blob: 3a474a554d4c5de0151f7aeec055c976a44d81ec [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
Bill Wendlingb4d076e2011-10-11 06:41:28 +000038 <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000039 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Eli Friedman35b54aa2011-07-20 21:35:53 +000056 <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
Eli Friedmanc9a551e2011-07-28 21:48:00 +000057 <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000058 </ol>
59 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000060 <li><a href="#typesystem">Type System</a>
61 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000062 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000063 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000064 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000065 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000067 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000068 <li><a href="#t_void">Void Type</a></li>
69 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000070 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 </ol>
72 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000073 <li><a href="#t_derived">Derived Types</a>
74 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000075 <li><a href="#t_aggregate">Aggregate Types</a>
76 <ol>
77 <li><a href="#t_array">Array Type</a></li>
78 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattner2a843822011-07-23 19:59:08 +000079 <li><a href="#t_opaque">Opaque Structure Types</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000080 <li><a href="#t_vector">Vector Type</a></li>
81 </ol>
82 </li>
Misha Brukman76307852003-11-08 01:05:38 +000083 <li><a href="#t_function">Function Type</a></li>
84 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000085 </ol>
86 </li>
87 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohman9a2a0932011-12-06 03:18:47 +000095 <li><a href="#poisonvalues">Poison Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
104 <ol>
105 <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
Duncan Sands34bd91a2012-04-14 12:36:06 +0000106 <li><a href="#fpmath">'<tt>fpmath</tt>' Metadata</a></li>
Rafael Espindolaef9f5502012-03-24 00:14:51 +0000107 <li><a href="#range">'<tt>range</tt>' Metadata</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000108 </ol>
109 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000110 </ol>
111 </li>
Bill Wendling911fdf42012-02-11 11:59:36 +0000112 <li><a href="#module_flags">Module Flags Metadata</a>
113 <ol>
Bill Wendling73462772012-02-16 01:10:50 +0000114 <li><a href="#objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a></li>
Bill Wendling911fdf42012-02-11 11:59:36 +0000115 </ol>
116 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000117 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
118 <ol>
119 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000120 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
121 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000122 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
123 Global Variable</a></li>
124 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
125 Global Variable</a></li>
126 </ol>
127 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000128 <li><a href="#instref">Instruction Reference</a>
129 <ol>
130 <li><a href="#terminators">Terminator Instructions</a>
131 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
133 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000134 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000135 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000136 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Bill Wendlingf891bf82011-07-31 06:30:59 +0000137 <li><a href="#i_resume">'<tt>resume</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000138 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000139 </ol>
140 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000141 <li><a href="#binaryops">Binary Operations</a>
142 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000143 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000144 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000145 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000146 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000147 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000148 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000149 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
150 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
151 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000152 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
153 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
154 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000155 </ol>
156 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000157 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
158 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000159 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
160 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
161 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000162 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000163 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000164 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000165 </ol>
166 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000167 <li><a href="#vectorops">Vector Operations</a>
168 <ol>
169 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
170 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
171 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000172 </ol>
173 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000174 <li><a href="#aggregateops">Aggregate Operations</a>
175 <ol>
176 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
177 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
178 </ol>
179 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000180 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000181 <ol>
Eli Friedmanc9a551e2011-07-28 21:48:00 +0000182 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
183 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
184 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
185 <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
186 <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
187 <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000188 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000189 </ol>
190 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000191 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000192 <ol>
193 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
194 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
195 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
196 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
197 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000198 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
199 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
200 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
201 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000202 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
203 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000204 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000205 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000206 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000207 <li><a href="#otherops">Other Operations</a>
208 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000209 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
210 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000211 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000212 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000213 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000214 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +0000215 <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000216 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000217 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000218 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000219 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000220 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000221 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000222 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
223 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000224 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
225 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
226 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000227 </ol>
228 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000229 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
230 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000231 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
232 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
233 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000234 </ol>
235 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000236 <li><a href="#int_codegen">Code Generator Intrinsics</a>
237 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000238 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
239 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
240 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
241 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
242 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
243 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000244 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000245 </ol>
246 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000247 <li><a href="#int_libc">Standard C Library Intrinsics</a>
248 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000249 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
250 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
251 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
252 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
253 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000254 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
255 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
256 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmane635c522011-05-27 00:36:31 +0000257 <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
258 <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
Cameron Zwarichf03fa182011-07-08 21:39:21 +0000259 <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000260 </ol>
261 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000262 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000263 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000264 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000265 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
266 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
267 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000268 </ol>
269 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000270 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
271 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000272 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
273 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
274 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
275 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
276 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000277 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000278 </ol>
279 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000280 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
281 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000282 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
283 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000284 </ol>
285 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000286 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000287 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000288 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000289 <ol>
290 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000291 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000292 </ol>
293 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000294 <li><a href="#int_memorymarkers">Memory Use Markers</a>
295 <ol>
Jakub Staszak5fd147f2011-12-04 20:44:25 +0000296 <li><a href="#int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a></li>
297 <li><a href="#int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a></li>
298 <li><a href="#int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a></li>
299 <li><a href="#int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a></li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000300 </ol>
301 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000302 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000303 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000304 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000305 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000306 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000307 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000308 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000309 '<tt>llvm.trap</tt>' Intrinsic</a></li>
310 <li><a href="#int_stackprotector">
311 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000312 <li><a href="#int_objectsize">
313 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Jakub Staszak5fef7922011-12-04 18:29:26 +0000314 <li><a href="#int_expect">
315 '<tt>llvm.expect</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000316 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000317 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000318 </ol>
319 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000320</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000321
322<div class="doc_author">
323 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
324 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000325</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000326
Chris Lattner2f7c9632001-06-06 20:29:01 +0000327<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000328<h2><a name="abstract">Abstract</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000329<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000330
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000331<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000332
333<p>This document is a reference manual for the LLVM assembly language. LLVM is
334 a Static Single Assignment (SSA) based representation that provides type
335 safety, low-level operations, flexibility, and the capability of representing
336 'all' high-level languages cleanly. It is the common code representation
337 used throughout all phases of the LLVM compilation strategy.</p>
338
Misha Brukman76307852003-11-08 01:05:38 +0000339</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000340
Chris Lattner2f7c9632001-06-06 20:29:01 +0000341<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000342<h2><a name="introduction">Introduction</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000343<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000344
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000345<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000346
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000347<p>The LLVM code representation is designed to be used in three different forms:
348 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
349 for fast loading by a Just-In-Time compiler), and as a human readable
350 assembly language representation. This allows LLVM to provide a powerful
351 intermediate representation for efficient compiler transformations and
352 analysis, while providing a natural means to debug and visualize the
353 transformations. The three different forms of LLVM are all equivalent. This
354 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000355
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000356<p>The LLVM representation aims to be light-weight and low-level while being
357 expressive, typed, and extensible at the same time. It aims to be a
358 "universal IR" of sorts, by being at a low enough level that high-level ideas
359 may be cleanly mapped to it (similar to how microprocessors are "universal
360 IR's", allowing many source languages to be mapped to them). By providing
361 type information, LLVM can be used as the target of optimizations: for
362 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000363 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000364 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000365
Chris Lattner2f7c9632001-06-06 20:29:01 +0000366<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000367<h4>
368 <a name="wellformed">Well-Formedness</a>
369</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000370
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000371<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000372
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000373<p>It is important to note that this document describes 'well formed' LLVM
374 assembly language. There is a difference between what the parser accepts and
375 what is considered 'well formed'. For example, the following instruction is
376 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000377
Benjamin Kramer79698be2010-07-13 12:26:09 +0000378<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000379%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000380</pre>
381
Bill Wendling7f4a3362009-11-02 00:24:16 +0000382<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
383 LLVM infrastructure provides a verification pass that may be used to verify
384 that an LLVM module is well formed. This pass is automatically run by the
385 parser after parsing input assembly and by the optimizer before it outputs
386 bitcode. The violations pointed out by the verifier pass indicate bugs in
387 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000388
Bill Wendling3716c5d2007-05-29 09:04:49 +0000389</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000390
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000391</div>
392
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000393<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000394
Chris Lattner2f7c9632001-06-06 20:29:01 +0000395<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000396<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000397<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000398
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000399<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000400
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000401<p>LLVM identifiers come in two basic types: global and local. Global
402 identifiers (functions, global variables) begin with the <tt>'@'</tt>
403 character. Local identifiers (register names, types) begin with
404 the <tt>'%'</tt> character. Additionally, there are three different formats
405 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000406
Chris Lattner2f7c9632001-06-06 20:29:01 +0000407<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000408 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000409 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
410 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
411 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
412 other characters in their names can be surrounded with quotes. Special
413 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
414 ASCII code for the character in hexadecimal. In this way, any character
415 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000416
Reid Spencerb23b65f2007-08-07 14:34:28 +0000417 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000418 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000419
Reid Spencer8f08d802004-12-09 18:02:53 +0000420 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000421 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000422</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000423
Reid Spencerb23b65f2007-08-07 14:34:28 +0000424<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000425 don't need to worry about name clashes with reserved words, and the set of
426 reserved words may be expanded in the future without penalty. Additionally,
427 unnamed identifiers allow a compiler to quickly come up with a temporary
428 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000429
Chris Lattner48b383b02003-11-25 01:02:51 +0000430<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000431 languages. There are keywords for different opcodes
432 ('<tt><a href="#i_add">add</a></tt>',
433 '<tt><a href="#i_bitcast">bitcast</a></tt>',
434 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
435 ('<tt><a href="#t_void">void</a></tt>',
436 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
437 reserved words cannot conflict with variable names, because none of them
438 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000439
440<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000441 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000442
Misha Brukman76307852003-11-08 01:05:38 +0000443<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000444
Benjamin Kramer79698be2010-07-13 12:26:09 +0000445<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000446%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000447</pre>
448
Misha Brukman76307852003-11-08 01:05:38 +0000449<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000450
Benjamin Kramer79698be2010-07-13 12:26:09 +0000451<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000452%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000453</pre>
454
Misha Brukman76307852003-11-08 01:05:38 +0000455<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000456
Benjamin Kramer79698be2010-07-13 12:26:09 +0000457<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000458%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
459%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000460%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000461</pre>
462
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000463<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
464 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000465
Chris Lattner2f7c9632001-06-06 20:29:01 +0000466<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000467 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000468 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000469
470 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000471 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000472
Misha Brukman76307852003-11-08 01:05:38 +0000473 <li>Unnamed temporaries are numbered sequentially</li>
474</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000475
Bill Wendling7f4a3362009-11-02 00:24:16 +0000476<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000477 demonstrating instructions, we will follow an instruction with a comment that
478 defines the type and name of value produced. Comments are shown in italic
479 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000480
Misha Brukman76307852003-11-08 01:05:38 +0000481</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000482
483<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000484<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattner6af02f32004-12-09 16:11:40 +0000485<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000486<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000487<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000488<h3>
489 <a name="modulestructure">Module Structure</a>
490</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000491
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000492<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000493
Bill Wendling21ee0d22012-03-14 08:07:43 +0000494<p>LLVM programs are composed of <tt>Module</tt>s, each of which is a
495 translation unit of the input programs. Each module consists of functions,
496 global variables, and symbol table entries. Modules may be combined together
497 with the LLVM linker, which merges function (and global variable)
498 definitions, resolves forward declarations, and merges symbol table
499 entries. Here is an example of the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000500
Benjamin Kramer79698be2010-07-13 12:26:09 +0000501<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000502<i>; Declare the string constant as a global constant.</i>&nbsp;
Bill Wendling21ee0d22012-03-14 08:07:43 +0000503<a href="#identifiers">@.str</a> = <a href="#linkage_private">private</a>&nbsp;<a href="#globalvars">unnamed_addr</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000504
Chris Lattner54a7be72010-08-17 17:13:42 +0000505<i>; External declaration of the puts function</i>&nbsp;
Bill Wendling21ee0d22012-03-14 08:07:43 +0000506<a href="#functionstructure">declare</a> i32 @puts(i8* <a href="#nocapture">nocapture</a>) <a href="#fnattrs">nounwind</a>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000507
508<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000509define i32 @main() { <i>; i32()* </i>&nbsp;
510 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
Bill Wendling21ee0d22012-03-14 08:07:43 +0000511 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.str, i64 0, i64 0
Chris Lattner6af02f32004-12-09 16:11:40 +0000512
Chris Lattner54a7be72010-08-17 17:13:42 +0000513 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
Bill Wendling21ee0d22012-03-14 08:07:43 +0000514 <a href="#i_call">call</a> i32 @puts(i8* %cast210)
Chris Lattner54a7be72010-08-17 17:13:42 +0000515 <a href="#i_ret">ret</a> i32 0&nbsp;
516}
Devang Pateld1a89692010-01-11 19:35:55 +0000517
518<i>; Named metadata</i>
Bill Wendling21ee0d22012-03-14 08:07:43 +0000519!1 = metadata !{i32 42}
Devang Pateld1a89692010-01-11 19:35:55 +0000520!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000521</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000522
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000523<p>This example is made up of a <a href="#globalvars">global variable</a> named
Bill Wendling21ee0d22012-03-14 08:07:43 +0000524 "<tt>.str</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000525 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000526 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
Bill Wendling21ee0d22012-03-14 08:07:43 +0000527 "<tt>foo</tt>".</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000528
Bill Wendling21ee0d22012-03-14 08:07:43 +0000529<p>In general, a module is made up of a list of global values (where both
530 functions and global variables are global values). Global values are
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000531 represented by a pointer to a memory location (in this case, a pointer to an
532 array of char, and a pointer to a function), and have one of the
533 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000534
Chris Lattnerd79749a2004-12-09 16:36:40 +0000535</div>
536
537<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000538<h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000539 <a name="linkage">Linkage Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000540</h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000541
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000542<div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000543
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000544<p>All Global Variables and Functions have one of the following types of
545 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000546
547<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000548 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000549 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
550 by objects in the current module. In particular, linking code into a
551 module with an private global value may cause the private to be renamed as
552 necessary to avoid collisions. Because the symbol is private to the
553 module, all references can be updated. This doesn't show up in any symbol
554 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000555
Bill Wendling7f4a3362009-11-02 00:24:16 +0000556 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000557 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
558 assembler and evaluated by the linker. Unlike normal strong symbols, they
559 are removed by the linker from the final linked image (executable or
560 dynamic library).</dd>
561
562 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
563 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
564 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
565 linker. The symbols are removed by the linker from the final linked image
566 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000567
Bill Wendling578ee402010-08-20 22:05:50 +0000568 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
569 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
570 of the object is not taken. For instance, functions that had an inline
571 definition, but the compiler decided not to inline it. Note,
572 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
573 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
574 visibility. The symbols are removed by the linker from the final linked
575 image (executable or dynamic library).</dd>
576
Bill Wendling7f4a3362009-11-02 00:24:16 +0000577 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000578 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000579 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
580 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000581
Bill Wendling7f4a3362009-11-02 00:24:16 +0000582 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000583 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000584 into the object file corresponding to the LLVM module. They exist to
585 allow inlining and other optimizations to take place given knowledge of
586 the definition of the global, which is known to be somewhere outside the
587 module. Globals with <tt>available_externally</tt> linkage are allowed to
588 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
589 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000590
Bill Wendling7f4a3362009-11-02 00:24:16 +0000591 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000592 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000593 the same name when linkage occurs. This can be used to implement
594 some forms of inline functions, templates, or other code which must be
595 generated in each translation unit that uses it, but where the body may
596 be overridden with a more definitive definition later. Unreferenced
597 <tt>linkonce</tt> globals are allowed to be discarded. Note that
598 <tt>linkonce</tt> linkage does not actually allow the optimizer to
599 inline the body of this function into callers because it doesn't know if
600 this definition of the function is the definitive definition within the
601 program or whether it will be overridden by a stronger definition.
602 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
603 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000604
Bill Wendling7f4a3362009-11-02 00:24:16 +0000605 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000606 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
607 <tt>linkonce</tt> linkage, except that unreferenced globals with
608 <tt>weak</tt> linkage may not be discarded. This is used for globals that
609 are declared "weak" in C source code.</dd>
610
Bill Wendling7f4a3362009-11-02 00:24:16 +0000611 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000612 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
613 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
614 global scope.
615 Symbols with "<tt>common</tt>" linkage are merged in the same way as
616 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000617 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000618 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000619 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
620 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000621
Chris Lattnerd79749a2004-12-09 16:36:40 +0000622
Bill Wendling7f4a3362009-11-02 00:24:16 +0000623 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000624 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000625 pointer to array type. When two global variables with appending linkage
626 are linked together, the two global arrays are appended together. This is
627 the LLVM, typesafe, equivalent of having the system linker append together
628 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000629
Bill Wendling7f4a3362009-11-02 00:24:16 +0000630 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000631 <dd>The semantics of this linkage follow the ELF object file model: the symbol
632 is weak until linked, if not linked, the symbol becomes null instead of
633 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000634
Bill Wendling7f4a3362009-11-02 00:24:16 +0000635 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
636 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000637 <dd>Some languages allow differing globals to be merged, such as two functions
638 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000639 that only equivalent globals are ever merged (the "one definition rule"
640 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000641 and <tt>weak_odr</tt> linkage types to indicate that the global will only
642 be merged with equivalent globals. These linkage types are otherwise the
643 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000644
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000645 <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000646 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000647 visible, meaning that it participates in linkage and can be used to
648 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000649</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000650
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000651<p>The next two types of linkage are targeted for Microsoft Windows platform
652 only. They are designed to support importing (exporting) symbols from (to)
653 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000654
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000655<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000656 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000657 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000658 or variable via a global pointer to a pointer that is set up by the DLL
659 exporting the symbol. On Microsoft Windows targets, the pointer name is
660 formed by combining <code>__imp_</code> and the function or variable
661 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000662
Bill Wendling7f4a3362009-11-02 00:24:16 +0000663 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000664 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000665 pointer to a pointer in a DLL, so that it can be referenced with the
666 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
667 name is formed by combining <code>__imp_</code> and the function or
668 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000669</dl>
670
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000671<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
672 another module defined a "<tt>.LC0</tt>" variable and was linked with this
673 one, one of the two would be renamed, preventing a collision. Since
674 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
675 declarations), they are accessible outside of the current module.</p>
676
677<p>It is illegal for a function <i>declaration</i> to have any linkage type
Bill Wendlingb4d076e2011-10-11 06:41:28 +0000678 other than <tt>external</tt>, <tt>dllimport</tt>
679 or <tt>extern_weak</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000680
Duncan Sands12da8ce2009-03-07 15:45:40 +0000681<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000682 or <tt>weak_odr</tt> linkages.</p>
683
Chris Lattner6af02f32004-12-09 16:11:40 +0000684</div>
685
686<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000687<h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000688 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000689</h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000690
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000691<div>
Chris Lattner0132aff2005-05-06 22:57:40 +0000692
693<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000694 and <a href="#i_invoke">invokes</a> can all have an optional calling
695 convention specified for the call. The calling convention of any pair of
696 dynamic caller/callee must match, or the behavior of the program is
697 undefined. The following calling conventions are supported by LLVM, and more
698 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000699
700<dl>
701 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000702 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000703 specified) matches the target C calling conventions. This calling
704 convention supports varargs function calls and tolerates some mismatch in
705 the declared prototype and implemented declaration of the function (as
706 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000707
708 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000709 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000710 (e.g. by passing things in registers). This calling convention allows the
711 target to use whatever tricks it wants to produce fast code for the
712 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000713 (Application Binary Interface).
714 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000715 when this or the GHC convention is used.</a> This calling convention
716 does not support varargs and requires the prototype of all callees to
717 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000718
719 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000720 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000721 as possible under the assumption that the call is not commonly executed.
722 As such, these calls often preserve all registers so that the call does
723 not break any live ranges in the caller side. This calling convention
724 does not support varargs and requires the prototype of all callees to
725 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000726
Chris Lattnera179e4d2010-03-11 00:22:57 +0000727 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
728 <dd>This calling convention has been implemented specifically for use by the
729 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
730 It passes everything in registers, going to extremes to achieve this by
731 disabling callee save registers. This calling convention should not be
732 used lightly but only for specific situations such as an alternative to
733 the <em>register pinning</em> performance technique often used when
734 implementing functional programming languages.At the moment only X86
735 supports this convention and it has the following limitations:
736 <ul>
737 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
738 floating point types are supported.</li>
739 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
740 6 floating point parameters.</li>
741 </ul>
742 This calling convention supports
743 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
744 requires both the caller and callee are using it.
745 </dd>
746
Chris Lattner573f64e2005-05-07 01:46:40 +0000747 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000748 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000749 target-specific calling conventions to be used. Target specific calling
750 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000751</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000752
753<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000754 support Pascal conventions or any other well-known target-independent
755 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000756
757</div>
758
759<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000760<h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000761 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000762</h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000763
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000764<div>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000765
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000766<p>All Global Variables and Functions have one of the following visibility
767 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000768
769<dl>
770 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000771 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000772 that the declaration is visible to other modules and, in shared libraries,
773 means that the declared entity may be overridden. On Darwin, default
774 visibility means that the declaration is visible to other modules. Default
775 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000776
777 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000778 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000779 object if they are in the same shared object. Usually, hidden visibility
780 indicates that the symbol will not be placed into the dynamic symbol
781 table, so no other module (executable or shared library) can reference it
782 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000783
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000784 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000785 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000786 the dynamic symbol table, but that references within the defining module
787 will bind to the local symbol. That is, the symbol cannot be overridden by
788 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000789</dl>
790
791</div>
792
793<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000794<h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000795 <a name="namedtypes">Named Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000796</h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000797
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000798<div>
Chris Lattnerbc088212009-01-11 20:53:49 +0000799
800<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000801 it easier to read the IR and make the IR more condensed (particularly when
802 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000803
Benjamin Kramer79698be2010-07-13 12:26:09 +0000804<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000805%mytype = type { %mytype*, i32 }
806</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000807
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000808<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000809 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000810 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000811
812<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000813 and that you can therefore specify multiple names for the same type. This
814 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
815 uses structural typing, the name is not part of the type. When printing out
816 LLVM IR, the printer will pick <em>one name</em> to render all types of a
817 particular shape. This means that if you have code where two different
818 source types end up having the same LLVM type, that the dumper will sometimes
819 print the "wrong" or unexpected type. This is an important design point and
820 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000821
822</div>
823
Chris Lattnerbc088212009-01-11 20:53:49 +0000824<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000825<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000826 <a name="globalvars">Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000827</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000828
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000829<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000830
Chris Lattner5d5aede2005-02-12 19:30:21 +0000831<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000832 instead of run-time. Global variables may optionally be initialized, may
833 have an explicit section to be placed in, and may have an optional explicit
834 alignment specified. A variable may be defined as "thread_local", which
835 means that it will not be shared by threads (each thread will have a
836 separated copy of the variable). A variable may be defined as a global
837 "constant," which indicates that the contents of the variable
838 will <b>never</b> be modified (enabling better optimization, allowing the
839 global data to be placed in the read-only section of an executable, etc).
840 Note that variables that need runtime initialization cannot be marked
841 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000842
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000843<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
844 constant, even if the final definition of the global is not. This capability
845 can be used to enable slightly better optimization of the program, but
846 requires the language definition to guarantee that optimizations based on the
847 'constantness' are valid for the translation units that do not include the
848 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000849
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000850<p>As SSA values, global variables define pointer values that are in scope
851 (i.e. they dominate) all basic blocks in the program. Global variables
852 always define a pointer to their "content" type because they describe a
853 region of memory, and all memory objects in LLVM are accessed through
854 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000855
Rafael Espindola45e6c192011-01-08 16:42:36 +0000856<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
857 that the address is not significant, only the content. Constants marked
Rafael Espindolaf1ed7812011-01-15 08:20:57 +0000858 like this can be merged with other constants if they have the same
859 initializer. Note that a constant with significant address <em>can</em>
860 be merged with a <tt>unnamed_addr</tt> constant, the result being a
861 constant whose address is significant.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000862
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000863<p>A global variable may be declared to reside in a target-specific numbered
864 address space. For targets that support them, address spaces may affect how
865 optimizations are performed and/or what target instructions are used to
866 access the variable. The default address space is zero. The address space
867 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000868
Chris Lattner662c8722005-11-12 00:45:07 +0000869<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000870 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000871
Chris Lattner78e00bc2010-04-28 00:13:42 +0000872<p>An explicit alignment may be specified for a global, which must be a power
873 of 2. If not present, or if the alignment is set to zero, the alignment of
874 the global is set by the target to whatever it feels convenient. If an
875 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000876 alignment. Targets and optimizers are not allowed to over-align the global
877 if the global has an assigned section. In this case, the extra alignment
878 could be observable: for example, code could assume that the globals are
879 densely packed in their section and try to iterate over them as an array,
880 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000881
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000882<p>For example, the following defines a global in a numbered address space with
883 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000884
Benjamin Kramer79698be2010-07-13 12:26:09 +0000885<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000886@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000887</pre>
888
Chris Lattner6af02f32004-12-09 16:11:40 +0000889</div>
890
891
892<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000893<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000894 <a name="functionstructure">Functions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000895</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000896
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000897<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000898
Dan Gohmana269a0a2010-03-01 17:41:39 +0000899<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000900 optional <a href="#linkage">linkage type</a>, an optional
901 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000902 <a href="#callingconv">calling convention</a>,
903 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000904 <a href="#paramattrs">parameter attribute</a> for the return type, a function
905 name, a (possibly empty) argument list (each with optional
906 <a href="#paramattrs">parameter attributes</a>), optional
907 <a href="#fnattrs">function attributes</a>, an optional section, an optional
908 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
909 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000910
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000911<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
912 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000913 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000914 <a href="#callingconv">calling convention</a>,
915 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000916 <a href="#paramattrs">parameter attribute</a> for the return type, a function
917 name, a possibly empty list of arguments, an optional alignment, and an
918 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000919
Chris Lattner67c37d12008-08-05 18:29:16 +0000920<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000921 (Control Flow Graph) for the function. Each basic block may optionally start
922 with a label (giving the basic block a symbol table entry), contains a list
923 of instructions, and ends with a <a href="#terminators">terminator</a>
924 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000925
Chris Lattnera59fb102007-06-08 16:52:14 +0000926<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000927 executed on entrance to the function, and it is not allowed to have
928 predecessor basic blocks (i.e. there can not be any branches to the entry
929 block of a function). Because the block can have no predecessors, it also
930 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000931
Chris Lattner662c8722005-11-12 00:45:07 +0000932<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000933 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000934
Chris Lattner54611b42005-11-06 08:02:57 +0000935<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000936 the alignment is set to zero, the alignment of the function is set by the
937 target to whatever it feels convenient. If an explicit alignment is
938 specified, the function is forced to have at least that much alignment. All
939 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000940
Rafael Espindola45e6c192011-01-08 16:42:36 +0000941<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000942 be significant and two identical functions can be merged.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000943
Bill Wendling30235112009-07-20 02:39:26 +0000944<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000945<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000946define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000947 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
948 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
949 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
950 [<a href="#gc">gc</a>] { ... }
951</pre>
Devang Patel02256232008-10-07 17:48:33 +0000952
Chris Lattner6af02f32004-12-09 16:11:40 +0000953</div>
954
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000955<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000956<h3>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000957 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000958</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000959
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000960<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000961
962<p>Aliases act as "second name" for the aliasee value (which can be either
963 function, global variable, another alias or bitcast of global value). Aliases
964 may have an optional <a href="#linkage">linkage type</a>, and an
965 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000966
Bill Wendling30235112009-07-20 02:39:26 +0000967<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000968<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +0000969@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000970</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000971
972</div>
973
Chris Lattner91c15c42006-01-23 23:23:47 +0000974<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000975<h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000976 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000977</h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000978
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000979<div>
Devang Pateld1a89692010-01-11 19:35:55 +0000980
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000981<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +0000982 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000983 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000984
985<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000986<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +0000987; Some unnamed metadata nodes, which are referenced by the named metadata.
988!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +0000989!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +0000990!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +0000991; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +0000992!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +0000993</pre>
Devang Pateld1a89692010-01-11 19:35:55 +0000994
995</div>
996
997<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000998<h3>
999 <a name="paramattrs">Parameter Attributes</a>
1000</h3>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001001
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001002<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001003
1004<p>The return type and each parameter of a function type may have a set of
1005 <i>parameter attributes</i> associated with them. Parameter attributes are
1006 used to communicate additional information about the result or parameters of
1007 a function. Parameter attributes are considered to be part of the function,
1008 not of the function type, so functions with different parameter attributes
1009 can have the same function type.</p>
1010
1011<p>Parameter attributes are simple keywords that follow the type specified. If
1012 multiple parameter attributes are needed, they are space separated. For
1013 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001014
Benjamin Kramer79698be2010-07-13 12:26:09 +00001015<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +00001016declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +00001017declare i32 @atoi(i8 zeroext)
1018declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +00001019</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001020
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001021<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1022 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001023
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001024<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001025
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001026<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001027 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001028 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichac106272011-03-16 22:20:18 +00001029 should be zero-extended to the extent required by the target's ABI (which
1030 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1031 parameter) or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001032
Bill Wendling7f4a3362009-11-02 00:24:16 +00001033 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001034 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich341c36d2011-03-17 14:21:58 +00001035 should be sign-extended to the extent required by the target's ABI (which
1036 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1037 return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001038
Bill Wendling7f4a3362009-11-02 00:24:16 +00001039 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001040 <dd>This indicates that this parameter or return value should be treated in a
1041 special target-dependent fashion during while emitting code for a function
1042 call or return (usually, by putting it in a register as opposed to memory,
1043 though some targets use it to distinguish between two different kinds of
1044 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001045
Bill Wendling7f4a3362009-11-02 00:24:16 +00001046 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001047 <dd><p>This indicates that the pointer parameter should really be passed by
1048 value to the function. The attribute implies that a hidden copy of the
1049 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001050 is made between the caller and the callee, so the callee is unable to
1051 modify the value in the callee. This attribute is only valid on LLVM
1052 pointer arguments. It is generally used to pass structs and arrays by
1053 value, but is also valid on pointers to scalars. The copy is considered
1054 to belong to the caller not the callee (for example,
1055 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1056 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001057 values.</p>
1058
1059 <p>The byval attribute also supports specifying an alignment with
1060 the align attribute. It indicates the alignment of the stack slot to
1061 form and the known alignment of the pointer specified to the call site. If
1062 the alignment is not specified, then the code generator makes a
1063 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001064
Dan Gohman3770af52010-07-02 23:18:08 +00001065 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001066 <dd>This indicates that the pointer parameter specifies the address of a
1067 structure that is the return value of the function in the source program.
1068 This pointer must be guaranteed by the caller to be valid: loads and
1069 stores to the structure may be assumed by the callee to not to trap. This
1070 may only be applied to the first parameter. This is not a valid attribute
1071 for return values. </dd>
1072
Dan Gohman3770af52010-07-02 23:18:08 +00001073 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001074 <dd>This indicates that pointer values
1075 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001076 value do not alias pointer values which are not <i>based</i> on it,
1077 ignoring certain "irrelevant" dependencies.
1078 For a call to the parent function, dependencies between memory
1079 references from before or after the call and from those during the call
1080 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1081 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001082 The caller shares the responsibility with the callee for ensuring that
1083 these requirements are met.
1084 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001085 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1086<br>
John McCall72ed8902010-07-06 21:07:14 +00001087 Note that this definition of <tt>noalias</tt> is intentionally
1088 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001089 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001090<br>
1091 For function return values, C99's <tt>restrict</tt> is not meaningful,
1092 while LLVM's <tt>noalias</tt> is.
1093 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001094
Dan Gohman3770af52010-07-02 23:18:08 +00001095 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001096 <dd>This indicates that the callee does not make any copies of the pointer
1097 that outlive the callee itself. This is not a valid attribute for return
1098 values.</dd>
1099
Dan Gohman3770af52010-07-02 23:18:08 +00001100 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001101 <dd>This indicates that the pointer parameter can be excised using the
1102 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1103 attribute for return values.</dd>
1104</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001105
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001106</div>
1107
1108<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001109<h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001110 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001111</h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001112
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001113<div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001114
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001115<p>Each function may specify a garbage collector name, which is simply a
1116 string:</p>
1117
Benjamin Kramer79698be2010-07-13 12:26:09 +00001118<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001119define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001120</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001121
1122<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001123 collector which will cause the compiler to alter its output in order to
1124 support the named garbage collection algorithm.</p>
1125
Gordon Henriksen71183b62007-12-10 03:18:06 +00001126</div>
1127
1128<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001129<h3>
Devang Patel9eb525d2008-09-26 23:51:19 +00001130 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001131</h3>
Devang Patelcaacdba2008-09-04 23:05:13 +00001132
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001133<div>
Devang Patel9eb525d2008-09-26 23:51:19 +00001134
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001135<p>Function attributes are set to communicate additional information about a
1136 function. Function attributes are considered to be part of the function, not
1137 of the function type, so functions with different parameter attributes can
1138 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001139
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001140<p>Function attributes are simple keywords that follow the type specified. If
1141 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001142
Benjamin Kramer79698be2010-07-13 12:26:09 +00001143<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001144define void @f() noinline { ... }
1145define void @f() alwaysinline { ... }
1146define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001147define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001148</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001149
Bill Wendlingb175fa42008-09-07 10:26:33 +00001150<dl>
Kostya Serebryanya5054ad2012-01-20 17:56:17 +00001151 <dt><tt><b>address_safety</b></tt></dt>
1152 <dd>This attribute indicates that the address safety analysis
1153 is enabled for this function. </dd>
1154
Charles Davisbe5557e2010-02-12 00:31:15 +00001155 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1156 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1157 the backend should forcibly align the stack pointer. Specify the
1158 desired alignment, which must be a power of two, in parentheses.
1159
Bill Wendling7f4a3362009-11-02 00:24:16 +00001160 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001161 <dd>This attribute indicates that the inliner should attempt to inline this
1162 function into callers whenever possible, ignoring any active inlining size
1163 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001164
Dan Gohman8bd11f12011-06-16 16:03:13 +00001165 <dt><tt><b>nonlazybind</b></tt></dt>
1166 <dd>This attribute suppresses lazy symbol binding for the function. This
1167 may make calls to the function faster, at the cost of extra program
1168 startup time if the function is not called during program startup.</dd>
1169
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001170 <dt><tt><b>inlinehint</b></tt></dt>
1171 <dd>This attribute indicates that the source code contained a hint that inlining
1172 this function is desirable (such as the "inline" keyword in C/C++). It
1173 is just a hint; it imposes no requirements on the inliner.</dd>
1174
Nick Lewycky14b58da2010-07-06 18:24:09 +00001175 <dt><tt><b>naked</b></tt></dt>
1176 <dd>This attribute disables prologue / epilogue emission for the function.
1177 This can have very system-specific consequences.</dd>
1178
1179 <dt><tt><b>noimplicitfloat</b></tt></dt>
1180 <dd>This attributes disables implicit floating point instructions.</dd>
1181
Bill Wendling7f4a3362009-11-02 00:24:16 +00001182 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001183 <dd>This attribute indicates that the inliner should never inline this
1184 function in any situation. This attribute may not be used together with
1185 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001186
Nick Lewycky14b58da2010-07-06 18:24:09 +00001187 <dt><tt><b>noredzone</b></tt></dt>
1188 <dd>This attribute indicates that the code generator should not use a red
1189 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001190
Bill Wendling7f4a3362009-11-02 00:24:16 +00001191 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001192 <dd>This function attribute indicates that the function never returns
1193 normally. This produces undefined behavior at runtime if the function
1194 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001195
Bill Wendling7f4a3362009-11-02 00:24:16 +00001196 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001197 <dd>This function attribute indicates that the function never returns with an
1198 unwind or exceptional control flow. If the function does unwind, its
1199 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001200
Nick Lewycky14b58da2010-07-06 18:24:09 +00001201 <dt><tt><b>optsize</b></tt></dt>
1202 <dd>This attribute suggests that optimization passes and code generator passes
1203 make choices that keep the code size of this function low, and otherwise
1204 do optimizations specifically to reduce code size.</dd>
1205
Bill Wendling7f4a3362009-11-02 00:24:16 +00001206 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001207 <dd>This attribute indicates that the function computes its result (or decides
1208 to unwind an exception) based strictly on its arguments, without
1209 dereferencing any pointer arguments or otherwise accessing any mutable
1210 state (e.g. memory, control registers, etc) visible to caller functions.
1211 It does not write through any pointer arguments
1212 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1213 changes any state visible to callers. This means that it cannot unwind
Bill Wendling3f6a3a22012-02-06 21:57:33 +00001214 exceptions by calling the <tt>C++</tt> exception throwing methods.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001215
Bill Wendling7f4a3362009-11-02 00:24:16 +00001216 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001217 <dd>This attribute indicates that the function does not write through any
1218 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1219 arguments) or otherwise modify any state (e.g. memory, control registers,
1220 etc) visible to caller functions. It may dereference pointer arguments
1221 and read state that may be set in the caller. A readonly function always
1222 returns the same value (or unwinds an exception identically) when called
1223 with the same set of arguments and global state. It cannot unwind an
Bill Wendling3f6a3a22012-02-06 21:57:33 +00001224 exception by calling the <tt>C++</tt> exception throwing methods.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001225
Bill Wendlingb437ab82011-12-05 21:27:54 +00001226 <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1227 <dd>This attribute indicates that this function can return twice. The
1228 C <code>setjmp</code> is an example of such a function. The compiler
1229 disables some optimizations (like tail calls) in the caller of these
1230 functions.</dd>
1231
Bill Wendling7f4a3362009-11-02 00:24:16 +00001232 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001233 <dd>This attribute indicates that the function should emit a stack smashing
1234 protector. It is in the form of a "canary"&mdash;a random value placed on
1235 the stack before the local variables that's checked upon return from the
1236 function to see if it has been overwritten. A heuristic is used to
1237 determine if a function needs stack protectors or not.<br>
1238<br>
1239 If a function that has an <tt>ssp</tt> attribute is inlined into a
1240 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1241 function will have an <tt>ssp</tt> attribute.</dd>
1242
Bill Wendling7f4a3362009-11-02 00:24:16 +00001243 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001244 <dd>This attribute indicates that the function should <em>always</em> emit a
1245 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001246 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1247<br>
1248 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1249 function that doesn't have an <tt>sspreq</tt> attribute or which has
1250 an <tt>ssp</tt> attribute, then the resulting function will have
1251 an <tt>sspreq</tt> attribute.</dd>
Rafael Espindola163d6752011-07-25 15:27:59 +00001252
1253 <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1254 <dd>This attribute indicates that the ABI being targeted requires that
1255 an unwind table entry be produce for this function even if we can
1256 show that no exceptions passes by it. This is normally the case for
1257 the ELF x86-64 abi, but it can be disabled for some compilation
1258 units.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001259</dl>
1260
Devang Patelcaacdba2008-09-04 23:05:13 +00001261</div>
1262
1263<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001264<h3>
Chris Lattner93564892006-04-08 04:40:53 +00001265 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001266</h3>
Chris Lattner91c15c42006-01-23 23:23:47 +00001267
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001268<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001269
1270<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1271 the GCC "file scope inline asm" blocks. These blocks are internally
1272 concatenated by LLVM and treated as a single unit, but may be separated in
1273 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001274
Benjamin Kramer79698be2010-07-13 12:26:09 +00001275<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001276module asm "inline asm code goes here"
1277module asm "more can go here"
1278</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001279
1280<p>The strings can contain any character by escaping non-printable characters.
1281 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001282 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001283
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001284<p>The inline asm code is simply printed to the machine code .s file when
1285 assembly code is generated.</p>
1286
Chris Lattner91c15c42006-01-23 23:23:47 +00001287</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001288
Reid Spencer50c723a2007-02-19 23:54:10 +00001289<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001290<h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001291 <a name="datalayout">Data Layout</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001292</h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001293
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001294<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001295
Reid Spencer50c723a2007-02-19 23:54:10 +00001296<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001297 data is to be laid out in memory. The syntax for the data layout is
1298 simply:</p>
1299
Benjamin Kramer79698be2010-07-13 12:26:09 +00001300<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001301target datalayout = "<i>layout specification</i>"
1302</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001303
1304<p>The <i>layout specification</i> consists of a list of specifications
1305 separated by the minus sign character ('-'). Each specification starts with
1306 a letter and may include other information after the letter to define some
1307 aspect of the data layout. The specifications accepted are as follows:</p>
1308
Reid Spencer50c723a2007-02-19 23:54:10 +00001309<dl>
1310 <dt><tt>E</tt></dt>
1311 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001312 bits with the most significance have the lowest address location.</dd>
1313
Reid Spencer50c723a2007-02-19 23:54:10 +00001314 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001315 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001316 the bits with the least significance have the lowest address
1317 location.</dd>
1318
Lang Hamesde7ab802011-10-10 23:42:08 +00001319 <dt><tt>S<i>size</i></tt></dt>
1320 <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1321 of stack variables is limited to the natural stack alignment to avoid
1322 dynamic stack realignment. The stack alignment must be a multiple of
Lang Hamesff2c52c2011-10-11 17:50:14 +00001323 8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1324 which does not prevent any alignment promotions.</dd>
Lang Hamesde7ab802011-10-10 23:42:08 +00001325
Reid Spencer50c723a2007-02-19 23:54:10 +00001326 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001327 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001328 <i>preferred</i> alignments. All sizes are in bits. Specifying
1329 the <i>pref</i> alignment is optional. If omitted, the
1330 preceding <tt>:</tt> should be omitted too.</dd>
1331
Reid Spencer50c723a2007-02-19 23:54:10 +00001332 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1333 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001334 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1335
Reid Spencer50c723a2007-02-19 23:54:10 +00001336 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001337 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001338 <i>size</i>.</dd>
1339
Reid Spencer50c723a2007-02-19 23:54:10 +00001340 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001341 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001342 <i>size</i>. Only values of <i>size</i> that are supported by the target
1343 will work. 32 (float) and 64 (double) are supported on all targets;
1344 80 or 128 (different flavors of long double) are also supported on some
1345 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001346
Reid Spencer50c723a2007-02-19 23:54:10 +00001347 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1348 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001349 <i>size</i>.</dd>
1350
Daniel Dunbar7921a592009-06-08 22:17:53 +00001351 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1352 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001353 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001354
1355 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1356 <dd>This specifies a set of native integer widths for the target CPU
1357 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1358 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001359 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001360 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001361</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001362
Reid Spencer50c723a2007-02-19 23:54:10 +00001363<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001364 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001365 specifications in the <tt>datalayout</tt> keyword. The default specifications
1366 are given in this list:</p>
1367
Reid Spencer50c723a2007-02-19 23:54:10 +00001368<ul>
1369 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001370 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001371 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1372 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1373 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1374 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001375 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001376 alignment of 64-bits</li>
1377 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1378 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1379 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1380 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1381 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001382 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001383</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001384
1385<p>When LLVM is determining the alignment for a given type, it uses the
1386 following rules:</p>
1387
Reid Spencer50c723a2007-02-19 23:54:10 +00001388<ol>
1389 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001390 specification is used.</li>
1391
Reid Spencer50c723a2007-02-19 23:54:10 +00001392 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001393 smallest integer type that is larger than the bitwidth of the sought type
1394 is used. If none of the specifications are larger than the bitwidth then
1395 the the largest integer type is used. For example, given the default
1396 specifications above, the i7 type will use the alignment of i8 (next
1397 largest) while both i65 and i256 will use the alignment of i64 (largest
1398 specified).</li>
1399
Reid Spencer50c723a2007-02-19 23:54:10 +00001400 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001401 largest vector type that is smaller than the sought vector type will be
1402 used as a fall back. This happens because &lt;128 x double&gt; can be
1403 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001404</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001405
Chris Lattner48797402011-10-11 23:01:39 +00001406<p>The function of the data layout string may not be what you expect. Notably,
1407 this is not a specification from the frontend of what alignment the code
1408 generator should use.</p>
1409
1410<p>Instead, if specified, the target data layout is required to match what the
1411 ultimate <em>code generator</em> expects. This string is used by the
1412 mid-level optimizers to
1413 improve code, and this only works if it matches what the ultimate code
1414 generator uses. If you would like to generate IR that does not embed this
1415 target-specific detail into the IR, then you don't have to specify the
1416 string. This will disable some optimizations that require precise layout
1417 information, but this also prevents those optimizations from introducing
1418 target specificity into the IR.</p>
1419
1420
1421
Reid Spencer50c723a2007-02-19 23:54:10 +00001422</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001423
Dan Gohman6154a012009-07-27 18:07:55 +00001424<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001425<h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001426 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001427</h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001428
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001429<div>
Dan Gohman6154a012009-07-27 18:07:55 +00001430
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001431<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001432with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001433is undefined. Pointer values are associated with address ranges
1434according to the following rules:</p>
1435
1436<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001437 <li>A pointer value is associated with the addresses associated with
1438 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001439 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001440 range of the variable's storage.</li>
1441 <li>The result value of an allocation instruction is associated with
1442 the address range of the allocated storage.</li>
1443 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001444 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001445 <li>An integer constant other than zero or a pointer value returned
1446 from a function not defined within LLVM may be associated with address
1447 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001448 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001449 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001450</ul>
1451
1452<p>A pointer value is <i>based</i> on another pointer value according
1453 to the following rules:</p>
1454
1455<ul>
1456 <li>A pointer value formed from a
1457 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1458 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1459 <li>The result value of a
1460 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1461 of the <tt>bitcast</tt>.</li>
1462 <li>A pointer value formed by an
1463 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1464 pointer values that contribute (directly or indirectly) to the
1465 computation of the pointer's value.</li>
1466 <li>The "<i>based</i> on" relationship is transitive.</li>
1467</ul>
1468
1469<p>Note that this definition of <i>"based"</i> is intentionally
1470 similar to the definition of <i>"based"</i> in C99, though it is
1471 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001472
1473<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001474<tt><a href="#i_load">load</a></tt> merely indicates the size and
1475alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001476interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001477<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1478and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001479
1480<p>Consequently, type-based alias analysis, aka TBAA, aka
1481<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1482LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1483additional information which specialized optimization passes may use
1484to implement type-based alias analysis.</p>
1485
1486</div>
1487
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001488<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001489<h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001490 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001491</h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001492
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001493<div>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001494
1495<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1496href="#i_store"><tt>store</tt></a>s, and <a
1497href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1498The optimizers must not change the number of volatile operations or change their
1499order of execution relative to other volatile operations. The optimizers
1500<i>may</i> change the order of volatile operations relative to non-volatile
1501operations. This is not Java's "volatile" and has no cross-thread
1502synchronization behavior.</p>
1503
1504</div>
1505
Eli Friedman35b54aa2011-07-20 21:35:53 +00001506<!-- ======================================================================= -->
1507<h3>
1508 <a name="memmodel">Memory Model for Concurrent Operations</a>
1509</h3>
1510
1511<div>
1512
1513<p>The LLVM IR does not define any way to start parallel threads of execution
1514or to register signal handlers. Nonetheless, there are platform-specific
1515ways to create them, and we define LLVM IR's behavior in their presence. This
1516model is inspired by the C++0x memory model.</p>
1517
Eli Friedman95f69a42011-08-22 21:35:27 +00001518<p>For a more informal introduction to this model, see the
1519<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1520
Eli Friedman35b54aa2011-07-20 21:35:53 +00001521<p>We define a <i>happens-before</i> partial order as the least partial order
1522that</p>
1523<ul>
1524 <li>Is a superset of single-thread program order, and</li>
1525 <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1526 <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1527 by platform-specific techniques, like pthread locks, thread
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001528 creation, thread joining, etc., and by atomic instructions.
1529 (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1530 </li>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001531</ul>
1532
1533<p>Note that program order does not introduce <i>happens-before</i> edges
1534between a thread and signals executing inside that thread.</p>
1535
1536<p>Every (defined) read operation (load instructions, memcpy, atomic
1537loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1538(defined) write operations (store instructions, atomic
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001539stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1540initialized globals are considered to have a write of the initializer which is
1541atomic and happens before any other read or write of the memory in question.
1542For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1543any write to the same byte, except:</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001544
1545<ul>
1546 <li>If <var>write<sub>1</sub></var> happens before
1547 <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1548 before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001549 does not see <var>write<sub>1</sub></var>.
Bill Wendling537603b2011-07-31 06:45:03 +00001550 <li>If <var>R<sub>byte</sub></var> happens before
1551 <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1552 see <var>write<sub>3</sub></var>.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001553</ul>
1554
1555<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1556<ul>
Eli Friedman95f69a42011-08-22 21:35:27 +00001557 <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1558 is supposed to give guarantees which can support
1559 <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1560 addresses which do not behave like normal memory. It does not generally
1561 provide cross-thread synchronization.)
1562 <li>Otherwise, if there is no write to the same byte that happens before
Eli Friedman35b54aa2011-07-20 21:35:53 +00001563 <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns
1564 <tt>undef</tt> for that byte.
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001565 <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
Eli Friedman35b54aa2011-07-20 21:35:53 +00001566 <var>R<sub>byte</sub></var> returns the value written by that
1567 write.</li>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001568 <li>Otherwise, if <var>R</var> is atomic, and all the writes
1569 <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001570 values written. See the <a href="#ordering">Atomic Memory Ordering
1571 Constraints</a> section for additional constraints on how the choice
1572 is made.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001573 <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1574</ul>
1575
1576<p><var>R</var> returns the value composed of the series of bytes it read.
1577This implies that some bytes within the value may be <tt>undef</tt>
1578<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1579defines the semantics of the operation; it doesn't mean that targets will
1580emit more than one instruction to read the series of bytes.</p>
1581
1582<p>Note that in cases where none of the atomic intrinsics are used, this model
1583places only one restriction on IR transformations on top of what is required
1584for single-threaded execution: introducing a store to a byte which might not
Eli Friedman4bc9f3c2011-08-02 01:15:34 +00001585otherwise be stored is not allowed in general. (Specifically, in the case
1586where another thread might write to and read from an address, introducing a
1587store can change a load that may see exactly one write into a load that may
1588see multiple writes.)</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001589
1590<!-- FIXME: This model assumes all targets where concurrency is relevant have
1591a byte-size store which doesn't affect adjacent bytes. As far as I can tell,
1592none of the backends currently in the tree fall into this category; however,
1593there might be targets which care. If there are, we want a paragraph
1594like the following:
1595
1596Targets may specify that stores narrower than a certain width are not
1597available; on such a target, for the purposes of this model, treat any
1598non-atomic write with an alignment or width less than the minimum width
1599as if it writes to the relevant surrounding bytes.
1600-->
1601
1602</div>
1603
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001604<!-- ======================================================================= -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001605<h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001606 <a name="ordering">Atomic Memory Ordering Constraints</a>
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001607</h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001608
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001609<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001610
1611<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
Eli Friedman59b66882011-08-09 23:02:53 +00001612<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1613<a href="#i_fence"><code>fence</code></a>,
1614<a href="#i_load"><code>atomic load</code></a>, and
Eli Friedman75362532011-08-09 23:26:12 +00001615<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001616that determines which other atomic instructions on the same address they
1617<i>synchronize with</i>. These semantics are borrowed from Java and C++0x,
1618but are somewhat more colloquial. If these descriptions aren't precise enough,
Eli Friedman95f69a42011-08-22 21:35:27 +00001619check those specs (see spec references in the
Nick Lewycky75499f52012-01-23 08:47:21 +00001620<a href="Atomics.html#introduction">atomics guide</a>).
Eli Friedman95f69a42011-08-22 21:35:27 +00001621<a href="#i_fence"><code>fence</code></a> instructions
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001622treat these orderings somewhat differently since they don't take an address.
1623See that instruction's documentation for details.</p>
1624
Eli Friedman95f69a42011-08-22 21:35:27 +00001625<p>For a simpler introduction to the ordering constraints, see the
1626<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1627
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001628<dl>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001629<dt><code>unordered</code></dt>
1630<dd>The set of values that can be read is governed by the happens-before
1631partial order. A value cannot be read unless some operation wrote it.
1632This is intended to provide a guarantee strong enough to model Java's
1633non-volatile shared variables. This ordering cannot be specified for
1634read-modify-write operations; it is not strong enough to make them atomic
1635in any interesting way.</dd>
1636<dt><code>monotonic</code></dt>
1637<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1638total order for modifications by <code>monotonic</code> operations on each
1639address. All modification orders must be compatible with the happens-before
1640order. There is no guarantee that the modification orders can be combined to
1641a global total order for the whole program (and this often will not be
1642possible). The read in an atomic read-modify-write operation
1643(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1644<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1645reads the value in the modification order immediately before the value it
1646writes. If one atomic read happens before another atomic read of the same
1647address, the later read must see the same value or a later value in the
1648address's modification order. This disallows reordering of
1649<code>monotonic</code> (or stronger) operations on the same address. If an
1650address is written <code>monotonic</code>ally by one thread, and other threads
1651<code>monotonic</code>ally read that address repeatedly, the other threads must
Eli Friedman95f69a42011-08-22 21:35:27 +00001652eventually see the write. This corresponds to the C++0x/C1x
1653<code>memory_order_relaxed</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001654<dt><code>acquire</code></dt>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001655<dd>In addition to the guarantees of <code>monotonic</code>,
Eli Friedman0cb3b562011-08-24 20:28:39 +00001656a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1657operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1658<dt><code>release</code></dt>
1659<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1660writes a value which is subsequently read by an <code>acquire</code> operation,
1661it <i>synchronizes-with</i> that operation. (This isn't a complete
1662description; see the C++0x definition of a release sequence.) This corresponds
1663to the C++0x/C1x <code>memory_order_release</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001664<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
Eli Friedman95f69a42011-08-22 21:35:27 +00001665<code>acquire</code> and <code>release</code> operation on its address.
1666This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001667<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1668<dd>In addition to the guarantees of <code>acq_rel</code>
1669(<code>acquire</code> for an operation which only reads, <code>release</code>
1670for an operation which only writes), there is a global total order on all
1671sequentially-consistent operations on all addresses, which is consistent with
1672the <i>happens-before</i> partial order and with the modification orders of
1673all the affected addresses. Each sequentially-consistent read sees the last
Eli Friedman95f69a42011-08-22 21:35:27 +00001674preceding write to the same address in this global order. This corresponds
1675to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001676</dl>
1677
1678<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1679it only <i>synchronizes with</i> or participates in modification and seq_cst
1680total orderings with other operations running in the same thread (for example,
1681in signal handlers).</p>
1682
1683</div>
1684
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001685</div>
1686
Chris Lattner2f7c9632001-06-06 20:29:01 +00001687<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001688<h2><a name="typesystem">Type System</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00001689<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001690
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001691<div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001692
Misha Brukman76307852003-11-08 01:05:38 +00001693<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001694 intermediate representation. Being typed enables a number of optimizations
1695 to be performed on the intermediate representation directly, without having
1696 to do extra analyses on the side before the transformation. A strong type
1697 system makes it easier to read the generated code and enables novel analyses
1698 and transformations that are not feasible to perform on normal three address
1699 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001700
Chris Lattner2f7c9632001-06-06 20:29:01 +00001701<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001702<h3>
1703 <a name="t_classifications">Type Classifications</a>
1704</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001705
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001706<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001707
1708<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001709
1710<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001711 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001712 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001713 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001714 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001715 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001716 </tr>
1717 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001718 <td><a href="#t_floating">floating point</a></td>
Dan Gohman518cda42011-12-17 00:04:22 +00001719 <td><tt>half, float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001720 </tr>
1721 <tr>
1722 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001723 <td><a href="#t_integer">integer</a>,
1724 <a href="#t_floating">floating point</a>,
1725 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001726 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001727 <a href="#t_struct">structure</a>,
1728 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001729 <a href="#t_label">label</a>,
1730 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001731 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001732 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001733 <tr>
1734 <td><a href="#t_primitive">primitive</a></td>
1735 <td><a href="#t_label">label</a>,
1736 <a href="#t_void">void</a>,
Tobias Grosser4c8c95b2010-12-28 20:29:31 +00001737 <a href="#t_integer">integer</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001738 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001739 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001740 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001741 </tr>
1742 <tr>
1743 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001744 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001745 <a href="#t_function">function</a>,
1746 <a href="#t_pointer">pointer</a>,
1747 <a href="#t_struct">structure</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001748 <a href="#t_vector">vector</a>,
1749 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001750 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001751 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001752 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001753</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001754
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001755<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1756 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001757 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001758
Misha Brukman76307852003-11-08 01:05:38 +00001759</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001760
Chris Lattner2f7c9632001-06-06 20:29:01 +00001761<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001762<h3>
1763 <a name="t_primitive">Primitive Types</a>
1764</h3>
Chris Lattner43542b32008-01-04 04:34:14 +00001765
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001766<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001767
Chris Lattner7824d182008-01-04 04:32:38 +00001768<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001769 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001770
1771<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001772<h4>
1773 <a name="t_integer">Integer Type</a>
1774</h4>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001775
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001776<div>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001777
1778<h5>Overview:</h5>
1779<p>The integer type is a very simple type that simply specifies an arbitrary
1780 bit width for the integer type desired. Any bit width from 1 bit to
1781 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1782
1783<h5>Syntax:</h5>
1784<pre>
1785 iN
1786</pre>
1787
1788<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1789 value.</p>
1790
1791<h5>Examples:</h5>
1792<table class="layout">
1793 <tr class="layout">
1794 <td class="left"><tt>i1</tt></td>
1795 <td class="left">a single-bit integer.</td>
1796 </tr>
1797 <tr class="layout">
1798 <td class="left"><tt>i32</tt></td>
1799 <td class="left">a 32-bit integer.</td>
1800 </tr>
1801 <tr class="layout">
1802 <td class="left"><tt>i1942652</tt></td>
1803 <td class="left">a really big integer of over 1 million bits.</td>
1804 </tr>
1805</table>
1806
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001807</div>
1808
1809<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001810<h4>
1811 <a name="t_floating">Floating Point Types</a>
1812</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001813
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001814<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001815
1816<table>
1817 <tbody>
1818 <tr><th>Type</th><th>Description</th></tr>
Dan Gohman518cda42011-12-17 00:04:22 +00001819 <tr><td><tt>half</tt></td><td>16-bit floating point value</td></tr>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001820 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1821 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1822 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1823 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1824 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1825 </tbody>
1826</table>
1827
Chris Lattner7824d182008-01-04 04:32:38 +00001828</div>
1829
1830<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001831<h4>
1832 <a name="t_x86mmx">X86mmx Type</a>
1833</h4>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001834
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001835<div>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001836
1837<h5>Overview:</h5>
1838<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1839
1840<h5>Syntax:</h5>
1841<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001842 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001843</pre>
1844
1845</div>
1846
1847<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001848<h4>
1849 <a name="t_void">Void Type</a>
1850</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001851
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001852<div>
Bill Wendling30235112009-07-20 02:39:26 +00001853
Chris Lattner7824d182008-01-04 04:32:38 +00001854<h5>Overview:</h5>
1855<p>The void type does not represent any value and has no size.</p>
1856
1857<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001858<pre>
1859 void
1860</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001861
Chris Lattner7824d182008-01-04 04:32:38 +00001862</div>
1863
1864<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001865<h4>
1866 <a name="t_label">Label Type</a>
1867</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001868
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001869<div>
Bill Wendling30235112009-07-20 02:39:26 +00001870
Chris Lattner7824d182008-01-04 04:32:38 +00001871<h5>Overview:</h5>
1872<p>The label type represents code labels.</p>
1873
1874<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001875<pre>
1876 label
1877</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001878
Chris Lattner7824d182008-01-04 04:32:38 +00001879</div>
1880
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001881<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001882<h4>
1883 <a name="t_metadata">Metadata Type</a>
1884</h4>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001885
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001886<div>
Bill Wendling30235112009-07-20 02:39:26 +00001887
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001888<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001889<p>The metadata type represents embedded metadata. No derived types may be
1890 created from metadata except for <a href="#t_function">function</a>
1891 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001892
1893<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001894<pre>
1895 metadata
1896</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001897
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001898</div>
1899
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001900</div>
Chris Lattner7824d182008-01-04 04:32:38 +00001901
1902<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001903<h3>
1904 <a name="t_derived">Derived Types</a>
1905</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00001906
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001907<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001908
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001909<p>The real power in LLVM comes from the derived types in the system. This is
1910 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001911 useful types. Each of these types contain one or more element types which
1912 may be a primitive type, or another derived type. For example, it is
1913 possible to have a two dimensional array, using an array as the element type
1914 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001915
Chris Lattner392be582010-02-12 20:49:41 +00001916<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001917<h4>
1918 <a name="t_aggregate">Aggregate Types</a>
1919</h4>
Chris Lattner392be582010-02-12 20:49:41 +00001920
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001921<div>
Chris Lattner392be582010-02-12 20:49:41 +00001922
1923<p>Aggregate Types are a subset of derived types that can contain multiple
Duncan Sands9aaec152011-12-14 15:44:20 +00001924 member types. <a href="#t_array">Arrays</a> and
1925 <a href="#t_struct">structs</a> are aggregate types.
1926 <a href="#t_vector">Vectors</a> are not considered to be aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001927
1928</div>
1929
Reid Spencer138249b2007-05-16 18:44:01 +00001930<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001931<h4>
1932 <a name="t_array">Array Type</a>
1933</h4>
Chris Lattner74d3f822004-12-09 17:30:23 +00001934
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001935<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001936
Chris Lattner2f7c9632001-06-06 20:29:01 +00001937<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001938<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001939 sequentially in memory. The array type requires a size (number of elements)
1940 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001941
Chris Lattner590645f2002-04-14 06:13:44 +00001942<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001943<pre>
1944 [&lt;# elements&gt; x &lt;elementtype&gt;]
1945</pre>
1946
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001947<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1948 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001949
Chris Lattner590645f2002-04-14 06:13:44 +00001950<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001951<table class="layout">
1952 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001953 <td class="left"><tt>[40 x i32]</tt></td>
1954 <td class="left">Array of 40 32-bit integer values.</td>
1955 </tr>
1956 <tr class="layout">
1957 <td class="left"><tt>[41 x i32]</tt></td>
1958 <td class="left">Array of 41 32-bit integer values.</td>
1959 </tr>
1960 <tr class="layout">
1961 <td class="left"><tt>[4 x i8]</tt></td>
1962 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001963 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001964</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001965<p>Here are some examples of multidimensional arrays:</p>
1966<table class="layout">
1967 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001968 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1969 <td class="left">3x4 array of 32-bit integer values.</td>
1970 </tr>
1971 <tr class="layout">
1972 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1973 <td class="left">12x10 array of single precision floating point values.</td>
1974 </tr>
1975 <tr class="layout">
1976 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1977 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001978 </tr>
1979</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001980
Dan Gohmanc74bc282009-11-09 19:01:53 +00001981<p>There is no restriction on indexing beyond the end of the array implied by
1982 a static type (though there are restrictions on indexing beyond the bounds
1983 of an allocated object in some cases). This means that single-dimension
1984 'variable sized array' addressing can be implemented in LLVM with a zero
1985 length array type. An implementation of 'pascal style arrays' in LLVM could
1986 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001987
Misha Brukman76307852003-11-08 01:05:38 +00001988</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001989
Chris Lattner2f7c9632001-06-06 20:29:01 +00001990<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001991<h4>
1992 <a name="t_function">Function Type</a>
1993</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001994
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001995<div>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001996
Chris Lattner2f7c9632001-06-06 20:29:01 +00001997<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001998<p>The function type can be thought of as a function signature. It consists of
1999 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00002000 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00002001
Chris Lattner2f7c9632001-06-06 20:29:01 +00002002<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002003<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002004 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00002005</pre>
2006
John Criswell4c0cf7f2005-10-24 16:17:18 +00002007<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002008 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
2009 which indicates that the function takes a variable number of arguments.
2010 Variable argument functions can access their arguments with
2011 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00002012 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00002013 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002014
Chris Lattner2f7c9632001-06-06 20:29:01 +00002015<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002016<table class="layout">
2017 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00002018 <td class="left"><tt>i32 (i32)</tt></td>
2019 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002020 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00002021 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00002022 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00002023 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002024 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00002025 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2026 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00002027 </td>
2028 </tr><tr class="layout">
2029 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002030 <td class="left">A vararg function that takes at least one
2031 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2032 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00002033 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002034 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00002035 </tr><tr class="layout">
2036 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002037 <td class="left">A function taking an <tt>i32</tt>, returning a
2038 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00002039 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002040 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002041</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002042
Misha Brukman76307852003-11-08 01:05:38 +00002043</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002044
Chris Lattner2f7c9632001-06-06 20:29:01 +00002045<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002046<h4>
2047 <a name="t_struct">Structure Type</a>
2048</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002049
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002050<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002051
Chris Lattner2f7c9632001-06-06 20:29:01 +00002052<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002053<p>The structure type is used to represent a collection of data members together
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002054 in memory. The elements of a structure may be any type that has a size.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002055
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00002056<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2057 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2058 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2059 Structures in registers are accessed using the
2060 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2061 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002062
2063<p>Structures may optionally be "packed" structures, which indicate that the
2064 alignment of the struct is one byte, and that there is no padding between
Chris Lattner190552d2011-08-12 17:31:02 +00002065 the elements. In non-packed structs, padding between field types is inserted
2066 as defined by the TargetData string in the module, which is required to match
Chris Lattner7bd0ea32011-10-11 23:02:17 +00002067 what the underlying code generator expects.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002068
Chris Lattner190552d2011-08-12 17:31:02 +00002069<p>Structures can either be "literal" or "identified". A literal structure is
2070 defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2071 types are always defined at the top level with a name. Literal types are
2072 uniqued by their contents and can never be recursive or opaque since there is
Chris Lattner32531732011-08-12 18:12:40 +00002073 no way to write one. Identified types can be recursive, can be opaqued, and are
Chris Lattner190552d2011-08-12 17:31:02 +00002074 never uniqued.
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002075</p>
2076
Chris Lattner2f7c9632001-06-06 20:29:01 +00002077<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002078<pre>
Chris Lattner190552d2011-08-12 17:31:02 +00002079 %T1 = type { &lt;type list&gt; } <i>; Identified normal struct type</i>
2080 %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Identified packed struct type</i>
Bill Wendling30235112009-07-20 02:39:26 +00002081</pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002082
Chris Lattner2f7c9632001-06-06 20:29:01 +00002083<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002084<table class="layout">
2085 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002086 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2087 <td class="left">A triple of three <tt>i32</tt> values</td>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002088 </tr>
2089 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002090 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2091 <td class="left">A pair, where the first element is a <tt>float</tt> and the
2092 second element is a <a href="#t_pointer">pointer</a> to a
2093 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2094 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002095 </tr>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002096 <tr class="layout">
2097 <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2098 <td class="left">A packed struct known to be 5 bytes in size.</td>
2099 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002100</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002101
Misha Brukman76307852003-11-08 01:05:38 +00002102</div>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002103
Chris Lattner2f7c9632001-06-06 20:29:01 +00002104<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002105<h4>
Chris Lattner2a843822011-07-23 19:59:08 +00002106 <a name="t_opaque">Opaque Structure Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002107</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002108
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002109<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002110
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002111<h5>Overview:</h5>
Chris Lattner2a843822011-07-23 19:59:08 +00002112<p>Opaque structure types are used to represent named structure types that do
2113 not have a body specified. This corresponds (for example) to the C notion of
2114 a forward declared structure.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002115
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002116<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002117<pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002118 %X = type opaque
2119 %52 = type opaque
Bill Wendling30235112009-07-20 02:39:26 +00002120</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002121
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002122<h5>Examples:</h5>
2123<table class="layout">
2124 <tr class="layout">
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002125 <td class="left"><tt>opaque</tt></td>
2126 <td class="left">An opaque type.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002127 </tr>
2128</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002129
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002130</div>
2131
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002132
2133
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002134<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002135<h4>
2136 <a name="t_pointer">Pointer Type</a>
2137</h4>
Chris Lattner4a67c912009-02-08 19:53:29 +00002138
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002139<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002140
2141<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00002142<p>The pointer type is used to specify memory locations.
2143 Pointers are commonly used to reference objects in memory.</p>
2144
2145<p>Pointer types may have an optional address space attribute defining the
2146 numbered address space where the pointed-to object resides. The default
2147 address space is number zero. The semantics of non-zero address
2148 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002149
2150<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2151 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00002152
Chris Lattner590645f2002-04-14 06:13:44 +00002153<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002154<pre>
2155 &lt;type&gt; *
2156</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002157
Chris Lattner590645f2002-04-14 06:13:44 +00002158<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002159<table class="layout">
2160 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00002161 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002162 <td class="left">A <a href="#t_pointer">pointer</a> to <a
2163 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2164 </tr>
2165 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00002166 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002167 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002168 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00002169 <tt>i32</tt>.</td>
2170 </tr>
2171 <tr class="layout">
2172 <td class="left"><tt>i32 addrspace(5)*</tt></td>
2173 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2174 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002175 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00002176</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002177
Misha Brukman76307852003-11-08 01:05:38 +00002178</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002179
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002180<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002181<h4>
2182 <a name="t_vector">Vector Type</a>
2183</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002184
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002185<div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002186
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002187<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002188<p>A vector type is a simple derived type that represents a vector of elements.
2189 Vector types are used when multiple primitive data are operated in parallel
2190 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00002191 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002192 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002193
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002194<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002195<pre>
2196 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2197</pre>
2198
Chris Lattnerf11031a2010-10-10 18:20:35 +00002199<p>The number of elements is a constant integer value larger than 0; elementtype
Nadav Rotem3924cb02011-12-05 06:29:09 +00002200 may be any integer or floating point type, or a pointer to these types.
2201 Vectors of size zero are not allowed. </p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002202
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002203<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002204<table class="layout">
2205 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00002206 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2207 <td class="left">Vector of 4 32-bit integer values.</td>
2208 </tr>
2209 <tr class="layout">
2210 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2211 <td class="left">Vector of 8 32-bit floating-point values.</td>
2212 </tr>
2213 <tr class="layout">
2214 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2215 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002216 </tr>
Nadav Rotem3924cb02011-12-05 06:29:09 +00002217 <tr class="layout">
2218 <td class="left"><tt>&lt;4 x i64*&gt;</tt></td>
2219 <td class="left">Vector of 4 pointers to 64-bit integer values.</td>
2220 </tr>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002221</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002222
Misha Brukman76307852003-11-08 01:05:38 +00002223</div>
2224
Bill Wendlingae8b5ea2011-07-31 06:47:33 +00002225</div>
2226
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00002227</div>
2228
Chris Lattner74d3f822004-12-09 17:30:23 +00002229<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002230<h2><a name="constants">Constants</a></h2>
Chris Lattner74d3f822004-12-09 17:30:23 +00002231<!-- *********************************************************************** -->
2232
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002233<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002234
2235<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002236 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002237
Chris Lattner74d3f822004-12-09 17:30:23 +00002238<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002239<h3>
2240 <a name="simpleconstants">Simple Constants</a>
2241</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002242
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002243<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002244
2245<dl>
2246 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002247 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002248 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002249
2250 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002251 <dd>Standard integers (such as '4') are constants of
2252 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2253 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002254
2255 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002256 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002257 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2258 notation (see below). The assembler requires the exact decimal value of a
2259 floating-point constant. For example, the assembler accepts 1.25 but
2260 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2261 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002262
2263 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002264 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002265 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002266</dl>
2267
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002268<p>The one non-intuitive notation for constants is the hexadecimal form of
2269 floating point constants. For example, the form '<tt>double
2270 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2271 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2272 constants are required (and the only time that they are generated by the
2273 disassembler) is when a floating point constant must be emitted but it cannot
2274 be represented as a decimal floating point number in a reasonable number of
2275 digits. For example, NaN's, infinities, and other special values are
2276 represented in their IEEE hexadecimal format so that assembly and disassembly
2277 do not cause any bits to change in the constants.</p>
2278
Dan Gohman518cda42011-12-17 00:04:22 +00002279<p>When using the hexadecimal form, constants of types half, float, and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002280 represented using the 16-digit form shown above (which matches the IEEE754
Dan Gohman518cda42011-12-17 00:04:22 +00002281 representation for double); half and float values must, however, be exactly
2282 representable as IEE754 half and single precision, respectively.
2283 Hexadecimal format is always used
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002284 for long double, and there are three forms of long double. The 80-bit format
2285 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2286 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2287 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2288 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2289 currently supported target uses this format. Long doubles will only work if
2290 they match the long double format on your target. All hexadecimal formats
2291 are big-endian (sign bit at the left).</p>
2292
Dale Johannesen33e5c352010-10-01 00:48:59 +00002293<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002294</div>
2295
2296<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002297<h3>
Bill Wendling972b7202009-07-20 02:32:41 +00002298<a name="aggregateconstants"></a> <!-- old anchor -->
2299<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002300</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002301
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002302<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002303
Chris Lattner361bfcd2009-02-28 18:32:25 +00002304<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002305 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002306
2307<dl>
2308 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002309 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002310 type definitions (a comma separated list of elements, surrounded by braces
2311 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2312 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2313 Structure constants must have <a href="#t_struct">structure type</a>, and
2314 the number and types of elements must match those specified by the
2315 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002316
2317 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002318 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002319 definitions (a comma separated list of elements, surrounded by square
2320 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2321 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2322 the number and types of elements must match those specified by the
2323 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002324
Reid Spencer404a3252007-02-15 03:07:05 +00002325 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002326 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002327 definitions (a comma separated list of elements, surrounded by
2328 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2329 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2330 have <a href="#t_vector">vector type</a>, and the number and types of
2331 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002332
2333 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002334 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002335 value to zero of <em>any</em> type, including scalar and
2336 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002337 This is often used to avoid having to print large zero initializers
2338 (e.g. for large arrays) and is always exactly equivalent to using explicit
2339 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002340
2341 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002342 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002343 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2344 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2345 be interpreted as part of the instruction stream, metadata is a place to
2346 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002347</dl>
2348
2349</div>
2350
2351<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002352<h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002353 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002354</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002355
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002356<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002357
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002358<p>The addresses of <a href="#globalvars">global variables</a>
2359 and <a href="#functionstructure">functions</a> are always implicitly valid
2360 (link-time) constants. These constants are explicitly referenced when
2361 the <a href="#identifiers">identifier for the global</a> is used and always
2362 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2363 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002364
Benjamin Kramer79698be2010-07-13 12:26:09 +00002365<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002366@X = global i32 17
2367@Y = global i32 42
2368@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002369</pre>
2370
2371</div>
2372
2373<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002374<h3>
2375 <a name="undefvalues">Undefined Values</a>
2376</h3>
2377
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002378<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002379
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002380<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002381 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002382 Undefined values may be of any type (other than '<tt>label</tt>'
2383 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002384
Chris Lattner92ada5d2009-09-11 01:49:31 +00002385<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002386 program is well defined no matter what value is used. This gives the
2387 compiler more freedom to optimize. Here are some examples of (potentially
2388 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002389
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002390
Benjamin Kramer79698be2010-07-13 12:26:09 +00002391<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002392 %A = add %X, undef
2393 %B = sub %X, undef
2394 %C = xor %X, undef
2395Safe:
2396 %A = undef
2397 %B = undef
2398 %C = undef
2399</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002400
2401<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002402 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002403
Benjamin Kramer79698be2010-07-13 12:26:09 +00002404<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002405 %A = or %X, undef
2406 %B = and %X, undef
2407Safe:
2408 %A = -1
2409 %B = 0
2410Unsafe:
2411 %A = undef
2412 %B = undef
2413</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002414
2415<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002416 For example, if <tt>%X</tt> has a zero bit, then the output of the
2417 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2418 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2419 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2420 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2421 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2422 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2423 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002424
Benjamin Kramer79698be2010-07-13 12:26:09 +00002425<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002426 %A = select undef, %X, %Y
2427 %B = select undef, 42, %Y
2428 %C = select %X, %Y, undef
2429Safe:
2430 %A = %X (or %Y)
2431 %B = 42 (or %Y)
2432 %C = %Y
2433Unsafe:
2434 %A = undef
2435 %B = undef
2436 %C = undef
2437</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002438
Bill Wendling6bbe0912010-10-27 01:07:41 +00002439<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2440 branch) conditions can go <em>either way</em>, but they have to come from one
2441 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2442 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2443 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2444 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2445 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2446 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002447
Benjamin Kramer79698be2010-07-13 12:26:09 +00002448<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002449 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002450
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002451 %B = undef
2452 %C = xor %B, %B
2453
2454 %D = undef
2455 %E = icmp lt %D, 4
2456 %F = icmp gte %D, 4
2457
2458Safe:
2459 %A = undef
2460 %B = undef
2461 %C = undef
2462 %D = undef
2463 %E = undef
2464 %F = undef
2465</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002466
Bill Wendling6bbe0912010-10-27 01:07:41 +00002467<p>This example points out that two '<tt>undef</tt>' operands are not
2468 necessarily the same. This can be surprising to people (and also matches C
2469 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2470 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2471 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2472 its value over its "live range". This is true because the variable doesn't
2473 actually <em>have a live range</em>. Instead, the value is logically read
2474 from arbitrary registers that happen to be around when needed, so the value
2475 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2476 need to have the same semantics or the core LLVM "replace all uses with"
2477 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002478
Benjamin Kramer79698be2010-07-13 12:26:09 +00002479<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002480 %A = fdiv undef, %X
2481 %B = fdiv %X, undef
2482Safe:
2483 %A = undef
2484b: unreachable
2485</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002486
2487<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002488 value</em> and <em>undefined behavior</em>. An undefined value (like
2489 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2490 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2491 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2492 defined on SNaN's. However, in the second example, we can make a more
2493 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2494 arbitrary value, we are allowed to assume that it could be zero. Since a
2495 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2496 the operation does not execute at all. This allows us to delete the divide and
2497 all code after it. Because the undefined operation "can't happen", the
2498 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002499
Benjamin Kramer79698be2010-07-13 12:26:09 +00002500<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002501a: store undef -> %X
2502b: store %X -> undef
2503Safe:
2504a: &lt;deleted&gt;
2505b: unreachable
2506</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002507
Bill Wendling6bbe0912010-10-27 01:07:41 +00002508<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2509 undefined value can be assumed to not have any effect; we can assume that the
2510 value is overwritten with bits that happen to match what was already there.
2511 However, a store <em>to</em> an undefined location could clobber arbitrary
2512 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002513
Chris Lattner74d3f822004-12-09 17:30:23 +00002514</div>
2515
2516<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002517<h3>
Dan Gohman9a2a0932011-12-06 03:18:47 +00002518 <a name="poisonvalues">Poison Values</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002519</h3>
2520
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002521<div>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002522
Dan Gohman9a2a0932011-12-06 03:18:47 +00002523<p>Poison values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohman32772f72011-12-06 03:35:58 +00002524 they also represent the fact that an instruction or constant expression which
2525 cannot evoke side effects has nevertheless detected a condition which results
2526 in undefined behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002527
Dan Gohman9a2a0932011-12-06 03:18:47 +00002528<p>There is currently no way of representing a poison value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002529 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002530 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002531
Dan Gohman9a2a0932011-12-06 03:18:47 +00002532<p>Poison value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002533
Dan Gohman2f1ae062010-04-28 00:49:41 +00002534<ul>
2535<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2536 their operands.</li>
2537
2538<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2539 to their dynamic predecessor basic block.</li>
2540
2541<li>Function arguments depend on the corresponding actual argument values in
2542 the dynamic callers of their functions.</li>
2543
2544<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2545 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2546 control back to them.</li>
2547
Dan Gohman7292a752010-05-03 14:55:22 +00002548<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
Bill Wendling3f6a3a22012-02-06 21:57:33 +00002549 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_resume"><tt>resume</tt></a>,
Dan Gohman7292a752010-05-03 14:55:22 +00002550 or exception-throwing call instructions that dynamically transfer control
2551 back to them.</li>
2552
Dan Gohman2f1ae062010-04-28 00:49:41 +00002553<li>Non-volatile loads and stores depend on the most recent stores to all of the
2554 referenced memory addresses, following the order in the IR
2555 (including loads and stores implied by intrinsics such as
2556 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2557
Dan Gohman3513ea52010-05-03 14:59:34 +00002558<!-- TODO: In the case of multiple threads, this only applies if the store
2559 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002560
Dan Gohman2f1ae062010-04-28 00:49:41 +00002561<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002562
Dan Gohman2f1ae062010-04-28 00:49:41 +00002563<li>An instruction with externally visible side effects depends on the most
2564 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002565 the order in the IR. (This includes
2566 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002567
Dan Gohman7292a752010-05-03 14:55:22 +00002568<li>An instruction <i>control-depends</i> on a
2569 <a href="#terminators">terminator instruction</a>
2570 if the terminator instruction has multiple successors and the instruction
2571 is always executed when control transfers to one of the successors, and
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002572 may not be executed when control is transferred to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002573
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002574<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2575 instruction if the set of instructions it otherwise depends on would be
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002576 different if the terminator had transferred control to a different
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002577 successor.</li>
2578
Dan Gohman2f1ae062010-04-28 00:49:41 +00002579<li>Dependence is transitive.</li>
2580
2581</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002582
Dan Gohman32772f72011-12-06 03:35:58 +00002583<p>Poison Values have the same behavior as <a href="#undefvalues">undef values</a>,
2584 with the additional affect that any instruction which has a <i>dependence</i>
2585 on a poison value has undefined behavior.</p>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002586
2587<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002588
Benjamin Kramer79698be2010-07-13 12:26:09 +00002589<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002590entry:
Dan Gohman9a2a0932011-12-06 03:18:47 +00002591 %poison = sub nuw i32 0, 1 ; Results in a poison value.
Dan Gohman32772f72011-12-06 03:35:58 +00002592 %still_poison = and i32 %poison, 0 ; 0, but also poison.
Dan Gohman9a2a0932011-12-06 03:18:47 +00002593 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
Dan Gohman32772f72011-12-06 03:35:58 +00002594 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
Dan Gohman2f1ae062010-04-28 00:49:41 +00002595
Dan Gohman32772f72011-12-06 03:35:58 +00002596 store i32 %poison, i32* @g ; Poison value stored to memory.
2597 %poison2 = load i32* @g ; Poison value loaded back from memory.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002598
Dan Gohman9a2a0932011-12-06 03:18:47 +00002599 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002600
2601 %narrowaddr = bitcast i32* @g to i16*
2602 %wideaddr = bitcast i32* @g to i64*
Dan Gohman9a2a0932011-12-06 03:18:47 +00002603 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2604 %poison4 = load i64* %wideaddr ; Returns a poison value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002605
Dan Gohman5f115a72011-12-06 03:31:14 +00002606 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2607 br i1 %cmp, label %true, label %end ; Branch to either destination.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002608
2609true:
Dan Gohman5f115a72011-12-06 03:31:14 +00002610 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2611 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002612 br label %end
2613
2614end:
2615 %p = phi i32 [ 0, %entry ], [ 1, %true ]
Dan Gohman5f115a72011-12-06 03:31:14 +00002616 ; Both edges into this PHI are
2617 ; control-dependent on %cmp, so this
2618 ; always results in a poison value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002619
Dan Gohman5f115a72011-12-06 03:31:14 +00002620 store volatile i32 0, i32* @g ; This would depend on the store in %true
2621 ; if %cmp is true, or the store in %entry
2622 ; otherwise, so this is undefined behavior.
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002623
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002624 br i1 %cmp, label %second_true, label %second_end
Dan Gohman5f115a72011-12-06 03:31:14 +00002625 ; The same branch again, but this time the
2626 ; true block doesn't have side effects.
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002627
2628second_true:
2629 ; No side effects!
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002630 ret void
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002631
2632second_end:
Dan Gohman5f115a72011-12-06 03:31:14 +00002633 store volatile i32 0, i32* @g ; This time, the instruction always depends
2634 ; on the store in %end. Also, it is
2635 ; control-equivalent to %end, so this is
Dan Gohman32772f72011-12-06 03:35:58 +00002636 ; well-defined (ignoring earlier undefined
2637 ; behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002638</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002639
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002640</div>
2641
2642<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002643<h3>
2644 <a name="blockaddress">Addresses of Basic Blocks</a>
2645</h3>
2646
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002647<div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002648
Chris Lattneraa99c942009-11-01 01:27:45 +00002649<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002650
2651<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002652 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002653 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002654
Chris Lattnere4801f72009-10-27 21:01:34 +00002655<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002656 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2657 comparisons against null. Pointer equality tests between labels addresses
2658 results in undefined behavior &mdash; though, again, comparison against null
2659 is ok, and no label is equal to the null pointer. This may be passed around
2660 as an opaque pointer sized value as long as the bits are not inspected. This
2661 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2662 long as the original value is reconstituted before the <tt>indirectbr</tt>
2663 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002664
Bill Wendling6bbe0912010-10-27 01:07:41 +00002665<p>Finally, some targets may provide defined semantics when using the value as
2666 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002667
2668</div>
2669
2670
2671<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002672<h3>
2673 <a name="constantexprs">Constant Expressions</a>
2674</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002675
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002676<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002677
2678<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002679 to be used as constants. Constant expressions may be of
2680 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2681 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002682 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002683
2684<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002685 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002686 <dd>Truncate a constant to another type. The bit size of CST must be larger
2687 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002688
Dan Gohmand6a6f612010-05-28 17:07:41 +00002689 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002690 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002691 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002692
Dan Gohmand6a6f612010-05-28 17:07:41 +00002693 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002694 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002695 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002696
Dan Gohmand6a6f612010-05-28 17:07:41 +00002697 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002698 <dd>Truncate a floating point constant to another floating point type. The
2699 size of CST must be larger than the size of TYPE. Both types must be
2700 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002701
Dan Gohmand6a6f612010-05-28 17:07:41 +00002702 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002703 <dd>Floating point extend a constant to another type. The size of CST must be
2704 smaller or equal to the size of TYPE. Both types must be floating
2705 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002706
Dan Gohmand6a6f612010-05-28 17:07:41 +00002707 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002708 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002709 constant. TYPE must be a scalar or vector integer type. CST must be of
2710 scalar or vector floating point type. Both CST and TYPE must be scalars,
2711 or vectors of the same number of elements. If the value won't fit in the
2712 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002713
Dan Gohmand6a6f612010-05-28 17:07:41 +00002714 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002715 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002716 constant. TYPE must be a scalar or vector integer type. CST must be of
2717 scalar or vector floating point type. Both CST and TYPE must be scalars,
2718 or vectors of the same number of elements. If the value won't fit in the
2719 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002720
Dan Gohmand6a6f612010-05-28 17:07:41 +00002721 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002722 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002723 constant. TYPE must be a scalar or vector floating point type. CST must be
2724 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2725 vectors of the same number of elements. If the value won't fit in the
2726 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002727
Dan Gohmand6a6f612010-05-28 17:07:41 +00002728 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002729 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002730 constant. TYPE must be a scalar or vector floating point type. CST must be
2731 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2732 vectors of the same number of elements. If the value won't fit in the
2733 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002734
Dan Gohmand6a6f612010-05-28 17:07:41 +00002735 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002736 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002737 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2738 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2739 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002740
Dan Gohmand6a6f612010-05-28 17:07:41 +00002741 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002742 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2743 type. CST must be of integer type. The CST value is zero extended,
2744 truncated, or unchanged to make it fit in a pointer size. This one is
2745 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002746
Dan Gohmand6a6f612010-05-28 17:07:41 +00002747 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002748 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2749 are the same as those for the <a href="#i_bitcast">bitcast
2750 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002751
Dan Gohmand6a6f612010-05-28 17:07:41 +00002752 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2753 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002754 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002755 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2756 instruction, the index list may have zero or more indexes, which are
2757 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002758
Dan Gohmand6a6f612010-05-28 17:07:41 +00002759 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002760 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002761
Dan Gohmand6a6f612010-05-28 17:07:41 +00002762 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002763 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2764
Dan Gohmand6a6f612010-05-28 17:07:41 +00002765 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002766 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002767
Dan Gohmand6a6f612010-05-28 17:07:41 +00002768 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002769 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2770 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002771
Dan Gohmand6a6f612010-05-28 17:07:41 +00002772 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002773 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2774 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002775
Dan Gohmand6a6f612010-05-28 17:07:41 +00002776 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002777 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2778 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002779
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002780 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2781 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2782 constants. The index list is interpreted in a similar manner as indices in
2783 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2784 index value must be specified.</dd>
2785
2786 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2787 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2788 constants. The index list is interpreted in a similar manner as indices in
2789 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2790 index value must be specified.</dd>
2791
Dan Gohmand6a6f612010-05-28 17:07:41 +00002792 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002793 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2794 be any of the <a href="#binaryops">binary</a>
2795 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2796 on operands are the same as those for the corresponding instruction
2797 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002798</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002799
Chris Lattner74d3f822004-12-09 17:30:23 +00002800</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002801
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002802</div>
2803
Chris Lattner2f7c9632001-06-06 20:29:01 +00002804<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002805<h2><a name="othervalues">Other Values</a></h2>
Chris Lattner98f013c2006-01-25 23:47:57 +00002806<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002807<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002808<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002809<h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002810<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002811</h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002812
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002813<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002814
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002815<p>LLVM supports inline assembler expressions (as opposed
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002816 to <a href="#moduleasm">Module-Level Inline Assembly</a>) through the use of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002817 a special value. This value represents the inline assembler as a string
2818 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002819 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002820 expression has side effects, and a flag indicating whether the function
2821 containing the asm needs to align its stack conservatively. An example
2822 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002823
Benjamin Kramer79698be2010-07-13 12:26:09 +00002824<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002825i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002826</pre>
2827
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002828<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2829 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2830 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002831
Benjamin Kramer79698be2010-07-13 12:26:09 +00002832<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002833%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002834</pre>
2835
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002836<p>Inline asms with side effects not visible in the constraint list must be
2837 marked as having side effects. This is done through the use of the
2838 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002839
Benjamin Kramer79698be2010-07-13 12:26:09 +00002840<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002841call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002842</pre>
2843
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002844<p>In some cases inline asms will contain code that will not work unless the
2845 stack is aligned in some way, such as calls or SSE instructions on x86,
2846 yet will not contain code that does that alignment within the asm.
2847 The compiler should make conservative assumptions about what the asm might
2848 contain and should generate its usual stack alignment code in the prologue
2849 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002850
Benjamin Kramer79698be2010-07-13 12:26:09 +00002851<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002852call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002853</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002854
2855<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2856 first.</p>
2857
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002858<!--
Chris Lattner98f013c2006-01-25 23:47:57 +00002859<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002860 documented here. Constraints on what can be done (e.g. duplication, moving,
2861 etc need to be documented). This is probably best done by reference to
2862 another document that covers inline asm from a holistic perspective.</p>
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002863 -->
Chris Lattner51065562010-04-07 05:38:05 +00002864
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002865<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002866<h4>
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002867 <a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002868</h4>
Chris Lattner51065562010-04-07 05:38:05 +00002869
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002870<div>
Chris Lattner51065562010-04-07 05:38:05 +00002871
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002872<p>The call instructions that wrap inline asm nodes may have a
2873 "<tt>!srcloc</tt>" MDNode attached to it that contains a list of constant
2874 integers. If present, the code generator will use the integer as the
2875 location cookie value when report errors through the <tt>LLVMContext</tt>
2876 error reporting mechanisms. This allows a front-end to correlate backend
2877 errors that occur with inline asm back to the source code that produced it.
2878 For example:</p>
Chris Lattner51065562010-04-07 05:38:05 +00002879
Benjamin Kramer79698be2010-07-13 12:26:09 +00002880<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002881call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2882...
2883!42 = !{ i32 1234567 }
2884</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002885
2886<p>It is up to the front-end to make sense of the magic numbers it places in the
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002887 IR. If the MDNode contains multiple constants, the code generator will use
Chris Lattner79ffdc72010-11-17 08:20:42 +00002888 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002889
2890</div>
2891
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002892</div>
2893
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002894<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002895<h3>
2896 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2897</h3>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002898
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002899<div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002900
2901<p>LLVM IR allows metadata to be attached to instructions in the program that
2902 can convey extra information about the code to the optimizers and code
2903 generator. One example application of metadata is source-level debug
2904 information. There are two metadata primitives: strings and nodes. All
2905 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2906 preceding exclamation point ('<tt>!</tt>').</p>
2907
2908<p>A metadata string is a string surrounded by double quotes. It can contain
Bill Wendlingb6c22202011-11-30 21:43:43 +00002909 any character by escaping non-printable characters with "<tt>\xx</tt>" where
2910 "<tt>xx</tt>" is the two digit hex code. For example:
2911 "<tt>!"test\00"</tt>".</p>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002912
2913<p>Metadata nodes are represented with notation similar to structure constants
2914 (a comma separated list of elements, surrounded by braces and preceded by an
Bill Wendlingb6c22202011-11-30 21:43:43 +00002915 exclamation point). Metadata nodes can have any values as their operand. For
2916 example:</p>
2917
2918<div class="doc_code">
2919<pre>
2920!{ metadata !"test\00", i32 10}
2921</pre>
2922</div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002923
2924<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2925 metadata nodes, which can be looked up in the module symbol table. For
Bill Wendlingb6c22202011-11-30 21:43:43 +00002926 example:</p>
2927
2928<div class="doc_code">
2929<pre>
2930!foo = metadata !{!4, !3}
2931</pre>
2932</div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002933
Devang Patel9984bd62010-03-04 23:44:48 +00002934<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Bill Wendlingb6c22202011-11-30 21:43:43 +00002935 function is using two metadata arguments:</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002936
Bill Wendlingc0e10672011-03-02 02:17:11 +00002937<div class="doc_code">
2938<pre>
2939call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2940</pre>
2941</div>
Devang Patel9984bd62010-03-04 23:44:48 +00002942
2943<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Bill Wendlingb6c22202011-11-30 21:43:43 +00002944 attached to the <tt>add</tt> instruction using the <tt>!dbg</tt>
2945 identifier:</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002946
Bill Wendlingc0e10672011-03-02 02:17:11 +00002947<div class="doc_code">
2948<pre>
2949%indvar.next = add i64 %indvar, 1, !dbg !21
2950</pre>
2951</div>
2952
Peter Collingbourneec9ff672011-10-27 19:19:07 +00002953<p>More information about specific metadata nodes recognized by the optimizers
2954 and code generator is found below.</p>
2955
Bill Wendlingb6c22202011-11-30 21:43:43 +00002956<!-- _______________________________________________________________________ -->
Peter Collingbourneec9ff672011-10-27 19:19:07 +00002957<h4>
2958 <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
2959</h4>
2960
2961<div>
2962
2963<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
2964 suitable for doing TBAA. Instead, metadata is added to the IR to describe
2965 a type system of a higher level language. This can be used to implement
2966 typical C/C++ TBAA, but it can also be used to implement custom alias
2967 analysis behavior for other languages.</p>
2968
2969<p>The current metadata format is very simple. TBAA metadata nodes have up to
2970 three fields, e.g.:</p>
2971
2972<div class="doc_code">
2973<pre>
2974!0 = metadata !{ metadata !"an example type tree" }
2975!1 = metadata !{ metadata !"int", metadata !0 }
2976!2 = metadata !{ metadata !"float", metadata !0 }
2977!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2978</pre>
2979</div>
2980
2981<p>The first field is an identity field. It can be any value, usually
2982 a metadata string, which uniquely identifies the type. The most important
2983 name in the tree is the name of the root node. Two trees with
2984 different root node names are entirely disjoint, even if they
2985 have leaves with common names.</p>
2986
2987<p>The second field identifies the type's parent node in the tree, or
2988 is null or omitted for a root node. A type is considered to alias
2989 all of its descendants and all of its ancestors in the tree. Also,
2990 a type is considered to alias all types in other trees, so that
2991 bitcode produced from multiple front-ends is handled conservatively.</p>
2992
2993<p>If the third field is present, it's an integer which if equal to 1
2994 indicates that the type is "constant" (meaning
2995 <tt>pointsToConstantMemory</tt> should return true; see
2996 <a href="AliasAnalysis.html#OtherItfs">other useful
2997 <tt>AliasAnalysis</tt> methods</a>).</p>
2998
2999</div>
3000
Bill Wendlingb6c22202011-11-30 21:43:43 +00003001<!-- _______________________________________________________________________ -->
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003002<h4>
Duncan Sands34bd91a2012-04-14 12:36:06 +00003003 <a name="fpmath">'<tt>fpmath</tt>' Metadata</a>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003004</h4>
3005
3006<div>
3007
Duncan Sands34bd91a2012-04-14 12:36:06 +00003008<p><tt>fpmath</tt> metadata may be attached to any instruction of floating point
Duncan Sands05f4df82012-04-16 16:28:59 +00003009 type. It can be used to express the maximum acceptable error in the result of
3010 that instruction, in ULPs, thus potentially allowing the compiler to use a
3011 more efficient but less accurate method of computing it. The number of ULPs
3012 may also be the string <tt>"fast"</tt>, which tells the compiler that speed
3013 matters more than accuracy, so any fairly accurate method of computation is
3014 fine as long as it is quick. ULP is defined as follows:</p>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003015
Bill Wendling302d7ce2011-11-09 19:33:56 +00003016<blockquote>
3017
3018<p>If <tt>x</tt> is a real number that lies between two finite consecutive
3019 floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one
3020 of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the
3021 distance between the two non-equal finite floating-point numbers nearest
3022 <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p>
3023
3024</blockquote>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003025
Duncan Sands05f4df82012-04-16 16:28:59 +00003026<p>The metadata node shall consist of a single positive floating point number
3027 representing the maximum relative error, or the string <tt>"fast"</tt>.
3028 For example:</p>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003029
3030<div class="doc_code">
3031<pre>
Duncan Sands05f4df82012-04-16 16:28:59 +00003032!0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
3033!1 = metadata !{ !metadata !"fast" } ; potentially unbounded inaccuracy
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003034</pre>
3035</div>
3036
NAKAMURA Takumic9d9b922012-03-27 11:25:16 +00003037</div>
3038
Rafael Espindolaef9f5502012-03-24 00:14:51 +00003039<!-- _______________________________________________________________________ -->
3040<h4>
3041 <a name="range">'<tt>range</tt>' Metadata</a>
3042</h4>
3043
3044<div>
3045<p><tt>range</tt> metadata may be attached only to loads of integer types. It
3046 expresses the possible ranges the loaded value is in. The ranges are
3047 represented with a flattened list of integers. The loaded value is known to
3048 be in the union of the ranges defined by each consecutive pair. Each pair
3049 has the following properties:</p>
3050<ul>
3051 <li>The type must match the type loaded by the instruction.</li>
3052 <li>The pair <tt>a,b</tt> represents the range <tt>[a,b)</tt>.</li>
3053 <li>Both <tt>a</tt> and <tt>b</tt> are constants.</li>
3054 <li>The range is allowed to wrap.</li>
3055 <li>The range should not represent the full or empty set. That is,
3056 <tt>a!=b</tt>. </li>
3057</ul>
3058
3059<p>Examples:</p>
3060<div class="doc_code">
3061<pre>
3062 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3063 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
3064 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
3065...
3066!0 = metadata !{ i8 0, i8 2 }
3067!1 = metadata !{ i8 255, i8 2 }
3068!2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
3069</pre>
3070</div>
3071</div>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003072</div>
3073
Chris Lattnerc2f8f162010-01-15 21:50:19 +00003074</div>
3075
Chris Lattnerae76db52009-07-20 05:55:19 +00003076<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003077<h2>
Bill Wendling911fdf42012-02-11 11:59:36 +00003078 <a name="module_flags">Module Flags Metadata</a>
3079</h2>
3080<!-- *********************************************************************** -->
3081
3082<div>
3083
3084<p>Information about the module as a whole is difficult to convey to LLVM's
3085 subsystems. The LLVM IR isn't sufficient to transmit this
3086 information. The <tt>llvm.module.flags</tt> named metadata exists in order to
3087 facilitate this. These flags are in the form of key / value pairs &mdash;
3088 much like a dictionary &mdash; making it easy for any subsystem who cares
3089 about a flag to look it up.</p>
3090
3091<p>The <tt>llvm.module.flags</tt> metadata contains a list of metadata
3092 triplets. Each triplet has the following form:</p>
3093
3094<ul>
3095 <li>The first element is a <i>behavior</i> flag, which specifies the behavior
3096 when two (or more) modules are merged together, and it encounters two (or
3097 more) metadata with the same ID. The supported behaviors are described
3098 below.</li>
3099
3100 <li>The second element is a metadata string that is a unique ID for the
3101 metadata. How each ID is interpreted is documented below.</li>
3102
3103 <li>The third element is the value of the flag.</li>
3104</ul>
3105
3106<p>When two (or more) modules are merged together, the resulting
3107 <tt>llvm.module.flags</tt> metadata is the union of the
3108 modules' <tt>llvm.module.flags</tt> metadata. The only exception being a flag
3109 with the <i>Override</i> behavior, which may override another flag's value
3110 (see below).</p>
3111
3112<p>The following behaviors are supported:</p>
3113
3114<table border="1" cellspacing="0" cellpadding="4">
3115 <tbody>
3116 <tr>
3117 <th>Value</th>
3118 <th>Behavior</th>
3119 </tr>
3120 <tr>
3121 <td>1</td>
3122 <td align="left">
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003123 <dl>
3124 <dt><b>Error</b></dt>
3125 <dd>Emits an error if two values disagree. It is an error to have an ID
3126 with both an Error and a Warning behavior.</dd>
3127 </dl>
Bill Wendling911fdf42012-02-11 11:59:36 +00003128 </td>
3129 </tr>
3130 <tr>
3131 <td>2</td>
3132 <td align="left">
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003133 <dl>
3134 <dt><b>Warning</b></dt>
3135 <dd>Emits a warning if two values disagree.</dd>
3136 </dl>
Bill Wendling911fdf42012-02-11 11:59:36 +00003137 </td>
3138 </tr>
3139 <tr>
3140 <td>3</td>
3141 <td align="left">
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003142 <dl>
3143 <dt><b>Require</b></dt>
3144 <dd>Emits an error when the specified value is not present or doesn't
3145 have the specified value. It is an error for two (or more)
3146 <tt>llvm.module.flags</tt> with the same ID to have the Require
3147 behavior but different values. There may be multiple Require flags
3148 per ID.</dd>
3149 </dl>
Bill Wendling911fdf42012-02-11 11:59:36 +00003150 </td>
3151 </tr>
3152 <tr>
3153 <td>4</td>
3154 <td align="left">
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003155 <dl>
3156 <dt><b>Override</b></dt>
3157 <dd>Uses the specified value if the two values disagree. It is an
3158 error for two (or more) <tt>llvm.module.flags</tt> with the same
3159 ID to have the Override behavior but different values.</dd>
3160 </dl>
Bill Wendling911fdf42012-02-11 11:59:36 +00003161 </td>
3162 </tr>
3163 </tbody>
3164</table>
3165
3166<p>An example of module flags:</p>
3167
3168<pre class="doc_code">
3169!0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3170!1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3171!2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3172!3 = metadata !{ i32 3, metadata !"qux",
3173 metadata !{
3174 metadata !"foo", i32 1
3175 }
3176}
3177!llvm.module.flags = !{ !0, !1, !2, !3 }
3178</pre>
3179
3180<ul>
3181 <li><p>Metadata <tt>!0</tt> has the ID <tt>!"foo"</tt> and the value '1'. The
3182 behavior if two or more <tt>!"foo"</tt> flags are seen is to emit an
3183 error if their values are not equal.</p></li>
3184
3185 <li><p>Metadata <tt>!1</tt> has the ID <tt>!"bar"</tt> and the value '37'. The
3186 behavior if two or more <tt>!"bar"</tt> flags are seen is to use the
3187 value '37' if their values are not equal.</p></li>
3188
3189 <li><p>Metadata <tt>!2</tt> has the ID <tt>!"qux"</tt> and the value '42'. The
3190 behavior if two or more <tt>!"qux"</tt> flags are seen is to emit a
3191 warning if their values are not equal.</p></li>
3192
3193 <li><p>Metadata <tt>!3</tt> has the ID <tt>!"qux"</tt> and the value:</p>
3194
3195<pre class="doc_code">
3196metadata !{ metadata !"foo", i32 1 }
3197</pre>
Bill Wendling73462772012-02-16 01:10:50 +00003198
Bill Wendling911fdf42012-02-11 11:59:36 +00003199 <p>The behavior is to emit an error if the <tt>llvm.module.flags</tt> does
3200 not contain a flag with the ID <tt>!"foo"</tt> that has the value
3201 '1'. If two or more <tt>!"qux"</tt> flags exist, then they must have
3202 the same value or an error will be issued.</p></li>
3203</ul>
3204
Bill Wendling73462772012-02-16 01:10:50 +00003205
3206<!-- ======================================================================= -->
3207<h3>
3208<a name="objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a>
3209</h3>
3210
3211<div>
3212
3213<p>On the Mach-O platform, Objective-C stores metadata about garbage collection
3214 in a special section called "image info". The metadata consists of a version
3215 number and a bitmask specifying what types of garbage collection are
3216 supported (if any) by the file. If two or more modules are linked together
3217 their garbage collection metadata needs to be merged rather than appended
3218 together.</p>
3219
3220<p>The Objective-C garbage collection module flags metadata consists of the
3221 following key-value pairs:</p>
3222
3223<table border="1" cellspacing="0" cellpadding="4">
Bill Wendling4fa13cc2012-03-06 09:23:25 +00003224 <col width="30%">
Bill Wendling73462772012-02-16 01:10:50 +00003225 <tbody>
3226 <tr>
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003227 <th>Key</th>
Bill Wendling73462772012-02-16 01:10:50 +00003228 <th>Value</th>
3229 </tr>
3230 <tr>
3231 <td><tt>Objective-C&nbsp;Version</tt></td>
3232 <td align="left"><b>[Required]</b> &mdash; The Objective-C ABI
3233 version. Valid values are 1 and 2.</td>
3234 </tr>
3235 <tr>
3236 <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Version</tt></td>
3237 <td align="left"><b>[Required]</b> &mdash; The version of the image info
3238 section. Currently always 0.</td>
3239 </tr>
3240 <tr>
3241 <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Section</tt></td>
3242 <td align="left"><b>[Required]</b> &mdash; The section to place the
3243 metadata. Valid values are <tt>"__OBJC, __image_info, regular"</tt> for
3244 Objective-C ABI version 1, and <tt>"__DATA,__objc_imageinfo, regular,
3245 no_dead_strip"</tt> for Objective-C ABI version 2.</td>
3246 </tr>
3247 <tr>
3248 <td><tt>Objective-C&nbsp;Garbage&nbsp;Collection</tt></td>
3249 <td align="left"><b>[Required]</b> &mdash; Specifies whether garbage
3250 collection is supported or not. Valid values are 0, for no garbage
3251 collection, and 2, for garbage collection supported.</td>
3252 </tr>
3253 <tr>
3254 <td><tt>Objective-C&nbsp;GC&nbsp;Only</tt></td>
3255 <td align="left"><b>[Optional]</b> &mdash; Specifies that only garbage
3256 collection is supported. If present, its value must be 6. This flag
3257 requires that the <tt>Objective-C Garbage Collection</tt> flag have the
3258 value 2.</td>
3259 </tr>
3260 </tbody>
3261</table>
3262
3263<p>Some important flag interactions:</p>
3264
3265<ul>
3266 <li>If a module with <tt>Objective-C Garbage Collection</tt> set to 0 is
3267 merged with a module with <tt>Objective-C Garbage Collection</tt> set to
3268 2, then the resulting module has the <tt>Objective-C Garbage
3269 Collection</tt> flag set to 0.</li>
3270
3271 <li>A module with <tt>Objective-C Garbage Collection</tt> set to 0 cannot be
3272 merged with a module with <tt>Objective-C GC Only</tt> set to 6.</li>
3273</ul>
3274
3275</div>
3276
Bill Wendling911fdf42012-02-11 11:59:36 +00003277</div>
3278
3279<!-- *********************************************************************** -->
3280<h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003281 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003282</h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003283<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003284<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003285<p>LLVM has a number of "magic" global variables that contain data that affect
3286code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00003287of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
3288section and all globals that start with "<tt>llvm.</tt>" are reserved for use
3289by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003290
3291<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003292<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003293<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003294</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003295
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003296<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003297
3298<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
3299href="#linkage_appending">appending linkage</a>. This array contains a list of
3300pointers to global variables and functions which may optionally have a pointer
3301cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
3302
Bill Wendling1654bb22011-11-08 00:32:45 +00003303<div class="doc_code">
Chris Lattnerae76db52009-07-20 05:55:19 +00003304<pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003305@X = global i8 4
3306@Y = global i32 123
Chris Lattnerae76db52009-07-20 05:55:19 +00003307
Bill Wendling1654bb22011-11-08 00:32:45 +00003308@llvm.used = appending global [2 x i8*] [
3309 i8* @X,
3310 i8* bitcast (i32* @Y to i8*)
3311], section "llvm.metadata"
Chris Lattnerae76db52009-07-20 05:55:19 +00003312</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003313</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003314
3315<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
Bill Wendling1654bb22011-11-08 00:32:45 +00003316 compiler, assembler, and linker are required to treat the symbol as if there
3317 is a reference to the global that it cannot see. For example, if a variable
3318 has internal linkage and no references other than that from
3319 the <tt>@llvm.used</tt> list, it cannot be deleted. This is commonly used to
3320 represent references from inline asms and other things the compiler cannot
3321 "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003322
3323<p>On some targets, the code generator must emit a directive to the assembler or
Bill Wendling1654bb22011-11-08 00:32:45 +00003324 object file to prevent the assembler and linker from molesting the
3325 symbol.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003326
3327</div>
3328
3329<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003330<h3>
3331 <a name="intg_compiler_used">
3332 The '<tt>llvm.compiler.used</tt>' Global Variable
3333 </a>
3334</h3>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003335
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003336<div>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003337
3338<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
Bill Wendling1654bb22011-11-08 00:32:45 +00003339 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
3340 touching the symbol. On targets that support it, this allows an intelligent
3341 linker to optimize references to the symbol without being impeded as it would
3342 be by <tt>@llvm.used</tt>.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003343
3344<p>This is a rare construct that should only be used in rare circumstances, and
Bill Wendling1654bb22011-11-08 00:32:45 +00003345 should not be exposed to source languages.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003346
3347</div>
3348
3349<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003350<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003351<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003352</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003353
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003354<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003355
3356<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003357<pre>
3358%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003359@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003360</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003361</div>
3362
3363<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
3364 functions and associated priorities. The functions referenced by this array
3365 will be called in ascending order of priority (i.e. lowest first) when the
3366 module is loaded. The order of functions with the same priority is not
3367 defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003368
3369</div>
3370
3371<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003372<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003373<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003374</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003375
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003376<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003377
3378<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003379<pre>
3380%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003381@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003382</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003383</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003384
Bill Wendling1654bb22011-11-08 00:32:45 +00003385<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
3386 and associated priorities. The functions referenced by this array will be
3387 called in descending order of priority (i.e. highest first) when the module
3388 is loaded. The order of functions with the same priority is not defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003389
3390</div>
3391
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003392</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003393
Chris Lattner98f013c2006-01-25 23:47:57 +00003394<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003395<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00003396<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00003397
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003398<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003399
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003400<p>The LLVM instruction set consists of several different classifications of
3401 instructions: <a href="#terminators">terminator
3402 instructions</a>, <a href="#binaryops">binary instructions</a>,
3403 <a href="#bitwiseops">bitwise binary instructions</a>,
3404 <a href="#memoryops">memory instructions</a>, and
3405 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003406
Chris Lattner2f7c9632001-06-06 20:29:01 +00003407<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003408<h3>
3409 <a name="terminators">Terminator Instructions</a>
3410</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00003411
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003412<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003413
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003414<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3415 in a program ends with a "Terminator" instruction, which indicates which
3416 block should be executed after the current block is finished. These
3417 terminator instructions typically yield a '<tt>void</tt>' value: they produce
3418 control flow, not values (the one exception being the
3419 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3420
Chris Lattnerd3d65ab2011-08-02 20:29:13 +00003421<p>The terminator instructions are:
3422 '<a href="#i_ret"><tt>ret</tt></a>',
3423 '<a href="#i_br"><tt>br</tt></a>',
3424 '<a href="#i_switch"><tt>switch</tt></a>',
3425 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3426 '<a href="#i_invoke"><tt>invoke</tt></a>',
Chris Lattnerd3d65ab2011-08-02 20:29:13 +00003427 '<a href="#i_resume"><tt>resume</tt></a>', and
3428 '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003429
Chris Lattner2f7c9632001-06-06 20:29:01 +00003430<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003431<h4>
3432 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3433</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003434
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003435<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003436
Chris Lattner2f7c9632001-06-06 20:29:01 +00003437<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003438<pre>
3439 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003440 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003441</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003442
Chris Lattner2f7c9632001-06-06 20:29:01 +00003443<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003444<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3445 a value) from a function back to the caller.</p>
3446
3447<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3448 value and then causes control flow, and one that just causes control flow to
3449 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003450
Chris Lattner2f7c9632001-06-06 20:29:01 +00003451<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003452<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3453 return value. The type of the return value must be a
3454 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003455
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003456<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3457 non-void return type and contains a '<tt>ret</tt>' instruction with no return
3458 value or a return value with a type that does not match its type, or if it
3459 has a void return type and contains a '<tt>ret</tt>' instruction with a
3460 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003461
Chris Lattner2f7c9632001-06-06 20:29:01 +00003462<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003463<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3464 the calling function's context. If the caller is a
3465 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3466 instruction after the call. If the caller was an
3467 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3468 the beginning of the "normal" destination block. If the instruction returns
3469 a value, that value shall set the call or invoke instruction's return
3470 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003471
Chris Lattner2f7c9632001-06-06 20:29:01 +00003472<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003473<pre>
3474 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003475 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00003476 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003477</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003478
Misha Brukman76307852003-11-08 01:05:38 +00003479</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003480<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003481<h4>
3482 <a name="i_br">'<tt>br</tt>' Instruction</a>
3483</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003484
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003485<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003486
Chris Lattner2f7c9632001-06-06 20:29:01 +00003487<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003488<pre>
Bill Wendling16b86742011-07-26 10:41:15 +00003489 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3490 br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003491</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003492
Chris Lattner2f7c9632001-06-06 20:29:01 +00003493<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003494<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3495 different basic block in the current function. There are two forms of this
3496 instruction, corresponding to a conditional branch and an unconditional
3497 branch.</p>
3498
Chris Lattner2f7c9632001-06-06 20:29:01 +00003499<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003500<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3501 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
3502 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3503 target.</p>
3504
Chris Lattner2f7c9632001-06-06 20:29:01 +00003505<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00003506<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003507 argument is evaluated. If the value is <tt>true</tt>, control flows to the
3508 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
3509 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3510
Chris Lattner2f7c9632001-06-06 20:29:01 +00003511<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00003512<pre>
3513Test:
3514 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3515 br i1 %cond, label %IfEqual, label %IfUnequal
3516IfEqual:
3517 <a href="#i_ret">ret</a> i32 1
3518IfUnequal:
3519 <a href="#i_ret">ret</a> i32 0
3520</pre>
3521
Misha Brukman76307852003-11-08 01:05:38 +00003522</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003523
Chris Lattner2f7c9632001-06-06 20:29:01 +00003524<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003525<h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003526 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003527</h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003528
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003529<div>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003530
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003531<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003532<pre>
3533 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3534</pre>
3535
Chris Lattner2f7c9632001-06-06 20:29:01 +00003536<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003537<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003538 several different places. It is a generalization of the '<tt>br</tt>'
3539 instruction, allowing a branch to occur to one of many possible
3540 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003541
Chris Lattner2f7c9632001-06-06 20:29:01 +00003542<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003543<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003544 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3545 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3546 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003547
Chris Lattner2f7c9632001-06-06 20:29:01 +00003548<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003549<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003550 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3551 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00003552 transferred to the corresponding destination; otherwise, control flow is
3553 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003554
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003555<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003556<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003557 <tt>switch</tt> instruction, this instruction may be code generated in
3558 different ways. For example, it could be generated as a series of chained
3559 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003560
3561<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003562<pre>
3563 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003564 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00003565 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003566
3567 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003568 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003569
3570 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00003571 switch i32 %val, label %otherwise [ i32 0, label %onzero
3572 i32 1, label %onone
3573 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00003574</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003575
Misha Brukman76307852003-11-08 01:05:38 +00003576</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003577
Chris Lattner3ed871f2009-10-27 19:13:16 +00003578
3579<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003580<h4>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003581 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003582</h4>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003583
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003584<div>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003585
3586<h5>Syntax:</h5>
3587<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003588 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003589</pre>
3590
3591<h5>Overview:</h5>
3592
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003593<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00003594 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00003595 "<tt>address</tt>". Address must be derived from a <a
3596 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003597
3598<h5>Arguments:</h5>
3599
3600<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3601 rest of the arguments indicate the full set of possible destinations that the
3602 address may point to. Blocks are allowed to occur multiple times in the
3603 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003604
Chris Lattner3ed871f2009-10-27 19:13:16 +00003605<p>This destination list is required so that dataflow analysis has an accurate
3606 understanding of the CFG.</p>
3607
3608<h5>Semantics:</h5>
3609
3610<p>Control transfers to the block specified in the address argument. All
3611 possible destination blocks must be listed in the label list, otherwise this
3612 instruction has undefined behavior. This implies that jumps to labels
3613 defined in other functions have undefined behavior as well.</p>
3614
3615<h5>Implementation:</h5>
3616
3617<p>This is typically implemented with a jump through a register.</p>
3618
3619<h5>Example:</h5>
3620<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003621 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003622</pre>
3623
3624</div>
3625
3626
Chris Lattner2f7c9632001-06-06 20:29:01 +00003627<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003628<h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003629 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003630</h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003631
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003632<div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003633
Chris Lattner2f7c9632001-06-06 20:29:01 +00003634<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003635<pre>
Devang Patel02256232008-10-07 17:48:33 +00003636 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003637 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003638</pre>
3639
Chris Lattnera8292f32002-05-06 22:08:29 +00003640<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003641<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003642 function, with the possibility of control flow transfer to either the
3643 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3644 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3645 control flow will return to the "normal" label. If the callee (or any
Bill Wendling3f6a3a22012-02-06 21:57:33 +00003646 indirect callees) returns via the "<a href="#i_resume"><tt>resume</tt></a>"
3647 instruction or other exception handling mechanism, control is interrupted and
3648 continued at the dynamically nearest "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003649
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003650<p>The '<tt>exception</tt>' label is a
3651 <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3652 exception. As such, '<tt>exception</tt>' label is required to have the
3653 "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
Chad Rosierc28f3e92011-12-09 02:00:44 +00003654 the information about the behavior of the program after unwinding
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003655 happens, as its first non-PHI instruction. The restrictions on the
3656 "<tt>landingpad</tt>" instruction's tightly couples it to the
3657 "<tt>invoke</tt>" instruction, so that the important information contained
3658 within the "<tt>landingpad</tt>" instruction can't be lost through normal
3659 code motion.</p>
3660
Chris Lattner2f7c9632001-06-06 20:29:01 +00003661<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003662<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003663
Chris Lattner2f7c9632001-06-06 20:29:01 +00003664<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003665 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3666 convention</a> the call should use. If none is specified, the call
3667 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003668
3669 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003670 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3671 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003672
Chris Lattner0132aff2005-05-06 22:57:40 +00003673 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003674 function value being invoked. In most cases, this is a direct function
3675 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3676 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003677
3678 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003679 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003680
3681 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003682 signature argument types and parameter attributes. All arguments must be
3683 of <a href="#t_firstclass">first class</a> type. If the function
3684 signature indicates the function accepts a variable number of arguments,
3685 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003686
3687 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003688 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003689
Bill Wendling3f6a3a22012-02-06 21:57:33 +00003690 <li>'<tt>exception label</tt>': the label reached when a callee returns via
3691 the <a href="#i_resume"><tt>resume</tt></a> instruction or other exception
3692 handling mechanism.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003693
Devang Patel02256232008-10-07 17:48:33 +00003694 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003695 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3696 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003697</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003698
Chris Lattner2f7c9632001-06-06 20:29:01 +00003699<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003700<p>This instruction is designed to operate as a standard
3701 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3702 primary difference is that it establishes an association with a label, which
3703 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003704
3705<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003706 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3707 exception. Additionally, this is important for implementation of
3708 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003709
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003710<p>For the purposes of the SSA form, the definition of the value returned by the
3711 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3712 block to the "normal" label. If the callee unwinds then no return value is
3713 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003714
Chris Lattner2f7c9632001-06-06 20:29:01 +00003715<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003716<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003717 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003718 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003719 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003720 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003721</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003722
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003723</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003724
Bill Wendlingf891bf82011-07-31 06:30:59 +00003725 <!-- _______________________________________________________________________ -->
3726
3727<h4>
3728 <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3729</h4>
3730
3731<div>
3732
3733<h5>Syntax:</h5>
3734<pre>
3735 resume &lt;type&gt; &lt;value&gt;
3736</pre>
3737
3738<h5>Overview:</h5>
3739<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3740 successors.</p>
3741
3742<h5>Arguments:</h5>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003743<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
Bill Wendlingc5a13612011-08-03 18:37:32 +00003744 same type as the result of any '<tt>landingpad</tt>' instruction in the same
3745 function.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003746
3747<h5>Semantics:</h5>
3748<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3749 (in-flight) exception whose unwinding was interrupted with
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003750 a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003751
3752<h5>Example:</h5>
3753<pre>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003754 resume { i8*, i32 } %exn
Bill Wendlingf891bf82011-07-31 06:30:59 +00003755</pre>
3756
3757</div>
3758
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003759<!-- _______________________________________________________________________ -->
3760
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003761<h4>
3762 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3763</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003764
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003765<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003766
3767<h5>Syntax:</h5>
3768<pre>
3769 unreachable
3770</pre>
3771
3772<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003773<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003774 instruction is used to inform the optimizer that a particular portion of the
3775 code is not reachable. This can be used to indicate that the code after a
3776 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003777
3778<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003779<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003780
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003781</div>
3782
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003783</div>
3784
Chris Lattner2f7c9632001-06-06 20:29:01 +00003785<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003786<h3>
3787 <a name="binaryops">Binary Operations</a>
3788</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003789
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003790<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003791
3792<p>Binary operators are used to do most of the computation in a program. They
3793 require two operands of the same type, execute an operation on them, and
3794 produce a single value. The operands might represent multiple data, as is
3795 the case with the <a href="#t_vector">vector</a> data type. The result value
3796 has the same type as its operands.</p>
3797
Misha Brukman76307852003-11-08 01:05:38 +00003798<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003799
Chris Lattner2f7c9632001-06-06 20:29:01 +00003800<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003801<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003802 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003803</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003804
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003805<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003806
Chris Lattner2f7c9632001-06-06 20:29:01 +00003807<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003808<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003809 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003810 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3811 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3812 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003813</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003814
Chris Lattner2f7c9632001-06-06 20:29:01 +00003815<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003816<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003817
Chris Lattner2f7c9632001-06-06 20:29:01 +00003818<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003819<p>The two arguments to the '<tt>add</tt>' instruction must
3820 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3821 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003822
Chris Lattner2f7c9632001-06-06 20:29:01 +00003823<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003824<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003825
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003826<p>If the sum has unsigned overflow, the result returned is the mathematical
3827 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003828
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003829<p>Because LLVM integers use a two's complement representation, this instruction
3830 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003831
Dan Gohman902dfff2009-07-22 22:44:56 +00003832<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3833 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3834 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohman9a2a0932011-12-06 03:18:47 +00003835 is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003836 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003837
Chris Lattner2f7c9632001-06-06 20:29:01 +00003838<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003839<pre>
3840 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003841</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842
Misha Brukman76307852003-11-08 01:05:38 +00003843</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003844
Chris Lattner2f7c9632001-06-06 20:29:01 +00003845<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003846<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003847 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003848</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003849
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003850<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003851
3852<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003853<pre>
3854 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3855</pre>
3856
3857<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003858<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3859
3860<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003861<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003862 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3863 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003864
3865<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003866<p>The value produced is the floating point sum of the two operands.</p>
3867
3868<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003869<pre>
3870 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3871</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003872
Dan Gohmana5b96452009-06-04 22:49:04 +00003873</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003874
Dan Gohmana5b96452009-06-04 22:49:04 +00003875<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003876<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003877 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003878</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003879
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003880<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003881
Chris Lattner2f7c9632001-06-06 20:29:01 +00003882<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003883<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003884 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003885 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3886 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3887 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003888</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003889
Chris Lattner2f7c9632001-06-06 20:29:01 +00003890<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003891<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003892 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003893
3894<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003895 '<tt>neg</tt>' instruction present in most other intermediate
3896 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003897
Chris Lattner2f7c9632001-06-06 20:29:01 +00003898<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003899<p>The two arguments to the '<tt>sub</tt>' instruction must
3900 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3901 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003902
Chris Lattner2f7c9632001-06-06 20:29:01 +00003903<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003904<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003905
Dan Gohmana5b96452009-06-04 22:49:04 +00003906<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003907 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3908 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003909
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003910<p>Because LLVM integers use a two's complement representation, this instruction
3911 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003912
Dan Gohman902dfff2009-07-22 22:44:56 +00003913<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3914 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3915 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohman9a2a0932011-12-06 03:18:47 +00003916 is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003917 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003918
Chris Lattner2f7c9632001-06-06 20:29:01 +00003919<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003920<pre>
3921 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003922 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003923</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003924
Misha Brukman76307852003-11-08 01:05:38 +00003925</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003926
Chris Lattner2f7c9632001-06-06 20:29:01 +00003927<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003928<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003929 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003930</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003931
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003932<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003933
3934<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003935<pre>
3936 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3937</pre>
3938
3939<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003940<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003941 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003942
3943<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003944 '<tt>fneg</tt>' instruction present in most other intermediate
3945 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003946
3947<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003948<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003949 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3950 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003951
3952<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003953<p>The value produced is the floating point difference of the two operands.</p>
3954
3955<h5>Example:</h5>
3956<pre>
3957 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3958 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3959</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003960
Dan Gohmana5b96452009-06-04 22:49:04 +00003961</div>
3962
3963<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003964<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003965 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003966</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003967
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003968<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003969
Chris Lattner2f7c9632001-06-06 20:29:01 +00003970<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003971<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003972 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003973 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3974 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3975 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003976</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003977
Chris Lattner2f7c9632001-06-06 20:29:01 +00003978<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003979<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003980
Chris Lattner2f7c9632001-06-06 20:29:01 +00003981<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003982<p>The two arguments to the '<tt>mul</tt>' instruction must
3983 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3984 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003985
Chris Lattner2f7c9632001-06-06 20:29:01 +00003986<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003987<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003988
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003989<p>If the result of the multiplication has unsigned overflow, the result
3990 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3991 width of the result.</p>
3992
3993<p>Because LLVM integers use a two's complement representation, and the result
3994 is the same width as the operands, this instruction returns the correct
3995 result for both signed and unsigned integers. If a full product
3996 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3997 be sign-extended or zero-extended as appropriate to the width of the full
3998 product.</p>
3999
Dan Gohman902dfff2009-07-22 22:44:56 +00004000<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
4001 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
4002 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohman9a2a0932011-12-06 03:18:47 +00004003 is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00004004 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00004005
Chris Lattner2f7c9632001-06-06 20:29:01 +00004006<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004007<pre>
4008 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004009</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004010
Misha Brukman76307852003-11-08 01:05:38 +00004011</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004012
Chris Lattner2f7c9632001-06-06 20:29:01 +00004013<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004014<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00004015 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004016</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00004017
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004018<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00004019
4020<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004021<pre>
4022 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00004023</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004024
Dan Gohmana5b96452009-06-04 22:49:04 +00004025<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004026<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00004027
4028<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00004029<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004030 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4031 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00004032
4033<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00004034<p>The value produced is the floating point product of the two operands.</p>
4035
4036<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004037<pre>
4038 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00004039</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004040
Dan Gohmana5b96452009-06-04 22:49:04 +00004041</div>
4042
4043<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004044<h4>
4045 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
4046</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004047
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004048<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004049
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004050<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004051<pre>
Chris Lattner35315d02011-02-06 21:44:57 +00004052 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4053 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004054</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004055
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004056<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004057<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004058
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004059<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004060<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004061 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4062 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004063
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004064<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00004065<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004066
Chris Lattner2f2427e2008-01-28 00:36:27 +00004067<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004068 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
4069
Chris Lattner2f2427e2008-01-28 00:36:27 +00004070<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004071
Chris Lattner35315d02011-02-06 21:44:57 +00004072<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004073 <tt>udiv</tt> is a <a href="#poisonvalues">poison value</a> if %op1 is not a
Chris Lattner35315d02011-02-06 21:44:57 +00004074 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
4075
4076
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004077<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004078<pre>
4079 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004080</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004081
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004082</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004083
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004084<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004085<h4>
4086 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
4087</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004088
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004089<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004090
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004091<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004092<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00004093 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00004094 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004095</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004096
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004097<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004098<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004099
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004100<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004101<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004102 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4103 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004104
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004105<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004106<p>The value produced is the signed integer quotient of the two operands rounded
4107 towards zero.</p>
4108
Chris Lattner2f2427e2008-01-28 00:36:27 +00004109<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004110 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
4111
Chris Lattner2f2427e2008-01-28 00:36:27 +00004112<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004113 undefined behavior; this is a rare case, but can occur, for example, by doing
4114 a 32-bit division of -2147483648 by -1.</p>
4115
Dan Gohman71dfd782009-07-22 00:04:19 +00004116<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004117 <tt>sdiv</tt> is a <a href="#poisonvalues">poison value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00004118 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00004119
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004120<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004121<pre>
4122 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004123</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004124
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004125</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004126
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004127<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004128<h4>
4129 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
4130</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004131
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004132<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004133
Chris Lattner2f7c9632001-06-06 20:29:01 +00004134<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004135<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004136 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004137</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004138
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004139<h5>Overview:</h5>
4140<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004141
Chris Lattner48b383b02003-11-25 01:02:51 +00004142<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004143<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004144 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4145 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004146
Chris Lattner48b383b02003-11-25 01:02:51 +00004147<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004148<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004149
Chris Lattner48b383b02003-11-25 01:02:51 +00004150<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004151<pre>
4152 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004153</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004154
Chris Lattner48b383b02003-11-25 01:02:51 +00004155</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004156
Chris Lattner48b383b02003-11-25 01:02:51 +00004157<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004158<h4>
4159 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
4160</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004161
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004162<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004163
Reid Spencer7eb55b32006-11-02 01:53:59 +00004164<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004165<pre>
4166 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004167</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004168
Reid Spencer7eb55b32006-11-02 01:53:59 +00004169<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004170<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
4171 division of its two arguments.</p>
4172
Reid Spencer7eb55b32006-11-02 01:53:59 +00004173<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004174<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004175 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4176 values. Both arguments must have identical types.</p>
4177
Reid Spencer7eb55b32006-11-02 01:53:59 +00004178<h5>Semantics:</h5>
4179<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004180 This instruction always performs an unsigned division to get the
4181 remainder.</p>
4182
Chris Lattner2f2427e2008-01-28 00:36:27 +00004183<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004184 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
4185
Chris Lattner2f2427e2008-01-28 00:36:27 +00004186<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004187
Reid Spencer7eb55b32006-11-02 01:53:59 +00004188<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004189<pre>
4190 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004191</pre>
4192
4193</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004194
Reid Spencer7eb55b32006-11-02 01:53:59 +00004195<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004196<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004197 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004198</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004199
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004200<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004201
Chris Lattner48b383b02003-11-25 01:02:51 +00004202<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004203<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004204 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004205</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004206
Chris Lattner48b383b02003-11-25 01:02:51 +00004207<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004208<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
4209 division of its two operands. This instruction can also take
4210 <a href="#t_vector">vector</a> versions of the values in which case the
4211 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00004212
Chris Lattner48b383b02003-11-25 01:02:51 +00004213<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004214<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004215 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4216 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004217
Chris Lattner48b383b02003-11-25 01:02:51 +00004218<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004219<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sands2769c6e2011-03-07 09:12:24 +00004220 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
4221 <i>modulo</i> operator (where the result is either zero or has the same sign
4222 as the divisor, <tt>op2</tt>) of a value.
4223 For more information about the difference,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004224 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
4225 Math Forum</a>. For a table of how this is implemented in various languages,
4226 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
4227 Wikipedia: modulo operation</a>.</p>
4228
Chris Lattner2f2427e2008-01-28 00:36:27 +00004229<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004230 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
4231
Chris Lattner2f2427e2008-01-28 00:36:27 +00004232<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004233 Overflow also leads to undefined behavior; this is a rare case, but can
4234 occur, for example, by taking the remainder of a 32-bit division of
4235 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
4236 lets srem be implemented using instructions that return both the result of
4237 the division and the remainder.)</p>
4238
Chris Lattner48b383b02003-11-25 01:02:51 +00004239<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004240<pre>
4241 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004242</pre>
4243
4244</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004245
Reid Spencer7eb55b32006-11-02 01:53:59 +00004246<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004247<h4>
4248 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
4249</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004250
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004251<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004252
Reid Spencer7eb55b32006-11-02 01:53:59 +00004253<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004254<pre>
4255 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004256</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004257
Reid Spencer7eb55b32006-11-02 01:53:59 +00004258<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004259<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
4260 its two operands.</p>
4261
Reid Spencer7eb55b32006-11-02 01:53:59 +00004262<h5>Arguments:</h5>
4263<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004264 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4265 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004266
Reid Spencer7eb55b32006-11-02 01:53:59 +00004267<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004268<p>This instruction returns the <i>remainder</i> of a division. The remainder
4269 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004270
Reid Spencer7eb55b32006-11-02 01:53:59 +00004271<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004272<pre>
4273 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004274</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004275
Misha Brukman76307852003-11-08 01:05:38 +00004276</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00004277
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004278</div>
4279
Reid Spencer2ab01932007-02-02 13:57:07 +00004280<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004281<h3>
4282 <a name="bitwiseops">Bitwise Binary Operations</a>
4283</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004284
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004285<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004286
4287<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
4288 program. They are generally very efficient instructions and can commonly be
4289 strength reduced from other instructions. They require two operands of the
4290 same type, execute an operation on them, and produce a single value. The
4291 resulting value is the same type as its operands.</p>
4292
Reid Spencer04e259b2007-01-31 21:39:12 +00004293<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004294<h4>
4295 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
4296</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004297
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004298<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004299
Reid Spencer04e259b2007-01-31 21:39:12 +00004300<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004301<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004302 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4303 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4304 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4305 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004306</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004307
Reid Spencer04e259b2007-01-31 21:39:12 +00004308<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004309<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
4310 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004311
Reid Spencer04e259b2007-01-31 21:39:12 +00004312<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004313<p>Both arguments to the '<tt>shl</tt>' instruction must be the
4314 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4315 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00004316
Reid Spencer04e259b2007-01-31 21:39:12 +00004317<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004318<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
4319 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
4320 is (statically or dynamically) negative or equal to or larger than the number
4321 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4322 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4323 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004324
Chris Lattnera676c0f2011-02-07 16:40:21 +00004325<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
Dan Gohman9a2a0932011-12-06 03:18:47 +00004326 <a href="#poisonvalues">poison value</a> if it shifts out any non-zero bits. If
Chris Lattnerf10dfdc2011-02-09 16:44:44 +00004327 the <tt>nsw</tt> keyword is present, then the shift produces a
Dan Gohman9a2a0932011-12-06 03:18:47 +00004328 <a href="#poisonvalues">poison value</a> if it shifts out any bits that disagree
Chris Lattnera676c0f2011-02-07 16:40:21 +00004329 with the resultant sign bit. As such, NUW/NSW have the same semantics as
4330 they would if the shift were expressed as a mul instruction with the same
4331 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
4332
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004333<h5>Example:</h5>
4334<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00004335 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
4336 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
4337 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004338 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004339 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004340</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004341
Reid Spencer04e259b2007-01-31 21:39:12 +00004342</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004343
Reid Spencer04e259b2007-01-31 21:39:12 +00004344<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004345<h4>
4346 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4347</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004348
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004349<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004350
Reid Spencer04e259b2007-01-31 21:39:12 +00004351<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004352<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004353 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4354 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004355</pre>
4356
4357<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004358<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4359 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004360
4361<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004362<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004363 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4364 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004365
4366<h5>Semantics:</h5>
4367<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004368 significant bits of the result will be filled with zero bits after the shift.
4369 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4370 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4371 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4372 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004373
Chris Lattnera676c0f2011-02-07 16:40:21 +00004374<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004375 <tt>lshr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
Chris Lattnera676c0f2011-02-07 16:40:21 +00004376 shifted out are non-zero.</p>
4377
4378
Reid Spencer04e259b2007-01-31 21:39:12 +00004379<h5>Example:</h5>
4380<pre>
4381 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
4382 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
4383 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
4384 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004385 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004386 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004387</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004388
Reid Spencer04e259b2007-01-31 21:39:12 +00004389</div>
4390
Reid Spencer2ab01932007-02-02 13:57:07 +00004391<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004392<h4>
4393 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4394</h4>
4395
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004396<div>
Reid Spencer04e259b2007-01-31 21:39:12 +00004397
4398<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004399<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004400 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4401 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004402</pre>
4403
4404<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004405<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4406 operand shifted to the right a specified number of bits with sign
4407 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004408
4409<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004410<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004411 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4412 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004413
4414<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004415<p>This instruction always performs an arithmetic shift right operation, The
4416 most significant bits of the result will be filled with the sign bit
4417 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
4418 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4419 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4420 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004421
Chris Lattnera676c0f2011-02-07 16:40:21 +00004422<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004423 <tt>ashr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
Chris Lattnera676c0f2011-02-07 16:40:21 +00004424 shifted out are non-zero.</p>
4425
Reid Spencer04e259b2007-01-31 21:39:12 +00004426<h5>Example:</h5>
4427<pre>
4428 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
4429 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
4430 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
4431 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004432 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004433 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004434</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004435
Reid Spencer04e259b2007-01-31 21:39:12 +00004436</div>
4437
Chris Lattner2f7c9632001-06-06 20:29:01 +00004438<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004439<h4>
4440 <a name="i_and">'<tt>and</tt>' Instruction</a>
4441</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004442
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004443<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004444
Chris Lattner2f7c9632001-06-06 20:29:01 +00004445<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004446<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004447 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004448</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004449
Chris Lattner2f7c9632001-06-06 20:29:01 +00004450<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004451<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4452 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004453
Chris Lattner2f7c9632001-06-06 20:29:01 +00004454<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004455<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004456 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4457 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004458
Chris Lattner2f7c9632001-06-06 20:29:01 +00004459<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004460<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004461
Misha Brukman76307852003-11-08 01:05:38 +00004462<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00004463 <tbody>
4464 <tr>
Bill Wendling4517fe52011-12-09 22:41:40 +00004465 <th>In0</th>
4466 <th>In1</th>
4467 <th>Out</th>
Chris Lattner48b383b02003-11-25 01:02:51 +00004468 </tr>
4469 <tr>
4470 <td>0</td>
4471 <td>0</td>
4472 <td>0</td>
4473 </tr>
4474 <tr>
4475 <td>0</td>
4476 <td>1</td>
4477 <td>0</td>
4478 </tr>
4479 <tr>
4480 <td>1</td>
4481 <td>0</td>
4482 <td>0</td>
4483 </tr>
4484 <tr>
4485 <td>1</td>
4486 <td>1</td>
4487 <td>1</td>
4488 </tr>
4489 </tbody>
4490</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004491
Chris Lattner2f7c9632001-06-06 20:29:01 +00004492<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004493<pre>
4494 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004495 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
4496 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004497</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004498</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004499<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004500<h4>
4501 <a name="i_or">'<tt>or</tt>' Instruction</a>
4502</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004503
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004504<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004505
4506<h5>Syntax:</h5>
4507<pre>
4508 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4509</pre>
4510
4511<h5>Overview:</h5>
4512<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4513 two operands.</p>
4514
4515<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004516<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004517 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4518 values. Both arguments must have identical types.</p>
4519
Chris Lattner2f7c9632001-06-06 20:29:01 +00004520<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004521<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004522
Chris Lattner48b383b02003-11-25 01:02:51 +00004523<table border="1" cellspacing="0" cellpadding="4">
4524 <tbody>
4525 <tr>
Bill Wendling4517fe52011-12-09 22:41:40 +00004526 <th>In0</th>
4527 <th>In1</th>
4528 <th>Out</th>
Chris Lattner48b383b02003-11-25 01:02:51 +00004529 </tr>
4530 <tr>
4531 <td>0</td>
4532 <td>0</td>
4533 <td>0</td>
4534 </tr>
4535 <tr>
4536 <td>0</td>
4537 <td>1</td>
4538 <td>1</td>
4539 </tr>
4540 <tr>
4541 <td>1</td>
4542 <td>0</td>
4543 <td>1</td>
4544 </tr>
4545 <tr>
4546 <td>1</td>
4547 <td>1</td>
4548 <td>1</td>
4549 </tr>
4550 </tbody>
4551</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004552
Chris Lattner2f7c9632001-06-06 20:29:01 +00004553<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004554<pre>
4555 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004556 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4557 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004558</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004559
Misha Brukman76307852003-11-08 01:05:38 +00004560</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004561
Chris Lattner2f7c9632001-06-06 20:29:01 +00004562<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004563<h4>
4564 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4565</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004566
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004567<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004568
Chris Lattner2f7c9632001-06-06 20:29:01 +00004569<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004570<pre>
4571 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004572</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004573
Chris Lattner2f7c9632001-06-06 20:29:01 +00004574<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004575<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4576 its two operands. The <tt>xor</tt> is used to implement the "one's
4577 complement" operation, which is the "~" operator in C.</p>
4578
Chris Lattner2f7c9632001-06-06 20:29:01 +00004579<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004580<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004581 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4582 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004583
Chris Lattner2f7c9632001-06-06 20:29:01 +00004584<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004585<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004586
Chris Lattner48b383b02003-11-25 01:02:51 +00004587<table border="1" cellspacing="0" cellpadding="4">
4588 <tbody>
4589 <tr>
Bill Wendling4517fe52011-12-09 22:41:40 +00004590 <th>In0</th>
4591 <th>In1</th>
4592 <th>Out</th>
Chris Lattner48b383b02003-11-25 01:02:51 +00004593 </tr>
4594 <tr>
4595 <td>0</td>
4596 <td>0</td>
4597 <td>0</td>
4598 </tr>
4599 <tr>
4600 <td>0</td>
4601 <td>1</td>
4602 <td>1</td>
4603 </tr>
4604 <tr>
4605 <td>1</td>
4606 <td>0</td>
4607 <td>1</td>
4608 </tr>
4609 <tr>
4610 <td>1</td>
4611 <td>1</td>
4612 <td>0</td>
4613 </tr>
4614 </tbody>
4615</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004616
Chris Lattner2f7c9632001-06-06 20:29:01 +00004617<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004618<pre>
4619 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004620 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4621 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4622 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004623</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004624
Misha Brukman76307852003-11-08 01:05:38 +00004625</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004626
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004627</div>
4628
Chris Lattner2f7c9632001-06-06 20:29:01 +00004629<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004630<h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004631 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004632</h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004633
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004634<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004635
4636<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004637 target-independent manner. These instructions cover the element-access and
4638 vector-specific operations needed to process vectors effectively. While LLVM
4639 does directly support these vector operations, many sophisticated algorithms
4640 will want to use target-specific intrinsics to take full advantage of a
4641 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004642
Chris Lattnerce83bff2006-04-08 23:07:04 +00004643<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004644<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004645 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004646</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004647
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004648<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004649
4650<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004651<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004652 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004653</pre>
4654
4655<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004656<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4657 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004658
4659
4660<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004661<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4662 of <a href="#t_vector">vector</a> type. The second operand is an index
4663 indicating the position from which to extract the element. The index may be
4664 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004665
4666<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004667<p>The result is a scalar of the same type as the element type of
4668 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4669 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4670 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004671
4672<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004673<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004674 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004675</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004676
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004677</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004678
4679<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004680<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004681 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004682</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004683
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004684<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004685
4686<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004687<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004688 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004689</pre>
4690
4691<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004692<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4693 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004694
4695<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004696<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4697 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4698 whose type must equal the element type of the first operand. The third
4699 operand is an index indicating the position at which to insert the value.
4700 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004701
4702<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004703<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4704 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4705 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4706 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004707
4708<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004709<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004710 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004711</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004712
Chris Lattnerce83bff2006-04-08 23:07:04 +00004713</div>
4714
4715<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004716<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004717 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004718</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004719
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004720<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004721
4722<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004723<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004724 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004725</pre>
4726
4727<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004728<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4729 from two input vectors, returning a vector with the same element type as the
4730 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004731
4732<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004733<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4734 with types that match each other. The third argument is a shuffle mask whose
4735 element type is always 'i32'. The result of the instruction is a vector
4736 whose length is the same as the shuffle mask and whose element type is the
4737 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004738
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004739<p>The shuffle mask operand is required to be a constant vector with either
4740 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004741
4742<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004743<p>The elements of the two input vectors are numbered from left to right across
4744 both of the vectors. The shuffle mask operand specifies, for each element of
4745 the result vector, which element of the two input vectors the result element
4746 gets. The element selector may be undef (meaning "don't care") and the
4747 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004748
4749<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004750<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004751 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004752 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004753 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004754 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004755 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004756 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004757 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004758 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004759</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004760
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004761</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004762
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004763</div>
4764
Chris Lattnerce83bff2006-04-08 23:07:04 +00004765<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004766<h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004767 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004768</h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004769
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004770<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004771
Chris Lattner392be582010-02-12 20:49:41 +00004772<p>LLVM supports several instructions for working with
4773 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004774
Dan Gohmanb9d66602008-05-12 23:51:09 +00004775<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004776<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004777 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004778</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004779
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004780<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004781
4782<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004783<pre>
4784 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4785</pre>
4786
4787<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004788<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4789 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004790
4791<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004792<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004793 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004794 <a href="#t_array">array</a> type. The operands are constant indices to
4795 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004796 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004797 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4798 <ul>
4799 <li>Since the value being indexed is not a pointer, the first index is
4800 omitted and assumed to be zero.</li>
4801 <li>At least one index must be specified.</li>
4802 <li>Not only struct indices but also array indices must be in
4803 bounds.</li>
4804 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004805
4806<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004807<p>The result is the value at the position in the aggregate specified by the
4808 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004809
4810<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004811<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004812 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004813</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004814
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004815</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004816
4817<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004818<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004819 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004820</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004821
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004822<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004823
4824<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004825<pre>
Bill Wendlingf6a91cf2011-07-26 20:42:28 +00004826 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}* <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004827</pre>
4828
4829<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004830<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4831 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004832
4833<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004834<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004835 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004836 <a href="#t_array">array</a> type. The second operand is a first-class
4837 value to insert. The following operands are constant indices indicating
4838 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004839 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004840 value to insert must have the same type as the value identified by the
4841 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004842
4843<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004844<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4845 that of <tt>val</tt> except that the value at the position specified by the
4846 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004847
4848<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004849<pre>
Chris Lattnerc2e85402011-05-22 07:18:08 +00004850 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4851 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4852 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004853</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004854
Dan Gohmanb9d66602008-05-12 23:51:09 +00004855</div>
4856
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004857</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004858
4859<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004860<h3>
Chris Lattner6ab66722006-08-15 00:45:58 +00004861 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004862</h3>
Chris Lattner54611b42005-11-06 08:02:57 +00004863
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004864<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004865
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004866<p>A key design point of an SSA-based representation is how it represents
4867 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004868 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004869 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004870
Chris Lattner2f7c9632001-06-06 20:29:01 +00004871<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004872<h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004873 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004874</h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004875
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004876<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004877
Chris Lattner2f7c9632001-06-06 20:29:01 +00004878<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004879<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004880 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004881</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004882
Chris Lattner2f7c9632001-06-06 20:29:01 +00004883<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004884<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004885 currently executing function, to be automatically released when this function
4886 returns to its caller. The object is always allocated in the generic address
4887 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004888
Chris Lattner2f7c9632001-06-06 20:29:01 +00004889<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004890<p>The '<tt>alloca</tt>' instruction
4891 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4892 runtime stack, returning a pointer of the appropriate type to the program.
4893 If "NumElements" is specified, it is the number of elements allocated,
4894 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4895 specified, the value result of the allocation is guaranteed to be aligned to
4896 at least that boundary. If not specified, or if zero, the target can choose
4897 to align the allocation on any convenient boundary compatible with the
4898 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004899
Misha Brukman76307852003-11-08 01:05:38 +00004900<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004901
Chris Lattner2f7c9632001-06-06 20:29:01 +00004902<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004903<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004904 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4905 memory is automatically released when the function returns. The
4906 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4907 variables that must have an address available. When the function returns
4908 (either with the <tt><a href="#i_ret">ret</a></tt>
Bill Wendling3f6a3a22012-02-06 21:57:33 +00004909 or <tt><a href="#i_resume">resume</a></tt> instructions), the memory is
Nick Lewyckyefe5e2e2012-02-29 08:26:44 +00004910 reclaimed. Allocating zero bytes is legal, but the result is undefined.
4911 The order in which memory is allocated (ie., which way the stack grows) is
Nick Lewyckyf70a2bd2012-03-18 09:35:50 +00004912 not specified.</p>
Nick Lewyckyefe5e2e2012-02-29 08:26:44 +00004913
4914<p>
Chris Lattner54611b42005-11-06 08:02:57 +00004915
Chris Lattner2f7c9632001-06-06 20:29:01 +00004916<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004917<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004918 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4919 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4920 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4921 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004922</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004923
Misha Brukman76307852003-11-08 01:05:38 +00004924</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004925
Chris Lattner2f7c9632001-06-06 20:29:01 +00004926<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004927<h4>
4928 <a name="i_load">'<tt>load</tt>' Instruction</a>
4929</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004930
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004931<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004932
Chris Lattner095735d2002-05-06 03:03:22 +00004933<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004934<pre>
Pete Cooper13e082d2012-02-10 18:13:54 +00004935 &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;][, !invariant.load !&lt;index&gt;]
Eli Friedman02e737b2011-08-12 22:50:01 +00004936 &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004937 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004938</pre>
4939
Chris Lattner095735d2002-05-06 03:03:22 +00004940<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004941<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004942
Chris Lattner095735d2002-05-06 03:03:22 +00004943<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004944<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4945 from which to load. The pointer must point to
4946 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4947 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004948 number or order of execution of this <tt>load</tt> with other <a
4949 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004950
Eli Friedman59b66882011-08-09 23:02:53 +00004951<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
4952 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4953 argument. The <code>release</code> and <code>acq_rel</code> orderings are
4954 not valid on <code>load</code> instructions. Atomic loads produce <a
4955 href="#memorymodel">defined</a> results when they may see multiple atomic
4956 stores. The type of the pointee must be an integer type whose bit width
4957 is a power of two greater than or equal to eight and less than or equal
4958 to a target-specific size limit. <code>align</code> must be explicitly
4959 specified on atomic loads, and the load has undefined behavior if the
4960 alignment is not set to a value which is at least the size in bytes of
4961 the pointee. <code>!nontemporal</code> does not have any defined semantics
4962 for atomic loads.</p>
4963
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004964<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004965 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004966 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004967 alignment for the target. It is the responsibility of the code emitter to
4968 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004969 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004970 produce less efficient code. An alignment of 1 is always safe.</p>
4971
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004972<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4973 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00004974 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004975 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4976 and code generator that this load is not expected to be reused in the cache.
4977 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00004978 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004979
Pete Cooper13e082d2012-02-10 18:13:54 +00004980<p>The optional <tt>!invariant.load</tt> metadata must reference a single
4981 metatadata name &lt;index&gt; corresponding to a metadata node with no
4982 entries. The existence of the <tt>!invariant.load</tt> metatadata on the
4983 instruction tells the optimizer and code generator that this load address
4984 points to memory which does not change value during program execution.
4985 The optimizer may then move this load around, for example, by hoisting it
4986 out of loops using loop invariant code motion.</p>
4987
Chris Lattner095735d2002-05-06 03:03:22 +00004988<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004989<p>The location of memory pointed to is loaded. If the value being loaded is of
4990 scalar type then the number of bytes read does not exceed the minimum number
4991 of bytes needed to hold all bits of the type. For example, loading an
4992 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4993 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4994 is undefined if the value was not originally written using a store of the
4995 same type.</p>
4996
Chris Lattner095735d2002-05-06 03:03:22 +00004997<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004998<pre>
4999 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
5000 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005001 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00005002</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005003
Misha Brukman76307852003-11-08 01:05:38 +00005004</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005005
Chris Lattner095735d2002-05-06 03:03:22 +00005006<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005007<h4>
5008 <a name="i_store">'<tt>store</tt>' Instruction</a>
5009</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005010
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005011<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005012
Chris Lattner095735d2002-05-06 03:03:22 +00005013<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005014<pre>
Bill Wendling4517fe52011-12-09 22:41:40 +00005015 store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
5016 store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt; <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00005017</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005018
Chris Lattner095735d2002-05-06 03:03:22 +00005019<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005020<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005021
Chris Lattner095735d2002-05-06 03:03:22 +00005022<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005023<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
5024 and an address at which to store it. The type of the
5025 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
5026 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00005027 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
5028 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
5029 order of execution of this <tt>store</tt> with other <a
5030 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005031
Eli Friedman59b66882011-08-09 23:02:53 +00005032<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
5033 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
5034 argument. The <code>acquire</code> and <code>acq_rel</code> orderings aren't
5035 valid on <code>store</code> instructions. Atomic loads produce <a
5036 href="#memorymodel">defined</a> results when they may see multiple atomic
5037 stores. The type of the pointee must be an integer type whose bit width
5038 is a power of two greater than or equal to eight and less than or equal
5039 to a target-specific size limit. <code>align</code> must be explicitly
5040 specified on atomic stores, and the store has undefined behavior if the
5041 alignment is not set to a value which is at least the size in bytes of
5042 the pointee. <code>!nontemporal</code> does not have any defined semantics
5043 for atomic stores.</p>
5044
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005045<p>The optional constant "align" argument specifies the alignment of the
5046 operation (that is, the alignment of the memory address). A value of 0 or an
5047 omitted "align" argument means that the operation has the preferential
5048 alignment for the target. It is the responsibility of the code emitter to
5049 ensure that the alignment information is correct. Overestimating the
5050 alignment results in an undefined behavior. Underestimating the alignment may
5051 produce less efficient code. An alignment of 1 is always safe.</p>
5052
David Greene9641d062010-02-16 20:50:18 +00005053<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00005054 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00005055 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00005056 instruction tells the optimizer and code generator that this load is
5057 not expected to be reused in the cache. The code generator may
5058 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00005059 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00005060
5061
Chris Lattner48b383b02003-11-25 01:02:51 +00005062<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005063<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
5064 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
5065 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
5066 does not exceed the minimum number of bytes needed to hold all bits of the
5067 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
5068 writing a value of a type like <tt>i20</tt> with a size that is not an
5069 integral number of bytes, it is unspecified what happens to the extra bits
5070 that do not belong to the type, but they will typically be overwritten.</p>
5071
Chris Lattner095735d2002-05-06 03:03:22 +00005072<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005073<pre>
5074 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00005075 store i32 3, i32* %ptr <i>; yields {void}</i>
5076 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00005077</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005078
Reid Spencer443460a2006-11-09 21:15:49 +00005079</div>
5080
Chris Lattner095735d2002-05-06 03:03:22 +00005081<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005082<h4>
5083<a name="i_fence">'<tt>fence</tt>' Instruction</a>
5084</h4>
Eli Friedmanfee02c62011-07-25 23:16:38 +00005085
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005086<div>
Eli Friedmanfee02c62011-07-25 23:16:38 +00005087
5088<h5>Syntax:</h5>
5089<pre>
5090 fence [singlethread] &lt;ordering&gt; <i>; yields {void}</i>
5091</pre>
5092
5093<h5>Overview:</h5>
5094<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
5095between operations.</p>
5096
5097<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
5098href="#ordering">ordering</a> argument which defines what
5099<i>synchronizes-with</i> edges they add. They can only be given
5100<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
5101<code>seq_cst</code> orderings.</p>
5102
5103<h5>Semantics:</h5>
5104<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
5105semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
5106<code>acquire</code> ordering semantics if and only if there exist atomic
5107operations <var>X</var> and <var>Y</var>, both operating on some atomic object
5108<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
5109<var>X</var> modifies <var>M</var> (either directly or through some side effect
5110of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
5111<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
5112<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
5113than an explicit <code>fence</code>, one (but not both) of the atomic operations
5114<var>X</var> or <var>Y</var> might provide a <code>release</code> or
5115<code>acquire</code> (resp.) ordering constraint and still
5116<i>synchronize-with</i> the explicit <code>fence</code> and establish the
5117<i>happens-before</i> edge.</p>
5118
5119<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
5120having both <code>acquire</code> and <code>release</code> semantics specified
5121above, participates in the global program order of other <code>seq_cst</code>
5122operations and/or fences.</p>
5123
5124<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
5125specifies that the fence only synchronizes with other fences in the same
5126thread. (This is useful for interacting with signal handlers.)</p>
5127
Eli Friedmanfee02c62011-07-25 23:16:38 +00005128<h5>Example:</h5>
5129<pre>
5130 fence acquire <i>; yields {void}</i>
5131 fence singlethread seq_cst <i>; yields {void}</i>
5132</pre>
5133
5134</div>
5135
5136<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005137<h4>
5138<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
5139</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005140
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005141<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005142
5143<h5>Syntax:</h5>
5144<pre>
Bill Wendling4517fe52011-12-09 22:41:40 +00005145 cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005146</pre>
5147
5148<h5>Overview:</h5>
5149<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
5150It loads a value in memory and compares it to a given value. If they are
5151equal, it stores a new value into the memory.</p>
5152
5153<h5>Arguments:</h5>
5154<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
5155address to operate on, a value to compare to the value currently be at that
5156address, and a new value to place at that address if the compared values are
5157equal. The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
5158bit width is a power of two greater than or equal to eight and less than
5159or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
5160'<var>&lt;new&gt;</var>' must have the same type, and the type of
5161'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
5162<code>cmpxchg</code> is marked as <code>volatile</code>, then the
5163optimizer is not allowed to modify the number or order of execution
5164of this <code>cmpxchg</code> with other <a href="#volatile">volatile
5165operations</a>.</p>
5166
5167<!-- FIXME: Extend allowed types. -->
5168
5169<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
5170<code>cmpxchg</code> synchronizes with other atomic operations.</p>
5171
5172<p>The optional "<code>singlethread</code>" argument declares that the
5173<code>cmpxchg</code> is only atomic with respect to code (usually signal
5174handlers) running in the same thread as the <code>cmpxchg</code>. Otherwise the
5175cmpxchg is atomic with respect to all other code in the system.</p>
5176
5177<p>The pointer passed into cmpxchg must have alignment greater than or equal to
5178the size in memory of the operand.
5179
5180<h5>Semantics:</h5>
5181<p>The contents of memory at the location specified by the
5182'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
5183'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
5184'<tt>&lt;new&gt;</tt>' is written. The original value at the location
5185is returned.
5186
5187<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
5188purpose of identifying <a href="#release_sequence">release sequences</a>. A
5189failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
5190parameter determined by dropping any <code>release</code> part of the
5191<code>cmpxchg</code>'s ordering.</p>
5192
5193<!--
5194FIXME: Is compare_exchange_weak() necessary? (Consider after we've done
5195optimization work on ARM.)
5196
5197FIXME: Is a weaker ordering constraint on failure helpful in practice?
5198-->
5199
5200<h5>Example:</h5>
5201<pre>
5202entry:
Bill Wendling4517fe52011-12-09 22:41:40 +00005203 %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered <i>; yields {i32}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005204 <a href="#i_br">br</a> label %loop
5205
5206loop:
5207 %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
5208 %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
Bill Wendling4517fe52011-12-09 22:41:40 +00005209 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared <i>; yields {i32}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005210 %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
5211 <a href="#i_br">br</a> i1 %success, label %done, label %loop
5212
5213done:
5214 ...
5215</pre>
5216
5217</div>
5218
5219<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005220<h4>
5221<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
5222</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005223
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005224<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005225
5226<h5>Syntax:</h5>
5227<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00005228 atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005229</pre>
5230
5231<h5>Overview:</h5>
5232<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
5233
5234<h5>Arguments:</h5>
5235<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
5236operation to apply, an address whose value to modify, an argument to the
5237operation. The operation must be one of the following keywords:</p>
5238<ul>
5239 <li>xchg</li>
5240 <li>add</li>
5241 <li>sub</li>
5242 <li>and</li>
5243 <li>nand</li>
5244 <li>or</li>
5245 <li>xor</li>
5246 <li>max</li>
5247 <li>min</li>
5248 <li>umax</li>
5249 <li>umin</li>
5250</ul>
5251
5252<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
5253bit width is a power of two greater than or equal to eight and less than
5254or equal to a target-specific size limit. The type of the
5255'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
5256If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
5257optimizer is not allowed to modify the number or order of execution of this
5258<code>atomicrmw</code> with other <a href="#volatile">volatile
5259 operations</a>.</p>
5260
5261<!-- FIXME: Extend allowed types. -->
5262
5263<h5>Semantics:</h5>
5264<p>The contents of memory at the location specified by the
5265'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
5266back. The original value at the location is returned. The modification is
5267specified by the <var>operation</var> argument:</p>
5268
5269<ul>
5270 <li>xchg: <code>*ptr = val</code></li>
5271 <li>add: <code>*ptr = *ptr + val</code></li>
5272 <li>sub: <code>*ptr = *ptr - val</code></li>
5273 <li>and: <code>*ptr = *ptr &amp; val</code></li>
5274 <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
5275 <li>or: <code>*ptr = *ptr | val</code></li>
5276 <li>xor: <code>*ptr = *ptr ^ val</code></li>
5277 <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
5278 <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
5279 <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5280 <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5281</ul>
5282
5283<h5>Example:</h5>
5284<pre>
5285 %old = atomicrmw add i32* %ptr, i32 1 acquire <i>; yields {i32}</i>
5286</pre>
5287
5288</div>
5289
5290<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005291<h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005292 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005293</h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005294
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005295<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005296
Chris Lattner590645f2002-04-14 06:13:44 +00005297<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005298<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005299 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00005300 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Nadav Rotem3924cb02011-12-05 06:29:09 +00005301 &lt;result&gt; = getelementptr &lt;ptr vector&gt; ptrval, &lt;vector index type&gt; idx
Chris Lattner33fd7022004-04-05 01:30:49 +00005302</pre>
5303
Chris Lattner590645f2002-04-14 06:13:44 +00005304<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005305<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00005306 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
5307 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005308
Chris Lattner590645f2002-04-14 06:13:44 +00005309<h5>Arguments:</h5>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005310<p>The first argument is always a pointer or a vector of pointers,
5311 and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00005312 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005313 elements of the aggregate object are indexed. The interpretation of each
5314 index is dependent on the type being indexed into. The first index always
5315 indexes the pointer value given as the first argument, the second index
5316 indexes a value of the type pointed to (not necessarily the value directly
5317 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00005318 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00005319 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00005320 can never be pointers, since that would require loading the pointer before
5321 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005322
5323<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00005324 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00005325 integer <b>constants</b> are allowed. When indexing into an array, pointer
5326 or vector, integers of any width are allowed, and they are not required to be
Eli Friedmand8874dc2011-08-12 23:37:55 +00005327 constant. These integers are treated as signed values where relevant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005328
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005329<p>For example, let's consider a C code fragment and how it gets compiled to
5330 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005331
Benjamin Kramer79698be2010-07-13 12:26:09 +00005332<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00005333struct RT {
5334 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00005335 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00005336 char C;
5337};
5338struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00005339 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00005340 double Y;
5341 struct RT Z;
5342};
Chris Lattner33fd7022004-04-05 01:30:49 +00005343
Chris Lattnera446f1b2007-05-29 15:43:56 +00005344int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005345 return &amp;s[1].Z.B[5][13];
5346}
Chris Lattner33fd7022004-04-05 01:30:49 +00005347</pre>
5348
Bill Wendling7ad1f362011-12-13 01:07:07 +00005349<p>The LLVM code generated by Clang is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005350
Benjamin Kramer79698be2010-07-13 12:26:09 +00005351<pre class="doc_code">
Bill Wendling7ad1f362011-12-13 01:07:07 +00005352%struct.RT = <a href="#namedtypes">type</a> { i8, [10 x [20 x i32]], i8 }
5353%struct.ST = <a href="#namedtypes">type</a> { i32, double, %struct.RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00005354
Bill Wendling7ad1f362011-12-13 01:07:07 +00005355define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005356entry:
Bill Wendling7ad1f362011-12-13 01:07:07 +00005357 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5358 ret i32* %arrayidx
Bill Wendling3716c5d2007-05-29 09:04:49 +00005359}
Chris Lattner33fd7022004-04-05 01:30:49 +00005360</pre>
5361
Chris Lattner590645f2002-04-14 06:13:44 +00005362<h5>Semantics:</h5>
Bill Wendling7ad1f362011-12-13 01:07:07 +00005363<p>In the example above, the first index is indexing into the
5364 '<tt>%struct.ST*</tt>' type, which is a pointer, yielding a
5365 '<tt>%struct.ST</tt>' = '<tt>{ i32, double, %struct.RT }</tt>' type, a
5366 structure. The second index indexes into the third element of the structure,
5367 yielding a '<tt>%struct.RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], i8 }</tt>'
5368 type, another structure. The third index indexes into the second element of
5369 the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an array. The
5370 two dimensions of the array are subscripted into, yielding an '<tt>i32</tt>'
5371 type. The '<tt>getelementptr</tt>' instruction returns a pointer to this
5372 element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005373
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005374<p>Note that it is perfectly legal to index partially through a structure,
5375 returning a pointer to an inner element. Because of this, the LLVM code for
5376 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005377
Bill Wendling7ad1f362011-12-13 01:07:07 +00005378<pre class="doc_code">
5379define i32* @foo(%struct.ST* %s) {
5380 %t1 = getelementptr %struct.ST* %s, i32 1 <i>; yields %struct.ST*:%t1</i>
5381 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 <i>; yields %struct.RT*:%t2</i>
5382 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
5383 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
5384 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
5385 ret i32* %t5
5386}
Chris Lattnera8292f32002-05-06 22:08:29 +00005387</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00005388
Dan Gohman1639c392009-07-27 21:53:46 +00005389<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00005390 <tt>getelementptr</tt> is a <a href="#poisonvalues">poison value</a> if the
Dan Gohman57255802010-04-23 15:23:32 +00005391 base pointer is not an <i>in bounds</i> address of an allocated object,
5392 or if any of the addresses that would be formed by successive addition of
5393 the offsets implied by the indices to the base address with infinitely
Eli Friedmand8874dc2011-08-12 23:37:55 +00005394 precise signed arithmetic are not an <i>in bounds</i> address of that
5395 allocated object. The <i>in bounds</i> addresses for an allocated object
5396 are all the addresses that point into the object, plus the address one
Nadav Rotem3924cb02011-12-05 06:29:09 +00005397 byte past the end.
5398 In cases where the base is a vector of pointers the <tt>inbounds</tt> keyword
5399 applies to each of the computations element-wise. </p>
Dan Gohman1639c392009-07-27 21:53:46 +00005400
5401<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
Eli Friedmand8874dc2011-08-12 23:37:55 +00005402 the base address with silently-wrapping two's complement arithmetic. If the
5403 offsets have a different width from the pointer, they are sign-extended or
5404 truncated to the width of the pointer. The result value of the
5405 <tt>getelementptr</tt> may be outside the object pointed to by the base
5406 pointer. The result value may not necessarily be used to access memory
5407 though, even if it happens to point into allocated storage. See the
5408 <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5409 information.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005410
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005411<p>The getelementptr instruction is often confusing. For some more insight into
5412 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00005413
Chris Lattner590645f2002-04-14 06:13:44 +00005414<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005415<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005416 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005417 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5418 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005419 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005420 <i>; yields i8*:eptr</i>
5421 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00005422 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00005423 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00005424</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005425
Nadav Rotem3924cb02011-12-05 06:29:09 +00005426<p>In cases where the pointer argument is a vector of pointers, only a
5427 single index may be used, and the number of vector elements has to be
5428 the same. For example: </p>
5429<pre class="doc_code">
5430 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5431</pre>
5432
Chris Lattner33fd7022004-04-05 01:30:49 +00005433</div>
Reid Spencer443460a2006-11-09 21:15:49 +00005434
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005435</div>
5436
Chris Lattner2f7c9632001-06-06 20:29:01 +00005437<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005438<h3>
5439 <a name="convertops">Conversion Operations</a>
5440</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005441
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005442<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005443
Reid Spencer97c5fa42006-11-08 01:18:52 +00005444<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005445 which all take a single operand and a type. They perform various bit
5446 conversions on the operand.</p>
5447
Chris Lattnera8292f32002-05-06 22:08:29 +00005448<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005449<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005450 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005451</h4>
5452
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005453<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005454
5455<h5>Syntax:</h5>
5456<pre>
5457 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5458</pre>
5459
5460<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005461<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5462 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005463
5464<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005465<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5466 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5467 of the same number of integers.
5468 The bit size of the <tt>value</tt> must be larger than
5469 the bit size of the destination type, <tt>ty2</tt>.
5470 Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005471
5472<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005473<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5474 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5475 source size must be larger than the destination size, <tt>trunc</tt> cannot
5476 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005477
5478<h5>Example:</h5>
5479<pre>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005480 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
5481 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
5482 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
5483 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005484</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005485
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005486</div>
5487
5488<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005489<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005490 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005491</h4>
5492
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005493<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005494
5495<h5>Syntax:</h5>
5496<pre>
5497 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5498</pre>
5499
5500<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005501<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005502 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005503
5504
5505<h5>Arguments:</h5>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005506<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5507 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5508 of the same number of integers.
5509 The bit size of the <tt>value</tt> must be smaller than
5510 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005511 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005512
5513<h5>Semantics:</h5>
5514<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005515 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005516
Reid Spencer07c9c682007-01-12 15:46:11 +00005517<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005518
5519<h5>Example:</h5>
5520<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005521 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005522 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005523 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005524</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005525
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005526</div>
5527
5528<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005529<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005530 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005531</h4>
5532
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005533<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005534
5535<h5>Syntax:</h5>
5536<pre>
5537 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5538</pre>
5539
5540<h5>Overview:</h5>
5541<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5542
5543<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005544<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5545 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5546 of the same number of integers.
5547 The bit size of the <tt>value</tt> must be smaller than
5548 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005549 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005550
5551<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005552<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5553 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5554 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005555
Reid Spencer36a15422007-01-12 03:35:51 +00005556<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005557
5558<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005559<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005560 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005561 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005562 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005563</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005564
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005565</div>
5566
5567<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005568<h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005569 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005570</h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005571
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005572<div>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005573
5574<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005575<pre>
5576 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5577</pre>
5578
5579<h5>Overview:</h5>
5580<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005581 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005582
5583<h5>Arguments:</h5>
5584<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005585 point</a> value to cast and a <a href="#t_floating">floating point</a> type
5586 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00005587 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005588 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005589
5590<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005591<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00005592 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005593 <a href="#t_floating">floating point</a> type. If the value cannot fit
5594 within the destination type, <tt>ty2</tt>, then the results are
5595 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005596
5597<h5>Example:</h5>
5598<pre>
5599 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
5600 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
5601</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005602
Reid Spencer2e2740d2006-11-09 21:48:10 +00005603</div>
5604
5605<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005606<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005607 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005608</h4>
5609
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005610<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005611
5612<h5>Syntax:</h5>
5613<pre>
5614 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5615</pre>
5616
5617<h5>Overview:</h5>
5618<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005619 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005620
5621<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005622<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005623 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5624 a <a href="#t_floating">floating point</a> type to cast it to. The source
5625 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005626
5627<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005628<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005629 <a href="#t_floating">floating point</a> type to a larger
5630 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5631 used to make a <i>no-op cast</i> because it always changes bits. Use
5632 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005633
5634<h5>Example:</h5>
5635<pre>
Nick Lewycky9feca672011-03-31 18:20:19 +00005636 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
5637 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005638</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005639
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005640</div>
5641
5642<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005643<h4>
Reid Spencer2eadb532007-01-21 00:29:26 +00005644 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005645</h4>
5646
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005647<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005648
5649<h5>Syntax:</h5>
5650<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005651 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005652</pre>
5653
5654<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00005655<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005656 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005657
5658<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005659<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5660 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5661 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5662 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5663 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005664
5665<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005666<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005667 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5668 towards zero) unsigned integer value. If the value cannot fit
5669 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005670
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005671<h5>Example:</h5>
5672<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005673 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005674 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005675 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005676</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005677
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005678</div>
5679
5680<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005681<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005682 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005683</h4>
5684
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005685<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005686
5687<h5>Syntax:</h5>
5688<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005689 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005690</pre>
5691
5692<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005693<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005694 <a href="#t_floating">floating point</a> <tt>value</tt> to
5695 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005696
Chris Lattnera8292f32002-05-06 22:08:29 +00005697<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005698<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5699 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5700 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5701 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5702 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005703
Chris Lattnera8292f32002-05-06 22:08:29 +00005704<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005705<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005706 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5707 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5708 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005709
Chris Lattner70de6632001-07-09 00:26:23 +00005710<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005711<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005712 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005713 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005714 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005715</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005716
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005717</div>
5718
5719<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005720<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005721 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005722</h4>
5723
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005724<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005725
5726<h5>Syntax:</h5>
5727<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005728 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005729</pre>
5730
5731<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005732<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005733 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005734
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005735<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005736<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005737 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5738 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5739 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5740 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005741
5742<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005743<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005744 integer quantity and converts it to the corresponding floating point
5745 value. If the value cannot fit in the floating point value, the results are
5746 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005747
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005748<h5>Example:</h5>
5749<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005750 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005751 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005752</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005753
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005754</div>
5755
5756<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005757<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005758 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005759</h4>
5760
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005761<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005762
5763<h5>Syntax:</h5>
5764<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005765 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005766</pre>
5767
5768<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005769<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5770 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005771
5772<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005773<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005774 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5775 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5776 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5777 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005778
5779<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005780<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5781 quantity and converts it to the corresponding floating point value. If the
5782 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005783
5784<h5>Example:</h5>
5785<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005786 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005787 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005788</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005789
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005790</div>
5791
5792<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005793<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005794 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005795</h4>
5796
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005797<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005798
5799<h5>Syntax:</h5>
5800<pre>
5801 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5802</pre>
5803
5804<h5>Overview:</h5>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005805<p>The '<tt>ptrtoint</tt>' instruction converts the pointer or a vector of
5806 pointers <tt>value</tt> to
5807 the integer (or vector of integers) type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005808
5809<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005810<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Nadav Rotem3924cb02011-12-05 06:29:09 +00005811 must be a a value of type <a href="#t_pointer">pointer</a> or a vector of
5812 pointers, and a type to cast it to
5813 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> or a vector
5814 of integers type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005815
5816<h5>Semantics:</h5>
5817<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005818 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5819 truncating or zero extending that value to the size of the integer type. If
5820 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5821 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5822 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5823 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005824
5825<h5>Example:</h5>
5826<pre>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005827 %X = ptrtoint i32* %P to i8 <i>; yields truncation on 32-bit architecture</i>
5828 %Y = ptrtoint i32* %P to i64 <i>; yields zero extension on 32-bit architecture</i>
5829 %Z = ptrtoint &lt;4 x i32*&gt; %P to &lt;4 x i64&gt;<i>; yields vector zero extension for a vector of addresses on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005830</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005831
Reid Spencerb7344ff2006-11-11 21:00:47 +00005832</div>
5833
5834<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005835<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005836 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005837</h4>
5838
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005839<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005840
5841<h5>Syntax:</h5>
5842<pre>
5843 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5844</pre>
5845
5846<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005847<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5848 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005849
5850<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00005851<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005852 value to cast, and a type to cast it to, which must be a
5853 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005854
5855<h5>Semantics:</h5>
5856<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005857 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5858 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5859 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5860 than the size of a pointer then a zero extension is done. If they are the
5861 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005862
5863<h5>Example:</h5>
5864<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005865 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005866 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5867 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005868 %Z = inttoptr &lt;4 x i32&gt; %G to &lt;4 x i8*&gt;<i>; yields truncation of vector G to four pointers</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005869</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005870
Reid Spencerb7344ff2006-11-11 21:00:47 +00005871</div>
5872
5873<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005874<h4>
Reid Spencer5b950642006-11-11 23:08:07 +00005875 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005876</h4>
5877
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005878<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005879
5880<h5>Syntax:</h5>
5881<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00005882 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005883</pre>
5884
5885<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005886<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005887 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005888
5889<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005890<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5891 non-aggregate first class value, and a type to cast it to, which must also be
5892 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5893 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5894 identical. If the source type is a pointer, the destination type must also be
5895 a pointer. This instruction supports bitwise conversion of vectors to
5896 integers and to vectors of other types (as long as they have the same
5897 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005898
5899<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005900<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005901 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5902 this conversion. The conversion is done as if the <tt>value</tt> had been
Nadav Rotem3924cb02011-12-05 06:29:09 +00005903 stored to memory and read back as type <tt>ty2</tt>.
5904 Pointer (or vector of pointers) types may only be converted to other pointer
5905 (or vector of pointers) types with this instruction. To convert
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005906 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5907 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005908
5909<h5>Example:</h5>
5910<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005911 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005912 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005913 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
5914 %Z = bitcast &lt;2 x i32*&gt; %V to &lt;2 x i64*&gt; <i>; yields &lt;2 x i64*&gt;</i>
Chris Lattner70de6632001-07-09 00:26:23 +00005915</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005916
Misha Brukman76307852003-11-08 01:05:38 +00005917</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005918
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005919</div>
5920
Reid Spencer97c5fa42006-11-08 01:18:52 +00005921<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005922<h3>
5923 <a name="otherops">Other Operations</a>
5924</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005925
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005926<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005927
5928<p>The instructions in this category are the "miscellaneous" instructions, which
5929 defy better classification.</p>
5930
Reid Spencerc828a0e2006-11-18 21:50:54 +00005931<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005932<h4>
5933 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5934</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005935
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005936<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005937
Reid Spencerc828a0e2006-11-18 21:50:54 +00005938<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005939<pre>
5940 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005941</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005942
Reid Spencerc828a0e2006-11-18 21:50:54 +00005943<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005944<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
Nadav Rotem3924cb02011-12-05 06:29:09 +00005945 boolean values based on comparison of its two integer, integer vector,
5946 pointer, or pointer vector operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005947
Reid Spencerc828a0e2006-11-18 21:50:54 +00005948<h5>Arguments:</h5>
5949<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005950 the condition code indicating the kind of comparison to perform. It is not a
5951 value, just a keyword. The possible condition code are:</p>
5952
Reid Spencerc828a0e2006-11-18 21:50:54 +00005953<ol>
5954 <li><tt>eq</tt>: equal</li>
5955 <li><tt>ne</tt>: not equal </li>
5956 <li><tt>ugt</tt>: unsigned greater than</li>
5957 <li><tt>uge</tt>: unsigned greater or equal</li>
5958 <li><tt>ult</tt>: unsigned less than</li>
5959 <li><tt>ule</tt>: unsigned less or equal</li>
5960 <li><tt>sgt</tt>: signed greater than</li>
5961 <li><tt>sge</tt>: signed greater or equal</li>
5962 <li><tt>slt</tt>: signed less than</li>
5963 <li><tt>sle</tt>: signed less or equal</li>
5964</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005965
Chris Lattnerc0f423a2007-01-15 01:54:13 +00005966<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005967 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5968 typed. They must also be identical types.</p>
5969
Reid Spencerc828a0e2006-11-18 21:50:54 +00005970<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005971<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5972 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005973 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005974 result, as follows:</p>
5975
Reid Spencerc828a0e2006-11-18 21:50:54 +00005976<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00005977 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005978 <tt>false</tt> otherwise. No sign interpretation is necessary or
5979 performed.</li>
5980
Eric Christopher455c5772009-12-05 02:46:03 +00005981 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005982 <tt>false</tt> otherwise. No sign interpretation is necessary or
5983 performed.</li>
5984
Reid Spencerc828a0e2006-11-18 21:50:54 +00005985 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005986 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5987
Reid Spencerc828a0e2006-11-18 21:50:54 +00005988 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005989 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5990 to <tt>op2</tt>.</li>
5991
Reid Spencerc828a0e2006-11-18 21:50:54 +00005992 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005993 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5994
Reid Spencerc828a0e2006-11-18 21:50:54 +00005995 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005996 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5997
Reid Spencerc828a0e2006-11-18 21:50:54 +00005998 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005999 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6000
Reid Spencerc828a0e2006-11-18 21:50:54 +00006001 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006002 <tt>true</tt> if <tt>op1</tt> is greater than or equal
6003 to <tt>op2</tt>.</li>
6004
Reid Spencerc828a0e2006-11-18 21:50:54 +00006005 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006006 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
6007
Reid Spencerc828a0e2006-11-18 21:50:54 +00006008 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006009 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006010</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006011
Reid Spencerc828a0e2006-11-18 21:50:54 +00006012<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006013 values are compared as if they were integers.</p>
6014
6015<p>If the operands are integer vectors, then they are compared element by
6016 element. The result is an <tt>i1</tt> vector with the same number of elements
6017 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006018
6019<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006020<pre>
6021 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006022 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
6023 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
6024 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
6025 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
6026 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006027</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00006028
6029<p>Note that the code generator does not yet support vector types with
6030 the <tt>icmp</tt> instruction.</p>
6031
Reid Spencerc828a0e2006-11-18 21:50:54 +00006032</div>
6033
6034<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006035<h4>
6036 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
6037</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006038
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006039<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006040
Reid Spencerc828a0e2006-11-18 21:50:54 +00006041<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006042<pre>
6043 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006044</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006045
Reid Spencerc828a0e2006-11-18 21:50:54 +00006046<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006047<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
6048 values based on comparison of its operands.</p>
6049
6050<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00006051(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006052
6053<p>If the operands are floating point vectors, then the result type is a vector
6054 of boolean with the same number of elements as the operands being
6055 compared.</p>
6056
Reid Spencerc828a0e2006-11-18 21:50:54 +00006057<h5>Arguments:</h5>
6058<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006059 the condition code indicating the kind of comparison to perform. It is not a
6060 value, just a keyword. The possible condition code are:</p>
6061
Reid Spencerc828a0e2006-11-18 21:50:54 +00006062<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00006063 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006064 <li><tt>oeq</tt>: ordered and equal</li>
6065 <li><tt>ogt</tt>: ordered and greater than </li>
6066 <li><tt>oge</tt>: ordered and greater than or equal</li>
6067 <li><tt>olt</tt>: ordered and less than </li>
6068 <li><tt>ole</tt>: ordered and less than or equal</li>
6069 <li><tt>one</tt>: ordered and not equal</li>
6070 <li><tt>ord</tt>: ordered (no nans)</li>
6071 <li><tt>ueq</tt>: unordered or equal</li>
6072 <li><tt>ugt</tt>: unordered or greater than </li>
6073 <li><tt>uge</tt>: unordered or greater than or equal</li>
6074 <li><tt>ult</tt>: unordered or less than </li>
6075 <li><tt>ule</tt>: unordered or less than or equal</li>
6076 <li><tt>une</tt>: unordered or not equal</li>
6077 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00006078 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006079</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006080
Jeff Cohen222a8a42007-04-29 01:07:00 +00006081<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006082 <i>unordered</i> means that either operand may be a QNAN.</p>
6083
6084<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
6085 a <a href="#t_floating">floating point</a> type or
6086 a <a href="#t_vector">vector</a> of floating point type. They must have
6087 identical types.</p>
6088
Reid Spencerc828a0e2006-11-18 21:50:54 +00006089<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00006090<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006091 according to the condition code given as <tt>cond</tt>. If the operands are
6092 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00006093 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006094 follows:</p>
6095
Reid Spencerc828a0e2006-11-18 21:50:54 +00006096<ol>
6097 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006098
Eric Christopher455c5772009-12-05 02:46:03 +00006099 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006100 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
6101
Reid Spencerf69acf32006-11-19 03:00:14 +00006102 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00006103 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006104
Eric Christopher455c5772009-12-05 02:46:03 +00006105 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006106 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
6107
Eric Christopher455c5772009-12-05 02:46:03 +00006108 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006109 <tt>op1</tt> is less than <tt>op2</tt>.</li>
6110
Eric Christopher455c5772009-12-05 02:46:03 +00006111 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006112 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6113
Eric Christopher455c5772009-12-05 02:46:03 +00006114 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006115 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
6116
Reid Spencerf69acf32006-11-19 03:00:14 +00006117 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006118
Eric Christopher455c5772009-12-05 02:46:03 +00006119 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006120 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
6121
Eric Christopher455c5772009-12-05 02:46:03 +00006122 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006123 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6124
Eric Christopher455c5772009-12-05 02:46:03 +00006125 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006126 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
6127
Eric Christopher455c5772009-12-05 02:46:03 +00006128 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006129 <tt>op1</tt> is less than <tt>op2</tt>.</li>
6130
Eric Christopher455c5772009-12-05 02:46:03 +00006131 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006132 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6133
Eric Christopher455c5772009-12-05 02:46:03 +00006134 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006135 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
6136
Reid Spencerf69acf32006-11-19 03:00:14 +00006137 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006138
Reid Spencerc828a0e2006-11-18 21:50:54 +00006139 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
6140</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006141
6142<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006143<pre>
6144 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00006145 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
6146 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
6147 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006148</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00006149
6150<p>Note that the code generator does not yet support vector types with
6151 the <tt>fcmp</tt> instruction.</p>
6152
Reid Spencerc828a0e2006-11-18 21:50:54 +00006153</div>
6154
Reid Spencer97c5fa42006-11-08 01:18:52 +00006155<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006156<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006157 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006158</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006159
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006160<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006161
Reid Spencer97c5fa42006-11-08 01:18:52 +00006162<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006163<pre>
6164 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
6165</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006166
Reid Spencer97c5fa42006-11-08 01:18:52 +00006167<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006168<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
6169 SSA graph representing the function.</p>
6170
Reid Spencer97c5fa42006-11-08 01:18:52 +00006171<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006172<p>The type of the incoming values is specified with the first type field. After
6173 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
6174 one pair for each predecessor basic block of the current block. Only values
6175 of <a href="#t_firstclass">first class</a> type may be used as the value
6176 arguments to the PHI node. Only labels may be used as the label
6177 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006178
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006179<p>There must be no non-phi instructions between the start of a basic block and
6180 the PHI instructions: i.e. PHI instructions must be first in a basic
6181 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006182
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006183<p>For the purposes of the SSA form, the use of each incoming value is deemed to
6184 occur on the edge from the corresponding predecessor block to the current
6185 block (but after any definition of an '<tt>invoke</tt>' instruction's return
6186 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00006187
Reid Spencer97c5fa42006-11-08 01:18:52 +00006188<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006189<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006190 specified by the pair corresponding to the predecessor basic block that
6191 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006192
Reid Spencer97c5fa42006-11-08 01:18:52 +00006193<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006194<pre>
6195Loop: ; Infinite loop that counts from 0 on up...
6196 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6197 %nextindvar = add i32 %indvar, 1
6198 br label %Loop
6199</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006200
Reid Spencer97c5fa42006-11-08 01:18:52 +00006201</div>
6202
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006203<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006204<h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006205 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006206</h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006207
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006208<div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006209
6210<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006211<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00006212 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
6213
Dan Gohmanef9462f2008-10-14 16:51:45 +00006214 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006215</pre>
6216
6217<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006218<p>The '<tt>select</tt>' instruction is used to choose one value based on a
6219 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006220
6221
6222<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006223<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
6224 values indicating the condition, and two values of the
6225 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
6226 vectors and the condition is a scalar, then entire vectors are selected, not
6227 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006228
6229<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006230<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
6231 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006232
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006233<p>If the condition is a vector of i1, then the value arguments must be vectors
6234 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006235
6236<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006237<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00006238 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006239</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00006240
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006241</div>
6242
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00006243<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006244<h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00006245 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006246</h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00006247
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006248<div>
Chris Lattnere23c1392005-05-06 05:47:36 +00006249
Chris Lattner2f7c9632001-06-06 20:29:01 +00006250<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006251<pre>
Devang Patel02256232008-10-07 17:48:33 +00006252 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00006253</pre>
6254
Chris Lattner2f7c9632001-06-06 20:29:01 +00006255<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006256<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006257
Chris Lattner2f7c9632001-06-06 20:29:01 +00006258<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006259<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006260
Chris Lattnera8292f32002-05-06 22:08:29 +00006261<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006262 <li>The optional "tail" marker indicates that the callee function does not
6263 access any allocas or varargs in the caller. Note that calls may be
6264 marked "tail" even if they do not occur before
6265 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
6266 present, the function call is eligible for tail call optimization,
6267 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00006268 optimized into a jump</a>. The code generator may optimize calls marked
6269 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
6270 sibling call optimization</a> when the caller and callee have
6271 matching signatures, or 2) forced tail call optimization when the
6272 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006273 <ul>
6274 <li>Caller and callee both have the calling
6275 convention <tt>fastcc</tt>.</li>
6276 <li>The call is in tail position (ret immediately follows call and ret
6277 uses value of call or is void).</li>
6278 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00006279 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006280 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
6281 constraints are met.</a></li>
6282 </ul>
6283 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006284
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006285 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
6286 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006287 defaults to using C calling conventions. The calling convention of the
6288 call must match the calling convention of the target function, or else the
6289 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006290
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006291 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
6292 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
6293 '<tt>inreg</tt>' attributes are valid here.</li>
6294
6295 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
6296 type of the return value. Functions that return no value are marked
6297 <tt><a href="#t_void">void</a></tt>.</li>
6298
6299 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
6300 being invoked. The argument types must match the types implied by this
6301 signature. This type can be omitted if the function is not varargs and if
6302 the function type does not return a pointer to a function.</li>
6303
6304 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
6305 be invoked. In most cases, this is a direct function invocation, but
6306 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
6307 to function value.</li>
6308
6309 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00006310 signature argument types and parameter attributes. All arguments must be
6311 of <a href="#t_firstclass">first class</a> type. If the function
6312 signature indicates the function accepts a variable number of arguments,
6313 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006314
6315 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
6316 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
6317 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00006318</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00006319
Chris Lattner2f7c9632001-06-06 20:29:01 +00006320<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006321<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
6322 a specified function, with its incoming arguments bound to the specified
6323 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
6324 function, control flow continues with the instruction after the function
6325 call, and the return value of the function is bound to the result
6326 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006327
Chris Lattner2f7c9632001-06-06 20:29:01 +00006328<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006329<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00006330 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006331 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00006332 %X = tail call i32 @foo() <i>; yields i32</i>
6333 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
6334 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00006335
6336 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00006337 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00006338 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
6339 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00006340 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00006341 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00006342</pre>
6343
Dale Johannesen68f971b2009-09-24 18:38:21 +00006344<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00006345standard C99 library as being the C99 library functions, and may perform
6346optimizations or generate code for them under that assumption. This is
6347something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00006348freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00006349
Misha Brukman76307852003-11-08 01:05:38 +00006350</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006351
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006352<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006353<h4>
Chris Lattner33337472006-01-13 23:26:01 +00006354 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006355</h4>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006356
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006357<div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006358
Chris Lattner26ca62e2003-10-18 05:51:36 +00006359<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006360<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006361 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00006362</pre>
6363
Chris Lattner26ca62e2003-10-18 05:51:36 +00006364<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006365<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006366 the "variable argument" area of a function call. It is used to implement the
6367 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006368
Chris Lattner26ca62e2003-10-18 05:51:36 +00006369<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006370<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6371 argument. It returns a value of the specified argument type and increments
6372 the <tt>va_list</tt> to point to the next argument. The actual type
6373 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006374
Chris Lattner26ca62e2003-10-18 05:51:36 +00006375<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006376<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6377 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6378 to the next argument. For more information, see the variable argument
6379 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006380
6381<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006382 take a variable number of arguments, for example, the <tt>vfprintf</tt>
6383 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006384
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006385<p><tt>va_arg</tt> is an LLVM instruction instead of
6386 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6387 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006388
Chris Lattner26ca62e2003-10-18 05:51:36 +00006389<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006390<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6391
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006392<p>Note that the code generator does not yet fully support va_arg on many
6393 targets. Also, it does not currently support va_arg with aggregate types on
6394 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00006395
Misha Brukman76307852003-11-08 01:05:38 +00006396</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006397
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006398<!-- _______________________________________________________________________ -->
6399<h4>
6400 <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6401</h4>
6402
6403<div>
6404
6405<h5>Syntax:</h5>
6406<pre>
Duncan Sandsdf9d7812012-01-13 19:59:16 +00006407 &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6408 &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
Bill Wendling49bfb122011-08-08 08:06:05 +00006409
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006410 &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
Bill Wendlingfae14752011-08-12 20:24:12 +00006411 &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006412</pre>
6413
6414<h5>Overview:</h5>
6415<p>The '<tt>landingpad</tt>' instruction is used by
6416 <a href="ExceptionHandling.html#overview">LLVM's exception handling
6417 system</a> to specify that a basic block is a landing pad &mdash; one where
6418 the exception lands, and corresponds to the code found in the
6419 <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6420 defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6421 re-entry to the function. The <tt>resultval</tt> has the
Duncan Sandsdf9d7812012-01-13 19:59:16 +00006422 type <tt>resultty</tt>.</p>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006423
6424<h5>Arguments:</h5>
6425<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6426 function associated with the unwinding mechanism. The optional
6427 <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6428
6429<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
Bill Wendlingfae14752011-08-12 20:24:12 +00006430 or <tt>filter</tt> &mdash; and contains the global variable representing the
6431 "type" that may be caught or filtered respectively. Unlike the
6432 <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6433 its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6434 throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006435 one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6436
6437<h5>Semantics:</h5>
6438<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6439 personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6440 therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6441 calling conventions, how the personality function results are represented in
6442 LLVM IR is target specific.</p>
6443
Bill Wendling0524b8d2011-08-03 17:17:06 +00006444<p>The clauses are applied in order from top to bottom. If two
6445 <tt>landingpad</tt> instructions are merged together through inlining, the
Duncan Sandsdf9d7812012-01-13 19:59:16 +00006446 clauses from the calling function are appended to the list of clauses.
6447 When the call stack is being unwound due to an exception being thrown, the
6448 exception is compared against each <tt>clause</tt> in turn. If it doesn't
6449 match any of the clauses, and the <tt>cleanup</tt> flag is not set, then
6450 unwinding continues further up the call stack.</p>
Bill Wendling0524b8d2011-08-03 17:17:06 +00006451
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006452<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6453
6454<ul>
6455 <li>A landing pad block is a basic block which is the unwind destination of an
6456 '<tt>invoke</tt>' instruction.</li>
6457 <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6458 first non-PHI instruction.</li>
6459 <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6460 pad block.</li>
6461 <li>A basic block that is not a landing pad block may not include a
6462 '<tt>landingpad</tt>' instruction.</li>
6463 <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6464 personality function.</li>
6465</ul>
6466
6467<h5>Example:</h5>
6468<pre>
6469 ;; A landing pad which can catch an integer.
6470 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6471 catch i8** @_ZTIi
6472 ;; A landing pad that is a cleanup.
6473 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
Bill Wendlingfae14752011-08-12 20:24:12 +00006474 cleanup
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006475 ;; A landing pad which can catch an integer and can only throw a double.
6476 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6477 catch i8** @_ZTIi
Bill Wendlingfae14752011-08-12 20:24:12 +00006478 filter [1 x i8**] [@_ZTId]
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006479</pre>
6480
6481</div>
6482
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006483</div>
6484
6485</div>
6486
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006487<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006488<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00006489<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00006490
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006491<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006492
6493<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006494 well known names and semantics and are required to follow certain
6495 restrictions. Overall, these intrinsics represent an extension mechanism for
6496 the LLVM language that does not require changing all of the transformations
6497 in LLVM when adding to the language (or the bitcode reader/writer, the
6498 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006499
John Criswell88190562005-05-16 16:17:45 +00006500<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006501 prefix is reserved in LLVM for intrinsic names; thus, function names may not
6502 begin with this prefix. Intrinsic functions must always be external
6503 functions: you cannot define the body of intrinsic functions. Intrinsic
6504 functions may only be used in call or invoke instructions: it is illegal to
6505 take the address of an intrinsic function. Additionally, because intrinsic
6506 functions are part of the LLVM language, it is required if any are added that
6507 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006508
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006509<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6510 family of functions that perform the same operation but on different data
6511 types. Because LLVM can represent over 8 million different integer types,
6512 overloading is used commonly to allow an intrinsic function to operate on any
6513 integer type. One or more of the argument types or the result type can be
6514 overloaded to accept any integer type. Argument types may also be defined as
6515 exactly matching a previous argument's type or the result type. This allows
6516 an intrinsic function which accepts multiple arguments, but needs all of them
6517 to be of the same type, to only be overloaded with respect to a single
6518 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006519
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006520<p>Overloaded intrinsics will have the names of its overloaded argument types
6521 encoded into its function name, each preceded by a period. Only those types
6522 which are overloaded result in a name suffix. Arguments whose type is matched
6523 against another type do not. For example, the <tt>llvm.ctpop</tt> function
6524 can take an integer of any width and returns an integer of exactly the same
6525 integer width. This leads to a family of functions such as
6526 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6527 %val)</tt>. Only one type, the return type, is overloaded, and only one type
6528 suffix is required. Because the argument's type is matched against the return
6529 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006530
Eric Christopher455c5772009-12-05 02:46:03 +00006531<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006532 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006533
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006534<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006535<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006536 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006537</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006538
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006539<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006540
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006541<p>Variable argument support is defined in LLVM with
6542 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6543 intrinsic functions. These functions are related to the similarly named
6544 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006545
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006546<p>All of these functions operate on arguments that use a target-specific value
6547 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
6548 not define what this type is, so all transformations should be prepared to
6549 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006550
Chris Lattner30b868d2006-05-15 17:26:46 +00006551<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006552 instruction and the variable argument handling intrinsic functions are
6553 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006554
Benjamin Kramer79698be2010-07-13 12:26:09 +00006555<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006556define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00006557 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00006558 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006559 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006560 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006561
6562 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00006563 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00006564
6565 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00006566 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006567 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00006568 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006569 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006570
6571 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006572 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006573 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00006574}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006575
6576declare void @llvm.va_start(i8*)
6577declare void @llvm.va_copy(i8*, i8*)
6578declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00006579</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00006580
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006581<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006582<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006583 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006584</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006585
6586
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006587<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006588
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006589<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006590<pre>
6591 declare void %llvm.va_start(i8* &lt;arglist&gt;)
6592</pre>
6593
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006594<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006595<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6596 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006597
6598<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006599<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006600
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006601<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006602<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006603 macro available in C. In a target-dependent way, it initializes
6604 the <tt>va_list</tt> element to which the argument points, so that the next
6605 call to <tt>va_arg</tt> will produce the first variable argument passed to
6606 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6607 need to know the last argument of the function as the compiler can figure
6608 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006609
Misha Brukman76307852003-11-08 01:05:38 +00006610</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006611
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006612<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006613<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006614 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006615</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006616
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006617<div>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006618
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006619<h5>Syntax:</h5>
6620<pre>
6621 declare void @llvm.va_end(i8* &lt;arglist&gt;)
6622</pre>
6623
6624<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006625<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006626 which has been initialized previously
6627 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6628 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006629
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006630<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006631<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006632
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006633<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006634<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006635 macro available in C. In a target-dependent way, it destroys
6636 the <tt>va_list</tt> element to which the argument points. Calls
6637 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6638 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6639 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006640
Misha Brukman76307852003-11-08 01:05:38 +00006641</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006642
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006643<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006644<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006645 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006646</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006647
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006648<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006649
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006650<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006651<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006652 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006653</pre>
6654
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006655<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006656<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006657 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006658
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006659<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006660<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006661 The second argument is a pointer to a <tt>va_list</tt> element to copy
6662 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006663
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006664<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006665<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006666 macro available in C. In a target-dependent way, it copies the
6667 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6668 element. This intrinsic is necessary because
6669 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6670 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006671
Misha Brukman76307852003-11-08 01:05:38 +00006672</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006673
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006674</div>
6675
Chris Lattnerfee11462004-02-12 17:01:32 +00006676<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006677<h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006678 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006679</h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006680
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006681<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006682
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006683<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00006684Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006685intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6686roots on the stack</a>, as well as garbage collector implementations that
6687require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6688barriers. Front-ends for type-safe garbage collected languages should generate
6689these intrinsics to make use of the LLVM garbage collectors. For more details,
6690see <a href="GarbageCollection.html">Accurate Garbage Collection with
6691LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006692
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006693<p>The garbage collection intrinsics only operate on objects in the generic
6694 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006695
Chris Lattner757528b0b2004-05-23 21:06:01 +00006696<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006697<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006698 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006699</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006700
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006701<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006702
6703<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006704<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006705 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006706</pre>
6707
6708<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00006709<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006710 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006711
6712<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006713<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006714 root pointer. The second pointer (which must be either a constant or a
6715 global value address) contains the meta-data to be associated with the
6716 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006717
6718<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00006719<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006720 location. At compile-time, the code generator generates information to allow
6721 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6722 intrinsic may only be used in a function which <a href="#gc">specifies a GC
6723 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006724
6725</div>
6726
Chris Lattner757528b0b2004-05-23 21:06:01 +00006727<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006728<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006729 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006730</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006731
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006732<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006733
6734<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006735<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006736 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006737</pre>
6738
6739<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006740<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006741 locations, allowing garbage collector implementations that require read
6742 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006743
6744<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006745<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006746 allocated from the garbage collector. The first object is a pointer to the
6747 start of the referenced object, if needed by the language runtime (otherwise
6748 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006749
6750<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006751<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006752 instruction, but may be replaced with substantially more complex code by the
6753 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6754 may only be used in a function which <a href="#gc">specifies a GC
6755 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006756
6757</div>
6758
Chris Lattner757528b0b2004-05-23 21:06:01 +00006759<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006760<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006761 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006762</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006763
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006764<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006765
6766<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006767<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006768 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006769</pre>
6770
6771<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006772<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006773 locations, allowing garbage collector implementations that require write
6774 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006775
6776<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006777<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006778 object to store it to, and the third is the address of the field of Obj to
6779 store to. If the runtime does not require a pointer to the object, Obj may
6780 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006781
6782<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006783<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006784 instruction, but may be replaced with substantially more complex code by the
6785 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6786 may only be used in a function which <a href="#gc">specifies a GC
6787 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006788
6789</div>
6790
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006791</div>
6792
Chris Lattner757528b0b2004-05-23 21:06:01 +00006793<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006794<h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006795 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006796</h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006797
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006798<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006799
6800<p>These intrinsics are provided by LLVM to expose special features that may
6801 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006802
Chris Lattner3649c3a2004-02-14 04:08:35 +00006803<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006804<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006805 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006806</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006807
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006808<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006809
6810<h5>Syntax:</h5>
6811<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006812 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006813</pre>
6814
6815<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006816<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6817 target-specific value indicating the return address of the current function
6818 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006819
6820<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006821<p>The argument to this intrinsic indicates which function to return the address
6822 for. Zero indicates the calling function, one indicates its caller, etc.
6823 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006824
6825<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006826<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6827 indicating the return address of the specified call frame, or zero if it
6828 cannot be identified. The value returned by this intrinsic is likely to be
6829 incorrect or 0 for arguments other than zero, so it should only be used for
6830 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006831
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006832<p>Note that calling this intrinsic does not prevent function inlining or other
6833 aggressive transformations, so the value returned may not be that of the
6834 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006835
Chris Lattner3649c3a2004-02-14 04:08:35 +00006836</div>
6837
Chris Lattner3649c3a2004-02-14 04:08:35 +00006838<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006839<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006840 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006841</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006842
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006843<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006844
6845<h5>Syntax:</h5>
6846<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006847 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006848</pre>
6849
6850<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006851<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6852 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006853
6854<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006855<p>The argument to this intrinsic indicates which function to return the frame
6856 pointer for. Zero indicates the calling function, one indicates its caller,
6857 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006858
6859<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006860<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6861 indicating the frame address of the specified call frame, or zero if it
6862 cannot be identified. The value returned by this intrinsic is likely to be
6863 incorrect or 0 for arguments other than zero, so it should only be used for
6864 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006865
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006866<p>Note that calling this intrinsic does not prevent function inlining or other
6867 aggressive transformations, so the value returned may not be that of the
6868 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006869
Chris Lattner3649c3a2004-02-14 04:08:35 +00006870</div>
6871
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006872<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006873<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006874 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006875</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006876
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006877<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006878
6879<h5>Syntax:</h5>
6880<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006881 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00006882</pre>
6883
6884<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006885<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6886 of the function stack, for use
6887 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6888 useful for implementing language features like scoped automatic variable
6889 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006890
6891<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006892<p>This intrinsic returns a opaque pointer value that can be passed
6893 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6894 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6895 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6896 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6897 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6898 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006899
6900</div>
6901
6902<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006903<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006904 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006905</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006906
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006907<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006908
6909<h5>Syntax:</h5>
6910<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006911 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00006912</pre>
6913
6914<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006915<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6916 the function stack to the state it was in when the
6917 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6918 executed. This is useful for implementing language features like scoped
6919 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006920
6921<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006922<p>See the description
6923 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006924
6925</div>
6926
Chris Lattner2f0f0012006-01-13 02:03:13 +00006927<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006928<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006929 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006930</h4>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006931
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006932<div>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006933
6934<h5>Syntax:</h5>
6935<pre>
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006936 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006937</pre>
6938
6939<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006940<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6941 insert a prefetch instruction if supported; otherwise, it is a noop.
6942 Prefetches have no effect on the behavior of the program but can change its
6943 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006944
6945<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006946<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6947 specifier determining if the fetch should be for a read (0) or write (1),
6948 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006949 locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6950 specifies whether the prefetch is performed on the data (1) or instruction (0)
6951 cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6952 must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006953
6954<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006955<p>This intrinsic does not modify the behavior of the program. In particular,
6956 prefetches cannot trap and do not produce a value. On targets that support
6957 this intrinsic, the prefetch can provide hints to the processor cache for
6958 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006959
6960</div>
6961
Andrew Lenharthb4427912005-03-28 20:05:49 +00006962<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006963<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006964 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006965</h4>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006966
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006967<div>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006968
6969<h5>Syntax:</h5>
6970<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006971 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00006972</pre>
6973
6974<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006975<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6976 Counter (PC) in a region of code to simulators and other tools. The method
6977 is target specific, but it is expected that the marker will use exported
6978 symbols to transmit the PC of the marker. The marker makes no guarantees
6979 that it will remain with any specific instruction after optimizations. It is
6980 possible that the presence of a marker will inhibit optimizations. The
6981 intended use is to be inserted after optimizations to allow correlations of
6982 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006983
6984<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006985<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006986
6987<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006988<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00006989 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006990
6991</div>
6992
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006993<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006994<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006995 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006996</h4>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006997
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006998<div>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006999
7000<h5>Syntax:</h5>
7001<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007002 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00007003</pre>
7004
7005<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007006<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
7007 counter register (or similar low latency, high accuracy clocks) on those
7008 targets that support it. On X86, it should map to RDTSC. On Alpha, it
7009 should map to RPCC. As the backing counters overflow quickly (on the order
7010 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00007011
7012<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007013<p>When directly supported, reading the cycle counter should not modify any
7014 memory. Implementations are allowed to either return a application specific
7015 value or a system wide value. On backends without support, this is lowered
7016 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00007017
7018</div>
7019
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007020</div>
7021
Chris Lattner3649c3a2004-02-14 04:08:35 +00007022<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007023<h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00007024 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007025</h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00007026
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007027<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007028
7029<p>LLVM provides intrinsics for a few important standard C library functions.
7030 These intrinsics allow source-language front-ends to pass information about
7031 the alignment of the pointer arguments to the code generator, providing
7032 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007033
Chris Lattnerfee11462004-02-12 17:01:32 +00007034<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007035<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007036 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007037</h4>
Chris Lattnerfee11462004-02-12 17:01:32 +00007038
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007039<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00007040
7041<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007042<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00007043 integer bit width and for different address spaces. Not all targets support
7044 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007045
Chris Lattnerfee11462004-02-12 17:01:32 +00007046<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007047 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007048 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007049 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007050 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00007051</pre>
7052
7053<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007054<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
7055 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007056
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007057<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007058 intrinsics do not return a value, takes extra alignment/isvolatile arguments
7059 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007060
7061<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007062
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007063<p>The first argument is a pointer to the destination, the second is a pointer
7064 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007065 number of bytes to copy, the fourth argument is the alignment of the
7066 source and destination locations, and the fifth is a boolean indicating a
7067 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007068
Dan Gohmana269a0a2010-03-01 17:41:39 +00007069<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007070 then the caller guarantees that both the source and destination pointers are
7071 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00007072
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00007073<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7074 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
7075 The detailed access behavior is not very cleanly specified and it is unwise
7076 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007077
Chris Lattnerfee11462004-02-12 17:01:32 +00007078<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007079
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007080<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
7081 source location to the destination location, which are not allowed to
7082 overlap. It copies "len" bytes of memory over. If the argument is known to
7083 be aligned to some boundary, this can be specified as the fourth argument,
7084 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007085
Chris Lattnerfee11462004-02-12 17:01:32 +00007086</div>
7087
Chris Lattnerf30152e2004-02-12 18:10:10 +00007088<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007089<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007090 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007091</h4>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007092
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007093<div>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007094
7095<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00007096<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00007097 width and for different address space. Not all targets support all bit
7098 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007099
Chris Lattnerf30152e2004-02-12 18:10:10 +00007100<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007101 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007102 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007103 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007104 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00007105</pre>
7106
7107<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007108<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
7109 source location to the destination location. It is similar to the
7110 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
7111 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007112
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007113<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007114 intrinsics do not return a value, takes extra alignment/isvolatile arguments
7115 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007116
7117<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007118
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007119<p>The first argument is a pointer to the destination, the second is a pointer
7120 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007121 number of bytes to copy, the fourth argument is the alignment of the
7122 source and destination locations, and the fifth is a boolean indicating a
7123 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007124
Dan Gohmana269a0a2010-03-01 17:41:39 +00007125<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007126 then the caller guarantees that the source and destination pointers are
7127 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00007128
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00007129<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7130 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
7131 The detailed access behavior is not very cleanly specified and it is unwise
7132 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007133
Chris Lattnerf30152e2004-02-12 18:10:10 +00007134<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007135
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007136<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
7137 source location to the destination location, which may overlap. It copies
7138 "len" bytes of memory over. If the argument is known to be aligned to some
7139 boundary, this can be specified as the fourth argument, otherwise it should
7140 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007141
Chris Lattnerf30152e2004-02-12 18:10:10 +00007142</div>
7143
Chris Lattner3649c3a2004-02-14 04:08:35 +00007144<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007145<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007146 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007147</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007148
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007149<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007150
7151<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00007152<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00007153 width and for different address spaces. However, not all targets support all
7154 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007155
Chris Lattner3649c3a2004-02-14 04:08:35 +00007156<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007157 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00007158 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007159 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00007160 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00007161</pre>
7162
7163<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007164<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
7165 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007166
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007167<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00007168 intrinsic does not return a value and takes extra alignment/volatile
7169 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007170
7171<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007172<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00007173 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007174 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00007175 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007176
Dan Gohmana269a0a2010-03-01 17:41:39 +00007177<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007178 then the caller guarantees that the destination pointer is aligned to that
7179 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007180
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00007181<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7182 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
7183 The detailed access behavior is not very cleanly specified and it is unwise
7184 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007185
Chris Lattner3649c3a2004-02-14 04:08:35 +00007186<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007187<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
7188 at the destination location. If the argument is known to be aligned to some
7189 boundary, this can be specified as the fourth argument, otherwise it should
7190 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007191
Chris Lattner3649c3a2004-02-14 04:08:35 +00007192</div>
7193
Chris Lattner3b4f4372004-06-11 02:28:03 +00007194<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007195<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007196 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007197</h4>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007198
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007199<div>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007200
7201<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007202<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
7203 floating point or vector of floating point type. Not all targets support all
7204 types however.</p>
7205
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007206<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00007207 declare float @llvm.sqrt.f32(float %Val)
7208 declare double @llvm.sqrt.f64(double %Val)
7209 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7210 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7211 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007212</pre>
7213
7214<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007215<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
7216 returning the same value as the libm '<tt>sqrt</tt>' functions would.
7217 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
7218 behavior for negative numbers other than -0.0 (which allows for better
7219 optimization, because there is no need to worry about errno being
7220 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007221
7222<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007223<p>The argument and return value are floating point numbers of the same
7224 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007225
7226<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007227<p>This function returns the sqrt of the specified operand if it is a
7228 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007229
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007230</div>
7231
Chris Lattner33b73f92006-09-08 06:34:02 +00007232<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007233<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007234 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007235</h4>
Chris Lattner33b73f92006-09-08 06:34:02 +00007236
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007237<div>
Chris Lattner33b73f92006-09-08 06:34:02 +00007238
7239<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007240<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
7241 floating point or vector of floating point type. Not all targets support all
7242 types however.</p>
7243
Chris Lattner33b73f92006-09-08 06:34:02 +00007244<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00007245 declare float @llvm.powi.f32(float %Val, i32 %power)
7246 declare double @llvm.powi.f64(double %Val, i32 %power)
7247 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7248 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7249 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00007250</pre>
7251
7252<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007253<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
7254 specified (positive or negative) power. The order of evaluation of
7255 multiplications is not defined. When a vector of floating point type is
7256 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00007257
7258<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007259<p>The second argument is an integer power, and the first is a value to raise to
7260 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00007261
7262<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007263<p>This function returns the first value raised to the second power with an
7264 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00007265
Chris Lattner33b73f92006-09-08 06:34:02 +00007266</div>
7267
Dan Gohmanb6324c12007-10-15 20:30:11 +00007268<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007269<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007270 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007271</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007272
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007273<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007274
7275<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007276<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
7277 floating point or vector of floating point type. Not all targets support all
7278 types however.</p>
7279
Dan Gohmanb6324c12007-10-15 20:30:11 +00007280<pre>
7281 declare float @llvm.sin.f32(float %Val)
7282 declare double @llvm.sin.f64(double %Val)
7283 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7284 declare fp128 @llvm.sin.f128(fp128 %Val)
7285 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7286</pre>
7287
7288<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007289<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007290
7291<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007292<p>The argument and return value are floating point numbers of the same
7293 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007294
7295<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007296<p>This function returns the sine of the specified operand, returning the same
7297 values as the libm <tt>sin</tt> functions would, and handles error conditions
7298 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007299
Dan Gohmanb6324c12007-10-15 20:30:11 +00007300</div>
7301
7302<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007303<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007304 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007305</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007306
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007307<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007308
7309<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007310<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
7311 floating point or vector of floating point type. Not all targets support all
7312 types however.</p>
7313
Dan Gohmanb6324c12007-10-15 20:30:11 +00007314<pre>
7315 declare float @llvm.cos.f32(float %Val)
7316 declare double @llvm.cos.f64(double %Val)
7317 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7318 declare fp128 @llvm.cos.f128(fp128 %Val)
7319 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7320</pre>
7321
7322<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007323<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007324
7325<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007326<p>The argument and return value are floating point numbers of the same
7327 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007328
7329<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007330<p>This function returns the cosine of the specified operand, returning the same
7331 values as the libm <tt>cos</tt> functions would, and handles error conditions
7332 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007333
Dan Gohmanb6324c12007-10-15 20:30:11 +00007334</div>
7335
7336<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007337<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007338 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007339</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007340
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007341<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007342
7343<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007344<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
7345 floating point or vector of floating point type. Not all targets support all
7346 types however.</p>
7347
Dan Gohmanb6324c12007-10-15 20:30:11 +00007348<pre>
7349 declare float @llvm.pow.f32(float %Val, float %Power)
7350 declare double @llvm.pow.f64(double %Val, double %Power)
7351 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7352 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7353 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7354</pre>
7355
7356<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007357<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
7358 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007359
7360<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007361<p>The second argument is a floating point power, and the first is a value to
7362 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007363
7364<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007365<p>This function returns the first value raised to the second power, returning
7366 the same values as the libm <tt>pow</tt> functions would, and handles error
7367 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007368
Dan Gohmanb6324c12007-10-15 20:30:11 +00007369</div>
7370
Dan Gohman911fa902011-05-23 21:13:03 +00007371<!-- _______________________________________________________________________ -->
7372<h4>
7373 <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7374</h4>
7375
7376<div>
7377
7378<h5>Syntax:</h5>
7379<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7380 floating point or vector of floating point type. Not all targets support all
7381 types however.</p>
7382
7383<pre>
7384 declare float @llvm.exp.f32(float %Val)
7385 declare double @llvm.exp.f64(double %Val)
7386 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7387 declare fp128 @llvm.exp.f128(fp128 %Val)
7388 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7389</pre>
7390
7391<h5>Overview:</h5>
7392<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7393
7394<h5>Arguments:</h5>
7395<p>The argument and return value are floating point numbers of the same
7396 type.</p>
7397
7398<h5>Semantics:</h5>
7399<p>This function returns the same values as the libm <tt>exp</tt> functions
7400 would, and handles error conditions in the same way.</p>
7401
7402</div>
7403
7404<!-- _______________________________________________________________________ -->
7405<h4>
7406 <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7407</h4>
7408
7409<div>
7410
7411<h5>Syntax:</h5>
7412<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7413 floating point or vector of floating point type. Not all targets support all
7414 types however.</p>
7415
7416<pre>
7417 declare float @llvm.log.f32(float %Val)
7418 declare double @llvm.log.f64(double %Val)
7419 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7420 declare fp128 @llvm.log.f128(fp128 %Val)
7421 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7422</pre>
7423
7424<h5>Overview:</h5>
7425<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7426
7427<h5>Arguments:</h5>
7428<p>The argument and return value are floating point numbers of the same
7429 type.</p>
7430
7431<h5>Semantics:</h5>
7432<p>This function returns the same values as the libm <tt>log</tt> functions
7433 would, and handles error conditions in the same way.</p>
7434
Nick Lewyckycd196f62011-10-31 01:32:21 +00007435</div>
7436
7437<!-- _______________________________________________________________________ -->
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007438<h4>
7439 <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7440</h4>
7441
7442<div>
7443
7444<h5>Syntax:</h5>
7445<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7446 floating point or vector of floating point type. Not all targets support all
7447 types however.</p>
7448
7449<pre>
7450 declare float @llvm.fma.f32(float %a, float %b, float %c)
7451 declare double @llvm.fma.f64(double %a, double %b, double %c)
7452 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7453 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7454 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7455</pre>
7456
7457<h5>Overview:</h5>
Cameron Zwaricha32fd212011-07-08 22:13:55 +00007458<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007459 operation.</p>
7460
7461<h5>Arguments:</h5>
7462<p>The argument and return value are floating point numbers of the same
7463 type.</p>
7464
7465<h5>Semantics:</h5>
7466<p>This function returns the same values as the libm <tt>fma</tt> functions
7467 would.</p>
7468
Dan Gohman911fa902011-05-23 21:13:03 +00007469</div>
7470
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00007471</div>
7472
Andrew Lenharth1d463522005-05-03 18:01:48 +00007473<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007474<h3>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007475 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007476</h3>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007477
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007478<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007479
7480<p>LLVM provides intrinsics for a few important bit manipulation operations.
7481 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007482
Andrew Lenharth1d463522005-05-03 18:01:48 +00007483<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007484<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007485 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007486</h4>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007487
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007488<div>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007489
7490<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007491<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007492 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7493
Nate Begeman0f223bb2006-01-13 23:26:38 +00007494<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007495 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7496 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7497 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00007498</pre>
7499
7500<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007501<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7502 values with an even number of bytes (positive multiple of 16 bits). These
7503 are useful for performing operations on data that is not in the target's
7504 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007505
7506<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007507<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7508 and low byte of the input i16 swapped. Similarly,
7509 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7510 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7511 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7512 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7513 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7514 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007515
7516</div>
7517
7518<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007519<h4>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00007520 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007521</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007522
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007523<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007524
7525<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007526<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007527 width, or on any vector with integer elements. Not all targets support all
7528 bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007529
Andrew Lenharth1d463522005-05-03 18:01:48 +00007530<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007531 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007532 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007533 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007534 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7535 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007536 declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007537</pre>
7538
7539<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007540<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7541 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007542
7543<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007544<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007545 integer type, or a vector with integer elements.
7546 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007547
7548<h5>Semantics:</h5>
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007549<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7550 element of a vector.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007551
Andrew Lenharth1d463522005-05-03 18:01:48 +00007552</div>
7553
7554<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007555<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007556 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007557</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007558
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007559<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007560
7561<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007562<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007563 integer bit width, or any vector whose elements are integers. Not all
7564 targets support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007565
Andrew Lenharth1d463522005-05-03 18:01:48 +00007566<pre>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007567 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7568 declare i16 @llvm.ctlz.i16 (i16 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7569 declare i32 @llvm.ctlz.i32 (i32 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7570 declare i64 @llvm.ctlz.i64 (i64 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7571 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7572 declase &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007573</pre>
7574
7575<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007576<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7577 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007578
7579<h5>Arguments:</h5>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007580<p>The first argument is the value to be counted. This argument may be of any
7581 integer type, or a vectory with integer element type. The return type
7582 must match the first argument type.</p>
7583
7584<p>The second argument must be a constant and is a flag to indicate whether the
7585 intrinsic should ensure that a zero as the first argument produces a defined
7586 result. Historically some architectures did not provide a defined result for
7587 zero values as efficiently, and many algorithms are now predicated on
7588 avoiding zero-value inputs.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007589
7590<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007591<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007592 zeros in a variable, or within each element of the vector.
7593 If <tt>src == 0</tt> then the result is the size in bits of the type of
7594 <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7595 For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007596
Andrew Lenharth1d463522005-05-03 18:01:48 +00007597</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00007598
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007599<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007600<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007601 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007602</h4>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007603
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007604<div>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007605
7606<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007607<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007608 integer bit width, or any vector of integer elements. Not all targets
7609 support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007610
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007611<pre>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007612 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7613 declare i16 @llvm.cttz.i16 (i16 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7614 declare i32 @llvm.cttz.i32 (i32 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7615 declare i64 @llvm.cttz.i64 (i64 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7616 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7617 declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007618</pre>
7619
7620<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007621<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7622 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007623
7624<h5>Arguments:</h5>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007625<p>The first argument is the value to be counted. This argument may be of any
7626 integer type, or a vectory with integer element type. The return type
7627 must match the first argument type.</p>
7628
7629<p>The second argument must be a constant and is a flag to indicate whether the
7630 intrinsic should ensure that a zero as the first argument produces a defined
7631 result. Historically some architectures did not provide a defined result for
7632 zero values as efficiently, and many algorithms are now predicated on
7633 avoiding zero-value inputs.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007634
7635<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007636<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007637 zeros in a variable, or within each element of a vector.
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007638 If <tt>src == 0</tt> then the result is the size in bits of the type of
7639 <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7640 For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007641
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007642</div>
7643
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007644</div>
7645
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007646<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007647<h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007648 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007649</h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007650
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007651<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007652
7653<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007654
Bill Wendlingf4d70622009-02-08 01:40:31 +00007655<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007656<h4>
7657 <a name="int_sadd_overflow">
7658 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7659 </a>
7660</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007661
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007662<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007663
7664<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007665<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007666 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007667
7668<pre>
7669 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7670 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7671 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7672</pre>
7673
7674<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007675<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007676 a signed addition of the two arguments, and indicate whether an overflow
7677 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007678
7679<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007680<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007681 be of integer types of any bit width, but they must have the same bit
7682 width. The second element of the result structure must be of
7683 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7684 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007685
7686<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007687<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007688 a signed addition of the two variables. They return a structure &mdash; the
7689 first element of which is the signed summation, and the second element of
7690 which is a bit specifying if the signed summation resulted in an
7691 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007692
7693<h5>Examples:</h5>
7694<pre>
7695 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7696 %sum = extractvalue {i32, i1} %res, 0
7697 %obit = extractvalue {i32, i1} %res, 1
7698 br i1 %obit, label %overflow, label %normal
7699</pre>
7700
7701</div>
7702
7703<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007704<h4>
7705 <a name="int_uadd_overflow">
7706 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7707 </a>
7708</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007709
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007710<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007711
7712<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007713<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007714 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007715
7716<pre>
7717 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7718 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7719 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7720</pre>
7721
7722<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007723<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007724 an unsigned addition of the two arguments, and indicate whether a carry
7725 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007726
7727<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007728<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007729 be of integer types of any bit width, but they must have the same bit
7730 width. The second element of the result structure must be of
7731 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7732 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007733
7734<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007735<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007736 an unsigned addition of the two arguments. They return a structure &mdash;
7737 the first element of which is the sum, and the second element of which is a
7738 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007739
7740<h5>Examples:</h5>
7741<pre>
7742 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7743 %sum = extractvalue {i32, i1} %res, 0
7744 %obit = extractvalue {i32, i1} %res, 1
7745 br i1 %obit, label %carry, label %normal
7746</pre>
7747
7748</div>
7749
7750<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007751<h4>
7752 <a name="int_ssub_overflow">
7753 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7754 </a>
7755</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007757<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007758
7759<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007760<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007761 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007762
7763<pre>
7764 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7765 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7766 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7767</pre>
7768
7769<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007770<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007771 a signed subtraction of the two arguments, and indicate whether an overflow
7772 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007773
7774<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007775<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007776 be of integer types of any bit width, but they must have the same bit
7777 width. The second element of the result structure must be of
7778 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7779 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007780
7781<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007782<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007783 a signed subtraction of the two arguments. They return a structure &mdash;
7784 the first element of which is the subtraction, and the second element of
7785 which is a bit specifying if the signed subtraction resulted in an
7786 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007787
7788<h5>Examples:</h5>
7789<pre>
7790 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7791 %sum = extractvalue {i32, i1} %res, 0
7792 %obit = extractvalue {i32, i1} %res, 1
7793 br i1 %obit, label %overflow, label %normal
7794</pre>
7795
7796</div>
7797
7798<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007799<h4>
7800 <a name="int_usub_overflow">
7801 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7802 </a>
7803</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007804
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007805<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007806
7807<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007808<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007809 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007810
7811<pre>
7812 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7813 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7814 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7815</pre>
7816
7817<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007818<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007819 an unsigned subtraction of the two arguments, and indicate whether an
7820 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007821
7822<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007823<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007824 be of integer types of any bit width, but they must have the same bit
7825 width. The second element of the result structure must be of
7826 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7827 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007828
7829<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007830<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007831 an unsigned subtraction of the two arguments. They return a structure &mdash;
7832 the first element of which is the subtraction, and the second element of
7833 which is a bit specifying if the unsigned subtraction resulted in an
7834 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007835
7836<h5>Examples:</h5>
7837<pre>
7838 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7839 %sum = extractvalue {i32, i1} %res, 0
7840 %obit = extractvalue {i32, i1} %res, 1
7841 br i1 %obit, label %overflow, label %normal
7842</pre>
7843
7844</div>
7845
7846<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007847<h4>
7848 <a name="int_smul_overflow">
7849 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
7850 </a>
7851</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007852
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007853<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007854
7855<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007856<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007857 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007858
7859<pre>
7860 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7861 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7862 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7863</pre>
7864
7865<h5>Overview:</h5>
7866
7867<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007868 a signed multiplication of the two arguments, and indicate whether an
7869 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007870
7871<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007872<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007873 be of integer types of any bit width, but they must have the same bit
7874 width. The second element of the result structure must be of
7875 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7876 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007877
7878<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007879<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007880 a signed multiplication of the two arguments. They return a structure &mdash;
7881 the first element of which is the multiplication, and the second element of
7882 which is a bit specifying if the signed multiplication resulted in an
7883 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007884
7885<h5>Examples:</h5>
7886<pre>
7887 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7888 %sum = extractvalue {i32, i1} %res, 0
7889 %obit = extractvalue {i32, i1} %res, 1
7890 br i1 %obit, label %overflow, label %normal
7891</pre>
7892
Reid Spencer5bf54c82007-04-11 23:23:49 +00007893</div>
7894
Bill Wendlingb9a73272009-02-08 23:00:09 +00007895<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007896<h4>
7897 <a name="int_umul_overflow">
7898 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
7899 </a>
7900</h4>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007901
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007902<div>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007903
7904<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007905<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007906 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007907
7908<pre>
7909 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7910 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7911 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7912</pre>
7913
7914<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007915<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007916 a unsigned multiplication of the two arguments, and indicate whether an
7917 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007918
7919<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007920<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007921 be of integer types of any bit width, but they must have the same bit
7922 width. The second element of the result structure must be of
7923 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7924 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007925
7926<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007927<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007928 an unsigned multiplication of the two arguments. They return a structure
7929 &mdash; the first element of which is the multiplication, and the second
7930 element of which is a bit specifying if the unsigned multiplication resulted
7931 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007932
7933<h5>Examples:</h5>
7934<pre>
7935 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7936 %sum = extractvalue {i32, i1} %res, 0
7937 %obit = extractvalue {i32, i1} %res, 1
7938 br i1 %obit, label %overflow, label %normal
7939</pre>
7940
7941</div>
7942
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007943</div>
7944
Chris Lattner941515c2004-01-06 05:31:32 +00007945<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007946<h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007947 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007948</h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007949
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007950<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007951
Chris Lattner022a9fb2010-03-15 04:12:21 +00007952<p>Half precision floating point is a storage-only format. This means that it is
7953 a dense encoding (in memory) but does not support computation in the
7954 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007955
Chris Lattner022a9fb2010-03-15 04:12:21 +00007956<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007957 value as an i16, then convert it to float with <a
7958 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7959 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00007960 double etc). To store the value back to memory, it is first converted to
7961 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007962 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7963 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007964
7965<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007966<h4>
7967 <a name="int_convert_to_fp16">
7968 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7969 </a>
7970</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007971
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007972<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007973
7974<h5>Syntax:</h5>
7975<pre>
7976 declare i16 @llvm.convert.to.fp16(f32 %a)
7977</pre>
7978
7979<h5>Overview:</h5>
7980<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7981 a conversion from single precision floating point format to half precision
7982 floating point format.</p>
7983
7984<h5>Arguments:</h5>
7985<p>The intrinsic function contains single argument - the value to be
7986 converted.</p>
7987
7988<h5>Semantics:</h5>
7989<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7990 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00007991 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007992 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007993
7994<h5>Examples:</h5>
7995<pre>
7996 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7997 store i16 %res, i16* @x, align 2
7998</pre>
7999
8000</div>
8001
8002<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008003<h4>
8004 <a name="int_convert_from_fp16">
8005 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
8006 </a>
8007</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008008
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008009<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008010
8011<h5>Syntax:</h5>
8012<pre>
8013 declare f32 @llvm.convert.from.fp16(i16 %a)
8014</pre>
8015
8016<h5>Overview:</h5>
8017<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
8018 a conversion from half precision floating point format to single precision
8019 floating point format.</p>
8020
8021<h5>Arguments:</h5>
8022<p>The intrinsic function contains single argument - the value to be
8023 converted.</p>
8024
8025<h5>Semantics:</h5>
8026<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00008027 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00008028 precision floating point format. The input half-float value is represented by
8029 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008030
8031<h5>Examples:</h5>
8032<pre>
8033 %a = load i16* @x, align 2
8034 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8035</pre>
8036
8037</div>
8038
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008039</div>
8040
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008041<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008042<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00008043 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008044</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00008045
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008046<div>
Chris Lattner941515c2004-01-06 05:31:32 +00008047
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008048<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
8049 prefix), are described in
8050 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
8051 Level Debugging</a> document.</p>
8052
8053</div>
Chris Lattner941515c2004-01-06 05:31:32 +00008054
Jim Laskey2211f492007-03-14 19:31:19 +00008055<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008056<h3>
Jim Laskey2211f492007-03-14 19:31:19 +00008057 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008058</h3>
Jim Laskey2211f492007-03-14 19:31:19 +00008059
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008060<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008061
8062<p>The LLVM exception handling intrinsics (which all start with
8063 <tt>llvm.eh.</tt> prefix), are described in
8064 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
8065 Handling</a> document.</p>
8066
Jim Laskey2211f492007-03-14 19:31:19 +00008067</div>
8068
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008069<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008070<h3>
Duncan Sandsa0984362011-09-06 13:37:06 +00008071 <a name="int_trampoline">Trampoline Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008072</h3>
Duncan Sands644f9172007-07-27 12:58:54 +00008073
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008074<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008075
Duncan Sandsa0984362011-09-06 13:37:06 +00008076<p>These intrinsics make it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00008077 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
8078 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008079 function pointer lacking the nest parameter - the caller does not need to
8080 provide a value for it. Instead, the value to use is stored in advance in a
8081 "trampoline", a block of memory usually allocated on the stack, which also
8082 contains code to splice the nest value into the argument list. This is used
8083 to implement the GCC nested function address extension.</p>
8084
8085<p>For example, if the function is
8086 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
8087 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
8088 follows:</p>
8089
Benjamin Kramer79698be2010-07-13 12:26:09 +00008090<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00008091 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8092 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Duncan Sandsa0984362011-09-06 13:37:06 +00008093 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8094 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
Duncan Sands86e01192007-09-11 14:10:23 +00008095 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00008096</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008097
Dan Gohmand6a6f612010-05-28 17:07:41 +00008098<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
8099 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008100
Duncan Sands644f9172007-07-27 12:58:54 +00008101<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008102<h4>
8103 <a name="int_it">
8104 '<tt>llvm.init.trampoline</tt>' Intrinsic
8105 </a>
8106</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008107
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008108<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008109
Duncan Sands644f9172007-07-27 12:58:54 +00008110<h5>Syntax:</h5>
8111<pre>
Duncan Sandsa0984362011-09-06 13:37:06 +00008112 declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00008113</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008114
Duncan Sands644f9172007-07-27 12:58:54 +00008115<h5>Overview:</h5>
Duncan Sandsa0984362011-09-06 13:37:06 +00008116<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
8117 turning it into a trampoline.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008118
Duncan Sands644f9172007-07-27 12:58:54 +00008119<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008120<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
8121 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
8122 sufficiently aligned block of memory; this memory is written to by the
8123 intrinsic. Note that the size and the alignment are target-specific - LLVM
8124 currently provides no portable way of determining them, so a front-end that
8125 generates this intrinsic needs to have some target-specific knowledge.
8126 The <tt>func</tt> argument must hold a function bitcast to
8127 an <tt>i8*</tt>.</p>
8128
Duncan Sands644f9172007-07-27 12:58:54 +00008129<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008130<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsa0984362011-09-06 13:37:06 +00008131 dependent code, turning it into a function. Then <tt>tramp</tt> needs to be
8132 passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
8133 which can be <a href="#int_trampoline">bitcast (to a new function) and
8134 called</a>. The new function's signature is the same as that of
8135 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
8136 removed. At most one such <tt>nest</tt> argument is allowed, and it must be of
8137 pointer type. Calling the new function is equivalent to calling <tt>func</tt>
8138 with the same argument list, but with <tt>nval</tt> used for the missing
8139 <tt>nest</tt> argument. If, after calling <tt>llvm.init.trampoline</tt>, the
8140 memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
8141 to the returned function pointer is undefined.</p>
8142</div>
8143
8144<!-- _______________________________________________________________________ -->
8145<h4>
8146 <a name="int_at">
8147 '<tt>llvm.adjust.trampoline</tt>' Intrinsic
8148 </a>
8149</h4>
8150
8151<div>
8152
8153<h5>Syntax:</h5>
8154<pre>
8155 declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
8156</pre>
8157
8158<h5>Overview:</h5>
8159<p>This performs any required machine-specific adjustment to the address of a
8160 trampoline (passed as <tt>tramp</tt>).</p>
8161
8162<h5>Arguments:</h5>
8163<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
8164 filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
8165 </a>.</p>
8166
8167<h5>Semantics:</h5>
8168<p>On some architectures the address of the code to be executed needs to be
8169 different to the address where the trampoline is actually stored. This
8170 intrinsic returns the executable address corresponding to <tt>tramp</tt>
8171 after performing the required machine specific adjustments.
8172 The pointer returned can then be <a href="#int_trampoline"> bitcast and
8173 executed</a>.
8174</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008175
Duncan Sands644f9172007-07-27 12:58:54 +00008176</div>
8177
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008178</div>
8179
Duncan Sands644f9172007-07-27 12:58:54 +00008180<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008181<h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008182 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008183</h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008184
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008185<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008186
8187<p>This class of intrinsics exists to information about the lifetime of memory
8188 objects and ranges where variables are immutable.</p>
8189
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008190<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008191<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008192 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008193</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008194
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008195<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008196
8197<h5>Syntax:</h5>
8198<pre>
8199 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8200</pre>
8201
8202<h5>Overview:</h5>
8203<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
8204 object's lifetime.</p>
8205
8206<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00008207<p>The first argument is a constant integer representing the size of the
8208 object, or -1 if it is variable sized. The second argument is a pointer to
8209 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008210
8211<h5>Semantics:</h5>
8212<p>This intrinsic indicates that before this point in the code, the value of the
8213 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00008214 never be used and has an undefined value. A load from the pointer that
8215 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008216 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
8217
8218</div>
8219
8220<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008221<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008222 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008223</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008224
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008225<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008226
8227<h5>Syntax:</h5>
8228<pre>
8229 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8230</pre>
8231
8232<h5>Overview:</h5>
8233<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
8234 object's lifetime.</p>
8235
8236<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00008237<p>The first argument is a constant integer representing the size of the
8238 object, or -1 if it is variable sized. The second argument is a pointer to
8239 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008240
8241<h5>Semantics:</h5>
8242<p>This intrinsic indicates that after this point in the code, the value of the
8243 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
8244 never be used and has an undefined value. Any stores into the memory object
8245 following this intrinsic may be removed as dead.
8246
8247</div>
8248
8249<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008250<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008251 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008252</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008253
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008254<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008255
8256<h5>Syntax:</h5>
8257<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00008258 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008259</pre>
8260
8261<h5>Overview:</h5>
8262<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
8263 a memory object will not change.</p>
8264
8265<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00008266<p>The first argument is a constant integer representing the size of the
8267 object, or -1 if it is variable sized. The second argument is a pointer to
8268 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008269
8270<h5>Semantics:</h5>
8271<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
8272 the return value, the referenced memory location is constant and
8273 unchanging.</p>
8274
8275</div>
8276
8277<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008278<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008279 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008280</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008281
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008282<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008283
8284<h5>Syntax:</h5>
8285<pre>
8286 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8287</pre>
8288
8289<h5>Overview:</h5>
8290<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
8291 a memory object are mutable.</p>
8292
8293<h5>Arguments:</h5>
8294<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00008295 The second argument is a constant integer representing the size of the
8296 object, or -1 if it is variable sized and the third argument is a pointer
8297 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008298
8299<h5>Semantics:</h5>
8300<p>This intrinsic indicates that the memory is mutable again.</p>
8301
8302</div>
8303
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008304</div>
8305
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00008306<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008307<h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008308 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008309</h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008310
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008311<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008312
8313<p>This class of intrinsics is designed to be generic and has no specific
8314 purpose.</p>
8315
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008316<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008317<h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008318 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008319</h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008320
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008321<div>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008322
8323<h5>Syntax:</h5>
8324<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008325 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008326</pre>
8327
8328<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008329<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008330
8331<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008332<p>The first argument is a pointer to a value, the second is a pointer to a
8333 global string, the third is a pointer to a global string which is the source
8334 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008335
8336<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008337<p>This intrinsic allows annotation of local variables with arbitrary strings.
8338 This can be useful for special purpose optimizations that want to look for
John Criswellf0d536a2011-08-19 16:57:55 +00008339 these annotations. These have no other defined use; they are ignored by code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008340 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008341
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008342</div>
8343
Tanya Lattner293c0372007-09-21 22:59:12 +00008344<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008345<h4>
Tanya Lattner0186a652007-09-21 23:57:59 +00008346 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008347</h4>
Tanya Lattner293c0372007-09-21 22:59:12 +00008348
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008349<div>
Tanya Lattner293c0372007-09-21 22:59:12 +00008350
8351<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008352<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8353 any integer bit width.</p>
8354
Tanya Lattner293c0372007-09-21 22:59:12 +00008355<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008356 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8357 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8358 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8359 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8360 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00008361</pre>
8362
8363<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008364<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008365
8366<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008367<p>The first argument is an integer value (result of some expression), the
8368 second is a pointer to a global string, the third is a pointer to a global
8369 string which is the source file name, and the last argument is the line
8370 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008371
8372<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008373<p>This intrinsic allows annotations to be put on arbitrary expressions with
8374 arbitrary strings. This can be useful for special purpose optimizations that
John Criswellf0d536a2011-08-19 16:57:55 +00008375 want to look for these annotations. These have no other defined use; they
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008376 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008377
Tanya Lattner293c0372007-09-21 22:59:12 +00008378</div>
Jim Laskey2211f492007-03-14 19:31:19 +00008379
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008380<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008381<h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008382 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008383</h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008384
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008385<div>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008386
8387<h5>Syntax:</h5>
8388<pre>
8389 declare void @llvm.trap()
8390</pre>
8391
8392<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008393<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008394
8395<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008396<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008397
8398<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008399<p>This intrinsics is lowered to the target dependent trap instruction. If the
8400 target does not have a trap instruction, this intrinsic will be lowered to
8401 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008402
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008403</div>
8404
Bill Wendling14313312008-11-19 05:56:17 +00008405<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008406<h4>
Misha Brukman50de2b22008-11-22 23:55:29 +00008407 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008408</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008409
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008410<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008411
Bill Wendling14313312008-11-19 05:56:17 +00008412<h5>Syntax:</h5>
8413<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008414 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00008415</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008416
Bill Wendling14313312008-11-19 05:56:17 +00008417<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008418<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8419 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8420 ensure that it is placed on the stack before local variables.</p>
8421
Bill Wendling14313312008-11-19 05:56:17 +00008422<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008423<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8424 arguments. The first argument is the value loaded from the stack
8425 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8426 that has enough space to hold the value of the guard.</p>
8427
Bill Wendling14313312008-11-19 05:56:17 +00008428<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008429<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8430 the <tt>AllocaInst</tt> stack slot to be before local variables on the
8431 stack. This is to ensure that if a local variable on the stack is
8432 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00008433 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008434 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8435 function.</p>
8436
Bill Wendling14313312008-11-19 05:56:17 +00008437</div>
8438
Eric Christopher73484322009-11-30 08:03:53 +00008439<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008440<h4>
Eric Christopher73484322009-11-30 08:03:53 +00008441 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008442</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008443
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008444<div>
Eric Christopher73484322009-11-30 08:03:53 +00008445
8446<h5>Syntax:</h5>
8447<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008448 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
8449 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00008450</pre>
8451
8452<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008453<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8454 the optimizers to determine at compile time whether a) an operation (like
8455 memcpy) will overflow a buffer that corresponds to an object, or b) that a
8456 runtime check for overflow isn't necessary. An object in this context means
8457 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008458
8459<h5>Arguments:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008460<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00008461 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling6bbe0912010-10-27 01:07:41 +00008462 is a boolean 0 or 1. This argument determines whether you want the
8463 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher31e39bd2009-12-23 00:29:49 +00008464 1, variables are not allowed.</p>
8465
Eric Christopher73484322009-11-30 08:03:53 +00008466<h5>Semantics:</h5>
8467<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling6bbe0912010-10-27 01:07:41 +00008468 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
8469 depending on the <tt>type</tt> argument, if the size cannot be determined at
8470 compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008471
8472</div>
Jakub Staszak5fef7922011-12-04 18:29:26 +00008473<!-- _______________________________________________________________________ -->
8474<h4>
8475 <a name="int_expect">'<tt>llvm.expect</tt>' Intrinsic</a>
8476</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008477
Jakub Staszak5fef7922011-12-04 18:29:26 +00008478<div>
8479
8480<h5>Syntax:</h5>
8481<pre>
8482 declare i32 @llvm.expect.i32(i32 &lt;val&gt;, i32 &lt;expected_val&gt;)
8483 declare i64 @llvm.expect.i64(i64 &lt;val&gt;, i64 &lt;expected_val&gt;)
8484</pre>
8485
8486<h5>Overview:</h5>
8487<p>The <tt>llvm.expect</tt> intrinsic provides information about expected (the
8488 most probable) value of <tt>val</tt>, which can be used by optimizers.</p>
8489
8490<h5>Arguments:</h5>
8491<p>The <tt>llvm.expect</tt> intrinsic takes two arguments. The first
8492 argument is a value. The second argument is an expected value, this needs to
8493 be a constant value, variables are not allowed.</p>
8494
8495<h5>Semantics:</h5>
8496<p>This intrinsic is lowered to the <tt>val</tt>.</p>
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008497</div>
8498
8499</div>
8500
Jakub Staszak5fef7922011-12-04 18:29:26 +00008501</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00008502<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00008503<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00008504<address>
8505 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008506 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008507 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008508 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008509
8510 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumica46f5a2011-04-09 02:13:37 +00008511 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00008512 Last modified: $Date$
8513</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00008514
Misha Brukman76307852003-11-08 01:05:38 +00008515</body>
8516</html>