr>
2687 <td>0</td>
2688 <td>0</td>
2689 <td>0</td>
2690 </tr>
2691 <tr>
2692 <td>0</td>
2693 <td>1</td>
2694 <td>1</td>
2695 </tr>
2696 <tr>
2697 <td>1</td>
2698 <td>0</td>
2699 <td>1</td>
2700 </tr>
2701 <tr>
2702 <td>1</td>
2703 <td>1</td>
2704 <td>0</td>
2705 </tr>
2706 </tbody>
2707</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002708</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002709<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002710<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002711<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2712 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2713 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2714 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002715</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002716</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002717
Chris Lattner00950542001-06-06 20:29:01 +00002718<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002719<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002720 <a name="vectorops">Vector Operations</a>
2721</div>
2722
2723<div class="doc_text">
2724
2725<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002726target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002727vector-specific operations needed to process vectors effectively. While LLVM
2728does directly support these vector operations, many sophisticated algorithms
2729will want to use target-specific intrinsics to take full advantage of a specific
2730target.</p>
2731
2732</div>
2733
2734<!-- _______________________________________________________________________ -->
2735<div class="doc_subsubsection">
2736 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2737</div>
2738
2739<div class="doc_text">
2740
2741<h5>Syntax:</h5>
2742
2743<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002744 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002745</pre>
2746
2747<h5>Overview:</h5>
2748
2749<p>
2750The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002751element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002752</p>
2753
2754
2755<h5>Arguments:</h5>
2756
2757<p>
2758The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002759value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002760an index indicating the position from which to extract the element.
2761The index may be a variable.</p>
2762
2763<h5>Semantics:</h5>
2764
2765<p>
2766The result is a scalar of the same type as the element type of
2767<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2768<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2769results are undefined.
2770</p>
2771
2772<h5>Example:</h5>
2773
2774<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002775 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002776</pre>
2777</div>
2778
2779
2780<!-- _______________________________________________________________________ -->
2781<div class="doc_subsubsection">
2782 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2783</div>
2784
2785<div class="doc_text">
2786
2787<h5>Syntax:</h5>
2788
2789<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002790 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002791</pre>
2792
2793<h5>Overview:</h5>
2794
2795<p>
2796The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002797element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002798</p>
2799
2800
2801<h5>Arguments:</h5>
2802
2803<p>
2804The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002805value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002806scalar value whose type must equal the element type of the first
2807operand. The third operand is an index indicating the position at
2808which to insert the value. The index may be a variable.</p>
2809
2810<h5>Semantics:</h5>
2811
2812<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002813The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002814element values are those of <tt>val</tt> except at position
2815<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2816exceeds the length of <tt>val</tt>, the results are undefined.
2817</p>
2818
2819<h5>Example:</h5>
2820
2821<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002822 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002823</pre>
2824</div>
2825
2826<!-- _______________________________________________________________________ -->
2827<div class="doc_subsubsection">
2828 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2829</div>
2830
2831<div class="doc_text">
2832
2833<h5>Syntax:</h5>
2834
2835<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002836 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002837</pre>
2838
2839<h5>Overview:</h5>
2840
2841<p>
2842The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2843from two input vectors, returning a vector of the same type.
2844</p>
2845
2846<h5>Arguments:</h5>
2847
2848<p>
2849The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2850with types that match each other and types that match the result of the
2851instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002852of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002853</p>
2854
2855<p>
2856The shuffle mask operand is required to be a constant vector with either
2857constant integer or undef values.
2858</p>
2859
2860<h5>Semantics:</h5>
2861
2862<p>
2863The elements of the two input vectors are numbered from left to right across
2864both of the vectors. The shuffle mask operand specifies, for each element of
2865the result vector, which element of the two input registers the result element
2866gets. The element selector may be undef (meaning "don't care") and the second
2867operand may be undef if performing a shuffle from only one vector.
2868</p>
2869
2870<h5>Example:</h5>
2871
2872<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002873 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002874 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002875 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2876 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002877</pre>
2878</div>
2879
Tanya Lattner09474292006-04-14 19:24:33 +00002880
Chris Lattner3df241e2006-04-08 23:07:04 +00002881<!-- ======================================================================= -->
2882<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002883 <a name="aggregateops">Aggregate Operations</a>
2884</div>
2885
2886<div class="doc_text">
2887
2888<p>LLVM supports several instructions for working with aggregate values.
2889</p>
2890
2891</div>
2892
2893<!-- _______________________________________________________________________ -->
2894<div class="doc_subsubsection">
2895 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2896</div>
2897
2898<div class="doc_text">
2899
2900<h5>Syntax:</h5>
2901
2902<pre>
2903 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2904</pre>
2905
2906<h5>Overview:</h5>
2907
2908<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002909The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2910or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002911</p>
2912
2913
2914<h5>Arguments:</h5>
2915
2916<p>
2917The first operand of an '<tt>extractvalue</tt>' instruction is a
2918value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002919type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002920in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002921'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2922</p>
2923
2924<h5>Semantics:</h5>
2925
2926<p>
2927The result is the value at the position in the aggregate specified by
2928the index operands.
2929</p>
2930
2931<h5>Example:</h5>
2932
2933<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002934 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00002935</pre>
2936</div>
2937
2938
2939<!-- _______________________________________________________________________ -->
2940<div class="doc_subsubsection">
2941 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2942</div>
2943
2944<div class="doc_text">
2945
2946<h5>Syntax:</h5>
2947
2948<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002949 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00002950</pre>
2951
2952<h5>Overview:</h5>
2953
2954<p>
2955The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002956into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002957</p>
2958
2959
2960<h5>Arguments:</h5>
2961
2962<p>
2963The first operand of an '<tt>insertvalue</tt>' instruction is a
2964value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
2965The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00002966The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002967indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002968indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002969'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2970The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002971by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002972
2973<h5>Semantics:</h5>
2974
2975<p>
2976The result is an aggregate of the same type as <tt>val</tt>. Its
2977value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002978specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002979</p>
2980
2981<h5>Example:</h5>
2982
2983<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00002984 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00002985</pre>
2986</div>
2987
2988
2989<!-- ======================================================================= -->
2990<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002991 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002992</div>
2993
Misha Brukman9d0919f2003-11-08 01:05:38 +00002994<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002995
Chris Lattner261efe92003-11-25 01:02:51 +00002996<p>A key design point of an SSA-based representation is how it
2997represents memory. In LLVM, no memory locations are in SSA form, which
2998makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002999allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003000
Misha Brukman9d0919f2003-11-08 01:05:38 +00003001</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003002
Chris Lattner00950542001-06-06 20:29:01 +00003003<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003004<div class="doc_subsubsection">
3005 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3006</div>
3007
Misha Brukman9d0919f2003-11-08 01:05:38 +00003008<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003009
Chris Lattner00950542001-06-06 20:29:01 +00003010<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003011
3012<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003013 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003014</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003015
Chris Lattner00950542001-06-06 20:29:01 +00003016<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003017
Chris Lattner261efe92003-11-25 01:02:51 +00003018<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003019heap and returns a pointer to it. The object is always allocated in the generic
3020address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003021
Chris Lattner00950542001-06-06 20:29:01 +00003022<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003023
3024<p>The '<tt>malloc</tt>' instruction allocates
3025<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003026bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003027appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003028number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003029If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003030be aligned to at least that boundary. If not specified, or if zero, the target can
3031choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003032
Misha Brukman9d0919f2003-11-08 01:05:38 +00003033<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003034
Chris Lattner00950542001-06-06 20:29:01 +00003035<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003036
Chris Lattner261efe92003-11-25 01:02:51 +00003037<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003038a pointer is returned. The result of a zero byte allocattion is undefined. The
3039result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003040
Chris Lattner2cbdc452005-11-06 08:02:57 +00003041<h5>Example:</h5>
3042
3043<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003044 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003045
Bill Wendlingaac388b2007-05-29 09:42:13 +00003046 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3047 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3048 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3049 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3050 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003051</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003052</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003053
Chris Lattner00950542001-06-06 20:29:01 +00003054<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003055<div class="doc_subsubsection">
3056 <a name="i_free">'<tt>free</tt>' Instruction</a>
3057</div>
3058
Misha Brukman9d0919f2003-11-08 01:05:38 +00003059<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003060
Chris Lattner00950542001-06-06 20:29:01 +00003061<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003062
3063<pre>
3064 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003065</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003066
Chris Lattner00950542001-06-06 20:29:01 +00003067<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003068
Chris Lattner261efe92003-11-25 01:02:51 +00003069<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003070memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003071
Chris Lattner00950542001-06-06 20:29:01 +00003072<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003073
Chris Lattner261efe92003-11-25 01:02:51 +00003074<p>'<tt>value</tt>' shall be a pointer value that points to a value
3075that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3076instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003077
Chris Lattner00950542001-06-06 20:29:01 +00003078<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003079
John Criswell9e2485c2004-12-10 15:51:16 +00003080<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003081after this instruction executes. If the pointer is null, the operation
3082is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003083
Chris Lattner00950542001-06-06 20:29:01 +00003084<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003085
3086<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003087 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3088 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003089</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003090</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003091
Chris Lattner00950542001-06-06 20:29:01 +00003092<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003093<div class="doc_subsubsection">
3094 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3095</div>
3096
Misha Brukman9d0919f2003-11-08 01:05:38 +00003097<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003098
Chris Lattner00950542001-06-06 20:29:01 +00003099<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003100
3101<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003102 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003103</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003104
Chris Lattner00950542001-06-06 20:29:01 +00003105<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003106
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003107<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3108currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003109returns to its caller. The object is always allocated in the generic address
3110space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003111
Chris Lattner00950542001-06-06 20:29:01 +00003112<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003113
John Criswell9e2485c2004-12-10 15:51:16 +00003114<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003115bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003116appropriate type to the program. If "NumElements" is specified, it is the
3117number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003118If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003119to be aligned to at least that boundary. If not specified, or if zero, the target
3120can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003121
Misha Brukman9d0919f2003-11-08 01:05:38 +00003122<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003123
Chris Lattner00950542001-06-06 20:29:01 +00003124<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003125
Chris Lattner72ed2002008-04-19 21:01:16 +00003126<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3127there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003128memory is automatically released when the function returns. The '<tt>alloca</tt>'
3129instruction is commonly used to represent automatic variables that must
3130have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003131 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003132instructions), the memory is reclaimed. Allocating zero bytes
3133is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003134
Chris Lattner00950542001-06-06 20:29:01 +00003135<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003136
3137<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003138 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003139 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3140 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003141 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003142</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003143</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003144
Chris Lattner00950542001-06-06 20:29:01 +00003145<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003146<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3147Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003148<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003149<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003150<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003151<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003152<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003153<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003154<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003155address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003156 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003157marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003158the number or order of execution of this <tt>load</tt> with other
3159volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3160instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003161<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003162The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003163(that is, the alignment of the memory address). A value of 0 or an
3164omitted "align" argument means that the operation has the preferential
3165alignment for the target. It is the responsibility of the code emitter
3166to ensure that the alignment information is correct. Overestimating
3167the alignment results in an undefined behavior. Underestimating the
3168alignment may produce less efficient code. An alignment of 1 is always
3169safe.
3170</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003171<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003172<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003173<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003174<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003175 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003176 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3177 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003178</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003179</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003180<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003181<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3182Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003183<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003184<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003185<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3186 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003187</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003188<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003189<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003190<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003191<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003192to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003193operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3194of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003195operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003196optimizer is not allowed to modify the number or order of execution of
3197this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3198 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003199<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003200The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003201(that is, the alignment of the memory address). A value of 0 or an
3202omitted "align" argument means that the operation has the preferential
3203alignment for the target. It is the responsibility of the code emitter
3204to ensure that the alignment information is correct. Overestimating
3205the alignment results in an undefined behavior. Underestimating the
3206alignment may produce less efficient code. An alignment of 1 is always
3207safe.
3208</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003209<h5>Semantics:</h5>
3210<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3211at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003212<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003213<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003214 store i32 3, i32* %ptr <i>; yields {void}</i>
3215 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003216</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003217</div>
3218
Chris Lattner2b7d3202002-05-06 03:03:22 +00003219<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003220<div class="doc_subsubsection">
3221 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3222</div>
3223
Misha Brukman9d0919f2003-11-08 01:05:38 +00003224<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003225<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003226<pre>
3227 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3228</pre>
3229
Chris Lattner7faa8832002-04-14 06:13:44 +00003230<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003231
3232<p>
3233The '<tt>getelementptr</tt>' instruction is used to get the address of a
3234subelement of an aggregate data structure.</p>
3235
Chris Lattner7faa8832002-04-14 06:13:44 +00003236<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003237
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003238<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003239elements of the aggregate object to index to. The actual types of the arguments
3240provided depend on the type of the first pointer argument. The
3241'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003242levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003243structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003244into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3245values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003246
Chris Lattner261efe92003-11-25 01:02:51 +00003247<p>For example, let's consider a C code fragment and how it gets
3248compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003249
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003250<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003251<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003252struct RT {
3253 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003254 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003255 char C;
3256};
3257struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003258 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003259 double Y;
3260 struct RT Z;
3261};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003262
Chris Lattnercabc8462007-05-29 15:43:56 +00003263int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003264 return &amp;s[1].Z.B[5][13];
3265}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003266</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003267</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003268
Misha Brukman9d0919f2003-11-08 01:05:38 +00003269<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003270
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003271<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003272<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003273%RT = type { i8 , [10 x [20 x i32]], i8 }
3274%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003275
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003276define i32* %foo(%ST* %s) {
3277entry:
3278 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3279 ret i32* %reg
3280}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003281</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003282</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003283
Chris Lattner7faa8832002-04-14 06:13:44 +00003284<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003285
3286<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003287on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003288and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003289<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003290to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3291structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003292
Misha Brukman9d0919f2003-11-08 01:05:38 +00003293<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003294type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003295}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003296the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3297i8 }</tt>' type, another structure. The third index indexes into the second
3298element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003299array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003300'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3301to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003302
Chris Lattner261efe92003-11-25 01:02:51 +00003303<p>Note that it is perfectly legal to index partially through a
3304structure, returning a pointer to an inner element. Because of this,
3305the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003306
3307<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003308 define i32* %foo(%ST* %s) {
3309 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003310 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3311 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003312 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3313 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3314 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003315 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003316</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003317
3318<p>Note that it is undefined to access an array out of bounds: array and
3319pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003320The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003321defined to be accessible as variable length arrays, which requires access
3322beyond the zero'th element.</p>
3323
Chris Lattner884a9702006-08-15 00:45:58 +00003324<p>The getelementptr instruction is often confusing. For some more insight
3325into how it works, see <a href="GetElementPtr.html">the getelementptr
3326FAQ</a>.</p>
3327
Chris Lattner7faa8832002-04-14 06:13:44 +00003328<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003329
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003330<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003331 <i>; yields [12 x i8]*:aptr</i>
3332 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003333</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003334</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003335
Chris Lattner00950542001-06-06 20:29:01 +00003336<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003337<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003338</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003339<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003340<p>The instructions in this category are the conversion instructions (casting)
3341which all take a single operand and a type. They perform various bit conversions
3342on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003343</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003344
Chris Lattner6536cfe2002-05-06 22:08:29 +00003345<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003346<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003347 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3348</div>
3349<div class="doc_text">
3350
3351<h5>Syntax:</h5>
3352<pre>
3353 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3354</pre>
3355
3356<h5>Overview:</h5>
3357<p>
3358The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3359</p>
3360
3361<h5>Arguments:</h5>
3362<p>
3363The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3364be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003365and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003366type. The bit size of <tt>value</tt> must be larger than the bit size of
3367<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003368
3369<h5>Semantics:</h5>
3370<p>
3371The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003372and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3373larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3374It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003375
3376<h5>Example:</h5>
3377<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003378 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003379 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3380 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003381</pre>
3382</div>
3383
3384<!-- _______________________________________________________________________ -->
3385<div class="doc_subsubsection">
3386 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3387</div>
3388<div class="doc_text">
3389
3390<h5>Syntax:</h5>
3391<pre>
3392 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3393</pre>
3394
3395<h5>Overview:</h5>
3396<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3397<tt>ty2</tt>.</p>
3398
3399
3400<h5>Arguments:</h5>
3401<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003402<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3403also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003404<tt>value</tt> must be smaller than the bit size of the destination type,
3405<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003406
3407<h5>Semantics:</h5>
3408<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003409bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003410
Reid Spencerb5929522007-01-12 15:46:11 +00003411<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003412
3413<h5>Example:</h5>
3414<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003415 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003416 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003417</pre>
3418</div>
3419
3420<!-- _______________________________________________________________________ -->
3421<div class="doc_subsubsection">
3422 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3423</div>
3424<div class="doc_text">
3425
3426<h5>Syntax:</h5>
3427<pre>
3428 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3429</pre>
3430
3431<h5>Overview:</h5>
3432<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3433
3434<h5>Arguments:</h5>
3435<p>
3436The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003437<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3438also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003439<tt>value</tt> must be smaller than the bit size of the destination type,
3440<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003441
3442<h5>Semantics:</h5>
3443<p>
3444The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3445bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003446the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003447
Reid Spencerc78f3372007-01-12 03:35:51 +00003448<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003449
3450<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003451<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003452 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003453 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003454</pre>
3455</div>
3456
3457<!-- _______________________________________________________________________ -->
3458<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003459 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3460</div>
3461
3462<div class="doc_text">
3463
3464<h5>Syntax:</h5>
3465
3466<pre>
3467 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3468</pre>
3469
3470<h5>Overview:</h5>
3471<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3472<tt>ty2</tt>.</p>
3473
3474
3475<h5>Arguments:</h5>
3476<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3477 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3478cast it to. The size of <tt>value</tt> must be larger than the size of
3479<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3480<i>no-op cast</i>.</p>
3481
3482<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003483<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3484<a href="#t_floating">floating point</a> type to a smaller
3485<a href="#t_floating">floating point</a> type. If the value cannot fit within
3486the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003487
3488<h5>Example:</h5>
3489<pre>
3490 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3491 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3492</pre>
3493</div>
3494
3495<!-- _______________________________________________________________________ -->
3496<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003497 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3498</div>
3499<div class="doc_text">
3500
3501<h5>Syntax:</h5>
3502<pre>
3503 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3504</pre>
3505
3506<h5>Overview:</h5>
3507<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3508floating point value.</p>
3509
3510<h5>Arguments:</h5>
3511<p>The '<tt>fpext</tt>' instruction takes a
3512<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003513and a <a href="#t_floating">floating point</a> type to cast it to. The source
3514type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003515
3516<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003517<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003518<a href="#t_floating">floating point</a> type to a larger
3519<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003520used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003521<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003522
3523<h5>Example:</h5>
3524<pre>
3525 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3526 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3527</pre>
3528</div>
3529
3530<!-- _______________________________________________________________________ -->
3531<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003532 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003533</div>
3534<div class="doc_text">
3535
3536<h5>Syntax:</h5>
3537<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003538 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003539</pre>
3540
3541<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003542<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003543unsigned integer equivalent of type <tt>ty2</tt>.
3544</p>
3545
3546<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003547<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003548scalar or vector <a href="#t_floating">floating point</a> value, and a type
3549to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3550type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3551vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003552
3553<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003554<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003555<a href="#t_floating">floating point</a> operand into the nearest (rounding
3556towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3557the results are undefined.</p>
3558
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003559<h5>Example:</h5>
3560<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003561 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003562 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003563 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003564</pre>
3565</div>
3566
3567<!-- _______________________________________________________________________ -->
3568<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003569 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003570</div>
3571<div class="doc_text">
3572
3573<h5>Syntax:</h5>
3574<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003575 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003576</pre>
3577
3578<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003579<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003580<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003581</p>
3582
Chris Lattner6536cfe2002-05-06 22:08:29 +00003583<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003584<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003585scalar or vector <a href="#t_floating">floating point</a> value, and a type
3586to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3587type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3588vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003589
Chris Lattner6536cfe2002-05-06 22:08:29 +00003590<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003591<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003592<a href="#t_floating">floating point</a> operand into the nearest (rounding
3593towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3594the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003595
Chris Lattner33ba0d92001-07-09 00:26:23 +00003596<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003597<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003598 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003599 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003600 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003601</pre>
3602</div>
3603
3604<!-- _______________________________________________________________________ -->
3605<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003606 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003607</div>
3608<div class="doc_text">
3609
3610<h5>Syntax:</h5>
3611<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003612 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003613</pre>
3614
3615<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003616<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003617integer and converts that value to the <tt>ty2</tt> type.</p>
3618
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003619<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003620<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3621scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3622to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3623type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3624floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003625
3626<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003627<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003628integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003629the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003630
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003631<h5>Example:</h5>
3632<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003633 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003634 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003635</pre>
3636</div>
3637
3638<!-- _______________________________________________________________________ -->
3639<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003640 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003641</div>
3642<div class="doc_text">
3643
3644<h5>Syntax:</h5>
3645<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003646 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003647</pre>
3648
3649<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003650<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003651integer and converts that value to the <tt>ty2</tt> type.</p>
3652
3653<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003654<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3655scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3656to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3657type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3658floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003659
3660<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003661<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003662integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003663the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003664
3665<h5>Example:</h5>
3666<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003667 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003668 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003669</pre>
3670</div>
3671
3672<!-- _______________________________________________________________________ -->
3673<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003674 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3675</div>
3676<div class="doc_text">
3677
3678<h5>Syntax:</h5>
3679<pre>
3680 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3681</pre>
3682
3683<h5>Overview:</h5>
3684<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3685the integer type <tt>ty2</tt>.</p>
3686
3687<h5>Arguments:</h5>
3688<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003689must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003690<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3691
3692<h5>Semantics:</h5>
3693<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3694<tt>ty2</tt> by interpreting the pointer value as an integer and either
3695truncating or zero extending that value to the size of the integer type. If
3696<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3697<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003698are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3699change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003700
3701<h5>Example:</h5>
3702<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003703 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3704 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003705</pre>
3706</div>
3707
3708<!-- _______________________________________________________________________ -->
3709<div class="doc_subsubsection">
3710 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3711</div>
3712<div class="doc_text">
3713
3714<h5>Syntax:</h5>
3715<pre>
3716 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3717</pre>
3718
3719<h5>Overview:</h5>
3720<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3721a pointer type, <tt>ty2</tt>.</p>
3722
3723<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003724<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003725value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003726<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003727
3728<h5>Semantics:</h5>
3729<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3730<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3731the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3732size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3733the size of a pointer then a zero extension is done. If they are the same size,
3734nothing is done (<i>no-op cast</i>).</p>
3735
3736<h5>Example:</h5>
3737<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003738 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3739 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3740 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003741</pre>
3742</div>
3743
3744<!-- _______________________________________________________________________ -->
3745<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003746 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003747</div>
3748<div class="doc_text">
3749
3750<h5>Syntax:</h5>
3751<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003752 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003753</pre>
3754
3755<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003756
Reid Spencer5c0ef472006-11-11 23:08:07 +00003757<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003758<tt>ty2</tt> without changing any bits.</p>
3759
3760<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003761
Reid Spencer5c0ef472006-11-11 23:08:07 +00003762<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003763a first class value, and a type to cast it to, which must also be a <a
3764 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003765and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003766type is a pointer, the destination type must also be a pointer. This
3767instruction supports bitwise conversion of vectors to integers and to vectors
3768of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003769
3770<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003771<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003772<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3773this conversion. The conversion is done as if the <tt>value</tt> had been
3774stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3775converted to other pointer types with this instruction. To convert pointers to
3776other types, use the <a href="#i_inttoptr">inttoptr</a> or
3777<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003778
3779<h5>Example:</h5>
3780<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003781 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003782 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3783 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003784</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003785</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003786
Reid Spencer2fd21e62006-11-08 01:18:52 +00003787<!-- ======================================================================= -->
3788<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3789<div class="doc_text">
3790<p>The instructions in this category are the "miscellaneous"
3791instructions, which defy better classification.</p>
3792</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003793
3794<!-- _______________________________________________________________________ -->
3795<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3796</div>
3797<div class="doc_text">
3798<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003799<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003800</pre>
3801<h5>Overview:</h5>
3802<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
Chris Lattner4316dec2008-04-02 00:38:26 +00003803of its two integer or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003804<h5>Arguments:</h5>
3805<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003806the condition code indicating the kind of comparison to perform. It is not
3807a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003808<ol>
3809 <li><tt>eq</tt>: equal</li>
3810 <li><tt>ne</tt>: not equal </li>
3811 <li><tt>ugt</tt>: unsigned greater than</li>
3812 <li><tt>uge</tt>: unsigned greater or equal</li>
3813 <li><tt>ult</tt>: unsigned less than</li>
3814 <li><tt>ule</tt>: unsigned less or equal</li>
3815 <li><tt>sgt</tt>: signed greater than</li>
3816 <li><tt>sge</tt>: signed greater or equal</li>
3817 <li><tt>slt</tt>: signed less than</li>
3818 <li><tt>sle</tt>: signed less or equal</li>
3819</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003820<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003821<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003822<h5>Semantics:</h5>
3823<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3824the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003825yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003826<ol>
3827 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3828 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3829 </li>
3830 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3831 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3832 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3833 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3834 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3835 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3836 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3837 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3838 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3839 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3840 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3841 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3842 <li><tt>sge</tt>: interprets the operands as signed values and yields
3843 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3844 <li><tt>slt</tt>: interprets the operands as signed values and yields
3845 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3846 <li><tt>sle</tt>: interprets the operands as signed values and yields
3847 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003848</ol>
3849<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003850values are compared as if they were integers.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003851
3852<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003853<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3854 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3855 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3856 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3857 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3858 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003859</pre>
3860</div>
3861
3862<!-- _______________________________________________________________________ -->
3863<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3864</div>
3865<div class="doc_text">
3866<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003867<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003868</pre>
3869<h5>Overview:</h5>
3870<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3871of its floating point operands.</p>
3872<h5>Arguments:</h5>
3873<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003874the condition code indicating the kind of comparison to perform. It is not
3875a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003876<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003877 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003878 <li><tt>oeq</tt>: ordered and equal</li>
3879 <li><tt>ogt</tt>: ordered and greater than </li>
3880 <li><tt>oge</tt>: ordered and greater than or equal</li>
3881 <li><tt>olt</tt>: ordered and less than </li>
3882 <li><tt>ole</tt>: ordered and less than or equal</li>
3883 <li><tt>one</tt>: ordered and not equal</li>
3884 <li><tt>ord</tt>: ordered (no nans)</li>
3885 <li><tt>ueq</tt>: unordered or equal</li>
3886 <li><tt>ugt</tt>: unordered or greater than </li>
3887 <li><tt>uge</tt>: unordered or greater than or equal</li>
3888 <li><tt>ult</tt>: unordered or less than </li>
3889 <li><tt>ule</tt>: unordered or less than or equal</li>
3890 <li><tt>une</tt>: unordered or not equal</li>
3891 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003892 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003893</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003894<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003895<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003896<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3897<a href="#t_floating">floating point</a> typed. They must have identical
3898types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003899<h5>Semantics:</h5>
Nate Begemanac80ade2008-05-12 19:01:56 +00003900<p>The '<tt>fcmp</tt>' instruction compares <tt>var1</tt> and <tt>var2</tt>
3901according to the condition code given as <tt>cond</tt>. The comparison performed
3902always yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003903<ol>
3904 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003905 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003906 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003907 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003908 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003909 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003910 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003911 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003912 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003913 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003914 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003915 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003916 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003917 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3918 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003919 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003920 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003921 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003922 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003923 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003924 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003925 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003926 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003927 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003928 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003929 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003930 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003931 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3932</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003933
3934<h5>Example:</h5>
3935<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3936 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3937 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3938 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3939</pre>
3940</div>
3941
Reid Spencer2fd21e62006-11-08 01:18:52 +00003942<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00003943<div class="doc_subsubsection">
3944 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
3945</div>
3946<div class="doc_text">
3947<h5>Syntax:</h5>
3948<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
3949</pre>
3950<h5>Overview:</h5>
3951<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
3952element-wise comparison of its two integer vector operands.</p>
3953<h5>Arguments:</h5>
3954<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
3955the condition code indicating the kind of comparison to perform. It is not
3956a value, just a keyword. The possible condition code are:
3957<ol>
3958 <li><tt>eq</tt>: equal</li>
3959 <li><tt>ne</tt>: not equal </li>
3960 <li><tt>ugt</tt>: unsigned greater than</li>
3961 <li><tt>uge</tt>: unsigned greater or equal</li>
3962 <li><tt>ult</tt>: unsigned less than</li>
3963 <li><tt>ule</tt>: unsigned less or equal</li>
3964 <li><tt>sgt</tt>: signed greater than</li>
3965 <li><tt>sge</tt>: signed greater or equal</li>
3966 <li><tt>slt</tt>: signed less than</li>
3967 <li><tt>sle</tt>: signed less or equal</li>
3968</ol>
3969<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
3970<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
3971<h5>Semantics:</h5>
3972<p>The '<tt>vicmp</tt>' instruction compares <tt>var1</tt> and <tt>var2</tt>
3973according to the condition code given as <tt>cond</tt>. The comparison yields a
3974<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
3975identical type as the values being compared. The most significant bit in each
3976element is 1 if the element-wise comparison evaluates to true, and is 0
3977otherwise. All other bits of the result are undefined. The condition codes
3978are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
3979instruction</a>.
3980
3981<h5>Example:</h5>
3982<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003983 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
3984 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00003985</pre>
3986</div>
3987
3988<!-- _______________________________________________________________________ -->
3989<div class="doc_subsubsection">
3990 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
3991</div>
3992<div class="doc_text">
3993<h5>Syntax:</h5>
3994<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;</pre>
3995<h5>Overview:</h5>
3996<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
3997element-wise comparison of its two floating point vector operands. The output
3998elements have the same width as the input elements.</p>
3999<h5>Arguments:</h5>
4000<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4001the condition code indicating the kind of comparison to perform. It is not
4002a value, just a keyword. The possible condition code are:
4003<ol>
4004 <li><tt>false</tt>: no comparison, always returns false</li>
4005 <li><tt>oeq</tt>: ordered and equal</li>
4006 <li><tt>ogt</tt>: ordered and greater than </li>
4007 <li><tt>oge</tt>: ordered and greater than or equal</li>
4008 <li><tt>olt</tt>: ordered and less than </li>
4009 <li><tt>ole</tt>: ordered and less than or equal</li>
4010 <li><tt>one</tt>: ordered and not equal</li>
4011 <li><tt>ord</tt>: ordered (no nans)</li>
4012 <li><tt>ueq</tt>: unordered or equal</li>
4013 <li><tt>ugt</tt>: unordered or greater than </li>
4014 <li><tt>uge</tt>: unordered or greater than or equal</li>
4015 <li><tt>ult</tt>: unordered or less than </li>
4016 <li><tt>ule</tt>: unordered or less than or equal</li>
4017 <li><tt>une</tt>: unordered or not equal</li>
4018 <li><tt>uno</tt>: unordered (either nans)</li>
4019 <li><tt>true</tt>: no comparison, always returns true</li>
4020</ol>
4021<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4022<a href="#t_floating">floating point</a> typed. They must also be identical
4023types.</p>
4024<h5>Semantics:</h5>
4025<p>The '<tt>vfcmp</tt>' instruction compares <tt>var1</tt> and <tt>var2</tt>
4026according to the condition code given as <tt>cond</tt>. The comparison yields a
4027<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4028an identical number of elements as the values being compared, and each element
4029having identical with to the width of the floating point elements. The most
4030significant bit in each element is 1 if the element-wise comparison evaluates to
4031true, and is 0 otherwise. All other bits of the result are undefined. The
4032condition codes are evaluated identically to the
4033<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4034
4035<h5>Example:</h5>
4036<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004037 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4038 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004039</pre>
4040</div>
4041
4042<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004043<div class="doc_subsubsection">
4044 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4045</div>
4046
Reid Spencer2fd21e62006-11-08 01:18:52 +00004047<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004048
Reid Spencer2fd21e62006-11-08 01:18:52 +00004049<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004050
Reid Spencer2fd21e62006-11-08 01:18:52 +00004051<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4052<h5>Overview:</h5>
4053<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4054the SSA graph representing the function.</p>
4055<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004056
Jeff Cohenb627eab2007-04-29 01:07:00 +00004057<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004058field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4059as arguments, with one pair for each predecessor basic block of the
4060current block. Only values of <a href="#t_firstclass">first class</a>
4061type may be used as the value arguments to the PHI node. Only labels
4062may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004063
Reid Spencer2fd21e62006-11-08 01:18:52 +00004064<p>There must be no non-phi instructions between the start of a basic
4065block and the PHI instructions: i.e. PHI instructions must be first in
4066a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004067
Reid Spencer2fd21e62006-11-08 01:18:52 +00004068<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004069
Jeff Cohenb627eab2007-04-29 01:07:00 +00004070<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4071specified by the pair corresponding to the predecessor basic block that executed
4072just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004073
Reid Spencer2fd21e62006-11-08 01:18:52 +00004074<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004075<pre>
4076Loop: ; Infinite loop that counts from 0 on up...
4077 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4078 %nextindvar = add i32 %indvar, 1
4079 br label %Loop
4080</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004081</div>
4082
Chris Lattnercc37aae2004-03-12 05:50:16 +00004083<!-- _______________________________________________________________________ -->
4084<div class="doc_subsubsection">
4085 <a name="i_select">'<tt>select</tt>' Instruction</a>
4086</div>
4087
4088<div class="doc_text">
4089
4090<h5>Syntax:</h5>
4091
4092<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004093 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004094</pre>
4095
4096<h5>Overview:</h5>
4097
4098<p>
4099The '<tt>select</tt>' instruction is used to choose one value based on a
4100condition, without branching.
4101</p>
4102
4103
4104<h5>Arguments:</h5>
4105
4106<p>
Chris Lattner5568e942008-05-20 20:48:21 +00004107The '<tt>select</tt>' instruction requires an 'i1' value indicating the
4108condition, and two values of the same <a href="#t_firstclass">first class</a>
4109type. If the val1/val2 are vectors, the entire vectors are selected, not
4110individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004111</p>
4112
4113<h5>Semantics:</h5>
4114
4115<p>
Chris Lattner5568e942008-05-20 20:48:21 +00004116If the i1 condition evaluates is 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004117value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004118</p>
4119
4120<h5>Example:</h5>
4121
4122<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004123 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004124</pre>
4125</div>
4126
Robert Bocchino05ccd702006-01-15 20:48:27 +00004127
4128<!-- _______________________________________________________________________ -->
4129<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004130 <a name="i_call">'<tt>call</tt>' Instruction</a>
4131</div>
4132
Misha Brukman9d0919f2003-11-08 01:05:38 +00004133<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004134
Chris Lattner00950542001-06-06 20:29:01 +00004135<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004136<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004137 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004138</pre>
4139
Chris Lattner00950542001-06-06 20:29:01 +00004140<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004141
Misha Brukman9d0919f2003-11-08 01:05:38 +00004142<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004143
Chris Lattner00950542001-06-06 20:29:01 +00004144<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004145
Misha Brukman9d0919f2003-11-08 01:05:38 +00004146<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004147
Chris Lattner6536cfe2002-05-06 22:08:29 +00004148<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004149 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004150 <p>The optional "tail" marker indicates whether the callee function accesses
4151 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004152 function call is eligible for tail call optimization. Note that calls may
4153 be marked "tail" even if they do not occur before a <a
4154 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004155 </li>
4156 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004157 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004158 convention</a> the call should use. If none is specified, the call defaults
4159 to using C calling conventions.
4160 </li>
4161 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004162 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4163 the type of the return value. Functions that return no value are marked
4164 <tt><a href="#t_void">void</a></tt>.</p>
4165 </li>
4166 <li>
4167 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4168 value being invoked. The argument types must match the types implied by
4169 this signature. This type can be omitted if the function is not varargs
4170 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004171 </li>
4172 <li>
4173 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4174 be invoked. In most cases, this is a direct function invocation, but
4175 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004176 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004177 </li>
4178 <li>
4179 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004180 function signature argument types. All arguments must be of
4181 <a href="#t_firstclass">first class</a> type. If the function signature
4182 indicates the function accepts a variable number of arguments, the extra
4183 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004184 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004185</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004186
Chris Lattner00950542001-06-06 20:29:01 +00004187<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004188
Chris Lattner261efe92003-11-25 01:02:51 +00004189<p>The '<tt>call</tt>' instruction is used to cause control flow to
4190transfer to a specified function, with its incoming arguments bound to
4191the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4192instruction in the called function, control flow continues with the
4193instruction after the function call, and the return value of the
Chris Lattner772fccf2008-03-21 17:24:17 +00004194function is bound to the result argument. If the callee returns multiple
4195values then the return values of the function are only accessible through
4196the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004197
Chris Lattner00950542001-06-06 20:29:01 +00004198<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004199
4200<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004201 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004202 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4203 %X = tail call i32 @foo() <i>; yields i32</i>
4204 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4205 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004206
4207 %struct.A = type { i32, i8 }
Chris Lattner772fccf2008-03-21 17:24:17 +00004208 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4209 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4210 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004211</pre>
4212
Misha Brukman9d0919f2003-11-08 01:05:38 +00004213</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004214
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004215<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004216<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004217 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004218</div>
4219
Misha Brukman9d0919f2003-11-08 01:05:38 +00004220<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004221
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004222<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004223
4224<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004225 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004226</pre>
4227
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004228<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004229
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004230<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004231the "variable argument" area of a function call. It is used to implement the
4232<tt>va_arg</tt> macro in C.</p>
4233
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004234<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004235
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004236<p>This instruction takes a <tt>va_list*</tt> value and the type of
4237the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004238increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004239actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004240
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004241<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004242
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004243<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4244type from the specified <tt>va_list</tt> and causes the
4245<tt>va_list</tt> to point to the next argument. For more information,
4246see the variable argument handling <a href="#int_varargs">Intrinsic
4247Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004248
4249<p>It is legal for this instruction to be called in a function which does not
4250take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004251function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004252
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004253<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004254href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004255argument.</p>
4256
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004257<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004258
4259<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4260
Misha Brukman9d0919f2003-11-08 01:05:38 +00004261</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004262
Devang Patelc3fc6df2008-03-10 20:49:15 +00004263<!-- _______________________________________________________________________ -->
4264<div class="doc_subsubsection">
4265 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4266</div>
4267
4268<div class="doc_text">
4269
4270<h5>Syntax:</h5>
4271<pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004272 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patelc3fc6df2008-03-10 20:49:15 +00004273</pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004274
Devang Patelc3fc6df2008-03-10 20:49:15 +00004275<h5>Overview:</h5>
4276
4277<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004278from a '<tt><a href="#i_call">call</a></tt>'
4279or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4280results.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004281
4282<h5>Arguments:</h5>
4283
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004284<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattner1c406d72008-04-23 04:06:52 +00004285first argument, or an undef value. The value must have <a
4286href="#t_struct">structure type</a>. The second argument is a constant
4287unsigned index value which must be in range for the number of values returned
4288by the call.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004289
4290<h5>Semantics:</h5>
4291
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004292<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4293'<tt>index</tt>' from the aggregate value.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004294
4295<h5>Example:</h5>
4296
4297<pre>
4298 %struct.A = type { i32, i8 }
4299
4300 %r = call %struct.A @foo()
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004301 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4302 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004303 add i32 %gr, 42
4304 add i8 %gr1, 41
4305</pre>
4306
4307</div>
4308
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004309<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004310<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4311<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004312
Misha Brukman9d0919f2003-11-08 01:05:38 +00004313<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004314
4315<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004316well known names and semantics and are required to follow certain restrictions.
4317Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004318language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004319adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004320
John Criswellfc6b8952005-05-16 16:17:45 +00004321<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004322prefix is reserved in LLVM for intrinsic names; thus, function names may not
4323begin with this prefix. Intrinsic functions must always be external functions:
4324you cannot define the body of intrinsic functions. Intrinsic functions may
4325only be used in call or invoke instructions: it is illegal to take the address
4326of an intrinsic function. Additionally, because intrinsic functions are part
4327of the LLVM language, it is required if any are added that they be documented
4328here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004329
Chandler Carruth69940402007-08-04 01:51:18 +00004330<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4331a family of functions that perform the same operation but on different data
4332types. Because LLVM can represent over 8 million different integer types,
4333overloading is used commonly to allow an intrinsic function to operate on any
4334integer type. One or more of the argument types or the result type can be
4335overloaded to accept any integer type. Argument types may also be defined as
4336exactly matching a previous argument's type or the result type. This allows an
4337intrinsic function which accepts multiple arguments, but needs all of them to
4338be of the same type, to only be overloaded with respect to a single argument or
4339the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004340
Chandler Carruth69940402007-08-04 01:51:18 +00004341<p>Overloaded intrinsics will have the names of its overloaded argument types
4342encoded into its function name, each preceded by a period. Only those types
4343which are overloaded result in a name suffix. Arguments whose type is matched
4344against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4345take an integer of any width and returns an integer of exactly the same integer
4346width. This leads to a family of functions such as
4347<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4348Only one type, the return type, is overloaded, and only one type suffix is
4349required. Because the argument's type is matched against the return type, it
4350does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004351
4352<p>To learn how to add an intrinsic function, please see the
4353<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004354</p>
4355
Misha Brukman9d0919f2003-11-08 01:05:38 +00004356</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004357
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004358<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004359<div class="doc_subsection">
4360 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4361</div>
4362
Misha Brukman9d0919f2003-11-08 01:05:38 +00004363<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004364
Misha Brukman9d0919f2003-11-08 01:05:38 +00004365<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004366 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004367intrinsic functions. These functions are related to the similarly
4368named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004369
Chris Lattner261efe92003-11-25 01:02:51 +00004370<p>All of these functions operate on arguments that use a
4371target-specific value type "<tt>va_list</tt>". The LLVM assembly
4372language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004373transformations should be prepared to handle these functions regardless of
4374the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004375
Chris Lattner374ab302006-05-15 17:26:46 +00004376<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004377instruction and the variable argument handling intrinsic functions are
4378used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004379
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004380<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004381<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004382define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004383 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004384 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004385 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004386 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004387
4388 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004389 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004390
4391 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004392 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004393 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004394 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004395 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004396
4397 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004398 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004399 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004400}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004401
4402declare void @llvm.va_start(i8*)
4403declare void @llvm.va_copy(i8*, i8*)
4404declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004405</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004406</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004407
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004408</div>
4409
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004410<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004411<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004412 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004413</div>
4414
4415
Misha Brukman9d0919f2003-11-08 01:05:38 +00004416<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004417<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004418<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004419<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004420<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4421<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4422href="#i_va_arg">va_arg</a></tt>.</p>
4423
4424<h5>Arguments:</h5>
4425
4426<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4427
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004428<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004429
4430<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4431macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004432<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004433<tt>va_arg</tt> will produce the first variable argument passed to the function.
4434Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004435last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004436
Misha Brukman9d0919f2003-11-08 01:05:38 +00004437</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004438
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004439<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004440<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004441 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004442</div>
4443
Misha Brukman9d0919f2003-11-08 01:05:38 +00004444<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004445<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004446<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004447<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004448
Jeff Cohenb627eab2007-04-29 01:07:00 +00004449<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004450which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004451or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004452
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004453<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004454
Jeff Cohenb627eab2007-04-29 01:07:00 +00004455<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004456
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004457<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004458
Misha Brukman9d0919f2003-11-08 01:05:38 +00004459<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004460macro available in C. In a target-dependent way, it destroys the
4461<tt>va_list</tt> element to which the argument points. Calls to <a
4462href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4463<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4464<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004465
Misha Brukman9d0919f2003-11-08 01:05:38 +00004466</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004467
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004468<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004469<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004470 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004471</div>
4472
Misha Brukman9d0919f2003-11-08 01:05:38 +00004473<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004474
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004475<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004476
4477<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004478 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004479</pre>
4480
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004481<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004482
Jeff Cohenb627eab2007-04-29 01:07:00 +00004483<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4484from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004485
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004486<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004487
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004488<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004489The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004490
Chris Lattnerd7923912004-05-23 21:06:01 +00004491
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004492<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004493
Jeff Cohenb627eab2007-04-29 01:07:00 +00004494<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4495macro available in C. In a target-dependent way, it copies the source
4496<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4497intrinsic is necessary because the <tt><a href="#int_va_start">
4498llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4499example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004500
Misha Brukman9d0919f2003-11-08 01:05:38 +00004501</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004502
Chris Lattner33aec9e2004-02-12 17:01:32 +00004503<!-- ======================================================================= -->
4504<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004505 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4506</div>
4507
4508<div class="doc_text">
4509
4510<p>
4511LLVM support for <a href="GarbageCollection.html">Accurate Garbage
4512Collection</a> requires the implementation and generation of these intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004513These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004514stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004515href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004516Front-ends for type-safe garbage collected languages should generate these
4517intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4518href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4519</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004520
4521<p>The garbage collection intrinsics only operate on objects in the generic
4522 address space (address space zero).</p>
4523
Chris Lattnerd7923912004-05-23 21:06:01 +00004524</div>
4525
4526<!-- _______________________________________________________________________ -->
4527<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004528 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004529</div>
4530
4531<div class="doc_text">
4532
4533<h5>Syntax:</h5>
4534
4535<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004536 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004537</pre>
4538
4539<h5>Overview:</h5>
4540
John Criswell9e2485c2004-12-10 15:51:16 +00004541<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004542the code generator, and allows some metadata to be associated with it.</p>
4543
4544<h5>Arguments:</h5>
4545
4546<p>The first argument specifies the address of a stack object that contains the
4547root pointer. The second pointer (which must be either a constant or a global
4548value address) contains the meta-data to be associated with the root.</p>
4549
4550<h5>Semantics:</h5>
4551
Chris Lattner05d67092008-04-24 05:59:56 +00004552<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004553location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004554the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4555intrinsic may only be used in a function which <a href="#gc">specifies a GC
4556algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004557
4558</div>
4559
4560
4561<!-- _______________________________________________________________________ -->
4562<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004563 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004564</div>
4565
4566<div class="doc_text">
4567
4568<h5>Syntax:</h5>
4569
4570<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004571 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004572</pre>
4573
4574<h5>Overview:</h5>
4575
4576<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4577locations, allowing garbage collector implementations that require read
4578barriers.</p>
4579
4580<h5>Arguments:</h5>
4581
Chris Lattner80626e92006-03-14 20:02:51 +00004582<p>The second argument is the address to read from, which should be an address
4583allocated from the garbage collector. The first object is a pointer to the
4584start of the referenced object, if needed by the language runtime (otherwise
4585null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004586
4587<h5>Semantics:</h5>
4588
4589<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4590instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004591garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4592may only be used in a function which <a href="#gc">specifies a GC
4593algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004594
4595</div>
4596
4597
4598<!-- _______________________________________________________________________ -->
4599<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004600 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004601</div>
4602
4603<div class="doc_text">
4604
4605<h5>Syntax:</h5>
4606
4607<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004608 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004609</pre>
4610
4611<h5>Overview:</h5>
4612
4613<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4614locations, allowing garbage collector implementations that require write
4615barriers (such as generational or reference counting collectors).</p>
4616
4617<h5>Arguments:</h5>
4618
Chris Lattner80626e92006-03-14 20:02:51 +00004619<p>The first argument is the reference to store, the second is the start of the
4620object to store it to, and the third is the address of the field of Obj to
4621store to. If the runtime does not require a pointer to the object, Obj may be
4622null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004623
4624<h5>Semantics:</h5>
4625
4626<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4627instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004628garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4629may only be used in a function which <a href="#gc">specifies a GC
4630algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004631
4632</div>
4633
4634
4635
4636<!-- ======================================================================= -->
4637<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004638 <a name="int_codegen">Code Generator Intrinsics</a>
4639</div>
4640
4641<div class="doc_text">
4642<p>
4643These intrinsics are provided by LLVM to expose special features that may only
4644be implemented with code generator support.
4645</p>
4646
4647</div>
4648
4649<!-- _______________________________________________________________________ -->
4650<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004651 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004652</div>
4653
4654<div class="doc_text">
4655
4656<h5>Syntax:</h5>
4657<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004658 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004659</pre>
4660
4661<h5>Overview:</h5>
4662
4663<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004664The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4665target-specific value indicating the return address of the current function
4666or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004667</p>
4668
4669<h5>Arguments:</h5>
4670
4671<p>
4672The argument to this intrinsic indicates which function to return the address
4673for. Zero indicates the calling function, one indicates its caller, etc. The
4674argument is <b>required</b> to be a constant integer value.
4675</p>
4676
4677<h5>Semantics:</h5>
4678
4679<p>
4680The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4681the return address of the specified call frame, or zero if it cannot be
4682identified. The value returned by this intrinsic is likely to be incorrect or 0
4683for arguments other than zero, so it should only be used for debugging purposes.
4684</p>
4685
4686<p>
4687Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004688aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004689source-language caller.
4690</p>
4691</div>
4692
4693
4694<!-- _______________________________________________________________________ -->
4695<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004696 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004697</div>
4698
4699<div class="doc_text">
4700
4701<h5>Syntax:</h5>
4702<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004703 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004704</pre>
4705
4706<h5>Overview:</h5>
4707
4708<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004709The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4710target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004711</p>
4712
4713<h5>Arguments:</h5>
4714
4715<p>
4716The argument to this intrinsic indicates which function to return the frame
4717pointer for. Zero indicates the calling function, one indicates its caller,
4718etc. The argument is <b>required</b> to be a constant integer value.
4719</p>
4720
4721<h5>Semantics:</h5>
4722
4723<p>
4724The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4725the frame address of the specified call frame, or zero if it cannot be
4726identified. The value returned by this intrinsic is likely to be incorrect or 0
4727for arguments other than zero, so it should only be used for debugging purposes.
4728</p>
4729
4730<p>
4731Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004732aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004733source-language caller.
4734</p>
4735</div>
4736
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004737<!-- _______________________________________________________________________ -->
4738<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004739 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004740</div>
4741
4742<div class="doc_text">
4743
4744<h5>Syntax:</h5>
4745<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004746 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004747</pre>
4748
4749<h5>Overview:</h5>
4750
4751<p>
4752The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004753the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004754<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4755features like scoped automatic variable sized arrays in C99.
4756</p>
4757
4758<h5>Semantics:</h5>
4759
4760<p>
4761This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004762href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004763<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4764<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4765state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4766practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4767that were allocated after the <tt>llvm.stacksave</tt> was executed.
4768</p>
4769
4770</div>
4771
4772<!-- _______________________________________________________________________ -->
4773<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004774 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004775</div>
4776
4777<div class="doc_text">
4778
4779<h5>Syntax:</h5>
4780<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004781 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004782</pre>
4783
4784<h5>Overview:</h5>
4785
4786<p>
4787The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4788the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004789href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004790useful for implementing language features like scoped automatic variable sized
4791arrays in C99.
4792</p>
4793
4794<h5>Semantics:</h5>
4795
4796<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004797See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004798</p>
4799
4800</div>
4801
4802
4803<!-- _______________________________________________________________________ -->
4804<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004805 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004806</div>
4807
4808<div class="doc_text">
4809
4810<h5>Syntax:</h5>
4811<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004812 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004813</pre>
4814
4815<h5>Overview:</h5>
4816
4817
4818<p>
4819The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004820a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4821no
4822effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004823characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004824</p>
4825
4826<h5>Arguments:</h5>
4827
4828<p>
4829<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4830determining if the fetch should be for a read (0) or write (1), and
4831<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004832locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004833<tt>locality</tt> arguments must be constant integers.
4834</p>
4835
4836<h5>Semantics:</h5>
4837
4838<p>
4839This intrinsic does not modify the behavior of the program. In particular,
4840prefetches cannot trap and do not produce a value. On targets that support this
4841intrinsic, the prefetch can provide hints to the processor cache for better
4842performance.
4843</p>
4844
4845</div>
4846
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004847<!-- _______________________________________________________________________ -->
4848<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004849 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004850</div>
4851
4852<div class="doc_text">
4853
4854<h5>Syntax:</h5>
4855<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004856 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004857</pre>
4858
4859<h5>Overview:</h5>
4860
4861
4862<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004863The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4864(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004865code to simulators and other tools. The method is target specific, but it is
4866expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00004867The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00004868after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004869optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004870correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004871</p>
4872
4873<h5>Arguments:</h5>
4874
4875<p>
4876<tt>id</tt> is a numerical id identifying the marker.
4877</p>
4878
4879<h5>Semantics:</h5>
4880
4881<p>
4882This intrinsic does not modify the behavior of the program. Backends that do not
4883support this intrinisic may ignore it.
4884</p>
4885
4886</div>
4887
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004888<!-- _______________________________________________________________________ -->
4889<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004890 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004891</div>
4892
4893<div class="doc_text">
4894
4895<h5>Syntax:</h5>
4896<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004897 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004898</pre>
4899
4900<h5>Overview:</h5>
4901
4902
4903<p>
4904The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4905counter register (or similar low latency, high accuracy clocks) on those targets
4906that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4907As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4908should only be used for small timings.
4909</p>
4910
4911<h5>Semantics:</h5>
4912
4913<p>
4914When directly supported, reading the cycle counter should not modify any memory.
4915Implementations are allowed to either return a application specific value or a
4916system wide value. On backends without support, this is lowered to a constant 0.
4917</p>
4918
4919</div>
4920
Chris Lattner10610642004-02-14 04:08:35 +00004921<!-- ======================================================================= -->
4922<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004923 <a name="int_libc">Standard C Library Intrinsics</a>
4924</div>
4925
4926<div class="doc_text">
4927<p>
Chris Lattner10610642004-02-14 04:08:35 +00004928LLVM provides intrinsics for a few important standard C library functions.
4929These intrinsics allow source-language front-ends to pass information about the
4930alignment of the pointer arguments to the code generator, providing opportunity
4931for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004932</p>
4933
4934</div>
4935
4936<!-- _______________________________________________________________________ -->
4937<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004938 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004939</div>
4940
4941<div class="doc_text">
4942
4943<h5>Syntax:</h5>
4944<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004945 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004946 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004947 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004948 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004949</pre>
4950
4951<h5>Overview:</h5>
4952
4953<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004954The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004955location to the destination location.
4956</p>
4957
4958<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004959Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4960intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004961</p>
4962
4963<h5>Arguments:</h5>
4964
4965<p>
4966The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004967the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004968specifying the number of bytes to copy, and the fourth argument is the alignment
4969of the source and destination locations.
4970</p>
4971
Chris Lattner3301ced2004-02-12 21:18:15 +00004972<p>
4973If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004974the caller guarantees that both the source and destination pointers are aligned
4975to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004976</p>
4977
Chris Lattner33aec9e2004-02-12 17:01:32 +00004978<h5>Semantics:</h5>
4979
4980<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004981The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004982location to the destination location, which are not allowed to overlap. It
4983copies "len" bytes of memory over. If the argument is known to be aligned to
4984some boundary, this can be specified as the fourth argument, otherwise it should
4985be set to 0 or 1.
4986</p>
4987</div>
4988
4989
Chris Lattner0eb51b42004-02-12 18:10:10 +00004990<!-- _______________________________________________________________________ -->
4991<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004992 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00004993</div>
4994
4995<div class="doc_text">
4996
4997<h5>Syntax:</h5>
4998<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004999 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005000 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005001 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005002 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005003</pre>
5004
5005<h5>Overview:</h5>
5006
5007<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005008The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5009location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005010'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005011</p>
5012
5013<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005014Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5015intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005016</p>
5017
5018<h5>Arguments:</h5>
5019
5020<p>
5021The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005022the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005023specifying the number of bytes to copy, and the fourth argument is the alignment
5024of the source and destination locations.
5025</p>
5026
Chris Lattner3301ced2004-02-12 21:18:15 +00005027<p>
5028If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005029the caller guarantees that the source and destination pointers are aligned to
5030that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005031</p>
5032
Chris Lattner0eb51b42004-02-12 18:10:10 +00005033<h5>Semantics:</h5>
5034
5035<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005036The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005037location to the destination location, which may overlap. It
5038copies "len" bytes of memory over. If the argument is known to be aligned to
5039some boundary, this can be specified as the fourth argument, otherwise it should
5040be set to 0 or 1.
5041</p>
5042</div>
5043
Chris Lattner8ff75902004-01-06 05:31:32 +00005044
Chris Lattner10610642004-02-14 04:08:35 +00005045<!-- _______________________________________________________________________ -->
5046<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005047 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005048</div>
5049
5050<div class="doc_text">
5051
5052<h5>Syntax:</h5>
5053<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005054 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005055 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005056 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005057 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005058</pre>
5059
5060<h5>Overview:</h5>
5061
5062<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005063The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005064byte value.
5065</p>
5066
5067<p>
5068Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5069does not return a value, and takes an extra alignment argument.
5070</p>
5071
5072<h5>Arguments:</h5>
5073
5074<p>
5075The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005076byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005077argument specifying the number of bytes to fill, and the fourth argument is the
5078known alignment of destination location.
5079</p>
5080
5081<p>
5082If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005083the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005084</p>
5085
5086<h5>Semantics:</h5>
5087
5088<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005089The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5090the
Chris Lattner10610642004-02-14 04:08:35 +00005091destination location. If the argument is known to be aligned to some boundary,
5092this can be specified as the fourth argument, otherwise it should be set to 0 or
50931.
5094</p>
5095</div>
5096
5097
Chris Lattner32006282004-06-11 02:28:03 +00005098<!-- _______________________________________________________________________ -->
5099<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005100 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005101</div>
5102
5103<div class="doc_text">
5104
5105<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005106<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005107floating point or vector of floating point type. Not all targets support all
5108types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00005109<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005110 declare float @llvm.sqrt.f32(float %Val)
5111 declare double @llvm.sqrt.f64(double %Val)
5112 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5113 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5114 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005115</pre>
5116
5117<h5>Overview:</h5>
5118
5119<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005120The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005121returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005122<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005123negative numbers other than -0.0 (which allows for better optimization, because
5124there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5125defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005126</p>
5127
5128<h5>Arguments:</h5>
5129
5130<p>
5131The argument and return value are floating point numbers of the same type.
5132</p>
5133
5134<h5>Semantics:</h5>
5135
5136<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005137This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005138floating point number.
5139</p>
5140</div>
5141
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005142<!-- _______________________________________________________________________ -->
5143<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005144 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005145</div>
5146
5147<div class="doc_text">
5148
5149<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005150<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005151floating point or vector of floating point type. Not all targets support all
5152types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005153<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005154 declare float @llvm.powi.f32(float %Val, i32 %power)
5155 declare double @llvm.powi.f64(double %Val, i32 %power)
5156 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5157 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5158 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005159</pre>
5160
5161<h5>Overview:</h5>
5162
5163<p>
5164The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5165specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005166multiplications is not defined. When a vector of floating point type is
5167used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005168</p>
5169
5170<h5>Arguments:</h5>
5171
5172<p>
5173The second argument is an integer power, and the first is a value to raise to
5174that power.
5175</p>
5176
5177<h5>Semantics:</h5>
5178
5179<p>
5180This function returns the first value raised to the second power with an
5181unspecified sequence of rounding operations.</p>
5182</div>
5183
Dan Gohman91c284c2007-10-15 20:30:11 +00005184<!-- _______________________________________________________________________ -->
5185<div class="doc_subsubsection">
5186 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5187</div>
5188
5189<div class="doc_text">
5190
5191<h5>Syntax:</h5>
5192<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5193floating point or vector of floating point type. Not all targets support all
5194types however.
5195<pre>
5196 declare float @llvm.sin.f32(float %Val)
5197 declare double @llvm.sin.f64(double %Val)
5198 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5199 declare fp128 @llvm.sin.f128(fp128 %Val)
5200 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5201</pre>
5202
5203<h5>Overview:</h5>
5204
5205<p>
5206The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5207</p>
5208
5209<h5>Arguments:</h5>
5210
5211<p>
5212The argument and return value are floating point numbers of the same type.
5213</p>
5214
5215<h5>Semantics:</h5>
5216
5217<p>
5218This function returns the sine of the specified operand, returning the
5219same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005220conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005221</div>
5222
5223<!-- _______________________________________________________________________ -->
5224<div class="doc_subsubsection">
5225 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5226</div>
5227
5228<div class="doc_text">
5229
5230<h5>Syntax:</h5>
5231<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5232floating point or vector of floating point type. Not all targets support all
5233types however.
5234<pre>
5235 declare float @llvm.cos.f32(float %Val)
5236 declare double @llvm.cos.f64(double %Val)
5237 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5238 declare fp128 @llvm.cos.f128(fp128 %Val)
5239 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5240</pre>
5241
5242<h5>Overview:</h5>
5243
5244<p>
5245The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5246</p>
5247
5248<h5>Arguments:</h5>
5249
5250<p>
5251The argument and return value are floating point numbers of the same type.
5252</p>
5253
5254<h5>Semantics:</h5>
5255
5256<p>
5257This function returns the cosine of the specified operand, returning the
5258same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005259conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005260</div>
5261
5262<!-- _______________________________________________________________________ -->
5263<div class="doc_subsubsection">
5264 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5265</div>
5266
5267<div class="doc_text">
5268
5269<h5>Syntax:</h5>
5270<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5271floating point or vector of floating point type. Not all targets support all
5272types however.
5273<pre>
5274 declare float @llvm.pow.f32(float %Val, float %Power)
5275 declare double @llvm.pow.f64(double %Val, double %Power)
5276 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5277 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5278 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5279</pre>
5280
5281<h5>Overview:</h5>
5282
5283<p>
5284The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5285specified (positive or negative) power.
5286</p>
5287
5288<h5>Arguments:</h5>
5289
5290<p>
5291The second argument is a floating point power, and the first is a value to
5292raise to that power.
5293</p>
5294
5295<h5>Semantics:</h5>
5296
5297<p>
5298This function returns the first value raised to the second power,
5299returning the
5300same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005301conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005302</div>
5303
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005304
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005305<!-- ======================================================================= -->
5306<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005307 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005308</div>
5309
5310<div class="doc_text">
5311<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005312LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005313These allow efficient code generation for some algorithms.
5314</p>
5315
5316</div>
5317
5318<!-- _______________________________________________________________________ -->
5319<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005320 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005321</div>
5322
5323<div class="doc_text">
5324
5325<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005326<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005327type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005328<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005329 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5330 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5331 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005332</pre>
5333
5334<h5>Overview:</h5>
5335
5336<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005337The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005338values with an even number of bytes (positive multiple of 16 bits). These are
5339useful for performing operations on data that is not in the target's native
5340byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005341</p>
5342
5343<h5>Semantics:</h5>
5344
5345<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005346The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005347and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5348intrinsic returns an i32 value that has the four bytes of the input i32
5349swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005350i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5351<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005352additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005353</p>
5354
5355</div>
5356
5357<!-- _______________________________________________________________________ -->
5358<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005359 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005360</div>
5361
5362<div class="doc_text">
5363
5364<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005365<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5366width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005367<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005368 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5369 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005370 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005371 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5372 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005373</pre>
5374
5375<h5>Overview:</h5>
5376
5377<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005378The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5379value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005380</p>
5381
5382<h5>Arguments:</h5>
5383
5384<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005385The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005386integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005387</p>
5388
5389<h5>Semantics:</h5>
5390
5391<p>
5392The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5393</p>
5394</div>
5395
5396<!-- _______________________________________________________________________ -->
5397<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005398 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005399</div>
5400
5401<div class="doc_text">
5402
5403<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005404<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5405integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005406<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005407 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5408 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005409 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005410 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5411 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005412</pre>
5413
5414<h5>Overview:</h5>
5415
5416<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005417The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5418leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005419</p>
5420
5421<h5>Arguments:</h5>
5422
5423<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005424The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005425integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005426</p>
5427
5428<h5>Semantics:</h5>
5429
5430<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005431The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5432in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005433of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005434</p>
5435</div>
Chris Lattner32006282004-06-11 02:28:03 +00005436
5437
Chris Lattnereff29ab2005-05-15 19:39:26 +00005438
5439<!-- _______________________________________________________________________ -->
5440<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005441 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005442</div>
5443
5444<div class="doc_text">
5445
5446<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005447<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5448integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005449<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005450 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5451 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005452 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005453 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5454 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005455</pre>
5456
5457<h5>Overview:</h5>
5458
5459<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005460The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5461trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005462</p>
5463
5464<h5>Arguments:</h5>
5465
5466<p>
5467The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005468integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005469</p>
5470
5471<h5>Semantics:</h5>
5472
5473<p>
5474The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5475in a variable. If the src == 0 then the result is the size in bits of the type
5476of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5477</p>
5478</div>
5479
Reid Spencer497d93e2007-04-01 08:27:01 +00005480<!-- _______________________________________________________________________ -->
5481<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005482 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005483</div>
5484
5485<div class="doc_text">
5486
5487<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005488<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005489on any integer bit width.
5490<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005491 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5492 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005493</pre>
5494
5495<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005496<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005497range of bits from an integer value and returns them in the same bit width as
5498the original value.</p>
5499
5500<h5>Arguments:</h5>
5501<p>The first argument, <tt>%val</tt> and the result may be integer types of
5502any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005503arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005504
5505<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005506<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005507of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5508<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5509operates in forward mode.</p>
5510<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5511right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005512only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5513<ol>
5514 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5515 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5516 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5517 to determine the number of bits to retain.</li>
5518 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5519 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5520</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005521<p>In reverse mode, a similar computation is made except that the bits are
5522returned in the reverse order. So, for example, if <tt>X</tt> has the value
5523<tt>i16 0x0ACF (101011001111)</tt> and we apply
5524<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5525<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005526</div>
5527
Reid Spencerf86037f2007-04-11 23:23:49 +00005528<div class="doc_subsubsection">
5529 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5530</div>
5531
5532<div class="doc_text">
5533
5534<h5>Syntax:</h5>
5535<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5536on any integer bit width.
5537<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005538 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5539 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005540</pre>
5541
5542<h5>Overview:</h5>
5543<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5544of bits in an integer value with another integer value. It returns the integer
5545with the replaced bits.</p>
5546
5547<h5>Arguments:</h5>
5548<p>The first argument, <tt>%val</tt> and the result may be integer types of
5549any bit width but they must have the same bit width. <tt>%val</tt> is the value
5550whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5551integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5552type since they specify only a bit index.</p>
5553
5554<h5>Semantics:</h5>
5555<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5556of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5557<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5558operates in forward mode.</p>
5559<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5560truncating it down to the size of the replacement area or zero extending it
5561up to that size.</p>
5562<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5563are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5564in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5565to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005566<p>In reverse mode, a similar computation is made except that the bits are
5567reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5568<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005569<h5>Examples:</h5>
5570<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005571 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005572 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5573 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5574 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005575 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005576</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005577</div>
5578
Chris Lattner8ff75902004-01-06 05:31:32 +00005579<!-- ======================================================================= -->
5580<div class="doc_subsection">
5581 <a name="int_debugger">Debugger Intrinsics</a>
5582</div>
5583
5584<div class="doc_text">
5585<p>
5586The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5587are described in the <a
5588href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5589Debugging</a> document.
5590</p>
5591</div>
5592
5593
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005594<!-- ======================================================================= -->
5595<div class="doc_subsection">
5596 <a name="int_eh">Exception Handling Intrinsics</a>
5597</div>
5598
5599<div class="doc_text">
5600<p> The LLVM exception handling intrinsics (which all start with
5601<tt>llvm.eh.</tt> prefix), are described in the <a
5602href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5603Handling</a> document. </p>
5604</div>
5605
Tanya Lattner6d806e92007-06-15 20:50:54 +00005606<!-- ======================================================================= -->
5607<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005608 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005609</div>
5610
5611<div class="doc_text">
5612<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005613 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005614 the <tt>nest</tt> attribute, from a function. The result is a callable
5615 function pointer lacking the nest parameter - the caller does not need
5616 to provide a value for it. Instead, the value to use is stored in
5617 advance in a "trampoline", a block of memory usually allocated
5618 on the stack, which also contains code to splice the nest value into the
5619 argument list. This is used to implement the GCC nested function address
5620 extension.
5621</p>
5622<p>
5623 For example, if the function is
5624 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005625 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005626<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005627 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5628 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5629 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5630 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005631</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005632 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5633 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005634</div>
5635
5636<!-- _______________________________________________________________________ -->
5637<div class="doc_subsubsection">
5638 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5639</div>
5640<div class="doc_text">
5641<h5>Syntax:</h5>
5642<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005643declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005644</pre>
5645<h5>Overview:</h5>
5646<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005647 This fills the memory pointed to by <tt>tramp</tt> with code
5648 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005649</p>
5650<h5>Arguments:</h5>
5651<p>
5652 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5653 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5654 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005655 intrinsic. Note that the size and the alignment are target-specific - LLVM
5656 currently provides no portable way of determining them, so a front-end that
5657 generates this intrinsic needs to have some target-specific knowledge.
5658 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005659</p>
5660<h5>Semantics:</h5>
5661<p>
5662 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005663 dependent code, turning it into a function. A pointer to this function is
5664 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005665 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005666 before being called. The new function's signature is the same as that of
5667 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5668 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5669 of pointer type. Calling the new function is equivalent to calling
5670 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5671 missing <tt>nest</tt> argument. If, after calling
5672 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5673 modified, then the effect of any later call to the returned function pointer is
5674 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005675</p>
5676</div>
5677
5678<!-- ======================================================================= -->
5679<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005680 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5681</div>
5682
5683<div class="doc_text">
5684<p>
5685 These intrinsic functions expand the "universal IR" of LLVM to represent
5686 hardware constructs for atomic operations and memory synchronization. This
5687 provides an interface to the hardware, not an interface to the programmer. It
5688 is aimed at a low enough level to allow any programming models or APIs which
5689 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5690 hardware behavior. Just as hardware provides a "universal IR" for source
5691 languages, it also provides a starting point for developing a "universal"
5692 atomic operation and synchronization IR.
5693</p>
5694<p>
5695 These do <em>not</em> form an API such as high-level threading libraries,
5696 software transaction memory systems, atomic primitives, and intrinsic
5697 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5698 application libraries. The hardware interface provided by LLVM should allow
5699 a clean implementation of all of these APIs and parallel programming models.
5700 No one model or paradigm should be selected above others unless the hardware
5701 itself ubiquitously does so.
5702
5703</p>
5704</div>
5705
5706<!-- _______________________________________________________________________ -->
5707<div class="doc_subsubsection">
5708 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5709</div>
5710<div class="doc_text">
5711<h5>Syntax:</h5>
5712<pre>
5713declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5714i1 &lt;device&gt; )
5715
5716</pre>
5717<h5>Overview:</h5>
5718<p>
5719 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5720 specific pairs of memory access types.
5721</p>
5722<h5>Arguments:</h5>
5723<p>
5724 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5725 The first four arguments enables a specific barrier as listed below. The fith
5726 argument specifies that the barrier applies to io or device or uncached memory.
5727
5728</p>
5729 <ul>
5730 <li><tt>ll</tt>: load-load barrier</li>
5731 <li><tt>ls</tt>: load-store barrier</li>
5732 <li><tt>sl</tt>: store-load barrier</li>
5733 <li><tt>ss</tt>: store-store barrier</li>
5734 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5735 </ul>
5736<h5>Semantics:</h5>
5737<p>
5738 This intrinsic causes the system to enforce some ordering constraints upon
5739 the loads and stores of the program. This barrier does not indicate
5740 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5741 which they occur. For any of the specified pairs of load and store operations
5742 (f.ex. load-load, or store-load), all of the first operations preceding the
5743 barrier will complete before any of the second operations succeeding the
5744 barrier begin. Specifically the semantics for each pairing is as follows:
5745</p>
5746 <ul>
5747 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5748 after the barrier begins.</li>
5749
5750 <li><tt>ls</tt>: All loads before the barrier must complete before any
5751 store after the barrier begins.</li>
5752 <li><tt>ss</tt>: All stores before the barrier must complete before any
5753 store after the barrier begins.</li>
5754 <li><tt>sl</tt>: All stores before the barrier must complete before any
5755 load after the barrier begins.</li>
5756 </ul>
5757<p>
5758 These semantics are applied with a logical "and" behavior when more than one
5759 is enabled in a single memory barrier intrinsic.
5760</p>
5761<p>
5762 Backends may implement stronger barriers than those requested when they do not
5763 support as fine grained a barrier as requested. Some architectures do not
5764 need all types of barriers and on such architectures, these become noops.
5765</p>
5766<h5>Example:</h5>
5767<pre>
5768%ptr = malloc i32
5769 store i32 4, %ptr
5770
5771%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5772 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5773 <i>; guarantee the above finishes</i>
5774 store i32 8, %ptr <i>; before this begins</i>
5775</pre>
5776</div>
5777
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005778<!-- _______________________________________________________________________ -->
5779<div class="doc_subsubsection">
5780 <a name="int_atomic_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
5781</div>
5782<div class="doc_text">
5783<h5>Syntax:</h5>
5784<p>
5785 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
5786 integer bit width. Not all targets support all bit widths however.</p>
5787
5788<pre>
5789declare i8 @llvm.atomic.lcs.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5790declare i16 @llvm.atomic.lcs.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5791declare i32 @llvm.atomic.lcs.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5792declare i64 @llvm.atomic.lcs.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
5793
5794</pre>
5795<h5>Overview:</h5>
5796<p>
5797 This loads a value in memory and compares it to a given value. If they are
5798 equal, it stores a new value into the memory.
5799</p>
5800<h5>Arguments:</h5>
5801<p>
5802 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
5803 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5804 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5805 this integer type. While any bit width integer may be used, targets may only
5806 lower representations they support in hardware.
5807
5808</p>
5809<h5>Semantics:</h5>
5810<p>
5811 This entire intrinsic must be executed atomically. It first loads the value
5812 in memory pointed to by <tt>ptr</tt> and compares it with the value
5813 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5814 loaded value is yielded in all cases. This provides the equivalent of an
5815 atomic compare-and-swap operation within the SSA framework.
5816</p>
5817<h5>Examples:</h5>
5818
5819<pre>
5820%ptr = malloc i32
5821 store i32 4, %ptr
5822
5823%val1 = add i32 4, 4
5824%result1 = call i32 @llvm.atomic.lcs.i32( i32* %ptr, i32 4, %val1 )
5825 <i>; yields {i32}:result1 = 4</i>
5826%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5827%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5828
5829%val2 = add i32 1, 1
5830%result2 = call i32 @llvm.atomic.lcs.i32( i32* %ptr, i32 5, %val2 )
5831 <i>; yields {i32}:result2 = 8</i>
5832%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5833
5834%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5835</pre>
5836</div>
5837
5838<!-- _______________________________________________________________________ -->
5839<div class="doc_subsubsection">
5840 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5841</div>
5842<div class="doc_text">
5843<h5>Syntax:</h5>
5844
5845<p>
5846 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5847 integer bit width. Not all targets support all bit widths however.</p>
5848<pre>
5849declare i8 @llvm.atomic.swap.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5850declare i16 @llvm.atomic.swap.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5851declare i32 @llvm.atomic.swap.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5852declare i64 @llvm.atomic.swap.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
5853
5854</pre>
5855<h5>Overview:</h5>
5856<p>
5857 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5858 the value from memory. It then stores the value in <tt>val</tt> in the memory
5859 at <tt>ptr</tt>.
5860</p>
5861<h5>Arguments:</h5>
5862
5863<p>
5864 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
5865 <tt>val</tt> argument and the result must be integers of the same bit width.
5866 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5867 integer type. The targets may only lower integer representations they
5868 support.
5869</p>
5870<h5>Semantics:</h5>
5871<p>
5872 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5873 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5874 equivalent of an atomic swap operation within the SSA framework.
5875
5876</p>
5877<h5>Examples:</h5>
5878<pre>
5879%ptr = malloc i32
5880 store i32 4, %ptr
5881
5882%val1 = add i32 4, 4
5883%result1 = call i32 @llvm.atomic.swap.i32( i32* %ptr, i32 %val1 )
5884 <i>; yields {i32}:result1 = 4</i>
5885%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5886%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5887
5888%val2 = add i32 1, 1
5889%result2 = call i32 @llvm.atomic.swap.i32( i32* %ptr, i32 %val2 )
5890 <i>; yields {i32}:result2 = 8</i>
5891
5892%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5893%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5894</pre>
5895</div>
5896
5897<!-- _______________________________________________________________________ -->
5898<div class="doc_subsubsection">
5899 <a name="int_atomic_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
5900
5901</div>
5902<div class="doc_text">
5903<h5>Syntax:</h5>
5904<p>
5905 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
5906 integer bit width. Not all targets support all bit widths however.</p>
5907<pre>
5908declare i8 @llvm.atomic.las.i8.( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5909declare i16 @llvm.atomic.las.i16.( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5910declare i32 @llvm.atomic.las.i32.( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5911declare i64 @llvm.atomic.las.i64.( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5912
5913</pre>
5914<h5>Overview:</h5>
5915<p>
5916 This intrinsic adds <tt>delta</tt> to the value stored in memory at
5917 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5918</p>
5919<h5>Arguments:</h5>
5920<p>
5921
5922 The intrinsic takes two arguments, the first a pointer to an integer value
5923 and the second an integer value. The result is also an integer value. These
5924 integer types can have any bit width, but they must all have the same bit
5925 width. The targets may only lower integer representations they support.
5926</p>
5927<h5>Semantics:</h5>
5928<p>
5929 This intrinsic does a series of operations atomically. It first loads the
5930 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5931 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5932</p>
5933
5934<h5>Examples:</h5>
5935<pre>
5936%ptr = malloc i32
5937 store i32 4, %ptr
5938%result1 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 4 )
5939 <i>; yields {i32}:result1 = 4</i>
5940%result2 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 2 )
5941 <i>; yields {i32}:result2 = 8</i>
5942%result3 = call i32 @llvm.atomic.las.i32( i32* %ptr, i32 5 )
5943 <i>; yields {i32}:result3 = 10</i>
5944%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5945</pre>
5946</div>
5947
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005948
5949<!-- ======================================================================= -->
5950<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00005951 <a name="int_general">General Intrinsics</a>
5952</div>
5953
5954<div class="doc_text">
5955<p> This class of intrinsics is designed to be generic and has
5956no specific purpose. </p>
5957</div>
5958
5959<!-- _______________________________________________________________________ -->
5960<div class="doc_subsubsection">
5961 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5962</div>
5963
5964<div class="doc_text">
5965
5966<h5>Syntax:</h5>
5967<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005968 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00005969</pre>
5970
5971<h5>Overview:</h5>
5972
5973<p>
5974The '<tt>llvm.var.annotation</tt>' intrinsic
5975</p>
5976
5977<h5>Arguments:</h5>
5978
5979<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005980The first argument is a pointer to a value, the second is a pointer to a
5981global string, the third is a pointer to a global string which is the source
5982file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005983</p>
5984
5985<h5>Semantics:</h5>
5986
5987<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005988This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005989This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00005990annotations. These have no other defined use, they are ignored by code
5991generation and optimization.
5992</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00005993</div>
5994
Tanya Lattnerb6367882007-09-21 22:59:12 +00005995<!-- _______________________________________________________________________ -->
5996<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00005997 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00005998</div>
5999
6000<div class="doc_text">
6001
6002<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006003<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6004any integer bit width.
6005</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006006<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006007 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6008 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6009 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6010 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6011 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006012</pre>
6013
6014<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006015
6016<p>
6017The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006018</p>
6019
6020<h5>Arguments:</h5>
6021
6022<p>
6023The first argument is an integer value (result of some expression),
6024the second is a pointer to a global string, the third is a pointer to a global
6025string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006026It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006027</p>
6028
6029<h5>Semantics:</h5>
6030
6031<p>
6032This intrinsic allows annotations to be put on arbitrary expressions
6033with arbitrary strings. This can be useful for special purpose optimizations
6034that want to look for these annotations. These have no other defined use, they
6035are ignored by code generation and optimization.
6036</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006037
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006038<!-- _______________________________________________________________________ -->
6039<div class="doc_subsubsection">
6040 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6041</div>
6042
6043<div class="doc_text">
6044
6045<h5>Syntax:</h5>
6046<pre>
6047 declare void @llvm.trap()
6048</pre>
6049
6050<h5>Overview:</h5>
6051
6052<p>
6053The '<tt>llvm.trap</tt>' intrinsic
6054</p>
6055
6056<h5>Arguments:</h5>
6057
6058<p>
6059None
6060</p>
6061
6062<h5>Semantics:</h5>
6063
6064<p>
6065This intrinsics is lowered to the target dependent trap instruction. If the
6066target does not have a trap instruction, this intrinsic will be lowered to the
6067call of the abort() function.
6068</p>
6069</div>
6070
Chris Lattner00950542001-06-06 20:29:01 +00006071<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006072<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006073<address>
6074 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6075 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6076 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006077 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006078
6079 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006080 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006081 Last modified: $Date$
6082</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006083
Misha Brukman9d0919f2003-11-08 01:05:38 +00006084</body>
6085</html>