blob: 8605380e17dcfdc421bcea885925182eb1d15e8a [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Chris Lattner98599d02004-07-11 02:48:28 +000030#include <iostream>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000031using namespace llvm;
32
33namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000034 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
35 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000036 ///
37 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000038 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 };
40}
41
42/// getClass - Turn a primitive type into a "class" number which is based on the
43/// size of the type, and whether or not it is floating point.
44///
45static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000046 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000047 case Type::SByteTyID:
48 case Type::UByteTyID: return cByte; // Byte operands are class #0
49 case Type::ShortTyID:
50 case Type::UShortTyID: return cShort; // Short operands are class #1
51 case Type::IntTyID:
52 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000053 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000054
Misha Brukman7e898c32004-07-20 00:41:46 +000055 case Type::FloatTyID: return cFP32; // Single float is #3
56 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
58 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000059 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060 default:
61 assert(0 && "Invalid type to getClass!");
62 return cByte; // not reached
63 }
64}
65
66// getClassB - Just like getClass, but treat boolean values as ints.
67static inline TypeClass getClassB(const Type *Ty) {
68 if (Ty == Type::BoolTy) return cInt;
69 return getClass(Ty);
70}
71
72namespace {
73 struct ISel : public FunctionPass, InstVisitor<ISel> {
74 TargetMachine &TM;
75 MachineFunction *F; // The function we are compiling into
76 MachineBasicBlock *BB; // The current MBB we are compiling
77 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Misha Brukman5dfe3a92004-06-21 16:55:25 +000078
Misha Brukman313efcb2004-07-09 15:45:07 +000079 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000080
Misha Brukman2834a4d2004-07-07 20:07:22 +000081 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000082 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
83 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
84 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000085
Misha Brukman5dfe3a92004-06-21 16:55:25 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
89 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
93 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
94
Misha Brukman2834a4d2004-07-07 20:07:22 +000095 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +000096 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +000097 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +000098 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +000099 Type *l = Type::LongTy;
100 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000101 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000102 // float fmodf(float, float);
103 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000105 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000107 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000109 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000110 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000111 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000112 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000113 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000114 // long __fixsfdi(float)
115 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000116 // long __fixdfdi(double)
117 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
118 // float __floatdisf(long)
119 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
120 // double __floatdidf(long)
121 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000122 // void* malloc(size_t)
123 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
124 // void free(void*)
125 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000126 return false;
127 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000128
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000129 /// runOnFunction - Top level implementation of instruction selection for
130 /// the entire function.
131 ///
132 bool runOnFunction(Function &Fn) {
133 // First pass over the function, lower any unknown intrinsic functions
134 // with the IntrinsicLowering class.
135 LowerUnknownIntrinsicFunctionCalls(Fn);
136
137 F = &MachineFunction::construct(&Fn, TM);
138
139 // Create all of the machine basic blocks for the function...
140 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
141 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
142
143 BB = &F->front();
144
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000145 // Copy incoming arguments off of the stack...
146 LoadArgumentsToVirtualRegs(Fn);
147
148 // Instruction select everything except PHI nodes
149 visit(Fn);
150
151 // Select the PHI nodes
152 SelectPHINodes();
153
154 RegMap.clear();
155 MBBMap.clear();
156 AllocaMap.clear();
157 F = 0;
158 // We always build a machine code representation for the function
159 return true;
160 }
161
162 virtual const char *getPassName() const {
163 return "PowerPC Simple Instruction Selection";
164 }
165
166 /// visitBasicBlock - This method is called when we are visiting a new basic
167 /// block. This simply creates a new MachineBasicBlock to emit code into
168 /// and adds it to the current MachineFunction. Subsequent visit* for
169 /// instructions will be invoked for all instructions in the basic block.
170 ///
171 void visitBasicBlock(BasicBlock &LLVM_BB) {
172 BB = MBBMap[&LLVM_BB];
173 }
174
175 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
176 /// function, lowering any calls to unknown intrinsic functions into the
177 /// equivalent LLVM code.
178 ///
179 void LowerUnknownIntrinsicFunctionCalls(Function &F);
180
181 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
182 /// from the stack into virtual registers.
183 ///
184 void LoadArgumentsToVirtualRegs(Function &F);
185
186 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
187 /// because we have to generate our sources into the source basic blocks,
188 /// not the current one.
189 ///
190 void SelectPHINodes();
191
192 // Visitation methods for various instructions. These methods simply emit
193 // fixed PowerPC code for each instruction.
194
195 // Control flow operators
196 void visitReturnInst(ReturnInst &RI);
197 void visitBranchInst(BranchInst &BI);
198
199 struct ValueRecord {
200 Value *Val;
201 unsigned Reg;
202 const Type *Ty;
203 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
204 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
205 };
206 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000207 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000208 void visitCallInst(CallInst &I);
209 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
210
211 // Arithmetic operators
212 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
213 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
214 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
215 void visitMul(BinaryOperator &B);
216
217 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
218 void visitRem(BinaryOperator &B) { visitDivRem(B); }
219 void visitDivRem(BinaryOperator &B);
220
221 // Bitwise operators
222 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
223 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
224 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
225
226 // Comparison operators...
227 void visitSetCondInst(SetCondInst &I);
228 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
229 MachineBasicBlock *MBB,
230 MachineBasicBlock::iterator MBBI);
231 void visitSelectInst(SelectInst &SI);
232
233
234 // Memory Instructions
235 void visitLoadInst(LoadInst &I);
236 void visitStoreInst(StoreInst &I);
237 void visitGetElementPtrInst(GetElementPtrInst &I);
238 void visitAllocaInst(AllocaInst &I);
239 void visitMallocInst(MallocInst &I);
240 void visitFreeInst(FreeInst &I);
241
242 // Other operators
243 void visitShiftInst(ShiftInst &I);
244 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
245 void visitCastInst(CastInst &I);
246 void visitVANextInst(VANextInst &I);
247 void visitVAArgInst(VAArgInst &I);
248
249 void visitInstruction(Instruction &I) {
250 std::cerr << "Cannot instruction select: " << I;
251 abort();
252 }
253
254 /// promote32 - Make a value 32-bits wide, and put it somewhere.
255 ///
256 void promote32(unsigned targetReg, const ValueRecord &VR);
257
258 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
259 /// constant expression GEP support.
260 ///
261 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
262 Value *Src, User::op_iterator IdxBegin,
263 User::op_iterator IdxEnd, unsigned TargetReg);
264
265 /// emitCastOperation - Common code shared between visitCastInst and
266 /// constant expression cast support.
267 ///
268 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
269 Value *Src, const Type *DestTy, unsigned TargetReg);
270
271 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
272 /// and constant expression support.
273 ///
274 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
275 MachineBasicBlock::iterator IP,
276 Value *Op0, Value *Op1,
277 unsigned OperatorClass, unsigned TargetReg);
278
279 /// emitBinaryFPOperation - This method handles emission of floating point
280 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
281 void emitBinaryFPOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1,
284 unsigned OperatorClass, unsigned TargetReg);
285
286 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
287 Value *Op0, Value *Op1, unsigned TargetReg);
288
289 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
290 unsigned DestReg, const Type *DestTy,
291 unsigned Op0Reg, unsigned Op1Reg);
292 void doMultiplyConst(MachineBasicBlock *MBB,
293 MachineBasicBlock::iterator MBBI,
294 unsigned DestReg, const Type *DestTy,
295 unsigned Op0Reg, unsigned Op1Val);
296
297 void emitDivRemOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1, bool isDiv,
300 unsigned TargetReg);
301
302 /// emitSetCCOperation - Common code shared between visitSetCondInst and
303 /// constant expression support.
304 ///
305 void emitSetCCOperation(MachineBasicBlock *BB,
306 MachineBasicBlock::iterator IP,
307 Value *Op0, Value *Op1, unsigned Opcode,
308 unsigned TargetReg);
309
310 /// emitShiftOperation - Common code shared between visitShiftInst and
311 /// constant expression support.
312 ///
313 void emitShiftOperation(MachineBasicBlock *MBB,
314 MachineBasicBlock::iterator IP,
315 Value *Op, Value *ShiftAmount, bool isLeftShift,
316 const Type *ResultTy, unsigned DestReg);
317
318 /// emitSelectOperation - Common code shared between visitSelectInst and the
319 /// constant expression support.
320 void emitSelectOperation(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator IP,
322 Value *Cond, Value *TrueVal, Value *FalseVal,
323 unsigned DestReg);
324
325 /// copyConstantToRegister - Output the instructions required to put the
326 /// specified constant into the specified register.
327 ///
328 void copyConstantToRegister(MachineBasicBlock *MBB,
329 MachineBasicBlock::iterator MBBI,
330 Constant *C, unsigned Reg);
331
332 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
333 unsigned LHS, unsigned RHS);
334
335 /// makeAnotherReg - This method returns the next register number we haven't
336 /// yet used.
337 ///
338 /// Long values are handled somewhat specially. They are always allocated
339 /// as pairs of 32 bit integer values. The register number returned is the
340 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
341 /// of the long value.
342 ///
343 unsigned makeAnotherReg(const Type *Ty) {
344 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
345 "Current target doesn't have PPC reg info??");
346 const PowerPCRegisterInfo *MRI =
347 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
348 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
349 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
350 // Create the lower part
351 F->getSSARegMap()->createVirtualRegister(RC);
352 // Create the upper part.
353 return F->getSSARegMap()->createVirtualRegister(RC)-1;
354 }
355
356 // Add the mapping of regnumber => reg class to MachineFunction
357 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
358 return F->getSSARegMap()->createVirtualRegister(RC);
359 }
360
361 /// getReg - This method turns an LLVM value into a register number.
362 ///
363 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
364 unsigned getReg(Value *V) {
365 // Just append to the end of the current bb.
366 MachineBasicBlock::iterator It = BB->end();
367 return getReg(V, BB, It);
368 }
369 unsigned getReg(Value *V, MachineBasicBlock *MBB,
370 MachineBasicBlock::iterator IPt);
371
372 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
373 /// that is to be statically allocated with the initial stack frame
374 /// adjustment.
375 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
376 };
377}
378
379/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
380/// instruction in the entry block, return it. Otherwise, return a null
381/// pointer.
382static AllocaInst *dyn_castFixedAlloca(Value *V) {
383 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
384 BasicBlock *BB = AI->getParent();
385 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
386 return AI;
387 }
388 return 0;
389}
390
391/// getReg - This method turns an LLVM value into a register number.
392///
393unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
394 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000395 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000396 unsigned Reg = makeAnotherReg(V->getType());
397 copyConstantToRegister(MBB, IPt, C, Reg);
398 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000399 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
400 // Do not emit noop casts at all.
401 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
402 return getReg(CI->getOperand(0), MBB, IPt);
403 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
404 unsigned Reg = makeAnotherReg(V->getType());
405 unsigned FI = getFixedSizedAllocaFI(AI);
406 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
407 return Reg;
408 }
409
410 unsigned &Reg = RegMap[V];
411 if (Reg == 0) {
412 Reg = makeAnotherReg(V->getType());
413 RegMap[V] = Reg;
414 }
415
416 return Reg;
417}
418
419/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
420/// that is to be statically allocated with the initial stack frame
421/// adjustment.
422unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
423 // Already computed this?
424 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
425 if (I != AllocaMap.end() && I->first == AI) return I->second;
426
427 const Type *Ty = AI->getAllocatedType();
428 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
429 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
430 TySize *= CUI->getValue(); // Get total allocated size...
431 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
432
433 // Create a new stack object using the frame manager...
434 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
435 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
436 return FrameIdx;
437}
438
439
440/// copyConstantToRegister - Output the instructions required to put the
441/// specified constant into the specified register.
442///
443void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
444 MachineBasicBlock::iterator IP,
445 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000446 if (C->getType()->isIntegral()) {
447 unsigned Class = getClassB(C->getType());
448
449 if (Class == cLong) {
450 // Copy the value into the register pair.
451 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman7e898c32004-07-20 00:41:46 +0000452
453 if (Val < (1ULL << 16)) {
454 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(Val & 0xFFFF);
455 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
456 } else if (Val < (1ULL << 32)) {
457 unsigned Temp = makeAnotherReg(Type::IntTy);
458 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
459 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
460 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
461 } else if (Val < (1ULL << 48)) {
462 unsigned Temp = makeAnotherReg(Type::IntTy);
463 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
464 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
465 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm((Val >> 32) & 0xFFFF);
466 } else {
467 unsigned TempLo = makeAnotherReg(Type::IntTy);
468 unsigned TempHi = makeAnotherReg(Type::IntTy);
469 BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addImm((Val >> 16) & 0xFFFF);
470 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempLo).addImm(Val & 0xFFFF);
471 BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addImm((Val >> 48) & 0xFFFF);
472 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempHi)
473 .addImm((Val >> 32) & 0xFFFF);
474 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000475 return;
476 }
477
478 assert(Class <= cInt && "Type not handled yet!");
479
480 if (C->getType() == Type::BoolTy) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000481 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000482 } else if (Class == cByte || Class == cShort) {
483 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukmanbebde752004-07-16 21:06:24 +0000484 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000485 } else {
486 ConstantInt *CI = cast<ConstantInt>(C);
487 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
488 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000489 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000490 } else {
491 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000492 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman911afde2004-06-25 14:50:41 +0000493 .addImm(CI->getRawValue() >> 16);
494 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
495 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000496 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000497 }
498 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000499 // We need to spill the constant to memory...
500 MachineConstantPool *CP = F->getConstantPool();
501 unsigned CPI = CP->getConstantPoolIndex(CFP);
502 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000503
Misha Brukmand18a31d2004-07-06 22:51:53 +0000504 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000505
506 // Load addr of constant to reg; constant is located at PC + distance
507 unsigned CurPC = makeAnotherReg(Type::IntTy);
508 unsigned Reg1 = makeAnotherReg(Type::IntTy);
509 unsigned Reg2 = makeAnotherReg(Type::IntTy);
510 // Move PC to destination reg
511 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
512 // Move value at PC + distance into return reg
513 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
514 .addConstantPoolIndex(CPI);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000515 BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000516 .addConstantPoolIndex(CPI);
517
Misha Brukmand18a31d2004-07-06 22:51:53 +0000518 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfc879c32004-07-08 18:02:38 +0000519 BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000520 } else if (isa<ConstantPointerNull>(C)) {
521 // Copy zero (null pointer) to the register.
Misha Brukmanbebde752004-07-16 21:06:24 +0000522 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000523 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000524 // GV is located at PC + distance
525 unsigned CurPC = makeAnotherReg(Type::IntTy);
526 unsigned TmpReg = makeAnotherReg(GV->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +0000527 unsigned Opcode = GV->hasWeakLinkage() ?
528 PPC32::LOADLoIndirect :
529 PPC32::LOADLoDirect;
530
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000531 // Move PC to destination reg
532 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
533 // Move value at PC + distance into return reg
534 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(CurPC)
535 .addGlobalAddress(GV);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000536 BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000537 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000538 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000539 assert(0 && "Type not handled yet!");
540 }
541}
542
543/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
544/// the stack into virtual registers.
545///
546/// FIXME: When we can calculate which args are coming in via registers
547/// source them from there instead.
548void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000549 unsigned ArgOffset = 20; // FIXME why is this not 24?
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000550 unsigned GPR_remaining = 8;
551 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000552 unsigned GPR_idx = 0, FPR_idx = 0;
553 static const unsigned GPR[] = {
554 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
555 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
556 };
557 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000558 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000559 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000560 };
Misha Brukman422791f2004-06-21 17:41:12 +0000561
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000562 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000563
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000564 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
565 bool ArgLive = !I->use_empty();
566 unsigned Reg = ArgLive ? getReg(*I) : 0;
567 int FI; // Frame object index
568
569 switch (getClassB(I->getType())) {
570 case cByte:
571 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000572 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000573 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000574 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000575 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
576 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000577 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000578 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000579 }
580 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000581 break;
582 case cShort:
583 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000584 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000585 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000586 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000587 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
588 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000589 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000590 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000591 }
592 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000593 break;
594 case cInt:
595 if (ArgLive) {
596 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000597 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000598 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000599 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
600 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000601 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000602 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000603 }
604 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000605 break;
606 case cLong:
607 if (ArgLive) {
608 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000609 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000610 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
611 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000612 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
613 .addReg(GPR[GPR_idx]);
614 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
615 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000616 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000617 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
618 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000619 }
620 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000621 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000622 if (GPR_remaining > 1) {
623 GPR_remaining--; // uses up 2 GPRs
624 GPR_idx++;
625 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000626 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000627 case cFP32:
628 if (ArgLive) {
629 FI = MFI->CreateFixedObject(4, ArgOffset);
630
Misha Brukman422791f2004-06-21 17:41:12 +0000631 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000632 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000633 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
634 FPR_remaining--;
635 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000636 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000637 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000638 }
639 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000640 break;
641 case cFP64:
642 if (ArgLive) {
643 FI = MFI->CreateFixedObject(8, ArgOffset);
644
645 if (FPR_remaining > 0) {
646 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
647 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
648 FPR_remaining--;
649 FPR_idx++;
650 } else {
651 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000652 }
653 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000654
655 // doubles require 4 additional bytes and use 2 GPRs of param space
656 ArgOffset += 4;
657 if (GPR_remaining > 0) {
658 GPR_remaining--;
659 GPR_idx++;
660 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000661 break;
662 default:
663 assert(0 && "Unhandled argument type!");
664 }
665 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000666 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000667 GPR_remaining--; // uses up 2 GPRs
668 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000669 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000670 }
671
672 // If the function takes variable number of arguments, add a frame offset for
673 // the start of the first vararg value... this is used to expand
674 // llvm.va_start.
675 if (Fn.getFunctionType()->isVarArg())
676 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
677}
678
679
680/// SelectPHINodes - Insert machine code to generate phis. This is tricky
681/// because we have to generate our sources into the source basic blocks, not
682/// the current one.
683///
684void ISel::SelectPHINodes() {
685 const TargetInstrInfo &TII = *TM.getInstrInfo();
686 const Function &LF = *F->getFunction(); // The LLVM function...
687 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
688 const BasicBlock *BB = I;
689 MachineBasicBlock &MBB = *MBBMap[I];
690
691 // Loop over all of the PHI nodes in the LLVM basic block...
692 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
693 for (BasicBlock::const_iterator I = BB->begin();
694 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
695
696 // Create a new machine instr PHI node, and insert it.
697 unsigned PHIReg = getReg(*PN);
698 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
699 PPC32::PHI, PN->getNumOperands(), PHIReg);
700
701 MachineInstr *LongPhiMI = 0;
702 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
703 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
704 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
705
706 // PHIValues - Map of blocks to incoming virtual registers. We use this
707 // so that we only initialize one incoming value for a particular block,
708 // even if the block has multiple entries in the PHI node.
709 //
710 std::map<MachineBasicBlock*, unsigned> PHIValues;
711
712 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000713 MachineBasicBlock *PredMBB = 0;
714 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
715 PE = MBB.pred_end (); PI != PE; ++PI)
716 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
717 PredMBB = *PI;
718 break;
719 }
720 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
721
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000722 unsigned ValReg;
723 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
724 PHIValues.lower_bound(PredMBB);
725
726 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
727 // We already inserted an initialization of the register for this
728 // predecessor. Recycle it.
729 ValReg = EntryIt->second;
730
731 } else {
732 // Get the incoming value into a virtual register.
733 //
734 Value *Val = PN->getIncomingValue(i);
735
736 // If this is a constant or GlobalValue, we may have to insert code
737 // into the basic block to compute it into a virtual register.
738 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
739 isa<GlobalValue>(Val)) {
740 // Simple constants get emitted at the end of the basic block,
741 // before any terminator instructions. We "know" that the code to
742 // move a constant into a register will never clobber any flags.
743 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
744 } else {
745 // Because we don't want to clobber any values which might be in
746 // physical registers with the computation of this constant (which
747 // might be arbitrarily complex if it is a constant expression),
748 // just insert the computation at the top of the basic block.
749 MachineBasicBlock::iterator PI = PredMBB->begin();
750
751 // Skip over any PHI nodes though!
752 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
753 ++PI;
754
755 ValReg = getReg(Val, PredMBB, PI);
756 }
757
758 // Remember that we inserted a value for this PHI for this predecessor
759 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
760 }
761
762 PhiMI->addRegOperand(ValReg);
763 PhiMI->addMachineBasicBlockOperand(PredMBB);
764 if (LongPhiMI) {
765 LongPhiMI->addRegOperand(ValReg+1);
766 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
767 }
768 }
769
770 // Now that we emitted all of the incoming values for the PHI node, make
771 // sure to reposition the InsertPoint after the PHI that we just added.
772 // This is needed because we might have inserted a constant into this
773 // block, right after the PHI's which is before the old insert point!
774 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
775 ++PHIInsertPoint;
776 }
777 }
778}
779
780
781// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
782// it into the conditional branch or select instruction which is the only user
783// of the cc instruction. This is the case if the conditional branch is the
784// only user of the setcc, and if the setcc is in the same basic block as the
785// conditional branch. We also don't handle long arguments below, so we reject
786// them here as well.
787//
788static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
789 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
790 if (SCI->hasOneUse()) {
791 Instruction *User = cast<Instruction>(SCI->use_back());
792 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000793 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000794 return SCI;
795 }
796 return 0;
797}
798
799// Return a fixed numbering for setcc instructions which does not depend on the
800// order of the opcodes.
801//
802static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000803 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000804 default: assert(0 && "Unknown setcc instruction!");
805 case Instruction::SetEQ: return 0;
806 case Instruction::SetNE: return 1;
807 case Instruction::SetLT: return 2;
808 case Instruction::SetGE: return 3;
809 case Instruction::SetGT: return 4;
810 case Instruction::SetLE: return 5;
811 }
812}
813
Misha Brukmane9c65512004-07-06 15:32:44 +0000814static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
815 switch (Opcode) {
816 default: assert(0 && "Unknown setcc instruction!");
817 case Instruction::SetEQ: return PPC32::BEQ;
818 case Instruction::SetNE: return PPC32::BNE;
819 case Instruction::SetLT: return PPC32::BLT;
820 case Instruction::SetGE: return PPC32::BGE;
821 case Instruction::SetGT: return PPC32::BGT;
822 case Instruction::SetLE: return PPC32::BLE;
823 }
824}
825
826static unsigned invertPPCBranchOpcode(unsigned Opcode) {
827 switch (Opcode) {
828 default: assert(0 && "Unknown PPC32 branch opcode!");
829 case PPC32::BEQ: return PPC32::BNE;
830 case PPC32::BNE: return PPC32::BEQ;
831 case PPC32::BLT: return PPC32::BGE;
832 case PPC32::BGE: return PPC32::BLT;
833 case PPC32::BGT: return PPC32::BLE;
834 case PPC32::BLE: return PPC32::BGT;
835 }
836}
837
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000838/// emitUCOM - emits an unordered FP compare.
839void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
840 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000841 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000842}
843
Misha Brukmanbebde752004-07-16 21:06:24 +0000844/// EmitComparison - emits a comparison of the two operands, returning the
845/// extended setcc code to use. The result is in CR0.
846///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000847unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
848 MachineBasicBlock *MBB,
849 MachineBasicBlock::iterator IP) {
850 // The arguments are already supposed to be of the same type.
851 const Type *CompTy = Op0->getType();
852 unsigned Class = getClassB(CompTy);
853 unsigned Op0r = getReg(Op0, MBB, IP);
854
855 // Special case handling of: cmp R, i
856 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000857 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000858 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
859 if (Class == cByte || Class == cShort || Class == cInt) {
860 unsigned Op1v = CI->getRawValue();
861
862 // Mask off any upper bits of the constant, if there are any...
863 Op1v &= (1ULL << (8 << Class)) - 1;
864
Misha Brukman422791f2004-06-21 17:41:12 +0000865 // Compare immediate or promote to reg?
866 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000867 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
868 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000869 } else {
870 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000871 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
872 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000873 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000874 return OpNum;
875 } else {
876 assert(Class == cLong && "Unknown integer class!");
877 unsigned LowCst = CI->getRawValue();
878 unsigned HiCst = CI->getRawValue() >> 32;
879 if (OpNum < 2) { // seteq, setne
880 unsigned LoTmp = Op0r;
881 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000882 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000883 unsigned LoTmp = makeAnotherReg(Type::IntTy);
884 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000885 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
886 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000887 }
888 unsigned HiTmp = Op0r+1;
889 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000890 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000891 unsigned HiTmp = makeAnotherReg(Type::IntTy);
892 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000893 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
894 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000895 }
896 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
897 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000898 return OpNum;
899 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000900 unsigned ConstReg = makeAnotherReg(CompTy);
901 unsigned CondReg = makeAnotherReg(Type::IntTy);
902 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
903 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
904 copyConstantToRegister(MBB, IP, CI, ConstReg);
905
906 // FIXME: this is inefficient, but avoids branches
907
908 // compare hi word -> cr0
909 // compare lo word -> cr1
910 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
911 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(ConstReg+1);
912 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
913 .addReg(ConstReg);
914 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
915 // shift amount = 4 * CR0[EQ]
916 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
917 .addImm(29).addImm(29);
918 // shift cr1 into cr0 position if op0.hi and const.hi were equal
919 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
920 .addReg(TmpReg1);
921 // cr0 == ( op0.hi != const.hi ) ? cr0 : cr1
922 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
923
Misha Brukman422791f2004-06-21 17:41:12 +0000924 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000925 }
926 }
927 }
928
929 unsigned Op1r = getReg(Op1, MBB, IP);
930 switch (Class) {
931 default: assert(0 && "Unknown type class!");
932 case cByte:
933 case cShort:
934 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000935 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
936 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000937 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000938
Misha Brukman7e898c32004-07-20 00:41:46 +0000939 case cFP32:
940 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000941 emitUCOM(MBB, IP, Op0r, Op1r);
942 break;
943
944 case cLong:
945 if (OpNum < 2) { // seteq, setne
946 unsigned LoTmp = makeAnotherReg(Type::IntTy);
947 unsigned HiTmp = makeAnotherReg(Type::IntTy);
948 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
949 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
950 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
951 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000952 break; // Allow the sete or setne to be generated from flags set by OR
953 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000954 unsigned CondReg = makeAnotherReg(Type::IntTy);
955 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
956 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
957
958 // FIXME: this is inefficient, but avoids branches
959
960 // compare hi word -> cr0
961 // compare lo word -> cr1
962 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
963 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(Op1r+1);
964 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
965 .addReg(Op1r);
966 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
967 // shift amount = 4 * CR0[EQ]
968 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
969 .addImm(29).addImm(29);
970 // shift cr1 into cr0 position if op0.hi and op1.hi were equal
971 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
972 .addReg(TmpReg1);
973 // cr0 == ( op0.hi != op1.hi ) ? cr0 : cr1
974 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
975
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000976 return OpNum;
977 }
978 }
979 return OpNum;
980}
981
Misha Brukmand18a31d2004-07-06 22:51:53 +0000982/// visitSetCondInst - emit code to calculate the condition via
983/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000984///
985void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000986 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000987 return;
Misha Brukmanbebde752004-07-16 21:06:24 +0000988
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000989 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000990 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +0000991 const Type *Ty = I.getOperand (0)->getType();
992
Misha Brukmand18a31d2004-07-06 22:51:53 +0000993 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
994
995 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +0000996 MachineBasicBlock *thisMBB = BB;
997 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +0000998 ilist<MachineBasicBlock>::iterator It = BB;
999 ++It;
1000
Misha Brukman425ff242004-07-01 21:34:10 +00001001 // thisMBB:
1002 // ...
1003 // cmpTY cr0, r1, r2
1004 // bCC copy1MBB
1005 // b copy0MBB
1006
1007 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1008 // if we could insert other, non-terminator instructions after the
1009 // bCC. But MBB->getFirstTerminator() can't understand this.
1010 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001011 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001012 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1013 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001014 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001015 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
1016 // Update machine-CFG edges
1017 BB->addSuccessor(copy1MBB);
1018 BB->addSuccessor(copy0MBB);
1019
1020 // copy0MBB:
1021 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +00001022 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001023 BB = copy0MBB;
1024 unsigned FalseValue = makeAnotherReg(I.getType());
Misha Brukmanbebde752004-07-16 21:06:24 +00001025 BuildMI(BB, PPC32::LI, 1, FalseValue).addImm(0);
Misha Brukman425ff242004-07-01 21:34:10 +00001026 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001027 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001028 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1029 // Update machine-CFG edges
1030 BB->addSuccessor(sinkMBB);
1031
1032 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
1033 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
1034 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
1035 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
1036
1037 // copy1MBB:
1038 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001039 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001040 BB = copy1MBB;
1041 unsigned TrueValue = makeAnotherReg (I.getType ());
Misha Brukmanbebde752004-07-16 21:06:24 +00001042 BuildMI(BB, PPC32::LI, 1, TrueValue).addImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001043 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1044 // Update machine-CFG edges
1045 BB->addSuccessor(sinkMBB);
1046
1047 // sinkMBB:
1048 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1049 // ...
1050 BB = sinkMBB;
1051 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1052 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001053}
1054
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001055void ISel::visitSelectInst(SelectInst &SI) {
1056 unsigned DestReg = getReg(SI);
1057 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001058 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1059 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001060}
1061
1062/// emitSelect - Common code shared between visitSelectInst and the constant
1063/// expression support.
1064/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1065/// no select instruction. FSEL only works for comparisons against zero.
1066void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1067 MachineBasicBlock::iterator IP,
1068 Value *Cond, Value *TrueVal, Value *FalseVal,
1069 unsigned DestReg) {
1070 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001071 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001072
Misha Brukmanbebde752004-07-16 21:06:24 +00001073 // See if we can fold the setcc into the select instruction, or if we have
1074 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001075 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1076 // We successfully folded the setcc into the select instruction.
1077
1078 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1079 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1080 IP);
1081 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1082 } else {
1083 unsigned CondReg = getReg(Cond, MBB, IP);
1084
1085 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addImm(0);
1086 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001087 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001088
1089 // thisMBB:
1090 // ...
1091 // cmpTY cr0, r1, r2
1092 // bCC copy1MBB
1093 // b copy0MBB
1094
1095 MachineBasicBlock *thisMBB = BB;
1096 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001097 ilist<MachineBasicBlock>::iterator It = BB;
1098 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001099
1100 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1101 // if we could insert other, non-terminator instructions after the
1102 // bCC. But MBB->getFirstTerminator() can't understand this.
1103 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001104 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001105 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1106 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001107 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001108 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
1109 // Update machine-CFG edges
1110 BB->addSuccessor(copy1MBB);
1111 BB->addSuccessor(copy0MBB);
1112
1113 // FIXME: spill code is being generated after the branch and before copy1MBB
1114 // this is bad, since it will never be run
1115
1116 // copy0MBB:
1117 // %FalseValue = ...
1118 // b sinkMBB
1119 BB = copy0MBB;
1120 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1121 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001122 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001123 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1124 // Update machine-CFG edges
1125 BB->addSuccessor(sinkMBB);
1126
1127 // copy1MBB:
1128 // %TrueValue = ...
1129 // b sinkMBB
1130 BB = copy1MBB;
1131 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1132 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1133 // Update machine-CFG edges
1134 BB->addSuccessor(sinkMBB);
1135
1136 // sinkMBB:
1137 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1138 // ...
1139 BB = sinkMBB;
1140 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1141 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001142 return;
1143}
1144
1145
1146
1147/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1148/// operand, in the specified target register.
1149///
1150void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1151 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1152
1153 Value *Val = VR.Val;
1154 const Type *Ty = VR.Ty;
1155 if (Val) {
1156 if (Constant *C = dyn_cast<Constant>(Val)) {
1157 Val = ConstantExpr::getCast(C, Type::IntTy);
1158 Ty = Type::IntTy;
1159 }
1160
Misha Brukman2fec9902004-06-21 20:22:03 +00001161 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001162 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1163 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1164
1165 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +00001166 BuildMI(BB, PPC32::LI, 1, targetReg).addImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001167 } else {
1168 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001169 BuildMI(BB, PPC32::LIS, 1, TmpReg).addImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001170 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1171 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001172 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001173 return;
1174 }
1175 }
1176
1177 // Make sure we have the register number for this value...
1178 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1179
1180 switch (getClassB(Ty)) {
1181 case cByte:
1182 // Extend value into target register (8->32)
1183 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001184 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1185 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001186 else
1187 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1188 break;
1189 case cShort:
1190 // Extend value into target register (16->32)
1191 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001192 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1193 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001194 else
1195 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1196 break;
1197 case cInt:
1198 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001199 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001200 break;
1201 default:
1202 assert(0 && "Unpromotable operand class in promote32");
1203 }
1204}
1205
Misha Brukman2fec9902004-06-21 20:22:03 +00001206/// visitReturnInst - implemented with BLR
1207///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001208void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001209 // Only do the processing if this is a non-void return
1210 if (I.getNumOperands() > 0) {
1211 Value *RetVal = I.getOperand(0);
1212 switch (getClassB(RetVal->getType())) {
1213 case cByte: // integral return values: extend or move into r3 and return
1214 case cShort:
1215 case cInt:
1216 promote32(PPC32::R3, ValueRecord(RetVal));
1217 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001218 case cFP32:
1219 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001220 unsigned RetReg = getReg(RetVal);
1221 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1222 break;
1223 }
1224 case cLong: {
1225 unsigned RetReg = getReg(RetVal);
1226 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1227 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1228 break;
1229 }
1230 default:
1231 visitInstruction(I);
1232 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001233 }
1234 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1235}
1236
1237// getBlockAfter - Return the basic block which occurs lexically after the
1238// specified one.
1239static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1240 Function::iterator I = BB; ++I; // Get iterator to next block
1241 return I != BB->getParent()->end() ? &*I : 0;
1242}
1243
1244/// visitBranchInst - Handle conditional and unconditional branches here. Note
1245/// that since code layout is frozen at this point, that if we are trying to
1246/// jump to a block that is the immediate successor of the current block, we can
1247/// just make a fall-through (but we don't currently).
1248///
1249void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001250 // Update machine-CFG edges
1251 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1252 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001253 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001254
1255 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001256
Misha Brukman2fec9902004-06-21 20:22:03 +00001257 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001258 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001259 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1260 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001261 }
1262
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001263 // See if we can fold the setcc into the branch itself...
1264 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1265 if (SCI == 0) {
1266 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1267 // computed some other way...
1268 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001269 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001270 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001271 if (BI.getSuccessor(1) == NextBB) {
1272 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001273 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001274 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001275 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001276 BuildMI(BB, PPC32::BEQ, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001277 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001278
1279 if (BI.getSuccessor(0) != NextBB)
1280 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1281 }
1282 return;
1283 }
1284
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001285 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001286 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001287 MachineBasicBlock::iterator MII = BB->end();
1288 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001289
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001290 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001291 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001292 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001293 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001294 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001295 } else {
1296 // Change to the inverse condition...
1297 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001298 Opcode = invertPPCBranchOpcode(Opcode);
1299 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001300 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001301 }
1302 }
1303}
1304
Misha Brukmanfc879c32004-07-08 18:02:38 +00001305static Constant* minUConstantForValue(uint64_t val) {
1306 if (val <= 1)
1307 return ConstantBool::get(val);
1308 else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
1309 return ConstantUInt::get(Type::UShortTy, val);
1310 else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
1311 return ConstantUInt::get(Type::UIntTy, val);
1312 else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
1313 return ConstantUInt::get(Type::ULongTy, val);
1314
1315 std::cerr << "Value: " << val << " not accepted for any integral type!\n";
1316 abort();
1317}
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001318
1319/// doCall - This emits an abstract call instruction, setting up the arguments
1320/// and the return value as appropriate. For the actual function call itself,
1321/// it inserts the specified CallMI instruction into the stream.
1322///
1323/// FIXME: See Documentation at the following URL for "correct" behavior
1324/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1325void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001326 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001327 // Count how many bytes are to be pushed on the stack...
1328 unsigned NumBytes = 0;
1329
1330 if (!Args.empty()) {
1331 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1332 switch (getClassB(Args[i].Ty)) {
1333 case cByte: case cShort: case cInt:
1334 NumBytes += 4; break;
1335 case cLong:
1336 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001337 case cFP32:
1338 NumBytes += 4; break;
1339 case cFP64:
1340 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001341 break;
1342 default: assert(0 && "Unknown class!");
1343 }
1344
1345 // Adjust the stack pointer for the new arguments...
1346 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1347
1348 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001349 // Offset to the paramater area on the stack is 24.
1350 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001351 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001352 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001353 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001354 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1355 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1356 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001357 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001358 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1359 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1360 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001361 };
Misha Brukman422791f2004-06-21 17:41:12 +00001362
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001363 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1364 unsigned ArgReg;
1365 switch (getClassB(Args[i].Ty)) {
1366 case cByte:
1367 case cShort:
1368 // Promote arg to 32 bits wide into a temporary register...
1369 ArgReg = makeAnotherReg(Type::UIntTy);
1370 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001371
1372 // Reg or stack?
1373 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001374 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001375 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001376 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001377 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001378 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1379 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001380 }
1381 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001382 case cInt:
1383 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1384
Misha Brukman422791f2004-06-21 17:41:12 +00001385 // Reg or stack?
1386 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001387 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001388 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001389 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001390 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001391 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1392 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001393 }
1394 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001395 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001396 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001397
Misha Brukmanec6319a2004-07-20 15:51:37 +00001398 // Reg or stack? Note that PPC calling conventions state that long args
1399 // are passed rN = hi, rN+1 = lo, opposite of LLVM.
Misha Brukman422791f2004-06-21 17:41:12 +00001400 if (GPR_remaining > 1) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001401 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001402 .addReg(ArgReg+1);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001403 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg)
1404 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001405 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1406 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001407 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001408 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1409 .addReg(PPC32::R1);
1410 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1411 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001412 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001413
1414 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001415 GPR_remaining -= 1; // uses up 2 GPRs
1416 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001417 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001418 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001419 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001420 // Reg or stack?
1421 if (FPR_remaining > 0) {
1422 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1423 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1424 FPR_remaining--;
1425 FPR_idx++;
1426
1427 // If this is a vararg function, and there are GPRs left, also
1428 // pass the float in an int. Otherwise, put it on the stack.
1429 if (isVarArg) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001430 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001431 .addReg(PPC32::R1);
1432 if (GPR_remaining > 0) {
1433 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
1434 .addImm(ArgOffset).addReg(ArgReg);
1435 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1436 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001437 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001438 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +00001439 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1440 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001441 }
1442 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001443 case cFP64:
1444 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1445 // Reg or stack?
1446 if (FPR_remaining > 0) {
1447 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1448 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1449 FPR_remaining--;
1450 FPR_idx++;
1451 // For vararg functions, must pass doubles via int regs as well
1452 if (isVarArg) {
1453 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1454 .addReg(PPC32::R1);
1455
1456 if (GPR_remaining > 1) {
1457 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
1458 .addReg(PPC32::R1);
1459 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
1460 .addImm(ArgOffset+4).addReg(PPC32::R1);
1461 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1462 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1463 }
1464 }
1465 } else {
1466 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1467 .addReg(PPC32::R1);
1468 }
1469 // Doubles use 8 bytes, and 2 GPRs worth of param space
1470 ArgOffset += 4;
1471 GPR_remaining--;
1472 GPR_idx++;
1473 break;
1474
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001475 default: assert(0 && "Unknown class!");
1476 }
1477 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001478 GPR_remaining--;
1479 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001480 }
1481 } else {
1482 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1483 }
1484
1485 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001486 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1487
1488 // If there is a return value, scavenge the result from the location the call
1489 // leaves it in...
1490 //
1491 if (Ret.Ty != Type::VoidTy) {
1492 unsigned DestClass = getClassB(Ret.Ty);
1493 switch (DestClass) {
1494 case cByte:
1495 case cShort:
1496 case cInt:
1497 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001498 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001499 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001500 case cFP32: // Floating-point return values live in f1
1501 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001502 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1503 break;
Misha Brukmanec6319a2004-07-20 15:51:37 +00001504 case cLong: // Long values are in r3 hi:r4 lo
1505 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R3).addReg(PPC32::R3);
1506 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001507 break;
1508 default: assert(0 && "Unknown class!");
1509 }
1510 }
1511}
1512
1513
1514/// visitCallInst - Push args on stack and do a procedure call instruction.
1515void ISel::visitCallInst(CallInst &CI) {
1516 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001517 Function *F = CI.getCalledFunction();
1518 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001519 // Is it an intrinsic function call?
1520 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1521 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1522 return;
1523 }
1524
1525 // Emit a CALL instruction with PC-relative displacement.
1526 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1527 } else { // Emit an indirect call through the CTR
1528 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001529 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1530 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001531 }
1532
1533 std::vector<ValueRecord> Args;
1534 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1535 Args.push_back(ValueRecord(CI.getOperand(i)));
1536
1537 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001538 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1539 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001540}
1541
1542
1543/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1544///
1545static Value *dyncastIsNan(Value *V) {
1546 if (CallInst *CI = dyn_cast<CallInst>(V))
1547 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001548 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001549 return CI->getOperand(1);
1550 return 0;
1551}
1552
1553/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1554/// or's whos operands are all calls to the isnan predicate.
1555static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1556 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1557
1558 // Check all uses, which will be or's of isnans if this predicate is true.
1559 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1560 Instruction *I = cast<Instruction>(*UI);
1561 if (I->getOpcode() != Instruction::Or) return false;
1562 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1563 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1564 }
1565
1566 return true;
1567}
1568
1569/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1570/// function, lowering any calls to unknown intrinsic functions into the
1571/// equivalent LLVM code.
1572///
1573void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1574 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1575 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1576 if (CallInst *CI = dyn_cast<CallInst>(I++))
1577 if (Function *F = CI->getCalledFunction())
1578 switch (F->getIntrinsicID()) {
1579 case Intrinsic::not_intrinsic:
1580 case Intrinsic::vastart:
1581 case Intrinsic::vacopy:
1582 case Intrinsic::vaend:
1583 case Intrinsic::returnaddress:
1584 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001585 // FIXME: should lower this ourselves
1586 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001587 // We directly implement these intrinsics
1588 break;
1589 case Intrinsic::readio: {
1590 // On PPC, memory operations are in-order. Lower this intrinsic
1591 // into a volatile load.
1592 Instruction *Before = CI->getPrev();
1593 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1594 CI->replaceAllUsesWith(LI);
1595 BB->getInstList().erase(CI);
1596 break;
1597 }
1598 case Intrinsic::writeio: {
1599 // On PPC, memory operations are in-order. Lower this intrinsic
1600 // into a volatile store.
1601 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001602 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001603 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001604 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001605 BB->getInstList().erase(CI);
1606 break;
1607 }
1608 default:
1609 // All other intrinsic calls we must lower.
1610 Instruction *Before = CI->getPrev();
1611 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1612 if (Before) { // Move iterator to instruction after call
1613 I = Before; ++I;
1614 } else {
1615 I = BB->begin();
1616 }
1617 }
1618}
1619
1620void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1621 unsigned TmpReg1, TmpReg2, TmpReg3;
1622 switch (ID) {
1623 case Intrinsic::vastart:
1624 // Get the address of the first vararg value...
1625 TmpReg1 = getReg(CI);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001626 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1627 0, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001628 return;
1629
1630 case Intrinsic::vacopy:
1631 TmpReg1 = getReg(CI);
1632 TmpReg2 = getReg(CI.getOperand(1));
1633 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1634 return;
1635 case Intrinsic::vaend: return;
1636
1637 case Intrinsic::returnaddress:
Misha Brukmanec6319a2004-07-20 15:51:37 +00001638 TmpReg1 = getReg(CI);
1639 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1640 MachineFrameInfo *MFI = F->getFrameInfo();
1641 unsigned NumBytes = MFI->getStackSize();
1642
1643 BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addImm(NumBytes+8)
1644 .addReg(PPC32::R1);
1645 } else {
1646 // Values other than zero are not implemented yet.
1647 BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
1648 }
1649 return;
1650
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001651 case Intrinsic::frameaddress:
1652 TmpReg1 = getReg(CI);
1653 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001654 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001655 } else {
1656 // Values other than zero are not implemented yet.
Misha Brukmanbebde752004-07-16 21:06:24 +00001657 BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001658 }
1659 return;
1660
Misha Brukmana2916ce2004-06-21 17:58:36 +00001661#if 0
1662 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001663 case Intrinsic::isnan:
1664 // If this is only used by 'isunordered' style comparisons, don't emit it.
1665 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1666 TmpReg1 = getReg(CI.getOperand(1));
1667 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001668 TmpReg2 = makeAnotherReg(Type::IntTy);
1669 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001670 TmpReg3 = getReg(CI);
1671 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1672 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001673#endif
1674
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001675 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1676 }
1677}
1678
1679/// visitSimpleBinary - Implement simple binary operators for integral types...
1680/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1681/// Xor.
1682///
1683void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1684 unsigned DestReg = getReg(B);
1685 MachineBasicBlock::iterator MI = BB->end();
1686 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1687 unsigned Class = getClassB(B.getType());
1688
1689 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1690}
1691
1692/// emitBinaryFPOperation - This method handles emission of floating point
1693/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1694void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1695 MachineBasicBlock::iterator IP,
1696 Value *Op0, Value *Op1,
1697 unsigned OperatorClass, unsigned DestReg) {
1698
1699 // Special case: op Reg, <const fp>
1700 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001701 // Create a constant pool entry for this constant.
1702 MachineConstantPool *CP = F->getConstantPool();
1703 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1704 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001705 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001706
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001707 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001708 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1709 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001710 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001711
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001712 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001713 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001714 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001715 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001716 return;
1717 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001718
1719 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001720 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1721 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001722 // -0.0 - X === -X
1723 unsigned op1Reg = getReg(Op1, BB, IP);
1724 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1725 return;
1726 } else {
1727 // R1 = op CST, R2 --> R1 = opr R2, CST
1728
1729 // Create a constant pool entry for this constant.
1730 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001731 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1732 const Type *Ty = Op0C->getType();
1733 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001734
1735 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001736 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1737 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001738 };
1739
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001740 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001741 unsigned Op0Reg = getReg(Op0C, BB, IP);
1742 unsigned Op1Reg = getReg(Op1, BB, IP);
1743 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001744 return;
1745 }
1746
1747 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001748 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001749 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1750 };
1751
1752 unsigned Opcode = OpcodeTab[OperatorClass];
1753 unsigned Op0r = getReg(Op0, BB, IP);
1754 unsigned Op1r = getReg(Op1, BB, IP);
1755 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1756}
1757
1758/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1759/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1760/// Or, 4 for Xor.
1761///
1762/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1763/// and constant expression support.
1764///
1765void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1766 MachineBasicBlock::iterator IP,
1767 Value *Op0, Value *Op1,
1768 unsigned OperatorClass, unsigned DestReg) {
1769 unsigned Class = getClassB(Op0->getType());
1770
Misha Brukman422791f2004-06-21 17:41:12 +00001771 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001772 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001773 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1774 };
1775 // Otherwise, code generate the full operation with a constant.
1776 static const unsigned BottomTab[] = {
1777 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1778 };
1779 static const unsigned TopTab[] = {
1780 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1781 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001782
Misha Brukman7e898c32004-07-20 00:41:46 +00001783 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001784 assert(OperatorClass < 2 && "No logical ops for FP!");
1785 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1786 return;
1787 }
1788
1789 if (Op0->getType() == Type::BoolTy) {
1790 if (OperatorClass == 3)
1791 // If this is an or of two isnan's, emit an FP comparison directly instead
1792 // of or'ing two isnan's together.
1793 if (Value *LHS = dyncastIsNan(Op0))
1794 if (Value *RHS = dyncastIsNan(Op1)) {
1795 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001796 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001797 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001798 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001799 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1800 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001801 return;
1802 }
1803 }
1804
1805 // sub 0, X -> neg X
1806 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1807 if (OperatorClass == 1 && CI->isNullValue()) {
1808 unsigned op1Reg = getReg(Op1, MBB, IP);
1809 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1810
1811 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001812 unsigned zeroes = makeAnotherReg(Type::IntTy);
1813 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001814 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001815 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001816 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1817 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001818 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1819 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001820 }
1821 return;
1822 }
1823
1824 // Special case: op Reg, <const int>
1825 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1826 unsigned Op0r = getReg(Op0, MBB, IP);
1827
1828 // xor X, -1 -> not X
1829 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1830 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1831 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001832 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1833 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001834 return;
1835 }
1836
1837 unsigned Opcode = OpcodeTab[OperatorClass];
1838 unsigned Op1r = getReg(Op1, MBB, IP);
1839
1840 if (Class != cLong) {
1841 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1842 return;
1843 }
1844
1845 // If the constant is zero in the low 32-bits, just copy the low part
1846 // across and apply the normal 32-bit operation to the high parts. There
1847 // will be no carry or borrow into the top.
1848 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1849 if (OperatorClass != 2) // All but and...
1850 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1851 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001852 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001853 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001854 return;
1855 }
1856
1857 // If this is a long value and the high or low bits have a special
1858 // property, emit some special cases.
1859 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1860
1861 // If this is a logical operation and the top 32-bits are zero, just
1862 // operate on the lower 32.
1863 if (Op1h == 0 && OperatorClass > 1) {
1864 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1865 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001866 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001867 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001868 BuildMI(*MBB, IP, PPC32::LI, 1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001869 return;
1870 }
1871
1872 // TODO: We could handle lots of other special cases here, such as AND'ing
1873 // with 0xFFFFFFFF00000000 -> noop, etc.
1874
Misha Brukman2fec9902004-06-21 20:22:03 +00001875 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
Misha Brukman7e898c32004-07-20 00:41:46 +00001876 .addReg(Op1r);
Misha Brukman2fec9902004-06-21 20:22:03 +00001877 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001878 .addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001879 return;
1880 }
1881
1882 unsigned Op0r = getReg(Op0, MBB, IP);
1883 unsigned Op1r = getReg(Op1, MBB, IP);
1884
1885 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001886 unsigned Opcode = OpcodeTab[OperatorClass];
1887 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001888 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001889 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
Misha Brukman7e898c32004-07-20 00:41:46 +00001890 .addReg(Op1r);
Misha Brukman2fec9902004-06-21 20:22:03 +00001891 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001892 .addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001893 }
1894 return;
1895}
1896
1897/// doMultiply - Emit appropriate instructions to multiply together the
1898/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1899/// result should be given as DestTy.
1900///
1901void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1902 unsigned DestReg, const Type *DestTy,
1903 unsigned op0Reg, unsigned op1Reg) {
1904 unsigned Class = getClass(DestTy);
1905 switch (Class) {
1906 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001907 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1908 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001909 case cInt:
1910 case cShort:
1911 case cByte:
1912 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1913 return;
1914 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001915 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001916 }
1917}
1918
1919// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1920// returns zero when the input is not exactly a power of two.
1921static unsigned ExactLog2(unsigned Val) {
1922 if (Val == 0 || (Val & (Val-1))) return 0;
1923 unsigned Count = 0;
1924 while (Val != 1) {
1925 Val >>= 1;
1926 ++Count;
1927 }
1928 return Count+1;
1929}
1930
1931
1932/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1933/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001934///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001935void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1936 MachineBasicBlock::iterator IP,
1937 unsigned DestReg, const Type *DestTy,
1938 unsigned op0Reg, unsigned ConstRHS) {
1939 unsigned Class = getClass(DestTy);
1940 // Handle special cases here.
1941 switch (ConstRHS) {
1942 case 0:
Misha Brukmanbebde752004-07-16 21:06:24 +00001943 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001944 return;
1945 case 1:
1946 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1947 return;
1948 case 2:
1949 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1950 return;
1951 }
1952
1953 // If the element size is exactly a power of 2, use a shift to get it.
1954 if (unsigned Shift = ExactLog2(ConstRHS)) {
1955 switch (Class) {
1956 default: assert(0 && "Unknown class for this function!");
1957 case cByte:
1958 case cShort:
1959 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001960 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
Misha Brukman8d442c22004-07-14 15:29:51 +00001961 .addImm(Shift-1).addImm(0).addImm(31-Shift+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001962 return;
1963 }
1964 }
1965
1966 // Most general case, emit a normal multiply...
Misha Brukman7e898c32004-07-20 00:41:46 +00001967 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1968 Constant *C = ConstantUInt::get(Type::UIntTy, ConstRHS);
1969
1970 copyConstantToRegister(MBB, IP, C, TmpReg);
1971 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001972}
1973
1974void ISel::visitMul(BinaryOperator &I) {
1975 unsigned ResultReg = getReg(I);
1976
1977 Value *Op0 = I.getOperand(0);
1978 Value *Op1 = I.getOperand(1);
1979
1980 MachineBasicBlock::iterator IP = BB->end();
1981 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1982}
1983
1984void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1985 Value *Op0, Value *Op1, unsigned DestReg) {
1986 MachineBasicBlock &BB = *MBB;
1987 TypeClass Class = getClass(Op0->getType());
1988
1989 // Simple scalar multiply?
1990 unsigned Op0Reg = getReg(Op0, &BB, IP);
1991 switch (Class) {
1992 case cByte:
1993 case cShort:
1994 case cInt:
1995 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1996 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1997 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1998 } else {
1999 unsigned Op1Reg = getReg(Op1, &BB, IP);
2000 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
2001 }
2002 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002003 case cFP32:
2004 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002005 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2006 return;
2007 case cLong:
2008 break;
2009 }
2010
2011 // Long value. We have to do things the hard way...
2012 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2013 unsigned CLow = CI->getRawValue();
2014 unsigned CHi = CI->getRawValue() >> 32;
2015
2016 if (CLow == 0) {
2017 // If the low part of the constant is all zeros, things are simple.
Misha Brukmanbebde752004-07-16 21:06:24 +00002018 BuildMI(BB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002019 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2020 return;
2021 }
2022
2023 // Multiply the two low parts
2024 unsigned OverflowReg = 0;
2025 if (CLow == 1) {
2026 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
2027 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002028 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002029 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2030 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002031 BuildMI(BB, IP, PPC32::LIS, 1, TmpRegL).addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00002032 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
2033 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00002034 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
2035 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002036 }
2037
2038 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
2039 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2040
2041 unsigned AHBLplusOverflowReg;
2042 if (OverflowReg) {
2043 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002044 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002045 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2046 } else {
2047 AHBLplusOverflowReg = AHBLReg;
2048 }
2049
2050 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002051 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
2052 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002053 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002054 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002055 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
2056
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002057 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002058 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2059 }
2060 return;
2061 }
2062
2063 // General 64x64 multiply
2064
2065 unsigned Op1Reg = getReg(Op1, &BB, IP);
2066
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002067 // Multiply the two low parts...
2068 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002069
2070 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002071 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002072
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002073 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002074 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2075
2076 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002077 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
2078 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002079
2080 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2081 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2082
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002083 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002084 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2085}
2086
2087
2088/// visitDivRem - Handle division and remainder instructions... these
2089/// instruction both require the same instructions to be generated, they just
2090/// select the result from a different register. Note that both of these
2091/// instructions work differently for signed and unsigned operands.
2092///
2093void ISel::visitDivRem(BinaryOperator &I) {
2094 unsigned ResultReg = getReg(I);
2095 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2096
2097 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002098 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2099 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002100}
2101
2102void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2103 MachineBasicBlock::iterator IP,
2104 Value *Op0, Value *Op1, bool isDiv,
2105 unsigned ResultReg) {
2106 const Type *Ty = Op0->getType();
2107 unsigned Class = getClass(Ty);
2108 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002109 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002110 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002111 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002112 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2113 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002114 } else {
2115 // Floating point remainder via fmodf(float x, float y);
2116 unsigned Op0Reg = getReg(Op0, BB, IP);
2117 unsigned Op1Reg = getReg(Op1, BB, IP);
2118 MachineInstr *TheCall =
2119 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2120 std::vector<ValueRecord> Args;
2121 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2122 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2123 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
2124 }
2125 return;
2126 case cFP64:
2127 if (isDiv) {
2128 // Floating point divide...
2129 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2130 return;
2131 } else {
2132 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002133 unsigned Op0Reg = getReg(Op0, BB, IP);
2134 unsigned Op1Reg = getReg(Op1, BB, IP);
2135 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002136 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002137 std::vector<ValueRecord> Args;
2138 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2139 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002140 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002141 }
2142 return;
2143 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002144 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002145 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002146 unsigned Op0Reg = getReg(Op0, BB, IP);
2147 unsigned Op1Reg = getReg(Op1, BB, IP);
2148 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2149 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002150 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002151
2152 std::vector<ValueRecord> Args;
2153 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2154 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002155 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002156 return;
2157 }
2158 case cByte: case cShort: case cInt:
2159 break; // Small integrals, handled below...
2160 default: assert(0 && "Unknown class!");
2161 }
2162
2163 // Special case signed division by power of 2.
2164 if (isDiv)
2165 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2166 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2167 int V = CI->getValue();
2168
2169 if (V == 1) { // X /s 1 => X
2170 unsigned Op0Reg = getReg(Op0, BB, IP);
2171 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2172 return;
2173 }
2174
2175 if (V == -1) { // X /s -1 => -X
2176 unsigned Op0Reg = getReg(Op0, BB, IP);
2177 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2178 return;
2179 }
2180
Misha Brukmanec6319a2004-07-20 15:51:37 +00002181 unsigned log2V = ExactLog2(V);
2182 if (log2V != 0 && Ty->isSigned()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002183 unsigned Op0Reg = getReg(Op0, BB, IP);
2184 unsigned TmpReg = makeAnotherReg(Op0->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +00002185
2186 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg)
2187 .addImm(log2V-1);
2188 BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002189 return;
2190 }
2191 }
2192
2193 unsigned Op0Reg = getReg(Op0, BB, IP);
2194 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002195 unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
2196
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002197 if (isDiv) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00002198 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002199 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002200 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2201 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2202
Misha Brukmanec6319a2004-07-20 15:51:37 +00002203 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002204 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2205 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002206 }
2207}
2208
2209
2210/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2211/// for constant immediate shift values, and for constant immediate
2212/// shift values equal to 1. Even the general case is sort of special,
2213/// because the shift amount has to be in CL, not just any old register.
2214///
2215void ISel::visitShiftInst(ShiftInst &I) {
2216 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002217 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2218 I.getOpcode () == Instruction::Shl, I.getType (),
2219 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002220}
2221
2222/// emitShiftOperation - Common code shared between visitShiftInst and
2223/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002224///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002225void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2226 MachineBasicBlock::iterator IP,
2227 Value *Op, Value *ShiftAmount, bool isLeftShift,
2228 const Type *ResultTy, unsigned DestReg) {
2229 unsigned SrcReg = getReg (Op, MBB, IP);
2230 bool isSigned = ResultTy->isSigned ();
2231 unsigned Class = getClass (ResultTy);
2232
2233 // Longs, as usual, are handled specially...
2234 if (Class == cLong) {
2235 // If we have a constant shift, we can generate much more efficient code
2236 // than otherwise...
2237 //
2238 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2239 unsigned Amount = CUI->getValue();
2240 if (Amount < 32) {
2241 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002242 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002243 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2244 .addImm(Amount).addImm(0).addImm(31-Amount);
2245 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2246 .addImm(Amount).addImm(32-Amount).addImm(31);
2247 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2248 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002249 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002250 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002251 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2252 .addImm(32-Amount).addImm(Amount).addImm(31);
2253 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2254 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2255 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2256 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002257 }
2258 } else { // Shifting more than 32 bits
2259 Amount -= 32;
2260 if (isLeftShift) {
2261 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002262 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2263 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002264 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002265 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2266 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002267 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002268 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002269 } else {
2270 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002271 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002272 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2273 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002274 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002275 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2276 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002277 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002278 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2279 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002280 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002281 BuildMI(*MBB, IP,PPC32::LI,1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002282 }
2283 }
2284 } else {
2285 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2286 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002287 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2288 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2289 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2290 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2291 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2292
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002293 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002294 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2295 .addImm(32);
2296 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2297 .addReg(ShiftAmountReg);
2298 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2299 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2300 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2301 .addImm(-32);
2302 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2303 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2304 .addReg(TmpReg6);
2305 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2306 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002307 } else {
2308 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002309 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002310 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002311 std::cerr << "Unimplemented: signed right shift\n";
2312 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002313 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002314 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2315 .addImm(32);
2316 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2317 .addReg(ShiftAmountReg);
2318 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2319 .addReg(TmpReg1);
2320 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2321 .addReg(TmpReg3);
2322 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2323 .addImm(-32);
2324 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2325 .addReg(TmpReg5);
2326 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2327 .addReg(TmpReg6);
2328 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2329 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002330 }
2331 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002332 }
2333 return;
2334 }
2335
2336 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2337 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2338 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2339 unsigned Amount = CUI->getValue();
2340
Misha Brukman422791f2004-06-21 17:41:12 +00002341 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002342 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2343 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002344 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002345 if (isSigned) {
2346 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2347 } else {
2348 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2349 .addImm(32-Amount).addImm(Amount).addImm(31);
2350 }
Misha Brukman422791f2004-06-21 17:41:12 +00002351 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002352 } else { // The shift amount is non-constant.
2353 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2354
Misha Brukman422791f2004-06-21 17:41:12 +00002355 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002356 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2357 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002358 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002359 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2360 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002361 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002362 }
2363}
2364
2365
2366/// visitLoadInst - Implement LLVM load instructions
2367///
2368void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002369 static const unsigned Opcodes[] = {
2370 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2371 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002372 unsigned Class = getClassB(I.getType());
2373 unsigned Opcode = Opcodes[Class];
2374 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2375
2376 unsigned DestReg = getReg(I);
2377
2378 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002379 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002380 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002381 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2382 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002383 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002384 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002385 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002386 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002387 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002388
2389 if (Class == cLong) {
2390 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2391 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2392 } else {
2393 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2394 }
2395 }
2396}
2397
2398/// visitStoreInst - Implement LLVM store instructions
2399///
2400void ISel::visitStoreInst(StoreInst &I) {
2401 unsigned ValReg = getReg(I.getOperand(0));
2402 unsigned AddressReg = getReg(I.getOperand(1));
2403
2404 const Type *ValTy = I.getOperand(0)->getType();
2405 unsigned Class = getClassB(ValTy);
2406
2407 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002408 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002409 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002410 return;
2411 }
2412
2413 static const unsigned Opcodes[] = {
2414 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2415 };
2416 unsigned Opcode = Opcodes[Class];
2417 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2418 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2419}
2420
2421
2422/// visitCastInst - Here we have various kinds of copying with or without sign
2423/// extension going on.
2424///
2425void ISel::visitCastInst(CastInst &CI) {
2426 Value *Op = CI.getOperand(0);
2427
2428 unsigned SrcClass = getClassB(Op->getType());
2429 unsigned DestClass = getClassB(CI.getType());
2430 // Noop casts are not emitted: getReg will return the source operand as the
2431 // register to use for any uses of the noop cast.
2432 if (DestClass == SrcClass)
2433 return;
2434
2435 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2436 // of the case are GEP instructions, then the cast does not need to be
2437 // generated explicitly, it will be folded into the GEP.
2438 if (DestClass == cLong && SrcClass == cInt) {
2439 bool AllUsesAreGEPs = true;
2440 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2441 if (!isa<GetElementPtrInst>(*I)) {
2442 AllUsesAreGEPs = false;
2443 break;
2444 }
2445
2446 // No need to codegen this cast if all users are getelementptr instrs...
2447 if (AllUsesAreGEPs) return;
2448 }
2449
2450 unsigned DestReg = getReg(CI);
2451 MachineBasicBlock::iterator MI = BB->end();
2452 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2453}
2454
2455/// emitCastOperation - Common code shared between visitCastInst and constant
2456/// expression cast support.
2457///
Misha Brukman7e898c32004-07-20 00:41:46 +00002458void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002459 MachineBasicBlock::iterator IP,
2460 Value *Src, const Type *DestTy,
2461 unsigned DestReg) {
2462 const Type *SrcTy = Src->getType();
2463 unsigned SrcClass = getClassB(SrcTy);
2464 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002465 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002466
2467 // Implement casts to bool by using compare on the operand followed by set if
2468 // not zero on the result.
2469 if (DestTy == Type::BoolTy) {
2470 switch (SrcClass) {
2471 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002472 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002473 case cInt: {
2474 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002475 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2476 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002477 break;
2478 }
2479 case cLong: {
2480 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2481 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002482 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
2483 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2484 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002485 break;
2486 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002487 case cFP32:
2488 case cFP64:
2489 // FSEL perhaps?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002490 std::cerr << "Cast fp-to-bool not implemented!";
2491 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002492 }
2493 return;
2494 }
2495
2496 // Implement casts between values of the same type class (as determined by
2497 // getClass) by using a register-to-register move.
2498 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002499 if (SrcClass <= cInt) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002500 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2501 } else if (SrcClass == cFP32 || SrcClass == cFP64) {
2502 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002503 } else if (SrcClass == cLong) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002504 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2505 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002506 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002507 } else {
2508 assert(0 && "Cannot handle this type of cast instruction!");
2509 abort();
2510 }
2511 return;
2512 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002513
2514 // Handle cast of Float -> Double
2515 if (SrcClass == cFP32 && DestClass == cFP64) {
2516 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2517 return;
2518 }
2519
2520 // Handle cast of Double -> Float
2521 if (SrcClass == cFP64 && DestClass == cFP32) {
2522 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2523 return;
2524 }
2525
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002526 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2527 // or zero extension, depending on whether the source type was signed.
2528 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2529 SrcClass < DestClass) {
2530 bool isLong = DestClass == cLong;
2531 if (isLong) DestClass = cInt;
2532
2533 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2534 if (SrcClass < cInt) {
2535 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002536 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002537 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2538 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002539 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002540 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2541 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002542 }
2543 } else {
2544 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2545 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002546
2547 if (isLong) { // Handle upper 32 bits as appropriate...
2548 if (isUnsigned) // Zero out top bits...
Misha Brukmanbebde752004-07-16 21:06:24 +00002549 BuildMI(*BB, IP, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002550 else // Sign extend bottom half...
2551 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2552 }
2553 return;
2554 }
2555
2556 // Special case long -> int ...
2557 if (SrcClass == cLong && DestClass == cInt) {
2558 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2559 return;
2560 }
2561
2562 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2563 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2564 && SrcClass > DestClass) {
2565 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002566 if (isUnsigned) {
2567 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002568 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2569 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002570 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002571 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2572 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002573 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002574 return;
2575 }
2576
2577 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002578 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002579
Misha Brukman422791f2004-06-21 17:41:12 +00002580 // Emit a library call for long to float conversion
2581 if (SrcClass == cLong) {
2582 std::vector<ValueRecord> Args;
2583 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002584 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002585 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002586 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002587 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002588 return;
2589 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002590
Misha Brukman7e898c32004-07-20 00:41:46 +00002591 // Make sure we're dealing with a full 32 bits
2592 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2593 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2594
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002595 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002596
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002597 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002598 // Also spill room for a special conversion constant
2599 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002600 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2601 int ValueFrameIdx =
2602 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2603
Misha Brukman422791f2004-06-21 17:41:12 +00002604 unsigned constantHi = makeAnotherReg(Type::IntTy);
2605 unsigned constantLo = makeAnotherReg(Type::IntTy);
2606 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2607 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2608
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002609 if (!SrcTy->isSigned()) {
Misha Brukmanbebde752004-07-16 21:06:24 +00002610 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2611 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002612 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2613 ConstantFrameIndex);
2614 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2615 ConstantFrameIndex, 4);
2616 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2617 ValueFrameIdx);
2618 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2619 ValueFrameIdx, 4);
2620 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2621 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002622 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2623 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2624 } else {
2625 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002626 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2627 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002628 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2629 ConstantFrameIndex);
2630 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2631 ConstantFrameIndex, 4);
2632 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2633 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002634 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002635 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2636 ValueFrameIdx, 4);
2637 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2638 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002639 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002640 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002641 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002642 return;
2643 }
2644
2645 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002646 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002647 // emit library call
2648 if (DestClass == cLong) {
2649 std::vector<ValueRecord> Args;
2650 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002651 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002652 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002653 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002654 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002655 return;
2656 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002657
2658 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002659 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002660
Misha Brukman7e898c32004-07-20 00:41:46 +00002661 if (DestTy->isSigned()) {
2662 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman422791f2004-06-21 17:41:12 +00002663 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002664
2665 // Convert to integer in the FP reg and store it to a stack slot
Misha Brukman422791f2004-06-21 17:41:12 +00002666 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002667 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2668 .addReg(TempReg), ValueFrameIdx);
Misha Brukman7e898c32004-07-20 00:41:46 +00002669
2670 // There is no load signed byte opcode, so we must emit a sign extend
2671 if (DestClass == cByte) {
2672 unsigned TempReg2 = makeAnotherReg(DestTy);
2673 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, TempReg2),
Misha Brukmanec6319a2004-07-20 15:51:37 +00002674 ValueFrameIdx, 4);
Misha Brukman7e898c32004-07-20 00:41:46 +00002675 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2676 } else {
2677 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
Misha Brukmanec6319a2004-07-20 15:51:37 +00002678 ValueFrameIdx, 4);
Misha Brukman7e898c32004-07-20 00:41:46 +00002679 }
2680 } else {
2681 std::cerr << "Cast fp-to-unsigned not implemented!";
2682 abort();
2683 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002684 return;
2685 }
2686
2687 // Anything we haven't handled already, we can't (yet) handle at all.
2688 assert(0 && "Unhandled cast instruction!");
2689 abort();
2690}
2691
2692/// visitVANextInst - Implement the va_next instruction...
2693///
2694void ISel::visitVANextInst(VANextInst &I) {
2695 unsigned VAList = getReg(I.getOperand(0));
2696 unsigned DestReg = getReg(I);
2697
2698 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002699 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002700 default:
2701 std::cerr << I;
2702 assert(0 && "Error: bad type for va_next instruction!");
2703 return;
2704 case Type::PointerTyID:
2705 case Type::UIntTyID:
2706 case Type::IntTyID:
2707 Size = 4;
2708 break;
2709 case Type::ULongTyID:
2710 case Type::LongTyID:
2711 case Type::DoubleTyID:
2712 Size = 8;
2713 break;
2714 }
2715
2716 // Increment the VAList pointer...
2717 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2718}
2719
2720void ISel::visitVAArgInst(VAArgInst &I) {
2721 unsigned VAList = getReg(I.getOperand(0));
2722 unsigned DestReg = getReg(I);
2723
Misha Brukman358829f2004-06-21 17:25:55 +00002724 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002725 default:
2726 std::cerr << I;
2727 assert(0 && "Error: bad type for va_next instruction!");
2728 return;
2729 case Type::PointerTyID:
2730 case Type::UIntTyID:
2731 case Type::IntTyID:
2732 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2733 break;
2734 case Type::ULongTyID:
2735 case Type::LongTyID:
2736 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2737 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2738 break;
2739 case Type::DoubleTyID:
2740 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2741 break;
2742 }
2743}
2744
2745/// visitGetElementPtrInst - instruction-select GEP instructions
2746///
2747void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2748 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002749 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2750 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002751}
2752
2753void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2754 MachineBasicBlock::iterator IP,
2755 Value *Src, User::op_iterator IdxBegin,
2756 User::op_iterator IdxEnd, unsigned TargetReg) {
2757 const TargetData &TD = TM.getTargetData();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002758
2759 std::vector<Value*> GEPOps;
2760 GEPOps.resize(IdxEnd-IdxBegin+1);
2761 GEPOps[0] = Src;
2762 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2763
2764 std::vector<const Type*> GEPTypes;
2765 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2766 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2767
2768 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002769 while (!GEPOps.empty()) {
2770 if (GEPTypes.empty()) {
2771 // Load the base pointer into a register.
2772 unsigned Reg = getReg(Src, MBB, IP);
2773 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2774 break; // we are now done
2775 }
Misha Brukman313efcb2004-07-09 15:45:07 +00002776 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
2777 // It's a struct access. CUI is the index into the structure,
2778 // which names the field. This index must have unsigned type.
2779 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002780
Misha Brukman313efcb2004-07-09 15:45:07 +00002781 // Use the TargetData structure to pick out what the layout of the
2782 // structure is in memory. Since the structure index must be constant, we
2783 // can get its value and use it to find the right byte offset from the
2784 // StructLayout class's list of structure member offsets.
2785 unsigned Disp = TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
2786 GEPOps.pop_back(); // Consume a GEP operand
2787 GEPTypes.pop_back();
Misha Brukman2fec9902004-06-21 20:22:03 +00002788 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman313efcb2004-07-09 15:45:07 +00002789 unsigned DispReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002790 BuildMI(*MBB, IP, PPC32::LI, 1, DispReg).addImm(Disp);
Misha Brukman313efcb2004-07-09 15:45:07 +00002791 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(DispReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002792 --IP; // Insert the next instruction before this one.
2793 TargetReg = Reg; // Codegen the rest of the GEP into this
2794 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +00002795 // It's an array or pointer access: [ArraySize x ElementType].
2796 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2797 Value *idx = GEPOps.back();
2798 GEPOps.pop_back(); // Consume a GEP operand
2799 GEPTypes.pop_back();
2800
2801 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2802 // operand. Handle this case directly now...
2803 if (CastInst *CI = dyn_cast<CastInst>(idx))
2804 if (CI->getOperand(0)->getType() == Type::IntTy ||
2805 CI->getOperand(0)->getType() == Type::UIntTy)
2806 idx = CI->getOperand(0);
2807
2808 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2809 // must find the size of the pointed-to type (Not coincidentally, the next
2810 // type is the type of the elements in the array).
2811 const Type *ElTy = SqTy->getElementType();
2812 unsigned elementSize = TD.getTypeSize(ElTy);
2813
2814 if (idx == Constant::getNullValue(idx->getType())) {
2815 // GEP with idx 0 is a no-op
2816 } else if (elementSize == 1) {
2817 // If the element size is 1, we don't have to multiply, just add
2818 unsigned idxReg = getReg(idx, MBB, IP);
2819 unsigned Reg = makeAnotherReg(Type::UIntTy);
2820 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2821 --IP; // Insert the next instruction before this one.
2822 TargetReg = Reg; // Codegen the rest of the GEP into this
2823 } else {
2824 unsigned idxReg = getReg(idx, MBB, IP);
2825 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
2826
2827 // Make sure we can back the iterator up to point to the first
2828 // instruction emitted.
2829 MachineBasicBlock::iterator BeforeIt = IP;
2830 if (IP == MBB->begin())
2831 BeforeIt = MBB->end();
2832 else
2833 --BeforeIt;
2834 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2835
2836 // Emit an ADD to add OffsetReg to the basePtr.
2837 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002838 BuildMI(*MBB, IP, PPC32::ADD,2,TargetReg).addReg(Reg).addReg(OffsetReg);
2839
Misha Brukman313efcb2004-07-09 15:45:07 +00002840 // Step to the first instruction of the multiply.
2841 if (BeforeIt == MBB->end())
2842 IP = MBB->begin();
2843 else
2844 IP = ++BeforeIt;
2845
2846 TargetReg = Reg; // Codegen the rest of the GEP into this
2847 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002848 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002849 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002850}
2851
2852/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2853/// frame manager, otherwise do it the hard way.
2854///
2855void ISel::visitAllocaInst(AllocaInst &I) {
2856 // If this is a fixed size alloca in the entry block for the function, we
2857 // statically stack allocate the space, so we don't need to do anything here.
2858 //
2859 if (dyn_castFixedAlloca(&I)) return;
2860
2861 // Find the data size of the alloca inst's getAllocatedType.
2862 const Type *Ty = I.getAllocatedType();
2863 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2864
2865 // Create a register to hold the temporary result of multiplying the type size
2866 // constant by the variable amount.
2867 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2868 unsigned SrcReg1 = getReg(I.getArraySize());
2869
2870 // TotalSizeReg = mul <numelements>, <TypeSize>
2871 MachineBasicBlock::iterator MBBI = BB->end();
2872 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2873
2874 // AddedSize = add <TotalSizeReg>, 15
2875 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2876 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2877
2878 // AlignedSize = and <AddedSize>, ~15
2879 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002880 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2881 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002882
2883 // Subtract size from stack pointer, thereby allocating some space.
2884 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2885
2886 // Put a pointer to the space into the result register, by copying
2887 // the stack pointer.
2888 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2889
2890 // Inform the Frame Information that we have just allocated a variable-sized
2891 // object.
2892 F->getFrameInfo()->CreateVariableSizedObject();
2893}
2894
2895/// visitMallocInst - Malloc instructions are code generated into direct calls
2896/// to the library malloc.
2897///
2898void ISel::visitMallocInst(MallocInst &I) {
2899 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2900 unsigned Arg;
2901
2902 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2903 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2904 } else {
2905 Arg = makeAnotherReg(Type::UIntTy);
2906 unsigned Op0Reg = getReg(I.getOperand(0));
2907 MachineBasicBlock::iterator MBBI = BB->end();
2908 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2909 }
2910
2911 std::vector<ValueRecord> Args;
2912 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002913 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002914 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002915 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002916}
2917
2918
2919/// visitFreeInst - Free instructions are code gen'd to call the free libc
2920/// function.
2921///
2922void ISel::visitFreeInst(FreeInst &I) {
2923 std::vector<ValueRecord> Args;
2924 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002925 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002926 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002927 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002928}
2929
2930/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2931/// into a machine code representation is a very simple peep-hole fashion. The
2932/// generated code sucks but the implementation is nice and simple.
2933///
2934FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2935 return new ISel(TM);
2936}