blob: a75c5e64d15df16f91182e81d998c385334693dd [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffray52e724a2008-04-16 20:10:13 +000018#include "X86.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "X86RegisterInfo.h"
Dan Gohmand68a0762009-01-05 17:59:02 +000020#include "llvm/ADT/DenseMap.h"
Dan Gohman6f0d0242008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000022
Brian Gaeked0fde302003-11-11 22:41:34 +000023namespace llvm {
Evan Cheng25ab6902006-09-08 06:48:29 +000024 class X86RegisterInfo;
Evan Chengaa3c1412006-05-30 21:45:53 +000025 class X86TargetMachine;
Brian Gaeked0fde302003-11-11 22:41:34 +000026
Chris Lattner7fbe9722006-10-20 17:42:20 +000027namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
Bill Wendling3fafd932008-11-26 22:37:40 +000044 COND_NC = 13,
45 COND_O = 14,
46 COND_P = 15,
47 COND_S = 16,
48 COND_C = 17,
Dan Gohman279c22e2008-10-21 03:29:32 +000049
50 // Artificial condition codes. These are used by AnalyzeBranch
51 // to indicate a block terminated with two conditional branches to
52 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
53 // which can't be represented on x86 with a single condition. These
54 // are never used in MachineInstrs.
55 COND_NE_OR_P,
56 COND_NP_OR_E,
57
Chris Lattner7fbe9722006-10-20 17:42:20 +000058 COND_INVALID
59 };
Christopher Lamb6634e262008-03-13 05:47:01 +000060
Chris Lattner7fbe9722006-10-20 17:42:20 +000061 // Turn condition code into conditional branch opcode.
62 unsigned GetCondBranchFromCond(CondCode CC);
Chris Lattner9cd68752006-10-21 05:52:40 +000063
64 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
65 /// e.g. turning COND_E to COND_NE.
66 CondCode GetOppositeBranchCondition(X86::CondCode CC);
67
Chris Lattner7fbe9722006-10-20 17:42:20 +000068}
69
Chris Lattner9d177402002-10-30 01:09:34 +000070/// X86II - This namespace holds all of the target specific flags that
71/// instruction info tracks.
72///
73namespace X86II {
74 enum {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000075 //===------------------------------------------------------------------===//
76 // Instruction types. These are the standard/most common forms for X86
77 // instructions.
78 //
79
Chris Lattner4c299f52002-12-25 05:09:59 +000080 // PseudoFrm - This represents an instruction that is a pseudo instruction
81 // or one that has not been implemented yet. It is illegal to code generate
82 // it, but tolerated for intermediate implementation stages.
83 Pseudo = 0,
84
Chris Lattner6aab9cf2002-11-18 05:37:11 +000085 /// Raw - This form is for instructions that don't have any operands, so
86 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +000087 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +000088
Chris Lattner6aab9cf2002-11-18 05:37:11 +000089 /// AddRegFrm - This form is used for instructions like 'push r32' that have
90 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +000091 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000092
93 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
94 /// to specify a destination, which in this case is a register.
95 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000096 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000097
98 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
99 /// to specify a destination, which in this case is memory.
100 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000101 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000102
103 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
104 /// to specify a source, which in this case is a register.
105 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000106 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000107
108 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
109 /// to specify a source, which in this case is memory.
110 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000111 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000112
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000113 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +0000114 /// a Mod/RM byte, and use the middle field to hold extended opcode
115 /// information. In the intel manual these are represented as /0, /1, ...
116 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000117
Chris Lattner85b39f22002-11-21 17:08:49 +0000118 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000119 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
120 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000121
122 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000123 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
124 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000125
Evan Cheng3c55c542006-02-01 06:13:50 +0000126 // MRMInitReg - This form is used for instructions whose source and
127 // destinations are the same register.
128 MRMInitReg = 32,
129
130 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000131
132 //===------------------------------------------------------------------===//
133 // Actual flags...
134
Chris Lattner11e53e32002-11-21 01:32:55 +0000135 // OpSize - Set if this instruction requires an operand size prefix (0x66),
136 // which most often indicates that the instruction operates on 16 bit data
137 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +0000138 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +0000139
Evan Cheng25ab6902006-09-08 06:48:29 +0000140 // AsSize - Set if this instruction requires an operand size prefix (0x67),
141 // which most often indicates that the instruction address 16 bit address
142 // instead of 32 bit address (or 32 bit address in 64 bit mode).
143 AdSize = 1 << 7,
144
145 //===------------------------------------------------------------------===//
Chris Lattner4c299f52002-12-25 05:09:59 +0000146 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +0000147 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
148 // used to obtain the setting of this field. If no bits in this field is
149 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000150 //
Evan Cheng25ab6902006-09-08 06:48:29 +0000151 Op0Shift = 8,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000152 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000153
154 // TB - TwoByte - Set if this instruction has a two byte opcode, which
155 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000156 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000157
Chris Lattner915e5e52004-02-12 17:53:22 +0000158 // REP - The 0xF3 prefix byte indicating repetition of the following
159 // instruction.
160 REP = 2 << Op0Shift,
161
Chris Lattner4c299f52002-12-25 05:09:59 +0000162 // D8-DF - These escape opcodes are used by the floating point unit. These
163 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000164 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
165 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
166 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
167 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000168
Nate Begemanf63be7d2005-07-06 18:59:04 +0000169 // XS, XD - These prefix codes are for single and double precision scalar
170 // floating point operations performed in the SSE registers.
Bill Wendlingbb1ee052007-04-10 22:10:25 +0000171 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
172
173 // T8, TA - Prefix after the 0x0F prefix.
174 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000175
Chris Lattner0c514f42003-01-13 00:49:24 +0000176 //===------------------------------------------------------------------===//
Evan Cheng25ab6902006-09-08 06:48:29 +0000177 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
178 // They are used to specify GPRs and SSE registers, 64-bit operand size,
179 // etc. We only cares about REX.W and REX.R bits and only the former is
180 // statically determined.
181 //
182 REXShift = 12,
183 REX_W = 1 << REXShift,
184
185 //===------------------------------------------------------------------===//
186 // This three-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000187 // unused so that we can tell if we forgot to set a value.
Evan Cheng25ab6902006-09-08 06:48:29 +0000188 ImmShift = 13,
189 ImmMask = 7 << ImmShift,
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000190 Imm8 = 1 << ImmShift,
191 Imm16 = 2 << ImmShift,
192 Imm32 = 3 << ImmShift,
Evan Cheng25ab6902006-09-08 06:48:29 +0000193 Imm64 = 4 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000194
Chris Lattner0c514f42003-01-13 00:49:24 +0000195 //===------------------------------------------------------------------===//
196 // FP Instruction Classification... Zero is non-fp instruction.
197
Chris Lattner2959b6e2003-08-06 15:32:20 +0000198 // FPTypeMask - Mask for all of the FP types...
Evan Cheng25ab6902006-09-08 06:48:29 +0000199 FPTypeShift = 16,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000200 FPTypeMask = 7 << FPTypeShift,
201
Chris Lattner79b13732004-01-30 22:24:18 +0000202 // NotFP - The default, set for instructions that do not use FP registers.
203 NotFP = 0 << FPTypeShift,
204
Chris Lattner0c514f42003-01-13 00:49:24 +0000205 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000206 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000207
208 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000209 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000210
211 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
212 // result back to ST(0). For example, fcos, fsqrt, etc.
213 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000214 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000215
216 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
217 // explicit argument, storing the result to either ST(0) or the implicit
218 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000219 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000220
Chris Lattnerab8decc2004-06-11 04:41:24 +0000221 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
222 // explicit argument, but have no destination. Example: fucom, fucomi, ...
223 CompareFP = 5 << FPTypeShift,
224
Chris Lattner1c54a852004-03-31 22:02:13 +0000225 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000226 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000227
Chris Lattner0c514f42003-01-13 00:49:24 +0000228 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000229 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000230
Andrew Lenharthea7da502008-03-01 13:37:02 +0000231 // Lock prefix
232 LOCKShift = 19,
233 LOCK = 1 << LOCKShift,
234
Anton Korobeynikovef93cec2008-10-11 19:09:15 +0000235 // Segment override prefixes. Currently we just need ability to address
236 // stuff in gs and fs segments.
237 SegOvrShift = 20,
238 SegOvrMask = 3 << SegOvrShift,
239 FS = 1 << SegOvrShift,
240 GS = 2 << SegOvrShift,
241
242 // Bits 22 -> 23 are unused
Evan Cheng25ab6902006-09-08 06:48:29 +0000243 OpcodeShift = 24,
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000244 OpcodeMask = 0xFF << OpcodeShift
Chris Lattner9d177402002-10-30 01:09:34 +0000245 };
246}
247
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000248inline static bool isScale(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000249 return MO.isImm() &&
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000250 (MO.getImm() == 1 || MO.getImm() == 2 ||
251 MO.getImm() == 4 || MO.getImm() == 8);
252}
253
254inline static bool isMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmand735b802008-10-03 15:45:36 +0000255 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000256 return Op+4 <= MI->getNumOperands() &&
Dan Gohmand735b802008-10-03 15:45:36 +0000257 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
258 MI->getOperand(Op+2).isReg() &&
259 (MI->getOperand(Op+3).isImm() ||
260 MI->getOperand(Op+3).isGlobal() ||
261 MI->getOperand(Op+3).isCPI() ||
262 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000263}
264
Chris Lattner64105522008-01-01 01:03:04 +0000265class X86InstrInfo : public TargetInstrInfoImpl {
Evan Chengaa3c1412006-05-30 21:45:53 +0000266 X86TargetMachine &TM;
Chris Lattner72614082002-10-25 22:55:53 +0000267 const X86RegisterInfo RI;
Owen Anderson43dbe052008-01-07 01:35:02 +0000268
269 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
270 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
271 ///
272 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
273 DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
274 DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
275 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
276
277 /// MemOp2RegOpTable - Load / store unfolding opcode map.
278 ///
279 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
280
Chris Lattner72614082002-10-25 22:55:53 +0000281public:
Dan Gohman950a4c42008-03-25 22:06:05 +0000282 explicit X86InstrInfo(X86TargetMachine &tm);
Chris Lattner72614082002-10-25 22:55:53 +0000283
Chris Lattner3501fea2003-01-14 22:00:31 +0000284 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000285 /// such, whenever a client has an instance of instruction info, it should
286 /// always be able to get register info as well (through this method).
287 ///
Dan Gohmanc9f5f3f2008-05-14 01:58:56 +0000288 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Chris Lattner72614082002-10-25 22:55:53 +0000289
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000290 // Return true if the instruction is a register to register move and
291 // leave the source and dest operands in the passed parameters.
292 //
Chris Lattner40839602006-02-02 20:12:32 +0000293 bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
294 unsigned& destReg) const;
Dan Gohmancbad42c2008-11-18 19:49:32 +0000295 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
296 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000297
Bill Wendling9f8fea32008-05-12 20:54:26 +0000298 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000299 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
300 unsigned DestReg, const MachineInstr *Orig) const;
301
Dan Gohmancbad42c2008-11-18 19:49:32 +0000302 bool isInvariantLoad(const MachineInstr *MI) const;
Bill Wendling627c00b2007-12-17 23:07:56 +0000303
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000304 /// convertToThreeAddress - This method must be implemented by targets that
305 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
306 /// may be able to convert a two-address instruction into a true
307 /// three-address instruction on demand. This allows the X86 target (for
308 /// example) to convert ADD and SHL instructions into LEA instructions if they
309 /// would require register copies due to two-addressness.
310 ///
311 /// This method returns a null pointer if the transformation cannot be
312 /// performed, otherwise it returns the new instruction.
313 ///
Evan Chengba59a1e2006-12-01 21:52:58 +0000314 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
315 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +0000316 LiveVariables *LV) const;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000317
Chris Lattner41e431b2005-01-19 07:11:01 +0000318 /// commuteInstruction - We have a few instructions that must be hacked on to
319 /// commute them.
320 ///
Evan Cheng58dcb0e2008-06-16 07:33:11 +0000321 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000322
Chris Lattner7fbe9722006-10-20 17:42:20 +0000323 // Branch analysis.
Dale Johannesen318093b2007-06-14 22:03:45 +0000324 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
Chris Lattner7fbe9722006-10-20 17:42:20 +0000325 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
326 MachineBasicBlock *&FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +0000327 SmallVectorImpl<MachineOperand> &Cond) const;
Evan Cheng6ae36262007-05-18 00:18:17 +0000328 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
329 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
330 MachineBasicBlock *FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +0000331 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson940f83e2008-08-26 18:03:31 +0000332 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Andersond10fd972007-12-31 06:32:00 +0000333 MachineBasicBlock::iterator MI,
334 unsigned DestReg, unsigned SrcReg,
335 const TargetRegisterClass *DestRC,
336 const TargetRegisterClass *SrcRC) const;
Owen Andersonf6372aa2008-01-01 21:11:32 +0000337 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
338 MachineBasicBlock::iterator MI,
339 unsigned SrcReg, bool isKill, int FrameIndex,
340 const TargetRegisterClass *RC) const;
341
342 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
343 SmallVectorImpl<MachineOperand> &Addr,
344 const TargetRegisterClass *RC,
345 SmallVectorImpl<MachineInstr*> &NewMIs) const;
346
347 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
348 MachineBasicBlock::iterator MI,
349 unsigned DestReg, int FrameIndex,
350 const TargetRegisterClass *RC) const;
351
352 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
353 SmallVectorImpl<MachineOperand> &Addr,
354 const TargetRegisterClass *RC,
355 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Andersond94b6a12008-01-04 23:57:37 +0000356
357 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
358 MachineBasicBlock::iterator MI,
359 const std::vector<CalleeSavedInfo> &CSI) const;
360
361 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
362 MachineBasicBlock::iterator MI,
363 const std::vector<CalleeSavedInfo> &CSI) const;
364
Owen Anderson43dbe052008-01-07 01:35:02 +0000365 /// foldMemoryOperand - If this target supports it, fold a load or store of
366 /// the specified stack slot into the specified machine instruction for the
367 /// specified operand(s). If this is possible, the target should perform the
368 /// folding and return true, otherwise it should return false. If it folds
369 /// the instruction, it is likely that the MachineInstruction the iterator
370 /// references has been changed.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000371 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
372 MachineInstr* MI,
373 const SmallVectorImpl<unsigned> &Ops,
374 int FrameIndex) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000375
376 /// foldMemoryOperand - Same as the previous version except it allows folding
377 /// of any load and store from / to any address, not just from a specific
378 /// stack slot.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000379 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
380 MachineInstr* MI,
381 const SmallVectorImpl<unsigned> &Ops,
382 MachineInstr* LoadMI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000383
384 /// canFoldMemoryOperand - Returns true if the specified load / store is
385 /// folding is possible.
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000386 virtual bool canFoldMemoryOperand(const MachineInstr*,
387 const SmallVectorImpl<unsigned> &) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000388
389 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
390 /// a store or a load and a store into two or more instruction. If this is
391 /// possible, returns true as well as the new instructions by reference.
392 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
393 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
394 SmallVectorImpl<MachineInstr*> &NewMIs) const;
395
396 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
397 SmallVectorImpl<SDNode*> &NewNodes) const;
398
399 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
400 /// instruction after load / store are unfolded from an instruction of the
401 /// specified opcode. It returns zero if the specified unfolding is not
402 /// possible.
403 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
404 bool UnfoldLoad, bool UnfoldStore) const;
405
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000406 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Anderson44eb65c2008-08-14 22:49:33 +0000407 virtual
408 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000409
Evan Cheng23066282008-10-27 07:14:50 +0000410 /// IgnoreRegisterClassBarriers - Returns true if pre-register allocation
411 /// live interval splitting pass should ignore barriers of the specified
412 /// register class.
413 bool IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const;
414
Evan Cheng25ab6902006-09-08 06:48:29 +0000415 const TargetRegisterClass *getPointerRegClass() const;
416
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000417 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sandsee465742007-08-29 19:01:20 +0000418 // specified machine instruction.
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000419 //
Chris Lattner749c6f62008-01-07 07:27:27 +0000420 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Evan Cheng19f2ffc2006-12-05 04:01:03 +0000421 return TID->TSFlags >> X86II::OpcodeShift;
Chris Lattner4d18d5c2003-08-03 21:56:22 +0000422 }
Chris Lattnercc8cd0c2008-01-07 02:48:55 +0000423 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sandsee465742007-08-29 19:01:20 +0000424 return getBaseOpcodeFor(&get(Opcode));
425 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000426
427 static bool isX86_64NonExtLowByteReg(unsigned reg) {
428 return (reg == X86::SPL || reg == X86::BPL ||
429 reg == X86::SIL || reg == X86::DIL);
430 }
431
432 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000433 static bool isX86_64ExtendedReg(const MachineOperand &MO);
434 static unsigned determineREX(const MachineInstr &MI);
435
436 /// GetInstSize - Returns the size of the specified MachineInstr.
437 ///
438 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000439
Dan Gohman57c3dac2008-09-30 00:58:23 +0000440 /// getGlobalBaseReg - Return a virtual register initialized with the
441 /// the global base register value. Output instructions required to
442 /// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +0000443 ///
Dan Gohman57c3dac2008-09-30 00:58:23 +0000444 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohman8b746962008-09-23 18:22:58 +0000445
Owen Anderson43dbe052008-01-07 01:35:02 +0000446private:
Dan Gohmanc54baa22008-12-03 18:43:12 +0000447 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
448 MachineInstr* MI,
449 unsigned OpNum,
Dan Gohmand68a0762009-01-05 17:59:02 +0000450 const SmallVectorImpl<MachineOperand> &MOs) const;
Chris Lattner72614082002-10-25 22:55:53 +0000451};
452
Brian Gaeked0fde302003-11-11 22:41:34 +0000453} // End llvm namespace
454
Chris Lattner72614082002-10-25 22:55:53 +0000455#endif