blob: e1880f2bc1e3fc41834999700484eb2b0520467b [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000315 function definition. Furthermore the inliner doesn't consider such function
316 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000317"``cc 10``" - GHC convention
318 This calling convention has been implemented specifically for use by
319 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
320 It passes everything in registers, going to extremes to achieve this
321 by disabling callee save registers. This calling convention should
322 not be used lightly but only for specific situations such as an
323 alternative to the *register pinning* performance technique often
324 used when implementing functional programming languages. At the
325 moment only X86 supports this convention and it has the following
326 limitations:
327
328 - On *X86-32* only supports up to 4 bit type parameters. No
329 floating point types are supported.
330 - On *X86-64* only supports up to 10 bit type parameters and 6
331 floating point parameters.
332
333 This calling convention supports `tail call
334 optimization <CodeGenerator.html#id80>`_ but requires both the
335 caller and callee are using it.
336"``cc 11``" - The HiPE calling convention
337 This calling convention has been implemented specifically for use by
338 the `High-Performance Erlang
339 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
340 native code compiler of the `Ericsson's Open Source Erlang/OTP
341 system <http://www.erlang.org/download.shtml>`_. It uses more
342 registers for argument passing than the ordinary C calling
343 convention and defines no callee-saved registers. The calling
344 convention properly supports `tail call
345 optimization <CodeGenerator.html#id80>`_ but requires that both the
346 caller and the callee use it. It uses a *register pinning*
347 mechanism, similar to GHC's convention, for keeping frequently
348 accessed runtime components pinned to specific hardware registers.
349 At the moment only X86 supports this convention (both 32 and 64
350 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000351"``webkit_jscc``" - WebKit's JavaScript calling convention
352 This calling convention has been implemented for `WebKit FTL JIT
353 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
354 stack right to left (as cdecl does), and returns a value in the
355 platform's customary return register.
356"``anyregcc``" - Dynamic calling convention for code patching
357 This is a special convention that supports patching an arbitrary code
358 sequence in place of a call site. This convention forces the call
359 arguments into registers but allows them to be dynamcially
360 allocated. This can currently only be used with calls to
361 llvm.experimental.patchpoint because only this intrinsic records
362 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363"``preserve_mostcc``" - The `PreserveMost` calling convention
364 This calling convention attempts to make the code in the caller as little
365 intrusive as possible. This calling convention behaves identical to the `C`
366 calling convention on how arguments and return values are passed, but it
367 uses a different set of caller/callee-saved registers. This alleviates the
368 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000369 call in the caller. If the arguments are passed in callee-saved registers,
370 then they will be preserved by the callee across the call. This doesn't
371 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372
373 - On X86-64 the callee preserves all general purpose registers, except for
374 R11. R11 can be used as a scratch register. Floating-point registers
375 (XMMs/YMMs) are not preserved and need to be saved by the caller.
376
377 The idea behind this convention is to support calls to runtime functions
378 that have a hot path and a cold path. The hot path is usually a small piece
379 of code that doesn't many registers. The cold path might need to call out to
380 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000381 registers, which haven't already been saved by the caller. The
382 `PreserveMost` calling convention is very similar to the `cold` calling
383 convention in terms of caller/callee-saved registers, but they are used for
384 different types of function calls. `coldcc` is for function calls that are
385 rarely executed, whereas `preserve_mostcc` function calls are intended to be
386 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
387 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000388
389 This calling convention will be used by a future version of the ObjectiveC
390 runtime and should therefore still be considered experimental at this time.
391 Although this convention was created to optimize certain runtime calls to
392 the ObjectiveC runtime, it is not limited to this runtime and might be used
393 by other runtimes in the future too. The current implementation only
394 supports X86-64, but the intention is to support more architectures in the
395 future.
396"``preserve_allcc``" - The `PreserveAll` calling convention
397 This calling convention attempts to make the code in the caller even less
398 intrusive than the `PreserveMost` calling convention. This calling
399 convention also behaves identical to the `C` calling convention on how
400 arguments and return values are passed, but it uses a different set of
401 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000402 recovering a large register set before and after the call in the caller. If
403 the arguments are passed in callee-saved registers, then they will be
404 preserved by the callee across the call. This doesn't apply for values
405 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000406
407 - On X86-64 the callee preserves all general purpose registers, except for
408 R11. R11 can be used as a scratch register. Furthermore it also preserves
409 all floating-point registers (XMMs/YMMs).
410
411 The idea behind this convention is to support calls to runtime functions
412 that don't need to call out to any other functions.
413
414 This calling convention, like the `PreserveMost` calling convention, will be
415 used by a future version of the ObjectiveC runtime and should be considered
416 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000417"``cc <n>``" - Numbered convention
418 Any calling convention may be specified by number, allowing
419 target-specific calling conventions to be used. Target specific
420 calling conventions start at 64.
421
422More calling conventions can be added/defined on an as-needed basis, to
423support Pascal conventions or any other well-known target-independent
424convention.
425
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000426.. _visibilitystyles:
427
Sean Silvab084af42012-12-07 10:36:55 +0000428Visibility Styles
429-----------------
430
431All Global Variables and Functions have one of the following visibility
432styles:
433
434"``default``" - Default style
435 On targets that use the ELF object file format, default visibility
436 means that the declaration is visible to other modules and, in
437 shared libraries, means that the declared entity may be overridden.
438 On Darwin, default visibility means that the declaration is visible
439 to other modules. Default visibility corresponds to "external
440 linkage" in the language.
441"``hidden``" - Hidden style
442 Two declarations of an object with hidden visibility refer to the
443 same object if they are in the same shared object. Usually, hidden
444 visibility indicates that the symbol will not be placed into the
445 dynamic symbol table, so no other module (executable or shared
446 library) can reference it directly.
447"``protected``" - Protected style
448 On ELF, protected visibility indicates that the symbol will be
449 placed in the dynamic symbol table, but that references within the
450 defining module will bind to the local symbol. That is, the symbol
451 cannot be overridden by another module.
452
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000453.. _namedtypes:
454
Nico Rieck7157bb72014-01-14 15:22:47 +0000455DLL Storage Classes
456-------------------
457
458All Global Variables, Functions and Aliases can have one of the following
459DLL storage class:
460
461``dllimport``
462 "``dllimport``" causes the compiler to reference a function or variable via
463 a global pointer to a pointer that is set up by the DLL exporting the
464 symbol. On Microsoft Windows targets, the pointer name is formed by
465 combining ``__imp_`` and the function or variable name.
466``dllexport``
467 "``dllexport``" causes the compiler to provide a global pointer to a pointer
468 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
469 Microsoft Windows targets, the pointer name is formed by combining
470 ``__imp_`` and the function or variable name. Since this storage class
471 exists for defining a dll interface, the compiler, assembler and linker know
472 it is externally referenced and must refrain from deleting the symbol.
473
Sean Silvab084af42012-12-07 10:36:55 +0000474Named Types
475-----------
476
477LLVM IR allows you to specify name aliases for certain types. This can
478make it easier to read the IR and make the IR more condensed
479(particularly when recursive types are involved). An example of a name
480specification is:
481
482.. code-block:: llvm
483
484 %mytype = type { %mytype*, i32 }
485
486You may give a name to any :ref:`type <typesystem>` except
487":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
488expected with the syntax "%mytype".
489
490Note that type names are aliases for the structural type that they
491indicate, and that you can therefore specify multiple names for the same
492type. This often leads to confusing behavior when dumping out a .ll
493file. Since LLVM IR uses structural typing, the name is not part of the
494type. When printing out LLVM IR, the printer will pick *one name* to
495render all types of a particular shape. This means that if you have code
496where two different source types end up having the same LLVM type, that
497the dumper will sometimes print the "wrong" or unexpected type. This is
498an important design point and isn't going to change.
499
500.. _globalvars:
501
502Global Variables
503----------------
504
505Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000506instead of run-time.
507
508Global variables definitions must be initialized, may have an explicit section
509to be placed in, and may have an optional explicit alignment specified.
510
511Global variables in other translation units can also be declared, in which
512case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000513
514A variable may be defined as ``thread_local``, which means that it will
515not be shared by threads (each thread will have a separated copy of the
516variable). Not all targets support thread-local variables. Optionally, a
517TLS model may be specified:
518
519``localdynamic``
520 For variables that are only used within the current shared library.
521``initialexec``
522 For variables in modules that will not be loaded dynamically.
523``localexec``
524 For variables defined in the executable and only used within it.
525
526The models correspond to the ELF TLS models; see `ELF Handling For
527Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
528more information on under which circumstances the different models may
529be used. The target may choose a different TLS model if the specified
530model is not supported, or if a better choice of model can be made.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
567
Michael Gottesmane743a302013-02-04 03:22:00 +0000568By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000569variables defined within the module are not modified from their
570initial values before the start of the global initializer. This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000575
Sean Silvab084af42012-12-07 10:36:55 +0000576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
585iteration.
586
Nico Rieck7157bb72014-01-14 15:22:47 +0000587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
589Syntax::
590
591 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
592 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
593 <global | constant> <Type>
594 [, section "name"] [, align <Alignment>]
595
Sean Silvab084af42012-12-07 10:36:55 +0000596For example, the following defines a global in a numbered address space
597with an initializer, section, and alignment:
598
599.. code-block:: llvm
600
601 @G = addrspace(5) constant float 1.0, section "foo", align 4
602
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000603The following example just declares a global variable
604
605.. code-block:: llvm
606
607 @G = external global i32
608
Sean Silvab084af42012-12-07 10:36:55 +0000609The following example defines a thread-local global with the
610``initialexec`` TLS model:
611
612.. code-block:: llvm
613
614 @G = thread_local(initialexec) global i32 0, align 4
615
616.. _functionstructure:
617
618Functions
619---------
620
621LLVM function definitions consist of the "``define``" keyword, an
622optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000623style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
624an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000625an optional ``unnamed_addr`` attribute, a return type, an optional
626:ref:`parameter attribute <paramattrs>` for the return type, a function
627name, a (possibly empty) argument list (each with optional :ref:`parameter
628attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
629an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000630collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
631curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000632
633LLVM function declarations consist of the "``declare``" keyword, an
634optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000635style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
636an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000637an optional ``unnamed_addr`` attribute, a return type, an optional
638:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639name, a possibly empty list of arguments, an optional alignment, an optional
640:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000641
Bill Wendling6822ecb2013-10-27 05:09:12 +0000642A function definition contains a list of basic blocks, forming the CFG (Control
643Flow Graph) for the function. Each basic block may optionally start with a label
644(giving the basic block a symbol table entry), contains a list of instructions,
645and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
646function return). If an explicit label is not provided, a block is assigned an
647implicit numbered label, using the next value from the same counter as used for
648unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
649entry block does not have an explicit label, it will be assigned label "%0",
650then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000651
652The first basic block in a function is special in two ways: it is
653immediately executed on entrance to the function, and it is not allowed
654to have predecessor basic blocks (i.e. there can not be any branches to
655the entry block of a function). Because the block can have no
656predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
657
658LLVM allows an explicit section to be specified for functions. If the
659target supports it, it will emit functions to the section specified.
660
661An explicit alignment may be specified for a function. If not present,
662or if the alignment is set to zero, the alignment of the function is set
663by the target to whatever it feels convenient. If an explicit alignment
664is specified, the function is forced to have at least that much
665alignment. All alignments must be a power of 2.
666
667If the ``unnamed_addr`` attribute is given, the address is know to not
668be significant and two identical functions can be merged.
669
670Syntax::
671
Nico Rieck7157bb72014-01-14 15:22:47 +0000672 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000673 [cconv] [ret attrs]
674 <ResultType> @<FunctionName> ([argument list])
675 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000676 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000677
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000678.. _langref_aliases:
679
Sean Silvab084af42012-12-07 10:36:55 +0000680Aliases
681-------
682
683Aliases act as "second name" for the aliasee value (which can be either
684function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000685Aliases may have an optional :ref:`linkage type <linkage>`, an optional
686:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
687<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000688
689Syntax::
690
Nico Rieck7157bb72014-01-14 15:22:47 +0000691 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000692
Rafael Espindola65785492013-10-07 13:57:59 +0000693The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000694``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000695``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000696might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000697alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000698
Sean Silvab084af42012-12-07 10:36:55 +0000699.. _namedmetadatastructure:
700
701Named Metadata
702--------------
703
704Named metadata is a collection of metadata. :ref:`Metadata
705nodes <metadata>` (but not metadata strings) are the only valid
706operands for a named metadata.
707
708Syntax::
709
710 ; Some unnamed metadata nodes, which are referenced by the named metadata.
711 !0 = metadata !{metadata !"zero"}
712 !1 = metadata !{metadata !"one"}
713 !2 = metadata !{metadata !"two"}
714 ; A named metadata.
715 !name = !{!0, !1, !2}
716
717.. _paramattrs:
718
719Parameter Attributes
720--------------------
721
722The return type and each parameter of a function type may have a set of
723*parameter attributes* associated with them. Parameter attributes are
724used to communicate additional information about the result or
725parameters of a function. Parameter attributes are considered to be part
726of the function, not of the function type, so functions with different
727parameter attributes can have the same function type.
728
729Parameter attributes are simple keywords that follow the type specified.
730If multiple parameter attributes are needed, they are space separated.
731For example:
732
733.. code-block:: llvm
734
735 declare i32 @printf(i8* noalias nocapture, ...)
736 declare i32 @atoi(i8 zeroext)
737 declare signext i8 @returns_signed_char()
738
739Note that any attributes for the function result (``nounwind``,
740``readonly``) come immediately after the argument list.
741
742Currently, only the following parameter attributes are defined:
743
744``zeroext``
745 This indicates to the code generator that the parameter or return
746 value should be zero-extended to the extent required by the target's
747 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
748 the caller (for a parameter) or the callee (for a return value).
749``signext``
750 This indicates to the code generator that the parameter or return
751 value should be sign-extended to the extent required by the target's
752 ABI (which is usually 32-bits) by the caller (for a parameter) or
753 the callee (for a return value).
754``inreg``
755 This indicates that this parameter or return value should be treated
756 in a special target-dependent fashion during while emitting code for
757 a function call or return (usually, by putting it in a register as
758 opposed to memory, though some targets use it to distinguish between
759 two different kinds of registers). Use of this attribute is
760 target-specific.
761``byval``
762 This indicates that the pointer parameter should really be passed by
763 value to the function. The attribute implies that a hidden copy of
764 the pointee is made between the caller and the callee, so the callee
765 is unable to modify the value in the caller. This attribute is only
766 valid on LLVM pointer arguments. It is generally used to pass
767 structs and arrays by value, but is also valid on pointers to
768 scalars. The copy is considered to belong to the caller not the
769 callee (for example, ``readonly`` functions should not write to
770 ``byval`` parameters). This is not a valid attribute for return
771 values.
772
773 The byval attribute also supports specifying an alignment with the
774 align attribute. It indicates the alignment of the stack slot to
775 form and the known alignment of the pointer specified to the call
776 site. If the alignment is not specified, then the code generator
777 makes a target-specific assumption.
778
Reid Klecknera534a382013-12-19 02:14:12 +0000779.. _attr_inalloca:
780
781``inalloca``
782
783.. Warning:: This feature is unstable and not fully implemented.
784
Reid Kleckner60d3a832014-01-16 22:59:24 +0000785 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000786 address of outgoing stack arguments. An ``inalloca`` argument must
787 be a pointer to stack memory produced by an ``alloca`` instruction.
788 The alloca, or argument allocation, must also be tagged with the
789 inalloca keyword. Only the past argument may have the ``inalloca``
790 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000791
Reid Kleckner436c42e2014-01-17 23:58:17 +0000792 An argument allocation may be used by a call at most once because
793 the call may deallocate it. The ``inalloca`` attribute cannot be
794 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000795 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
796 ``inalloca`` attribute also disables LLVM's implicit lowering of
797 large aggregate return values, which means that frontend authors
798 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000799
Reid Kleckner60d3a832014-01-16 22:59:24 +0000800 When the call site is reached, the argument allocation must have
801 been the most recent stack allocation that is still live, or the
802 results are undefined. It is possible to allocate additional stack
803 space after an argument allocation and before its call site, but it
804 must be cleared off with :ref:`llvm.stackrestore
805 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000806
807 See :doc:`InAlloca` for more information on how to use this
808 attribute.
809
Sean Silvab084af42012-12-07 10:36:55 +0000810``sret``
811 This indicates that the pointer parameter specifies the address of a
812 structure that is the return value of the function in the source
813 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000814 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000815 not to trap and to be properly aligned. This may only be applied to
816 the first parameter. This is not a valid attribute for return
817 values.
818``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000819 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000820 the argument or return value do not alias pointer values which are
821 not *based* on it, ignoring certain "irrelevant" dependencies. For a
822 call to the parent function, dependencies between memory references
823 from before or after the call and from those during the call are
824 "irrelevant" to the ``noalias`` keyword for the arguments and return
825 value used in that call. The caller shares the responsibility with
826 the callee for ensuring that these requirements are met. For further
827 details, please see the discussion of the NoAlias response in `alias
828 analysis <AliasAnalysis.html#MustMayNo>`_.
829
830 Note that this definition of ``noalias`` is intentionally similar
831 to the definition of ``restrict`` in C99 for function arguments,
832 though it is slightly weaker.
833
834 For function return values, C99's ``restrict`` is not meaningful,
835 while LLVM's ``noalias`` is.
836``nocapture``
837 This indicates that the callee does not make any copies of the
838 pointer that outlive the callee itself. This is not a valid
839 attribute for return values.
840
841.. _nest:
842
843``nest``
844 This indicates that the pointer parameter can be excised using the
845 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000846 attribute for return values and can only be applied to one parameter.
847
848``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000849 This indicates that the function always returns the argument as its return
850 value. This is an optimization hint to the code generator when generating
851 the caller, allowing tail call optimization and omission of register saves
852 and restores in some cases; it is not checked or enforced when generating
853 the callee. The parameter and the function return type must be valid
854 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
855 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000856
857.. _gc:
858
859Garbage Collector Names
860-----------------------
861
862Each function may specify a garbage collector name, which is simply a
863string:
864
865.. code-block:: llvm
866
867 define void @f() gc "name" { ... }
868
869The compiler declares the supported values of *name*. Specifying a
870collector which will cause the compiler to alter its output in order to
871support the named garbage collection algorithm.
872
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000873.. _prefixdata:
874
875Prefix Data
876-----------
877
878Prefix data is data associated with a function which the code generator
879will emit immediately before the function body. The purpose of this feature
880is to allow frontends to associate language-specific runtime metadata with
881specific functions and make it available through the function pointer while
882still allowing the function pointer to be called. To access the data for a
883given function, a program may bitcast the function pointer to a pointer to
884the constant's type. This implies that the IR symbol points to the start
885of the prefix data.
886
887To maintain the semantics of ordinary function calls, the prefix data must
888have a particular format. Specifically, it must begin with a sequence of
889bytes which decode to a sequence of machine instructions, valid for the
890module's target, which transfer control to the point immediately succeeding
891the prefix data, without performing any other visible action. This allows
892the inliner and other passes to reason about the semantics of the function
893definition without needing to reason about the prefix data. Obviously this
894makes the format of the prefix data highly target dependent.
895
Peter Collingbourne213358a2013-09-23 20:14:21 +0000896Prefix data is laid out as if it were an initializer for a global variable
897of the prefix data's type. No padding is automatically placed between the
898prefix data and the function body. If padding is required, it must be part
899of the prefix data.
900
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000901A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
902which encodes the ``nop`` instruction:
903
904.. code-block:: llvm
905
906 define void @f() prefix i8 144 { ... }
907
908Generally prefix data can be formed by encoding a relative branch instruction
909which skips the metadata, as in this example of valid prefix data for the
910x86_64 architecture, where the first two bytes encode ``jmp .+10``:
911
912.. code-block:: llvm
913
914 %0 = type <{ i8, i8, i8* }>
915
916 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
917
918A function may have prefix data but no body. This has similar semantics
919to the ``available_externally`` linkage in that the data may be used by the
920optimizers but will not be emitted in the object file.
921
Bill Wendling63b88192013-02-06 06:52:58 +0000922.. _attrgrp:
923
924Attribute Groups
925----------------
926
927Attribute groups are groups of attributes that are referenced by objects within
928the IR. They are important for keeping ``.ll`` files readable, because a lot of
929functions will use the same set of attributes. In the degenerative case of a
930``.ll`` file that corresponds to a single ``.c`` file, the single attribute
931group will capture the important command line flags used to build that file.
932
933An attribute group is a module-level object. To use an attribute group, an
934object references the attribute group's ID (e.g. ``#37``). An object may refer
935to more than one attribute group. In that situation, the attributes from the
936different groups are merged.
937
938Here is an example of attribute groups for a function that should always be
939inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
940
941.. code-block:: llvm
942
943 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000944 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000945
946 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000947 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000948
949 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
950 define void @f() #0 #1 { ... }
951
Sean Silvab084af42012-12-07 10:36:55 +0000952.. _fnattrs:
953
954Function Attributes
955-------------------
956
957Function attributes are set to communicate additional information about
958a function. Function attributes are considered to be part of the
959function, not of the function type, so functions with different function
960attributes can have the same function type.
961
962Function attributes are simple keywords that follow the type specified.
963If multiple attributes are needed, they are space separated. For
964example:
965
966.. code-block:: llvm
967
968 define void @f() noinline { ... }
969 define void @f() alwaysinline { ... }
970 define void @f() alwaysinline optsize { ... }
971 define void @f() optsize { ... }
972
Sean Silvab084af42012-12-07 10:36:55 +0000973``alignstack(<n>)``
974 This attribute indicates that, when emitting the prologue and
975 epilogue, the backend should forcibly align the stack pointer.
976 Specify the desired alignment, which must be a power of two, in
977 parentheses.
978``alwaysinline``
979 This attribute indicates that the inliner should attempt to inline
980 this function into callers whenever possible, ignoring any active
981 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000982``builtin``
983 This indicates that the callee function at a call site should be
984 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000985 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000986 direct calls to functions which are declared with the ``nobuiltin``
987 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000988``cold``
989 This attribute indicates that this function is rarely called. When
990 computing edge weights, basic blocks post-dominated by a cold
991 function call are also considered to be cold; and, thus, given low
992 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000993``inlinehint``
994 This attribute indicates that the source code contained a hint that
995 inlining this function is desirable (such as the "inline" keyword in
996 C/C++). It is just a hint; it imposes no requirements on the
997 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000998``minsize``
999 This attribute suggests that optimization passes and code generator
1000 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001001 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001002 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001003``naked``
1004 This attribute disables prologue / epilogue emission for the
1005 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001006``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001007 This indicates that the callee function at a call site is not recognized as
1008 a built-in function. LLVM will retain the original call and not replace it
1009 with equivalent code based on the semantics of the built-in function, unless
1010 the call site uses the ``builtin`` attribute. This is valid at call sites
1011 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001012``noduplicate``
1013 This attribute indicates that calls to the function cannot be
1014 duplicated. A call to a ``noduplicate`` function may be moved
1015 within its parent function, but may not be duplicated within
1016 its parent function.
1017
1018 A function containing a ``noduplicate`` call may still
1019 be an inlining candidate, provided that the call is not
1020 duplicated by inlining. That implies that the function has
1021 internal linkage and only has one call site, so the original
1022 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001023``noimplicitfloat``
1024 This attributes disables implicit floating point instructions.
1025``noinline``
1026 This attribute indicates that the inliner should never inline this
1027 function in any situation. This attribute may not be used together
1028 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001029``nonlazybind``
1030 This attribute suppresses lazy symbol binding for the function. This
1031 may make calls to the function faster, at the cost of extra program
1032 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001033``noredzone``
1034 This attribute indicates that the code generator should not use a
1035 red zone, even if the target-specific ABI normally permits it.
1036``noreturn``
1037 This function attribute indicates that the function never returns
1038 normally. This produces undefined behavior at runtime if the
1039 function ever does dynamically return.
1040``nounwind``
1041 This function attribute indicates that the function never returns
1042 with an unwind or exceptional control flow. If the function does
1043 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001044``optnone``
1045 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001046 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001047 exception of interprocedural optimization passes.
1048 This attribute cannot be used together with the ``alwaysinline``
1049 attribute; this attribute is also incompatible
1050 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001051
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001052 This attribute requires the ``noinline`` attribute to be specified on
1053 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001054 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001055 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001056``optsize``
1057 This attribute suggests that optimization passes and code generator
1058 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001059 and otherwise do optimizations specifically to reduce code size as
1060 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001061``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001062 On a function, this attribute indicates that the function computes its
1063 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001064 without dereferencing any pointer arguments or otherwise accessing
1065 any mutable state (e.g. memory, control registers, etc) visible to
1066 caller functions. It does not write through any pointer arguments
1067 (including ``byval`` arguments) and never changes any state visible
1068 to callers. This means that it cannot unwind exceptions by calling
1069 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001070
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001071 On an argument, this attribute indicates that the function does not
1072 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001073 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001074``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001075 On a function, this attribute indicates that the function does not write
1076 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001077 modify any state (e.g. memory, control registers, etc) visible to
1078 caller functions. It may dereference pointer arguments and read
1079 state that may be set in the caller. A readonly function always
1080 returns the same value (or unwinds an exception identically) when
1081 called with the same set of arguments and global state. It cannot
1082 unwind an exception by calling the ``C++`` exception throwing
1083 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001084
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001085 On an argument, this attribute indicates that the function does not write
1086 through this pointer argument, even though it may write to the memory that
1087 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001088``returns_twice``
1089 This attribute indicates that this function can return twice. The C
1090 ``setjmp`` is an example of such a function. The compiler disables
1091 some optimizations (like tail calls) in the caller of these
1092 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001093``sanitize_address``
1094 This attribute indicates that AddressSanitizer checks
1095 (dynamic address safety analysis) are enabled for this function.
1096``sanitize_memory``
1097 This attribute indicates that MemorySanitizer checks (dynamic detection
1098 of accesses to uninitialized memory) are enabled for this function.
1099``sanitize_thread``
1100 This attribute indicates that ThreadSanitizer checks
1101 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001102``ssp``
1103 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001104 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001105 placed on the stack before the local variables that's checked upon
1106 return from the function to see if it has been overwritten. A
1107 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001108 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001109
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001110 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1111 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1112 - Calls to alloca() with variable sizes or constant sizes greater than
1113 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001114
Josh Magee24c7f062014-02-01 01:36:16 +00001115 Variables that are identified as requiring a protector will be arranged
1116 on the stack such that they are adjacent to the stack protector guard.
1117
Sean Silvab084af42012-12-07 10:36:55 +00001118 If a function that has an ``ssp`` attribute is inlined into a
1119 function that doesn't have an ``ssp`` attribute, then the resulting
1120 function will have an ``ssp`` attribute.
1121``sspreq``
1122 This attribute indicates that the function should *always* emit a
1123 stack smashing protector. This overrides the ``ssp`` function
1124 attribute.
1125
Josh Magee24c7f062014-02-01 01:36:16 +00001126 Variables that are identified as requiring a protector will be arranged
1127 on the stack such that they are adjacent to the stack protector guard.
1128 The specific layout rules are:
1129
1130 #. Large arrays and structures containing large arrays
1131 (``>= ssp-buffer-size``) are closest to the stack protector.
1132 #. Small arrays and structures containing small arrays
1133 (``< ssp-buffer-size``) are 2nd closest to the protector.
1134 #. Variables that have had their address taken are 3rd closest to the
1135 protector.
1136
Sean Silvab084af42012-12-07 10:36:55 +00001137 If a function that has an ``sspreq`` attribute is inlined into a
1138 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001139 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1140 an ``sspreq`` attribute.
1141``sspstrong``
1142 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001143 protector. This attribute causes a strong heuristic to be used when
1144 determining if a function needs stack protectors. The strong heuristic
1145 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001146
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001147 - Arrays of any size and type
1148 - Aggregates containing an array of any size and type.
1149 - Calls to alloca().
1150 - Local variables that have had their address taken.
1151
Josh Magee24c7f062014-02-01 01:36:16 +00001152 Variables that are identified as requiring a protector will be arranged
1153 on the stack such that they are adjacent to the stack protector guard.
1154 The specific layout rules are:
1155
1156 #. Large arrays and structures containing large arrays
1157 (``>= ssp-buffer-size``) are closest to the stack protector.
1158 #. Small arrays and structures containing small arrays
1159 (``< ssp-buffer-size``) are 2nd closest to the protector.
1160 #. Variables that have had their address taken are 3rd closest to the
1161 protector.
1162
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001163 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001164
1165 If a function that has an ``sspstrong`` attribute is inlined into a
1166 function that doesn't have an ``sspstrong`` attribute, then the
1167 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001168``uwtable``
1169 This attribute indicates that the ABI being targeted requires that
1170 an unwind table entry be produce for this function even if we can
1171 show that no exceptions passes by it. This is normally the case for
1172 the ELF x86-64 abi, but it can be disabled for some compilation
1173 units.
Sean Silvab084af42012-12-07 10:36:55 +00001174
1175.. _moduleasm:
1176
1177Module-Level Inline Assembly
1178----------------------------
1179
1180Modules may contain "module-level inline asm" blocks, which corresponds
1181to the GCC "file scope inline asm" blocks. These blocks are internally
1182concatenated by LLVM and treated as a single unit, but may be separated
1183in the ``.ll`` file if desired. The syntax is very simple:
1184
1185.. code-block:: llvm
1186
1187 module asm "inline asm code goes here"
1188 module asm "more can go here"
1189
1190The strings can contain any character by escaping non-printable
1191characters. The escape sequence used is simply "\\xx" where "xx" is the
1192two digit hex code for the number.
1193
1194The inline asm code is simply printed to the machine code .s file when
1195assembly code is generated.
1196
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001197.. _langref_datalayout:
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199Data Layout
1200-----------
1201
1202A module may specify a target specific data layout string that specifies
1203how data is to be laid out in memory. The syntax for the data layout is
1204simply:
1205
1206.. code-block:: llvm
1207
1208 target datalayout = "layout specification"
1209
1210The *layout specification* consists of a list of specifications
1211separated by the minus sign character ('-'). Each specification starts
1212with a letter and may include other information after the letter to
1213define some aspect of the data layout. The specifications accepted are
1214as follows:
1215
1216``E``
1217 Specifies that the target lays out data in big-endian form. That is,
1218 the bits with the most significance have the lowest address
1219 location.
1220``e``
1221 Specifies that the target lays out data in little-endian form. That
1222 is, the bits with the least significance have the lowest address
1223 location.
1224``S<size>``
1225 Specifies the natural alignment of the stack in bits. Alignment
1226 promotion of stack variables is limited to the natural stack
1227 alignment to avoid dynamic stack realignment. The stack alignment
1228 must be a multiple of 8-bits. If omitted, the natural stack
1229 alignment defaults to "unspecified", which does not prevent any
1230 alignment promotions.
1231``p[n]:<size>:<abi>:<pref>``
1232 This specifies the *size* of a pointer and its ``<abi>`` and
1233 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001234 bits. The address space, ``n`` is optional, and if not specified,
1235 denotes the default address space 0. The value of ``n`` must be
1236 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001237``i<size>:<abi>:<pref>``
1238 This specifies the alignment for an integer type of a given bit
1239 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1240``v<size>:<abi>:<pref>``
1241 This specifies the alignment for a vector type of a given bit
1242 ``<size>``.
1243``f<size>:<abi>:<pref>``
1244 This specifies the alignment for a floating point type of a given bit
1245 ``<size>``. Only values of ``<size>`` that are supported by the target
1246 will work. 32 (float) and 64 (double) are supported on all targets; 80
1247 or 128 (different flavors of long double) are also supported on some
1248 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001249``a:<abi>:<pref>``
1250 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001251``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001252 If present, specifies that llvm names are mangled in the output. The
1253 options are
1254
1255 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1256 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1257 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1258 symbols get a ``_`` prefix.
1259 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1260 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001261``n<size1>:<size2>:<size3>...``
1262 This specifies a set of native integer widths for the target CPU in
1263 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1264 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1265 this set are considered to support most general arithmetic operations
1266 efficiently.
1267
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001268On every specification that takes a ``<abi>:<pref>``, specifying the
1269``<pref>`` alignment is optional. If omitted, the preceding ``:``
1270should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1271
Sean Silvab084af42012-12-07 10:36:55 +00001272When constructing the data layout for a given target, LLVM starts with a
1273default set of specifications which are then (possibly) overridden by
1274the specifications in the ``datalayout`` keyword. The default
1275specifications are given in this list:
1276
1277- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001278- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1279- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1280 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001281- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001282- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1283- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1284- ``i16:16:16`` - i16 is 16-bit aligned
1285- ``i32:32:32`` - i32 is 32-bit aligned
1286- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1287 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001288- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001289- ``f32:32:32`` - float is 32-bit aligned
1290- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001291- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001292- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1293- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001294- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001295
1296When LLVM is determining the alignment for a given type, it uses the
1297following rules:
1298
1299#. If the type sought is an exact match for one of the specifications,
1300 that specification is used.
1301#. If no match is found, and the type sought is an integer type, then
1302 the smallest integer type that is larger than the bitwidth of the
1303 sought type is used. If none of the specifications are larger than
1304 the bitwidth then the largest integer type is used. For example,
1305 given the default specifications above, the i7 type will use the
1306 alignment of i8 (next largest) while both i65 and i256 will use the
1307 alignment of i64 (largest specified).
1308#. If no match is found, and the type sought is a vector type, then the
1309 largest vector type that is smaller than the sought vector type will
1310 be used as a fall back. This happens because <128 x double> can be
1311 implemented in terms of 64 <2 x double>, for example.
1312
1313The function of the data layout string may not be what you expect.
1314Notably, this is not a specification from the frontend of what alignment
1315the code generator should use.
1316
1317Instead, if specified, the target data layout is required to match what
1318the ultimate *code generator* expects. This string is used by the
1319mid-level optimizers to improve code, and this only works if it matches
1320what the ultimate code generator uses. If you would like to generate IR
1321that does not embed this target-specific detail into the IR, then you
1322don't have to specify the string. This will disable some optimizations
1323that require precise layout information, but this also prevents those
1324optimizations from introducing target specificity into the IR.
1325
Bill Wendling5cc90842013-10-18 23:41:25 +00001326.. _langref_triple:
1327
1328Target Triple
1329-------------
1330
1331A module may specify a target triple string that describes the target
1332host. The syntax for the target triple is simply:
1333
1334.. code-block:: llvm
1335
1336 target triple = "x86_64-apple-macosx10.7.0"
1337
1338The *target triple* string consists of a series of identifiers delimited
1339by the minus sign character ('-'). The canonical forms are:
1340
1341::
1342
1343 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1344 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1345
1346This information is passed along to the backend so that it generates
1347code for the proper architecture. It's possible to override this on the
1348command line with the ``-mtriple`` command line option.
1349
Sean Silvab084af42012-12-07 10:36:55 +00001350.. _pointeraliasing:
1351
1352Pointer Aliasing Rules
1353----------------------
1354
1355Any memory access must be done through a pointer value associated with
1356an address range of the memory access, otherwise the behavior is
1357undefined. Pointer values are associated with address ranges according
1358to the following rules:
1359
1360- A pointer value is associated with the addresses associated with any
1361 value it is *based* on.
1362- An address of a global variable is associated with the address range
1363 of the variable's storage.
1364- The result value of an allocation instruction is associated with the
1365 address range of the allocated storage.
1366- A null pointer in the default address-space is associated with no
1367 address.
1368- An integer constant other than zero or a pointer value returned from
1369 a function not defined within LLVM may be associated with address
1370 ranges allocated through mechanisms other than those provided by
1371 LLVM. Such ranges shall not overlap with any ranges of addresses
1372 allocated by mechanisms provided by LLVM.
1373
1374A pointer value is *based* on another pointer value according to the
1375following rules:
1376
1377- A pointer value formed from a ``getelementptr`` operation is *based*
1378 on the first operand of the ``getelementptr``.
1379- The result value of a ``bitcast`` is *based* on the operand of the
1380 ``bitcast``.
1381- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1382 values that contribute (directly or indirectly) to the computation of
1383 the pointer's value.
1384- The "*based* on" relationship is transitive.
1385
1386Note that this definition of *"based"* is intentionally similar to the
1387definition of *"based"* in C99, though it is slightly weaker.
1388
1389LLVM IR does not associate types with memory. The result type of a
1390``load`` merely indicates the size and alignment of the memory from
1391which to load, as well as the interpretation of the value. The first
1392operand type of a ``store`` similarly only indicates the size and
1393alignment of the store.
1394
1395Consequently, type-based alias analysis, aka TBAA, aka
1396``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1397:ref:`Metadata <metadata>` may be used to encode additional information
1398which specialized optimization passes may use to implement type-based
1399alias analysis.
1400
1401.. _volatile:
1402
1403Volatile Memory Accesses
1404------------------------
1405
1406Certain memory accesses, such as :ref:`load <i_load>`'s,
1407:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1408marked ``volatile``. The optimizers must not change the number of
1409volatile operations or change their order of execution relative to other
1410volatile operations. The optimizers *may* change the order of volatile
1411operations relative to non-volatile operations. This is not Java's
1412"volatile" and has no cross-thread synchronization behavior.
1413
Andrew Trick89fc5a62013-01-30 21:19:35 +00001414IR-level volatile loads and stores cannot safely be optimized into
1415llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1416flagged volatile. Likewise, the backend should never split or merge
1417target-legal volatile load/store instructions.
1418
Andrew Trick7e6f9282013-01-31 00:49:39 +00001419.. admonition:: Rationale
1420
1421 Platforms may rely on volatile loads and stores of natively supported
1422 data width to be executed as single instruction. For example, in C
1423 this holds for an l-value of volatile primitive type with native
1424 hardware support, but not necessarily for aggregate types. The
1425 frontend upholds these expectations, which are intentionally
1426 unspecified in the IR. The rules above ensure that IR transformation
1427 do not violate the frontend's contract with the language.
1428
Sean Silvab084af42012-12-07 10:36:55 +00001429.. _memmodel:
1430
1431Memory Model for Concurrent Operations
1432--------------------------------------
1433
1434The LLVM IR does not define any way to start parallel threads of
1435execution or to register signal handlers. Nonetheless, there are
1436platform-specific ways to create them, and we define LLVM IR's behavior
1437in their presence. This model is inspired by the C++0x memory model.
1438
1439For a more informal introduction to this model, see the :doc:`Atomics`.
1440
1441We define a *happens-before* partial order as the least partial order
1442that
1443
1444- Is a superset of single-thread program order, and
1445- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1446 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1447 techniques, like pthread locks, thread creation, thread joining,
1448 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1449 Constraints <ordering>`).
1450
1451Note that program order does not introduce *happens-before* edges
1452between a thread and signals executing inside that thread.
1453
1454Every (defined) read operation (load instructions, memcpy, atomic
1455loads/read-modify-writes, etc.) R reads a series of bytes written by
1456(defined) write operations (store instructions, atomic
1457stores/read-modify-writes, memcpy, etc.). For the purposes of this
1458section, initialized globals are considered to have a write of the
1459initializer which is atomic and happens before any other read or write
1460of the memory in question. For each byte of a read R, R\ :sub:`byte`
1461may see any write to the same byte, except:
1462
1463- If write\ :sub:`1` happens before write\ :sub:`2`, and
1464 write\ :sub:`2` happens before R\ :sub:`byte`, then
1465 R\ :sub:`byte` does not see write\ :sub:`1`.
1466- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1467 R\ :sub:`byte` does not see write\ :sub:`3`.
1468
1469Given that definition, R\ :sub:`byte` is defined as follows:
1470
1471- If R is volatile, the result is target-dependent. (Volatile is
1472 supposed to give guarantees which can support ``sig_atomic_t`` in
1473 C/C++, and may be used for accesses to addresses which do not behave
1474 like normal memory. It does not generally provide cross-thread
1475 synchronization.)
1476- Otherwise, if there is no write to the same byte that happens before
1477 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1478- Otherwise, if R\ :sub:`byte` may see exactly one write,
1479 R\ :sub:`byte` returns the value written by that write.
1480- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1481 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1482 Memory Ordering Constraints <ordering>` section for additional
1483 constraints on how the choice is made.
1484- Otherwise R\ :sub:`byte` returns ``undef``.
1485
1486R returns the value composed of the series of bytes it read. This
1487implies that some bytes within the value may be ``undef`` **without**
1488the entire value being ``undef``. Note that this only defines the
1489semantics of the operation; it doesn't mean that targets will emit more
1490than one instruction to read the series of bytes.
1491
1492Note that in cases where none of the atomic intrinsics are used, this
1493model places only one restriction on IR transformations on top of what
1494is required for single-threaded execution: introducing a store to a byte
1495which might not otherwise be stored is not allowed in general.
1496(Specifically, in the case where another thread might write to and read
1497from an address, introducing a store can change a load that may see
1498exactly one write into a load that may see multiple writes.)
1499
1500.. _ordering:
1501
1502Atomic Memory Ordering Constraints
1503----------------------------------
1504
1505Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1506:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1507:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1508an ordering parameter that determines which other atomic instructions on
1509the same address they *synchronize with*. These semantics are borrowed
1510from Java and C++0x, but are somewhat more colloquial. If these
1511descriptions aren't precise enough, check those specs (see spec
1512references in the :doc:`atomics guide <Atomics>`).
1513:ref:`fence <i_fence>` instructions treat these orderings somewhat
1514differently since they don't take an address. See that instruction's
1515documentation for details.
1516
1517For a simpler introduction to the ordering constraints, see the
1518:doc:`Atomics`.
1519
1520``unordered``
1521 The set of values that can be read is governed by the happens-before
1522 partial order. A value cannot be read unless some operation wrote
1523 it. This is intended to provide a guarantee strong enough to model
1524 Java's non-volatile shared variables. This ordering cannot be
1525 specified for read-modify-write operations; it is not strong enough
1526 to make them atomic in any interesting way.
1527``monotonic``
1528 In addition to the guarantees of ``unordered``, there is a single
1529 total order for modifications by ``monotonic`` operations on each
1530 address. All modification orders must be compatible with the
1531 happens-before order. There is no guarantee that the modification
1532 orders can be combined to a global total order for the whole program
1533 (and this often will not be possible). The read in an atomic
1534 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1535 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1536 order immediately before the value it writes. If one atomic read
1537 happens before another atomic read of the same address, the later
1538 read must see the same value or a later value in the address's
1539 modification order. This disallows reordering of ``monotonic`` (or
1540 stronger) operations on the same address. If an address is written
1541 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1542 read that address repeatedly, the other threads must eventually see
1543 the write. This corresponds to the C++0x/C1x
1544 ``memory_order_relaxed``.
1545``acquire``
1546 In addition to the guarantees of ``monotonic``, a
1547 *synchronizes-with* edge may be formed with a ``release`` operation.
1548 This is intended to model C++'s ``memory_order_acquire``.
1549``release``
1550 In addition to the guarantees of ``monotonic``, if this operation
1551 writes a value which is subsequently read by an ``acquire``
1552 operation, it *synchronizes-with* that operation. (This isn't a
1553 complete description; see the C++0x definition of a release
1554 sequence.) This corresponds to the C++0x/C1x
1555 ``memory_order_release``.
1556``acq_rel`` (acquire+release)
1557 Acts as both an ``acquire`` and ``release`` operation on its
1558 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1559``seq_cst`` (sequentially consistent)
1560 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1561 operation which only reads, ``release`` for an operation which only
1562 writes), there is a global total order on all
1563 sequentially-consistent operations on all addresses, which is
1564 consistent with the *happens-before* partial order and with the
1565 modification orders of all the affected addresses. Each
1566 sequentially-consistent read sees the last preceding write to the
1567 same address in this global order. This corresponds to the C++0x/C1x
1568 ``memory_order_seq_cst`` and Java volatile.
1569
1570.. _singlethread:
1571
1572If an atomic operation is marked ``singlethread``, it only *synchronizes
1573with* or participates in modification and seq\_cst total orderings with
1574other operations running in the same thread (for example, in signal
1575handlers).
1576
1577.. _fastmath:
1578
1579Fast-Math Flags
1580---------------
1581
1582LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1583:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1584:ref:`frem <i_frem>`) have the following flags that can set to enable
1585otherwise unsafe floating point operations
1586
1587``nnan``
1588 No NaNs - Allow optimizations to assume the arguments and result are not
1589 NaN. Such optimizations are required to retain defined behavior over
1590 NaNs, but the value of the result is undefined.
1591
1592``ninf``
1593 No Infs - Allow optimizations to assume the arguments and result are not
1594 +/-Inf. Such optimizations are required to retain defined behavior over
1595 +/-Inf, but the value of the result is undefined.
1596
1597``nsz``
1598 No Signed Zeros - Allow optimizations to treat the sign of a zero
1599 argument or result as insignificant.
1600
1601``arcp``
1602 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1603 argument rather than perform division.
1604
1605``fast``
1606 Fast - Allow algebraically equivalent transformations that may
1607 dramatically change results in floating point (e.g. reassociate). This
1608 flag implies all the others.
1609
1610.. _typesystem:
1611
1612Type System
1613===========
1614
1615The LLVM type system is one of the most important features of the
1616intermediate representation. Being typed enables a number of
1617optimizations to be performed on the intermediate representation
1618directly, without having to do extra analyses on the side before the
1619transformation. A strong type system makes it easier to read the
1620generated code and enables novel analyses and transformations that are
1621not feasible to perform on normal three address code representations.
1622
Rafael Espindola08013342013-12-07 19:34:20 +00001623.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001624
Rafael Espindola08013342013-12-07 19:34:20 +00001625Void Type
1626---------
Sean Silvab084af42012-12-07 10:36:55 +00001627
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001628:Overview:
1629
Rafael Espindola08013342013-12-07 19:34:20 +00001630
1631The void type does not represent any value and has no size.
1632
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001633:Syntax:
1634
Rafael Espindola08013342013-12-07 19:34:20 +00001635
1636::
1637
1638 void
Sean Silvab084af42012-12-07 10:36:55 +00001639
1640
Rafael Espindola08013342013-12-07 19:34:20 +00001641.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001642
Rafael Espindola08013342013-12-07 19:34:20 +00001643Function Type
1644-------------
Sean Silvab084af42012-12-07 10:36:55 +00001645
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001646:Overview:
1647
Sean Silvab084af42012-12-07 10:36:55 +00001648
Rafael Espindola08013342013-12-07 19:34:20 +00001649The function type can be thought of as a function signature. It consists of a
1650return type and a list of formal parameter types. The return type of a function
1651type is a void type or first class type --- except for :ref:`label <t_label>`
1652and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001653
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001654:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001655
Rafael Espindola08013342013-12-07 19:34:20 +00001656::
Sean Silvab084af42012-12-07 10:36:55 +00001657
Rafael Espindola08013342013-12-07 19:34:20 +00001658 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001659
Rafael Espindola08013342013-12-07 19:34:20 +00001660...where '``<parameter list>``' is a comma-separated list of type
1661specifiers. Optionally, the parameter list may include a type ``...``, which
1662indicates that the function takes a variable number of arguments. Variable
1663argument functions can access their arguments with the :ref:`variable argument
1664handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1665except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001666
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001667:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001668
Rafael Espindola08013342013-12-07 19:34:20 +00001669+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1670| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1671+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1672| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1673+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1674| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1675+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1676| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1677+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1678
1679.. _t_firstclass:
1680
1681First Class Types
1682-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001683
1684The :ref:`first class <t_firstclass>` types are perhaps the most important.
1685Values of these types are the only ones which can be produced by
1686instructions.
1687
Rafael Espindola08013342013-12-07 19:34:20 +00001688.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola08013342013-12-07 19:34:20 +00001690Single Value Types
1691^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001692
Rafael Espindola08013342013-12-07 19:34:20 +00001693These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001694
1695.. _t_integer:
1696
1697Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001698""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001699
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001700:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001701
1702The integer type is a very simple type that simply specifies an
1703arbitrary bit width for the integer type desired. Any bit width from 1
1704bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1705
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001706:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001707
1708::
1709
1710 iN
1711
1712The number of bits the integer will occupy is specified by the ``N``
1713value.
1714
1715Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001716*********
Sean Silvab084af42012-12-07 10:36:55 +00001717
1718+----------------+------------------------------------------------+
1719| ``i1`` | a single-bit integer. |
1720+----------------+------------------------------------------------+
1721| ``i32`` | a 32-bit integer. |
1722+----------------+------------------------------------------------+
1723| ``i1942652`` | a really big integer of over 1 million bits. |
1724+----------------+------------------------------------------------+
1725
1726.. _t_floating:
1727
1728Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001729""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001730
1731.. list-table::
1732 :header-rows: 1
1733
1734 * - Type
1735 - Description
1736
1737 * - ``half``
1738 - 16-bit floating point value
1739
1740 * - ``float``
1741 - 32-bit floating point value
1742
1743 * - ``double``
1744 - 64-bit floating point value
1745
1746 * - ``fp128``
1747 - 128-bit floating point value (112-bit mantissa)
1748
1749 * - ``x86_fp80``
1750 - 80-bit floating point value (X87)
1751
1752 * - ``ppc_fp128``
1753 - 128-bit floating point value (two 64-bits)
1754
1755.. _t_x86mmx:
1756
1757X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001758"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001759
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001760:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001761
1762The x86mmx type represents a value held in an MMX register on an x86
1763machine. The operations allowed on it are quite limited: parameters and
1764return values, load and store, and bitcast. User-specified MMX
1765instructions are represented as intrinsic or asm calls with arguments
1766and/or results of this type. There are no arrays, vectors or constants
1767of this type.
1768
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001769:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001770
1771::
1772
1773 x86mmx
1774
Sean Silvab084af42012-12-07 10:36:55 +00001775
Rafael Espindola08013342013-12-07 19:34:20 +00001776.. _t_pointer:
1777
1778Pointer Type
1779""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001780
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001781:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001782
Rafael Espindola08013342013-12-07 19:34:20 +00001783The pointer type is used to specify memory locations. Pointers are
1784commonly used to reference objects in memory.
1785
1786Pointer types may have an optional address space attribute defining the
1787numbered address space where the pointed-to object resides. The default
1788address space is number zero. The semantics of non-zero address spaces
1789are target-specific.
1790
1791Note that LLVM does not permit pointers to void (``void*``) nor does it
1792permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001794:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001795
1796::
1797
Rafael Espindola08013342013-12-07 19:34:20 +00001798 <type> *
1799
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001800:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001801
1802+-------------------------+--------------------------------------------------------------------------------------------------------------+
1803| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1804+-------------------------+--------------------------------------------------------------------------------------------------------------+
1805| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1806+-------------------------+--------------------------------------------------------------------------------------------------------------+
1807| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1808+-------------------------+--------------------------------------------------------------------------------------------------------------+
1809
1810.. _t_vector:
1811
1812Vector Type
1813"""""""""""
1814
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001815:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001816
1817A vector type is a simple derived type that represents a vector of
1818elements. Vector types are used when multiple primitive data are
1819operated in parallel using a single instruction (SIMD). A vector type
1820requires a size (number of elements) and an underlying primitive data
1821type. Vector types are considered :ref:`first class <t_firstclass>`.
1822
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001823:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001824
1825::
1826
1827 < <# elements> x <elementtype> >
1828
1829The number of elements is a constant integer value larger than 0;
1830elementtype may be any integer or floating point type, or a pointer to
1831these types. Vectors of size zero are not allowed.
1832
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001833:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001834
1835+-------------------+--------------------------------------------------+
1836| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1837+-------------------+--------------------------------------------------+
1838| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1839+-------------------+--------------------------------------------------+
1840| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1841+-------------------+--------------------------------------------------+
1842| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1843+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001844
1845.. _t_label:
1846
1847Label Type
1848^^^^^^^^^^
1849
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001850:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001851
1852The label type represents code labels.
1853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001854:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001855
1856::
1857
1858 label
1859
1860.. _t_metadata:
1861
1862Metadata Type
1863^^^^^^^^^^^^^
1864
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001865:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001866
1867The metadata type represents embedded metadata. No derived types may be
1868created from metadata except for :ref:`function <t_function>` arguments.
1869
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001870:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001871
1872::
1873
1874 metadata
1875
Sean Silvab084af42012-12-07 10:36:55 +00001876.. _t_aggregate:
1877
1878Aggregate Types
1879^^^^^^^^^^^^^^^
1880
1881Aggregate Types are a subset of derived types that can contain multiple
1882member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1883aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1884aggregate types.
1885
1886.. _t_array:
1887
1888Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001889""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001890
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001891:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001892
1893The array type is a very simple derived type that arranges elements
1894sequentially in memory. The array type requires a size (number of
1895elements) and an underlying data type.
1896
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001897:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899::
1900
1901 [<# elements> x <elementtype>]
1902
1903The number of elements is a constant integer value; ``elementtype`` may
1904be any type with a size.
1905
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001906:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001907
1908+------------------+--------------------------------------+
1909| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1910+------------------+--------------------------------------+
1911| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1912+------------------+--------------------------------------+
1913| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1914+------------------+--------------------------------------+
1915
1916Here are some examples of multidimensional arrays:
1917
1918+-----------------------------+----------------------------------------------------------+
1919| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1920+-----------------------------+----------------------------------------------------------+
1921| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1922+-----------------------------+----------------------------------------------------------+
1923| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1924+-----------------------------+----------------------------------------------------------+
1925
1926There is no restriction on indexing beyond the end of the array implied
1927by a static type (though there are restrictions on indexing beyond the
1928bounds of an allocated object in some cases). This means that
1929single-dimension 'variable sized array' addressing can be implemented in
1930LLVM with a zero length array type. An implementation of 'pascal style
1931arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1932example.
1933
Sean Silvab084af42012-12-07 10:36:55 +00001934.. _t_struct:
1935
1936Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001937""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001938
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001939:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001940
1941The structure type is used to represent a collection of data members
1942together in memory. The elements of a structure may be any type that has
1943a size.
1944
1945Structures in memory are accessed using '``load``' and '``store``' by
1946getting a pointer to a field with the '``getelementptr``' instruction.
1947Structures in registers are accessed using the '``extractvalue``' and
1948'``insertvalue``' instructions.
1949
1950Structures may optionally be "packed" structures, which indicate that
1951the alignment of the struct is one byte, and that there is no padding
1952between the elements. In non-packed structs, padding between field types
1953is inserted as defined by the DataLayout string in the module, which is
1954required to match what the underlying code generator expects.
1955
1956Structures can either be "literal" or "identified". A literal structure
1957is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1958identified types are always defined at the top level with a name.
1959Literal types are uniqued by their contents and can never be recursive
1960or opaque since there is no way to write one. Identified types can be
1961recursive, can be opaqued, and are never uniqued.
1962
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001963:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001964
1965::
1966
1967 %T1 = type { <type list> } ; Identified normal struct type
1968 %T2 = type <{ <type list> }> ; Identified packed struct type
1969
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001970:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001971
1972+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1973| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1974+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001975| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001976+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1977| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1978+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1979
1980.. _t_opaque:
1981
1982Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001983""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001984
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001985:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001986
1987Opaque structure types are used to represent named structure types that
1988do not have a body specified. This corresponds (for example) to the C
1989notion of a forward declared structure.
1990
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001991:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001992
1993::
1994
1995 %X = type opaque
1996 %52 = type opaque
1997
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001998:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001999
2000+--------------+-------------------+
2001| ``opaque`` | An opaque type. |
2002+--------------+-------------------+
2003
Sean Silvab084af42012-12-07 10:36:55 +00002004Constants
2005=========
2006
2007LLVM has several different basic types of constants. This section
2008describes them all and their syntax.
2009
2010Simple Constants
2011----------------
2012
2013**Boolean constants**
2014 The two strings '``true``' and '``false``' are both valid constants
2015 of the ``i1`` type.
2016**Integer constants**
2017 Standard integers (such as '4') are constants of the
2018 :ref:`integer <t_integer>` type. Negative numbers may be used with
2019 integer types.
2020**Floating point constants**
2021 Floating point constants use standard decimal notation (e.g.
2022 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2023 hexadecimal notation (see below). The assembler requires the exact
2024 decimal value of a floating-point constant. For example, the
2025 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2026 decimal in binary. Floating point constants must have a :ref:`floating
2027 point <t_floating>` type.
2028**Null pointer constants**
2029 The identifier '``null``' is recognized as a null pointer constant
2030 and must be of :ref:`pointer type <t_pointer>`.
2031
2032The one non-intuitive notation for constants is the hexadecimal form of
2033floating point constants. For example, the form
2034'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2035than) '``double 4.5e+15``'. The only time hexadecimal floating point
2036constants are required (and the only time that they are generated by the
2037disassembler) is when a floating point constant must be emitted but it
2038cannot be represented as a decimal floating point number in a reasonable
2039number of digits. For example, NaN's, infinities, and other special
2040values are represented in their IEEE hexadecimal format so that assembly
2041and disassembly do not cause any bits to change in the constants.
2042
2043When using the hexadecimal form, constants of types half, float, and
2044double are represented using the 16-digit form shown above (which
2045matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002046must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002047precision, respectively. Hexadecimal format is always used for long
2048double, and there are three forms of long double. The 80-bit format used
2049by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2050128-bit format used by PowerPC (two adjacent doubles) is represented by
2051``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002052represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2053will only work if they match the long double format on your target.
2054The IEEE 16-bit format (half precision) is represented by ``0xH``
2055followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2056(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002057
2058There are no constants of type x86mmx.
2059
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002060.. _complexconstants:
2061
Sean Silvab084af42012-12-07 10:36:55 +00002062Complex Constants
2063-----------------
2064
2065Complex constants are a (potentially recursive) combination of simple
2066constants and smaller complex constants.
2067
2068**Structure constants**
2069 Structure constants are represented with notation similar to
2070 structure type definitions (a comma separated list of elements,
2071 surrounded by braces (``{}``)). For example:
2072 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2073 "``@G = external global i32``". Structure constants must have
2074 :ref:`structure type <t_struct>`, and the number and types of elements
2075 must match those specified by the type.
2076**Array constants**
2077 Array constants are represented with notation similar to array type
2078 definitions (a comma separated list of elements, surrounded by
2079 square brackets (``[]``)). For example:
2080 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2081 :ref:`array type <t_array>`, and the number and types of elements must
2082 match those specified by the type.
2083**Vector constants**
2084 Vector constants are represented with notation similar to vector
2085 type definitions (a comma separated list of elements, surrounded by
2086 less-than/greater-than's (``<>``)). For example:
2087 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2088 must have :ref:`vector type <t_vector>`, and the number and types of
2089 elements must match those specified by the type.
2090**Zero initialization**
2091 The string '``zeroinitializer``' can be used to zero initialize a
2092 value to zero of *any* type, including scalar and
2093 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2094 having to print large zero initializers (e.g. for large arrays) and
2095 is always exactly equivalent to using explicit zero initializers.
2096**Metadata node**
2097 A metadata node is a structure-like constant with :ref:`metadata
2098 type <t_metadata>`. For example:
2099 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2100 constants that are meant to be interpreted as part of the
2101 instruction stream, metadata is a place to attach additional
2102 information such as debug info.
2103
2104Global Variable and Function Addresses
2105--------------------------------------
2106
2107The addresses of :ref:`global variables <globalvars>` and
2108:ref:`functions <functionstructure>` are always implicitly valid
2109(link-time) constants. These constants are explicitly referenced when
2110the :ref:`identifier for the global <identifiers>` is used and always have
2111:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2112file:
2113
2114.. code-block:: llvm
2115
2116 @X = global i32 17
2117 @Y = global i32 42
2118 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2119
2120.. _undefvalues:
2121
2122Undefined Values
2123----------------
2124
2125The string '``undef``' can be used anywhere a constant is expected, and
2126indicates that the user of the value may receive an unspecified
2127bit-pattern. Undefined values may be of any type (other than '``label``'
2128or '``void``') and be used anywhere a constant is permitted.
2129
2130Undefined values are useful because they indicate to the compiler that
2131the program is well defined no matter what value is used. This gives the
2132compiler more freedom to optimize. Here are some examples of
2133(potentially surprising) transformations that are valid (in pseudo IR):
2134
2135.. code-block:: llvm
2136
2137 %A = add %X, undef
2138 %B = sub %X, undef
2139 %C = xor %X, undef
2140 Safe:
2141 %A = undef
2142 %B = undef
2143 %C = undef
2144
2145This is safe because all of the output bits are affected by the undef
2146bits. Any output bit can have a zero or one depending on the input bits.
2147
2148.. code-block:: llvm
2149
2150 %A = or %X, undef
2151 %B = and %X, undef
2152 Safe:
2153 %A = -1
2154 %B = 0
2155 Unsafe:
2156 %A = undef
2157 %B = undef
2158
2159These logical operations have bits that are not always affected by the
2160input. For example, if ``%X`` has a zero bit, then the output of the
2161'``and``' operation will always be a zero for that bit, no matter what
2162the corresponding bit from the '``undef``' is. As such, it is unsafe to
2163optimize or assume that the result of the '``and``' is '``undef``'.
2164However, it is safe to assume that all bits of the '``undef``' could be
21650, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2166all the bits of the '``undef``' operand to the '``or``' could be set,
2167allowing the '``or``' to be folded to -1.
2168
2169.. code-block:: llvm
2170
2171 %A = select undef, %X, %Y
2172 %B = select undef, 42, %Y
2173 %C = select %X, %Y, undef
2174 Safe:
2175 %A = %X (or %Y)
2176 %B = 42 (or %Y)
2177 %C = %Y
2178 Unsafe:
2179 %A = undef
2180 %B = undef
2181 %C = undef
2182
2183This set of examples shows that undefined '``select``' (and conditional
2184branch) conditions can go *either way*, but they have to come from one
2185of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2186both known to have a clear low bit, then ``%A`` would have to have a
2187cleared low bit. However, in the ``%C`` example, the optimizer is
2188allowed to assume that the '``undef``' operand could be the same as
2189``%Y``, allowing the whole '``select``' to be eliminated.
2190
2191.. code-block:: llvm
2192
2193 %A = xor undef, undef
2194
2195 %B = undef
2196 %C = xor %B, %B
2197
2198 %D = undef
2199 %E = icmp lt %D, 4
2200 %F = icmp gte %D, 4
2201
2202 Safe:
2203 %A = undef
2204 %B = undef
2205 %C = undef
2206 %D = undef
2207 %E = undef
2208 %F = undef
2209
2210This example points out that two '``undef``' operands are not
2211necessarily the same. This can be surprising to people (and also matches
2212C semantics) where they assume that "``X^X``" is always zero, even if
2213``X`` is undefined. This isn't true for a number of reasons, but the
2214short answer is that an '``undef``' "variable" can arbitrarily change
2215its value over its "live range". This is true because the variable
2216doesn't actually *have a live range*. Instead, the value is logically
2217read from arbitrary registers that happen to be around when needed, so
2218the value is not necessarily consistent over time. In fact, ``%A`` and
2219``%C`` need to have the same semantics or the core LLVM "replace all
2220uses with" concept would not hold.
2221
2222.. code-block:: llvm
2223
2224 %A = fdiv undef, %X
2225 %B = fdiv %X, undef
2226 Safe:
2227 %A = undef
2228 b: unreachable
2229
2230These examples show the crucial difference between an *undefined value*
2231and *undefined behavior*. An undefined value (like '``undef``') is
2232allowed to have an arbitrary bit-pattern. This means that the ``%A``
2233operation can be constant folded to '``undef``', because the '``undef``'
2234could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2235However, in the second example, we can make a more aggressive
2236assumption: because the ``undef`` is allowed to be an arbitrary value,
2237we are allowed to assume that it could be zero. Since a divide by zero
2238has *undefined behavior*, we are allowed to assume that the operation
2239does not execute at all. This allows us to delete the divide and all
2240code after it. Because the undefined operation "can't happen", the
2241optimizer can assume that it occurs in dead code.
2242
2243.. code-block:: llvm
2244
2245 a: store undef -> %X
2246 b: store %X -> undef
2247 Safe:
2248 a: <deleted>
2249 b: unreachable
2250
2251These examples reiterate the ``fdiv`` example: a store *of* an undefined
2252value can be assumed to not have any effect; we can assume that the
2253value is overwritten with bits that happen to match what was already
2254there. However, a store *to* an undefined location could clobber
2255arbitrary memory, therefore, it has undefined behavior.
2256
2257.. _poisonvalues:
2258
2259Poison Values
2260-------------
2261
2262Poison values are similar to :ref:`undef values <undefvalues>`, however
2263they also represent the fact that an instruction or constant expression
2264which cannot evoke side effects has nevertheless detected a condition
2265which results in undefined behavior.
2266
2267There is currently no way of representing a poison value in the IR; they
2268only exist when produced by operations such as :ref:`add <i_add>` with
2269the ``nsw`` flag.
2270
2271Poison value behavior is defined in terms of value *dependence*:
2272
2273- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2274- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2275 their dynamic predecessor basic block.
2276- Function arguments depend on the corresponding actual argument values
2277 in the dynamic callers of their functions.
2278- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2279 instructions that dynamically transfer control back to them.
2280- :ref:`Invoke <i_invoke>` instructions depend on the
2281 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2282 call instructions that dynamically transfer control back to them.
2283- Non-volatile loads and stores depend on the most recent stores to all
2284 of the referenced memory addresses, following the order in the IR
2285 (including loads and stores implied by intrinsics such as
2286 :ref:`@llvm.memcpy <int_memcpy>`.)
2287- An instruction with externally visible side effects depends on the
2288 most recent preceding instruction with externally visible side
2289 effects, following the order in the IR. (This includes :ref:`volatile
2290 operations <volatile>`.)
2291- An instruction *control-depends* on a :ref:`terminator
2292 instruction <terminators>` if the terminator instruction has
2293 multiple successors and the instruction is always executed when
2294 control transfers to one of the successors, and may not be executed
2295 when control is transferred to another.
2296- Additionally, an instruction also *control-depends* on a terminator
2297 instruction if the set of instructions it otherwise depends on would
2298 be different if the terminator had transferred control to a different
2299 successor.
2300- Dependence is transitive.
2301
2302Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2303with the additional affect that any instruction which has a *dependence*
2304on a poison value has undefined behavior.
2305
2306Here are some examples:
2307
2308.. code-block:: llvm
2309
2310 entry:
2311 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2312 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2313 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2314 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2315
2316 store i32 %poison, i32* @g ; Poison value stored to memory.
2317 %poison2 = load i32* @g ; Poison value loaded back from memory.
2318
2319 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2320
2321 %narrowaddr = bitcast i32* @g to i16*
2322 %wideaddr = bitcast i32* @g to i64*
2323 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2324 %poison4 = load i64* %wideaddr ; Returns a poison value.
2325
2326 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2327 br i1 %cmp, label %true, label %end ; Branch to either destination.
2328
2329 true:
2330 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2331 ; it has undefined behavior.
2332 br label %end
2333
2334 end:
2335 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2336 ; Both edges into this PHI are
2337 ; control-dependent on %cmp, so this
2338 ; always results in a poison value.
2339
2340 store volatile i32 0, i32* @g ; This would depend on the store in %true
2341 ; if %cmp is true, or the store in %entry
2342 ; otherwise, so this is undefined behavior.
2343
2344 br i1 %cmp, label %second_true, label %second_end
2345 ; The same branch again, but this time the
2346 ; true block doesn't have side effects.
2347
2348 second_true:
2349 ; No side effects!
2350 ret void
2351
2352 second_end:
2353 store volatile i32 0, i32* @g ; This time, the instruction always depends
2354 ; on the store in %end. Also, it is
2355 ; control-equivalent to %end, so this is
2356 ; well-defined (ignoring earlier undefined
2357 ; behavior in this example).
2358
2359.. _blockaddress:
2360
2361Addresses of Basic Blocks
2362-------------------------
2363
2364``blockaddress(@function, %block)``
2365
2366The '``blockaddress``' constant computes the address of the specified
2367basic block in the specified function, and always has an ``i8*`` type.
2368Taking the address of the entry block is illegal.
2369
2370This value only has defined behavior when used as an operand to the
2371':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2372against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002373undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002374no label is equal to the null pointer. This may be passed around as an
2375opaque pointer sized value as long as the bits are not inspected. This
2376allows ``ptrtoint`` and arithmetic to be performed on these values so
2377long as the original value is reconstituted before the ``indirectbr``
2378instruction.
2379
2380Finally, some targets may provide defined semantics when using the value
2381as the operand to an inline assembly, but that is target specific.
2382
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002383.. _constantexprs:
2384
Sean Silvab084af42012-12-07 10:36:55 +00002385Constant Expressions
2386--------------------
2387
2388Constant expressions are used to allow expressions involving other
2389constants to be used as constants. Constant expressions may be of any
2390:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2391that does not have side effects (e.g. load and call are not supported).
2392The following is the syntax for constant expressions:
2393
2394``trunc (CST to TYPE)``
2395 Truncate a constant to another type. The bit size of CST must be
2396 larger than the bit size of TYPE. Both types must be integers.
2397``zext (CST to TYPE)``
2398 Zero extend a constant to another type. The bit size of CST must be
2399 smaller than the bit size of TYPE. Both types must be integers.
2400``sext (CST to TYPE)``
2401 Sign extend a constant to another type. The bit size of CST must be
2402 smaller than the bit size of TYPE. Both types must be integers.
2403``fptrunc (CST to TYPE)``
2404 Truncate a floating point constant to another floating point type.
2405 The size of CST must be larger than the size of TYPE. Both types
2406 must be floating point.
2407``fpext (CST to TYPE)``
2408 Floating point extend a constant to another type. The size of CST
2409 must be smaller or equal to the size of TYPE. Both types must be
2410 floating point.
2411``fptoui (CST to TYPE)``
2412 Convert a floating point constant to the corresponding unsigned
2413 integer constant. TYPE must be a scalar or vector integer type. CST
2414 must be of scalar or vector floating point type. Both CST and TYPE
2415 must be scalars, or vectors of the same number of elements. If the
2416 value won't fit in the integer type, the results are undefined.
2417``fptosi (CST to TYPE)``
2418 Convert a floating point constant to the corresponding signed
2419 integer constant. TYPE must be a scalar or vector integer type. CST
2420 must be of scalar or vector floating point type. Both CST and TYPE
2421 must be scalars, or vectors of the same number of elements. If the
2422 value won't fit in the integer type, the results are undefined.
2423``uitofp (CST to TYPE)``
2424 Convert an unsigned integer constant to the corresponding floating
2425 point constant. TYPE must be a scalar or vector floating point type.
2426 CST must be of scalar or vector integer type. Both CST and TYPE must
2427 be scalars, or vectors of the same number of elements. If the value
2428 won't fit in the floating point type, the results are undefined.
2429``sitofp (CST to TYPE)``
2430 Convert a signed integer constant to the corresponding floating
2431 point constant. TYPE must be a scalar or vector floating point type.
2432 CST must be of scalar or vector integer type. Both CST and TYPE must
2433 be scalars, or vectors of the same number of elements. If the value
2434 won't fit in the floating point type, the results are undefined.
2435``ptrtoint (CST to TYPE)``
2436 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002437 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002438 pointer type. The ``CST`` value is zero extended, truncated, or
2439 unchanged to make it fit in ``TYPE``.
2440``inttoptr (CST to TYPE)``
2441 Convert an integer constant to a pointer constant. TYPE must be a
2442 pointer type. CST must be of integer type. The CST value is zero
2443 extended, truncated, or unchanged to make it fit in a pointer size.
2444 This one is *really* dangerous!
2445``bitcast (CST to TYPE)``
2446 Convert a constant, CST, to another TYPE. The constraints of the
2447 operands are the same as those for the :ref:`bitcast
2448 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002449``addrspacecast (CST to TYPE)``
2450 Convert a constant pointer or constant vector of pointer, CST, to another
2451 TYPE in a different address space. The constraints of the operands are the
2452 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002453``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2454 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2455 constants. As with the :ref:`getelementptr <i_getelementptr>`
2456 instruction, the index list may have zero or more indexes, which are
2457 required to make sense for the type of "CSTPTR".
2458``select (COND, VAL1, VAL2)``
2459 Perform the :ref:`select operation <i_select>` on constants.
2460``icmp COND (VAL1, VAL2)``
2461 Performs the :ref:`icmp operation <i_icmp>` on constants.
2462``fcmp COND (VAL1, VAL2)``
2463 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2464``extractelement (VAL, IDX)``
2465 Perform the :ref:`extractelement operation <i_extractelement>` on
2466 constants.
2467``insertelement (VAL, ELT, IDX)``
2468 Perform the :ref:`insertelement operation <i_insertelement>` on
2469 constants.
2470``shufflevector (VEC1, VEC2, IDXMASK)``
2471 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2472 constants.
2473``extractvalue (VAL, IDX0, IDX1, ...)``
2474 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2475 constants. The index list is interpreted in a similar manner as
2476 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2477 least one index value must be specified.
2478``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2479 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2480 The index list is interpreted in a similar manner as indices in a
2481 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2482 value must be specified.
2483``OPCODE (LHS, RHS)``
2484 Perform the specified operation of the LHS and RHS constants. OPCODE
2485 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2486 binary <bitwiseops>` operations. The constraints on operands are
2487 the same as those for the corresponding instruction (e.g. no bitwise
2488 operations on floating point values are allowed).
2489
2490Other Values
2491============
2492
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002493.. _inlineasmexprs:
2494
Sean Silvab084af42012-12-07 10:36:55 +00002495Inline Assembler Expressions
2496----------------------------
2497
2498LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2499Inline Assembly <moduleasm>`) through the use of a special value. This
2500value represents the inline assembler as a string (containing the
2501instructions to emit), a list of operand constraints (stored as a
2502string), a flag that indicates whether or not the inline asm expression
2503has side effects, and a flag indicating whether the function containing
2504the asm needs to align its stack conservatively. An example inline
2505assembler expression is:
2506
2507.. code-block:: llvm
2508
2509 i32 (i32) asm "bswap $0", "=r,r"
2510
2511Inline assembler expressions may **only** be used as the callee operand
2512of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2513Thus, typically we have:
2514
2515.. code-block:: llvm
2516
2517 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2518
2519Inline asms with side effects not visible in the constraint list must be
2520marked as having side effects. This is done through the use of the
2521'``sideeffect``' keyword, like so:
2522
2523.. code-block:: llvm
2524
2525 call void asm sideeffect "eieio", ""()
2526
2527In some cases inline asms will contain code that will not work unless
2528the stack is aligned in some way, such as calls or SSE instructions on
2529x86, yet will not contain code that does that alignment within the asm.
2530The compiler should make conservative assumptions about what the asm
2531might contain and should generate its usual stack alignment code in the
2532prologue if the '``alignstack``' keyword is present:
2533
2534.. code-block:: llvm
2535
2536 call void asm alignstack "eieio", ""()
2537
2538Inline asms also support using non-standard assembly dialects. The
2539assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2540the inline asm is using the Intel dialect. Currently, ATT and Intel are
2541the only supported dialects. An example is:
2542
2543.. code-block:: llvm
2544
2545 call void asm inteldialect "eieio", ""()
2546
2547If multiple keywords appear the '``sideeffect``' keyword must come
2548first, the '``alignstack``' keyword second and the '``inteldialect``'
2549keyword last.
2550
2551Inline Asm Metadata
2552^^^^^^^^^^^^^^^^^^^
2553
2554The call instructions that wrap inline asm nodes may have a
2555"``!srcloc``" MDNode attached to it that contains a list of constant
2556integers. If present, the code generator will use the integer as the
2557location cookie value when report errors through the ``LLVMContext``
2558error reporting mechanisms. This allows a front-end to correlate backend
2559errors that occur with inline asm back to the source code that produced
2560it. For example:
2561
2562.. code-block:: llvm
2563
2564 call void asm sideeffect "something bad", ""(), !srcloc !42
2565 ...
2566 !42 = !{ i32 1234567 }
2567
2568It is up to the front-end to make sense of the magic numbers it places
2569in the IR. If the MDNode contains multiple constants, the code generator
2570will use the one that corresponds to the line of the asm that the error
2571occurs on.
2572
2573.. _metadata:
2574
2575Metadata Nodes and Metadata Strings
2576-----------------------------------
2577
2578LLVM IR allows metadata to be attached to instructions in the program
2579that can convey extra information about the code to the optimizers and
2580code generator. One example application of metadata is source-level
2581debug information. There are two metadata primitives: strings and nodes.
2582All metadata has the ``metadata`` type and is identified in syntax by a
2583preceding exclamation point ('``!``').
2584
2585A metadata string is a string surrounded by double quotes. It can
2586contain any character by escaping non-printable characters with
2587"``\xx``" where "``xx``" is the two digit hex code. For example:
2588"``!"test\00"``".
2589
2590Metadata nodes are represented with notation similar to structure
2591constants (a comma separated list of elements, surrounded by braces and
2592preceded by an exclamation point). Metadata nodes can have any values as
2593their operand. For example:
2594
2595.. code-block:: llvm
2596
2597 !{ metadata !"test\00", i32 10}
2598
2599A :ref:`named metadata <namedmetadatastructure>` is a collection of
2600metadata nodes, which can be looked up in the module symbol table. For
2601example:
2602
2603.. code-block:: llvm
2604
2605 !foo = metadata !{!4, !3}
2606
2607Metadata can be used as function arguments. Here ``llvm.dbg.value``
2608function is using two metadata arguments:
2609
2610.. code-block:: llvm
2611
2612 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2613
2614Metadata can be attached with an instruction. Here metadata ``!21`` is
2615attached to the ``add`` instruction using the ``!dbg`` identifier:
2616
2617.. code-block:: llvm
2618
2619 %indvar.next = add i64 %indvar, 1, !dbg !21
2620
2621More information about specific metadata nodes recognized by the
2622optimizers and code generator is found below.
2623
2624'``tbaa``' Metadata
2625^^^^^^^^^^^^^^^^^^^
2626
2627In LLVM IR, memory does not have types, so LLVM's own type system is not
2628suitable for doing TBAA. Instead, metadata is added to the IR to
2629describe a type system of a higher level language. This can be used to
2630implement typical C/C++ TBAA, but it can also be used to implement
2631custom alias analysis behavior for other languages.
2632
2633The current metadata format is very simple. TBAA metadata nodes have up
2634to three fields, e.g.:
2635
2636.. code-block:: llvm
2637
2638 !0 = metadata !{ metadata !"an example type tree" }
2639 !1 = metadata !{ metadata !"int", metadata !0 }
2640 !2 = metadata !{ metadata !"float", metadata !0 }
2641 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2642
2643The first field is an identity field. It can be any value, usually a
2644metadata string, which uniquely identifies the type. The most important
2645name in the tree is the name of the root node. Two trees with different
2646root node names are entirely disjoint, even if they have leaves with
2647common names.
2648
2649The second field identifies the type's parent node in the tree, or is
2650null or omitted for a root node. A type is considered to alias all of
2651its descendants and all of its ancestors in the tree. Also, a type is
2652considered to alias all types in other trees, so that bitcode produced
2653from multiple front-ends is handled conservatively.
2654
2655If the third field is present, it's an integer which if equal to 1
2656indicates that the type is "constant" (meaning
2657``pointsToConstantMemory`` should return true; see `other useful
2658AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2659
2660'``tbaa.struct``' Metadata
2661^^^^^^^^^^^^^^^^^^^^^^^^^^
2662
2663The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2664aggregate assignment operations in C and similar languages, however it
2665is defined to copy a contiguous region of memory, which is more than
2666strictly necessary for aggregate types which contain holes due to
2667padding. Also, it doesn't contain any TBAA information about the fields
2668of the aggregate.
2669
2670``!tbaa.struct`` metadata can describe which memory subregions in a
2671memcpy are padding and what the TBAA tags of the struct are.
2672
2673The current metadata format is very simple. ``!tbaa.struct`` metadata
2674nodes are a list of operands which are in conceptual groups of three.
2675For each group of three, the first operand gives the byte offset of a
2676field in bytes, the second gives its size in bytes, and the third gives
2677its tbaa tag. e.g.:
2678
2679.. code-block:: llvm
2680
2681 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2682
2683This describes a struct with two fields. The first is at offset 0 bytes
2684with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2685and has size 4 bytes and has tbaa tag !2.
2686
2687Note that the fields need not be contiguous. In this example, there is a
26884 byte gap between the two fields. This gap represents padding which
2689does not carry useful data and need not be preserved.
2690
2691'``fpmath``' Metadata
2692^^^^^^^^^^^^^^^^^^^^^
2693
2694``fpmath`` metadata may be attached to any instruction of floating point
2695type. It can be used to express the maximum acceptable error in the
2696result of that instruction, in ULPs, thus potentially allowing the
2697compiler to use a more efficient but less accurate method of computing
2698it. ULP is defined as follows:
2699
2700 If ``x`` is a real number that lies between two finite consecutive
2701 floating-point numbers ``a`` and ``b``, without being equal to one
2702 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2703 distance between the two non-equal finite floating-point numbers
2704 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2705
2706The metadata node shall consist of a single positive floating point
2707number representing the maximum relative error, for example:
2708
2709.. code-block:: llvm
2710
2711 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2712
2713'``range``' Metadata
2714^^^^^^^^^^^^^^^^^^^^
2715
2716``range`` metadata may be attached only to loads of integer types. It
2717expresses the possible ranges the loaded value is in. The ranges are
2718represented with a flattened list of integers. The loaded value is known
2719to be in the union of the ranges defined by each consecutive pair. Each
2720pair has the following properties:
2721
2722- The type must match the type loaded by the instruction.
2723- The pair ``a,b`` represents the range ``[a,b)``.
2724- Both ``a`` and ``b`` are constants.
2725- The range is allowed to wrap.
2726- The range should not represent the full or empty set. That is,
2727 ``a!=b``.
2728
2729In addition, the pairs must be in signed order of the lower bound and
2730they must be non-contiguous.
2731
2732Examples:
2733
2734.. code-block:: llvm
2735
2736 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2737 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2738 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2739 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2740 ...
2741 !0 = metadata !{ i8 0, i8 2 }
2742 !1 = metadata !{ i8 255, i8 2 }
2743 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2744 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2745
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002746'``llvm.loop``'
2747^^^^^^^^^^^^^^^
2748
2749It is sometimes useful to attach information to loop constructs. Currently,
2750loop metadata is implemented as metadata attached to the branch instruction
2751in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002752guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002753specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002754
2755The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002756itself to avoid merging it with any other identifier metadata, e.g.,
2757during module linkage or function inlining. That is, each loop should refer
2758to their own identification metadata even if they reside in separate functions.
2759The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002760constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002761
2762.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002763
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002764 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002765 !1 = metadata !{ metadata !1 }
2766
Paul Redmond5fdf8362013-05-28 20:00:34 +00002767The loop identifier metadata can be used to specify additional per-loop
2768metadata. Any operands after the first operand can be treated as user-defined
2769metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2770by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002771
Paul Redmond5fdf8362013-05-28 20:00:34 +00002772.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002773
Paul Redmond5fdf8362013-05-28 20:00:34 +00002774 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2775 ...
2776 !0 = metadata !{ metadata !0, metadata !1 }
2777 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002778
2779'``llvm.mem``'
2780^^^^^^^^^^^^^^^
2781
2782Metadata types used to annotate memory accesses with information helpful
2783for optimizations are prefixed with ``llvm.mem``.
2784
2785'``llvm.mem.parallel_loop_access``' Metadata
2786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2787
2788For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002789the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002790also all of the memory accessing instructions in the loop body need to be
2791marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2792is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002793the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002794converted to sequential loops due to optimization passes that are unaware of
2795the parallel semantics and that insert new memory instructions to the loop
2796body.
2797
2798Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002799both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002800metadata types that refer to the same loop identifier metadata.
2801
2802.. code-block:: llvm
2803
2804 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002805 ...
2806 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2807 ...
2808 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2809 ...
2810 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002811
2812 for.end:
2813 ...
2814 !0 = metadata !{ metadata !0 }
2815
2816It is also possible to have nested parallel loops. In that case the
2817memory accesses refer to a list of loop identifier metadata nodes instead of
2818the loop identifier metadata node directly:
2819
2820.. code-block:: llvm
2821
2822 outer.for.body:
2823 ...
2824
2825 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002826 ...
2827 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2828 ...
2829 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2830 ...
2831 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002832
2833 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002834 ...
2835 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2836 ...
2837 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2838 ...
2839 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002840
2841 outer.for.end: ; preds = %for.body
2842 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002843 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2844 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2845 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002846
Paul Redmond5fdf8362013-05-28 20:00:34 +00002847'``llvm.vectorizer``'
2848^^^^^^^^^^^^^^^^^^^^^
2849
2850Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2851vectorization parameters such as vectorization factor and unroll factor.
2852
2853``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2854loop identification metadata.
2855
2856'``llvm.vectorizer.unroll``' Metadata
2857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2858
2859This metadata instructs the loop vectorizer to unroll the specified
2860loop exactly ``N`` times.
2861
2862The first operand is the string ``llvm.vectorizer.unroll`` and the second
2863operand is an integer specifying the unroll factor. For example:
2864
2865.. code-block:: llvm
2866
2867 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2868
2869Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2870loop.
2871
2872If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2873determined automatically.
2874
2875'``llvm.vectorizer.width``' Metadata
2876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2877
Paul Redmondeccbb322013-05-30 17:22:46 +00002878This metadata sets the target width of the vectorizer to ``N``. Without
2879this metadata, the vectorizer will choose a width automatically.
2880Regardless of this metadata, the vectorizer will only vectorize loops if
2881it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002882
2883The first operand is the string ``llvm.vectorizer.width`` and the second
2884operand is an integer specifying the width. For example:
2885
2886.. code-block:: llvm
2887
2888 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2889
2890Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2891loop.
2892
2893If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2894automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002895
Sean Silvab084af42012-12-07 10:36:55 +00002896Module Flags Metadata
2897=====================
2898
2899Information about the module as a whole is difficult to convey to LLVM's
2900subsystems. The LLVM IR isn't sufficient to transmit this information.
2901The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002902this. These flags are in the form of key / value pairs --- much like a
2903dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002904look it up.
2905
2906The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2907Each triplet has the following form:
2908
2909- The first element is a *behavior* flag, which specifies the behavior
2910 when two (or more) modules are merged together, and it encounters two
2911 (or more) metadata with the same ID. The supported behaviors are
2912 described below.
2913- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002914 metadata. Each module may only have one flag entry for each unique ID (not
2915 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002916- The third element is the value of the flag.
2917
2918When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002919``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2920each unique metadata ID string, there will be exactly one entry in the merged
2921modules ``llvm.module.flags`` metadata table, and the value for that entry will
2922be determined by the merge behavior flag, as described below. The only exception
2923is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002924
2925The following behaviors are supported:
2926
2927.. list-table::
2928 :header-rows: 1
2929 :widths: 10 90
2930
2931 * - Value
2932 - Behavior
2933
2934 * - 1
2935 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002936 Emits an error if two values disagree, otherwise the resulting value
2937 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002938
2939 * - 2
2940 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002941 Emits a warning if two values disagree. The result value will be the
2942 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002943
2944 * - 3
2945 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002946 Adds a requirement that another module flag be present and have a
2947 specified value after linking is performed. The value must be a
2948 metadata pair, where the first element of the pair is the ID of the
2949 module flag to be restricted, and the second element of the pair is
2950 the value the module flag should be restricted to. This behavior can
2951 be used to restrict the allowable results (via triggering of an
2952 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002953
2954 * - 4
2955 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002956 Uses the specified value, regardless of the behavior or value of the
2957 other module. If both modules specify **Override**, but the values
2958 differ, an error will be emitted.
2959
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002960 * - 5
2961 - **Append**
2962 Appends the two values, which are required to be metadata nodes.
2963
2964 * - 6
2965 - **AppendUnique**
2966 Appends the two values, which are required to be metadata
2967 nodes. However, duplicate entries in the second list are dropped
2968 during the append operation.
2969
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002970It is an error for a particular unique flag ID to have multiple behaviors,
2971except in the case of **Require** (which adds restrictions on another metadata
2972value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002973
2974An example of module flags:
2975
2976.. code-block:: llvm
2977
2978 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2979 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2980 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2981 !3 = metadata !{ i32 3, metadata !"qux",
2982 metadata !{
2983 metadata !"foo", i32 1
2984 }
2985 }
2986 !llvm.module.flags = !{ !0, !1, !2, !3 }
2987
2988- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2989 if two or more ``!"foo"`` flags are seen is to emit an error if their
2990 values are not equal.
2991
2992- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2993 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002994 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002995
2996- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2997 behavior if two or more ``!"qux"`` flags are seen is to emit a
2998 warning if their values are not equal.
2999
3000- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3001
3002 ::
3003
3004 metadata !{ metadata !"foo", i32 1 }
3005
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003006 The behavior is to emit an error if the ``llvm.module.flags`` does not
3007 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3008 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003009
3010Objective-C Garbage Collection Module Flags Metadata
3011----------------------------------------------------
3012
3013On the Mach-O platform, Objective-C stores metadata about garbage
3014collection in a special section called "image info". The metadata
3015consists of a version number and a bitmask specifying what types of
3016garbage collection are supported (if any) by the file. If two or more
3017modules are linked together their garbage collection metadata needs to
3018be merged rather than appended together.
3019
3020The Objective-C garbage collection module flags metadata consists of the
3021following key-value pairs:
3022
3023.. list-table::
3024 :header-rows: 1
3025 :widths: 30 70
3026
3027 * - Key
3028 - Value
3029
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003030 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003031 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003032
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003033 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003034 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003035 always 0.
3036
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003037 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003038 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003039 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3040 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3041 Objective-C ABI version 2.
3042
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003043 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003044 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003045 not. Valid values are 0, for no garbage collection, and 2, for garbage
3046 collection supported.
3047
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003048 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003049 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003050 If present, its value must be 6. This flag requires that the
3051 ``Objective-C Garbage Collection`` flag have the value 2.
3052
3053Some important flag interactions:
3054
3055- If a module with ``Objective-C Garbage Collection`` set to 0 is
3056 merged with a module with ``Objective-C Garbage Collection`` set to
3057 2, then the resulting module has the
3058 ``Objective-C Garbage Collection`` flag set to 0.
3059- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3060 merged with a module with ``Objective-C GC Only`` set to 6.
3061
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003062Automatic Linker Flags Module Flags Metadata
3063--------------------------------------------
3064
3065Some targets support embedding flags to the linker inside individual object
3066files. Typically this is used in conjunction with language extensions which
3067allow source files to explicitly declare the libraries they depend on, and have
3068these automatically be transmitted to the linker via object files.
3069
3070These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003071using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003072to be ``AppendUnique``, and the value for the key is expected to be a metadata
3073node which should be a list of other metadata nodes, each of which should be a
3074list of metadata strings defining linker options.
3075
3076For example, the following metadata section specifies two separate sets of
3077linker options, presumably to link against ``libz`` and the ``Cocoa``
3078framework::
3079
Michael Liaoa7699082013-03-06 18:24:34 +00003080 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003081 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003082 metadata !{ metadata !"-lz" },
3083 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003084 !llvm.module.flags = !{ !0 }
3085
3086The metadata encoding as lists of lists of options, as opposed to a collapsed
3087list of options, is chosen so that the IR encoding can use multiple option
3088strings to specify e.g., a single library, while still having that specifier be
3089preserved as an atomic element that can be recognized by a target specific
3090assembly writer or object file emitter.
3091
3092Each individual option is required to be either a valid option for the target's
3093linker, or an option that is reserved by the target specific assembly writer or
3094object file emitter. No other aspect of these options is defined by the IR.
3095
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003096.. _intrinsicglobalvariables:
3097
Sean Silvab084af42012-12-07 10:36:55 +00003098Intrinsic Global Variables
3099==========================
3100
3101LLVM has a number of "magic" global variables that contain data that
3102affect code generation or other IR semantics. These are documented here.
3103All globals of this sort should have a section specified as
3104"``llvm.metadata``". This section and all globals that start with
3105"``llvm.``" are reserved for use by LLVM.
3106
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003107.. _gv_llvmused:
3108
Sean Silvab084af42012-12-07 10:36:55 +00003109The '``llvm.used``' Global Variable
3110-----------------------------------
3111
Rafael Espindola74f2e462013-04-22 14:58:02 +00003112The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003113:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003114pointers to named global variables, functions and aliases which may optionally
3115have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003116use of it is:
3117
3118.. code-block:: llvm
3119
3120 @X = global i8 4
3121 @Y = global i32 123
3122
3123 @llvm.used = appending global [2 x i8*] [
3124 i8* @X,
3125 i8* bitcast (i32* @Y to i8*)
3126 ], section "llvm.metadata"
3127
Rafael Espindola74f2e462013-04-22 14:58:02 +00003128If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3129and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003130symbol that it cannot see (which is why they have to be named). For example, if
3131a variable has internal linkage and no references other than that from the
3132``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3133references from inline asms and other things the compiler cannot "see", and
3134corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003135
3136On some targets, the code generator must emit a directive to the
3137assembler or object file to prevent the assembler and linker from
3138molesting the symbol.
3139
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003140.. _gv_llvmcompilerused:
3141
Sean Silvab084af42012-12-07 10:36:55 +00003142The '``llvm.compiler.used``' Global Variable
3143--------------------------------------------
3144
3145The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3146directive, except that it only prevents the compiler from touching the
3147symbol. On targets that support it, this allows an intelligent linker to
3148optimize references to the symbol without being impeded as it would be
3149by ``@llvm.used``.
3150
3151This is a rare construct that should only be used in rare circumstances,
3152and should not be exposed to source languages.
3153
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003154.. _gv_llvmglobalctors:
3155
Sean Silvab084af42012-12-07 10:36:55 +00003156The '``llvm.global_ctors``' Global Variable
3157-------------------------------------------
3158
3159.. code-block:: llvm
3160
3161 %0 = type { i32, void ()* }
3162 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3163
3164The ``@llvm.global_ctors`` array contains a list of constructor
3165functions and associated priorities. The functions referenced by this
3166array will be called in ascending order of priority (i.e. lowest first)
3167when the module is loaded. The order of functions with the same priority
3168is not defined.
3169
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003170.. _llvmglobaldtors:
3171
Sean Silvab084af42012-12-07 10:36:55 +00003172The '``llvm.global_dtors``' Global Variable
3173-------------------------------------------
3174
3175.. code-block:: llvm
3176
3177 %0 = type { i32, void ()* }
3178 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3179
3180The ``@llvm.global_dtors`` array contains a list of destructor functions
3181and associated priorities. The functions referenced by this array will
3182be called in descending order of priority (i.e. highest first) when the
3183module is loaded. The order of functions with the same priority is not
3184defined.
3185
3186Instruction Reference
3187=====================
3188
3189The LLVM instruction set consists of several different classifications
3190of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3191instructions <binaryops>`, :ref:`bitwise binary
3192instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3193:ref:`other instructions <otherops>`.
3194
3195.. _terminators:
3196
3197Terminator Instructions
3198-----------------------
3199
3200As mentioned :ref:`previously <functionstructure>`, every basic block in a
3201program ends with a "Terminator" instruction, which indicates which
3202block should be executed after the current block is finished. These
3203terminator instructions typically yield a '``void``' value: they produce
3204control flow, not values (the one exception being the
3205':ref:`invoke <i_invoke>`' instruction).
3206
3207The terminator instructions are: ':ref:`ret <i_ret>`',
3208':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3209':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3210':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3211
3212.. _i_ret:
3213
3214'``ret``' Instruction
3215^^^^^^^^^^^^^^^^^^^^^
3216
3217Syntax:
3218"""""""
3219
3220::
3221
3222 ret <type> <value> ; Return a value from a non-void function
3223 ret void ; Return from void function
3224
3225Overview:
3226"""""""""
3227
3228The '``ret``' instruction is used to return control flow (and optionally
3229a value) from a function back to the caller.
3230
3231There are two forms of the '``ret``' instruction: one that returns a
3232value and then causes control flow, and one that just causes control
3233flow to occur.
3234
3235Arguments:
3236""""""""""
3237
3238The '``ret``' instruction optionally accepts a single argument, the
3239return value. The type of the return value must be a ':ref:`first
3240class <t_firstclass>`' type.
3241
3242A function is not :ref:`well formed <wellformed>` if it it has a non-void
3243return type and contains a '``ret``' instruction with no return value or
3244a return value with a type that does not match its type, or if it has a
3245void return type and contains a '``ret``' instruction with a return
3246value.
3247
3248Semantics:
3249""""""""""
3250
3251When the '``ret``' instruction is executed, control flow returns back to
3252the calling function's context. If the caller is a
3253":ref:`call <i_call>`" instruction, execution continues at the
3254instruction after the call. If the caller was an
3255":ref:`invoke <i_invoke>`" instruction, execution continues at the
3256beginning of the "normal" destination block. If the instruction returns
3257a value, that value shall set the call or invoke instruction's return
3258value.
3259
3260Example:
3261""""""""
3262
3263.. code-block:: llvm
3264
3265 ret i32 5 ; Return an integer value of 5
3266 ret void ; Return from a void function
3267 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3268
3269.. _i_br:
3270
3271'``br``' Instruction
3272^^^^^^^^^^^^^^^^^^^^
3273
3274Syntax:
3275"""""""
3276
3277::
3278
3279 br i1 <cond>, label <iftrue>, label <iffalse>
3280 br label <dest> ; Unconditional branch
3281
3282Overview:
3283"""""""""
3284
3285The '``br``' instruction is used to cause control flow to transfer to a
3286different basic block in the current function. There are two forms of
3287this instruction, corresponding to a conditional branch and an
3288unconditional branch.
3289
3290Arguments:
3291""""""""""
3292
3293The conditional branch form of the '``br``' instruction takes a single
3294'``i1``' value and two '``label``' values. The unconditional form of the
3295'``br``' instruction takes a single '``label``' value as a target.
3296
3297Semantics:
3298""""""""""
3299
3300Upon execution of a conditional '``br``' instruction, the '``i1``'
3301argument is evaluated. If the value is ``true``, control flows to the
3302'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3303to the '``iffalse``' ``label`` argument.
3304
3305Example:
3306""""""""
3307
3308.. code-block:: llvm
3309
3310 Test:
3311 %cond = icmp eq i32 %a, %b
3312 br i1 %cond, label %IfEqual, label %IfUnequal
3313 IfEqual:
3314 ret i32 1
3315 IfUnequal:
3316 ret i32 0
3317
3318.. _i_switch:
3319
3320'``switch``' Instruction
3321^^^^^^^^^^^^^^^^^^^^^^^^
3322
3323Syntax:
3324"""""""
3325
3326::
3327
3328 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3329
3330Overview:
3331"""""""""
3332
3333The '``switch``' instruction is used to transfer control flow to one of
3334several different places. It is a generalization of the '``br``'
3335instruction, allowing a branch to occur to one of many possible
3336destinations.
3337
3338Arguments:
3339""""""""""
3340
3341The '``switch``' instruction uses three parameters: an integer
3342comparison value '``value``', a default '``label``' destination, and an
3343array of pairs of comparison value constants and '``label``'s. The table
3344is not allowed to contain duplicate constant entries.
3345
3346Semantics:
3347""""""""""
3348
3349The ``switch`` instruction specifies a table of values and destinations.
3350When the '``switch``' instruction is executed, this table is searched
3351for the given value. If the value is found, control flow is transferred
3352to the corresponding destination; otherwise, control flow is transferred
3353to the default destination.
3354
3355Implementation:
3356"""""""""""""""
3357
3358Depending on properties of the target machine and the particular
3359``switch`` instruction, this instruction may be code generated in
3360different ways. For example, it could be generated as a series of
3361chained conditional branches or with a lookup table.
3362
3363Example:
3364""""""""
3365
3366.. code-block:: llvm
3367
3368 ; Emulate a conditional br instruction
3369 %Val = zext i1 %value to i32
3370 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3371
3372 ; Emulate an unconditional br instruction
3373 switch i32 0, label %dest [ ]
3374
3375 ; Implement a jump table:
3376 switch i32 %val, label %otherwise [ i32 0, label %onzero
3377 i32 1, label %onone
3378 i32 2, label %ontwo ]
3379
3380.. _i_indirectbr:
3381
3382'``indirectbr``' Instruction
3383^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3384
3385Syntax:
3386"""""""
3387
3388::
3389
3390 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3391
3392Overview:
3393"""""""""
3394
3395The '``indirectbr``' instruction implements an indirect branch to a
3396label within the current function, whose address is specified by
3397"``address``". Address must be derived from a
3398:ref:`blockaddress <blockaddress>` constant.
3399
3400Arguments:
3401""""""""""
3402
3403The '``address``' argument is the address of the label to jump to. The
3404rest of the arguments indicate the full set of possible destinations
3405that the address may point to. Blocks are allowed to occur multiple
3406times in the destination list, though this isn't particularly useful.
3407
3408This destination list is required so that dataflow analysis has an
3409accurate understanding of the CFG.
3410
3411Semantics:
3412""""""""""
3413
3414Control transfers to the block specified in the address argument. All
3415possible destination blocks must be listed in the label list, otherwise
3416this instruction has undefined behavior. This implies that jumps to
3417labels defined in other functions have undefined behavior as well.
3418
3419Implementation:
3420"""""""""""""""
3421
3422This is typically implemented with a jump through a register.
3423
3424Example:
3425""""""""
3426
3427.. code-block:: llvm
3428
3429 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3430
3431.. _i_invoke:
3432
3433'``invoke``' Instruction
3434^^^^^^^^^^^^^^^^^^^^^^^^
3435
3436Syntax:
3437"""""""
3438
3439::
3440
3441 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3442 to label <normal label> unwind label <exception label>
3443
3444Overview:
3445"""""""""
3446
3447The '``invoke``' instruction causes control to transfer to a specified
3448function, with the possibility of control flow transfer to either the
3449'``normal``' label or the '``exception``' label. If the callee function
3450returns with the "``ret``" instruction, control flow will return to the
3451"normal" label. If the callee (or any indirect callees) returns via the
3452":ref:`resume <i_resume>`" instruction or other exception handling
3453mechanism, control is interrupted and continued at the dynamically
3454nearest "exception" label.
3455
3456The '``exception``' label is a `landing
3457pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3458'``exception``' label is required to have the
3459":ref:`landingpad <i_landingpad>`" instruction, which contains the
3460information about the behavior of the program after unwinding happens,
3461as its first non-PHI instruction. The restrictions on the
3462"``landingpad``" instruction's tightly couples it to the "``invoke``"
3463instruction, so that the important information contained within the
3464"``landingpad``" instruction can't be lost through normal code motion.
3465
3466Arguments:
3467""""""""""
3468
3469This instruction requires several arguments:
3470
3471#. The optional "cconv" marker indicates which :ref:`calling
3472 convention <callingconv>` the call should use. If none is
3473 specified, the call defaults to using C calling conventions.
3474#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3475 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3476 are valid here.
3477#. '``ptr to function ty``': shall be the signature of the pointer to
3478 function value being invoked. In most cases, this is a direct
3479 function invocation, but indirect ``invoke``'s are just as possible,
3480 branching off an arbitrary pointer to function value.
3481#. '``function ptr val``': An LLVM value containing a pointer to a
3482 function to be invoked.
3483#. '``function args``': argument list whose types match the function
3484 signature argument types and parameter attributes. All arguments must
3485 be of :ref:`first class <t_firstclass>` type. If the function signature
3486 indicates the function accepts a variable number of arguments, the
3487 extra arguments can be specified.
3488#. '``normal label``': the label reached when the called function
3489 executes a '``ret``' instruction.
3490#. '``exception label``': the label reached when a callee returns via
3491 the :ref:`resume <i_resume>` instruction or other exception handling
3492 mechanism.
3493#. The optional :ref:`function attributes <fnattrs>` list. Only
3494 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3495 attributes are valid here.
3496
3497Semantics:
3498""""""""""
3499
3500This instruction is designed to operate as a standard '``call``'
3501instruction in most regards. The primary difference is that it
3502establishes an association with a label, which is used by the runtime
3503library to unwind the stack.
3504
3505This instruction is used in languages with destructors to ensure that
3506proper cleanup is performed in the case of either a ``longjmp`` or a
3507thrown exception. Additionally, this is important for implementation of
3508'``catch``' clauses in high-level languages that support them.
3509
3510For the purposes of the SSA form, the definition of the value returned
3511by the '``invoke``' instruction is deemed to occur on the edge from the
3512current block to the "normal" label. If the callee unwinds then no
3513return value is available.
3514
3515Example:
3516""""""""
3517
3518.. code-block:: llvm
3519
3520 %retval = invoke i32 @Test(i32 15) to label %Continue
3521 unwind label %TestCleanup ; {i32}:retval set
3522 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3523 unwind label %TestCleanup ; {i32}:retval set
3524
3525.. _i_resume:
3526
3527'``resume``' Instruction
3528^^^^^^^^^^^^^^^^^^^^^^^^
3529
3530Syntax:
3531"""""""
3532
3533::
3534
3535 resume <type> <value>
3536
3537Overview:
3538"""""""""
3539
3540The '``resume``' instruction is a terminator instruction that has no
3541successors.
3542
3543Arguments:
3544""""""""""
3545
3546The '``resume``' instruction requires one argument, which must have the
3547same type as the result of any '``landingpad``' instruction in the same
3548function.
3549
3550Semantics:
3551""""""""""
3552
3553The '``resume``' instruction resumes propagation of an existing
3554(in-flight) exception whose unwinding was interrupted with a
3555:ref:`landingpad <i_landingpad>` instruction.
3556
3557Example:
3558""""""""
3559
3560.. code-block:: llvm
3561
3562 resume { i8*, i32 } %exn
3563
3564.. _i_unreachable:
3565
3566'``unreachable``' Instruction
3567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3568
3569Syntax:
3570"""""""
3571
3572::
3573
3574 unreachable
3575
3576Overview:
3577"""""""""
3578
3579The '``unreachable``' instruction has no defined semantics. This
3580instruction is used to inform the optimizer that a particular portion of
3581the code is not reachable. This can be used to indicate that the code
3582after a no-return function cannot be reached, and other facts.
3583
3584Semantics:
3585""""""""""
3586
3587The '``unreachable``' instruction has no defined semantics.
3588
3589.. _binaryops:
3590
3591Binary Operations
3592-----------------
3593
3594Binary operators are used to do most of the computation in a program.
3595They require two operands of the same type, execute an operation on
3596them, and produce a single value. The operands might represent multiple
3597data, as is the case with the :ref:`vector <t_vector>` data type. The
3598result value has the same type as its operands.
3599
3600There are several different binary operators:
3601
3602.. _i_add:
3603
3604'``add``' Instruction
3605^^^^^^^^^^^^^^^^^^^^^
3606
3607Syntax:
3608"""""""
3609
3610::
3611
3612 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3613 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3614 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3615 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3616
3617Overview:
3618"""""""""
3619
3620The '``add``' instruction returns the sum of its two operands.
3621
3622Arguments:
3623""""""""""
3624
3625The two arguments to the '``add``' instruction must be
3626:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3627arguments must have identical types.
3628
3629Semantics:
3630""""""""""
3631
3632The value produced is the integer sum of the two operands.
3633
3634If the sum has unsigned overflow, the result returned is the
3635mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3636the result.
3637
3638Because LLVM integers use a two's complement representation, this
3639instruction is appropriate for both signed and unsigned integers.
3640
3641``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3642respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3643result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3644unsigned and/or signed overflow, respectively, occurs.
3645
3646Example:
3647""""""""
3648
3649.. code-block:: llvm
3650
3651 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3652
3653.. _i_fadd:
3654
3655'``fadd``' Instruction
3656^^^^^^^^^^^^^^^^^^^^^^
3657
3658Syntax:
3659"""""""
3660
3661::
3662
3663 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3664
3665Overview:
3666"""""""""
3667
3668The '``fadd``' instruction returns the sum of its two operands.
3669
3670Arguments:
3671""""""""""
3672
3673The two arguments to the '``fadd``' instruction must be :ref:`floating
3674point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3675Both arguments must have identical types.
3676
3677Semantics:
3678""""""""""
3679
3680The value produced is the floating point sum of the two operands. This
3681instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3682which are optimization hints to enable otherwise unsafe floating point
3683optimizations:
3684
3685Example:
3686""""""""
3687
3688.. code-block:: llvm
3689
3690 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3691
3692'``sub``' Instruction
3693^^^^^^^^^^^^^^^^^^^^^
3694
3695Syntax:
3696"""""""
3697
3698::
3699
3700 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3701 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3702 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3703 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3704
3705Overview:
3706"""""""""
3707
3708The '``sub``' instruction returns the difference of its two operands.
3709
3710Note that the '``sub``' instruction is used to represent the '``neg``'
3711instruction present in most other intermediate representations.
3712
3713Arguments:
3714""""""""""
3715
3716The two arguments to the '``sub``' instruction must be
3717:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3718arguments must have identical types.
3719
3720Semantics:
3721""""""""""
3722
3723The value produced is the integer difference of the two operands.
3724
3725If the difference has unsigned overflow, the result returned is the
3726mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3727the result.
3728
3729Because LLVM integers use a two's complement representation, this
3730instruction is appropriate for both signed and unsigned integers.
3731
3732``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3733respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3734result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3735unsigned and/or signed overflow, respectively, occurs.
3736
3737Example:
3738""""""""
3739
3740.. code-block:: llvm
3741
3742 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3743 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3744
3745.. _i_fsub:
3746
3747'``fsub``' Instruction
3748^^^^^^^^^^^^^^^^^^^^^^
3749
3750Syntax:
3751"""""""
3752
3753::
3754
3755 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3756
3757Overview:
3758"""""""""
3759
3760The '``fsub``' instruction returns the difference of its two operands.
3761
3762Note that the '``fsub``' instruction is used to represent the '``fneg``'
3763instruction present in most other intermediate representations.
3764
3765Arguments:
3766""""""""""
3767
3768The two arguments to the '``fsub``' instruction must be :ref:`floating
3769point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3770Both arguments must have identical types.
3771
3772Semantics:
3773""""""""""
3774
3775The value produced is the floating point difference of the two operands.
3776This instruction can also take any number of :ref:`fast-math
3777flags <fastmath>`, which are optimization hints to enable otherwise
3778unsafe floating point optimizations:
3779
3780Example:
3781""""""""
3782
3783.. code-block:: llvm
3784
3785 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3786 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3787
3788'``mul``' Instruction
3789^^^^^^^^^^^^^^^^^^^^^
3790
3791Syntax:
3792"""""""
3793
3794::
3795
3796 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3797 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3798 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3799 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3800
3801Overview:
3802"""""""""
3803
3804The '``mul``' instruction returns the product of its two operands.
3805
3806Arguments:
3807""""""""""
3808
3809The two arguments to the '``mul``' instruction must be
3810:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3811arguments must have identical types.
3812
3813Semantics:
3814""""""""""
3815
3816The value produced is the integer product of the two operands.
3817
3818If the result of the multiplication has unsigned overflow, the result
3819returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3820bit width of the result.
3821
3822Because LLVM integers use a two's complement representation, and the
3823result is the same width as the operands, this instruction returns the
3824correct result for both signed and unsigned integers. If a full product
3825(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3826sign-extended or zero-extended as appropriate to the width of the full
3827product.
3828
3829``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3830respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3831result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3832unsigned and/or signed overflow, respectively, occurs.
3833
3834Example:
3835""""""""
3836
3837.. code-block:: llvm
3838
3839 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3840
3841.. _i_fmul:
3842
3843'``fmul``' Instruction
3844^^^^^^^^^^^^^^^^^^^^^^
3845
3846Syntax:
3847"""""""
3848
3849::
3850
3851 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3852
3853Overview:
3854"""""""""
3855
3856The '``fmul``' instruction returns the product of its two operands.
3857
3858Arguments:
3859""""""""""
3860
3861The two arguments to the '``fmul``' instruction must be :ref:`floating
3862point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3863Both arguments must have identical types.
3864
3865Semantics:
3866""""""""""
3867
3868The value produced is the floating point product of the two operands.
3869This instruction can also take any number of :ref:`fast-math
3870flags <fastmath>`, which are optimization hints to enable otherwise
3871unsafe floating point optimizations:
3872
3873Example:
3874""""""""
3875
3876.. code-block:: llvm
3877
3878 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3879
3880'``udiv``' Instruction
3881^^^^^^^^^^^^^^^^^^^^^^
3882
3883Syntax:
3884"""""""
3885
3886::
3887
3888 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3889 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3890
3891Overview:
3892"""""""""
3893
3894The '``udiv``' instruction returns the quotient of its two operands.
3895
3896Arguments:
3897""""""""""
3898
3899The two arguments to the '``udiv``' instruction must be
3900:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3901arguments must have identical types.
3902
3903Semantics:
3904""""""""""
3905
3906The value produced is the unsigned integer quotient of the two operands.
3907
3908Note that unsigned integer division and signed integer division are
3909distinct operations; for signed integer division, use '``sdiv``'.
3910
3911Division by zero leads to undefined behavior.
3912
3913If the ``exact`` keyword is present, the result value of the ``udiv`` is
3914a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3915such, "((a udiv exact b) mul b) == a").
3916
3917Example:
3918""""""""
3919
3920.. code-block:: llvm
3921
3922 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3923
3924'``sdiv``' Instruction
3925^^^^^^^^^^^^^^^^^^^^^^
3926
3927Syntax:
3928"""""""
3929
3930::
3931
3932 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3933 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3934
3935Overview:
3936"""""""""
3937
3938The '``sdiv``' instruction returns the quotient of its two operands.
3939
3940Arguments:
3941""""""""""
3942
3943The two arguments to the '``sdiv``' instruction must be
3944:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3945arguments must have identical types.
3946
3947Semantics:
3948""""""""""
3949
3950The value produced is the signed integer quotient of the two operands
3951rounded towards zero.
3952
3953Note that signed integer division and unsigned integer division are
3954distinct operations; for unsigned integer division, use '``udiv``'.
3955
3956Division by zero leads to undefined behavior. Overflow also leads to
3957undefined behavior; this is a rare case, but can occur, for example, by
3958doing a 32-bit division of -2147483648 by -1.
3959
3960If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3961a :ref:`poison value <poisonvalues>` if the result would be rounded.
3962
3963Example:
3964""""""""
3965
3966.. code-block:: llvm
3967
3968 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3969
3970.. _i_fdiv:
3971
3972'``fdiv``' Instruction
3973^^^^^^^^^^^^^^^^^^^^^^
3974
3975Syntax:
3976"""""""
3977
3978::
3979
3980 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3981
3982Overview:
3983"""""""""
3984
3985The '``fdiv``' instruction returns the quotient of its two operands.
3986
3987Arguments:
3988""""""""""
3989
3990The two arguments to the '``fdiv``' instruction must be :ref:`floating
3991point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3992Both arguments must have identical types.
3993
3994Semantics:
3995""""""""""
3996
3997The value produced is the floating point quotient of the two operands.
3998This instruction can also take any number of :ref:`fast-math
3999flags <fastmath>`, which are optimization hints to enable otherwise
4000unsafe floating point optimizations:
4001
4002Example:
4003""""""""
4004
4005.. code-block:: llvm
4006
4007 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4008
4009'``urem``' Instruction
4010^^^^^^^^^^^^^^^^^^^^^^
4011
4012Syntax:
4013"""""""
4014
4015::
4016
4017 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4018
4019Overview:
4020"""""""""
4021
4022The '``urem``' instruction returns the remainder from the unsigned
4023division of its two arguments.
4024
4025Arguments:
4026""""""""""
4027
4028The two arguments to the '``urem``' instruction must be
4029:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4030arguments must have identical types.
4031
4032Semantics:
4033""""""""""
4034
4035This instruction returns the unsigned integer *remainder* of a division.
4036This instruction always performs an unsigned division to get the
4037remainder.
4038
4039Note that unsigned integer remainder and signed integer remainder are
4040distinct operations; for signed integer remainder, use '``srem``'.
4041
4042Taking the remainder of a division by zero leads to undefined behavior.
4043
4044Example:
4045""""""""
4046
4047.. code-block:: llvm
4048
4049 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4050
4051'``srem``' Instruction
4052^^^^^^^^^^^^^^^^^^^^^^
4053
4054Syntax:
4055"""""""
4056
4057::
4058
4059 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4060
4061Overview:
4062"""""""""
4063
4064The '``srem``' instruction returns the remainder from the signed
4065division of its two operands. This instruction can also take
4066:ref:`vector <t_vector>` versions of the values in which case the elements
4067must be integers.
4068
4069Arguments:
4070""""""""""
4071
4072The two arguments to the '``srem``' instruction must be
4073:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4074arguments must have identical types.
4075
4076Semantics:
4077""""""""""
4078
4079This instruction returns the *remainder* of a division (where the result
4080is either zero or has the same sign as the dividend, ``op1``), not the
4081*modulo* operator (where the result is either zero or has the same sign
4082as the divisor, ``op2``) of a value. For more information about the
4083difference, see `The Math
4084Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4085table of how this is implemented in various languages, please see
4086`Wikipedia: modulo
4087operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4088
4089Note that signed integer remainder and unsigned integer remainder are
4090distinct operations; for unsigned integer remainder, use '``urem``'.
4091
4092Taking the remainder of a division by zero leads to undefined behavior.
4093Overflow also leads to undefined behavior; this is a rare case, but can
4094occur, for example, by taking the remainder of a 32-bit division of
4095-2147483648 by -1. (The remainder doesn't actually overflow, but this
4096rule lets srem be implemented using instructions that return both the
4097result of the division and the remainder.)
4098
4099Example:
4100""""""""
4101
4102.. code-block:: llvm
4103
4104 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4105
4106.. _i_frem:
4107
4108'``frem``' Instruction
4109^^^^^^^^^^^^^^^^^^^^^^
4110
4111Syntax:
4112"""""""
4113
4114::
4115
4116 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4117
4118Overview:
4119"""""""""
4120
4121The '``frem``' instruction returns the remainder from the division of
4122its two operands.
4123
4124Arguments:
4125""""""""""
4126
4127The two arguments to the '``frem``' instruction must be :ref:`floating
4128point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4129Both arguments must have identical types.
4130
4131Semantics:
4132""""""""""
4133
4134This instruction returns the *remainder* of a division. The remainder
4135has the same sign as the dividend. This instruction can also take any
4136number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4137to enable otherwise unsafe floating point optimizations:
4138
4139Example:
4140""""""""
4141
4142.. code-block:: llvm
4143
4144 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4145
4146.. _bitwiseops:
4147
4148Bitwise Binary Operations
4149-------------------------
4150
4151Bitwise binary operators are used to do various forms of bit-twiddling
4152in a program. They are generally very efficient instructions and can
4153commonly be strength reduced from other instructions. They require two
4154operands of the same type, execute an operation on them, and produce a
4155single value. The resulting value is the same type as its operands.
4156
4157'``shl``' Instruction
4158^^^^^^^^^^^^^^^^^^^^^
4159
4160Syntax:
4161"""""""
4162
4163::
4164
4165 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4166 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4167 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4168 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4169
4170Overview:
4171"""""""""
4172
4173The '``shl``' instruction returns the first operand shifted to the left
4174a specified number of bits.
4175
4176Arguments:
4177""""""""""
4178
4179Both arguments to the '``shl``' instruction must be the same
4180:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4181'``op2``' is treated as an unsigned value.
4182
4183Semantics:
4184""""""""""
4185
4186The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4187where ``n`` is the width of the result. If ``op2`` is (statically or
4188dynamically) negative or equal to or larger than the number of bits in
4189``op1``, the result is undefined. If the arguments are vectors, each
4190vector element of ``op1`` is shifted by the corresponding shift amount
4191in ``op2``.
4192
4193If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4194value <poisonvalues>` if it shifts out any non-zero bits. If the
4195``nsw`` keyword is present, then the shift produces a :ref:`poison
4196value <poisonvalues>` if it shifts out any bits that disagree with the
4197resultant sign bit. As such, NUW/NSW have the same semantics as they
4198would if the shift were expressed as a mul instruction with the same
4199nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4200
4201Example:
4202""""""""
4203
4204.. code-block:: llvm
4205
4206 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4207 <result> = shl i32 4, 2 ; yields {i32}: 16
4208 <result> = shl i32 1, 10 ; yields {i32}: 1024
4209 <result> = shl i32 1, 32 ; undefined
4210 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4211
4212'``lshr``' Instruction
4213^^^^^^^^^^^^^^^^^^^^^^
4214
4215Syntax:
4216"""""""
4217
4218::
4219
4220 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4221 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4222
4223Overview:
4224"""""""""
4225
4226The '``lshr``' instruction (logical shift right) returns the first
4227operand shifted to the right a specified number of bits with zero fill.
4228
4229Arguments:
4230""""""""""
4231
4232Both arguments to the '``lshr``' instruction must be the same
4233:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4234'``op2``' is treated as an unsigned value.
4235
4236Semantics:
4237""""""""""
4238
4239This instruction always performs a logical shift right operation. The
4240most significant bits of the result will be filled with zero bits after
4241the shift. If ``op2`` is (statically or dynamically) equal to or larger
4242than the number of bits in ``op1``, the result is undefined. If the
4243arguments are vectors, each vector element of ``op1`` is shifted by the
4244corresponding shift amount in ``op2``.
4245
4246If the ``exact`` keyword is present, the result value of the ``lshr`` is
4247a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4248non-zero.
4249
4250Example:
4251""""""""
4252
4253.. code-block:: llvm
4254
4255 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4256 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4257 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004258 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004259 <result> = lshr i32 1, 32 ; undefined
4260 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4261
4262'``ashr``' Instruction
4263^^^^^^^^^^^^^^^^^^^^^^
4264
4265Syntax:
4266"""""""
4267
4268::
4269
4270 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4271 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4272
4273Overview:
4274"""""""""
4275
4276The '``ashr``' instruction (arithmetic shift right) returns the first
4277operand shifted to the right a specified number of bits with sign
4278extension.
4279
4280Arguments:
4281""""""""""
4282
4283Both arguments to the '``ashr``' instruction must be the same
4284:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4285'``op2``' is treated as an unsigned value.
4286
4287Semantics:
4288""""""""""
4289
4290This instruction always performs an arithmetic shift right operation,
4291The most significant bits of the result will be filled with the sign bit
4292of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4293than the number of bits in ``op1``, the result is undefined. If the
4294arguments are vectors, each vector element of ``op1`` is shifted by the
4295corresponding shift amount in ``op2``.
4296
4297If the ``exact`` keyword is present, the result value of the ``ashr`` is
4298a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4299non-zero.
4300
4301Example:
4302""""""""
4303
4304.. code-block:: llvm
4305
4306 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4307 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4308 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4309 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4310 <result> = ashr i32 1, 32 ; undefined
4311 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4312
4313'``and``' Instruction
4314^^^^^^^^^^^^^^^^^^^^^
4315
4316Syntax:
4317"""""""
4318
4319::
4320
4321 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4322
4323Overview:
4324"""""""""
4325
4326The '``and``' instruction returns the bitwise logical and of its two
4327operands.
4328
4329Arguments:
4330""""""""""
4331
4332The two arguments to the '``and``' instruction must be
4333:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4334arguments must have identical types.
4335
4336Semantics:
4337""""""""""
4338
4339The truth table used for the '``and``' instruction is:
4340
4341+-----+-----+-----+
4342| In0 | In1 | Out |
4343+-----+-----+-----+
4344| 0 | 0 | 0 |
4345+-----+-----+-----+
4346| 0 | 1 | 0 |
4347+-----+-----+-----+
4348| 1 | 0 | 0 |
4349+-----+-----+-----+
4350| 1 | 1 | 1 |
4351+-----+-----+-----+
4352
4353Example:
4354""""""""
4355
4356.. code-block:: llvm
4357
4358 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4359 <result> = and i32 15, 40 ; yields {i32}:result = 8
4360 <result> = and i32 4, 8 ; yields {i32}:result = 0
4361
4362'``or``' Instruction
4363^^^^^^^^^^^^^^^^^^^^
4364
4365Syntax:
4366"""""""
4367
4368::
4369
4370 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4371
4372Overview:
4373"""""""""
4374
4375The '``or``' instruction returns the bitwise logical inclusive or of its
4376two operands.
4377
4378Arguments:
4379""""""""""
4380
4381The two arguments to the '``or``' instruction must be
4382:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4383arguments must have identical types.
4384
4385Semantics:
4386""""""""""
4387
4388The truth table used for the '``or``' instruction is:
4389
4390+-----+-----+-----+
4391| In0 | In1 | Out |
4392+-----+-----+-----+
4393| 0 | 0 | 0 |
4394+-----+-----+-----+
4395| 0 | 1 | 1 |
4396+-----+-----+-----+
4397| 1 | 0 | 1 |
4398+-----+-----+-----+
4399| 1 | 1 | 1 |
4400+-----+-----+-----+
4401
4402Example:
4403""""""""
4404
4405::
4406
4407 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4408 <result> = or i32 15, 40 ; yields {i32}:result = 47
4409 <result> = or i32 4, 8 ; yields {i32}:result = 12
4410
4411'``xor``' Instruction
4412^^^^^^^^^^^^^^^^^^^^^
4413
4414Syntax:
4415"""""""
4416
4417::
4418
4419 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4420
4421Overview:
4422"""""""""
4423
4424The '``xor``' instruction returns the bitwise logical exclusive or of
4425its two operands. The ``xor`` is used to implement the "one's
4426complement" operation, which is the "~" operator in C.
4427
4428Arguments:
4429""""""""""
4430
4431The two arguments to the '``xor``' instruction must be
4432:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4433arguments must have identical types.
4434
4435Semantics:
4436""""""""""
4437
4438The truth table used for the '``xor``' instruction is:
4439
4440+-----+-----+-----+
4441| In0 | In1 | Out |
4442+-----+-----+-----+
4443| 0 | 0 | 0 |
4444+-----+-----+-----+
4445| 0 | 1 | 1 |
4446+-----+-----+-----+
4447| 1 | 0 | 1 |
4448+-----+-----+-----+
4449| 1 | 1 | 0 |
4450+-----+-----+-----+
4451
4452Example:
4453""""""""
4454
4455.. code-block:: llvm
4456
4457 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4458 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4459 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4460 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4461
4462Vector Operations
4463-----------------
4464
4465LLVM supports several instructions to represent vector operations in a
4466target-independent manner. These instructions cover the element-access
4467and vector-specific operations needed to process vectors effectively.
4468While LLVM does directly support these vector operations, many
4469sophisticated algorithms will want to use target-specific intrinsics to
4470take full advantage of a specific target.
4471
4472.. _i_extractelement:
4473
4474'``extractelement``' Instruction
4475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4476
4477Syntax:
4478"""""""
4479
4480::
4481
4482 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4483
4484Overview:
4485"""""""""
4486
4487The '``extractelement``' instruction extracts a single scalar element
4488from a vector at a specified index.
4489
4490Arguments:
4491""""""""""
4492
4493The first operand of an '``extractelement``' instruction is a value of
4494:ref:`vector <t_vector>` type. The second operand is an index indicating
4495the position from which to extract the element. The index may be a
4496variable.
4497
4498Semantics:
4499""""""""""
4500
4501The result is a scalar of the same type as the element type of ``val``.
4502Its value is the value at position ``idx`` of ``val``. If ``idx``
4503exceeds the length of ``val``, the results are undefined.
4504
4505Example:
4506""""""""
4507
4508.. code-block:: llvm
4509
4510 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4511
4512.. _i_insertelement:
4513
4514'``insertelement``' Instruction
4515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4516
4517Syntax:
4518"""""""
4519
4520::
4521
4522 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4523
4524Overview:
4525"""""""""
4526
4527The '``insertelement``' instruction inserts a scalar element into a
4528vector at a specified index.
4529
4530Arguments:
4531""""""""""
4532
4533The first operand of an '``insertelement``' instruction is a value of
4534:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4535type must equal the element type of the first operand. The third operand
4536is an index indicating the position at which to insert the value. The
4537index may be a variable.
4538
4539Semantics:
4540""""""""""
4541
4542The result is a vector of the same type as ``val``. Its element values
4543are those of ``val`` except at position ``idx``, where it gets the value
4544``elt``. If ``idx`` exceeds the length of ``val``, the results are
4545undefined.
4546
4547Example:
4548""""""""
4549
4550.. code-block:: llvm
4551
4552 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4553
4554.. _i_shufflevector:
4555
4556'``shufflevector``' Instruction
4557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4558
4559Syntax:
4560"""""""
4561
4562::
4563
4564 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4565
4566Overview:
4567"""""""""
4568
4569The '``shufflevector``' instruction constructs a permutation of elements
4570from two input vectors, returning a vector with the same element type as
4571the input and length that is the same as the shuffle mask.
4572
4573Arguments:
4574""""""""""
4575
4576The first two operands of a '``shufflevector``' instruction are vectors
4577with the same type. The third argument is a shuffle mask whose element
4578type is always 'i32'. The result of the instruction is a vector whose
4579length is the same as the shuffle mask and whose element type is the
4580same as the element type of the first two operands.
4581
4582The shuffle mask operand is required to be a constant vector with either
4583constant integer or undef values.
4584
4585Semantics:
4586""""""""""
4587
4588The elements of the two input vectors are numbered from left to right
4589across both of the vectors. The shuffle mask operand specifies, for each
4590element of the result vector, which element of the two input vectors the
4591result element gets. The element selector may be undef (meaning "don't
4592care") and the second operand may be undef if performing a shuffle from
4593only one vector.
4594
4595Example:
4596""""""""
4597
4598.. code-block:: llvm
4599
4600 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4601 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4602 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4603 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4604 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4605 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4606 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4607 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4608
4609Aggregate Operations
4610--------------------
4611
4612LLVM supports several instructions for working with
4613:ref:`aggregate <t_aggregate>` values.
4614
4615.. _i_extractvalue:
4616
4617'``extractvalue``' Instruction
4618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4619
4620Syntax:
4621"""""""
4622
4623::
4624
4625 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4626
4627Overview:
4628"""""""""
4629
4630The '``extractvalue``' instruction extracts the value of a member field
4631from an :ref:`aggregate <t_aggregate>` value.
4632
4633Arguments:
4634""""""""""
4635
4636The first operand of an '``extractvalue``' instruction is a value of
4637:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4638constant indices to specify which value to extract in a similar manner
4639as indices in a '``getelementptr``' instruction.
4640
4641The major differences to ``getelementptr`` indexing are:
4642
4643- Since the value being indexed is not a pointer, the first index is
4644 omitted and assumed to be zero.
4645- At least one index must be specified.
4646- Not only struct indices but also array indices must be in bounds.
4647
4648Semantics:
4649""""""""""
4650
4651The result is the value at the position in the aggregate specified by
4652the index operands.
4653
4654Example:
4655""""""""
4656
4657.. code-block:: llvm
4658
4659 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4660
4661.. _i_insertvalue:
4662
4663'``insertvalue``' Instruction
4664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4665
4666Syntax:
4667"""""""
4668
4669::
4670
4671 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4672
4673Overview:
4674"""""""""
4675
4676The '``insertvalue``' instruction inserts a value into a member field in
4677an :ref:`aggregate <t_aggregate>` value.
4678
4679Arguments:
4680""""""""""
4681
4682The first operand of an '``insertvalue``' instruction is a value of
4683:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4684a first-class value to insert. The following operands are constant
4685indices indicating the position at which to insert the value in a
4686similar manner as indices in a '``extractvalue``' instruction. The value
4687to insert must have the same type as the value identified by the
4688indices.
4689
4690Semantics:
4691""""""""""
4692
4693The result is an aggregate of the same type as ``val``. Its value is
4694that of ``val`` except that the value at the position specified by the
4695indices is that of ``elt``.
4696
4697Example:
4698""""""""
4699
4700.. code-block:: llvm
4701
4702 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4703 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4704 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4705
4706.. _memoryops:
4707
4708Memory Access and Addressing Operations
4709---------------------------------------
4710
4711A key design point of an SSA-based representation is how it represents
4712memory. In LLVM, no memory locations are in SSA form, which makes things
4713very simple. This section describes how to read, write, and allocate
4714memory in LLVM.
4715
4716.. _i_alloca:
4717
4718'``alloca``' Instruction
4719^^^^^^^^^^^^^^^^^^^^^^^^
4720
4721Syntax:
4722"""""""
4723
4724::
4725
Reid Kleckner436c42e2014-01-17 23:58:17 +00004726 <result> = alloca <type>[, inalloca][, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004727
4728Overview:
4729"""""""""
4730
4731The '``alloca``' instruction allocates memory on the stack frame of the
4732currently executing function, to be automatically released when this
4733function returns to its caller. The object is always allocated in the
4734generic address space (address space zero).
4735
4736Arguments:
4737""""""""""
4738
4739The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4740bytes of memory on the runtime stack, returning a pointer of the
4741appropriate type to the program. If "NumElements" is specified, it is
4742the number of elements allocated, otherwise "NumElements" is defaulted
4743to be one. If a constant alignment is specified, the value result of the
4744allocation is guaranteed to be aligned to at least that boundary. If not
4745specified, or if zero, the target can choose to align the allocation on
4746any convenient boundary compatible with the type.
4747
4748'``type``' may be any sized type.
4749
4750Semantics:
4751""""""""""
4752
4753Memory is allocated; a pointer is returned. The operation is undefined
4754if there is insufficient stack space for the allocation. '``alloca``'d
4755memory is automatically released when the function returns. The
4756'``alloca``' instruction is commonly used to represent automatic
4757variables that must have an address available. When the function returns
4758(either with the ``ret`` or ``resume`` instructions), the memory is
4759reclaimed. Allocating zero bytes is legal, but the result is undefined.
4760The order in which memory is allocated (ie., which way the stack grows)
4761is not specified.
4762
4763Example:
4764""""""""
4765
4766.. code-block:: llvm
4767
4768 %ptr = alloca i32 ; yields {i32*}:ptr
4769 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4770 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4771 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4772
4773.. _i_load:
4774
4775'``load``' Instruction
4776^^^^^^^^^^^^^^^^^^^^^^
4777
4778Syntax:
4779"""""""
4780
4781::
4782
4783 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4784 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4785 !<index> = !{ i32 1 }
4786
4787Overview:
4788"""""""""
4789
4790The '``load``' instruction is used to read from memory.
4791
4792Arguments:
4793""""""""""
4794
Eli Bendersky239a78b2013-04-17 20:17:08 +00004795The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004796from which to load. The pointer must point to a :ref:`first
4797class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4798then the optimizer is not allowed to modify the number or order of
4799execution of this ``load`` with other :ref:`volatile
4800operations <volatile>`.
4801
4802If the ``load`` is marked as ``atomic``, it takes an extra
4803:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4804``release`` and ``acq_rel`` orderings are not valid on ``load``
4805instructions. Atomic loads produce :ref:`defined <memmodel>` results
4806when they may see multiple atomic stores. The type of the pointee must
4807be an integer type whose bit width is a power of two greater than or
4808equal to eight and less than or equal to a target-specific size limit.
4809``align`` must be explicitly specified on atomic loads, and the load has
4810undefined behavior if the alignment is not set to a value which is at
4811least the size in bytes of the pointee. ``!nontemporal`` does not have
4812any defined semantics for atomic loads.
4813
4814The optional constant ``align`` argument specifies the alignment of the
4815operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004816or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004817alignment for the target. It is the responsibility of the code emitter
4818to ensure that the alignment information is correct. Overestimating the
4819alignment results in undefined behavior. Underestimating the alignment
4820may produce less efficient code. An alignment of 1 is always safe.
4821
4822The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004823metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004824``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004825metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004826that this load is not expected to be reused in the cache. The code
4827generator may select special instructions to save cache bandwidth, such
4828as the ``MOVNT`` instruction on x86.
4829
4830The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004831metadata name ``<index>`` corresponding to a metadata node with no
4832entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004833instruction tells the optimizer and code generator that this load
4834address points to memory which does not change value during program
4835execution. The optimizer may then move this load around, for example, by
4836hoisting it out of loops using loop invariant code motion.
4837
4838Semantics:
4839""""""""""
4840
4841The location of memory pointed to is loaded. If the value being loaded
4842is of scalar type then the number of bytes read does not exceed the
4843minimum number of bytes needed to hold all bits of the type. For
4844example, loading an ``i24`` reads at most three bytes. When loading a
4845value of a type like ``i20`` with a size that is not an integral number
4846of bytes, the result is undefined if the value was not originally
4847written using a store of the same type.
4848
4849Examples:
4850"""""""""
4851
4852.. code-block:: llvm
4853
4854 %ptr = alloca i32 ; yields {i32*}:ptr
4855 store i32 3, i32* %ptr ; yields {void}
4856 %val = load i32* %ptr ; yields {i32}:val = i32 3
4857
4858.. _i_store:
4859
4860'``store``' Instruction
4861^^^^^^^^^^^^^^^^^^^^^^^
4862
4863Syntax:
4864"""""""
4865
4866::
4867
4868 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4869 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4870
4871Overview:
4872"""""""""
4873
4874The '``store``' instruction is used to write to memory.
4875
4876Arguments:
4877""""""""""
4878
Eli Benderskyca380842013-04-17 17:17:20 +00004879There are two arguments to the ``store`` instruction: a value to store
4880and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004881operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004882the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004883then the optimizer is not allowed to modify the number or order of
4884execution of this ``store`` with other :ref:`volatile
4885operations <volatile>`.
4886
4887If the ``store`` is marked as ``atomic``, it takes an extra
4888:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4889``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4890instructions. Atomic loads produce :ref:`defined <memmodel>` results
4891when they may see multiple atomic stores. The type of the pointee must
4892be an integer type whose bit width is a power of two greater than or
4893equal to eight and less than or equal to a target-specific size limit.
4894``align`` must be explicitly specified on atomic stores, and the store
4895has undefined behavior if the alignment is not set to a value which is
4896at least the size in bytes of the pointee. ``!nontemporal`` does not
4897have any defined semantics for atomic stores.
4898
Eli Benderskyca380842013-04-17 17:17:20 +00004899The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004900operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004901or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004902alignment for the target. It is the responsibility of the code emitter
4903to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004904alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004905alignment may produce less efficient code. An alignment of 1 is always
4906safe.
4907
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004908The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004909name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004910value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004911tells the optimizer and code generator that this load is not expected to
4912be reused in the cache. The code generator may select special
4913instructions to save cache bandwidth, such as the MOVNT instruction on
4914x86.
4915
4916Semantics:
4917""""""""""
4918
Eli Benderskyca380842013-04-17 17:17:20 +00004919The contents of memory are updated to contain ``<value>`` at the
4920location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004921of scalar type then the number of bytes written does not exceed the
4922minimum number of bytes needed to hold all bits of the type. For
4923example, storing an ``i24`` writes at most three bytes. When writing a
4924value of a type like ``i20`` with a size that is not an integral number
4925of bytes, it is unspecified what happens to the extra bits that do not
4926belong to the type, but they will typically be overwritten.
4927
4928Example:
4929""""""""
4930
4931.. code-block:: llvm
4932
4933 %ptr = alloca i32 ; yields {i32*}:ptr
4934 store i32 3, i32* %ptr ; yields {void}
4935 %val = load i32* %ptr ; yields {i32}:val = i32 3
4936
4937.. _i_fence:
4938
4939'``fence``' Instruction
4940^^^^^^^^^^^^^^^^^^^^^^^
4941
4942Syntax:
4943"""""""
4944
4945::
4946
4947 fence [singlethread] <ordering> ; yields {void}
4948
4949Overview:
4950"""""""""
4951
4952The '``fence``' instruction is used to introduce happens-before edges
4953between operations.
4954
4955Arguments:
4956""""""""""
4957
4958'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4959defines what *synchronizes-with* edges they add. They can only be given
4960``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4961
4962Semantics:
4963""""""""""
4964
4965A fence A which has (at least) ``release`` ordering semantics
4966*synchronizes with* a fence B with (at least) ``acquire`` ordering
4967semantics if and only if there exist atomic operations X and Y, both
4968operating on some atomic object M, such that A is sequenced before X, X
4969modifies M (either directly or through some side effect of a sequence
4970headed by X), Y is sequenced before B, and Y observes M. This provides a
4971*happens-before* dependency between A and B. Rather than an explicit
4972``fence``, one (but not both) of the atomic operations X or Y might
4973provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4974still *synchronize-with* the explicit ``fence`` and establish the
4975*happens-before* edge.
4976
4977A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4978``acquire`` and ``release`` semantics specified above, participates in
4979the global program order of other ``seq_cst`` operations and/or fences.
4980
4981The optional ":ref:`singlethread <singlethread>`" argument specifies
4982that the fence only synchronizes with other fences in the same thread.
4983(This is useful for interacting with signal handlers.)
4984
4985Example:
4986""""""""
4987
4988.. code-block:: llvm
4989
4990 fence acquire ; yields {void}
4991 fence singlethread seq_cst ; yields {void}
4992
4993.. _i_cmpxchg:
4994
4995'``cmpxchg``' Instruction
4996^^^^^^^^^^^^^^^^^^^^^^^^^
4997
4998Syntax:
4999"""""""
5000
5001::
5002
5003 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
5004
5005Overview:
5006"""""""""
5007
5008The '``cmpxchg``' instruction is used to atomically modify memory. It
5009loads a value in memory and compares it to a given value. If they are
5010equal, it stores a new value into the memory.
5011
5012Arguments:
5013""""""""""
5014
5015There are three arguments to the '``cmpxchg``' instruction: an address
5016to operate on, a value to compare to the value currently be at that
5017address, and a new value to place at that address if the compared values
5018are equal. The type of '<cmp>' must be an integer type whose bit width
5019is a power of two greater than or equal to eight and less than or equal
5020to a target-specific size limit. '<cmp>' and '<new>' must have the same
5021type, and the type of '<pointer>' must be a pointer to that type. If the
5022``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5023to modify the number or order of execution of this ``cmpxchg`` with
5024other :ref:`volatile operations <volatile>`.
5025
5026The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
5027synchronizes with other atomic operations.
5028
5029The optional "``singlethread``" argument declares that the ``cmpxchg``
5030is only atomic with respect to code (usually signal handlers) running in
5031the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5032respect to all other code in the system.
5033
5034The pointer passed into cmpxchg must have alignment greater than or
5035equal to the size in memory of the operand.
5036
5037Semantics:
5038""""""""""
5039
5040The contents of memory at the location specified by the '``<pointer>``'
5041operand is read and compared to '``<cmp>``'; if the read value is the
5042equal, '``<new>``' is written. The original value at the location is
5043returned.
5044
5045A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
5046of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
5047atomic load with an ordering parameter determined by dropping any
5048``release`` part of the ``cmpxchg``'s ordering.
5049
5050Example:
5051""""""""
5052
5053.. code-block:: llvm
5054
5055 entry:
5056 %orig = atomic load i32* %ptr unordered ; yields {i32}
5057 br label %loop
5058
5059 loop:
5060 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5061 %squared = mul i32 %cmp, %cmp
5062 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
5063 %success = icmp eq i32 %cmp, %old
5064 br i1 %success, label %done, label %loop
5065
5066 done:
5067 ...
5068
5069.. _i_atomicrmw:
5070
5071'``atomicrmw``' Instruction
5072^^^^^^^^^^^^^^^^^^^^^^^^^^^
5073
5074Syntax:
5075"""""""
5076
5077::
5078
5079 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5080
5081Overview:
5082"""""""""
5083
5084The '``atomicrmw``' instruction is used to atomically modify memory.
5085
5086Arguments:
5087""""""""""
5088
5089There are three arguments to the '``atomicrmw``' instruction: an
5090operation to apply, an address whose value to modify, an argument to the
5091operation. The operation must be one of the following keywords:
5092
5093- xchg
5094- add
5095- sub
5096- and
5097- nand
5098- or
5099- xor
5100- max
5101- min
5102- umax
5103- umin
5104
5105The type of '<value>' must be an integer type whose bit width is a power
5106of two greater than or equal to eight and less than or equal to a
5107target-specific size limit. The type of the '``<pointer>``' operand must
5108be a pointer to that type. If the ``atomicrmw`` is marked as
5109``volatile``, then the optimizer is not allowed to modify the number or
5110order of execution of this ``atomicrmw`` with other :ref:`volatile
5111operations <volatile>`.
5112
5113Semantics:
5114""""""""""
5115
5116The contents of memory at the location specified by the '``<pointer>``'
5117operand are atomically read, modified, and written back. The original
5118value at the location is returned. The modification is specified by the
5119operation argument:
5120
5121- xchg: ``*ptr = val``
5122- add: ``*ptr = *ptr + val``
5123- sub: ``*ptr = *ptr - val``
5124- and: ``*ptr = *ptr & val``
5125- nand: ``*ptr = ~(*ptr & val)``
5126- or: ``*ptr = *ptr | val``
5127- xor: ``*ptr = *ptr ^ val``
5128- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5129- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5130- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5131 comparison)
5132- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5133 comparison)
5134
5135Example:
5136""""""""
5137
5138.. code-block:: llvm
5139
5140 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5141
5142.. _i_getelementptr:
5143
5144'``getelementptr``' Instruction
5145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5146
5147Syntax:
5148"""""""
5149
5150::
5151
5152 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5153 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5154 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5155
5156Overview:
5157"""""""""
5158
5159The '``getelementptr``' instruction is used to get the address of a
5160subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5161address calculation only and does not access memory.
5162
5163Arguments:
5164""""""""""
5165
5166The first argument is always a pointer or a vector of pointers, and
5167forms the basis of the calculation. The remaining arguments are indices
5168that indicate which of the elements of the aggregate object are indexed.
5169The interpretation of each index is dependent on the type being indexed
5170into. The first index always indexes the pointer value given as the
5171first argument, the second index indexes a value of the type pointed to
5172(not necessarily the value directly pointed to, since the first index
5173can be non-zero), etc. The first type indexed into must be a pointer
5174value, subsequent types can be arrays, vectors, and structs. Note that
5175subsequent types being indexed into can never be pointers, since that
5176would require loading the pointer before continuing calculation.
5177
5178The type of each index argument depends on the type it is indexing into.
5179When indexing into a (optionally packed) structure, only ``i32`` integer
5180**constants** are allowed (when using a vector of indices they must all
5181be the **same** ``i32`` integer constant). When indexing into an array,
5182pointer or vector, integers of any width are allowed, and they are not
5183required to be constant. These integers are treated as signed values
5184where relevant.
5185
5186For example, let's consider a C code fragment and how it gets compiled
5187to LLVM:
5188
5189.. code-block:: c
5190
5191 struct RT {
5192 char A;
5193 int B[10][20];
5194 char C;
5195 };
5196 struct ST {
5197 int X;
5198 double Y;
5199 struct RT Z;
5200 };
5201
5202 int *foo(struct ST *s) {
5203 return &s[1].Z.B[5][13];
5204 }
5205
5206The LLVM code generated by Clang is:
5207
5208.. code-block:: llvm
5209
5210 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5211 %struct.ST = type { i32, double, %struct.RT }
5212
5213 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5214 entry:
5215 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5216 ret i32* %arrayidx
5217 }
5218
5219Semantics:
5220""""""""""
5221
5222In the example above, the first index is indexing into the
5223'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5224= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5225indexes into the third element of the structure, yielding a
5226'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5227structure. The third index indexes into the second element of the
5228structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5229dimensions of the array are subscripted into, yielding an '``i32``'
5230type. The '``getelementptr``' instruction returns a pointer to this
5231element, thus computing a value of '``i32*``' type.
5232
5233Note that it is perfectly legal to index partially through a structure,
5234returning a pointer to an inner element. Because of this, the LLVM code
5235for the given testcase is equivalent to:
5236
5237.. code-block:: llvm
5238
5239 define i32* @foo(%struct.ST* %s) {
5240 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5241 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5242 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5243 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5244 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5245 ret i32* %t5
5246 }
5247
5248If the ``inbounds`` keyword is present, the result value of the
5249``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5250pointer is not an *in bounds* address of an allocated object, or if any
5251of the addresses that would be formed by successive addition of the
5252offsets implied by the indices to the base address with infinitely
5253precise signed arithmetic are not an *in bounds* address of that
5254allocated object. The *in bounds* addresses for an allocated object are
5255all the addresses that point into the object, plus the address one byte
5256past the end. In cases where the base is a vector of pointers the
5257``inbounds`` keyword applies to each of the computations element-wise.
5258
5259If the ``inbounds`` keyword is not present, the offsets are added to the
5260base address with silently-wrapping two's complement arithmetic. If the
5261offsets have a different width from the pointer, they are sign-extended
5262or truncated to the width of the pointer. The result value of the
5263``getelementptr`` may be outside the object pointed to by the base
5264pointer. The result value may not necessarily be used to access memory
5265though, even if it happens to point into allocated storage. See the
5266:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5267information.
5268
5269The getelementptr instruction is often confusing. For some more insight
5270into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5271
5272Example:
5273""""""""
5274
5275.. code-block:: llvm
5276
5277 ; yields [12 x i8]*:aptr
5278 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5279 ; yields i8*:vptr
5280 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5281 ; yields i8*:eptr
5282 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5283 ; yields i32*:iptr
5284 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5285
5286In cases where the pointer argument is a vector of pointers, each index
5287must be a vector with the same number of elements. For example:
5288
5289.. code-block:: llvm
5290
5291 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5292
5293Conversion Operations
5294---------------------
5295
5296The instructions in this category are the conversion instructions
5297(casting) which all take a single operand and a type. They perform
5298various bit conversions on the operand.
5299
5300'``trunc .. to``' Instruction
5301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5302
5303Syntax:
5304"""""""
5305
5306::
5307
5308 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5309
5310Overview:
5311"""""""""
5312
5313The '``trunc``' instruction truncates its operand to the type ``ty2``.
5314
5315Arguments:
5316""""""""""
5317
5318The '``trunc``' instruction takes a value to trunc, and a type to trunc
5319it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5320of the same number of integers. The bit size of the ``value`` must be
5321larger than the bit size of the destination type, ``ty2``. Equal sized
5322types are not allowed.
5323
5324Semantics:
5325""""""""""
5326
5327The '``trunc``' instruction truncates the high order bits in ``value``
5328and converts the remaining bits to ``ty2``. Since the source size must
5329be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5330It will always truncate bits.
5331
5332Example:
5333""""""""
5334
5335.. code-block:: llvm
5336
5337 %X = trunc i32 257 to i8 ; yields i8:1
5338 %Y = trunc i32 123 to i1 ; yields i1:true
5339 %Z = trunc i32 122 to i1 ; yields i1:false
5340 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5341
5342'``zext .. to``' Instruction
5343^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5344
5345Syntax:
5346"""""""
5347
5348::
5349
5350 <result> = zext <ty> <value> to <ty2> ; yields ty2
5351
5352Overview:
5353"""""""""
5354
5355The '``zext``' instruction zero extends its operand to type ``ty2``.
5356
5357Arguments:
5358""""""""""
5359
5360The '``zext``' instruction takes a value to cast, and a type to cast it
5361to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5362the same number of integers. The bit size of the ``value`` must be
5363smaller than the bit size of the destination type, ``ty2``.
5364
5365Semantics:
5366""""""""""
5367
5368The ``zext`` fills the high order bits of the ``value`` with zero bits
5369until it reaches the size of the destination type, ``ty2``.
5370
5371When zero extending from i1, the result will always be either 0 or 1.
5372
5373Example:
5374""""""""
5375
5376.. code-block:: llvm
5377
5378 %X = zext i32 257 to i64 ; yields i64:257
5379 %Y = zext i1 true to i32 ; yields i32:1
5380 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5381
5382'``sext .. to``' Instruction
5383^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5384
5385Syntax:
5386"""""""
5387
5388::
5389
5390 <result> = sext <ty> <value> to <ty2> ; yields ty2
5391
5392Overview:
5393"""""""""
5394
5395The '``sext``' sign extends ``value`` to the type ``ty2``.
5396
5397Arguments:
5398""""""""""
5399
5400The '``sext``' instruction takes a value to cast, and a type to cast it
5401to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5402the same number of integers. The bit size of the ``value`` must be
5403smaller than the bit size of the destination type, ``ty2``.
5404
5405Semantics:
5406""""""""""
5407
5408The '``sext``' instruction performs a sign extension by copying the sign
5409bit (highest order bit) of the ``value`` until it reaches the bit size
5410of the type ``ty2``.
5411
5412When sign extending from i1, the extension always results in -1 or 0.
5413
5414Example:
5415""""""""
5416
5417.. code-block:: llvm
5418
5419 %X = sext i8 -1 to i16 ; yields i16 :65535
5420 %Y = sext i1 true to i32 ; yields i32:-1
5421 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5422
5423'``fptrunc .. to``' Instruction
5424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5425
5426Syntax:
5427"""""""
5428
5429::
5430
5431 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5432
5433Overview:
5434"""""""""
5435
5436The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5437
5438Arguments:
5439""""""""""
5440
5441The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5442value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5443The size of ``value`` must be larger than the size of ``ty2``. This
5444implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5445
5446Semantics:
5447""""""""""
5448
5449The '``fptrunc``' instruction truncates a ``value`` from a larger
5450:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5451point <t_floating>` type. If the value cannot fit within the
5452destination type, ``ty2``, then the results are undefined.
5453
5454Example:
5455""""""""
5456
5457.. code-block:: llvm
5458
5459 %X = fptrunc double 123.0 to float ; yields float:123.0
5460 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5461
5462'``fpext .. to``' Instruction
5463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5464
5465Syntax:
5466"""""""
5467
5468::
5469
5470 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5471
5472Overview:
5473"""""""""
5474
5475The '``fpext``' extends a floating point ``value`` to a larger floating
5476point value.
5477
5478Arguments:
5479""""""""""
5480
5481The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5482``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5483to. The source type must be smaller than the destination type.
5484
5485Semantics:
5486""""""""""
5487
5488The '``fpext``' instruction extends the ``value`` from a smaller
5489:ref:`floating point <t_floating>` type to a larger :ref:`floating
5490point <t_floating>` type. The ``fpext`` cannot be used to make a
5491*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5492*no-op cast* for a floating point cast.
5493
5494Example:
5495""""""""
5496
5497.. code-block:: llvm
5498
5499 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5500 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5501
5502'``fptoui .. to``' Instruction
5503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5504
5505Syntax:
5506"""""""
5507
5508::
5509
5510 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5511
5512Overview:
5513"""""""""
5514
5515The '``fptoui``' converts a floating point ``value`` to its unsigned
5516integer equivalent of type ``ty2``.
5517
5518Arguments:
5519""""""""""
5520
5521The '``fptoui``' instruction takes a value to cast, which must be a
5522scalar or vector :ref:`floating point <t_floating>` value, and a type to
5523cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5524``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5525type with the same number of elements as ``ty``
5526
5527Semantics:
5528""""""""""
5529
5530The '``fptoui``' instruction converts its :ref:`floating
5531point <t_floating>` operand into the nearest (rounding towards zero)
5532unsigned integer value. If the value cannot fit in ``ty2``, the results
5533are undefined.
5534
5535Example:
5536""""""""
5537
5538.. code-block:: llvm
5539
5540 %X = fptoui double 123.0 to i32 ; yields i32:123
5541 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5542 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5543
5544'``fptosi .. to``' Instruction
5545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5546
5547Syntax:
5548"""""""
5549
5550::
5551
5552 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5553
5554Overview:
5555"""""""""
5556
5557The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5558``value`` to type ``ty2``.
5559
5560Arguments:
5561""""""""""
5562
5563The '``fptosi``' instruction takes a value to cast, which must be a
5564scalar or vector :ref:`floating point <t_floating>` value, and a type to
5565cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5566``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5567type with the same number of elements as ``ty``
5568
5569Semantics:
5570""""""""""
5571
5572The '``fptosi``' instruction converts its :ref:`floating
5573point <t_floating>` operand into the nearest (rounding towards zero)
5574signed integer value. If the value cannot fit in ``ty2``, the results
5575are undefined.
5576
5577Example:
5578""""""""
5579
5580.. code-block:: llvm
5581
5582 %X = fptosi double -123.0 to i32 ; yields i32:-123
5583 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5584 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5585
5586'``uitofp .. to``' Instruction
5587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5588
5589Syntax:
5590"""""""
5591
5592::
5593
5594 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5595
5596Overview:
5597"""""""""
5598
5599The '``uitofp``' instruction regards ``value`` as an unsigned integer
5600and converts that value to the ``ty2`` type.
5601
5602Arguments:
5603""""""""""
5604
5605The '``uitofp``' instruction takes a value to cast, which must be a
5606scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5607``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5608``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5609type with the same number of elements as ``ty``
5610
5611Semantics:
5612""""""""""
5613
5614The '``uitofp``' instruction interprets its operand as an unsigned
5615integer quantity and converts it to the corresponding floating point
5616value. If the value cannot fit in the floating point value, the results
5617are undefined.
5618
5619Example:
5620""""""""
5621
5622.. code-block:: llvm
5623
5624 %X = uitofp i32 257 to float ; yields float:257.0
5625 %Y = uitofp i8 -1 to double ; yields double:255.0
5626
5627'``sitofp .. to``' Instruction
5628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5629
5630Syntax:
5631"""""""
5632
5633::
5634
5635 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5636
5637Overview:
5638"""""""""
5639
5640The '``sitofp``' instruction regards ``value`` as a signed integer and
5641converts that value to the ``ty2`` type.
5642
5643Arguments:
5644""""""""""
5645
5646The '``sitofp``' instruction takes a value to cast, which must be a
5647scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5648``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5649``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5650type with the same number of elements as ``ty``
5651
5652Semantics:
5653""""""""""
5654
5655The '``sitofp``' instruction interprets its operand as a signed integer
5656quantity and converts it to the corresponding floating point value. If
5657the value cannot fit in the floating point value, the results are
5658undefined.
5659
5660Example:
5661""""""""
5662
5663.. code-block:: llvm
5664
5665 %X = sitofp i32 257 to float ; yields float:257.0
5666 %Y = sitofp i8 -1 to double ; yields double:-1.0
5667
5668.. _i_ptrtoint:
5669
5670'``ptrtoint .. to``' Instruction
5671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5672
5673Syntax:
5674"""""""
5675
5676::
5677
5678 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5679
5680Overview:
5681"""""""""
5682
5683The '``ptrtoint``' instruction converts the pointer or a vector of
5684pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5685
5686Arguments:
5687""""""""""
5688
5689The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5690a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5691type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5692a vector of integers type.
5693
5694Semantics:
5695""""""""""
5696
5697The '``ptrtoint``' instruction converts ``value`` to integer type
5698``ty2`` by interpreting the pointer value as an integer and either
5699truncating or zero extending that value to the size of the integer type.
5700If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5701``value`` is larger than ``ty2`` then a truncation is done. If they are
5702the same size, then nothing is done (*no-op cast*) other than a type
5703change.
5704
5705Example:
5706""""""""
5707
5708.. code-block:: llvm
5709
5710 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5711 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5712 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5713
5714.. _i_inttoptr:
5715
5716'``inttoptr .. to``' Instruction
5717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5718
5719Syntax:
5720"""""""
5721
5722::
5723
5724 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5725
5726Overview:
5727"""""""""
5728
5729The '``inttoptr``' instruction converts an integer ``value`` to a
5730pointer type, ``ty2``.
5731
5732Arguments:
5733""""""""""
5734
5735The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5736cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5737type.
5738
5739Semantics:
5740""""""""""
5741
5742The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5743applying either a zero extension or a truncation depending on the size
5744of the integer ``value``. If ``value`` is larger than the size of a
5745pointer then a truncation is done. If ``value`` is smaller than the size
5746of a pointer then a zero extension is done. If they are the same size,
5747nothing is done (*no-op cast*).
5748
5749Example:
5750""""""""
5751
5752.. code-block:: llvm
5753
5754 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5755 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5756 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5757 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5758
5759.. _i_bitcast:
5760
5761'``bitcast .. to``' Instruction
5762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5763
5764Syntax:
5765"""""""
5766
5767::
5768
5769 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5770
5771Overview:
5772"""""""""
5773
5774The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5775changing any bits.
5776
5777Arguments:
5778""""""""""
5779
5780The '``bitcast``' instruction takes a value to cast, which must be a
5781non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005782also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5783bit sizes of ``value`` and the destination type, ``ty2``, must be
5784identical. If the source type is a pointer, the destination type must
5785also be a pointer of the same size. This instruction supports bitwise
5786conversion of vectors to integers and to vectors of other types (as
5787long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005788
5789Semantics:
5790""""""""""
5791
Matt Arsenault24b49c42013-07-31 17:49:08 +00005792The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5793is always a *no-op cast* because no bits change with this
5794conversion. The conversion is done as if the ``value`` had been stored
5795to memory and read back as type ``ty2``. Pointer (or vector of
5796pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005797pointers) types with the same address space through this instruction.
5798To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5799or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005800
5801Example:
5802""""""""
5803
5804.. code-block:: llvm
5805
5806 %X = bitcast i8 255 to i8 ; yields i8 :-1
5807 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5808 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5809 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5810
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005811.. _i_addrspacecast:
5812
5813'``addrspacecast .. to``' Instruction
5814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5815
5816Syntax:
5817"""""""
5818
5819::
5820
5821 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5822
5823Overview:
5824"""""""""
5825
5826The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5827address space ``n`` to type ``pty2`` in address space ``m``.
5828
5829Arguments:
5830""""""""""
5831
5832The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5833to cast and a pointer type to cast it to, which must have a different
5834address space.
5835
5836Semantics:
5837""""""""""
5838
5839The '``addrspacecast``' instruction converts the pointer value
5840``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005841value modification, depending on the target and the address space
5842pair. Pointer conversions within the same address space must be
5843performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005844conversion is legal then both result and operand refer to the same memory
5845location.
5846
5847Example:
5848""""""""
5849
5850.. code-block:: llvm
5851
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005852 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5853 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5854 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005855
Sean Silvab084af42012-12-07 10:36:55 +00005856.. _otherops:
5857
5858Other Operations
5859----------------
5860
5861The instructions in this category are the "miscellaneous" instructions,
5862which defy better classification.
5863
5864.. _i_icmp:
5865
5866'``icmp``' Instruction
5867^^^^^^^^^^^^^^^^^^^^^^
5868
5869Syntax:
5870"""""""
5871
5872::
5873
5874 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5875
5876Overview:
5877"""""""""
5878
5879The '``icmp``' instruction returns a boolean value or a vector of
5880boolean values based on comparison of its two integer, integer vector,
5881pointer, or pointer vector operands.
5882
5883Arguments:
5884""""""""""
5885
5886The '``icmp``' instruction takes three operands. The first operand is
5887the condition code indicating the kind of comparison to perform. It is
5888not a value, just a keyword. The possible condition code are:
5889
5890#. ``eq``: equal
5891#. ``ne``: not equal
5892#. ``ugt``: unsigned greater than
5893#. ``uge``: unsigned greater or equal
5894#. ``ult``: unsigned less than
5895#. ``ule``: unsigned less or equal
5896#. ``sgt``: signed greater than
5897#. ``sge``: signed greater or equal
5898#. ``slt``: signed less than
5899#. ``sle``: signed less or equal
5900
5901The remaining two arguments must be :ref:`integer <t_integer>` or
5902:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5903must also be identical types.
5904
5905Semantics:
5906""""""""""
5907
5908The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5909code given as ``cond``. The comparison performed always yields either an
5910:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5911
5912#. ``eq``: yields ``true`` if the operands are equal, ``false``
5913 otherwise. No sign interpretation is necessary or performed.
5914#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5915 otherwise. No sign interpretation is necessary or performed.
5916#. ``ugt``: interprets the operands as unsigned values and yields
5917 ``true`` if ``op1`` is greater than ``op2``.
5918#. ``uge``: interprets the operands as unsigned values and yields
5919 ``true`` if ``op1`` is greater than or equal to ``op2``.
5920#. ``ult``: interprets the operands as unsigned values and yields
5921 ``true`` if ``op1`` is less than ``op2``.
5922#. ``ule``: interprets the operands as unsigned values and yields
5923 ``true`` if ``op1`` is less than or equal to ``op2``.
5924#. ``sgt``: interprets the operands as signed values and yields ``true``
5925 if ``op1`` is greater than ``op2``.
5926#. ``sge``: interprets the operands as signed values and yields ``true``
5927 if ``op1`` is greater than or equal to ``op2``.
5928#. ``slt``: interprets the operands as signed values and yields ``true``
5929 if ``op1`` is less than ``op2``.
5930#. ``sle``: interprets the operands as signed values and yields ``true``
5931 if ``op1`` is less than or equal to ``op2``.
5932
5933If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5934are compared as if they were integers.
5935
5936If the operands are integer vectors, then they are compared element by
5937element. The result is an ``i1`` vector with the same number of elements
5938as the values being compared. Otherwise, the result is an ``i1``.
5939
5940Example:
5941""""""""
5942
5943.. code-block:: llvm
5944
5945 <result> = icmp eq i32 4, 5 ; yields: result=false
5946 <result> = icmp ne float* %X, %X ; yields: result=false
5947 <result> = icmp ult i16 4, 5 ; yields: result=true
5948 <result> = icmp sgt i16 4, 5 ; yields: result=false
5949 <result> = icmp ule i16 -4, 5 ; yields: result=false
5950 <result> = icmp sge i16 4, 5 ; yields: result=false
5951
5952Note that the code generator does not yet support vector types with the
5953``icmp`` instruction.
5954
5955.. _i_fcmp:
5956
5957'``fcmp``' Instruction
5958^^^^^^^^^^^^^^^^^^^^^^
5959
5960Syntax:
5961"""""""
5962
5963::
5964
5965 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5966
5967Overview:
5968"""""""""
5969
5970The '``fcmp``' instruction returns a boolean value or vector of boolean
5971values based on comparison of its operands.
5972
5973If the operands are floating point scalars, then the result type is a
5974boolean (:ref:`i1 <t_integer>`).
5975
5976If the operands are floating point vectors, then the result type is a
5977vector of boolean with the same number of elements as the operands being
5978compared.
5979
5980Arguments:
5981""""""""""
5982
5983The '``fcmp``' instruction takes three operands. The first operand is
5984the condition code indicating the kind of comparison to perform. It is
5985not a value, just a keyword. The possible condition code are:
5986
5987#. ``false``: no comparison, always returns false
5988#. ``oeq``: ordered and equal
5989#. ``ogt``: ordered and greater than
5990#. ``oge``: ordered and greater than or equal
5991#. ``olt``: ordered and less than
5992#. ``ole``: ordered and less than or equal
5993#. ``one``: ordered and not equal
5994#. ``ord``: ordered (no nans)
5995#. ``ueq``: unordered or equal
5996#. ``ugt``: unordered or greater than
5997#. ``uge``: unordered or greater than or equal
5998#. ``ult``: unordered or less than
5999#. ``ule``: unordered or less than or equal
6000#. ``une``: unordered or not equal
6001#. ``uno``: unordered (either nans)
6002#. ``true``: no comparison, always returns true
6003
6004*Ordered* means that neither operand is a QNAN while *unordered* means
6005that either operand may be a QNAN.
6006
6007Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6008point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6009type. They must have identical types.
6010
6011Semantics:
6012""""""""""
6013
6014The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6015condition code given as ``cond``. If the operands are vectors, then the
6016vectors are compared element by element. Each comparison performed
6017always yields an :ref:`i1 <t_integer>` result, as follows:
6018
6019#. ``false``: always yields ``false``, regardless of operands.
6020#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6021 is equal to ``op2``.
6022#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6023 is greater than ``op2``.
6024#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6025 is greater than or equal to ``op2``.
6026#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6027 is less than ``op2``.
6028#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6029 is less than or equal to ``op2``.
6030#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6031 is not equal to ``op2``.
6032#. ``ord``: yields ``true`` if both operands are not a QNAN.
6033#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6034 equal to ``op2``.
6035#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6036 greater than ``op2``.
6037#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6038 greater than or equal to ``op2``.
6039#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6040 less than ``op2``.
6041#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6042 less than or equal to ``op2``.
6043#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6044 not equal to ``op2``.
6045#. ``uno``: yields ``true`` if either operand is a QNAN.
6046#. ``true``: always yields ``true``, regardless of operands.
6047
6048Example:
6049""""""""
6050
6051.. code-block:: llvm
6052
6053 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6054 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6055 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6056 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6057
6058Note that the code generator does not yet support vector types with the
6059``fcmp`` instruction.
6060
6061.. _i_phi:
6062
6063'``phi``' Instruction
6064^^^^^^^^^^^^^^^^^^^^^
6065
6066Syntax:
6067"""""""
6068
6069::
6070
6071 <result> = phi <ty> [ <val0>, <label0>], ...
6072
6073Overview:
6074"""""""""
6075
6076The '``phi``' instruction is used to implement the φ node in the SSA
6077graph representing the function.
6078
6079Arguments:
6080""""""""""
6081
6082The type of the incoming values is specified with the first type field.
6083After this, the '``phi``' instruction takes a list of pairs as
6084arguments, with one pair for each predecessor basic block of the current
6085block. Only values of :ref:`first class <t_firstclass>` type may be used as
6086the value arguments to the PHI node. Only labels may be used as the
6087label arguments.
6088
6089There must be no non-phi instructions between the start of a basic block
6090and the PHI instructions: i.e. PHI instructions must be first in a basic
6091block.
6092
6093For the purposes of the SSA form, the use of each incoming value is
6094deemed to occur on the edge from the corresponding predecessor block to
6095the current block (but after any definition of an '``invoke``'
6096instruction's return value on the same edge).
6097
6098Semantics:
6099""""""""""
6100
6101At runtime, the '``phi``' instruction logically takes on the value
6102specified by the pair corresponding to the predecessor basic block that
6103executed just prior to the current block.
6104
6105Example:
6106""""""""
6107
6108.. code-block:: llvm
6109
6110 Loop: ; Infinite loop that counts from 0 on up...
6111 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6112 %nextindvar = add i32 %indvar, 1
6113 br label %Loop
6114
6115.. _i_select:
6116
6117'``select``' Instruction
6118^^^^^^^^^^^^^^^^^^^^^^^^
6119
6120Syntax:
6121"""""""
6122
6123::
6124
6125 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6126
6127 selty is either i1 or {<N x i1>}
6128
6129Overview:
6130"""""""""
6131
6132The '``select``' instruction is used to choose one value based on a
6133condition, without branching.
6134
6135Arguments:
6136""""""""""
6137
6138The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6139values indicating the condition, and two values of the same :ref:`first
6140class <t_firstclass>` type. If the val1/val2 are vectors and the
6141condition is a scalar, then entire vectors are selected, not individual
6142elements.
6143
6144Semantics:
6145""""""""""
6146
6147If the condition is an i1 and it evaluates to 1, the instruction returns
6148the first value argument; otherwise, it returns the second value
6149argument.
6150
6151If the condition is a vector of i1, then the value arguments must be
6152vectors of the same size, and the selection is done element by element.
6153
6154Example:
6155""""""""
6156
6157.. code-block:: llvm
6158
6159 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6160
6161.. _i_call:
6162
6163'``call``' Instruction
6164^^^^^^^^^^^^^^^^^^^^^^
6165
6166Syntax:
6167"""""""
6168
6169::
6170
6171 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6172
6173Overview:
6174"""""""""
6175
6176The '``call``' instruction represents a simple function call.
6177
6178Arguments:
6179""""""""""
6180
6181This instruction requires several arguments:
6182
6183#. The optional "tail" marker indicates that the callee function does
6184 not access any allocas or varargs in the caller. Note that calls may
6185 be marked "tail" even if they do not occur before a
6186 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6187 function call is eligible for tail call optimization, but `might not
6188 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6189 The code generator may optimize calls marked "tail" with either 1)
6190 automatic `sibling call
6191 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6192 callee have matching signatures, or 2) forced tail call optimization
6193 when the following extra requirements are met:
6194
6195 - Caller and callee both have the calling convention ``fastcc``.
6196 - The call is in tail position (ret immediately follows call and ret
6197 uses value of call or is void).
6198 - Option ``-tailcallopt`` is enabled, or
6199 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6200 - `Platform specific constraints are
6201 met. <CodeGenerator.html#tailcallopt>`_
6202
6203#. The optional "cconv" marker indicates which :ref:`calling
6204 convention <callingconv>` the call should use. If none is
6205 specified, the call defaults to using C calling conventions. The
6206 calling convention of the call must match the calling convention of
6207 the target function, or else the behavior is undefined.
6208#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6209 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6210 are valid here.
6211#. '``ty``': the type of the call instruction itself which is also the
6212 type of the return value. Functions that return no value are marked
6213 ``void``.
6214#. '``fnty``': shall be the signature of the pointer to function value
6215 being invoked. The argument types must match the types implied by
6216 this signature. This type can be omitted if the function is not
6217 varargs and if the function type does not return a pointer to a
6218 function.
6219#. '``fnptrval``': An LLVM value containing a pointer to a function to
6220 be invoked. In most cases, this is a direct function invocation, but
6221 indirect ``call``'s are just as possible, calling an arbitrary pointer
6222 to function value.
6223#. '``function args``': argument list whose types match the function
6224 signature argument types and parameter attributes. All arguments must
6225 be of :ref:`first class <t_firstclass>` type. If the function signature
6226 indicates the function accepts a variable number of arguments, the
6227 extra arguments can be specified.
6228#. The optional :ref:`function attributes <fnattrs>` list. Only
6229 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6230 attributes are valid here.
6231
6232Semantics:
6233""""""""""
6234
6235The '``call``' instruction is used to cause control flow to transfer to
6236a specified function, with its incoming arguments bound to the specified
6237values. Upon a '``ret``' instruction in the called function, control
6238flow continues with the instruction after the function call, and the
6239return value of the function is bound to the result argument.
6240
6241Example:
6242""""""""
6243
6244.. code-block:: llvm
6245
6246 %retval = call i32 @test(i32 %argc)
6247 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6248 %X = tail call i32 @foo() ; yields i32
6249 %Y = tail call fastcc i32 @foo() ; yields i32
6250 call void %foo(i8 97 signext)
6251
6252 %struct.A = type { i32, i8 }
6253 %r = call %struct.A @foo() ; yields { 32, i8 }
6254 %gr = extractvalue %struct.A %r, 0 ; yields i32
6255 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6256 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6257 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6258
6259llvm treats calls to some functions with names and arguments that match
6260the standard C99 library as being the C99 library functions, and may
6261perform optimizations or generate code for them under that assumption.
6262This is something we'd like to change in the future to provide better
6263support for freestanding environments and non-C-based languages.
6264
6265.. _i_va_arg:
6266
6267'``va_arg``' Instruction
6268^^^^^^^^^^^^^^^^^^^^^^^^
6269
6270Syntax:
6271"""""""
6272
6273::
6274
6275 <resultval> = va_arg <va_list*> <arglist>, <argty>
6276
6277Overview:
6278"""""""""
6279
6280The '``va_arg``' instruction is used to access arguments passed through
6281the "variable argument" area of a function call. It is used to implement
6282the ``va_arg`` macro in C.
6283
6284Arguments:
6285""""""""""
6286
6287This instruction takes a ``va_list*`` value and the type of the
6288argument. It returns a value of the specified argument type and
6289increments the ``va_list`` to point to the next argument. The actual
6290type of ``va_list`` is target specific.
6291
6292Semantics:
6293""""""""""
6294
6295The '``va_arg``' instruction loads an argument of the specified type
6296from the specified ``va_list`` and causes the ``va_list`` to point to
6297the next argument. For more information, see the variable argument
6298handling :ref:`Intrinsic Functions <int_varargs>`.
6299
6300It is legal for this instruction to be called in a function which does
6301not take a variable number of arguments, for example, the ``vfprintf``
6302function.
6303
6304``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6305function <intrinsics>` because it takes a type as an argument.
6306
6307Example:
6308""""""""
6309
6310See the :ref:`variable argument processing <int_varargs>` section.
6311
6312Note that the code generator does not yet fully support va\_arg on many
6313targets. Also, it does not currently support va\_arg with aggregate
6314types on any target.
6315
6316.. _i_landingpad:
6317
6318'``landingpad``' Instruction
6319^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6320
6321Syntax:
6322"""""""
6323
6324::
6325
6326 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6327 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6328
6329 <clause> := catch <type> <value>
6330 <clause> := filter <array constant type> <array constant>
6331
6332Overview:
6333"""""""""
6334
6335The '``landingpad``' instruction is used by `LLVM's exception handling
6336system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006337is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006338code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6339defines values supplied by the personality function (``pers_fn``) upon
6340re-entry to the function. The ``resultval`` has the type ``resultty``.
6341
6342Arguments:
6343""""""""""
6344
6345This instruction takes a ``pers_fn`` value. This is the personality
6346function associated with the unwinding mechanism. The optional
6347``cleanup`` flag indicates that the landing pad block is a cleanup.
6348
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006349A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006350contains the global variable representing the "type" that may be caught
6351or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6352clause takes an array constant as its argument. Use
6353"``[0 x i8**] undef``" for a filter which cannot throw. The
6354'``landingpad``' instruction must contain *at least* one ``clause`` or
6355the ``cleanup`` flag.
6356
6357Semantics:
6358""""""""""
6359
6360The '``landingpad``' instruction defines the values which are set by the
6361personality function (``pers_fn``) upon re-entry to the function, and
6362therefore the "result type" of the ``landingpad`` instruction. As with
6363calling conventions, how the personality function results are
6364represented in LLVM IR is target specific.
6365
6366The clauses are applied in order from top to bottom. If two
6367``landingpad`` instructions are merged together through inlining, the
6368clauses from the calling function are appended to the list of clauses.
6369When the call stack is being unwound due to an exception being thrown,
6370the exception is compared against each ``clause`` in turn. If it doesn't
6371match any of the clauses, and the ``cleanup`` flag is not set, then
6372unwinding continues further up the call stack.
6373
6374The ``landingpad`` instruction has several restrictions:
6375
6376- A landing pad block is a basic block which is the unwind destination
6377 of an '``invoke``' instruction.
6378- A landing pad block must have a '``landingpad``' instruction as its
6379 first non-PHI instruction.
6380- There can be only one '``landingpad``' instruction within the landing
6381 pad block.
6382- A basic block that is not a landing pad block may not include a
6383 '``landingpad``' instruction.
6384- All '``landingpad``' instructions in a function must have the same
6385 personality function.
6386
6387Example:
6388""""""""
6389
6390.. code-block:: llvm
6391
6392 ;; A landing pad which can catch an integer.
6393 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6394 catch i8** @_ZTIi
6395 ;; A landing pad that is a cleanup.
6396 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6397 cleanup
6398 ;; A landing pad which can catch an integer and can only throw a double.
6399 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6400 catch i8** @_ZTIi
6401 filter [1 x i8**] [@_ZTId]
6402
6403.. _intrinsics:
6404
6405Intrinsic Functions
6406===================
6407
6408LLVM supports the notion of an "intrinsic function". These functions
6409have well known names and semantics and are required to follow certain
6410restrictions. Overall, these intrinsics represent an extension mechanism
6411for the LLVM language that does not require changing all of the
6412transformations in LLVM when adding to the language (or the bitcode
6413reader/writer, the parser, etc...).
6414
6415Intrinsic function names must all start with an "``llvm.``" prefix. This
6416prefix is reserved in LLVM for intrinsic names; thus, function names may
6417not begin with this prefix. Intrinsic functions must always be external
6418functions: you cannot define the body of intrinsic functions. Intrinsic
6419functions may only be used in call or invoke instructions: it is illegal
6420to take the address of an intrinsic function. Additionally, because
6421intrinsic functions are part of the LLVM language, it is required if any
6422are added that they be documented here.
6423
6424Some intrinsic functions can be overloaded, i.e., the intrinsic
6425represents a family of functions that perform the same operation but on
6426different data types. Because LLVM can represent over 8 million
6427different integer types, overloading is used commonly to allow an
6428intrinsic function to operate on any integer type. One or more of the
6429argument types or the result type can be overloaded to accept any
6430integer type. Argument types may also be defined as exactly matching a
6431previous argument's type or the result type. This allows an intrinsic
6432function which accepts multiple arguments, but needs all of them to be
6433of the same type, to only be overloaded with respect to a single
6434argument or the result.
6435
6436Overloaded intrinsics will have the names of its overloaded argument
6437types encoded into its function name, each preceded by a period. Only
6438those types which are overloaded result in a name suffix. Arguments
6439whose type is matched against another type do not. For example, the
6440``llvm.ctpop`` function can take an integer of any width and returns an
6441integer of exactly the same integer width. This leads to a family of
6442functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6443``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6444overloaded, and only one type suffix is required. Because the argument's
6445type is matched against the return type, it does not require its own
6446name suffix.
6447
6448To learn how to add an intrinsic function, please see the `Extending
6449LLVM Guide <ExtendingLLVM.html>`_.
6450
6451.. _int_varargs:
6452
6453Variable Argument Handling Intrinsics
6454-------------------------------------
6455
6456Variable argument support is defined in LLVM with the
6457:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6458functions. These functions are related to the similarly named macros
6459defined in the ``<stdarg.h>`` header file.
6460
6461All of these functions operate on arguments that use a target-specific
6462value type "``va_list``". The LLVM assembly language reference manual
6463does not define what this type is, so all transformations should be
6464prepared to handle these functions regardless of the type used.
6465
6466This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6467variable argument handling intrinsic functions are used.
6468
6469.. code-block:: llvm
6470
6471 define i32 @test(i32 %X, ...) {
6472 ; Initialize variable argument processing
6473 %ap = alloca i8*
6474 %ap2 = bitcast i8** %ap to i8*
6475 call void @llvm.va_start(i8* %ap2)
6476
6477 ; Read a single integer argument
6478 %tmp = va_arg i8** %ap, i32
6479
6480 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6481 %aq = alloca i8*
6482 %aq2 = bitcast i8** %aq to i8*
6483 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6484 call void @llvm.va_end(i8* %aq2)
6485
6486 ; Stop processing of arguments.
6487 call void @llvm.va_end(i8* %ap2)
6488 ret i32 %tmp
6489 }
6490
6491 declare void @llvm.va_start(i8*)
6492 declare void @llvm.va_copy(i8*, i8*)
6493 declare void @llvm.va_end(i8*)
6494
6495.. _int_va_start:
6496
6497'``llvm.va_start``' Intrinsic
6498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6499
6500Syntax:
6501"""""""
6502
6503::
6504
Nick Lewycky04f6de02013-09-11 22:04:52 +00006505 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006506
6507Overview:
6508"""""""""
6509
6510The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6511subsequent use by ``va_arg``.
6512
6513Arguments:
6514""""""""""
6515
6516The argument is a pointer to a ``va_list`` element to initialize.
6517
6518Semantics:
6519""""""""""
6520
6521The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6522available in C. In a target-dependent way, it initializes the
6523``va_list`` element to which the argument points, so that the next call
6524to ``va_arg`` will produce the first variable argument passed to the
6525function. Unlike the C ``va_start`` macro, this intrinsic does not need
6526to know the last argument of the function as the compiler can figure
6527that out.
6528
6529'``llvm.va_end``' Intrinsic
6530^^^^^^^^^^^^^^^^^^^^^^^^^^^
6531
6532Syntax:
6533"""""""
6534
6535::
6536
6537 declare void @llvm.va_end(i8* <arglist>)
6538
6539Overview:
6540"""""""""
6541
6542The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6543initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6544
6545Arguments:
6546""""""""""
6547
6548The argument is a pointer to a ``va_list`` to destroy.
6549
6550Semantics:
6551""""""""""
6552
6553The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6554available in C. In a target-dependent way, it destroys the ``va_list``
6555element to which the argument points. Calls to
6556:ref:`llvm.va_start <int_va_start>` and
6557:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6558``llvm.va_end``.
6559
6560.. _int_va_copy:
6561
6562'``llvm.va_copy``' Intrinsic
6563^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6564
6565Syntax:
6566"""""""
6567
6568::
6569
6570 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6571
6572Overview:
6573"""""""""
6574
6575The '``llvm.va_copy``' intrinsic copies the current argument position
6576from the source argument list to the destination argument list.
6577
6578Arguments:
6579""""""""""
6580
6581The first argument is a pointer to a ``va_list`` element to initialize.
6582The second argument is a pointer to a ``va_list`` element to copy from.
6583
6584Semantics:
6585""""""""""
6586
6587The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6588available in C. In a target-dependent way, it copies the source
6589``va_list`` element into the destination ``va_list`` element. This
6590intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6591arbitrarily complex and require, for example, memory allocation.
6592
6593Accurate Garbage Collection Intrinsics
6594--------------------------------------
6595
6596LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6597(GC) requires the implementation and generation of these intrinsics.
6598These intrinsics allow identification of :ref:`GC roots on the
6599stack <int_gcroot>`, as well as garbage collector implementations that
6600require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6601Front-ends for type-safe garbage collected languages should generate
6602these intrinsics to make use of the LLVM garbage collectors. For more
6603details, see `Accurate Garbage Collection with
6604LLVM <GarbageCollection.html>`_.
6605
6606The garbage collection intrinsics only operate on objects in the generic
6607address space (address space zero).
6608
6609.. _int_gcroot:
6610
6611'``llvm.gcroot``' Intrinsic
6612^^^^^^^^^^^^^^^^^^^^^^^^^^^
6613
6614Syntax:
6615"""""""
6616
6617::
6618
6619 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6620
6621Overview:
6622"""""""""
6623
6624The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6625the code generator, and allows some metadata to be associated with it.
6626
6627Arguments:
6628""""""""""
6629
6630The first argument specifies the address of a stack object that contains
6631the root pointer. The second pointer (which must be either a constant or
6632a global value address) contains the meta-data to be associated with the
6633root.
6634
6635Semantics:
6636""""""""""
6637
6638At runtime, a call to this intrinsic stores a null pointer into the
6639"ptrloc" location. At compile-time, the code generator generates
6640information to allow the runtime to find the pointer at GC safe points.
6641The '``llvm.gcroot``' intrinsic may only be used in a function which
6642:ref:`specifies a GC algorithm <gc>`.
6643
6644.. _int_gcread:
6645
6646'``llvm.gcread``' Intrinsic
6647^^^^^^^^^^^^^^^^^^^^^^^^^^^
6648
6649Syntax:
6650"""""""
6651
6652::
6653
6654 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6655
6656Overview:
6657"""""""""
6658
6659The '``llvm.gcread``' intrinsic identifies reads of references from heap
6660locations, allowing garbage collector implementations that require read
6661barriers.
6662
6663Arguments:
6664""""""""""
6665
6666The second argument is the address to read from, which should be an
6667address allocated from the garbage collector. The first object is a
6668pointer to the start of the referenced object, if needed by the language
6669runtime (otherwise null).
6670
6671Semantics:
6672""""""""""
6673
6674The '``llvm.gcread``' intrinsic has the same semantics as a load
6675instruction, but may be replaced with substantially more complex code by
6676the garbage collector runtime, as needed. The '``llvm.gcread``'
6677intrinsic may only be used in a function which :ref:`specifies a GC
6678algorithm <gc>`.
6679
6680.. _int_gcwrite:
6681
6682'``llvm.gcwrite``' Intrinsic
6683^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6684
6685Syntax:
6686"""""""
6687
6688::
6689
6690 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6691
6692Overview:
6693"""""""""
6694
6695The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6696locations, allowing garbage collector implementations that require write
6697barriers (such as generational or reference counting collectors).
6698
6699Arguments:
6700""""""""""
6701
6702The first argument is the reference to store, the second is the start of
6703the object to store it to, and the third is the address of the field of
6704Obj to store to. If the runtime does not require a pointer to the
6705object, Obj may be null.
6706
6707Semantics:
6708""""""""""
6709
6710The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6711instruction, but may be replaced with substantially more complex code by
6712the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6713intrinsic may only be used in a function which :ref:`specifies a GC
6714algorithm <gc>`.
6715
6716Code Generator Intrinsics
6717-------------------------
6718
6719These intrinsics are provided by LLVM to expose special features that
6720may only be implemented with code generator support.
6721
6722'``llvm.returnaddress``' Intrinsic
6723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6724
6725Syntax:
6726"""""""
6727
6728::
6729
6730 declare i8 *@llvm.returnaddress(i32 <level>)
6731
6732Overview:
6733"""""""""
6734
6735The '``llvm.returnaddress``' intrinsic attempts to compute a
6736target-specific value indicating the return address of the current
6737function or one of its callers.
6738
6739Arguments:
6740""""""""""
6741
6742The argument to this intrinsic indicates which function to return the
6743address for. Zero indicates the calling function, one indicates its
6744caller, etc. The argument is **required** to be a constant integer
6745value.
6746
6747Semantics:
6748""""""""""
6749
6750The '``llvm.returnaddress``' intrinsic either returns a pointer
6751indicating the return address of the specified call frame, or zero if it
6752cannot be identified. The value returned by this intrinsic is likely to
6753be incorrect or 0 for arguments other than zero, so it should only be
6754used for debugging purposes.
6755
6756Note that calling this intrinsic does not prevent function inlining or
6757other aggressive transformations, so the value returned may not be that
6758of the obvious source-language caller.
6759
6760'``llvm.frameaddress``' Intrinsic
6761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6762
6763Syntax:
6764"""""""
6765
6766::
6767
6768 declare i8* @llvm.frameaddress(i32 <level>)
6769
6770Overview:
6771"""""""""
6772
6773The '``llvm.frameaddress``' intrinsic attempts to return the
6774target-specific frame pointer value for the specified stack frame.
6775
6776Arguments:
6777""""""""""
6778
6779The argument to this intrinsic indicates which function to return the
6780frame pointer for. Zero indicates the calling function, one indicates
6781its caller, etc. The argument is **required** to be a constant integer
6782value.
6783
6784Semantics:
6785""""""""""
6786
6787The '``llvm.frameaddress``' intrinsic either returns a pointer
6788indicating the frame address of the specified call frame, or zero if it
6789cannot be identified. The value returned by this intrinsic is likely to
6790be incorrect or 0 for arguments other than zero, so it should only be
6791used for debugging purposes.
6792
6793Note that calling this intrinsic does not prevent function inlining or
6794other aggressive transformations, so the value returned may not be that
6795of the obvious source-language caller.
6796
6797.. _int_stacksave:
6798
6799'``llvm.stacksave``' Intrinsic
6800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6801
6802Syntax:
6803"""""""
6804
6805::
6806
6807 declare i8* @llvm.stacksave()
6808
6809Overview:
6810"""""""""
6811
6812The '``llvm.stacksave``' intrinsic is used to remember the current state
6813of the function stack, for use with
6814:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6815implementing language features like scoped automatic variable sized
6816arrays in C99.
6817
6818Semantics:
6819""""""""""
6820
6821This intrinsic returns a opaque pointer value that can be passed to
6822:ref:`llvm.stackrestore <int_stackrestore>`. When an
6823``llvm.stackrestore`` intrinsic is executed with a value saved from
6824``llvm.stacksave``, it effectively restores the state of the stack to
6825the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6826practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6827were allocated after the ``llvm.stacksave`` was executed.
6828
6829.. _int_stackrestore:
6830
6831'``llvm.stackrestore``' Intrinsic
6832^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6833
6834Syntax:
6835"""""""
6836
6837::
6838
6839 declare void @llvm.stackrestore(i8* %ptr)
6840
6841Overview:
6842"""""""""
6843
6844The '``llvm.stackrestore``' intrinsic is used to restore the state of
6845the function stack to the state it was in when the corresponding
6846:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6847useful for implementing language features like scoped automatic variable
6848sized arrays in C99.
6849
6850Semantics:
6851""""""""""
6852
6853See the description for :ref:`llvm.stacksave <int_stacksave>`.
6854
6855'``llvm.prefetch``' Intrinsic
6856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6857
6858Syntax:
6859"""""""
6860
6861::
6862
6863 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6864
6865Overview:
6866"""""""""
6867
6868The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6869insert a prefetch instruction if supported; otherwise, it is a noop.
6870Prefetches have no effect on the behavior of the program but can change
6871its performance characteristics.
6872
6873Arguments:
6874""""""""""
6875
6876``address`` is the address to be prefetched, ``rw`` is the specifier
6877determining if the fetch should be for a read (0) or write (1), and
6878``locality`` is a temporal locality specifier ranging from (0) - no
6879locality, to (3) - extremely local keep in cache. The ``cache type``
6880specifies whether the prefetch is performed on the data (1) or
6881instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6882arguments must be constant integers.
6883
6884Semantics:
6885""""""""""
6886
6887This intrinsic does not modify the behavior of the program. In
6888particular, prefetches cannot trap and do not produce a value. On
6889targets that support this intrinsic, the prefetch can provide hints to
6890the processor cache for better performance.
6891
6892'``llvm.pcmarker``' Intrinsic
6893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6894
6895Syntax:
6896"""""""
6897
6898::
6899
6900 declare void @llvm.pcmarker(i32 <id>)
6901
6902Overview:
6903"""""""""
6904
6905The '``llvm.pcmarker``' intrinsic is a method to export a Program
6906Counter (PC) in a region of code to simulators and other tools. The
6907method is target specific, but it is expected that the marker will use
6908exported symbols to transmit the PC of the marker. The marker makes no
6909guarantees that it will remain with any specific instruction after
6910optimizations. It is possible that the presence of a marker will inhibit
6911optimizations. The intended use is to be inserted after optimizations to
6912allow correlations of simulation runs.
6913
6914Arguments:
6915""""""""""
6916
6917``id`` is a numerical id identifying the marker.
6918
6919Semantics:
6920""""""""""
6921
6922This intrinsic does not modify the behavior of the program. Backends
6923that do not support this intrinsic may ignore it.
6924
6925'``llvm.readcyclecounter``' Intrinsic
6926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6927
6928Syntax:
6929"""""""
6930
6931::
6932
6933 declare i64 @llvm.readcyclecounter()
6934
6935Overview:
6936"""""""""
6937
6938The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6939counter register (or similar low latency, high accuracy clocks) on those
6940targets that support it. On X86, it should map to RDTSC. On Alpha, it
6941should map to RPCC. As the backing counters overflow quickly (on the
6942order of 9 seconds on alpha), this should only be used for small
6943timings.
6944
6945Semantics:
6946""""""""""
6947
6948When directly supported, reading the cycle counter should not modify any
6949memory. Implementations are allowed to either return a application
6950specific value or a system wide value. On backends without support, this
6951is lowered to a constant 0.
6952
Tim Northoverbc933082013-05-23 19:11:20 +00006953Note that runtime support may be conditional on the privilege-level code is
6954running at and the host platform.
6955
Sean Silvab084af42012-12-07 10:36:55 +00006956Standard C Library Intrinsics
6957-----------------------------
6958
6959LLVM provides intrinsics for a few important standard C library
6960functions. These intrinsics allow source-language front-ends to pass
6961information about the alignment of the pointer arguments to the code
6962generator, providing opportunity for more efficient code generation.
6963
6964.. _int_memcpy:
6965
6966'``llvm.memcpy``' Intrinsic
6967^^^^^^^^^^^^^^^^^^^^^^^^^^^
6968
6969Syntax:
6970"""""""
6971
6972This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6973integer bit width and for different address spaces. Not all targets
6974support all bit widths however.
6975
6976::
6977
6978 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6979 i32 <len>, i32 <align>, i1 <isvolatile>)
6980 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6981 i64 <len>, i32 <align>, i1 <isvolatile>)
6982
6983Overview:
6984"""""""""
6985
6986The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6987source location to the destination location.
6988
6989Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6990intrinsics do not return a value, takes extra alignment/isvolatile
6991arguments and the pointers can be in specified address spaces.
6992
6993Arguments:
6994""""""""""
6995
6996The first argument is a pointer to the destination, the second is a
6997pointer to the source. The third argument is an integer argument
6998specifying the number of bytes to copy, the fourth argument is the
6999alignment of the source and destination locations, and the fifth is a
7000boolean indicating a volatile access.
7001
7002If the call to this intrinsic has an alignment value that is not 0 or 1,
7003then the caller guarantees that both the source and destination pointers
7004are aligned to that boundary.
7005
7006If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7007a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7008very cleanly specified and it is unwise to depend on it.
7009
7010Semantics:
7011""""""""""
7012
7013The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7014source location to the destination location, which are not allowed to
7015overlap. It copies "len" bytes of memory over. If the argument is known
7016to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007017argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007018
7019'``llvm.memmove``' Intrinsic
7020^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7021
7022Syntax:
7023"""""""
7024
7025This is an overloaded intrinsic. You can use llvm.memmove on any integer
7026bit width and for different address space. Not all targets support all
7027bit widths however.
7028
7029::
7030
7031 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7032 i32 <len>, i32 <align>, i1 <isvolatile>)
7033 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7034 i64 <len>, i32 <align>, i1 <isvolatile>)
7035
7036Overview:
7037"""""""""
7038
7039The '``llvm.memmove.*``' intrinsics move a block of memory from the
7040source location to the destination location. It is similar to the
7041'``llvm.memcpy``' intrinsic but allows the two memory locations to
7042overlap.
7043
7044Note that, unlike the standard libc function, the ``llvm.memmove.*``
7045intrinsics do not return a value, takes extra alignment/isvolatile
7046arguments and the pointers can be in specified address spaces.
7047
7048Arguments:
7049""""""""""
7050
7051The first argument is a pointer to the destination, the second is a
7052pointer to the source. The third argument is an integer argument
7053specifying the number of bytes to copy, the fourth argument is the
7054alignment of the source and destination locations, and the fifth is a
7055boolean indicating a volatile access.
7056
7057If the call to this intrinsic has an alignment value that is not 0 or 1,
7058then the caller guarantees that the source and destination pointers are
7059aligned to that boundary.
7060
7061If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7062is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7063not very cleanly specified and it is unwise to depend on it.
7064
7065Semantics:
7066""""""""""
7067
7068The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7069source location to the destination location, which may overlap. It
7070copies "len" bytes of memory over. If the argument is known to be
7071aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007072otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007073
7074'``llvm.memset.*``' Intrinsics
7075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7076
7077Syntax:
7078"""""""
7079
7080This is an overloaded intrinsic. You can use llvm.memset on any integer
7081bit width and for different address spaces. However, not all targets
7082support all bit widths.
7083
7084::
7085
7086 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7087 i32 <len>, i32 <align>, i1 <isvolatile>)
7088 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7089 i64 <len>, i32 <align>, i1 <isvolatile>)
7090
7091Overview:
7092"""""""""
7093
7094The '``llvm.memset.*``' intrinsics fill a block of memory with a
7095particular byte value.
7096
7097Note that, unlike the standard libc function, the ``llvm.memset``
7098intrinsic does not return a value and takes extra alignment/volatile
7099arguments. Also, the destination can be in an arbitrary address space.
7100
7101Arguments:
7102""""""""""
7103
7104The first argument is a pointer to the destination to fill, the second
7105is the byte value with which to fill it, the third argument is an
7106integer argument specifying the number of bytes to fill, and the fourth
7107argument is the known alignment of the destination location.
7108
7109If the call to this intrinsic has an alignment value that is not 0 or 1,
7110then the caller guarantees that the destination pointer is aligned to
7111that boundary.
7112
7113If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7114a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7115very cleanly specified and it is unwise to depend on it.
7116
7117Semantics:
7118""""""""""
7119
7120The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7121at the destination location. If the argument is known to be aligned to
7122some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007123it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007124
7125'``llvm.sqrt.*``' Intrinsic
7126^^^^^^^^^^^^^^^^^^^^^^^^^^^
7127
7128Syntax:
7129"""""""
7130
7131This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7132floating point or vector of floating point type. Not all targets support
7133all types however.
7134
7135::
7136
7137 declare float @llvm.sqrt.f32(float %Val)
7138 declare double @llvm.sqrt.f64(double %Val)
7139 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7140 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7141 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7142
7143Overview:
7144"""""""""
7145
7146The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7147returning the same value as the libm '``sqrt``' functions would. Unlike
7148``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7149negative numbers other than -0.0 (which allows for better optimization,
7150because there is no need to worry about errno being set).
7151``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7152
7153Arguments:
7154""""""""""
7155
7156The argument and return value are floating point numbers of the same
7157type.
7158
7159Semantics:
7160""""""""""
7161
7162This function returns the sqrt of the specified operand if it is a
7163nonnegative floating point number.
7164
7165'``llvm.powi.*``' Intrinsic
7166^^^^^^^^^^^^^^^^^^^^^^^^^^^
7167
7168Syntax:
7169"""""""
7170
7171This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7172floating point or vector of floating point type. Not all targets support
7173all types however.
7174
7175::
7176
7177 declare float @llvm.powi.f32(float %Val, i32 %power)
7178 declare double @llvm.powi.f64(double %Val, i32 %power)
7179 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7180 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7181 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7182
7183Overview:
7184"""""""""
7185
7186The '``llvm.powi.*``' intrinsics return the first operand raised to the
7187specified (positive or negative) power. The order of evaluation of
7188multiplications is not defined. When a vector of floating point type is
7189used, the second argument remains a scalar integer value.
7190
7191Arguments:
7192""""""""""
7193
7194The second argument is an integer power, and the first is a value to
7195raise to that power.
7196
7197Semantics:
7198""""""""""
7199
7200This function returns the first value raised to the second power with an
7201unspecified sequence of rounding operations.
7202
7203'``llvm.sin.*``' Intrinsic
7204^^^^^^^^^^^^^^^^^^^^^^^^^^
7205
7206Syntax:
7207"""""""
7208
7209This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7210floating point or vector of floating point type. Not all targets support
7211all types however.
7212
7213::
7214
7215 declare float @llvm.sin.f32(float %Val)
7216 declare double @llvm.sin.f64(double %Val)
7217 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7218 declare fp128 @llvm.sin.f128(fp128 %Val)
7219 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7220
7221Overview:
7222"""""""""
7223
7224The '``llvm.sin.*``' intrinsics return the sine of the operand.
7225
7226Arguments:
7227""""""""""
7228
7229The argument and return value are floating point numbers of the same
7230type.
7231
7232Semantics:
7233""""""""""
7234
7235This function returns the sine of the specified operand, returning the
7236same values as the libm ``sin`` functions would, and handles error
7237conditions in the same way.
7238
7239'``llvm.cos.*``' Intrinsic
7240^^^^^^^^^^^^^^^^^^^^^^^^^^
7241
7242Syntax:
7243"""""""
7244
7245This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7246floating point or vector of floating point type. Not all targets support
7247all types however.
7248
7249::
7250
7251 declare float @llvm.cos.f32(float %Val)
7252 declare double @llvm.cos.f64(double %Val)
7253 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7254 declare fp128 @llvm.cos.f128(fp128 %Val)
7255 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7256
7257Overview:
7258"""""""""
7259
7260The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7261
7262Arguments:
7263""""""""""
7264
7265The argument and return value are floating point numbers of the same
7266type.
7267
7268Semantics:
7269""""""""""
7270
7271This function returns the cosine of the specified operand, returning the
7272same values as the libm ``cos`` functions would, and handles error
7273conditions in the same way.
7274
7275'``llvm.pow.*``' Intrinsic
7276^^^^^^^^^^^^^^^^^^^^^^^^^^
7277
7278Syntax:
7279"""""""
7280
7281This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7282floating point or vector of floating point type. Not all targets support
7283all types however.
7284
7285::
7286
7287 declare float @llvm.pow.f32(float %Val, float %Power)
7288 declare double @llvm.pow.f64(double %Val, double %Power)
7289 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7290 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7291 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7292
7293Overview:
7294"""""""""
7295
7296The '``llvm.pow.*``' intrinsics return the first operand raised to the
7297specified (positive or negative) power.
7298
7299Arguments:
7300""""""""""
7301
7302The second argument is a floating point power, and the first is a value
7303to raise to that power.
7304
7305Semantics:
7306""""""""""
7307
7308This function returns the first value raised to the second power,
7309returning the same values as the libm ``pow`` functions would, and
7310handles error conditions in the same way.
7311
7312'``llvm.exp.*``' Intrinsic
7313^^^^^^^^^^^^^^^^^^^^^^^^^^
7314
7315Syntax:
7316"""""""
7317
7318This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7319floating point or vector of floating point type. Not all targets support
7320all types however.
7321
7322::
7323
7324 declare float @llvm.exp.f32(float %Val)
7325 declare double @llvm.exp.f64(double %Val)
7326 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7327 declare fp128 @llvm.exp.f128(fp128 %Val)
7328 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7329
7330Overview:
7331"""""""""
7332
7333The '``llvm.exp.*``' intrinsics perform the exp function.
7334
7335Arguments:
7336""""""""""
7337
7338The argument and return value are floating point numbers of the same
7339type.
7340
7341Semantics:
7342""""""""""
7343
7344This function returns the same values as the libm ``exp`` functions
7345would, and handles error conditions in the same way.
7346
7347'``llvm.exp2.*``' Intrinsic
7348^^^^^^^^^^^^^^^^^^^^^^^^^^^
7349
7350Syntax:
7351"""""""
7352
7353This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7354floating point or vector of floating point type. Not all targets support
7355all types however.
7356
7357::
7358
7359 declare float @llvm.exp2.f32(float %Val)
7360 declare double @llvm.exp2.f64(double %Val)
7361 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7362 declare fp128 @llvm.exp2.f128(fp128 %Val)
7363 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7364
7365Overview:
7366"""""""""
7367
7368The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7369
7370Arguments:
7371""""""""""
7372
7373The argument and return value are floating point numbers of the same
7374type.
7375
7376Semantics:
7377""""""""""
7378
7379This function returns the same values as the libm ``exp2`` functions
7380would, and handles error conditions in the same way.
7381
7382'``llvm.log.*``' Intrinsic
7383^^^^^^^^^^^^^^^^^^^^^^^^^^
7384
7385Syntax:
7386"""""""
7387
7388This is an overloaded intrinsic. You can use ``llvm.log`` on any
7389floating point or vector of floating point type. Not all targets support
7390all types however.
7391
7392::
7393
7394 declare float @llvm.log.f32(float %Val)
7395 declare double @llvm.log.f64(double %Val)
7396 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7397 declare fp128 @llvm.log.f128(fp128 %Val)
7398 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7399
7400Overview:
7401"""""""""
7402
7403The '``llvm.log.*``' intrinsics perform the log function.
7404
7405Arguments:
7406""""""""""
7407
7408The argument and return value are floating point numbers of the same
7409type.
7410
7411Semantics:
7412""""""""""
7413
7414This function returns the same values as the libm ``log`` functions
7415would, and handles error conditions in the same way.
7416
7417'``llvm.log10.*``' Intrinsic
7418^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7419
7420Syntax:
7421"""""""
7422
7423This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7424floating point or vector of floating point type. Not all targets support
7425all types however.
7426
7427::
7428
7429 declare float @llvm.log10.f32(float %Val)
7430 declare double @llvm.log10.f64(double %Val)
7431 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7432 declare fp128 @llvm.log10.f128(fp128 %Val)
7433 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7434
7435Overview:
7436"""""""""
7437
7438The '``llvm.log10.*``' intrinsics perform the log10 function.
7439
7440Arguments:
7441""""""""""
7442
7443The argument and return value are floating point numbers of the same
7444type.
7445
7446Semantics:
7447""""""""""
7448
7449This function returns the same values as the libm ``log10`` functions
7450would, and handles error conditions in the same way.
7451
7452'``llvm.log2.*``' Intrinsic
7453^^^^^^^^^^^^^^^^^^^^^^^^^^^
7454
7455Syntax:
7456"""""""
7457
7458This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7459floating point or vector of floating point type. Not all targets support
7460all types however.
7461
7462::
7463
7464 declare float @llvm.log2.f32(float %Val)
7465 declare double @llvm.log2.f64(double %Val)
7466 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7467 declare fp128 @llvm.log2.f128(fp128 %Val)
7468 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7469
7470Overview:
7471"""""""""
7472
7473The '``llvm.log2.*``' intrinsics perform the log2 function.
7474
7475Arguments:
7476""""""""""
7477
7478The argument and return value are floating point numbers of the same
7479type.
7480
7481Semantics:
7482""""""""""
7483
7484This function returns the same values as the libm ``log2`` functions
7485would, and handles error conditions in the same way.
7486
7487'``llvm.fma.*``' Intrinsic
7488^^^^^^^^^^^^^^^^^^^^^^^^^^
7489
7490Syntax:
7491"""""""
7492
7493This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7494floating point or vector of floating point type. Not all targets support
7495all types however.
7496
7497::
7498
7499 declare float @llvm.fma.f32(float %a, float %b, float %c)
7500 declare double @llvm.fma.f64(double %a, double %b, double %c)
7501 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7502 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7503 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7504
7505Overview:
7506"""""""""
7507
7508The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7509operation.
7510
7511Arguments:
7512""""""""""
7513
7514The argument and return value are floating point numbers of the same
7515type.
7516
7517Semantics:
7518""""""""""
7519
7520This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007521would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007522
7523'``llvm.fabs.*``' Intrinsic
7524^^^^^^^^^^^^^^^^^^^^^^^^^^^
7525
7526Syntax:
7527"""""""
7528
7529This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7530floating point or vector of floating point type. Not all targets support
7531all types however.
7532
7533::
7534
7535 declare float @llvm.fabs.f32(float %Val)
7536 declare double @llvm.fabs.f64(double %Val)
7537 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7538 declare fp128 @llvm.fabs.f128(fp128 %Val)
7539 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7540
7541Overview:
7542"""""""""
7543
7544The '``llvm.fabs.*``' intrinsics return the absolute value of the
7545operand.
7546
7547Arguments:
7548""""""""""
7549
7550The argument and return value are floating point numbers of the same
7551type.
7552
7553Semantics:
7554""""""""""
7555
7556This function returns the same values as the libm ``fabs`` functions
7557would, and handles error conditions in the same way.
7558
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007559'``llvm.copysign.*``' Intrinsic
7560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7561
7562Syntax:
7563"""""""
7564
7565This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7566floating point or vector of floating point type. Not all targets support
7567all types however.
7568
7569::
7570
7571 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7572 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7573 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7574 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7575 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7576
7577Overview:
7578"""""""""
7579
7580The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7581first operand and the sign of the second operand.
7582
7583Arguments:
7584""""""""""
7585
7586The arguments and return value are floating point numbers of the same
7587type.
7588
7589Semantics:
7590""""""""""
7591
7592This function returns the same values as the libm ``copysign``
7593functions would, and handles error conditions in the same way.
7594
Sean Silvab084af42012-12-07 10:36:55 +00007595'``llvm.floor.*``' Intrinsic
7596^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7597
7598Syntax:
7599"""""""
7600
7601This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7602floating point or vector of floating point type. Not all targets support
7603all types however.
7604
7605::
7606
7607 declare float @llvm.floor.f32(float %Val)
7608 declare double @llvm.floor.f64(double %Val)
7609 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7610 declare fp128 @llvm.floor.f128(fp128 %Val)
7611 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7612
7613Overview:
7614"""""""""
7615
7616The '``llvm.floor.*``' intrinsics return the floor of the operand.
7617
7618Arguments:
7619""""""""""
7620
7621The argument and return value are floating point numbers of the same
7622type.
7623
7624Semantics:
7625""""""""""
7626
7627This function returns the same values as the libm ``floor`` functions
7628would, and handles error conditions in the same way.
7629
7630'``llvm.ceil.*``' Intrinsic
7631^^^^^^^^^^^^^^^^^^^^^^^^^^^
7632
7633Syntax:
7634"""""""
7635
7636This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7637floating point or vector of floating point type. Not all targets support
7638all types however.
7639
7640::
7641
7642 declare float @llvm.ceil.f32(float %Val)
7643 declare double @llvm.ceil.f64(double %Val)
7644 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7645 declare fp128 @llvm.ceil.f128(fp128 %Val)
7646 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7647
7648Overview:
7649"""""""""
7650
7651The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7652
7653Arguments:
7654""""""""""
7655
7656The argument and return value are floating point numbers of the same
7657type.
7658
7659Semantics:
7660""""""""""
7661
7662This function returns the same values as the libm ``ceil`` functions
7663would, and handles error conditions in the same way.
7664
7665'``llvm.trunc.*``' Intrinsic
7666^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7667
7668Syntax:
7669"""""""
7670
7671This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7672floating point or vector of floating point type. Not all targets support
7673all types however.
7674
7675::
7676
7677 declare float @llvm.trunc.f32(float %Val)
7678 declare double @llvm.trunc.f64(double %Val)
7679 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7680 declare fp128 @llvm.trunc.f128(fp128 %Val)
7681 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7682
7683Overview:
7684"""""""""
7685
7686The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7687nearest integer not larger in magnitude than the operand.
7688
7689Arguments:
7690""""""""""
7691
7692The argument and return value are floating point numbers of the same
7693type.
7694
7695Semantics:
7696""""""""""
7697
7698This function returns the same values as the libm ``trunc`` functions
7699would, and handles error conditions in the same way.
7700
7701'``llvm.rint.*``' Intrinsic
7702^^^^^^^^^^^^^^^^^^^^^^^^^^^
7703
7704Syntax:
7705"""""""
7706
7707This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7708floating point or vector of floating point type. Not all targets support
7709all types however.
7710
7711::
7712
7713 declare float @llvm.rint.f32(float %Val)
7714 declare double @llvm.rint.f64(double %Val)
7715 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7716 declare fp128 @llvm.rint.f128(fp128 %Val)
7717 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7718
7719Overview:
7720"""""""""
7721
7722The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7723nearest integer. It may raise an inexact floating-point exception if the
7724operand isn't an integer.
7725
7726Arguments:
7727""""""""""
7728
7729The argument and return value are floating point numbers of the same
7730type.
7731
7732Semantics:
7733""""""""""
7734
7735This function returns the same values as the libm ``rint`` functions
7736would, and handles error conditions in the same way.
7737
7738'``llvm.nearbyint.*``' Intrinsic
7739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7740
7741Syntax:
7742"""""""
7743
7744This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7745floating point or vector of floating point type. Not all targets support
7746all types however.
7747
7748::
7749
7750 declare float @llvm.nearbyint.f32(float %Val)
7751 declare double @llvm.nearbyint.f64(double %Val)
7752 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7753 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7754 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7755
7756Overview:
7757"""""""""
7758
7759The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7760nearest integer.
7761
7762Arguments:
7763""""""""""
7764
7765The argument and return value are floating point numbers of the same
7766type.
7767
7768Semantics:
7769""""""""""
7770
7771This function returns the same values as the libm ``nearbyint``
7772functions would, and handles error conditions in the same way.
7773
Hal Finkel171817e2013-08-07 22:49:12 +00007774'``llvm.round.*``' Intrinsic
7775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7776
7777Syntax:
7778"""""""
7779
7780This is an overloaded intrinsic. You can use ``llvm.round`` on any
7781floating point or vector of floating point type. Not all targets support
7782all types however.
7783
7784::
7785
7786 declare float @llvm.round.f32(float %Val)
7787 declare double @llvm.round.f64(double %Val)
7788 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7789 declare fp128 @llvm.round.f128(fp128 %Val)
7790 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7791
7792Overview:
7793"""""""""
7794
7795The '``llvm.round.*``' intrinsics returns the operand rounded to the
7796nearest integer.
7797
7798Arguments:
7799""""""""""
7800
7801The argument and return value are floating point numbers of the same
7802type.
7803
7804Semantics:
7805""""""""""
7806
7807This function returns the same values as the libm ``round``
7808functions would, and handles error conditions in the same way.
7809
Sean Silvab084af42012-12-07 10:36:55 +00007810Bit Manipulation Intrinsics
7811---------------------------
7812
7813LLVM provides intrinsics for a few important bit manipulation
7814operations. These allow efficient code generation for some algorithms.
7815
7816'``llvm.bswap.*``' Intrinsics
7817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7818
7819Syntax:
7820"""""""
7821
7822This is an overloaded intrinsic function. You can use bswap on any
7823integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7824
7825::
7826
7827 declare i16 @llvm.bswap.i16(i16 <id>)
7828 declare i32 @llvm.bswap.i32(i32 <id>)
7829 declare i64 @llvm.bswap.i64(i64 <id>)
7830
7831Overview:
7832"""""""""
7833
7834The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7835values with an even number of bytes (positive multiple of 16 bits).
7836These are useful for performing operations on data that is not in the
7837target's native byte order.
7838
7839Semantics:
7840""""""""""
7841
7842The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7843and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7844intrinsic returns an i32 value that has the four bytes of the input i32
7845swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7846returned i32 will have its bytes in 3, 2, 1, 0 order. The
7847``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7848concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7849respectively).
7850
7851'``llvm.ctpop.*``' Intrinsic
7852^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7853
7854Syntax:
7855"""""""
7856
7857This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7858bit width, or on any vector with integer elements. Not all targets
7859support all bit widths or vector types, however.
7860
7861::
7862
7863 declare i8 @llvm.ctpop.i8(i8 <src>)
7864 declare i16 @llvm.ctpop.i16(i16 <src>)
7865 declare i32 @llvm.ctpop.i32(i32 <src>)
7866 declare i64 @llvm.ctpop.i64(i64 <src>)
7867 declare i256 @llvm.ctpop.i256(i256 <src>)
7868 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7869
7870Overview:
7871"""""""""
7872
7873The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7874in a value.
7875
7876Arguments:
7877""""""""""
7878
7879The only argument is the value to be counted. The argument may be of any
7880integer type, or a vector with integer elements. The return type must
7881match the argument type.
7882
7883Semantics:
7884""""""""""
7885
7886The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7887each element of a vector.
7888
7889'``llvm.ctlz.*``' Intrinsic
7890^^^^^^^^^^^^^^^^^^^^^^^^^^^
7891
7892Syntax:
7893"""""""
7894
7895This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7896integer bit width, or any vector whose elements are integers. Not all
7897targets support all bit widths or vector types, however.
7898
7899::
7900
7901 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7902 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7903 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7904 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7905 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7906 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7907
7908Overview:
7909"""""""""
7910
7911The '``llvm.ctlz``' family of intrinsic functions counts the number of
7912leading zeros in a variable.
7913
7914Arguments:
7915""""""""""
7916
7917The first argument is the value to be counted. This argument may be of
7918any integer type, or a vectory with integer element type. The return
7919type must match the first argument type.
7920
7921The second argument must be a constant and is a flag to indicate whether
7922the intrinsic should ensure that a zero as the first argument produces a
7923defined result. Historically some architectures did not provide a
7924defined result for zero values as efficiently, and many algorithms are
7925now predicated on avoiding zero-value inputs.
7926
7927Semantics:
7928""""""""""
7929
7930The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7931zeros in a variable, or within each element of the vector. If
7932``src == 0`` then the result is the size in bits of the type of ``src``
7933if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7934``llvm.ctlz(i32 2) = 30``.
7935
7936'``llvm.cttz.*``' Intrinsic
7937^^^^^^^^^^^^^^^^^^^^^^^^^^^
7938
7939Syntax:
7940"""""""
7941
7942This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7943integer bit width, or any vector of integer elements. Not all targets
7944support all bit widths or vector types, however.
7945
7946::
7947
7948 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7949 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7950 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7951 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7952 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7953 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7954
7955Overview:
7956"""""""""
7957
7958The '``llvm.cttz``' family of intrinsic functions counts the number of
7959trailing zeros.
7960
7961Arguments:
7962""""""""""
7963
7964The first argument is the value to be counted. This argument may be of
7965any integer type, or a vectory with integer element type. The return
7966type must match the first argument type.
7967
7968The second argument must be a constant and is a flag to indicate whether
7969the intrinsic should ensure that a zero as the first argument produces a
7970defined result. Historically some architectures did not provide a
7971defined result for zero values as efficiently, and many algorithms are
7972now predicated on avoiding zero-value inputs.
7973
7974Semantics:
7975""""""""""
7976
7977The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7978zeros in a variable, or within each element of a vector. If ``src == 0``
7979then the result is the size in bits of the type of ``src`` if
7980``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7981``llvm.cttz(2) = 1``.
7982
7983Arithmetic with Overflow Intrinsics
7984-----------------------------------
7985
7986LLVM provides intrinsics for some arithmetic with overflow operations.
7987
7988'``llvm.sadd.with.overflow.*``' Intrinsics
7989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7990
7991Syntax:
7992"""""""
7993
7994This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7995on any integer bit width.
7996
7997::
7998
7999 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8000 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8001 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8002
8003Overview:
8004"""""""""
8005
8006The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8007a signed addition of the two arguments, and indicate whether an overflow
8008occurred during the signed summation.
8009
8010Arguments:
8011""""""""""
8012
8013The arguments (%a and %b) and the first element of the result structure
8014may be of integer types of any bit width, but they must have the same
8015bit width. The second element of the result structure must be of type
8016``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8017addition.
8018
8019Semantics:
8020""""""""""
8021
8022The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008023a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008024first element of which is the signed summation, and the second element
8025of which is a bit specifying if the signed summation resulted in an
8026overflow.
8027
8028Examples:
8029"""""""""
8030
8031.. code-block:: llvm
8032
8033 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8034 %sum = extractvalue {i32, i1} %res, 0
8035 %obit = extractvalue {i32, i1} %res, 1
8036 br i1 %obit, label %overflow, label %normal
8037
8038'``llvm.uadd.with.overflow.*``' Intrinsics
8039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8040
8041Syntax:
8042"""""""
8043
8044This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8045on any integer bit width.
8046
8047::
8048
8049 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8050 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8051 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8052
8053Overview:
8054"""""""""
8055
8056The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8057an unsigned addition of the two arguments, and indicate whether a carry
8058occurred during the unsigned summation.
8059
8060Arguments:
8061""""""""""
8062
8063The arguments (%a and %b) and the first element of the result structure
8064may be of integer types of any bit width, but they must have the same
8065bit width. The second element of the result structure must be of type
8066``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8067addition.
8068
8069Semantics:
8070""""""""""
8071
8072The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008073an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008074first element of which is the sum, and the second element of which is a
8075bit specifying if the unsigned summation resulted in a carry.
8076
8077Examples:
8078"""""""""
8079
8080.. code-block:: llvm
8081
8082 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8083 %sum = extractvalue {i32, i1} %res, 0
8084 %obit = extractvalue {i32, i1} %res, 1
8085 br i1 %obit, label %carry, label %normal
8086
8087'``llvm.ssub.with.overflow.*``' Intrinsics
8088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8089
8090Syntax:
8091"""""""
8092
8093This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8094on any integer bit width.
8095
8096::
8097
8098 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8099 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8100 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8101
8102Overview:
8103"""""""""
8104
8105The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8106a signed subtraction of the two arguments, and indicate whether an
8107overflow occurred during the signed subtraction.
8108
8109Arguments:
8110""""""""""
8111
8112The arguments (%a and %b) and the first element of the result structure
8113may be of integer types of any bit width, but they must have the same
8114bit width. The second element of the result structure must be of type
8115``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8116subtraction.
8117
8118Semantics:
8119""""""""""
8120
8121The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008122a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008123first element of which is the subtraction, and the second element of
8124which is a bit specifying if the signed subtraction resulted in an
8125overflow.
8126
8127Examples:
8128"""""""""
8129
8130.. code-block:: llvm
8131
8132 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8133 %sum = extractvalue {i32, i1} %res, 0
8134 %obit = extractvalue {i32, i1} %res, 1
8135 br i1 %obit, label %overflow, label %normal
8136
8137'``llvm.usub.with.overflow.*``' Intrinsics
8138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8139
8140Syntax:
8141"""""""
8142
8143This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8144on any integer bit width.
8145
8146::
8147
8148 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8149 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8150 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8151
8152Overview:
8153"""""""""
8154
8155The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8156an unsigned subtraction of the two arguments, and indicate whether an
8157overflow occurred during the unsigned subtraction.
8158
8159Arguments:
8160""""""""""
8161
8162The arguments (%a and %b) and the first element of the result structure
8163may be of integer types of any bit width, but they must have the same
8164bit width. The second element of the result structure must be of type
8165``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8166subtraction.
8167
8168Semantics:
8169""""""""""
8170
8171The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008172an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008173the first element of which is the subtraction, and the second element of
8174which is a bit specifying if the unsigned subtraction resulted in an
8175overflow.
8176
8177Examples:
8178"""""""""
8179
8180.. code-block:: llvm
8181
8182 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8183 %sum = extractvalue {i32, i1} %res, 0
8184 %obit = extractvalue {i32, i1} %res, 1
8185 br i1 %obit, label %overflow, label %normal
8186
8187'``llvm.smul.with.overflow.*``' Intrinsics
8188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8189
8190Syntax:
8191"""""""
8192
8193This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8194on any integer bit width.
8195
8196::
8197
8198 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8199 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8200 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8201
8202Overview:
8203"""""""""
8204
8205The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8206a signed multiplication of the two arguments, and indicate whether an
8207overflow occurred during the signed multiplication.
8208
8209Arguments:
8210""""""""""
8211
8212The arguments (%a and %b) and the first element of the result structure
8213may be of integer types of any bit width, but they must have the same
8214bit width. The second element of the result structure must be of type
8215``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8216multiplication.
8217
8218Semantics:
8219""""""""""
8220
8221The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008222a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008223the first element of which is the multiplication, and the second element
8224of which is a bit specifying if the signed multiplication resulted in an
8225overflow.
8226
8227Examples:
8228"""""""""
8229
8230.. code-block:: llvm
8231
8232 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8233 %sum = extractvalue {i32, i1} %res, 0
8234 %obit = extractvalue {i32, i1} %res, 1
8235 br i1 %obit, label %overflow, label %normal
8236
8237'``llvm.umul.with.overflow.*``' Intrinsics
8238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8239
8240Syntax:
8241"""""""
8242
8243This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8244on any integer bit width.
8245
8246::
8247
8248 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8249 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8250 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8251
8252Overview:
8253"""""""""
8254
8255The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8256a unsigned multiplication of the two arguments, and indicate whether an
8257overflow occurred during the unsigned multiplication.
8258
8259Arguments:
8260""""""""""
8261
8262The arguments (%a and %b) and the first element of the result structure
8263may be of integer types of any bit width, but they must have the same
8264bit width. The second element of the result structure must be of type
8265``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8266multiplication.
8267
8268Semantics:
8269""""""""""
8270
8271The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008272an unsigned multiplication of the two arguments. They return a structure ---
8273the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008274element of which is a bit specifying if the unsigned multiplication
8275resulted in an overflow.
8276
8277Examples:
8278"""""""""
8279
8280.. code-block:: llvm
8281
8282 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8283 %sum = extractvalue {i32, i1} %res, 0
8284 %obit = extractvalue {i32, i1} %res, 1
8285 br i1 %obit, label %overflow, label %normal
8286
8287Specialised Arithmetic Intrinsics
8288---------------------------------
8289
8290'``llvm.fmuladd.*``' Intrinsic
8291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8292
8293Syntax:
8294"""""""
8295
8296::
8297
8298 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8299 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8300
8301Overview:
8302"""""""""
8303
8304The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008305expressions that can be fused if the code generator determines that (a) the
8306target instruction set has support for a fused operation, and (b) that the
8307fused operation is more efficient than the equivalent, separate pair of mul
8308and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008309
8310Arguments:
8311""""""""""
8312
8313The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8314multiplicands, a and b, and an addend c.
8315
8316Semantics:
8317""""""""""
8318
8319The expression:
8320
8321::
8322
8323 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8324
8325is equivalent to the expression a \* b + c, except that rounding will
8326not be performed between the multiplication and addition steps if the
8327code generator fuses the operations. Fusion is not guaranteed, even if
8328the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008329corresponding llvm.fma.\* intrinsic function should be used
8330instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008331
8332Examples:
8333"""""""""
8334
8335.. code-block:: llvm
8336
8337 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8338
8339Half Precision Floating Point Intrinsics
8340----------------------------------------
8341
8342For most target platforms, half precision floating point is a
8343storage-only format. This means that it is a dense encoding (in memory)
8344but does not support computation in the format.
8345
8346This means that code must first load the half-precision floating point
8347value as an i16, then convert it to float with
8348:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8349then be performed on the float value (including extending to double
8350etc). To store the value back to memory, it is first converted to float
8351if needed, then converted to i16 with
8352:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8353i16 value.
8354
8355.. _int_convert_to_fp16:
8356
8357'``llvm.convert.to.fp16``' Intrinsic
8358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8359
8360Syntax:
8361"""""""
8362
8363::
8364
8365 declare i16 @llvm.convert.to.fp16(f32 %a)
8366
8367Overview:
8368"""""""""
8369
8370The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8371from single precision floating point format to half precision floating
8372point format.
8373
8374Arguments:
8375""""""""""
8376
8377The intrinsic function contains single argument - the value to be
8378converted.
8379
8380Semantics:
8381""""""""""
8382
8383The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8384from single precision floating point format to half precision floating
8385point format. The return value is an ``i16`` which contains the
8386converted number.
8387
8388Examples:
8389"""""""""
8390
8391.. code-block:: llvm
8392
8393 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8394 store i16 %res, i16* @x, align 2
8395
8396.. _int_convert_from_fp16:
8397
8398'``llvm.convert.from.fp16``' Intrinsic
8399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8400
8401Syntax:
8402"""""""
8403
8404::
8405
8406 declare f32 @llvm.convert.from.fp16(i16 %a)
8407
8408Overview:
8409"""""""""
8410
8411The '``llvm.convert.from.fp16``' intrinsic function performs a
8412conversion from half precision floating point format to single precision
8413floating point format.
8414
8415Arguments:
8416""""""""""
8417
8418The intrinsic function contains single argument - the value to be
8419converted.
8420
8421Semantics:
8422""""""""""
8423
8424The '``llvm.convert.from.fp16``' intrinsic function performs a
8425conversion from half single precision floating point format to single
8426precision floating point format. The input half-float value is
8427represented by an ``i16`` value.
8428
8429Examples:
8430"""""""""
8431
8432.. code-block:: llvm
8433
8434 %a = load i16* @x, align 2
8435 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8436
8437Debugger Intrinsics
8438-------------------
8439
8440The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8441prefix), are described in the `LLVM Source Level
8442Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8443document.
8444
8445Exception Handling Intrinsics
8446-----------------------------
8447
8448The LLVM exception handling intrinsics (which all start with
8449``llvm.eh.`` prefix), are described in the `LLVM Exception
8450Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8451
8452.. _int_trampoline:
8453
8454Trampoline Intrinsics
8455---------------------
8456
8457These intrinsics make it possible to excise one parameter, marked with
8458the :ref:`nest <nest>` attribute, from a function. The result is a
8459callable function pointer lacking the nest parameter - the caller does
8460not need to provide a value for it. Instead, the value to use is stored
8461in advance in a "trampoline", a block of memory usually allocated on the
8462stack, which also contains code to splice the nest value into the
8463argument list. This is used to implement the GCC nested function address
8464extension.
8465
8466For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8467then the resulting function pointer has signature ``i32 (i32, i32)*``.
8468It can be created as follows:
8469
8470.. code-block:: llvm
8471
8472 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8473 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8474 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8475 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8476 %fp = bitcast i8* %p to i32 (i32, i32)*
8477
8478The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8479``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8480
8481.. _int_it:
8482
8483'``llvm.init.trampoline``' Intrinsic
8484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8485
8486Syntax:
8487"""""""
8488
8489::
8490
8491 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8492
8493Overview:
8494"""""""""
8495
8496This fills the memory pointed to by ``tramp`` with executable code,
8497turning it into a trampoline.
8498
8499Arguments:
8500""""""""""
8501
8502The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8503pointers. The ``tramp`` argument must point to a sufficiently large and
8504sufficiently aligned block of memory; this memory is written to by the
8505intrinsic. Note that the size and the alignment are target-specific -
8506LLVM currently provides no portable way of determining them, so a
8507front-end that generates this intrinsic needs to have some
8508target-specific knowledge. The ``func`` argument must hold a function
8509bitcast to an ``i8*``.
8510
8511Semantics:
8512""""""""""
8513
8514The block of memory pointed to by ``tramp`` is filled with target
8515dependent code, turning it into a function. Then ``tramp`` needs to be
8516passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8517be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8518function's signature is the same as that of ``func`` with any arguments
8519marked with the ``nest`` attribute removed. At most one such ``nest``
8520argument is allowed, and it must be of pointer type. Calling the new
8521function is equivalent to calling ``func`` with the same argument list,
8522but with ``nval`` used for the missing ``nest`` argument. If, after
8523calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8524modified, then the effect of any later call to the returned function
8525pointer is undefined.
8526
8527.. _int_at:
8528
8529'``llvm.adjust.trampoline``' Intrinsic
8530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8531
8532Syntax:
8533"""""""
8534
8535::
8536
8537 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8538
8539Overview:
8540"""""""""
8541
8542This performs any required machine-specific adjustment to the address of
8543a trampoline (passed as ``tramp``).
8544
8545Arguments:
8546""""""""""
8547
8548``tramp`` must point to a block of memory which already has trampoline
8549code filled in by a previous call to
8550:ref:`llvm.init.trampoline <int_it>`.
8551
8552Semantics:
8553""""""""""
8554
8555On some architectures the address of the code to be executed needs to be
8556different to the address where the trampoline is actually stored. This
8557intrinsic returns the executable address corresponding to ``tramp``
8558after performing the required machine specific adjustments. The pointer
8559returned can then be :ref:`bitcast and executed <int_trampoline>`.
8560
8561Memory Use Markers
8562------------------
8563
8564This class of intrinsics exists to information about the lifetime of
8565memory objects and ranges where variables are immutable.
8566
Reid Klecknera534a382013-12-19 02:14:12 +00008567.. _int_lifestart:
8568
Sean Silvab084af42012-12-07 10:36:55 +00008569'``llvm.lifetime.start``' Intrinsic
8570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8571
8572Syntax:
8573"""""""
8574
8575::
8576
8577 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8578
8579Overview:
8580"""""""""
8581
8582The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8583object's lifetime.
8584
8585Arguments:
8586""""""""""
8587
8588The first argument is a constant integer representing the size of the
8589object, or -1 if it is variable sized. The second argument is a pointer
8590to the object.
8591
8592Semantics:
8593""""""""""
8594
8595This intrinsic indicates that before this point in the code, the value
8596of the memory pointed to by ``ptr`` is dead. This means that it is known
8597to never be used and has an undefined value. A load from the pointer
8598that precedes this intrinsic can be replaced with ``'undef'``.
8599
Reid Klecknera534a382013-12-19 02:14:12 +00008600.. _int_lifeend:
8601
Sean Silvab084af42012-12-07 10:36:55 +00008602'``llvm.lifetime.end``' Intrinsic
8603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8604
8605Syntax:
8606"""""""
8607
8608::
8609
8610 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8611
8612Overview:
8613"""""""""
8614
8615The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8616object's lifetime.
8617
8618Arguments:
8619""""""""""
8620
8621The first argument is a constant integer representing the size of the
8622object, or -1 if it is variable sized. The second argument is a pointer
8623to the object.
8624
8625Semantics:
8626""""""""""
8627
8628This intrinsic indicates that after this point in the code, the value of
8629the memory pointed to by ``ptr`` is dead. This means that it is known to
8630never be used and has an undefined value. Any stores into the memory
8631object following this intrinsic may be removed as dead.
8632
8633'``llvm.invariant.start``' Intrinsic
8634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8635
8636Syntax:
8637"""""""
8638
8639::
8640
8641 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8642
8643Overview:
8644"""""""""
8645
8646The '``llvm.invariant.start``' intrinsic specifies that the contents of
8647a memory object will not change.
8648
8649Arguments:
8650""""""""""
8651
8652The first argument is a constant integer representing the size of the
8653object, or -1 if it is variable sized. The second argument is a pointer
8654to the object.
8655
8656Semantics:
8657""""""""""
8658
8659This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8660the return value, the referenced memory location is constant and
8661unchanging.
8662
8663'``llvm.invariant.end``' Intrinsic
8664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8665
8666Syntax:
8667"""""""
8668
8669::
8670
8671 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8672
8673Overview:
8674"""""""""
8675
8676The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8677memory object are mutable.
8678
8679Arguments:
8680""""""""""
8681
8682The first argument is the matching ``llvm.invariant.start`` intrinsic.
8683The second argument is a constant integer representing the size of the
8684object, or -1 if it is variable sized and the third argument is a
8685pointer to the object.
8686
8687Semantics:
8688""""""""""
8689
8690This intrinsic indicates that the memory is mutable again.
8691
8692General Intrinsics
8693------------------
8694
8695This class of intrinsics is designed to be generic and has no specific
8696purpose.
8697
8698'``llvm.var.annotation``' Intrinsic
8699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8700
8701Syntax:
8702"""""""
8703
8704::
8705
8706 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8707
8708Overview:
8709"""""""""
8710
8711The '``llvm.var.annotation``' intrinsic.
8712
8713Arguments:
8714""""""""""
8715
8716The first argument is a pointer to a value, the second is a pointer to a
8717global string, the third is a pointer to a global string which is the
8718source file name, and the last argument is the line number.
8719
8720Semantics:
8721""""""""""
8722
8723This intrinsic allows annotation of local variables with arbitrary
8724strings. This can be useful for special purpose optimizations that want
8725to look for these annotations. These have no other defined use; they are
8726ignored by code generation and optimization.
8727
Michael Gottesman88d18832013-03-26 00:34:27 +00008728'``llvm.ptr.annotation.*``' Intrinsic
8729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8730
8731Syntax:
8732"""""""
8733
8734This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8735pointer to an integer of any width. *NOTE* you must specify an address space for
8736the pointer. The identifier for the default address space is the integer
8737'``0``'.
8738
8739::
8740
8741 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8742 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8743 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8744 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8745 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8746
8747Overview:
8748"""""""""
8749
8750The '``llvm.ptr.annotation``' intrinsic.
8751
8752Arguments:
8753""""""""""
8754
8755The first argument is a pointer to an integer value of arbitrary bitwidth
8756(result of some expression), the second is a pointer to a global string, the
8757third is a pointer to a global string which is the source file name, and the
8758last argument is the line number. It returns the value of the first argument.
8759
8760Semantics:
8761""""""""""
8762
8763This intrinsic allows annotation of a pointer to an integer with arbitrary
8764strings. This can be useful for special purpose optimizations that want to look
8765for these annotations. These have no other defined use; they are ignored by code
8766generation and optimization.
8767
Sean Silvab084af42012-12-07 10:36:55 +00008768'``llvm.annotation.*``' Intrinsic
8769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8770
8771Syntax:
8772"""""""
8773
8774This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8775any integer bit width.
8776
8777::
8778
8779 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8780 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8781 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8782 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8783 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8784
8785Overview:
8786"""""""""
8787
8788The '``llvm.annotation``' intrinsic.
8789
8790Arguments:
8791""""""""""
8792
8793The first argument is an integer value (result of some expression), the
8794second is a pointer to a global string, the third is a pointer to a
8795global string which is the source file name, and the last argument is
8796the line number. It returns the value of the first argument.
8797
8798Semantics:
8799""""""""""
8800
8801This intrinsic allows annotations to be put on arbitrary expressions
8802with arbitrary strings. This can be useful for special purpose
8803optimizations that want to look for these annotations. These have no
8804other defined use; they are ignored by code generation and optimization.
8805
8806'``llvm.trap``' Intrinsic
8807^^^^^^^^^^^^^^^^^^^^^^^^^
8808
8809Syntax:
8810"""""""
8811
8812::
8813
8814 declare void @llvm.trap() noreturn nounwind
8815
8816Overview:
8817"""""""""
8818
8819The '``llvm.trap``' intrinsic.
8820
8821Arguments:
8822""""""""""
8823
8824None.
8825
8826Semantics:
8827""""""""""
8828
8829This intrinsic is lowered to the target dependent trap instruction. If
8830the target does not have a trap instruction, this intrinsic will be
8831lowered to a call of the ``abort()`` function.
8832
8833'``llvm.debugtrap``' Intrinsic
8834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8835
8836Syntax:
8837"""""""
8838
8839::
8840
8841 declare void @llvm.debugtrap() nounwind
8842
8843Overview:
8844"""""""""
8845
8846The '``llvm.debugtrap``' intrinsic.
8847
8848Arguments:
8849""""""""""
8850
8851None.
8852
8853Semantics:
8854""""""""""
8855
8856This intrinsic is lowered to code which is intended to cause an
8857execution trap with the intention of requesting the attention of a
8858debugger.
8859
8860'``llvm.stackprotector``' Intrinsic
8861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8862
8863Syntax:
8864"""""""
8865
8866::
8867
8868 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8869
8870Overview:
8871"""""""""
8872
8873The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8874onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8875is placed on the stack before local variables.
8876
8877Arguments:
8878""""""""""
8879
8880The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8881The first argument is the value loaded from the stack guard
8882``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8883enough space to hold the value of the guard.
8884
8885Semantics:
8886""""""""""
8887
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008888This intrinsic causes the prologue/epilogue inserter to force the position of
8889the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8890to ensure that if a local variable on the stack is overwritten, it will destroy
8891the value of the guard. When the function exits, the guard on the stack is
8892checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8893different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8894calling the ``__stack_chk_fail()`` function.
8895
8896'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008898
8899Syntax:
8900"""""""
8901
8902::
8903
8904 declare void @llvm.stackprotectorcheck(i8** <guard>)
8905
8906Overview:
8907"""""""""
8908
8909The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008910created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008911``__stack_chk_fail()`` function.
8912
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008913Arguments:
8914""""""""""
8915
8916The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8917the variable ``@__stack_chk_guard``.
8918
8919Semantics:
8920""""""""""
8921
8922This intrinsic is provided to perform the stack protector check by comparing
8923``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8924values do not match call the ``__stack_chk_fail()`` function.
8925
8926The reason to provide this as an IR level intrinsic instead of implementing it
8927via other IR operations is that in order to perform this operation at the IR
8928level without an intrinsic, one would need to create additional basic blocks to
8929handle the success/failure cases. This makes it difficult to stop the stack
8930protector check from disrupting sibling tail calls in Codegen. With this
8931intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008932codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008933
Sean Silvab084af42012-12-07 10:36:55 +00008934'``llvm.objectsize``' Intrinsic
8935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8936
8937Syntax:
8938"""""""
8939
8940::
8941
8942 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8943 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8944
8945Overview:
8946"""""""""
8947
8948The ``llvm.objectsize`` intrinsic is designed to provide information to
8949the optimizers to determine at compile time whether a) an operation
8950(like memcpy) will overflow a buffer that corresponds to an object, or
8951b) that a runtime check for overflow isn't necessary. An object in this
8952context means an allocation of a specific class, structure, array, or
8953other object.
8954
8955Arguments:
8956""""""""""
8957
8958The ``llvm.objectsize`` intrinsic takes two arguments. The first
8959argument is a pointer to or into the ``object``. The second argument is
8960a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8961or -1 (if false) when the object size is unknown. The second argument
8962only accepts constants.
8963
8964Semantics:
8965""""""""""
8966
8967The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8968the size of the object concerned. If the size cannot be determined at
8969compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8970on the ``min`` argument).
8971
8972'``llvm.expect``' Intrinsic
8973^^^^^^^^^^^^^^^^^^^^^^^^^^^
8974
8975Syntax:
8976"""""""
8977
8978::
8979
8980 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8981 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8982
8983Overview:
8984"""""""""
8985
8986The ``llvm.expect`` intrinsic provides information about expected (the
8987most probable) value of ``val``, which can be used by optimizers.
8988
8989Arguments:
8990""""""""""
8991
8992The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8993a value. The second argument is an expected value, this needs to be a
8994constant value, variables are not allowed.
8995
8996Semantics:
8997""""""""""
8998
8999This intrinsic is lowered to the ``val``.
9000
9001'``llvm.donothing``' Intrinsic
9002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9003
9004Syntax:
9005"""""""
9006
9007::
9008
9009 declare void @llvm.donothing() nounwind readnone
9010
9011Overview:
9012"""""""""
9013
9014The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9015only intrinsic that can be called with an invoke instruction.
9016
9017Arguments:
9018""""""""""
9019
9020None.
9021
9022Semantics:
9023""""""""""
9024
9025This intrinsic does nothing, and it's removed by optimizers and ignored
9026by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009027
9028Stack Map Intrinsics
9029--------------------
9030
9031LLVM provides experimental intrinsics to support runtime patching
9032mechanisms commonly desired in dynamic language JITs. These intrinsics
9033are described in :doc:`StackMaps`.