blob: b6147e0d518e288f8e323e81183ca8f2bdeffacf [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Chris Lattner98599d02004-07-11 02:48:28 +000030#include <iostream>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000031using namespace llvm;
32
33namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000034 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
35 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000036 ///
37 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000038 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 };
40}
41
42/// getClass - Turn a primitive type into a "class" number which is based on the
43/// size of the type, and whether or not it is floating point.
44///
45static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000046 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000047 case Type::SByteTyID:
48 case Type::UByteTyID: return cByte; // Byte operands are class #0
49 case Type::ShortTyID:
50 case Type::UShortTyID: return cShort; // Short operands are class #1
51 case Type::IntTyID:
52 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000053 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000054
Misha Brukman7e898c32004-07-20 00:41:46 +000055 case Type::FloatTyID: return cFP32; // Single float is #3
56 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
58 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000059 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060 default:
61 assert(0 && "Invalid type to getClass!");
62 return cByte; // not reached
63 }
64}
65
66// getClassB - Just like getClass, but treat boolean values as ints.
67static inline TypeClass getClassB(const Type *Ty) {
68 if (Ty == Type::BoolTy) return cInt;
69 return getClass(Ty);
70}
71
72namespace {
73 struct ISel : public FunctionPass, InstVisitor<ISel> {
74 TargetMachine &TM;
75 MachineFunction *F; // The function we are compiling into
76 MachineBasicBlock *BB; // The current MBB we are compiling
77 int VarArgsFrameIndex; // FrameIndex for start of varargs area
78 int ReturnAddressIndex; // FrameIndex for the return address
79
Misha Brukman313efcb2004-07-09 15:45:07 +000080 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000081
Misha Brukman2834a4d2004-07-07 20:07:22 +000082 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000083 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
84 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
85 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000086
Misha Brukman5dfe3a92004-06-21 16:55:25 +000087 // MBBMap - Mapping between LLVM BB -> Machine BB
88 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
89
90 // AllocaMap - Mapping from fixed sized alloca instructions to the
91 // FrameIndex for the alloca.
92 std::map<AllocaInst*, unsigned> AllocaMap;
93
94 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
95
Misha Brukman2834a4d2004-07-07 20:07:22 +000096 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +000097 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +000098 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +000099 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +0000100 Type *l = Type::LongTy;
101 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000102 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000103 // float fmodf(float, float);
104 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000105 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000106 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000107 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000108 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000109 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000110 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000111 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000112 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000113 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000114 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000115 // long __fixsfdi(float)
116 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000117 // long __fixdfdi(double)
118 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
119 // float __floatdisf(long)
120 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
121 // double __floatdidf(long)
122 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000123 // void* malloc(size_t)
124 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
125 // void free(void*)
126 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000127 return false;
128 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000129
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000130 /// runOnFunction - Top level implementation of instruction selection for
131 /// the entire function.
132 ///
133 bool runOnFunction(Function &Fn) {
134 // First pass over the function, lower any unknown intrinsic functions
135 // with the IntrinsicLowering class.
136 LowerUnknownIntrinsicFunctionCalls(Fn);
137
138 F = &MachineFunction::construct(&Fn, TM);
139
140 // Create all of the machine basic blocks for the function...
141 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
142 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
143
144 BB = &F->front();
145
146 // Set up a frame object for the return address. This is used by the
147 // llvm.returnaddress & llvm.frameaddress intrinisics.
148 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
149
150 // Copy incoming arguments off of the stack...
151 LoadArgumentsToVirtualRegs(Fn);
152
153 // Instruction select everything except PHI nodes
154 visit(Fn);
155
156 // Select the PHI nodes
157 SelectPHINodes();
158
159 RegMap.clear();
160 MBBMap.clear();
161 AllocaMap.clear();
162 F = 0;
163 // We always build a machine code representation for the function
164 return true;
165 }
166
167 virtual const char *getPassName() const {
168 return "PowerPC Simple Instruction Selection";
169 }
170
171 /// visitBasicBlock - This method is called when we are visiting a new basic
172 /// block. This simply creates a new MachineBasicBlock to emit code into
173 /// and adds it to the current MachineFunction. Subsequent visit* for
174 /// instructions will be invoked for all instructions in the basic block.
175 ///
176 void visitBasicBlock(BasicBlock &LLVM_BB) {
177 BB = MBBMap[&LLVM_BB];
178 }
179
180 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
181 /// function, lowering any calls to unknown intrinsic functions into the
182 /// equivalent LLVM code.
183 ///
184 void LowerUnknownIntrinsicFunctionCalls(Function &F);
185
186 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
187 /// from the stack into virtual registers.
188 ///
189 void LoadArgumentsToVirtualRegs(Function &F);
190
191 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
192 /// because we have to generate our sources into the source basic blocks,
193 /// not the current one.
194 ///
195 void SelectPHINodes();
196
197 // Visitation methods for various instructions. These methods simply emit
198 // fixed PowerPC code for each instruction.
199
200 // Control flow operators
201 void visitReturnInst(ReturnInst &RI);
202 void visitBranchInst(BranchInst &BI);
203
204 struct ValueRecord {
205 Value *Val;
206 unsigned Reg;
207 const Type *Ty;
208 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
209 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
210 };
211 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000212 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000213 void visitCallInst(CallInst &I);
214 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
215
216 // Arithmetic operators
217 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
218 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
219 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
220 void visitMul(BinaryOperator &B);
221
222 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
223 void visitRem(BinaryOperator &B) { visitDivRem(B); }
224 void visitDivRem(BinaryOperator &B);
225
226 // Bitwise operators
227 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
228 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
229 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
230
231 // Comparison operators...
232 void visitSetCondInst(SetCondInst &I);
233 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
234 MachineBasicBlock *MBB,
235 MachineBasicBlock::iterator MBBI);
236 void visitSelectInst(SelectInst &SI);
237
238
239 // Memory Instructions
240 void visitLoadInst(LoadInst &I);
241 void visitStoreInst(StoreInst &I);
242 void visitGetElementPtrInst(GetElementPtrInst &I);
243 void visitAllocaInst(AllocaInst &I);
244 void visitMallocInst(MallocInst &I);
245 void visitFreeInst(FreeInst &I);
246
247 // Other operators
248 void visitShiftInst(ShiftInst &I);
249 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
250 void visitCastInst(CastInst &I);
251 void visitVANextInst(VANextInst &I);
252 void visitVAArgInst(VAArgInst &I);
253
254 void visitInstruction(Instruction &I) {
255 std::cerr << "Cannot instruction select: " << I;
256 abort();
257 }
258
259 /// promote32 - Make a value 32-bits wide, and put it somewhere.
260 ///
261 void promote32(unsigned targetReg, const ValueRecord &VR);
262
263 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
264 /// constant expression GEP support.
265 ///
266 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
267 Value *Src, User::op_iterator IdxBegin,
268 User::op_iterator IdxEnd, unsigned TargetReg);
269
270 /// emitCastOperation - Common code shared between visitCastInst and
271 /// constant expression cast support.
272 ///
273 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
274 Value *Src, const Type *DestTy, unsigned TargetReg);
275
276 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
277 /// and constant expression support.
278 ///
279 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
280 MachineBasicBlock::iterator IP,
281 Value *Op0, Value *Op1,
282 unsigned OperatorClass, unsigned TargetReg);
283
284 /// emitBinaryFPOperation - This method handles emission of floating point
285 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
286 void emitBinaryFPOperation(MachineBasicBlock *BB,
287 MachineBasicBlock::iterator IP,
288 Value *Op0, Value *Op1,
289 unsigned OperatorClass, unsigned TargetReg);
290
291 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
292 Value *Op0, Value *Op1, unsigned TargetReg);
293
294 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
295 unsigned DestReg, const Type *DestTy,
296 unsigned Op0Reg, unsigned Op1Reg);
297 void doMultiplyConst(MachineBasicBlock *MBB,
298 MachineBasicBlock::iterator MBBI,
299 unsigned DestReg, const Type *DestTy,
300 unsigned Op0Reg, unsigned Op1Val);
301
302 void emitDivRemOperation(MachineBasicBlock *BB,
303 MachineBasicBlock::iterator IP,
304 Value *Op0, Value *Op1, bool isDiv,
305 unsigned TargetReg);
306
307 /// emitSetCCOperation - Common code shared between visitSetCondInst and
308 /// constant expression support.
309 ///
310 void emitSetCCOperation(MachineBasicBlock *BB,
311 MachineBasicBlock::iterator IP,
312 Value *Op0, Value *Op1, unsigned Opcode,
313 unsigned TargetReg);
314
315 /// emitShiftOperation - Common code shared between visitShiftInst and
316 /// constant expression support.
317 ///
318 void emitShiftOperation(MachineBasicBlock *MBB,
319 MachineBasicBlock::iterator IP,
320 Value *Op, Value *ShiftAmount, bool isLeftShift,
321 const Type *ResultTy, unsigned DestReg);
322
323 /// emitSelectOperation - Common code shared between visitSelectInst and the
324 /// constant expression support.
325 void emitSelectOperation(MachineBasicBlock *MBB,
326 MachineBasicBlock::iterator IP,
327 Value *Cond, Value *TrueVal, Value *FalseVal,
328 unsigned DestReg);
329
330 /// copyConstantToRegister - Output the instructions required to put the
331 /// specified constant into the specified register.
332 ///
333 void copyConstantToRegister(MachineBasicBlock *MBB,
334 MachineBasicBlock::iterator MBBI,
335 Constant *C, unsigned Reg);
336
337 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
338 unsigned LHS, unsigned RHS);
339
340 /// makeAnotherReg - This method returns the next register number we haven't
341 /// yet used.
342 ///
343 /// Long values are handled somewhat specially. They are always allocated
344 /// as pairs of 32 bit integer values. The register number returned is the
345 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
346 /// of the long value.
347 ///
348 unsigned makeAnotherReg(const Type *Ty) {
349 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
350 "Current target doesn't have PPC reg info??");
351 const PowerPCRegisterInfo *MRI =
352 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
353 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
354 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
355 // Create the lower part
356 F->getSSARegMap()->createVirtualRegister(RC);
357 // Create the upper part.
358 return F->getSSARegMap()->createVirtualRegister(RC)-1;
359 }
360
361 // Add the mapping of regnumber => reg class to MachineFunction
362 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
363 return F->getSSARegMap()->createVirtualRegister(RC);
364 }
365
366 /// getReg - This method turns an LLVM value into a register number.
367 ///
368 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
369 unsigned getReg(Value *V) {
370 // Just append to the end of the current bb.
371 MachineBasicBlock::iterator It = BB->end();
372 return getReg(V, BB, It);
373 }
374 unsigned getReg(Value *V, MachineBasicBlock *MBB,
375 MachineBasicBlock::iterator IPt);
376
377 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
378 /// that is to be statically allocated with the initial stack frame
379 /// adjustment.
380 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
381 };
382}
383
384/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
385/// instruction in the entry block, return it. Otherwise, return a null
386/// pointer.
387static AllocaInst *dyn_castFixedAlloca(Value *V) {
388 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
389 BasicBlock *BB = AI->getParent();
390 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
391 return AI;
392 }
393 return 0;
394}
395
396/// getReg - This method turns an LLVM value into a register number.
397///
398unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
399 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000400 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000401 unsigned Reg = makeAnotherReg(V->getType());
402 copyConstantToRegister(MBB, IPt, C, Reg);
403 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000404 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
405 // Do not emit noop casts at all.
406 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
407 return getReg(CI->getOperand(0), MBB, IPt);
408 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
409 unsigned Reg = makeAnotherReg(V->getType());
410 unsigned FI = getFixedSizedAllocaFI(AI);
411 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
412 return Reg;
413 }
414
415 unsigned &Reg = RegMap[V];
416 if (Reg == 0) {
417 Reg = makeAnotherReg(V->getType());
418 RegMap[V] = Reg;
419 }
420
421 return Reg;
422}
423
424/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
425/// that is to be statically allocated with the initial stack frame
426/// adjustment.
427unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
428 // Already computed this?
429 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
430 if (I != AllocaMap.end() && I->first == AI) return I->second;
431
432 const Type *Ty = AI->getAllocatedType();
433 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
434 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
435 TySize *= CUI->getValue(); // Get total allocated size...
436 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
437
438 // Create a new stack object using the frame manager...
439 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
440 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
441 return FrameIdx;
442}
443
444
445/// copyConstantToRegister - Output the instructions required to put the
446/// specified constant into the specified register.
447///
448void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
449 MachineBasicBlock::iterator IP,
450 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000451 if (C->getType()->isIntegral()) {
452 unsigned Class = getClassB(C->getType());
453
454 if (Class == cLong) {
455 // Copy the value into the register pair.
456 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman7e898c32004-07-20 00:41:46 +0000457
458 if (Val < (1ULL << 16)) {
459 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(Val & 0xFFFF);
460 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
461 } else if (Val < (1ULL << 32)) {
462 unsigned Temp = makeAnotherReg(Type::IntTy);
463 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
464 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
465 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
466 } else if (Val < (1ULL << 48)) {
467 unsigned Temp = makeAnotherReg(Type::IntTy);
468 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
469 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
470 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm((Val >> 32) & 0xFFFF);
471 } else {
472 unsigned TempLo = makeAnotherReg(Type::IntTy);
473 unsigned TempHi = makeAnotherReg(Type::IntTy);
474 BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addImm((Val >> 16) & 0xFFFF);
475 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempLo).addImm(Val & 0xFFFF);
476 BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addImm((Val >> 48) & 0xFFFF);
477 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempHi)
478 .addImm((Val >> 32) & 0xFFFF);
479 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000480 return;
481 }
482
483 assert(Class <= cInt && "Type not handled yet!");
484
485 if (C->getType() == Type::BoolTy) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000486 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000487 } else if (Class == cByte || Class == cShort) {
488 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukmanbebde752004-07-16 21:06:24 +0000489 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000490 } else {
491 ConstantInt *CI = cast<ConstantInt>(C);
492 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
493 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000494 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000495 } else {
496 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000497 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman911afde2004-06-25 14:50:41 +0000498 .addImm(CI->getRawValue() >> 16);
499 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
500 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000501 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000502 }
503 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000504 // We need to spill the constant to memory...
505 MachineConstantPool *CP = F->getConstantPool();
506 unsigned CPI = CP->getConstantPoolIndex(CFP);
507 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000508
Misha Brukmand18a31d2004-07-06 22:51:53 +0000509 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000510
511 // Load addr of constant to reg; constant is located at PC + distance
512 unsigned CurPC = makeAnotherReg(Type::IntTy);
513 unsigned Reg1 = makeAnotherReg(Type::IntTy);
514 unsigned Reg2 = makeAnotherReg(Type::IntTy);
515 // Move PC to destination reg
516 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
517 // Move value at PC + distance into return reg
518 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
519 .addConstantPoolIndex(CPI);
520 BuildMI(*MBB, IP, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
521 .addConstantPoolIndex(CPI);
522
Misha Brukmand18a31d2004-07-06 22:51:53 +0000523 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfc879c32004-07-08 18:02:38 +0000524 BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000525 } else if (isa<ConstantPointerNull>(C)) {
526 // Copy zero (null pointer) to the register.
Misha Brukmanbebde752004-07-16 21:06:24 +0000527 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000528 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000529 // GV is located at PC + distance
530 unsigned CurPC = makeAnotherReg(Type::IntTy);
531 unsigned TmpReg = makeAnotherReg(GV->getType());
532 // Move PC to destination reg
533 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
534 // Move value at PC + distance into return reg
535 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(CurPC)
536 .addGlobalAddress(GV);
537 BuildMI(*MBB, IP, PPC32::LOADLoAddr, 2, R).addReg(TmpReg)
538 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000539 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000540 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000541 assert(0 && "Type not handled yet!");
542 }
543}
544
545/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
546/// the stack into virtual registers.
547///
548/// FIXME: When we can calculate which args are coming in via registers
549/// source them from there instead.
550void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
551 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
552 unsigned GPR_remaining = 8;
553 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000554 unsigned GPR_idx = 0, FPR_idx = 0;
555 static const unsigned GPR[] = {
556 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
557 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
558 };
559 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000560 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000561 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000562 };
Misha Brukman422791f2004-06-21 17:41:12 +0000563
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000564 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000565
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000566 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
567 bool ArgLive = !I->use_empty();
568 unsigned Reg = ArgLive ? getReg(*I) : 0;
569 int FI; // Frame object index
570
571 switch (getClassB(I->getType())) {
572 case cByte:
573 if (ArgLive) {
574 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000575 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000576 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000577 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
578 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000579 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000580 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000581 }
582 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000583 break;
584 case cShort:
585 if (ArgLive) {
586 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000587 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000588 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000589 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
590 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000591 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000592 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000593 }
594 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000595 break;
596 case cInt:
597 if (ArgLive) {
598 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000599 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000600 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000601 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
602 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000603 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000604 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000605 }
606 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000607 break;
608 case cLong:
609 if (ArgLive) {
610 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000611 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000612 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
613 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000614 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
615 .addReg(GPR[GPR_idx]);
616 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
617 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000618 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000619 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
620 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000621 }
622 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000623 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000624 if (GPR_remaining > 1) {
625 GPR_remaining--; // uses up 2 GPRs
626 GPR_idx++;
627 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000628 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000629 case cFP32:
630 if (ArgLive) {
631 FI = MFI->CreateFixedObject(4, ArgOffset);
632
Misha Brukman422791f2004-06-21 17:41:12 +0000633 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000634 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000635 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
636 FPR_remaining--;
637 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000638 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000639 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000640 }
641 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000642 break;
643 case cFP64:
644 if (ArgLive) {
645 FI = MFI->CreateFixedObject(8, ArgOffset);
646
647 if (FPR_remaining > 0) {
648 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
649 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
650 FPR_remaining--;
651 FPR_idx++;
652 } else {
653 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000654 }
655 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000656
657 // doubles require 4 additional bytes and use 2 GPRs of param space
658 ArgOffset += 4;
659 if (GPR_remaining > 0) {
660 GPR_remaining--;
661 GPR_idx++;
662 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000663 break;
664 default:
665 assert(0 && "Unhandled argument type!");
666 }
667 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000668 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000669 GPR_remaining--; // uses up 2 GPRs
670 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000671 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000672 }
673
674 // If the function takes variable number of arguments, add a frame offset for
675 // the start of the first vararg value... this is used to expand
676 // llvm.va_start.
677 if (Fn.getFunctionType()->isVarArg())
678 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
679}
680
681
682/// SelectPHINodes - Insert machine code to generate phis. This is tricky
683/// because we have to generate our sources into the source basic blocks, not
684/// the current one.
685///
686void ISel::SelectPHINodes() {
687 const TargetInstrInfo &TII = *TM.getInstrInfo();
688 const Function &LF = *F->getFunction(); // The LLVM function...
689 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
690 const BasicBlock *BB = I;
691 MachineBasicBlock &MBB = *MBBMap[I];
692
693 // Loop over all of the PHI nodes in the LLVM basic block...
694 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
695 for (BasicBlock::const_iterator I = BB->begin();
696 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
697
698 // Create a new machine instr PHI node, and insert it.
699 unsigned PHIReg = getReg(*PN);
700 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
701 PPC32::PHI, PN->getNumOperands(), PHIReg);
702
703 MachineInstr *LongPhiMI = 0;
704 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
705 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
706 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
707
708 // PHIValues - Map of blocks to incoming virtual registers. We use this
709 // so that we only initialize one incoming value for a particular block,
710 // even if the block has multiple entries in the PHI node.
711 //
712 std::map<MachineBasicBlock*, unsigned> PHIValues;
713
714 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000715 MachineBasicBlock *PredMBB = 0;
716 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
717 PE = MBB.pred_end (); PI != PE; ++PI)
718 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
719 PredMBB = *PI;
720 break;
721 }
722 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
723
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000724 unsigned ValReg;
725 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
726 PHIValues.lower_bound(PredMBB);
727
728 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
729 // We already inserted an initialization of the register for this
730 // predecessor. Recycle it.
731 ValReg = EntryIt->second;
732
733 } else {
734 // Get the incoming value into a virtual register.
735 //
736 Value *Val = PN->getIncomingValue(i);
737
738 // If this is a constant or GlobalValue, we may have to insert code
739 // into the basic block to compute it into a virtual register.
740 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
741 isa<GlobalValue>(Val)) {
742 // Simple constants get emitted at the end of the basic block,
743 // before any terminator instructions. We "know" that the code to
744 // move a constant into a register will never clobber any flags.
745 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
746 } else {
747 // Because we don't want to clobber any values which might be in
748 // physical registers with the computation of this constant (which
749 // might be arbitrarily complex if it is a constant expression),
750 // just insert the computation at the top of the basic block.
751 MachineBasicBlock::iterator PI = PredMBB->begin();
752
753 // Skip over any PHI nodes though!
754 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
755 ++PI;
756
757 ValReg = getReg(Val, PredMBB, PI);
758 }
759
760 // Remember that we inserted a value for this PHI for this predecessor
761 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
762 }
763
764 PhiMI->addRegOperand(ValReg);
765 PhiMI->addMachineBasicBlockOperand(PredMBB);
766 if (LongPhiMI) {
767 LongPhiMI->addRegOperand(ValReg+1);
768 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
769 }
770 }
771
772 // Now that we emitted all of the incoming values for the PHI node, make
773 // sure to reposition the InsertPoint after the PHI that we just added.
774 // This is needed because we might have inserted a constant into this
775 // block, right after the PHI's which is before the old insert point!
776 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
777 ++PHIInsertPoint;
778 }
779 }
780}
781
782
783// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
784// it into the conditional branch or select instruction which is the only user
785// of the cc instruction. This is the case if the conditional branch is the
786// only user of the setcc, and if the setcc is in the same basic block as the
787// conditional branch. We also don't handle long arguments below, so we reject
788// them here as well.
789//
790static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
791 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
792 if (SCI->hasOneUse()) {
793 Instruction *User = cast<Instruction>(SCI->use_back());
794 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000795 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000796 return SCI;
797 }
798 return 0;
799}
800
801// Return a fixed numbering for setcc instructions which does not depend on the
802// order of the opcodes.
803//
804static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000805 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000806 default: assert(0 && "Unknown setcc instruction!");
807 case Instruction::SetEQ: return 0;
808 case Instruction::SetNE: return 1;
809 case Instruction::SetLT: return 2;
810 case Instruction::SetGE: return 3;
811 case Instruction::SetGT: return 4;
812 case Instruction::SetLE: return 5;
813 }
814}
815
Misha Brukmane9c65512004-07-06 15:32:44 +0000816static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
817 switch (Opcode) {
818 default: assert(0 && "Unknown setcc instruction!");
819 case Instruction::SetEQ: return PPC32::BEQ;
820 case Instruction::SetNE: return PPC32::BNE;
821 case Instruction::SetLT: return PPC32::BLT;
822 case Instruction::SetGE: return PPC32::BGE;
823 case Instruction::SetGT: return PPC32::BGT;
824 case Instruction::SetLE: return PPC32::BLE;
825 }
826}
827
828static unsigned invertPPCBranchOpcode(unsigned Opcode) {
829 switch (Opcode) {
830 default: assert(0 && "Unknown PPC32 branch opcode!");
831 case PPC32::BEQ: return PPC32::BNE;
832 case PPC32::BNE: return PPC32::BEQ;
833 case PPC32::BLT: return PPC32::BGE;
834 case PPC32::BGE: return PPC32::BLT;
835 case PPC32::BGT: return PPC32::BLE;
836 case PPC32::BLE: return PPC32::BGT;
837 }
838}
839
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000840/// emitUCOM - emits an unordered FP compare.
841void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
842 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000843 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000844}
845
Misha Brukmanbebde752004-07-16 21:06:24 +0000846/// EmitComparison - emits a comparison of the two operands, returning the
847/// extended setcc code to use. The result is in CR0.
848///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000849unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
850 MachineBasicBlock *MBB,
851 MachineBasicBlock::iterator IP) {
852 // The arguments are already supposed to be of the same type.
853 const Type *CompTy = Op0->getType();
854 unsigned Class = getClassB(CompTy);
855 unsigned Op0r = getReg(Op0, MBB, IP);
856
857 // Special case handling of: cmp R, i
858 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000859 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000860 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
861 if (Class == cByte || Class == cShort || Class == cInt) {
862 unsigned Op1v = CI->getRawValue();
863
864 // Mask off any upper bits of the constant, if there are any...
865 Op1v &= (1ULL << (8 << Class)) - 1;
866
Misha Brukman422791f2004-06-21 17:41:12 +0000867 // Compare immediate or promote to reg?
868 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000869 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
870 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000871 } else {
872 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000873 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
874 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000875 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000876 return OpNum;
877 } else {
878 assert(Class == cLong && "Unknown integer class!");
879 unsigned LowCst = CI->getRawValue();
880 unsigned HiCst = CI->getRawValue() >> 32;
881 if (OpNum < 2) { // seteq, setne
882 unsigned LoTmp = Op0r;
883 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000884 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000885 unsigned LoTmp = makeAnotherReg(Type::IntTy);
886 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000887 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
888 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000889 }
890 unsigned HiTmp = Op0r+1;
891 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000892 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000893 unsigned HiTmp = makeAnotherReg(Type::IntTy);
894 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000895 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
896 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000897 }
898 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
899 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000900 return OpNum;
901 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000902 unsigned ConstReg = makeAnotherReg(CompTy);
903 unsigned CondReg = makeAnotherReg(Type::IntTy);
904 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
905 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
906 copyConstantToRegister(MBB, IP, CI, ConstReg);
907
908 // FIXME: this is inefficient, but avoids branches
909
910 // compare hi word -> cr0
911 // compare lo word -> cr1
912 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
913 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(ConstReg+1);
914 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
915 .addReg(ConstReg);
916 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
917 // shift amount = 4 * CR0[EQ]
918 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
919 .addImm(29).addImm(29);
920 // shift cr1 into cr0 position if op0.hi and const.hi were equal
921 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
922 .addReg(TmpReg1);
923 // cr0 == ( op0.hi != const.hi ) ? cr0 : cr1
924 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
925
Misha Brukman422791f2004-06-21 17:41:12 +0000926 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000927 }
928 }
929 }
930
931 unsigned Op1r = getReg(Op1, MBB, IP);
932 switch (Class) {
933 default: assert(0 && "Unknown type class!");
934 case cByte:
935 case cShort:
936 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000937 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
938 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000939 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000940
Misha Brukman7e898c32004-07-20 00:41:46 +0000941 case cFP32:
942 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000943 emitUCOM(MBB, IP, Op0r, Op1r);
944 break;
945
946 case cLong:
947 if (OpNum < 2) { // seteq, setne
948 unsigned LoTmp = makeAnotherReg(Type::IntTy);
949 unsigned HiTmp = makeAnotherReg(Type::IntTy);
950 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
951 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
952 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
953 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000954 break; // Allow the sete or setne to be generated from flags set by OR
955 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000956 unsigned CondReg = makeAnotherReg(Type::IntTy);
957 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
958 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
959
960 // FIXME: this is inefficient, but avoids branches
961
962 // compare hi word -> cr0
963 // compare lo word -> cr1
964 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
965 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(Op1r+1);
966 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
967 .addReg(Op1r);
968 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
969 // shift amount = 4 * CR0[EQ]
970 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
971 .addImm(29).addImm(29);
972 // shift cr1 into cr0 position if op0.hi and op1.hi were equal
973 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
974 .addReg(TmpReg1);
975 // cr0 == ( op0.hi != op1.hi ) ? cr0 : cr1
976 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
977
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000978 return OpNum;
979 }
980 }
981 return OpNum;
982}
983
Misha Brukmand18a31d2004-07-06 22:51:53 +0000984/// visitSetCondInst - emit code to calculate the condition via
985/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000986///
987void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000988 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000989 return;
Misha Brukmanbebde752004-07-16 21:06:24 +0000990
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000991 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000992 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +0000993 const Type *Ty = I.getOperand (0)->getType();
994
Misha Brukmand18a31d2004-07-06 22:51:53 +0000995 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
996
997 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +0000998 MachineBasicBlock *thisMBB = BB;
999 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001000 ilist<MachineBasicBlock>::iterator It = BB;
1001 ++It;
1002
Misha Brukman425ff242004-07-01 21:34:10 +00001003 // thisMBB:
1004 // ...
1005 // cmpTY cr0, r1, r2
1006 // bCC copy1MBB
1007 // b copy0MBB
1008
1009 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1010 // if we could insert other, non-terminator instructions after the
1011 // bCC. But MBB->getFirstTerminator() can't understand this.
1012 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001013 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001014 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1015 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001016 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001017 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
1018 // Update machine-CFG edges
1019 BB->addSuccessor(copy1MBB);
1020 BB->addSuccessor(copy0MBB);
1021
1022 // copy0MBB:
1023 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +00001024 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001025 BB = copy0MBB;
1026 unsigned FalseValue = makeAnotherReg(I.getType());
Misha Brukmanbebde752004-07-16 21:06:24 +00001027 BuildMI(BB, PPC32::LI, 1, FalseValue).addImm(0);
Misha Brukman425ff242004-07-01 21:34:10 +00001028 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001029 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001030 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1031 // Update machine-CFG edges
1032 BB->addSuccessor(sinkMBB);
1033
1034 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
1035 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
1036 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
1037 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
1038
1039 // copy1MBB:
1040 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001041 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001042 BB = copy1MBB;
1043 unsigned TrueValue = makeAnotherReg (I.getType ());
Misha Brukmanbebde752004-07-16 21:06:24 +00001044 BuildMI(BB, PPC32::LI, 1, TrueValue).addImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001045 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1046 // Update machine-CFG edges
1047 BB->addSuccessor(sinkMBB);
1048
1049 // sinkMBB:
1050 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1051 // ...
1052 BB = sinkMBB;
1053 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1054 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001055}
1056
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001057void ISel::visitSelectInst(SelectInst &SI) {
1058 unsigned DestReg = getReg(SI);
1059 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001060 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1061 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001062}
1063
1064/// emitSelect - Common code shared between visitSelectInst and the constant
1065/// expression support.
1066/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1067/// no select instruction. FSEL only works for comparisons against zero.
1068void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1069 MachineBasicBlock::iterator IP,
1070 Value *Cond, Value *TrueVal, Value *FalseVal,
1071 unsigned DestReg) {
1072 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001073 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001074
Misha Brukmanbebde752004-07-16 21:06:24 +00001075 // See if we can fold the setcc into the select instruction, or if we have
1076 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001077 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1078 // We successfully folded the setcc into the select instruction.
1079
1080 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1081 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1082 IP);
1083 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1084 } else {
1085 unsigned CondReg = getReg(Cond, MBB, IP);
1086
1087 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addImm(0);
1088 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001089 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001090
1091 // thisMBB:
1092 // ...
1093 // cmpTY cr0, r1, r2
1094 // bCC copy1MBB
1095 // b copy0MBB
1096
1097 MachineBasicBlock *thisMBB = BB;
1098 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001099 ilist<MachineBasicBlock>::iterator It = BB;
1100 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001101
1102 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1103 // if we could insert other, non-terminator instructions after the
1104 // bCC. But MBB->getFirstTerminator() can't understand this.
1105 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001106 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001107 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1108 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001109 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001110 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
1111 // Update machine-CFG edges
1112 BB->addSuccessor(copy1MBB);
1113 BB->addSuccessor(copy0MBB);
1114
1115 // FIXME: spill code is being generated after the branch and before copy1MBB
1116 // this is bad, since it will never be run
1117
1118 // copy0MBB:
1119 // %FalseValue = ...
1120 // b sinkMBB
1121 BB = copy0MBB;
1122 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1123 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001124 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001125 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1126 // Update machine-CFG edges
1127 BB->addSuccessor(sinkMBB);
1128
1129 // copy1MBB:
1130 // %TrueValue = ...
1131 // b sinkMBB
1132 BB = copy1MBB;
1133 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1134 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1135 // Update machine-CFG edges
1136 BB->addSuccessor(sinkMBB);
1137
1138 // sinkMBB:
1139 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1140 // ...
1141 BB = sinkMBB;
1142 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1143 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001144 return;
1145}
1146
1147
1148
1149/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1150/// operand, in the specified target register.
1151///
1152void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1153 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1154
1155 Value *Val = VR.Val;
1156 const Type *Ty = VR.Ty;
1157 if (Val) {
1158 if (Constant *C = dyn_cast<Constant>(Val)) {
1159 Val = ConstantExpr::getCast(C, Type::IntTy);
1160 Ty = Type::IntTy;
1161 }
1162
Misha Brukman2fec9902004-06-21 20:22:03 +00001163 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001164 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1165 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1166
1167 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +00001168 BuildMI(BB, PPC32::LI, 1, targetReg).addImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001169 } else {
1170 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001171 BuildMI(BB, PPC32::LIS, 1, TmpReg).addImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001172 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1173 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001174 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001175 return;
1176 }
1177 }
1178
1179 // Make sure we have the register number for this value...
1180 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1181
1182 switch (getClassB(Ty)) {
1183 case cByte:
1184 // Extend value into target register (8->32)
1185 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001186 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1187 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001188 else
1189 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1190 break;
1191 case cShort:
1192 // Extend value into target register (16->32)
1193 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001194 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1195 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001196 else
1197 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1198 break;
1199 case cInt:
1200 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001201 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001202 break;
1203 default:
1204 assert(0 && "Unpromotable operand class in promote32");
1205 }
1206}
1207
Misha Brukman2fec9902004-06-21 20:22:03 +00001208/// visitReturnInst - implemented with BLR
1209///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001210void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001211 // Only do the processing if this is a non-void return
1212 if (I.getNumOperands() > 0) {
1213 Value *RetVal = I.getOperand(0);
1214 switch (getClassB(RetVal->getType())) {
1215 case cByte: // integral return values: extend or move into r3 and return
1216 case cShort:
1217 case cInt:
1218 promote32(PPC32::R3, ValueRecord(RetVal));
1219 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001220 case cFP32:
1221 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001222 unsigned RetReg = getReg(RetVal);
1223 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1224 break;
1225 }
1226 case cLong: {
1227 unsigned RetReg = getReg(RetVal);
1228 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1229 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1230 break;
1231 }
1232 default:
1233 visitInstruction(I);
1234 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001235 }
1236 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1237}
1238
1239// getBlockAfter - Return the basic block which occurs lexically after the
1240// specified one.
1241static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1242 Function::iterator I = BB; ++I; // Get iterator to next block
1243 return I != BB->getParent()->end() ? &*I : 0;
1244}
1245
1246/// visitBranchInst - Handle conditional and unconditional branches here. Note
1247/// that since code layout is frozen at this point, that if we are trying to
1248/// jump to a block that is the immediate successor of the current block, we can
1249/// just make a fall-through (but we don't currently).
1250///
1251void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001252 // Update machine-CFG edges
1253 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1254 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001255 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001256
1257 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001258
Misha Brukman2fec9902004-06-21 20:22:03 +00001259 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001260 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001261 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1262 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001263 }
1264
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001265 // See if we can fold the setcc into the branch itself...
1266 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1267 if (SCI == 0) {
1268 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1269 // computed some other way...
1270 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001271 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001272 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001273 if (BI.getSuccessor(1) == NextBB) {
1274 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001275 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001276 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001277 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001278 BuildMI(BB, PPC32::BEQ, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001279 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001280
1281 if (BI.getSuccessor(0) != NextBB)
1282 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1283 }
1284 return;
1285 }
1286
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001287 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001288 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001289 MachineBasicBlock::iterator MII = BB->end();
1290 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001291
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001292 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001293 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001294 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001295 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001296 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001297 } else {
1298 // Change to the inverse condition...
1299 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001300 Opcode = invertPPCBranchOpcode(Opcode);
1301 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001302 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001303 }
1304 }
1305}
1306
Misha Brukmanfc879c32004-07-08 18:02:38 +00001307static Constant* minUConstantForValue(uint64_t val) {
1308 if (val <= 1)
1309 return ConstantBool::get(val);
1310 else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
1311 return ConstantUInt::get(Type::UShortTy, val);
1312 else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
1313 return ConstantUInt::get(Type::UIntTy, val);
1314 else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
1315 return ConstantUInt::get(Type::ULongTy, val);
1316
1317 std::cerr << "Value: " << val << " not accepted for any integral type!\n";
1318 abort();
1319}
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001320
1321/// doCall - This emits an abstract call instruction, setting up the arguments
1322/// and the return value as appropriate. For the actual function call itself,
1323/// it inserts the specified CallMI instruction into the stream.
1324///
1325/// FIXME: See Documentation at the following URL for "correct" behavior
1326/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1327void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001328 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001329 // Count how many bytes are to be pushed on the stack...
1330 unsigned NumBytes = 0;
1331
1332 if (!Args.empty()) {
1333 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1334 switch (getClassB(Args[i].Ty)) {
1335 case cByte: case cShort: case cInt:
1336 NumBytes += 4; break;
1337 case cLong:
1338 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001339 case cFP32:
1340 NumBytes += 4; break;
1341 case cFP64:
1342 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001343 break;
1344 default: assert(0 && "Unknown class!");
1345 }
1346
1347 // Adjust the stack pointer for the new arguments...
1348 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1349
1350 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001351 // Offset to the paramater area on the stack is 24.
1352 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001353 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001354 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001355 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001356 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1357 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1358 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001359 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001360 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1361 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1362 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001363 };
Misha Brukman422791f2004-06-21 17:41:12 +00001364
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001365 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1366 unsigned ArgReg;
1367 switch (getClassB(Args[i].Ty)) {
1368 case cByte:
1369 case cShort:
1370 // Promote arg to 32 bits wide into a temporary register...
1371 ArgReg = makeAnotherReg(Type::UIntTy);
1372 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001373
1374 // Reg or stack?
1375 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001376 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001377 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001378 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001379 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001380 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1381 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001382 }
1383 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001384 case cInt:
1385 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1386
Misha Brukman422791f2004-06-21 17:41:12 +00001387 // Reg or stack?
1388 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001389 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001390 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001391 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001392 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001393 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1394 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001395 }
1396 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001397 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001398 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001399
Misha Brukman422791f2004-06-21 17:41:12 +00001400 // Reg or stack?
1401 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001402 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001403 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001404 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001405 .addReg(ArgReg+1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001406 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1407 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001408 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001409 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1410 .addReg(PPC32::R1);
1411 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1412 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001413 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001414
1415 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001416 GPR_remaining -= 1; // uses up 2 GPRs
1417 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001418 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001419 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001420 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001421 // Reg or stack?
1422 if (FPR_remaining > 0) {
1423 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1424 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1425 FPR_remaining--;
1426 FPR_idx++;
1427
1428 // If this is a vararg function, and there are GPRs left, also
1429 // pass the float in an int. Otherwise, put it on the stack.
1430 if (isVarArg) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001431 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001432 .addReg(PPC32::R1);
1433 if (GPR_remaining > 0) {
1434 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
1435 .addImm(ArgOffset).addReg(ArgReg);
1436 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1437 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001438 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001439 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +00001440 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1441 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001442 }
1443 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001444 case cFP64:
1445 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1446 // Reg or stack?
1447 if (FPR_remaining > 0) {
1448 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1449 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1450 FPR_remaining--;
1451 FPR_idx++;
1452 // For vararg functions, must pass doubles via int regs as well
1453 if (isVarArg) {
1454 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1455 .addReg(PPC32::R1);
1456
1457 if (GPR_remaining > 1) {
1458 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
1459 .addReg(PPC32::R1);
1460 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
1461 .addImm(ArgOffset+4).addReg(PPC32::R1);
1462 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1463 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1464 }
1465 }
1466 } else {
1467 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1468 .addReg(PPC32::R1);
1469 }
1470 // Doubles use 8 bytes, and 2 GPRs worth of param space
1471 ArgOffset += 4;
1472 GPR_remaining--;
1473 GPR_idx++;
1474 break;
1475
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001476 default: assert(0 && "Unknown class!");
1477 }
1478 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001479 GPR_remaining--;
1480 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001481 }
1482 } else {
1483 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1484 }
1485
1486 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001487 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1488
1489 // If there is a return value, scavenge the result from the location the call
1490 // leaves it in...
1491 //
1492 if (Ret.Ty != Type::VoidTy) {
1493 unsigned DestClass = getClassB(Ret.Ty);
1494 switch (DestClass) {
1495 case cByte:
1496 case cShort:
1497 case cInt:
1498 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001499 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001500 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001501 case cFP32: // Floating-point return values live in f1
1502 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001503 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1504 break;
1505 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001506 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1507 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001508 break;
1509 default: assert(0 && "Unknown class!");
1510 }
1511 }
1512}
1513
1514
1515/// visitCallInst - Push args on stack and do a procedure call instruction.
1516void ISel::visitCallInst(CallInst &CI) {
1517 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001518 Function *F = CI.getCalledFunction();
1519 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001520 // Is it an intrinsic function call?
1521 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1522 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1523 return;
1524 }
1525
1526 // Emit a CALL instruction with PC-relative displacement.
1527 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1528 } else { // Emit an indirect call through the CTR
1529 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001530 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1531 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001532 }
1533
1534 std::vector<ValueRecord> Args;
1535 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1536 Args.push_back(ValueRecord(CI.getOperand(i)));
1537
1538 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001539 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1540 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001541}
1542
1543
1544/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1545///
1546static Value *dyncastIsNan(Value *V) {
1547 if (CallInst *CI = dyn_cast<CallInst>(V))
1548 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001549 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001550 return CI->getOperand(1);
1551 return 0;
1552}
1553
1554/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1555/// or's whos operands are all calls to the isnan predicate.
1556static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1557 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1558
1559 // Check all uses, which will be or's of isnans if this predicate is true.
1560 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1561 Instruction *I = cast<Instruction>(*UI);
1562 if (I->getOpcode() != Instruction::Or) return false;
1563 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1564 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1565 }
1566
1567 return true;
1568}
1569
1570/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1571/// function, lowering any calls to unknown intrinsic functions into the
1572/// equivalent LLVM code.
1573///
1574void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1575 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1576 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1577 if (CallInst *CI = dyn_cast<CallInst>(I++))
1578 if (Function *F = CI->getCalledFunction())
1579 switch (F->getIntrinsicID()) {
1580 case Intrinsic::not_intrinsic:
1581 case Intrinsic::vastart:
1582 case Intrinsic::vacopy:
1583 case Intrinsic::vaend:
1584 case Intrinsic::returnaddress:
1585 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001586 // FIXME: should lower this ourselves
1587 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001588 // We directly implement these intrinsics
1589 break;
1590 case Intrinsic::readio: {
1591 // On PPC, memory operations are in-order. Lower this intrinsic
1592 // into a volatile load.
1593 Instruction *Before = CI->getPrev();
1594 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1595 CI->replaceAllUsesWith(LI);
1596 BB->getInstList().erase(CI);
1597 break;
1598 }
1599 case Intrinsic::writeio: {
1600 // On PPC, memory operations are in-order. Lower this intrinsic
1601 // into a volatile store.
1602 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001603 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001604 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001605 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001606 BB->getInstList().erase(CI);
1607 break;
1608 }
1609 default:
1610 // All other intrinsic calls we must lower.
1611 Instruction *Before = CI->getPrev();
1612 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1613 if (Before) { // Move iterator to instruction after call
1614 I = Before; ++I;
1615 } else {
1616 I = BB->begin();
1617 }
1618 }
1619}
1620
1621void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1622 unsigned TmpReg1, TmpReg2, TmpReg3;
1623 switch (ID) {
1624 case Intrinsic::vastart:
1625 // Get the address of the first vararg value...
1626 TmpReg1 = getReg(CI);
1627 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1628 return;
1629
1630 case Intrinsic::vacopy:
1631 TmpReg1 = getReg(CI);
1632 TmpReg2 = getReg(CI.getOperand(1));
1633 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1634 return;
1635 case Intrinsic::vaend: return;
1636
1637 case Intrinsic::returnaddress:
1638 case Intrinsic::frameaddress:
1639 TmpReg1 = getReg(CI);
1640 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1641 if (ID == Intrinsic::returnaddress) {
1642 // Just load the return address
1643 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1644 ReturnAddressIndex);
1645 } else {
1646 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1647 ReturnAddressIndex, -4, false);
1648 }
1649 } else {
1650 // Values other than zero are not implemented yet.
Misha Brukmanbebde752004-07-16 21:06:24 +00001651 BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001652 }
1653 return;
1654
Misha Brukmana2916ce2004-06-21 17:58:36 +00001655#if 0
1656 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001657 case Intrinsic::isnan:
1658 // If this is only used by 'isunordered' style comparisons, don't emit it.
1659 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1660 TmpReg1 = getReg(CI.getOperand(1));
1661 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001662 TmpReg2 = makeAnotherReg(Type::IntTy);
1663 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001664 TmpReg3 = getReg(CI);
1665 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1666 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001667#endif
1668
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001669 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1670 }
1671}
1672
1673/// visitSimpleBinary - Implement simple binary operators for integral types...
1674/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1675/// Xor.
1676///
1677void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1678 unsigned DestReg = getReg(B);
1679 MachineBasicBlock::iterator MI = BB->end();
1680 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1681 unsigned Class = getClassB(B.getType());
1682
1683 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1684}
1685
1686/// emitBinaryFPOperation - This method handles emission of floating point
1687/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1688void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1689 MachineBasicBlock::iterator IP,
1690 Value *Op0, Value *Op1,
1691 unsigned OperatorClass, unsigned DestReg) {
1692
1693 // Special case: op Reg, <const fp>
1694 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001695 // Create a constant pool entry for this constant.
1696 MachineConstantPool *CP = F->getConstantPool();
1697 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1698 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001699 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001700
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001701 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001702 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1703 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001704 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001705
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001706 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001707 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001708 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001709 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001710 return;
1711 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001712
1713 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001714 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1715 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001716 // -0.0 - X === -X
1717 unsigned op1Reg = getReg(Op1, BB, IP);
1718 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1719 return;
1720 } else {
1721 // R1 = op CST, R2 --> R1 = opr R2, CST
1722
1723 // Create a constant pool entry for this constant.
1724 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001725 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1726 const Type *Ty = Op0C->getType();
1727 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001728
1729 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001730 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1731 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001732 };
1733
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001734 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001735 unsigned Op0Reg = getReg(Op0C, BB, IP);
1736 unsigned Op1Reg = getReg(Op1, BB, IP);
1737 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001738 return;
1739 }
1740
1741 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001742 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001743 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1744 };
1745
1746 unsigned Opcode = OpcodeTab[OperatorClass];
1747 unsigned Op0r = getReg(Op0, BB, IP);
1748 unsigned Op1r = getReg(Op1, BB, IP);
1749 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1750}
1751
1752/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1753/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1754/// Or, 4 for Xor.
1755///
1756/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1757/// and constant expression support.
1758///
1759void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1760 MachineBasicBlock::iterator IP,
1761 Value *Op0, Value *Op1,
1762 unsigned OperatorClass, unsigned DestReg) {
1763 unsigned Class = getClassB(Op0->getType());
1764
Misha Brukman422791f2004-06-21 17:41:12 +00001765 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001766 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001767 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1768 };
1769 // Otherwise, code generate the full operation with a constant.
1770 static const unsigned BottomTab[] = {
1771 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1772 };
1773 static const unsigned TopTab[] = {
1774 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1775 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001776
Misha Brukman7e898c32004-07-20 00:41:46 +00001777 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001778 assert(OperatorClass < 2 && "No logical ops for FP!");
1779 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1780 return;
1781 }
1782
1783 if (Op0->getType() == Type::BoolTy) {
1784 if (OperatorClass == 3)
1785 // If this is an or of two isnan's, emit an FP comparison directly instead
1786 // of or'ing two isnan's together.
1787 if (Value *LHS = dyncastIsNan(Op0))
1788 if (Value *RHS = dyncastIsNan(Op1)) {
1789 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001790 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001791 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001792 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001793 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1794 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001795 return;
1796 }
1797 }
1798
1799 // sub 0, X -> neg X
1800 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1801 if (OperatorClass == 1 && CI->isNullValue()) {
1802 unsigned op1Reg = getReg(Op1, MBB, IP);
1803 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1804
1805 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001806 unsigned zeroes = makeAnotherReg(Type::IntTy);
1807 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001808 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001809 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001810 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1811 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001812 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1813 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001814 }
1815 return;
1816 }
1817
1818 // Special case: op Reg, <const int>
1819 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1820 unsigned Op0r = getReg(Op0, MBB, IP);
1821
1822 // xor X, -1 -> not X
1823 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1824 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1825 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001826 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1827 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001828 return;
1829 }
1830
1831 unsigned Opcode = OpcodeTab[OperatorClass];
1832 unsigned Op1r = getReg(Op1, MBB, IP);
1833
1834 if (Class != cLong) {
1835 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1836 return;
1837 }
1838
1839 // If the constant is zero in the low 32-bits, just copy the low part
1840 // across and apply the normal 32-bit operation to the high parts. There
1841 // will be no carry or borrow into the top.
1842 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1843 if (OperatorClass != 2) // All but and...
1844 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1845 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001846 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001847 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001848 return;
1849 }
1850
1851 // If this is a long value and the high or low bits have a special
1852 // property, emit some special cases.
1853 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1854
1855 // If this is a logical operation and the top 32-bits are zero, just
1856 // operate on the lower 32.
1857 if (Op1h == 0 && OperatorClass > 1) {
1858 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1859 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001860 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001861 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001862 BuildMI(*MBB, IP, PPC32::LI, 1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001863 return;
1864 }
1865
1866 // TODO: We could handle lots of other special cases here, such as AND'ing
1867 // with 0xFFFFFFFF00000000 -> noop, etc.
1868
Misha Brukman2fec9902004-06-21 20:22:03 +00001869 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
Misha Brukman7e898c32004-07-20 00:41:46 +00001870 .addReg(Op1r);
Misha Brukman2fec9902004-06-21 20:22:03 +00001871 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001872 .addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001873 return;
1874 }
1875
1876 unsigned Op0r = getReg(Op0, MBB, IP);
1877 unsigned Op1r = getReg(Op1, MBB, IP);
1878
1879 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001880 unsigned Opcode = OpcodeTab[OperatorClass];
1881 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001882 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001883 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
Misha Brukman7e898c32004-07-20 00:41:46 +00001884 .addReg(Op1r);
Misha Brukman2fec9902004-06-21 20:22:03 +00001885 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001886 .addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001887 }
1888 return;
1889}
1890
1891/// doMultiply - Emit appropriate instructions to multiply together the
1892/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1893/// result should be given as DestTy.
1894///
1895void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1896 unsigned DestReg, const Type *DestTy,
1897 unsigned op0Reg, unsigned op1Reg) {
1898 unsigned Class = getClass(DestTy);
1899 switch (Class) {
1900 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001901 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1902 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001903 case cInt:
1904 case cShort:
1905 case cByte:
1906 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1907 return;
1908 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001909 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001910 }
1911}
1912
1913// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1914// returns zero when the input is not exactly a power of two.
1915static unsigned ExactLog2(unsigned Val) {
1916 if (Val == 0 || (Val & (Val-1))) return 0;
1917 unsigned Count = 0;
1918 while (Val != 1) {
1919 Val >>= 1;
1920 ++Count;
1921 }
1922 return Count+1;
1923}
1924
1925
1926/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1927/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001928///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001929void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1930 MachineBasicBlock::iterator IP,
1931 unsigned DestReg, const Type *DestTy,
1932 unsigned op0Reg, unsigned ConstRHS) {
1933 unsigned Class = getClass(DestTy);
1934 // Handle special cases here.
1935 switch (ConstRHS) {
1936 case 0:
Misha Brukmanbebde752004-07-16 21:06:24 +00001937 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001938 return;
1939 case 1:
1940 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1941 return;
1942 case 2:
1943 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1944 return;
1945 }
1946
1947 // If the element size is exactly a power of 2, use a shift to get it.
1948 if (unsigned Shift = ExactLog2(ConstRHS)) {
1949 switch (Class) {
1950 default: assert(0 && "Unknown class for this function!");
1951 case cByte:
1952 case cShort:
1953 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001954 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
Misha Brukman8d442c22004-07-14 15:29:51 +00001955 .addImm(Shift-1).addImm(0).addImm(31-Shift+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001956 return;
1957 }
1958 }
1959
1960 // Most general case, emit a normal multiply...
Misha Brukman7e898c32004-07-20 00:41:46 +00001961 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1962 Constant *C = ConstantUInt::get(Type::UIntTy, ConstRHS);
1963
1964 copyConstantToRegister(MBB, IP, C, TmpReg);
1965 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001966}
1967
1968void ISel::visitMul(BinaryOperator &I) {
1969 unsigned ResultReg = getReg(I);
1970
1971 Value *Op0 = I.getOperand(0);
1972 Value *Op1 = I.getOperand(1);
1973
1974 MachineBasicBlock::iterator IP = BB->end();
1975 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1976}
1977
1978void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1979 Value *Op0, Value *Op1, unsigned DestReg) {
1980 MachineBasicBlock &BB = *MBB;
1981 TypeClass Class = getClass(Op0->getType());
1982
1983 // Simple scalar multiply?
1984 unsigned Op0Reg = getReg(Op0, &BB, IP);
1985 switch (Class) {
1986 case cByte:
1987 case cShort:
1988 case cInt:
1989 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1990 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1991 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1992 } else {
1993 unsigned Op1Reg = getReg(Op1, &BB, IP);
1994 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1995 }
1996 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00001997 case cFP32:
1998 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001999 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2000 return;
2001 case cLong:
2002 break;
2003 }
2004
2005 // Long value. We have to do things the hard way...
2006 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2007 unsigned CLow = CI->getRawValue();
2008 unsigned CHi = CI->getRawValue() >> 32;
2009
2010 if (CLow == 0) {
2011 // If the low part of the constant is all zeros, things are simple.
Misha Brukmanbebde752004-07-16 21:06:24 +00002012 BuildMI(BB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002013 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2014 return;
2015 }
2016
2017 // Multiply the two low parts
2018 unsigned OverflowReg = 0;
2019 if (CLow == 1) {
2020 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
2021 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002022 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002023 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2024 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002025 BuildMI(BB, IP, PPC32::LIS, 1, TmpRegL).addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00002026 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
2027 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00002028 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
2029 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002030 }
2031
2032 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
2033 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2034
2035 unsigned AHBLplusOverflowReg;
2036 if (OverflowReg) {
2037 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002038 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002039 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2040 } else {
2041 AHBLplusOverflowReg = AHBLReg;
2042 }
2043
2044 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002045 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
2046 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002047 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002048 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002049 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
2050
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002051 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002052 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2053 }
2054 return;
2055 }
2056
2057 // General 64x64 multiply
2058
2059 unsigned Op1Reg = getReg(Op1, &BB, IP);
2060
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002061 // Multiply the two low parts...
2062 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002063
2064 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002065 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002066
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002067 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002068 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2069
2070 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002071 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
2072 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002073
2074 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2075 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2076
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002077 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002078 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2079}
2080
2081
2082/// visitDivRem - Handle division and remainder instructions... these
2083/// instruction both require the same instructions to be generated, they just
2084/// select the result from a different register. Note that both of these
2085/// instructions work differently for signed and unsigned operands.
2086///
2087void ISel::visitDivRem(BinaryOperator &I) {
2088 unsigned ResultReg = getReg(I);
2089 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2090
2091 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002092 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2093 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002094}
2095
2096void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2097 MachineBasicBlock::iterator IP,
2098 Value *Op0, Value *Op1, bool isDiv,
2099 unsigned ResultReg) {
2100 const Type *Ty = Op0->getType();
2101 unsigned Class = getClass(Ty);
2102 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002103 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002104 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002105 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002106 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2107 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002108 } else {
2109 // Floating point remainder via fmodf(float x, float y);
2110 unsigned Op0Reg = getReg(Op0, BB, IP);
2111 unsigned Op1Reg = getReg(Op1, BB, IP);
2112 MachineInstr *TheCall =
2113 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2114 std::vector<ValueRecord> Args;
2115 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2116 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2117 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
2118 }
2119 return;
2120 case cFP64:
2121 if (isDiv) {
2122 // Floating point divide...
2123 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2124 return;
2125 } else {
2126 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002127 unsigned Op0Reg = getReg(Op0, BB, IP);
2128 unsigned Op1Reg = getReg(Op1, BB, IP);
2129 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002130 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002131 std::vector<ValueRecord> Args;
2132 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2133 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002134 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002135 }
2136 return;
2137 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002138 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002139 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002140 unsigned Op0Reg = getReg(Op0, BB, IP);
2141 unsigned Op1Reg = getReg(Op1, BB, IP);
2142 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2143 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002144 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002145
2146 std::vector<ValueRecord> Args;
2147 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2148 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002149 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002150 return;
2151 }
2152 case cByte: case cShort: case cInt:
2153 break; // Small integrals, handled below...
2154 default: assert(0 && "Unknown class!");
2155 }
2156
2157 // Special case signed division by power of 2.
2158 if (isDiv)
2159 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2160 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2161 int V = CI->getValue();
2162
2163 if (V == 1) { // X /s 1 => X
2164 unsigned Op0Reg = getReg(Op0, BB, IP);
2165 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2166 return;
2167 }
2168
2169 if (V == -1) { // X /s -1 => -X
2170 unsigned Op0Reg = getReg(Op0, BB, IP);
2171 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2172 return;
2173 }
2174
2175 bool isNeg = false;
2176 if (V < 0) { // Not a positive power of 2?
2177 V = -V;
2178 isNeg = true; // Maybe it's a negative power of 2.
2179 }
2180 if (unsigned Log = ExactLog2(V)) {
2181 --Log;
2182 unsigned Op0Reg = getReg(Op0, BB, IP);
2183 unsigned TmpReg = makeAnotherReg(Op0->getType());
2184 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002185 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002186 else
2187 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
2188
2189 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00002190 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
2191 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002192
2193 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2194 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
2195
2196 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2197 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2198
2199 if (isNeg)
2200 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2201 return;
2202 }
2203 }
2204
2205 unsigned Op0Reg = getReg(Op0, BB, IP);
2206 unsigned Op1Reg = getReg(Op1, BB, IP);
2207
2208 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002209 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002210 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002211 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002212 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002213 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002214 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002215 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2216 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2217
2218 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002219 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002220 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002221 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002222 }
2223 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2224 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002225 }
2226}
2227
2228
2229/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2230/// for constant immediate shift values, and for constant immediate
2231/// shift values equal to 1. Even the general case is sort of special,
2232/// because the shift amount has to be in CL, not just any old register.
2233///
2234void ISel::visitShiftInst(ShiftInst &I) {
2235 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002236 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2237 I.getOpcode () == Instruction::Shl, I.getType (),
2238 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002239}
2240
2241/// emitShiftOperation - Common code shared between visitShiftInst and
2242/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002243///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002244void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2245 MachineBasicBlock::iterator IP,
2246 Value *Op, Value *ShiftAmount, bool isLeftShift,
2247 const Type *ResultTy, unsigned DestReg) {
2248 unsigned SrcReg = getReg (Op, MBB, IP);
2249 bool isSigned = ResultTy->isSigned ();
2250 unsigned Class = getClass (ResultTy);
2251
2252 // Longs, as usual, are handled specially...
2253 if (Class == cLong) {
2254 // If we have a constant shift, we can generate much more efficient code
2255 // than otherwise...
2256 //
2257 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2258 unsigned Amount = CUI->getValue();
2259 if (Amount < 32) {
2260 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002261 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002262 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2263 .addImm(Amount).addImm(0).addImm(31-Amount);
2264 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2265 .addImm(Amount).addImm(32-Amount).addImm(31);
2266 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2267 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002268 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002269 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002270 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2271 .addImm(32-Amount).addImm(Amount).addImm(31);
2272 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2273 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2274 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2275 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002276 }
2277 } else { // Shifting more than 32 bits
2278 Amount -= 32;
2279 if (isLeftShift) {
2280 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002281 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2282 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002283 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002284 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2285 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002286 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002287 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002288 } else {
2289 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002290 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002291 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2292 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002293 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002294 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2295 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002296 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002297 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2298 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002299 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002300 BuildMI(*MBB, IP,PPC32::LI,1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002301 }
2302 }
2303 } else {
2304 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2305 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002306 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2307 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2308 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2309 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2310 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2311
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002312 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002313 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2314 .addImm(32);
2315 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2316 .addReg(ShiftAmountReg);
2317 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2318 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2319 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2320 .addImm(-32);
2321 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2322 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2323 .addReg(TmpReg6);
2324 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2325 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002326 } else {
2327 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002328 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002329 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002330 std::cerr << "Unimplemented: signed right shift\n";
2331 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002332 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002333 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2334 .addImm(32);
2335 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2336 .addReg(ShiftAmountReg);
2337 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2338 .addReg(TmpReg1);
2339 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2340 .addReg(TmpReg3);
2341 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2342 .addImm(-32);
2343 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2344 .addReg(TmpReg5);
2345 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2346 .addReg(TmpReg6);
2347 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2348 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002349 }
2350 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002351 }
2352 return;
2353 }
2354
2355 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2356 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2357 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2358 unsigned Amount = CUI->getValue();
2359
Misha Brukman422791f2004-06-21 17:41:12 +00002360 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002361 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2362 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002363 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002364 if (isSigned) {
2365 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2366 } else {
2367 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2368 .addImm(32-Amount).addImm(Amount).addImm(31);
2369 }
Misha Brukman422791f2004-06-21 17:41:12 +00002370 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002371 } else { // The shift amount is non-constant.
2372 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2373
Misha Brukman422791f2004-06-21 17:41:12 +00002374 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002375 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2376 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002377 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002378 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2379 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002380 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002381 }
2382}
2383
2384
2385/// visitLoadInst - Implement LLVM load instructions
2386///
2387void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002388 static const unsigned Opcodes[] = {
2389 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2390 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002391 unsigned Class = getClassB(I.getType());
2392 unsigned Opcode = Opcodes[Class];
2393 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2394
2395 unsigned DestReg = getReg(I);
2396
2397 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002398 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002399 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002400 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2401 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002402 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002403 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002404 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002405 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002406 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002407
2408 if (Class == cLong) {
2409 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2410 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2411 } else {
2412 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2413 }
2414 }
2415}
2416
2417/// visitStoreInst - Implement LLVM store instructions
2418///
2419void ISel::visitStoreInst(StoreInst &I) {
2420 unsigned ValReg = getReg(I.getOperand(0));
2421 unsigned AddressReg = getReg(I.getOperand(1));
2422
2423 const Type *ValTy = I.getOperand(0)->getType();
2424 unsigned Class = getClassB(ValTy);
2425
2426 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002427 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002428 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002429 return;
2430 }
2431
2432 static const unsigned Opcodes[] = {
2433 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2434 };
2435 unsigned Opcode = Opcodes[Class];
2436 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2437 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2438}
2439
2440
2441/// visitCastInst - Here we have various kinds of copying with or without sign
2442/// extension going on.
2443///
2444void ISel::visitCastInst(CastInst &CI) {
2445 Value *Op = CI.getOperand(0);
2446
2447 unsigned SrcClass = getClassB(Op->getType());
2448 unsigned DestClass = getClassB(CI.getType());
2449 // Noop casts are not emitted: getReg will return the source operand as the
2450 // register to use for any uses of the noop cast.
2451 if (DestClass == SrcClass)
2452 return;
2453
2454 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2455 // of the case are GEP instructions, then the cast does not need to be
2456 // generated explicitly, it will be folded into the GEP.
2457 if (DestClass == cLong && SrcClass == cInt) {
2458 bool AllUsesAreGEPs = true;
2459 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2460 if (!isa<GetElementPtrInst>(*I)) {
2461 AllUsesAreGEPs = false;
2462 break;
2463 }
2464
2465 // No need to codegen this cast if all users are getelementptr instrs...
2466 if (AllUsesAreGEPs) return;
2467 }
2468
2469 unsigned DestReg = getReg(CI);
2470 MachineBasicBlock::iterator MI = BB->end();
2471 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2472}
2473
2474/// emitCastOperation - Common code shared between visitCastInst and constant
2475/// expression cast support.
2476///
Misha Brukman7e898c32004-07-20 00:41:46 +00002477void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002478 MachineBasicBlock::iterator IP,
2479 Value *Src, const Type *DestTy,
2480 unsigned DestReg) {
2481 const Type *SrcTy = Src->getType();
2482 unsigned SrcClass = getClassB(SrcTy);
2483 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002484 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002485
2486 // Implement casts to bool by using compare on the operand followed by set if
2487 // not zero on the result.
2488 if (DestTy == Type::BoolTy) {
2489 switch (SrcClass) {
2490 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002491 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002492 case cInt: {
2493 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002494 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2495 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002496 break;
2497 }
2498 case cLong: {
2499 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2500 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002501 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
2502 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2503 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002504 break;
2505 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002506 case cFP32:
2507 case cFP64:
2508 // FSEL perhaps?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002509 std::cerr << "Cast fp-to-bool not implemented!";
2510 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002511 }
2512 return;
2513 }
2514
2515 // Implement casts between values of the same type class (as determined by
2516 // getClass) by using a register-to-register move.
2517 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002518 if (SrcClass <= cInt) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002519 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2520 } else if (SrcClass == cFP32 || SrcClass == cFP64) {
2521 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002522 } else if (SrcClass == cLong) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002523 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2524 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002525 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002526 } else {
2527 assert(0 && "Cannot handle this type of cast instruction!");
2528 abort();
2529 }
2530 return;
2531 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002532
2533 // Handle cast of Float -> Double
2534 if (SrcClass == cFP32 && DestClass == cFP64) {
2535 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2536 return;
2537 }
2538
2539 // Handle cast of Double -> Float
2540 if (SrcClass == cFP64 && DestClass == cFP32) {
2541 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2542 return;
2543 }
2544
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002545 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2546 // or zero extension, depending on whether the source type was signed.
2547 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2548 SrcClass < DestClass) {
2549 bool isLong = DestClass == cLong;
2550 if (isLong) DestClass = cInt;
2551
2552 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2553 if (SrcClass < cInt) {
2554 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002555 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002556 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2557 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002558 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002559 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2560 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002561 }
2562 } else {
2563 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2564 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002565
2566 if (isLong) { // Handle upper 32 bits as appropriate...
2567 if (isUnsigned) // Zero out top bits...
Misha Brukmanbebde752004-07-16 21:06:24 +00002568 BuildMI(*BB, IP, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002569 else // Sign extend bottom half...
2570 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2571 }
2572 return;
2573 }
2574
2575 // Special case long -> int ...
2576 if (SrcClass == cLong && DestClass == cInt) {
2577 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2578 return;
2579 }
2580
2581 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2582 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2583 && SrcClass > DestClass) {
2584 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002585 if (isUnsigned) {
2586 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002587 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2588 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002589 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002590 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2591 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002592 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002593 return;
2594 }
2595
2596 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002597 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002598
Misha Brukman422791f2004-06-21 17:41:12 +00002599 // Emit a library call for long to float conversion
2600 if (SrcClass == cLong) {
2601 std::vector<ValueRecord> Args;
2602 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002603 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002604 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002605 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002606 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002607 return;
2608 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002609
Misha Brukman7e898c32004-07-20 00:41:46 +00002610 // Make sure we're dealing with a full 32 bits
2611 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2612 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2613
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002614 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002615
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002616 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002617 // Also spill room for a special conversion constant
2618 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002619 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2620 int ValueFrameIdx =
2621 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2622
Misha Brukman422791f2004-06-21 17:41:12 +00002623 unsigned constantHi = makeAnotherReg(Type::IntTy);
2624 unsigned constantLo = makeAnotherReg(Type::IntTy);
2625 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2626 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2627
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002628 if (!SrcTy->isSigned()) {
Misha Brukmanbebde752004-07-16 21:06:24 +00002629 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2630 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002631 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2632 ConstantFrameIndex);
2633 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2634 ConstantFrameIndex, 4);
2635 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2636 ValueFrameIdx);
2637 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2638 ValueFrameIdx, 4);
2639 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2640 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002641 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2642 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2643 } else {
2644 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002645 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2646 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002647 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2648 ConstantFrameIndex);
2649 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2650 ConstantFrameIndex, 4);
2651 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2652 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002653 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002654 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2655 ValueFrameIdx, 4);
2656 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2657 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002658 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002659 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002660 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002661 return;
2662 }
2663
2664 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002665 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002666 // emit library call
2667 if (DestClass == cLong) {
2668 std::vector<ValueRecord> Args;
2669 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002670 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002671 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002672 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002673 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002674 return;
2675 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002676
2677 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002678 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002679
Misha Brukman7e898c32004-07-20 00:41:46 +00002680 if (DestTy->isSigned()) {
2681 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman422791f2004-06-21 17:41:12 +00002682 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002683
2684 // Convert to integer in the FP reg and store it to a stack slot
Misha Brukman422791f2004-06-21 17:41:12 +00002685 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002686 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2687 .addReg(TempReg), ValueFrameIdx);
Misha Brukman7e898c32004-07-20 00:41:46 +00002688
2689 // There is no load signed byte opcode, so we must emit a sign extend
2690 if (DestClass == cByte) {
2691 unsigned TempReg2 = makeAnotherReg(DestTy);
2692 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, TempReg2),
2693 ValueFrameIdx+4);
2694 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2695 } else {
2696 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
2697 ValueFrameIdx+4);
2698 }
2699 } else {
2700 std::cerr << "Cast fp-to-unsigned not implemented!";
2701 abort();
2702 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002703 return;
2704 }
2705
2706 // Anything we haven't handled already, we can't (yet) handle at all.
2707 assert(0 && "Unhandled cast instruction!");
2708 abort();
2709}
2710
2711/// visitVANextInst - Implement the va_next instruction...
2712///
2713void ISel::visitVANextInst(VANextInst &I) {
2714 unsigned VAList = getReg(I.getOperand(0));
2715 unsigned DestReg = getReg(I);
2716
2717 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002718 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002719 default:
2720 std::cerr << I;
2721 assert(0 && "Error: bad type for va_next instruction!");
2722 return;
2723 case Type::PointerTyID:
2724 case Type::UIntTyID:
2725 case Type::IntTyID:
2726 Size = 4;
2727 break;
2728 case Type::ULongTyID:
2729 case Type::LongTyID:
2730 case Type::DoubleTyID:
2731 Size = 8;
2732 break;
2733 }
2734
2735 // Increment the VAList pointer...
2736 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2737}
2738
2739void ISel::visitVAArgInst(VAArgInst &I) {
2740 unsigned VAList = getReg(I.getOperand(0));
2741 unsigned DestReg = getReg(I);
2742
Misha Brukman358829f2004-06-21 17:25:55 +00002743 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002744 default:
2745 std::cerr << I;
2746 assert(0 && "Error: bad type for va_next instruction!");
2747 return;
2748 case Type::PointerTyID:
2749 case Type::UIntTyID:
2750 case Type::IntTyID:
2751 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2752 break;
2753 case Type::ULongTyID:
2754 case Type::LongTyID:
2755 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2756 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2757 break;
2758 case Type::DoubleTyID:
2759 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2760 break;
2761 }
2762}
2763
2764/// visitGetElementPtrInst - instruction-select GEP instructions
2765///
2766void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2767 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002768 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2769 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002770}
2771
2772void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2773 MachineBasicBlock::iterator IP,
2774 Value *Src, User::op_iterator IdxBegin,
2775 User::op_iterator IdxEnd, unsigned TargetReg) {
2776 const TargetData &TD = TM.getTargetData();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002777
2778 std::vector<Value*> GEPOps;
2779 GEPOps.resize(IdxEnd-IdxBegin+1);
2780 GEPOps[0] = Src;
2781 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2782
2783 std::vector<const Type*> GEPTypes;
2784 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2785 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2786
2787 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002788 while (!GEPOps.empty()) {
2789 if (GEPTypes.empty()) {
2790 // Load the base pointer into a register.
2791 unsigned Reg = getReg(Src, MBB, IP);
2792 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2793 break; // we are now done
2794 }
Misha Brukman313efcb2004-07-09 15:45:07 +00002795 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
2796 // It's a struct access. CUI is the index into the structure,
2797 // which names the field. This index must have unsigned type.
2798 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002799
Misha Brukman313efcb2004-07-09 15:45:07 +00002800 // Use the TargetData structure to pick out what the layout of the
2801 // structure is in memory. Since the structure index must be constant, we
2802 // can get its value and use it to find the right byte offset from the
2803 // StructLayout class's list of structure member offsets.
2804 unsigned Disp = TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
2805 GEPOps.pop_back(); // Consume a GEP operand
2806 GEPTypes.pop_back();
Misha Brukman2fec9902004-06-21 20:22:03 +00002807 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman313efcb2004-07-09 15:45:07 +00002808 unsigned DispReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002809 BuildMI(*MBB, IP, PPC32::LI, 1, DispReg).addImm(Disp);
Misha Brukman313efcb2004-07-09 15:45:07 +00002810 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(DispReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002811 --IP; // Insert the next instruction before this one.
2812 TargetReg = Reg; // Codegen the rest of the GEP into this
2813 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +00002814 // It's an array or pointer access: [ArraySize x ElementType].
2815 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2816 Value *idx = GEPOps.back();
2817 GEPOps.pop_back(); // Consume a GEP operand
2818 GEPTypes.pop_back();
2819
2820 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2821 // operand. Handle this case directly now...
2822 if (CastInst *CI = dyn_cast<CastInst>(idx))
2823 if (CI->getOperand(0)->getType() == Type::IntTy ||
2824 CI->getOperand(0)->getType() == Type::UIntTy)
2825 idx = CI->getOperand(0);
2826
2827 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2828 // must find the size of the pointed-to type (Not coincidentally, the next
2829 // type is the type of the elements in the array).
2830 const Type *ElTy = SqTy->getElementType();
2831 unsigned elementSize = TD.getTypeSize(ElTy);
2832
2833 if (idx == Constant::getNullValue(idx->getType())) {
2834 // GEP with idx 0 is a no-op
2835 } else if (elementSize == 1) {
2836 // If the element size is 1, we don't have to multiply, just add
2837 unsigned idxReg = getReg(idx, MBB, IP);
2838 unsigned Reg = makeAnotherReg(Type::UIntTy);
2839 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2840 --IP; // Insert the next instruction before this one.
2841 TargetReg = Reg; // Codegen the rest of the GEP into this
2842 } else {
2843 unsigned idxReg = getReg(idx, MBB, IP);
2844 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
2845
2846 // Make sure we can back the iterator up to point to the first
2847 // instruction emitted.
2848 MachineBasicBlock::iterator BeforeIt = IP;
2849 if (IP == MBB->begin())
2850 BeforeIt = MBB->end();
2851 else
2852 --BeforeIt;
2853 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2854
2855 // Emit an ADD to add OffsetReg to the basePtr.
2856 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002857 BuildMI(*MBB, IP, PPC32::ADD,2,TargetReg).addReg(Reg).addReg(OffsetReg);
2858
Misha Brukman313efcb2004-07-09 15:45:07 +00002859 // Step to the first instruction of the multiply.
2860 if (BeforeIt == MBB->end())
2861 IP = MBB->begin();
2862 else
2863 IP = ++BeforeIt;
2864
2865 TargetReg = Reg; // Codegen the rest of the GEP into this
2866 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002867 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002868 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002869}
2870
2871/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2872/// frame manager, otherwise do it the hard way.
2873///
2874void ISel::visitAllocaInst(AllocaInst &I) {
2875 // If this is a fixed size alloca in the entry block for the function, we
2876 // statically stack allocate the space, so we don't need to do anything here.
2877 //
2878 if (dyn_castFixedAlloca(&I)) return;
2879
2880 // Find the data size of the alloca inst's getAllocatedType.
2881 const Type *Ty = I.getAllocatedType();
2882 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2883
2884 // Create a register to hold the temporary result of multiplying the type size
2885 // constant by the variable amount.
2886 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2887 unsigned SrcReg1 = getReg(I.getArraySize());
2888
2889 // TotalSizeReg = mul <numelements>, <TypeSize>
2890 MachineBasicBlock::iterator MBBI = BB->end();
2891 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2892
2893 // AddedSize = add <TotalSizeReg>, 15
2894 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2895 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2896
2897 // AlignedSize = and <AddedSize>, ~15
2898 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002899 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2900 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002901
2902 // Subtract size from stack pointer, thereby allocating some space.
2903 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2904
2905 // Put a pointer to the space into the result register, by copying
2906 // the stack pointer.
2907 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2908
2909 // Inform the Frame Information that we have just allocated a variable-sized
2910 // object.
2911 F->getFrameInfo()->CreateVariableSizedObject();
2912}
2913
2914/// visitMallocInst - Malloc instructions are code generated into direct calls
2915/// to the library malloc.
2916///
2917void ISel::visitMallocInst(MallocInst &I) {
2918 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2919 unsigned Arg;
2920
2921 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2922 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2923 } else {
2924 Arg = makeAnotherReg(Type::UIntTy);
2925 unsigned Op0Reg = getReg(I.getOperand(0));
2926 MachineBasicBlock::iterator MBBI = BB->end();
2927 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2928 }
2929
2930 std::vector<ValueRecord> Args;
2931 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002932 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002933 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002934 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002935}
2936
2937
2938/// visitFreeInst - Free instructions are code gen'd to call the free libc
2939/// function.
2940///
2941void ISel::visitFreeInst(FreeInst &I) {
2942 std::vector<ValueRecord> Args;
2943 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002944 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002945 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002946 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002947}
2948
2949/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2950/// into a machine code representation is a very simple peep-hole fashion. The
2951/// generated code sucks but the implementation is nice and simple.
2952///
2953FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2954 return new ISel(TM);
2955}