blob: efeddf07db261a6b49a7663aafb7bad8d97d5eeb [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Chandler Carruth66b31302015-01-04 12:03:27 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruthb98f63d2015-01-15 10:41:28 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000630}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000678namespace {
679struct FindSCEVSize {
680 int Size;
681 FindSCEVSize() : Size(0) {}
682
683 bool follow(const SCEV *S) {
684 ++Size;
685 // Keep looking at all operands of S.
686 return true;
687 }
688 bool isDone() const {
689 return false;
690 }
691};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000692}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000693
694// Returns the size of the SCEV S.
695static inline int sizeOfSCEV(const SCEV *S) {
696 FindSCEVSize F;
697 SCEVTraversal<FindSCEVSize> ST(F);
698 ST.visitAll(S);
699 return F.Size;
700}
701
702namespace {
703
David Majnemer4e879362014-12-14 09:12:33 +0000704struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705public:
706 // Computes the Quotient and Remainder of the division of Numerator by
707 // Denominator.
708 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709 const SCEV *Denominator, const SCEV **Quotient,
710 const SCEV **Remainder) {
711 assert(Numerator && Denominator && "Uninitialized SCEV");
712
David Majnemer4e879362014-12-14 09:12:33 +0000713 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714
715 // Check for the trivial case here to avoid having to check for it in the
716 // rest of the code.
717 if (Numerator == Denominator) {
718 *Quotient = D.One;
719 *Remainder = D.Zero;
720 return;
721 }
722
723 if (Numerator->isZero()) {
724 *Quotient = D.Zero;
725 *Remainder = D.Zero;
726 return;
727 }
728
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000729 // A simple case when N/1. The quotient is N.
730 if (Denominator->isOne()) {
731 *Quotient = Numerator;
732 *Remainder = D.Zero;
733 return;
734 }
735
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000736 // Split the Denominator when it is a product.
737 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
738 const SCEV *Q, *R;
739 *Quotient = Numerator;
740 for (const SCEV *Op : T->operands()) {
741 divide(SE, *Quotient, Op, &Q, &R);
742 *Quotient = Q;
743
744 // Bail out when the Numerator is not divisible by one of the terms of
745 // the Denominator.
746 if (!R->isZero()) {
747 *Quotient = D.Zero;
748 *Remainder = Numerator;
749 return;
750 }
751 }
752 *Remainder = D.Zero;
753 return;
754 }
755
756 D.visit(Numerator);
757 *Quotient = D.Quotient;
758 *Remainder = D.Remainder;
759 }
760
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000761 // Except in the trivial case described above, we do not know how to divide
762 // Expr by Denominator for the following functions with empty implementation.
763 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
764 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
765 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
766 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
767 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
768 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
769 void visitUnknown(const SCEVUnknown *Numerator) {}
770 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
771
David Majnemer4e879362014-12-14 09:12:33 +0000772 void visitConstant(const SCEVConstant *Numerator) {
773 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
774 APInt NumeratorVal = Numerator->getValue()->getValue();
775 APInt DenominatorVal = D->getValue()->getValue();
776 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
777 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
778
779 if (NumeratorBW > DenominatorBW)
780 DenominatorVal = DenominatorVal.sext(NumeratorBW);
781 else if (NumeratorBW < DenominatorBW)
782 NumeratorVal = NumeratorVal.sext(DenominatorBW);
783
784 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
785 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
786 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
787 Quotient = SE.getConstant(QuotientVal);
788 Remainder = SE.getConstant(RemainderVal);
789 return;
790 }
791 }
792
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000793 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
794 const SCEV *StartQ, *StartR, *StepQ, *StepR;
795 assert(Numerator->isAffine() && "Numerator should be affine");
796 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
797 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000798 // Bail out if the types do not match.
799 Type *Ty = Denominator->getType();
800 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
801 Ty != StepQ->getType() || Ty != StepR->getType()) {
802 Quotient = Zero;
803 Remainder = Numerator;
804 return;
805 }
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000806 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
807 Numerator->getNoWrapFlags());
808 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
809 Numerator->getNoWrapFlags());
810 }
811
812 void visitAddExpr(const SCEVAddExpr *Numerator) {
813 SmallVector<const SCEV *, 2> Qs, Rs;
814 Type *Ty = Denominator->getType();
815
816 for (const SCEV *Op : Numerator->operands()) {
817 const SCEV *Q, *R;
818 divide(SE, Op, Denominator, &Q, &R);
819
820 // Bail out if types do not match.
821 if (Ty != Q->getType() || Ty != R->getType()) {
822 Quotient = Zero;
823 Remainder = Numerator;
824 return;
825 }
826
827 Qs.push_back(Q);
828 Rs.push_back(R);
829 }
830
831 if (Qs.size() == 1) {
832 Quotient = Qs[0];
833 Remainder = Rs[0];
834 return;
835 }
836
837 Quotient = SE.getAddExpr(Qs);
838 Remainder = SE.getAddExpr(Rs);
839 }
840
841 void visitMulExpr(const SCEVMulExpr *Numerator) {
842 SmallVector<const SCEV *, 2> Qs;
843 Type *Ty = Denominator->getType();
844
845 bool FoundDenominatorTerm = false;
846 for (const SCEV *Op : Numerator->operands()) {
847 // Bail out if types do not match.
848 if (Ty != Op->getType()) {
849 Quotient = Zero;
850 Remainder = Numerator;
851 return;
852 }
853
854 if (FoundDenominatorTerm) {
855 Qs.push_back(Op);
856 continue;
857 }
858
859 // Check whether Denominator divides one of the product operands.
860 const SCEV *Q, *R;
861 divide(SE, Op, Denominator, &Q, &R);
862 if (!R->isZero()) {
863 Qs.push_back(Op);
864 continue;
865 }
866
867 // Bail out if types do not match.
868 if (Ty != Q->getType()) {
869 Quotient = Zero;
870 Remainder = Numerator;
871 return;
872 }
873
874 FoundDenominatorTerm = true;
875 Qs.push_back(Q);
876 }
877
878 if (FoundDenominatorTerm) {
879 Remainder = Zero;
880 if (Qs.size() == 1)
881 Quotient = Qs[0];
882 else
883 Quotient = SE.getMulExpr(Qs);
884 return;
885 }
886
887 if (!isa<SCEVUnknown>(Denominator)) {
888 Quotient = Zero;
889 Remainder = Numerator;
890 return;
891 }
892
893 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
894 ValueToValueMap RewriteMap;
895 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
896 cast<SCEVConstant>(Zero)->getValue();
897 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
898
899 if (Remainder->isZero()) {
900 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
901 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
902 cast<SCEVConstant>(One)->getValue();
903 Quotient =
904 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
905 return;
906 }
907
908 // Quotient is (Numerator - Remainder) divided by Denominator.
909 const SCEV *Q, *R;
910 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
911 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
912 // This SCEV does not seem to simplify: fail the division here.
913 Quotient = Zero;
914 Remainder = Numerator;
915 return;
916 }
917 divide(SE, Diff, Denominator, &Q, &R);
918 assert(R == Zero &&
919 "(Numerator - Remainder) should evenly divide Denominator");
920 Quotient = Q;
921 }
922
923private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000924 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
925 const SCEV *Denominator)
926 : SE(S), Denominator(Denominator) {
927 Zero = SE.getConstant(Denominator->getType(), 0);
928 One = SE.getConstant(Denominator->getType(), 1);
929
930 // By default, we don't know how to divide Expr by Denominator.
931 // Providing the default here simplifies the rest of the code.
932 Quotient = Zero;
933 Remainder = Numerator;
934 }
935
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000936 ScalarEvolution &SE;
937 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000938};
939
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000940}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000941
Chris Lattnerd934c702004-04-02 20:23:17 +0000942//===----------------------------------------------------------------------===//
943// Simple SCEV method implementations
944//===----------------------------------------------------------------------===//
945
Eli Friedman61f67622008-08-04 23:49:06 +0000946/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000947/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000948static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000949 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000950 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // Handle the simplest case efficiently.
952 if (K == 1)
953 return SE.getTruncateOrZeroExtend(It, ResultTy);
954
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000955 // We are using the following formula for BC(It, K):
956 //
957 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
958 //
Eli Friedman61f67622008-08-04 23:49:06 +0000959 // Suppose, W is the bitwidth of the return value. We must be prepared for
960 // overflow. Hence, we must assure that the result of our computation is
961 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
962 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000963 //
Eli Friedman61f67622008-08-04 23:49:06 +0000964 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000965 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000966 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
967 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000968 //
Eli Friedman61f67622008-08-04 23:49:06 +0000969 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000970 //
Eli Friedman61f67622008-08-04 23:49:06 +0000971 // This formula is trivially equivalent to the previous formula. However,
972 // this formula can be implemented much more efficiently. The trick is that
973 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
974 // arithmetic. To do exact division in modular arithmetic, all we have
975 // to do is multiply by the inverse. Therefore, this step can be done at
976 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000977 //
Eli Friedman61f67622008-08-04 23:49:06 +0000978 // The next issue is how to safely do the division by 2^T. The way this
979 // is done is by doing the multiplication step at a width of at least W + T
980 // bits. This way, the bottom W+T bits of the product are accurate. Then,
981 // when we perform the division by 2^T (which is equivalent to a right shift
982 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
983 // truncated out after the division by 2^T.
984 //
985 // In comparison to just directly using the first formula, this technique
986 // is much more efficient; using the first formula requires W * K bits,
987 // but this formula less than W + K bits. Also, the first formula requires
988 // a division step, whereas this formula only requires multiplies and shifts.
989 //
990 // It doesn't matter whether the subtraction step is done in the calculation
991 // width or the input iteration count's width; if the subtraction overflows,
992 // the result must be zero anyway. We prefer here to do it in the width of
993 // the induction variable because it helps a lot for certain cases; CodeGen
994 // isn't smart enough to ignore the overflow, which leads to much less
995 // efficient code if the width of the subtraction is wider than the native
996 // register width.
997 //
998 // (It's possible to not widen at all by pulling out factors of 2 before
999 // the multiplication; for example, K=2 can be calculated as
1000 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1001 // extra arithmetic, so it's not an obvious win, and it gets
1002 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001003
Eli Friedman61f67622008-08-04 23:49:06 +00001004 // Protection from insane SCEVs; this bound is conservative,
1005 // but it probably doesn't matter.
1006 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +00001007 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001008
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001009 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001010
Eli Friedman61f67622008-08-04 23:49:06 +00001011 // Calculate K! / 2^T and T; we divide out the factors of two before
1012 // multiplying for calculating K! / 2^T to avoid overflow.
1013 // Other overflow doesn't matter because we only care about the bottom
1014 // W bits of the result.
1015 APInt OddFactorial(W, 1);
1016 unsigned T = 1;
1017 for (unsigned i = 3; i <= K; ++i) {
1018 APInt Mult(W, i);
1019 unsigned TwoFactors = Mult.countTrailingZeros();
1020 T += TwoFactors;
1021 Mult = Mult.lshr(TwoFactors);
1022 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001023 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001024
Eli Friedman61f67622008-08-04 23:49:06 +00001025 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001026 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001027
Dan Gohman8b0a4192010-03-01 17:49:51 +00001028 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001029 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001030
1031 // Calculate the multiplicative inverse of K! / 2^T;
1032 // this multiplication factor will perform the exact division by
1033 // K! / 2^T.
1034 APInt Mod = APInt::getSignedMinValue(W+1);
1035 APInt MultiplyFactor = OddFactorial.zext(W+1);
1036 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1037 MultiplyFactor = MultiplyFactor.trunc(W);
1038
1039 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001040 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001041 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001042 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001043 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001044 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001045 Dividend = SE.getMulExpr(Dividend,
1046 SE.getTruncateOrZeroExtend(S, CalculationTy));
1047 }
1048
1049 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001050 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001051
1052 // Truncate the result, and divide by K! / 2^T.
1053
1054 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1055 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001056}
1057
Chris Lattnerd934c702004-04-02 20:23:17 +00001058/// evaluateAtIteration - Return the value of this chain of recurrences at
1059/// the specified iteration number. We can evaluate this recurrence by
1060/// multiplying each element in the chain by the binomial coefficient
1061/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1062///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001063/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001064///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001065/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001066///
Dan Gohmanaf752342009-07-07 17:06:11 +00001067const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001068 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001069 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001070 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001071 // The computation is correct in the face of overflow provided that the
1072 // multiplication is performed _after_ the evaluation of the binomial
1073 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001074 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001075 if (isa<SCEVCouldNotCompute>(Coeff))
1076 return Coeff;
1077
1078 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001079 }
1080 return Result;
1081}
1082
Chris Lattnerd934c702004-04-02 20:23:17 +00001083//===----------------------------------------------------------------------===//
1084// SCEV Expression folder implementations
1085//===----------------------------------------------------------------------===//
1086
Dan Gohmanaf752342009-07-07 17:06:11 +00001087const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001088 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001089 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001090 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001091 assert(isSCEVable(Ty) &&
1092 "This is not a conversion to a SCEVable type!");
1093 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001094
Dan Gohman3a302cb2009-07-13 20:50:19 +00001095 FoldingSetNodeID ID;
1096 ID.AddInteger(scTruncate);
1097 ID.AddPointer(Op);
1098 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001099 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001100 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1101
Dan Gohman3423e722009-06-30 20:13:32 +00001102 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001103 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001104 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001105 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001106
Dan Gohman79af8542009-04-22 16:20:48 +00001107 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001108 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001109 return getTruncateExpr(ST->getOperand(), Ty);
1110
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001111 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001112 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001113 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1114
1115 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001116 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001117 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1118
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001119 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001120 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001121 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1122 SmallVector<const SCEV *, 4> Operands;
1123 bool hasTrunc = false;
1124 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1125 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001126 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1127 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001128 Operands.push_back(S);
1129 }
1130 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001131 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001132 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001133 }
1134
Nick Lewycky5c901f32011-01-19 18:56:00 +00001135 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001136 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001137 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1138 SmallVector<const SCEV *, 4> Operands;
1139 bool hasTrunc = false;
1140 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1141 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001142 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1143 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001144 Operands.push_back(S);
1145 }
1146 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001147 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001148 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001149 }
1150
Dan Gohman5a728c92009-06-18 16:24:47 +00001151 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001152 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001153 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001154 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001155 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001156 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001157 }
1158
Dan Gohman89dd42a2010-06-25 18:47:08 +00001159 // The cast wasn't folded; create an explicit cast node. We can reuse
1160 // the existing insert position since if we get here, we won't have
1161 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001162 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1163 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001164 UniqueSCEVs.InsertNode(S, IP);
1165 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001166}
1167
Sanjoy Das4153f472015-02-18 01:47:07 +00001168// Get the limit of a recurrence such that incrementing by Step cannot cause
1169// signed overflow as long as the value of the recurrence within the
1170// loop does not exceed this limit before incrementing.
1171static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1172 ICmpInst::Predicate *Pred,
1173 ScalarEvolution *SE) {
1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1175 if (SE->isKnownPositive(Step)) {
1176 *Pred = ICmpInst::ICMP_SLT;
1177 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1178 SE->getSignedRange(Step).getSignedMax());
1179 }
1180 if (SE->isKnownNegative(Step)) {
1181 *Pred = ICmpInst::ICMP_SGT;
1182 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1183 SE->getSignedRange(Step).getSignedMin());
1184 }
1185 return nullptr;
1186}
1187
1188// Get the limit of a recurrence such that incrementing by Step cannot cause
1189// unsigned overflow as long as the value of the recurrence within the loop does
1190// not exceed this limit before incrementing.
1191static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1192 ICmpInst::Predicate *Pred,
1193 ScalarEvolution *SE) {
1194 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1195 *Pred = ICmpInst::ICMP_ULT;
1196
1197 return SE->getConstant(APInt::getMinValue(BitWidth) -
1198 SE->getUnsignedRange(Step).getUnsignedMax());
1199}
1200
1201namespace {
1202
1203struct ExtendOpTraitsBase {
1204 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1205};
1206
1207// Used to make code generic over signed and unsigned overflow.
1208template <typename ExtendOp> struct ExtendOpTraits {
1209 // Members present:
1210 //
1211 // static const SCEV::NoWrapFlags WrapType;
1212 //
1213 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1214 //
1215 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1216 // ICmpInst::Predicate *Pred,
1217 // ScalarEvolution *SE);
1218};
1219
1220template <>
1221struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1222 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1223
1224 static const GetExtendExprTy GetExtendExpr;
1225
1226 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1227 ICmpInst::Predicate *Pred,
1228 ScalarEvolution *SE) {
1229 return getSignedOverflowLimitForStep(Step, Pred, SE);
1230 }
1231};
1232
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001233const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001234 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1235
1236template <>
1237struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1238 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1239
1240 static const GetExtendExprTy GetExtendExpr;
1241
1242 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1243 ICmpInst::Predicate *Pred,
1244 ScalarEvolution *SE) {
1245 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1246 }
1247};
1248
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001249const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001250 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001251}
Sanjoy Das4153f472015-02-18 01:47:07 +00001252
1253// The recurrence AR has been shown to have no signed/unsigned wrap or something
1254// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1255// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1256// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1257// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1258// expression "Step + sext/zext(PreIncAR)" is congruent with
1259// "sext/zext(PostIncAR)"
1260template <typename ExtendOpTy>
1261static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1262 ScalarEvolution *SE) {
1263 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1264 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1265
1266 const Loop *L = AR->getLoop();
1267 const SCEV *Start = AR->getStart();
1268 const SCEV *Step = AR->getStepRecurrence(*SE);
1269
1270 // Check for a simple looking step prior to loop entry.
1271 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1272 if (!SA)
1273 return nullptr;
1274
1275 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1276 // subtraction is expensive. For this purpose, perform a quick and dirty
1277 // difference, by checking for Step in the operand list.
1278 SmallVector<const SCEV *, 4> DiffOps;
1279 for (const SCEV *Op : SA->operands())
1280 if (Op != Step)
1281 DiffOps.push_back(Op);
1282
1283 if (DiffOps.size() == SA->getNumOperands())
1284 return nullptr;
1285
1286 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1287 // `Step`:
1288
1289 // 1. NSW/NUW flags on the step increment.
1290 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1291 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1292 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1293
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001294 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1295 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001296 //
1297
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001298 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1299 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1300 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001301 return PreStart;
1302
1303 // 2. Direct overflow check on the step operation's expression.
1304 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1305 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1306 const SCEV *OperandExtendedStart =
1307 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1308 (SE->*GetExtendExpr)(Step, WideTy));
1309 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1310 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1311 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1312 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1313 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1314 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1315 }
1316 return PreStart;
1317 }
1318
1319 // 3. Loop precondition.
1320 ICmpInst::Predicate Pred;
1321 const SCEV *OverflowLimit =
1322 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1323
1324 if (OverflowLimit &&
1325 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1326 return PreStart;
1327 }
1328 return nullptr;
1329}
1330
1331// Get the normalized zero or sign extended expression for this AddRec's Start.
1332template <typename ExtendOpTy>
1333static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1334 ScalarEvolution *SE) {
1335 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1336
1337 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1338 if (!PreStart)
1339 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1340
1341 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1342 (SE->*GetExtendExpr)(PreStart, Ty));
1343}
1344
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001345// Try to prove away overflow by looking at "nearby" add recurrences. A
1346// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1347// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1348//
1349// Formally:
1350//
1351// {S,+,X} == {S-T,+,X} + T
1352// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1353//
1354// If ({S-T,+,X} + T) does not overflow ... (1)
1355//
1356// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1357//
1358// If {S-T,+,X} does not overflow ... (2)
1359//
1360// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1361// == {Ext(S-T)+Ext(T),+,Ext(X)}
1362//
1363// If (S-T)+T does not overflow ... (3)
1364//
1365// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1366// == {Ext(S),+,Ext(X)} == LHS
1367//
1368// Thus, if (1), (2) and (3) are true for some T, then
1369// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1370//
1371// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1372// does not overflow" restricted to the 0th iteration. Therefore we only need
1373// to check for (1) and (2).
1374//
1375// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1376// is `Delta` (defined below).
1377//
1378template <typename ExtendOpTy>
1379bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1380 const SCEV *Step,
1381 const Loop *L) {
1382 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1383
1384 // We restrict `Start` to a constant to prevent SCEV from spending too much
1385 // time here. It is correct (but more expensive) to continue with a
1386 // non-constant `Start` and do a general SCEV subtraction to compute
1387 // `PreStart` below.
1388 //
1389 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1390 if (!StartC)
1391 return false;
1392
1393 APInt StartAI = StartC->getValue()->getValue();
1394
1395 for (unsigned Delta : {-2, -1, 1, 2}) {
1396 const SCEV *PreStart = getConstant(StartAI - Delta);
1397
1398 // Give up if we don't already have the add recurrence we need because
1399 // actually constructing an add recurrence is relatively expensive.
1400 const SCEVAddRecExpr *PreAR = [&]() {
1401 FoldingSetNodeID ID;
1402 ID.AddInteger(scAddRecExpr);
1403 ID.AddPointer(PreStart);
1404 ID.AddPointer(Step);
1405 ID.AddPointer(L);
1406 void *IP = nullptr;
1407 return static_cast<SCEVAddRecExpr *>(
NAKAMURA Takumi8f49dd32015-03-05 01:02:45 +00001408 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001409 }();
1410
1411 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1412 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1413 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1414 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1415 DeltaS, &Pred, this);
1416 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1417 return true;
1418 }
1419 }
1420
1421 return false;
1422}
1423
Dan Gohmanaf752342009-07-07 17:06:11 +00001424const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001425 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001426 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001427 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001428 assert(isSCEVable(Ty) &&
1429 "This is not a conversion to a SCEVable type!");
1430 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001431
Dan Gohman3423e722009-06-30 20:13:32 +00001432 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001433 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1434 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001435 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001436
Dan Gohman79af8542009-04-22 16:20:48 +00001437 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001438 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001439 return getZeroExtendExpr(SZ->getOperand(), Ty);
1440
Dan Gohman74a0ba12009-07-13 20:55:53 +00001441 // Before doing any expensive analysis, check to see if we've already
1442 // computed a SCEV for this Op and Ty.
1443 FoldingSetNodeID ID;
1444 ID.AddInteger(scZeroExtend);
1445 ID.AddPointer(Op);
1446 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001447 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001448 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1449
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001450 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1451 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1452 // It's possible the bits taken off by the truncate were all zero bits. If
1453 // so, we should be able to simplify this further.
1454 const SCEV *X = ST->getOperand();
1455 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001456 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1457 unsigned NewBits = getTypeSizeInBits(Ty);
1458 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001459 CR.zextOrTrunc(NewBits)))
1460 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001461 }
1462
Dan Gohman76466372009-04-27 20:16:15 +00001463 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001464 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001465 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001466 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001467 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001468 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001469 const SCEV *Start = AR->getStart();
1470 const SCEV *Step = AR->getStepRecurrence(*this);
1471 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1472 const Loop *L = AR->getLoop();
1473
Dan Gohman62ef6a72009-07-25 01:22:26 +00001474 // If we have special knowledge that this addrec won't overflow,
1475 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001476 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001477 return getAddRecExpr(
1478 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1479 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001480
Dan Gohman76466372009-04-27 20:16:15 +00001481 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1482 // Note that this serves two purposes: It filters out loops that are
1483 // simply not analyzable, and it covers the case where this code is
1484 // being called from within backedge-taken count analysis, such that
1485 // attempting to ask for the backedge-taken count would likely result
1486 // in infinite recursion. In the later case, the analysis code will
1487 // cope with a conservative value, and it will take care to purge
1488 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001489 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001490 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001491 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001492 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001493
1494 // Check whether the backedge-taken count can be losslessly casted to
1495 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001496 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001497 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001498 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001499 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1500 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001501 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001502 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001503 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001504 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1505 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1506 const SCEV *WideMaxBECount =
1507 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001508 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001509 getAddExpr(WideStart,
1510 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001511 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001512 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001513 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001515 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001516 return getAddRecExpr(
1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001519 }
Dan Gohman76466372009-04-27 20:16:15 +00001520 // Similar to above, only this time treat the step value as signed.
1521 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001522 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001523 getAddExpr(WideStart,
1524 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001525 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001526 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001527 // Cache knowledge of AR NW, which is propagated to this AddRec.
1528 // Negative step causes unsigned wrap, but it still can't self-wrap.
1529 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001530 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001531 return getAddRecExpr(
1532 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1533 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001534 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001535 }
1536
1537 // If the backedge is guarded by a comparison with the pre-inc value
1538 // the addrec is safe. Also, if the entry is guarded by a comparison
1539 // with the start value and the backedge is guarded by a comparison
1540 // with the post-inc value, the addrec is safe.
1541 if (isKnownPositive(Step)) {
1542 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1543 getUnsignedRange(Step).getUnsignedMax());
1544 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001545 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001546 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001547 AR->getPostIncExpr(*this), N))) {
1548 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1549 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001550 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001551 return getAddRecExpr(
1552 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1553 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001554 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001555 } else if (isKnownNegative(Step)) {
1556 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1557 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001558 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1559 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001560 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001561 AR->getPostIncExpr(*this), N))) {
1562 // Cache knowledge of AR NW, which is propagated to this AddRec.
1563 // Negative step causes unsigned wrap, but it still can't self-wrap.
1564 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1565 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001566 return getAddRecExpr(
1567 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1568 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001569 }
Dan Gohman76466372009-04-27 20:16:15 +00001570 }
1571 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001572
1573 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1574 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1575 return getAddRecExpr(
1576 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1577 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1578 }
Dan Gohman76466372009-04-27 20:16:15 +00001579 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001580
Dan Gohman74a0ba12009-07-13 20:55:53 +00001581 // The cast wasn't folded; create an explicit cast node.
1582 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001584 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1585 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001586 UniqueSCEVs.InsertNode(S, IP);
1587 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001588}
1589
Dan Gohmanaf752342009-07-07 17:06:11 +00001590const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001591 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001592 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001593 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001594 assert(isSCEVable(Ty) &&
1595 "This is not a conversion to a SCEVable type!");
1596 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001597
Dan Gohman3423e722009-06-30 20:13:32 +00001598 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001599 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1600 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001601 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001602
Dan Gohman79af8542009-04-22 16:20:48 +00001603 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001604 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001605 return getSignExtendExpr(SS->getOperand(), Ty);
1606
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001607 // sext(zext(x)) --> zext(x)
1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1609 return getZeroExtendExpr(SZ->getOperand(), Ty);
1610
Dan Gohman74a0ba12009-07-13 20:55:53 +00001611 // Before doing any expensive analysis, check to see if we've already
1612 // computed a SCEV for this Op and Ty.
1613 FoldingSetNodeID ID;
1614 ID.AddInteger(scSignExtend);
1615 ID.AddPointer(Op);
1616 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001617 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1619
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001620 // If the input value is provably positive, build a zext instead.
1621 if (isKnownNonNegative(Op))
1622 return getZeroExtendExpr(Op, Ty);
1623
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001624 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1625 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1626 // It's possible the bits taken off by the truncate were all sign bits. If
1627 // so, we should be able to simplify this further.
1628 const SCEV *X = ST->getOperand();
1629 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001630 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1631 unsigned NewBits = getTypeSizeInBits(Ty);
1632 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001633 CR.sextOrTrunc(NewBits)))
1634 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001635 }
1636
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001637 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1638 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1639 if (SA->getNumOperands() == 2) {
1640 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1641 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1642 if (SMul && SC1) {
1643 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001644 const APInt &C1 = SC1->getValue()->getValue();
1645 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001646 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001647 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001648 return getAddExpr(getSignExtendExpr(SC1, Ty),
1649 getSignExtendExpr(SMul, Ty));
1650 }
1651 }
1652 }
1653 }
Dan Gohman76466372009-04-27 20:16:15 +00001654 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001655 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001656 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001657 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001658 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001659 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001660 const SCEV *Start = AR->getStart();
1661 const SCEV *Step = AR->getStepRecurrence(*this);
1662 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1663 const Loop *L = AR->getLoop();
1664
Dan Gohman62ef6a72009-07-25 01:22:26 +00001665 // If we have special knowledge that this addrec won't overflow,
1666 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001667 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001668 return getAddRecExpr(
1669 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1670 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001671
Dan Gohman76466372009-04-27 20:16:15 +00001672 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1673 // Note that this serves two purposes: It filters out loops that are
1674 // simply not analyzable, and it covers the case where this code is
1675 // being called from within backedge-taken count analysis, such that
1676 // attempting to ask for the backedge-taken count would likely result
1677 // in infinite recursion. In the later case, the analysis code will
1678 // cope with a conservative value, and it will take care to purge
1679 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001680 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001681 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001682 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001683 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001684
1685 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001686 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001687 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001688 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001689 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001690 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1691 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001692 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001693 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001694 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001695 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1696 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1697 const SCEV *WideMaxBECount =
1698 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001699 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001700 getAddExpr(WideStart,
1701 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001702 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001703 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001704 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1705 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001706 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001707 return getAddRecExpr(
1708 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1709 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001710 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001711 // Similar to above, only this time treat the step value as unsigned.
1712 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001713 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001714 getAddExpr(WideStart,
1715 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001716 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001717 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001718 // If AR wraps around then
1719 //
1720 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1721 // => SAdd != OperandExtendedAdd
1722 //
1723 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1724 // (SAdd == OperandExtendedAdd => AR is NW)
1725
1726 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1727
Dan Gohman8c129d72009-07-16 17:34:36 +00001728 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001729 return getAddRecExpr(
1730 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1731 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001732 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001733 }
1734
1735 // If the backedge is guarded by a comparison with the pre-inc value
1736 // the addrec is safe. Also, if the entry is guarded by a comparison
1737 // with the start value and the backedge is guarded by a comparison
1738 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001739 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001740 const SCEV *OverflowLimit =
1741 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001742 if (OverflowLimit &&
1743 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1744 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1745 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1746 OverflowLimit)))) {
1747 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1748 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001749 return getAddRecExpr(
1750 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1751 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001752 }
1753 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001754 // If Start and Step are constants, check if we can apply this
1755 // transformation:
1756 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1757 auto SC1 = dyn_cast<SCEVConstant>(Start);
1758 auto SC2 = dyn_cast<SCEVConstant>(Step);
1759 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001760 const APInt &C1 = SC1->getValue()->getValue();
1761 const APInt &C2 = SC2->getValue()->getValue();
1762 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1763 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001764 Start = getSignExtendExpr(Start, Ty);
1765 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1766 L, AR->getNoWrapFlags());
1767 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1768 }
1769 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001770
1771 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1772 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1773 return getAddRecExpr(
1774 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1775 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1776 }
Dan Gohman76466372009-04-27 20:16:15 +00001777 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001778
Dan Gohman74a0ba12009-07-13 20:55:53 +00001779 // The cast wasn't folded; create an explicit cast node.
1780 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001781 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001782 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1783 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001784 UniqueSCEVs.InsertNode(S, IP);
1785 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001786}
1787
Dan Gohman8db2edc2009-06-13 15:56:47 +00001788/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1789/// unspecified bits out to the given type.
1790///
Dan Gohmanaf752342009-07-07 17:06:11 +00001791const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001792 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001793 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1794 "This is not an extending conversion!");
1795 assert(isSCEVable(Ty) &&
1796 "This is not a conversion to a SCEVable type!");
1797 Ty = getEffectiveSCEVType(Ty);
1798
1799 // Sign-extend negative constants.
1800 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1801 if (SC->getValue()->getValue().isNegative())
1802 return getSignExtendExpr(Op, Ty);
1803
1804 // Peel off a truncate cast.
1805 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001806 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001807 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1808 return getAnyExtendExpr(NewOp, Ty);
1809 return getTruncateOrNoop(NewOp, Ty);
1810 }
1811
1812 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001813 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001814 if (!isa<SCEVZeroExtendExpr>(ZExt))
1815 return ZExt;
1816
1817 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001818 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001819 if (!isa<SCEVSignExtendExpr>(SExt))
1820 return SExt;
1821
Dan Gohman51ad99d2010-01-21 02:09:26 +00001822 // Force the cast to be folded into the operands of an addrec.
1823 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1824 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001825 for (const SCEV *Op : AR->operands())
1826 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001827 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001828 }
1829
Dan Gohman8db2edc2009-06-13 15:56:47 +00001830 // If the expression is obviously signed, use the sext cast value.
1831 if (isa<SCEVSMaxExpr>(Op))
1832 return SExt;
1833
1834 // Absent any other information, use the zext cast value.
1835 return ZExt;
1836}
1837
Dan Gohman038d02e2009-06-14 22:58:51 +00001838/// CollectAddOperandsWithScales - Process the given Ops list, which is
1839/// a list of operands to be added under the given scale, update the given
1840/// map. This is a helper function for getAddRecExpr. As an example of
1841/// what it does, given a sequence of operands that would form an add
1842/// expression like this:
1843///
Tobias Grosserba49e422014-03-05 10:37:17 +00001844/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001845///
1846/// where A and B are constants, update the map with these values:
1847///
1848/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1849///
1850/// and add 13 + A*B*29 to AccumulatedConstant.
1851/// This will allow getAddRecExpr to produce this:
1852///
1853/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1854///
1855/// This form often exposes folding opportunities that are hidden in
1856/// the original operand list.
1857///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001858/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001859/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1860/// the common case where no interesting opportunities are present, and
1861/// is also used as a check to avoid infinite recursion.
1862///
1863static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001864CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001865 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001866 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001867 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001868 const APInt &Scale,
1869 ScalarEvolution &SE) {
1870 bool Interesting = false;
1871
Dan Gohman45073042010-06-18 19:12:32 +00001872 // Iterate over the add operands. They are sorted, with constants first.
1873 unsigned i = 0;
1874 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1875 ++i;
1876 // Pull a buried constant out to the outside.
1877 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1878 Interesting = true;
1879 AccumulatedConstant += Scale * C->getValue()->getValue();
1880 }
1881
1882 // Next comes everything else. We're especially interested in multiplies
1883 // here, but they're in the middle, so just visit the rest with one loop.
1884 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001885 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1886 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1887 APInt NewScale =
1888 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1889 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1890 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001891 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001892 Interesting |=
1893 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001894 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001895 NewScale, SE);
1896 } else {
1897 // A multiplication of a constant with some other value. Update
1898 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001899 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1900 const SCEV *Key = SE.getMulExpr(MulOps);
1901 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001902 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001903 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001904 NewOps.push_back(Pair.first->first);
1905 } else {
1906 Pair.first->second += NewScale;
1907 // The map already had an entry for this value, which may indicate
1908 // a folding opportunity.
1909 Interesting = true;
1910 }
1911 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001912 } else {
1913 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001914 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001915 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001916 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001917 NewOps.push_back(Pair.first->first);
1918 } else {
1919 Pair.first->second += Scale;
1920 // The map already had an entry for this value, which may indicate
1921 // a folding opportunity.
1922 Interesting = true;
1923 }
1924 }
1925 }
1926
1927 return Interesting;
1928}
1929
1930namespace {
1931 struct APIntCompare {
1932 bool operator()(const APInt &LHS, const APInt &RHS) const {
1933 return LHS.ult(RHS);
1934 }
1935 };
1936}
1937
Sanjoy Das81401d42015-01-10 23:41:24 +00001938// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1939// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1940// can't-overflow flags for the operation if possible.
1941static SCEV::NoWrapFlags
1942StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1943 const SmallVectorImpl<const SCEV *> &Ops,
1944 SCEV::NoWrapFlags OldFlags) {
1945 using namespace std::placeholders;
1946
1947 bool CanAnalyze =
1948 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1949 (void)CanAnalyze;
1950 assert(CanAnalyze && "don't call from other places!");
1951
1952 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1953 SCEV::NoWrapFlags SignOrUnsignWrap =
1954 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1955
1956 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1957 auto IsKnownNonNegative =
1958 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1959
1960 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1961 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1962 return ScalarEvolution::setFlags(OldFlags,
1963 (SCEV::NoWrapFlags)SignOrUnsignMask);
1964
1965 return OldFlags;
1966}
1967
Dan Gohman4d5435d2009-05-24 23:45:28 +00001968/// getAddExpr - Get a canonical add expression, or something simpler if
1969/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001970const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001971 SCEV::NoWrapFlags Flags) {
1972 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1973 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001974 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001975 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001976#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001977 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001978 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001979 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001980 "SCEVAddExpr operand types don't match!");
1981#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001982
Sanjoy Das81401d42015-01-10 23:41:24 +00001983 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001984
Chris Lattnerd934c702004-04-02 20:23:17 +00001985 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001986 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001987
1988 // If there are any constants, fold them together.
1989 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001990 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001991 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001992 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001993 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001994 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001995 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1996 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001997 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001998 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001999 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002000 }
2001
2002 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002003 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002004 Ops.erase(Ops.begin());
2005 --Idx;
2006 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002007
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002008 if (Ops.size() == 1) return Ops[0];
2009 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002010
Dan Gohman15871f22010-08-27 21:39:59 +00002011 // Okay, check to see if the same value occurs in the operand list more than
2012 // once. If so, merge them together into an multiply expression. Since we
2013 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002014 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002015 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002016 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002017 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002018 // Scan ahead to count how many equal operands there are.
2019 unsigned Count = 2;
2020 while (i+Count != e && Ops[i+Count] == Ops[i])
2021 ++Count;
2022 // Merge the values into a multiply.
2023 const SCEV *Scale = getConstant(Ty, Count);
2024 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2025 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002026 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002027 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002028 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002029 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002030 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002031 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002032 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002033 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002034
Dan Gohman2e55cc52009-05-08 21:03:19 +00002035 // Check for truncates. If all the operands are truncated from the same
2036 // type, see if factoring out the truncate would permit the result to be
2037 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2038 // if the contents of the resulting outer trunc fold to something simple.
2039 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2040 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002041 Type *DstType = Trunc->getType();
2042 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002043 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002044 bool Ok = true;
2045 // Check all the operands to see if they can be represented in the
2046 // source type of the truncate.
2047 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2048 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2049 if (T->getOperand()->getType() != SrcType) {
2050 Ok = false;
2051 break;
2052 }
2053 LargeOps.push_back(T->getOperand());
2054 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002055 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002056 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002057 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002058 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2059 if (const SCEVTruncateExpr *T =
2060 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2061 if (T->getOperand()->getType() != SrcType) {
2062 Ok = false;
2063 break;
2064 }
2065 LargeMulOps.push_back(T->getOperand());
2066 } else if (const SCEVConstant *C =
2067 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002068 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002069 } else {
2070 Ok = false;
2071 break;
2072 }
2073 }
2074 if (Ok)
2075 LargeOps.push_back(getMulExpr(LargeMulOps));
2076 } else {
2077 Ok = false;
2078 break;
2079 }
2080 }
2081 if (Ok) {
2082 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002083 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002084 // If it folds to something simple, use it. Otherwise, don't.
2085 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2086 return getTruncateExpr(Fold, DstType);
2087 }
2088 }
2089
2090 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002091 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2092 ++Idx;
2093
2094 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002095 if (Idx < Ops.size()) {
2096 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002097 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002098 // If we have an add, expand the add operands onto the end of the operands
2099 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002100 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002101 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002102 DeletedAdd = true;
2103 }
2104
2105 // If we deleted at least one add, we added operands to the end of the list,
2106 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002107 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002108 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002109 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002110 }
2111
2112 // Skip over the add expression until we get to a multiply.
2113 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2114 ++Idx;
2115
Dan Gohman038d02e2009-06-14 22:58:51 +00002116 // Check to see if there are any folding opportunities present with
2117 // operands multiplied by constant values.
2118 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2119 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002120 DenseMap<const SCEV *, APInt> M;
2121 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002122 APInt AccumulatedConstant(BitWidth, 0);
2123 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002124 Ops.data(), Ops.size(),
2125 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002126 // Some interesting folding opportunity is present, so its worthwhile to
2127 // re-generate the operands list. Group the operands by constant scale,
2128 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002129 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002130 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002131 E = NewOps.end(); I != E; ++I)
2132 MulOpLists[M.find(*I)->second].push_back(*I);
2133 // Re-generate the operands list.
2134 Ops.clear();
2135 if (AccumulatedConstant != 0)
2136 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002137 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2138 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002139 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002140 Ops.push_back(getMulExpr(getConstant(I->first),
2141 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002142 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00002143 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00002144 if (Ops.size() == 1)
2145 return Ops[0];
2146 return getAddExpr(Ops);
2147 }
2148 }
2149
Chris Lattnerd934c702004-04-02 20:23:17 +00002150 // If we are adding something to a multiply expression, make sure the
2151 // something is not already an operand of the multiply. If so, merge it into
2152 // the multiply.
2153 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002154 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002155 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002156 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002157 if (isa<SCEVConstant>(MulOpSCEV))
2158 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002159 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002160 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002161 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002162 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002163 if (Mul->getNumOperands() != 2) {
2164 // If the multiply has more than two operands, we must get the
2165 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002166 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2167 Mul->op_begin()+MulOp);
2168 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002169 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002170 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00002171 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002172 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002173 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002174 if (Ops.size() == 2) return OuterMul;
2175 if (AddOp < Idx) {
2176 Ops.erase(Ops.begin()+AddOp);
2177 Ops.erase(Ops.begin()+Idx-1);
2178 } else {
2179 Ops.erase(Ops.begin()+Idx);
2180 Ops.erase(Ops.begin()+AddOp-1);
2181 }
2182 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002183 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002184 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002185
Chris Lattnerd934c702004-04-02 20:23:17 +00002186 // Check this multiply against other multiplies being added together.
2187 for (unsigned OtherMulIdx = Idx+1;
2188 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2189 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002190 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002191 // If MulOp occurs in OtherMul, we can fold the two multiplies
2192 // together.
2193 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2194 OMulOp != e; ++OMulOp)
2195 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2196 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002197 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002198 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002199 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002200 Mul->op_begin()+MulOp);
2201 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002202 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002203 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002204 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002205 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002206 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002207 OtherMul->op_begin()+OMulOp);
2208 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002209 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002210 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002211 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2212 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002213 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002214 Ops.erase(Ops.begin()+Idx);
2215 Ops.erase(Ops.begin()+OtherMulIdx-1);
2216 Ops.push_back(OuterMul);
2217 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002218 }
2219 }
2220 }
2221 }
2222
2223 // If there are any add recurrences in the operands list, see if any other
2224 // added values are loop invariant. If so, we can fold them into the
2225 // recurrence.
2226 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2227 ++Idx;
2228
2229 // Scan over all recurrences, trying to fold loop invariants into them.
2230 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2231 // Scan all of the other operands to this add and add them to the vector if
2232 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002233 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002234 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002235 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002236 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002237 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002238 LIOps.push_back(Ops[i]);
2239 Ops.erase(Ops.begin()+i);
2240 --i; --e;
2241 }
2242
2243 // If we found some loop invariants, fold them into the recurrence.
2244 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002245 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002246 LIOps.push_back(AddRec->getStart());
2247
Dan Gohmanaf752342009-07-07 17:06:11 +00002248 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002249 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002250 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002251
Dan Gohman16206132010-06-30 07:16:37 +00002252 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002253 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002254 // Always propagate NW.
2255 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002256 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002257
Chris Lattnerd934c702004-04-02 20:23:17 +00002258 // If all of the other operands were loop invariant, we are done.
2259 if (Ops.size() == 1) return NewRec;
2260
Nick Lewyckydb66b822011-09-06 05:08:09 +00002261 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002262 for (unsigned i = 0;; ++i)
2263 if (Ops[i] == AddRec) {
2264 Ops[i] = NewRec;
2265 break;
2266 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002267 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002268 }
2269
2270 // Okay, if there weren't any loop invariants to be folded, check to see if
2271 // there are multiple AddRec's with the same loop induction variable being
2272 // added together. If so, we can fold them.
2273 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002274 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2275 ++OtherIdx)
2276 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2277 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2278 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2279 AddRec->op_end());
2280 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2281 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002282 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002283 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002284 if (OtherAddRec->getLoop() == AddRecLoop) {
2285 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2286 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002287 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002288 AddRecOps.append(OtherAddRec->op_begin()+i,
2289 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002290 break;
2291 }
Dan Gohman028c1812010-08-29 14:53:34 +00002292 AddRecOps[i] = getAddExpr(AddRecOps[i],
2293 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002294 }
2295 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002296 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002297 // Step size has changed, so we cannot guarantee no self-wraparound.
2298 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002299 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002300 }
2301
2302 // Otherwise couldn't fold anything into this recurrence. Move onto the
2303 // next one.
2304 }
2305
2306 // Okay, it looks like we really DO need an add expr. Check to see if we
2307 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002308 FoldingSetNodeID ID;
2309 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002310 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2311 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002312 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002313 SCEVAddExpr *S =
2314 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2315 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002316 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2317 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002318 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2319 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002320 UniqueSCEVs.InsertNode(S, IP);
2321 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002322 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002323 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002324}
2325
Nick Lewycky287682e2011-10-04 06:51:26 +00002326static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2327 uint64_t k = i*j;
2328 if (j > 1 && k / j != i) Overflow = true;
2329 return k;
2330}
2331
2332/// Compute the result of "n choose k", the binomial coefficient. If an
2333/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002334/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002335static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2336 // We use the multiplicative formula:
2337 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2338 // At each iteration, we take the n-th term of the numeral and divide by the
2339 // (k-n)th term of the denominator. This division will always produce an
2340 // integral result, and helps reduce the chance of overflow in the
2341 // intermediate computations. However, we can still overflow even when the
2342 // final result would fit.
2343
2344 if (n == 0 || n == k) return 1;
2345 if (k > n) return 0;
2346
2347 if (k > n/2)
2348 k = n-k;
2349
2350 uint64_t r = 1;
2351 for (uint64_t i = 1; i <= k; ++i) {
2352 r = umul_ov(r, n-(i-1), Overflow);
2353 r /= i;
2354 }
2355 return r;
2356}
2357
Nick Lewycky05044c22014-12-06 00:45:50 +00002358/// Determine if any of the operands in this SCEV are a constant or if
2359/// any of the add or multiply expressions in this SCEV contain a constant.
2360static bool containsConstantSomewhere(const SCEV *StartExpr) {
2361 SmallVector<const SCEV *, 4> Ops;
2362 Ops.push_back(StartExpr);
2363 while (!Ops.empty()) {
2364 const SCEV *CurrentExpr = Ops.pop_back_val();
2365 if (isa<SCEVConstant>(*CurrentExpr))
2366 return true;
2367
2368 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2369 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002370 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002371 }
2372 }
2373 return false;
2374}
2375
Dan Gohman4d5435d2009-05-24 23:45:28 +00002376/// getMulExpr - Get a canonical multiply expression, or something simpler if
2377/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002378const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002379 SCEV::NoWrapFlags Flags) {
2380 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2381 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002382 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002383 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002384#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002385 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002386 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002387 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002388 "SCEVMulExpr operand types don't match!");
2389#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002390
Sanjoy Das81401d42015-01-10 23:41:24 +00002391 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002392
Chris Lattnerd934c702004-04-02 20:23:17 +00002393 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002394 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002395
2396 // If there are any constants, fold them together.
2397 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002398 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002399
2400 // C1*(C2+V) -> C1*C2 + C1*V
2401 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002402 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2403 // If any of Add's ops are Adds or Muls with a constant,
2404 // apply this transformation as well.
2405 if (Add->getNumOperands() == 2)
2406 if (containsConstantSomewhere(Add))
2407 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2408 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002409
Chris Lattnerd934c702004-04-02 20:23:17 +00002410 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002411 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002412 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002413 ConstantInt *Fold = ConstantInt::get(getContext(),
2414 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002415 RHSC->getValue()->getValue());
2416 Ops[0] = getConstant(Fold);
2417 Ops.erase(Ops.begin()+1); // Erase the folded element
2418 if (Ops.size() == 1) return Ops[0];
2419 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002420 }
2421
2422 // If we are left with a constant one being multiplied, strip it off.
2423 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2424 Ops.erase(Ops.begin());
2425 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002426 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002427 // If we have a multiply of zero, it will always be zero.
2428 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002429 } else if (Ops[0]->isAllOnesValue()) {
2430 // If we have a mul by -1 of an add, try distributing the -1 among the
2431 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002432 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002433 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2434 SmallVector<const SCEV *, 4> NewOps;
2435 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002436 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2437 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002438 const SCEV *Mul = getMulExpr(Ops[0], *I);
2439 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2440 NewOps.push_back(Mul);
2441 }
2442 if (AnyFolded)
2443 return getAddExpr(NewOps);
2444 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002445 else if (const SCEVAddRecExpr *
2446 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2447 // Negation preserves a recurrence's no self-wrap property.
2448 SmallVector<const SCEV *, 4> Operands;
2449 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2450 E = AddRec->op_end(); I != E; ++I) {
2451 Operands.push_back(getMulExpr(Ops[0], *I));
2452 }
2453 return getAddRecExpr(Operands, AddRec->getLoop(),
2454 AddRec->getNoWrapFlags(SCEV::FlagNW));
2455 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002456 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002457 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002458
2459 if (Ops.size() == 1)
2460 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002461 }
2462
2463 // Skip over the add expression until we get to a multiply.
2464 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2465 ++Idx;
2466
Chris Lattnerd934c702004-04-02 20:23:17 +00002467 // If there are mul operands inline them all into this expression.
2468 if (Idx < Ops.size()) {
2469 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002470 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002471 // If we have an mul, expand the mul operands onto the end of the operands
2472 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002473 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002474 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002475 DeletedMul = true;
2476 }
2477
2478 // If we deleted at least one mul, we added operands to the end of the list,
2479 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002480 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002481 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002482 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002483 }
2484
2485 // If there are any add recurrences in the operands list, see if any other
2486 // added values are loop invariant. If so, we can fold them into the
2487 // recurrence.
2488 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2489 ++Idx;
2490
2491 // Scan over all recurrences, trying to fold loop invariants into them.
2492 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2493 // Scan all of the other operands to this mul and add them to the vector if
2494 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002495 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002496 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002497 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002498 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002499 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002500 LIOps.push_back(Ops[i]);
2501 Ops.erase(Ops.begin()+i);
2502 --i; --e;
2503 }
2504
2505 // If we found some loop invariants, fold them into the recurrence.
2506 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002507 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002508 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002509 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002510 const SCEV *Scale = getMulExpr(LIOps);
2511 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2512 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002513
Dan Gohman16206132010-06-30 07:16:37 +00002514 // Build the new addrec. Propagate the NUW and NSW flags if both the
2515 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002516 //
2517 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002518 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002519 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2520 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002521
2522 // If all of the other operands were loop invariant, we are done.
2523 if (Ops.size() == 1) return NewRec;
2524
Nick Lewyckydb66b822011-09-06 05:08:09 +00002525 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002526 for (unsigned i = 0;; ++i)
2527 if (Ops[i] == AddRec) {
2528 Ops[i] = NewRec;
2529 break;
2530 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002531 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002532 }
2533
2534 // Okay, if there weren't any loop invariants to be folded, check to see if
2535 // there are multiple AddRec's with the same loop induction variable being
2536 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002537
2538 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2539 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2540 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2541 // ]]],+,...up to x=2n}.
2542 // Note that the arguments to choose() are always integers with values
2543 // known at compile time, never SCEV objects.
2544 //
2545 // The implementation avoids pointless extra computations when the two
2546 // addrec's are of different length (mathematically, it's equivalent to
2547 // an infinite stream of zeros on the right).
2548 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002549 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002550 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002551 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002552 const SCEVAddRecExpr *OtherAddRec =
2553 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2554 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002555 continue;
2556
Nick Lewycky97756402014-09-01 05:17:15 +00002557 bool Overflow = false;
2558 Type *Ty = AddRec->getType();
2559 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2560 SmallVector<const SCEV*, 7> AddRecOps;
2561 for (int x = 0, xe = AddRec->getNumOperands() +
2562 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2563 const SCEV *Term = getConstant(Ty, 0);
2564 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2565 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2566 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2567 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2568 z < ze && !Overflow; ++z) {
2569 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2570 uint64_t Coeff;
2571 if (LargerThan64Bits)
2572 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2573 else
2574 Coeff = Coeff1*Coeff2;
2575 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2576 const SCEV *Term1 = AddRec->getOperand(y-z);
2577 const SCEV *Term2 = OtherAddRec->getOperand(z);
2578 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002579 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002580 }
Nick Lewycky97756402014-09-01 05:17:15 +00002581 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002582 }
Nick Lewycky97756402014-09-01 05:17:15 +00002583 if (!Overflow) {
2584 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2585 SCEV::FlagAnyWrap);
2586 if (Ops.size() == 2) return NewAddRec;
2587 Ops[Idx] = NewAddRec;
2588 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2589 OpsModified = true;
2590 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2591 if (!AddRec)
2592 break;
2593 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002594 }
Nick Lewycky97756402014-09-01 05:17:15 +00002595 if (OpsModified)
2596 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002597
2598 // Otherwise couldn't fold anything into this recurrence. Move onto the
2599 // next one.
2600 }
2601
2602 // Okay, it looks like we really DO need an mul expr. Check to see if we
2603 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002604 FoldingSetNodeID ID;
2605 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002606 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2607 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002608 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002609 SCEVMulExpr *S =
2610 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2611 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002612 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2613 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002614 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2615 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002616 UniqueSCEVs.InsertNode(S, IP);
2617 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002618 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002619 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002620}
2621
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002622/// getUDivExpr - Get a canonical unsigned division expression, or something
2623/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002624const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2625 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002626 assert(getEffectiveSCEVType(LHS->getType()) ==
2627 getEffectiveSCEVType(RHS->getType()) &&
2628 "SCEVUDivExpr operand types don't match!");
2629
Dan Gohmana30370b2009-05-04 22:02:23 +00002630 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002631 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002632 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002633 // If the denominator is zero, the result of the udiv is undefined. Don't
2634 // try to analyze it, because the resolution chosen here may differ from
2635 // the resolution chosen in other parts of the compiler.
2636 if (!RHSC->getValue()->isZero()) {
2637 // Determine if the division can be folded into the operands of
2638 // its operands.
2639 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002640 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002641 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002642 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002643 // For non-power-of-two values, effectively round the value up to the
2644 // nearest power of two.
2645 if (!RHSC->getValue()->getValue().isPowerOf2())
2646 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002647 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002648 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002649 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2650 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002651 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2652 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2653 const APInt &StepInt = Step->getValue()->getValue();
2654 const APInt &DivInt = RHSC->getValue()->getValue();
2655 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002656 getZeroExtendExpr(AR, ExtTy) ==
2657 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2658 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002659 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002660 SmallVector<const SCEV *, 4> Operands;
2661 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2662 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002663 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002664 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002665 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002666 /// Get a canonical UDivExpr for a recurrence.
2667 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2668 // We can currently only fold X%N if X is constant.
2669 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2670 if (StartC && !DivInt.urem(StepInt) &&
2671 getZeroExtendExpr(AR, ExtTy) ==
2672 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2673 getZeroExtendExpr(Step, ExtTy),
2674 AR->getLoop(), SCEV::FlagAnyWrap)) {
2675 const APInt &StartInt = StartC->getValue()->getValue();
2676 const APInt &StartRem = StartInt.urem(StepInt);
2677 if (StartRem != 0)
2678 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2679 AR->getLoop(), SCEV::FlagNW);
2680 }
2681 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002682 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2683 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2684 SmallVector<const SCEV *, 4> Operands;
2685 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2686 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2687 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2688 // Find an operand that's safely divisible.
2689 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2690 const SCEV *Op = M->getOperand(i);
2691 const SCEV *Div = getUDivExpr(Op, RHSC);
2692 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2693 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2694 M->op_end());
2695 Operands[i] = Div;
2696 return getMulExpr(Operands);
2697 }
2698 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002699 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002700 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002701 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002702 SmallVector<const SCEV *, 4> Operands;
2703 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2704 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2705 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2706 Operands.clear();
2707 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2708 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2709 if (isa<SCEVUDivExpr>(Op) ||
2710 getMulExpr(Op, RHS) != A->getOperand(i))
2711 break;
2712 Operands.push_back(Op);
2713 }
2714 if (Operands.size() == A->getNumOperands())
2715 return getAddExpr(Operands);
2716 }
2717 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002718
Dan Gohmanacd700a2010-04-22 01:35:11 +00002719 // Fold if both operands are constant.
2720 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2721 Constant *LHSCV = LHSC->getValue();
2722 Constant *RHSCV = RHSC->getValue();
2723 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2724 RHSCV)));
2725 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002726 }
2727 }
2728
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002729 FoldingSetNodeID ID;
2730 ID.AddInteger(scUDivExpr);
2731 ID.AddPointer(LHS);
2732 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002733 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002734 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002735 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2736 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002737 UniqueSCEVs.InsertNode(S, IP);
2738 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002739}
2740
Nick Lewycky31eaca52014-01-27 10:04:03 +00002741static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2742 APInt A = C1->getValue()->getValue().abs();
2743 APInt B = C2->getValue()->getValue().abs();
2744 uint32_t ABW = A.getBitWidth();
2745 uint32_t BBW = B.getBitWidth();
2746
2747 if (ABW > BBW)
2748 B = B.zext(ABW);
2749 else if (ABW < BBW)
2750 A = A.zext(BBW);
2751
2752 return APIntOps::GreatestCommonDivisor(A, B);
2753}
2754
2755/// getUDivExactExpr - Get a canonical unsigned division expression, or
2756/// something simpler if possible. There is no representation for an exact udiv
2757/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2758/// We can't do this when it's not exact because the udiv may be clearing bits.
2759const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2760 const SCEV *RHS) {
2761 // TODO: we could try to find factors in all sorts of things, but for now we
2762 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2763 // end of this file for inspiration.
2764
2765 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2766 if (!Mul)
2767 return getUDivExpr(LHS, RHS);
2768
2769 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2770 // If the mulexpr multiplies by a constant, then that constant must be the
2771 // first element of the mulexpr.
2772 if (const SCEVConstant *LHSCst =
2773 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2774 if (LHSCst == RHSCst) {
2775 SmallVector<const SCEV *, 2> Operands;
2776 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2777 return getMulExpr(Operands);
2778 }
2779
2780 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2781 // that there's a factor provided by one of the other terms. We need to
2782 // check.
2783 APInt Factor = gcd(LHSCst, RHSCst);
2784 if (!Factor.isIntN(1)) {
2785 LHSCst = cast<SCEVConstant>(
2786 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2787 RHSCst = cast<SCEVConstant>(
2788 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2789 SmallVector<const SCEV *, 2> Operands;
2790 Operands.push_back(LHSCst);
2791 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2792 LHS = getMulExpr(Operands);
2793 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002794 Mul = dyn_cast<SCEVMulExpr>(LHS);
2795 if (!Mul)
2796 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002797 }
2798 }
2799 }
2800
2801 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2802 if (Mul->getOperand(i) == RHS) {
2803 SmallVector<const SCEV *, 2> Operands;
2804 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2805 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2806 return getMulExpr(Operands);
2807 }
2808 }
2809
2810 return getUDivExpr(LHS, RHS);
2811}
Chris Lattnerd934c702004-04-02 20:23:17 +00002812
Dan Gohman4d5435d2009-05-24 23:45:28 +00002813/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2814/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002815const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2816 const Loop *L,
2817 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002818 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002819 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002820 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002821 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002822 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002823 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002824 }
2825
2826 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002827 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002828}
2829
Dan Gohman4d5435d2009-05-24 23:45:28 +00002830/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2831/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002832const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002833ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002834 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002835 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002836#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002837 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002838 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002839 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002840 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002841 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002842 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002843 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002844#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002845
Dan Gohmanbe928e32008-06-18 16:23:07 +00002846 if (Operands.back()->isZero()) {
2847 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002848 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002849 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002850
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002851 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2852 // use that information to infer NUW and NSW flags. However, computing a
2853 // BE count requires calling getAddRecExpr, so we may not yet have a
2854 // meaningful BE count at this point (and if we don't, we'd be stuck
2855 // with a SCEVCouldNotCompute as the cached BE count).
2856
Sanjoy Das81401d42015-01-10 23:41:24 +00002857 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002858
Dan Gohman223a5d22008-08-08 18:33:12 +00002859 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002860 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002861 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002862 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002863 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002864 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002865 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002866 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002867 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002868 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002869 // AddRecs require their operands be loop-invariant with respect to their
2870 // loops. Don't perform this transformation if it would break this
2871 // requirement.
2872 bool AllInvariant = true;
2873 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002874 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002875 AllInvariant = false;
2876 break;
2877 }
2878 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002879 // Create a recurrence for the outer loop with the same step size.
2880 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002881 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2882 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002883 SCEV::NoWrapFlags OuterFlags =
2884 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002885
2886 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002887 AllInvariant = true;
2888 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002889 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002890 AllInvariant = false;
2891 break;
2892 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002893 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002894 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002895 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002896 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2897 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002898 SCEV::NoWrapFlags InnerFlags =
2899 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002900 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2901 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002902 }
2903 // Reset Operands to its original state.
2904 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002905 }
2906 }
2907
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002908 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2909 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002910 FoldingSetNodeID ID;
2911 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002912 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2913 ID.AddPointer(Operands[i]);
2914 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002915 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002916 SCEVAddRecExpr *S =
2917 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2918 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002919 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2920 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002921 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2922 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002923 UniqueSCEVs.InsertNode(S, IP);
2924 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002925 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002926 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002927}
2928
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002929const SCEV *
2930ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2931 const SmallVectorImpl<const SCEV *> &IndexExprs,
2932 bool InBounds) {
2933 // getSCEV(Base)->getType() has the same address space as Base->getType()
2934 // because SCEV::getType() preserves the address space.
2935 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2936 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2937 // instruction to its SCEV, because the Instruction may be guarded by control
2938 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002939 // context. This can be fixed similarly to how these flags are handled for
2940 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002941 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2942
2943 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2944 // The address space is unimportant. The first thing we do on CurTy is getting
2945 // its element type.
2946 Type *CurTy = PointerType::getUnqual(PointeeType);
2947 for (const SCEV *IndexExpr : IndexExprs) {
2948 // Compute the (potentially symbolic) offset in bytes for this index.
2949 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2950 // For a struct, add the member offset.
2951 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2952 unsigned FieldNo = Index->getZExtValue();
2953 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2954
2955 // Add the field offset to the running total offset.
2956 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2957
2958 // Update CurTy to the type of the field at Index.
2959 CurTy = STy->getTypeAtIndex(Index);
2960 } else {
2961 // Update CurTy to its element type.
2962 CurTy = cast<SequentialType>(CurTy)->getElementType();
2963 // For an array, add the element offset, explicitly scaled.
2964 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2965 // Getelementptr indices are signed.
2966 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2967
2968 // Multiply the index by the element size to compute the element offset.
2969 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2970
2971 // Add the element offset to the running total offset.
2972 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2973 }
2974 }
2975
2976 // Add the total offset from all the GEP indices to the base.
2977 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2978}
2979
Dan Gohmanabd17092009-06-24 14:49:00 +00002980const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2981 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002982 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002983 Ops.push_back(LHS);
2984 Ops.push_back(RHS);
2985 return getSMaxExpr(Ops);
2986}
2987
Dan Gohmanaf752342009-07-07 17:06:11 +00002988const SCEV *
2989ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002990 assert(!Ops.empty() && "Cannot get empty smax!");
2991 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002992#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002993 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002994 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002995 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002996 "SCEVSMaxExpr operand types don't match!");
2997#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002998
2999 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00003000 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003001
3002 // If there are any constants, fold them together.
3003 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003004 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003005 ++Idx;
3006 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003007 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003008 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003009 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003010 APIntOps::smax(LHSC->getValue()->getValue(),
3011 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003012 Ops[0] = getConstant(Fold);
3013 Ops.erase(Ops.begin()+1); // Erase the folded element
3014 if (Ops.size() == 1) return Ops[0];
3015 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003016 }
3017
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003018 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003019 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3020 Ops.erase(Ops.begin());
3021 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003022 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3023 // If we have an smax with a constant maximum-int, it will always be
3024 // maximum-int.
3025 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003026 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003027
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003028 if (Ops.size() == 1) return Ops[0];
3029 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003030
3031 // Find the first SMax
3032 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3033 ++Idx;
3034
3035 // Check to see if one of the operands is an SMax. If so, expand its operands
3036 // onto our operand list, and recurse to simplify.
3037 if (Idx < Ops.size()) {
3038 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003039 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003040 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003041 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003042 DeletedSMax = true;
3043 }
3044
3045 if (DeletedSMax)
3046 return getSMaxExpr(Ops);
3047 }
3048
3049 // Okay, check to see if the same value occurs in the operand list twice. If
3050 // so, delete one. Since we sorted the list, these values are required to
3051 // be adjacent.
3052 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003053 // X smax Y smax Y --> X smax Y
3054 // X smax Y --> X, if X is always greater than Y
3055 if (Ops[i] == Ops[i+1] ||
3056 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3057 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3058 --i; --e;
3059 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003060 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3061 --i; --e;
3062 }
3063
3064 if (Ops.size() == 1) return Ops[0];
3065
3066 assert(!Ops.empty() && "Reduced smax down to nothing!");
3067
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003068 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003069 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003070 FoldingSetNodeID ID;
3071 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003072 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3073 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003074 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003075 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003076 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3077 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003078 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3079 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003080 UniqueSCEVs.InsertNode(S, IP);
3081 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003082}
3083
Dan Gohmanabd17092009-06-24 14:49:00 +00003084const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3085 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003086 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003087 Ops.push_back(LHS);
3088 Ops.push_back(RHS);
3089 return getUMaxExpr(Ops);
3090}
3091
Dan Gohmanaf752342009-07-07 17:06:11 +00003092const SCEV *
3093ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003094 assert(!Ops.empty() && "Cannot get empty umax!");
3095 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003096#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003097 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003098 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003099 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003100 "SCEVUMaxExpr operand types don't match!");
3101#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003102
3103 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00003104 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003105
3106 // If there are any constants, fold them together.
3107 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003108 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003109 ++Idx;
3110 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003111 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003112 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003113 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003114 APIntOps::umax(LHSC->getValue()->getValue(),
3115 RHSC->getValue()->getValue()));
3116 Ops[0] = getConstant(Fold);
3117 Ops.erase(Ops.begin()+1); // Erase the folded element
3118 if (Ops.size() == 1) return Ops[0];
3119 LHSC = cast<SCEVConstant>(Ops[0]);
3120 }
3121
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003122 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003123 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3124 Ops.erase(Ops.begin());
3125 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003126 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3127 // If we have an umax with a constant maximum-int, it will always be
3128 // maximum-int.
3129 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003130 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003131
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003132 if (Ops.size() == 1) return Ops[0];
3133 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003134
3135 // Find the first UMax
3136 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3137 ++Idx;
3138
3139 // Check to see if one of the operands is a UMax. If so, expand its operands
3140 // onto our operand list, and recurse to simplify.
3141 if (Idx < Ops.size()) {
3142 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003143 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003144 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003145 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003146 DeletedUMax = true;
3147 }
3148
3149 if (DeletedUMax)
3150 return getUMaxExpr(Ops);
3151 }
3152
3153 // Okay, check to see if the same value occurs in the operand list twice. If
3154 // so, delete one. Since we sorted the list, these values are required to
3155 // be adjacent.
3156 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003157 // X umax Y umax Y --> X umax Y
3158 // X umax Y --> X, if X is always greater than Y
3159 if (Ops[i] == Ops[i+1] ||
3160 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3161 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3162 --i; --e;
3163 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003164 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3165 --i; --e;
3166 }
3167
3168 if (Ops.size() == 1) return Ops[0];
3169
3170 assert(!Ops.empty() && "Reduced umax down to nothing!");
3171
3172 // Okay, it looks like we really DO need a umax expr. Check to see if we
3173 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003174 FoldingSetNodeID ID;
3175 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003176 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3177 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003178 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003180 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3181 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003182 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3183 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003184 UniqueSCEVs.InsertNode(S, IP);
3185 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003186}
3187
Dan Gohmanabd17092009-06-24 14:49:00 +00003188const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3189 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003190 // ~smax(~x, ~y) == smin(x, y).
3191 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3192}
3193
Dan Gohmanabd17092009-06-24 14:49:00 +00003194const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3195 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003196 // ~umax(~x, ~y) == umin(x, y)
3197 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3198}
3199
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003200const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003201 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003202 // constant expression and then folding it back into a ConstantInt.
3203 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003204 return getConstant(IntTy,
3205 F->getParent()->getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003206}
3207
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003208const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3209 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003210 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003211 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003212 // constant expression and then folding it back into a ConstantInt.
3213 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003214 return getConstant(
3215 IntTy,
3216 F->getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
3217 FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003218}
3219
Dan Gohmanaf752342009-07-07 17:06:11 +00003220const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003221 // Don't attempt to do anything other than create a SCEVUnknown object
3222 // here. createSCEV only calls getUnknown after checking for all other
3223 // interesting possibilities, and any other code that calls getUnknown
3224 // is doing so in order to hide a value from SCEV canonicalization.
3225
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003226 FoldingSetNodeID ID;
3227 ID.AddInteger(scUnknown);
3228 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003229 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003230 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3231 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3232 "Stale SCEVUnknown in uniquing map!");
3233 return S;
3234 }
3235 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3236 FirstUnknown);
3237 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003238 UniqueSCEVs.InsertNode(S, IP);
3239 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003240}
3241
Chris Lattnerd934c702004-04-02 20:23:17 +00003242//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003243// Basic SCEV Analysis and PHI Idiom Recognition Code
3244//
3245
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003246/// isSCEVable - Test if values of the given type are analyzable within
3247/// the SCEV framework. This primarily includes integer types, and it
3248/// can optionally include pointer types if the ScalarEvolution class
3249/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003250bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003251 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003252 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003253}
3254
3255/// getTypeSizeInBits - Return the size in bits of the specified type,
3256/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003257uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003258 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003259 return F->getParent()->getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003260}
3261
3262/// getEffectiveSCEVType - Return a type with the same bitwidth as
3263/// the given type and which represents how SCEV will treat the given
3264/// type, for which isSCEVable must return true. For pointer types,
3265/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003266Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003267 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3268
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003269 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003270 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003271 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003272
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003273 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003274 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003275 return F->getParent()->getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003276}
Chris Lattnerd934c702004-04-02 20:23:17 +00003277
Dan Gohmanaf752342009-07-07 17:06:11 +00003278const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003279 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003280}
3281
Shuxin Yangefc4c012013-07-08 17:33:13 +00003282namespace {
3283 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3284 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3285 // is set iff if find such SCEVUnknown.
3286 //
3287 struct FindInvalidSCEVUnknown {
3288 bool FindOne;
3289 FindInvalidSCEVUnknown() { FindOne = false; }
3290 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003291 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003292 case scConstant:
3293 return false;
3294 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003295 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003296 FindOne = true;
3297 return false;
3298 default:
3299 return true;
3300 }
3301 }
3302 bool isDone() const { return FindOne; }
3303 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003304}
Shuxin Yangefc4c012013-07-08 17:33:13 +00003305
3306bool ScalarEvolution::checkValidity(const SCEV *S) const {
3307 FindInvalidSCEVUnknown F;
3308 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3309 ST.visitAll(S);
3310
3311 return !F.FindOne;
3312}
3313
Chris Lattnerd934c702004-04-02 20:23:17 +00003314/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3315/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003316const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003317 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003318
Jingyue Wu42f1d672015-07-28 18:22:40 +00003319 const SCEV *S = getExistingSCEV(V);
3320 if (S == nullptr) {
3321 S = createSCEV(V);
3322 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3323 }
3324 return S;
3325}
3326
3327const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3328 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3329
Shuxin Yangefc4c012013-07-08 17:33:13 +00003330 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3331 if (I != ValueExprMap.end()) {
3332 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003333 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003334 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003335 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003336 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003337 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003338}
3339
Dan Gohman0a40ad92009-04-16 03:18:22 +00003340/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3341///
Dan Gohmanaf752342009-07-07 17:06:11 +00003342const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003343 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003344 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003345 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003346
Chris Lattner229907c2011-07-18 04:54:35 +00003347 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003348 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003349 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003350 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003351}
3352
3353/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003354const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003355 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003356 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003357 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003358
Chris Lattner229907c2011-07-18 04:54:35 +00003359 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003360 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003361 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003362 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003363 return getMinusSCEV(AllOnes, V);
3364}
3365
Andrew Trick8b55b732011-03-14 16:50:06 +00003366/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003367const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003368 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003369 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3370
Dan Gohman46f00a22010-07-20 16:53:00 +00003371 // Fast path: X - X --> 0.
3372 if (LHS == RHS)
3373 return getConstant(LHS->getType(), 0);
3374
Sanjoy Dascb473662015-01-22 00:48:47 +00003375 // X - Y --> X + -Y.
3376 // X -(nsw || nuw) Y --> X + -Y.
3377 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003378}
3379
3380/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3381/// input value to the specified type. If the type must be extended, it is zero
3382/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003383const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003384ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3385 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003386 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3387 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003388 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003389 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003390 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003391 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003392 return getTruncateExpr(V, Ty);
3393 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003394}
3395
3396/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3397/// input value to the specified type. If the type must be extended, it is sign
3398/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003399const SCEV *
3400ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003401 Type *Ty) {
3402 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003403 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3404 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003405 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003406 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003407 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003408 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003409 return getTruncateExpr(V, Ty);
3410 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003411}
3412
Dan Gohmane712a2f2009-05-13 03:46:30 +00003413/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3414/// input value to the specified type. If the type must be extended, it is zero
3415/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003416const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003417ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3418 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003419 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3420 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003421 "Cannot noop or zero extend with non-integer arguments!");
3422 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3423 "getNoopOrZeroExtend cannot truncate!");
3424 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3425 return V; // No conversion
3426 return getZeroExtendExpr(V, Ty);
3427}
3428
3429/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3430/// input value to the specified type. If the type must be extended, it is sign
3431/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003432const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003433ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3434 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003435 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3436 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003437 "Cannot noop or sign extend with non-integer arguments!");
3438 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3439 "getNoopOrSignExtend cannot truncate!");
3440 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3441 return V; // No conversion
3442 return getSignExtendExpr(V, Ty);
3443}
3444
Dan Gohman8db2edc2009-06-13 15:56:47 +00003445/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3446/// the input value to the specified type. If the type must be extended,
3447/// it is extended with unspecified bits. The conversion must not be
3448/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003449const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003450ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3451 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003452 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3453 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003454 "Cannot noop or any extend with non-integer arguments!");
3455 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3456 "getNoopOrAnyExtend cannot truncate!");
3457 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3458 return V; // No conversion
3459 return getAnyExtendExpr(V, Ty);
3460}
3461
Dan Gohmane712a2f2009-05-13 03:46:30 +00003462/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3463/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003464const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003465ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3466 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003467 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3468 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003469 "Cannot truncate or noop with non-integer arguments!");
3470 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3471 "getTruncateOrNoop cannot extend!");
3472 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3473 return V; // No conversion
3474 return getTruncateExpr(V, Ty);
3475}
3476
Dan Gohman96212b62009-06-22 00:31:57 +00003477/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3478/// the types using zero-extension, and then perform a umax operation
3479/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003480const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3481 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003482 const SCEV *PromotedLHS = LHS;
3483 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003484
3485 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3486 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3487 else
3488 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3489
3490 return getUMaxExpr(PromotedLHS, PromotedRHS);
3491}
3492
Dan Gohman2bc22302009-06-22 15:03:27 +00003493/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3494/// the types using zero-extension, and then perform a umin operation
3495/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003496const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3497 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003498 const SCEV *PromotedLHS = LHS;
3499 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003500
3501 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3502 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3503 else
3504 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3505
3506 return getUMinExpr(PromotedLHS, PromotedRHS);
3507}
3508
Andrew Trick87716c92011-03-17 23:51:11 +00003509/// getPointerBase - Transitively follow the chain of pointer-type operands
3510/// until reaching a SCEV that does not have a single pointer operand. This
3511/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3512/// but corner cases do exist.
3513const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3514 // A pointer operand may evaluate to a nonpointer expression, such as null.
3515 if (!V->getType()->isPointerTy())
3516 return V;
3517
3518 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3519 return getPointerBase(Cast->getOperand());
3520 }
3521 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003522 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003523 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3524 I != E; ++I) {
3525 if ((*I)->getType()->isPointerTy()) {
3526 // Cannot find the base of an expression with multiple pointer operands.
3527 if (PtrOp)
3528 return V;
3529 PtrOp = *I;
3530 }
3531 }
3532 if (!PtrOp)
3533 return V;
3534 return getPointerBase(PtrOp);
3535 }
3536 return V;
3537}
3538
Dan Gohman0b89dff2009-07-25 01:13:03 +00003539/// PushDefUseChildren - Push users of the given Instruction
3540/// onto the given Worklist.
3541static void
3542PushDefUseChildren(Instruction *I,
3543 SmallVectorImpl<Instruction *> &Worklist) {
3544 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003545 for (User *U : I->users())
3546 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003547}
3548
3549/// ForgetSymbolicValue - This looks up computed SCEV values for all
3550/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003551/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003552/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003553void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003554ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003555 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003556 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003557
Dan Gohman0b89dff2009-07-25 01:13:03 +00003558 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003559 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003560 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003561 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003562 if (!Visited.insert(I).second)
3563 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003564
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003565 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003566 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003567 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003568 const SCEV *Old = It->second;
3569
Dan Gohman0b89dff2009-07-25 01:13:03 +00003570 // Short-circuit the def-use traversal if the symbolic name
3571 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003572 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003573 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003574
Dan Gohman0b89dff2009-07-25 01:13:03 +00003575 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003576 // structure, it's a PHI that's in the progress of being computed
3577 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3578 // additional loop trip count information isn't going to change anything.
3579 // In the second case, createNodeForPHI will perform the necessary
3580 // updates on its own when it gets to that point. In the third, we do
3581 // want to forget the SCEVUnknown.
3582 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003583 !isa<SCEVUnknown>(Old) ||
3584 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003585 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003586 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003587 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003588 }
3589
3590 PushDefUseChildren(I, Worklist);
3591 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003592}
Chris Lattnerd934c702004-04-02 20:23:17 +00003593
3594/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3595/// a loop header, making it a potential recurrence, or it doesn't.
3596///
Dan Gohmanaf752342009-07-07 17:06:11 +00003597const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003598 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3599 if (L->getHeader() == PN->getParent()) {
3600 // The loop may have multiple entrances or multiple exits; we can analyze
3601 // this phi as an addrec if it has a unique entry value and a unique
3602 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003603 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003604 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3605 Value *V = PN->getIncomingValue(i);
3606 if (L->contains(PN->getIncomingBlock(i))) {
3607 if (!BEValueV) {
3608 BEValueV = V;
3609 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003610 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003611 break;
3612 }
3613 } else if (!StartValueV) {
3614 StartValueV = V;
3615 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003616 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003617 break;
3618 }
3619 }
3620 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003621 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003622 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003623 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003624 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003625 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003626
3627 // Using this symbolic name for the PHI, analyze the value coming around
3628 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003629 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003630
3631 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3632 // has a special value for the first iteration of the loop.
3633
3634 // If the value coming around the backedge is an add with the symbolic
3635 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003636 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003637 // If there is a single occurrence of the symbolic value, replace it
3638 // with a recurrence.
3639 unsigned FoundIndex = Add->getNumOperands();
3640 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3641 if (Add->getOperand(i) == SymbolicName)
3642 if (FoundIndex == e) {
3643 FoundIndex = i;
3644 break;
3645 }
3646
3647 if (FoundIndex != Add->getNumOperands()) {
3648 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003649 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003650 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3651 if (i != FoundIndex)
3652 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003653 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003654
3655 // This is not a valid addrec if the step amount is varying each
3656 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003657 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003658 (isa<SCEVAddRecExpr>(Accum) &&
3659 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003660 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003661
3662 // If the increment doesn't overflow, then neither the addrec nor
3663 // the post-increment will overflow.
3664 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003665 if (OBO->getOperand(0) == PN) {
3666 if (OBO->hasNoUnsignedWrap())
3667 Flags = setFlags(Flags, SCEV::FlagNUW);
3668 if (OBO->hasNoSignedWrap())
3669 Flags = setFlags(Flags, SCEV::FlagNSW);
3670 }
Benjamin Kramer6094f302013-10-28 07:30:06 +00003671 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003672 // If the increment is an inbounds GEP, then we know the address
3673 // space cannot be wrapped around. We cannot make any guarantee
3674 // about signed or unsigned overflow because pointers are
3675 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003676 // pointer. We can guarantee that no unsigned wrap occurs if the
3677 // indices form a positive value.
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003678 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003679 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003680
3681 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3682 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3683 Flags = setFlags(Flags, SCEV::FlagNUW);
3684 }
Sanjoy Dascb473662015-01-22 00:48:47 +00003685
3686 // We cannot transfer nuw and nsw flags from subtraction
3687 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3688 // for instance.
Dan Gohman51ad99d2010-01-21 02:09:26 +00003689 }
3690
Dan Gohman6635bb22010-04-12 07:49:36 +00003691 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003692 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003693
Dan Gohman51ad99d2010-01-21 02:09:26 +00003694 // Since the no-wrap flags are on the increment, they apply to the
3695 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003696 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003697 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003698 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003699
3700 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003701 // to be symbolic. We now need to go back and purge all of the
3702 // entries for the scalars that use the symbolic expression.
3703 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003704 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003705 return PHISCEV;
3706 }
3707 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003708 } else if (const SCEVAddRecExpr *AddRec =
3709 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003710 // Otherwise, this could be a loop like this:
3711 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3712 // In this case, j = {1,+,1} and BEValue is j.
3713 // Because the other in-value of i (0) fits the evolution of BEValue
3714 // i really is an addrec evolution.
3715 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003716 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003717
3718 // If StartVal = j.start - j.stride, we can use StartVal as the
3719 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003720 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003721 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003722 // FIXME: For constant StartVal, we should be able to infer
3723 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003724 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003725 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3726 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003727
3728 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003729 // to be symbolic. We now need to go back and purge all of the
3730 // entries for the scalars that use the symbolic expression.
3731 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003732 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003733 return PHISCEV;
3734 }
3735 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003736 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003737 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003738 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003739
Dan Gohmana9c205c2010-02-25 06:57:05 +00003740 // If the PHI has a single incoming value, follow that value, unless the
3741 // PHI's incoming blocks are in a different loop, in which case doing so
3742 // risks breaking LCSSA form. Instcombine would normally zap these, but
3743 // it doesn't have DominatorTree information, so it may miss cases.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003744 if (Value *V =
3745 SimplifyInstruction(PN, F->getParent()->getDataLayout(), TLI, DT, AC))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003746 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003747 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003748
Chris Lattnerd934c702004-04-02 20:23:17 +00003749 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003750 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003751}
3752
Dan Gohmanee750d12009-05-08 20:26:55 +00003753/// createNodeForGEP - Expand GEP instructions into add and multiply
3754/// operations. This allows them to be analyzed by regular SCEV code.
3755///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003756const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00003757 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003758 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003759 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003760 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003761
Jingyue Wu2982d4d2015-05-18 17:03:25 +00003762 SmallVector<const SCEV *, 4> IndexExprs;
3763 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
3764 IndexExprs.push_back(getSCEV(*Index));
3765 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
3766 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00003767}
3768
Nick Lewycky3783b462007-11-22 07:59:40 +00003769/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3770/// guaranteed to end in (at every loop iteration). It is, at the same time,
3771/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3772/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003773uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003774ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003775 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003776 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003777
Dan Gohmana30370b2009-05-04 22:02:23 +00003778 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003779 return std::min(GetMinTrailingZeros(T->getOperand()),
3780 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003781
Dan Gohmana30370b2009-05-04 22:02:23 +00003782 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003783 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3784 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3785 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003786 }
3787
Dan Gohmana30370b2009-05-04 22:02:23 +00003788 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003789 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3790 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3791 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003792 }
3793
Dan Gohmana30370b2009-05-04 22:02:23 +00003794 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003795 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003796 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003797 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003798 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003799 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003800 }
3801
Dan Gohmana30370b2009-05-04 22:02:23 +00003802 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003803 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003804 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3805 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003806 for (unsigned i = 1, e = M->getNumOperands();
3807 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003808 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003809 BitWidth);
3810 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003811 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003812
Dan Gohmana30370b2009-05-04 22:02:23 +00003813 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003814 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003815 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003816 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003817 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003818 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003819 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003820
Dan Gohmana30370b2009-05-04 22:02:23 +00003821 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003822 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003823 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003824 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003825 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003826 return MinOpRes;
3827 }
3828
Dan Gohmana30370b2009-05-04 22:02:23 +00003829 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003830 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003831 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003832 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003833 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003834 return MinOpRes;
3835 }
3836
Dan Gohmanc702fc02009-06-19 23:29:04 +00003837 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3838 // For a SCEVUnknown, ask ValueTracking.
3839 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003840 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003841 computeKnownBits(U->getValue(), Zeros, Ones,
3842 F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003843 return Zeros.countTrailingOnes();
3844 }
3845
3846 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003847 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003848}
Chris Lattnerd934c702004-04-02 20:23:17 +00003849
Sanjoy Das1f05c512014-10-10 21:22:34 +00003850/// GetRangeFromMetadata - Helper method to assign a range to V from
3851/// metadata present in the IR.
3852static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3853 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003854 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003855 ConstantRange TotalRange(
3856 cast<IntegerType>(I->getType())->getBitWidth(), false);
3857
3858 unsigned NumRanges = MD->getNumOperands() / 2;
3859 assert(NumRanges >= 1);
3860
3861 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003862 ConstantInt *Lower =
3863 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3864 ConstantInt *Upper =
3865 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003866 ConstantRange Range(Lower->getValue(), Upper->getValue());
3867 TotalRange = TotalRange.unionWith(Range);
3868 }
3869
3870 return TotalRange;
3871 }
3872 }
3873
3874 return None;
3875}
3876
Sanjoy Das91b54772015-03-09 21:43:43 +00003877/// getRange - Determine the range for a particular SCEV. If SignHint is
3878/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
3879/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00003880///
3881ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00003882ScalarEvolution::getRange(const SCEV *S,
3883 ScalarEvolution::RangeSignHint SignHint) {
3884 DenseMap<const SCEV *, ConstantRange> &Cache =
3885 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
3886 : SignedRanges;
3887
Dan Gohman761065e2010-11-17 02:44:44 +00003888 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00003889 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
3890 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00003891 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003892
3893 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00003894 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003895
Dan Gohman85be4332010-01-26 19:19:05 +00003896 unsigned BitWidth = getTypeSizeInBits(S->getType());
3897 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3898
Sanjoy Das91b54772015-03-09 21:43:43 +00003899 // If the value has known zeros, the maximum value will have those known zeros
3900 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00003901 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00003902 if (TZ != 0) {
3903 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
3904 ConservativeResult =
3905 ConstantRange(APInt::getMinValue(BitWidth),
3906 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3907 else
3908 ConservativeResult = ConstantRange(
3909 APInt::getSignedMinValue(BitWidth),
3910 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3911 }
Dan Gohman85be4332010-01-26 19:19:05 +00003912
Dan Gohmane65c9172009-07-13 21:35:55 +00003913 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003914 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003915 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003916 X = X.add(getRange(Add->getOperand(i), SignHint));
3917 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003918 }
3919
3920 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003921 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003922 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003923 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
3924 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003925 }
3926
3927 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003928 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003929 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003930 X = X.smax(getRange(SMax->getOperand(i), SignHint));
3931 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003932 }
3933
3934 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003935 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003936 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003937 X = X.umax(getRange(UMax->getOperand(i), SignHint));
3938 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003939 }
3940
3941 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003942 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
3943 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
3944 return setRange(UDiv, SignHint,
3945 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003946 }
3947
3948 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003949 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
3950 return setRange(ZExt, SignHint,
3951 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003952 }
3953
3954 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003955 ConstantRange X = getRange(SExt->getOperand(), SignHint);
3956 return setRange(SExt, SignHint,
3957 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003958 }
3959
3960 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003961 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
3962 return setRange(Trunc, SignHint,
3963 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003964 }
3965
Dan Gohmane65c9172009-07-13 21:35:55 +00003966 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003967 // If there's no unsigned wrap, the value will never be less than its
3968 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003969 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003970 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003971 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003972 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003973 ConservativeResult.intersectWith(
3974 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003975
Dan Gohman51ad99d2010-01-21 02:09:26 +00003976 // If there's no signed wrap, and all the operands have the same sign or
3977 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003978 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003979 bool AllNonNeg = true;
3980 bool AllNonPos = true;
3981 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3982 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3983 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3984 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003985 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003986 ConservativeResult = ConservativeResult.intersectWith(
3987 ConstantRange(APInt(BitWidth, 0),
3988 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003989 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003990 ConservativeResult = ConservativeResult.intersectWith(
3991 ConstantRange(APInt::getSignedMinValue(BitWidth),
3992 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003993 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003994
3995 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003996 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003997 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003998 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003999 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4000 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004001
4002 // Check for overflow. This must be done with ConstantRange arithmetic
4003 // because we could be called from within the ScalarEvolution overflow
4004 // checking code.
4005
Dan Gohmane65c9172009-07-13 21:35:55 +00004006 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004007 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4008 ConstantRange ZExtMaxBECountRange =
4009 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004010
4011 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004012 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004013 ConstantRange StepSRange = getSignedRange(Step);
4014 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004015
Sanjoy Das91b54772015-03-09 21:43:43 +00004016 ConstantRange StartURange = getUnsignedRange(Start);
4017 ConstantRange EndURange =
4018 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004019
Sanjoy Das91b54772015-03-09 21:43:43 +00004020 // Check for unsigned overflow.
4021 ConstantRange ZExtStartURange =
4022 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4023 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4024 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4025 ZExtEndURange) {
4026 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4027 EndURange.getUnsignedMin());
4028 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4029 EndURange.getUnsignedMax());
4030 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4031 if (!IsFullRange)
4032 ConservativeResult =
4033 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4034 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004035
Sanjoy Das91b54772015-03-09 21:43:43 +00004036 ConstantRange StartSRange = getSignedRange(Start);
4037 ConstantRange EndSRange =
4038 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4039
4040 // Check for signed overflow. This must be done with ConstantRange
4041 // arithmetic because we could be called from within the ScalarEvolution
4042 // overflow checking code.
4043 ConstantRange SExtStartSRange =
4044 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4045 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4046 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4047 SExtEndSRange) {
4048 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4049 EndSRange.getSignedMin());
4050 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4051 EndSRange.getSignedMax());
4052 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4053 if (!IsFullRange)
4054 ConservativeResult =
4055 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4056 }
Dan Gohmand261d272009-06-24 01:05:09 +00004057 }
Dan Gohmand261d272009-06-24 01:05:09 +00004058 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004059
Sanjoy Das91b54772015-03-09 21:43:43 +00004060 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004061 }
4062
Dan Gohmanc702fc02009-06-19 23:29:04 +00004063 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004064 // Check if the IR explicitly contains !range metadata.
4065 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4066 if (MDRange.hasValue())
4067 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4068
Sanjoy Das91b54772015-03-09 21:43:43 +00004069 // Split here to avoid paying the compile-time cost of calling both
4070 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4071 // if needed.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004072 const DataLayout &DL = F->getParent()->getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004073 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4074 // For a SCEVUnknown, ask ValueTracking.
4075 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4076 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
4077 if (Ones != ~Zeros + 1)
4078 ConservativeResult =
4079 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4080 } else {
4081 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4082 "generalize as needed!");
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004083 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
4084 if (NS > 1)
4085 ConservativeResult = ConservativeResult.intersectWith(
4086 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4087 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004088 }
4089
4090 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004091 }
4092
Sanjoy Das91b54772015-03-09 21:43:43 +00004093 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004094}
4095
Jingyue Wu42f1d672015-07-28 18:22:40 +00004096SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4097 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4098
4099 // Return early if there are no flags to propagate to the SCEV.
4100 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4101 if (BinOp->hasNoUnsignedWrap())
4102 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4103 if (BinOp->hasNoSignedWrap())
4104 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4105 if (Flags == SCEV::FlagAnyWrap) {
4106 return SCEV::FlagAnyWrap;
4107 }
4108
4109 // Here we check that BinOp is in the header of the innermost loop
4110 // containing BinOp, since we only deal with instructions in the loop
4111 // header. The actual loop we need to check later will come from an add
4112 // recurrence, but getting that requires computing the SCEV of the operands,
4113 // which can be expensive. This check we can do cheaply to rule out some
4114 // cases early.
4115 Loop *innermostContainingLoop = LI->getLoopFor(BinOp->getParent());
4116 if (innermostContainingLoop == nullptr ||
4117 innermostContainingLoop->getHeader() != BinOp->getParent())
4118 return SCEV::FlagAnyWrap;
4119
4120 // Only proceed if we can prove that BinOp does not yield poison.
4121 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4122
4123 // At this point we know that if V is executed, then it does not wrap
4124 // according to at least one of NSW or NUW. If V is not executed, then we do
4125 // not know if the calculation that V represents would wrap. Multiple
4126 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4127 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4128 // derived from other instructions that map to the same SCEV. We cannot make
4129 // that guarantee for cases where V is not executed. So we need to find the
4130 // loop that V is considered in relation to and prove that V is executed for
4131 // every iteration of that loop. That implies that the value that V
4132 // calculates does not wrap anywhere in the loop, so then we can apply the
4133 // flags to the SCEV.
4134 //
4135 // We check isLoopInvariant to disambiguate in case we are adding two
4136 // recurrences from different loops, so that we know which loop to prove
4137 // that V is executed in.
4138 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4139 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4140 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4141 const int OtherOpIndex = 1 - OpIndex;
4142 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4143 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4144 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4145 return Flags;
4146 }
4147 }
4148 return SCEV::FlagAnyWrap;
4149}
4150
4151/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4152/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004153///
Dan Gohmanaf752342009-07-07 17:06:11 +00004154const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004155 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004156 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004157
Dan Gohman05e89732008-06-22 19:56:46 +00004158 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004159 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004160 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004161
4162 // Don't attempt to analyze instructions in blocks that aren't
4163 // reachable. Such instructions don't matter, and they aren't required
4164 // to obey basic rules for definitions dominating uses which this
4165 // analysis depends on.
4166 if (!DT->isReachableFromEntry(I->getParent()))
4167 return getUnknown(V);
4168 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004169 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004170 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4171 return getConstant(CI);
4172 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004173 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004174 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4175 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004176 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004177 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004178
Dan Gohman80ca01c2009-07-17 20:47:02 +00004179 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004180 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004181 case Instruction::Add: {
4182 // The simple thing to do would be to just call getSCEV on both operands
4183 // and call getAddExpr with the result. However if we're looking at a
4184 // bunch of things all added together, this can be quite inefficient,
4185 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4186 // Instead, gather up all the operands and make a single getAddExpr call.
4187 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004188 //
Jingyue Wu42f1d672015-07-28 18:22:40 +00004189 // FIXME: Expand this handling of NSW and NUW to other instructions, like
4190 // sub and mul.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004191 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004192 for (Value *Op = U;; Op = U->getOperand(0)) {
4193 U = dyn_cast<Operator>(Op);
4194 unsigned Opcode = U ? U->getOpcode() : 0;
4195 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4196 assert(Op != V && "V should be an add");
4197 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004198 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004199 }
4200
4201 if (auto *OpSCEV = getExistingSCEV(Op)) {
4202 AddOps.push_back(OpSCEV);
4203 break;
4204 }
4205
4206 // If a NUW or NSW flag can be applied to the SCEV for this
4207 // addition, then compute the SCEV for this addition by itself
4208 // with a separate call to getAddExpr. We need to do that
4209 // instead of pushing the operands of the addition onto AddOps,
4210 // since the flags are only known to apply to this particular
4211 // addition - they may not apply to other additions that can be
4212 // formed with operands from AddOps.
4213 //
4214 // FIXME: Expand this to sub instructions.
4215 if (Opcode == Instruction::Add && isa<BinaryOperator>(U)) {
4216 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4217 if (Flags != SCEV::FlagAnyWrap) {
4218 AddOps.push_back(getAddExpr(getSCEV(U->getOperand(0)),
4219 getSCEV(U->getOperand(1)), Flags));
4220 break;
4221 }
4222 }
4223
Dan Gohman47308d52010-08-31 22:53:17 +00004224 const SCEV *Op1 = getSCEV(U->getOperand(1));
4225 if (Opcode == Instruction::Sub)
4226 AddOps.push_back(getNegativeSCEV(Op1));
4227 else
4228 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004229 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004230 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004231 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004232
Dan Gohmane5fb1032010-08-16 16:03:49 +00004233 case Instruction::Mul: {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004234 // FIXME: Transfer NSW/NUW as in AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004235 SmallVector<const SCEV *, 4> MulOps;
4236 MulOps.push_back(getSCEV(U->getOperand(1)));
4237 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004238 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004239 Op = U->getOperand(0)) {
4240 U = cast<Operator>(Op);
4241 MulOps.push_back(getSCEV(U->getOperand(1)));
4242 }
4243 MulOps.push_back(getSCEV(U->getOperand(0)));
4244 return getMulExpr(MulOps);
4245 }
Dan Gohman05e89732008-06-22 19:56:46 +00004246 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004247 return getUDivExpr(getSCEV(U->getOperand(0)),
4248 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004249 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004250 return getMinusSCEV(getSCEV(U->getOperand(0)),
4251 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004252 case Instruction::And:
4253 // For an expression like x&255 that merely masks off the high bits,
4254 // use zext(trunc(x)) as the SCEV expression.
4255 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004256 if (CI->isNullValue())
4257 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004258 if (CI->isAllOnesValue())
4259 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004260 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004261
4262 // Instcombine's ShrinkDemandedConstant may strip bits out of
4263 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004264 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004265 // knew about to reconstruct a low-bits mask value.
4266 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004267 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004268 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004269 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004270 computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
4271 F->getParent()->getDataLayout(), 0, AC, nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004272
Nick Lewycky31eaca52014-01-27 10:04:03 +00004273 APInt EffectiveMask =
4274 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4275 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4276 const SCEV *MulCount = getConstant(
4277 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4278 return getMulExpr(
4279 getZeroExtendExpr(
4280 getTruncateExpr(
4281 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4282 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4283 U->getType()),
4284 MulCount);
4285 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004286 }
4287 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004288
Dan Gohman05e89732008-06-22 19:56:46 +00004289 case Instruction::Or:
4290 // If the RHS of the Or is a constant, we may have something like:
4291 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4292 // optimizations will transparently handle this case.
4293 //
4294 // In order for this transformation to be safe, the LHS must be of the
4295 // form X*(2^n) and the Or constant must be less than 2^n.
4296 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004297 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004298 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004299 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004300 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4301 // Build a plain add SCEV.
4302 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4303 // If the LHS of the add was an addrec and it has no-wrap flags,
4304 // transfer the no-wrap flags, since an or won't introduce a wrap.
4305 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4306 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004307 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4308 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004309 }
4310 return S;
4311 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004312 }
Dan Gohman05e89732008-06-22 19:56:46 +00004313 break;
4314 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004315 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004316 // If the RHS of the xor is a signbit, then this is just an add.
4317 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004318 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004319 return getAddExpr(getSCEV(U->getOperand(0)),
4320 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004321
4322 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004323 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004324 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004325
4326 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4327 // This is a variant of the check for xor with -1, and it handles
4328 // the case where instcombine has trimmed non-demanded bits out
4329 // of an xor with -1.
4330 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4331 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4332 if (BO->getOpcode() == Instruction::And &&
4333 LCI->getValue() == CI->getValue())
4334 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004335 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004336 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004337 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004338 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004339 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4340
Dan Gohman8b0a4192010-03-01 17:49:51 +00004341 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004342 // mask off the high bits. Complement the operand and
4343 // re-apply the zext.
4344 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4345 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4346
4347 // If C is a single bit, it may be in the sign-bit position
4348 // before the zero-extend. In this case, represent the xor
4349 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004350 APInt Trunc = CI->getValue().trunc(Z0TySize);
4351 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004352 Trunc.isSignBit())
4353 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4354 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004355 }
Dan Gohman05e89732008-06-22 19:56:46 +00004356 }
4357 break;
4358
4359 case Instruction::Shl:
4360 // Turn shift left of a constant amount into a multiply.
4361 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004362 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004363
4364 // If the shift count is not less than the bitwidth, the result of
4365 // the shift is undefined. Don't try to analyze it, because the
4366 // resolution chosen here may differ from the resolution chosen in
4367 // other parts of the compiler.
4368 if (SA->getValue().uge(BitWidth))
4369 break;
4370
Owen Andersonedb4a702009-07-24 23:12:02 +00004371 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004372 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004373 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004374 }
4375 break;
4376
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004377 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004378 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004379 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004380 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004381
4382 // If the shift count is not less than the bitwidth, the result of
4383 // the shift is undefined. Don't try to analyze it, because the
4384 // resolution chosen here may differ from the resolution chosen in
4385 // other parts of the compiler.
4386 if (SA->getValue().uge(BitWidth))
4387 break;
4388
Owen Andersonedb4a702009-07-24 23:12:02 +00004389 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004390 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004391 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004392 }
4393 break;
4394
Dan Gohman0ec05372009-04-21 02:26:00 +00004395 case Instruction::AShr:
4396 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4397 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004398 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004399 if (L->getOpcode() == Instruction::Shl &&
4400 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004401 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4402
4403 // If the shift count is not less than the bitwidth, the result of
4404 // the shift is undefined. Don't try to analyze it, because the
4405 // resolution chosen here may differ from the resolution chosen in
4406 // other parts of the compiler.
4407 if (CI->getValue().uge(BitWidth))
4408 break;
4409
Dan Gohmandf199482009-04-25 17:05:40 +00004410 uint64_t Amt = BitWidth - CI->getZExtValue();
4411 if (Amt == BitWidth)
4412 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004413 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004414 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004415 IntegerType::get(getContext(),
4416 Amt)),
4417 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004418 }
4419 break;
4420
Dan Gohman05e89732008-06-22 19:56:46 +00004421 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004422 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004423
4424 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004425 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004426
4427 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004428 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004429
4430 case Instruction::BitCast:
4431 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004432 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004433 return getSCEV(U->getOperand(0));
4434 break;
4435
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004436 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4437 // lead to pointer expressions which cannot safely be expanded to GEPs,
4438 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4439 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004440
Dan Gohmanee750d12009-05-08 20:26:55 +00004441 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004442 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004443
Dan Gohman05e89732008-06-22 19:56:46 +00004444 case Instruction::PHI:
4445 return createNodeForPHI(cast<PHINode>(U));
4446
4447 case Instruction::Select:
4448 // This could be a smax or umax that was lowered earlier.
4449 // Try to recover it.
4450 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4451 Value *LHS = ICI->getOperand(0);
4452 Value *RHS = ICI->getOperand(1);
4453 switch (ICI->getPredicate()) {
4454 case ICmpInst::ICMP_SLT:
4455 case ICmpInst::ICMP_SLE:
4456 std::swap(LHS, RHS);
4457 // fall through
4458 case ICmpInst::ICMP_SGT:
4459 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004460 // a >s b ? a+x : b+x -> smax(a, b)+x
4461 // a >s b ? b+x : a+x -> smin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004462 if (getTypeSizeInBits(LHS->getType()) <=
4463 getTypeSizeInBits(U->getType())) {
4464 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4465 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004466 const SCEV *LA = getSCEV(U->getOperand(1));
4467 const SCEV *RA = getSCEV(U->getOperand(2));
4468 const SCEV *LDiff = getMinusSCEV(LA, LS);
4469 const SCEV *RDiff = getMinusSCEV(RA, RS);
4470 if (LDiff == RDiff)
4471 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4472 LDiff = getMinusSCEV(LA, RS);
4473 RDiff = getMinusSCEV(RA, LS);
4474 if (LDiff == RDiff)
4475 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4476 }
Dan Gohman05e89732008-06-22 19:56:46 +00004477 break;
4478 case ICmpInst::ICMP_ULT:
4479 case ICmpInst::ICMP_ULE:
4480 std::swap(LHS, RHS);
4481 // fall through
4482 case ICmpInst::ICMP_UGT:
4483 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004484 // a >u b ? a+x : b+x -> umax(a, b)+x
4485 // a >u b ? b+x : a+x -> umin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004486 if (getTypeSizeInBits(LHS->getType()) <=
4487 getTypeSizeInBits(U->getType())) {
4488 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4489 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004490 const SCEV *LA = getSCEV(U->getOperand(1));
4491 const SCEV *RA = getSCEV(U->getOperand(2));
4492 const SCEV *LDiff = getMinusSCEV(LA, LS);
4493 const SCEV *RDiff = getMinusSCEV(RA, RS);
4494 if (LDiff == RDiff)
4495 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4496 LDiff = getMinusSCEV(LA, RS);
4497 RDiff = getMinusSCEV(RA, LS);
4498 if (LDiff == RDiff)
4499 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4500 }
Dan Gohman05e89732008-06-22 19:56:46 +00004501 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004502 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004503 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004504 if (getTypeSizeInBits(LHS->getType()) <=
4505 getTypeSizeInBits(U->getType()) &&
4506 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4507 const SCEV *One = getConstant(U->getType(), 1);
4508 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004509 const SCEV *LA = getSCEV(U->getOperand(1));
4510 const SCEV *RA = getSCEV(U->getOperand(2));
4511 const SCEV *LDiff = getMinusSCEV(LA, LS);
4512 const SCEV *RDiff = getMinusSCEV(RA, One);
4513 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004514 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004515 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004516 break;
4517 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004518 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004519 if (getTypeSizeInBits(LHS->getType()) <=
4520 getTypeSizeInBits(U->getType()) &&
4521 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4522 const SCEV *One = getConstant(U->getType(), 1);
4523 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004524 const SCEV *LA = getSCEV(U->getOperand(1));
4525 const SCEV *RA = getSCEV(U->getOperand(2));
4526 const SCEV *LDiff = getMinusSCEV(LA, One);
4527 const SCEV *RDiff = getMinusSCEV(RA, LS);
4528 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004529 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004530 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004531 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004532 default:
4533 break;
4534 }
4535 }
4536
4537 default: // We cannot analyze this expression.
4538 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004539 }
4540
Dan Gohmanc8e23622009-04-21 23:15:49 +00004541 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004542}
4543
4544
4545
4546//===----------------------------------------------------------------------===//
4547// Iteration Count Computation Code
4548//
4549
Chandler Carruth6666c272014-10-11 00:12:11 +00004550unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4551 if (BasicBlock *ExitingBB = L->getExitingBlock())
4552 return getSmallConstantTripCount(L, ExitingBB);
4553
4554 // No trip count information for multiple exits.
4555 return 0;
4556}
4557
Andrew Trick2b6860f2011-08-11 23:36:16 +00004558/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004559/// normal unsigned value. Returns 0 if the trip count is unknown or not
4560/// constant. Will also return 0 if the maximum trip count is very large (>=
4561/// 2^32).
4562///
4563/// This "trip count" assumes that control exits via ExitingBlock. More
4564/// precisely, it is the number of times that control may reach ExitingBlock
4565/// before taking the branch. For loops with multiple exits, it may not be the
4566/// number times that the loop header executes because the loop may exit
4567/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004568unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4569 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004570 assert(ExitingBlock && "Must pass a non-null exiting block!");
4571 assert(L->isLoopExiting(ExitingBlock) &&
4572 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004573 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004574 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004575 if (!ExitCount)
4576 return 0;
4577
4578 ConstantInt *ExitConst = ExitCount->getValue();
4579
4580 // Guard against huge trip counts.
4581 if (ExitConst->getValue().getActiveBits() > 32)
4582 return 0;
4583
4584 // In case of integer overflow, this returns 0, which is correct.
4585 return ((unsigned)ExitConst->getZExtValue()) + 1;
4586}
4587
Chandler Carruth6666c272014-10-11 00:12:11 +00004588unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4589 if (BasicBlock *ExitingBB = L->getExitingBlock())
4590 return getSmallConstantTripMultiple(L, ExitingBB);
4591
4592 // No trip multiple information for multiple exits.
4593 return 0;
4594}
4595
Andrew Trick2b6860f2011-08-11 23:36:16 +00004596/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4597/// trip count of this loop as a normal unsigned value, if possible. This
4598/// means that the actual trip count is always a multiple of the returned
4599/// value (don't forget the trip count could very well be zero as well!).
4600///
4601/// Returns 1 if the trip count is unknown or not guaranteed to be the
4602/// multiple of a constant (which is also the case if the trip count is simply
4603/// constant, use getSmallConstantTripCount for that case), Will also return 1
4604/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004605///
4606/// As explained in the comments for getSmallConstantTripCount, this assumes
4607/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004608unsigned
4609ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4610 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004611 assert(ExitingBlock && "Must pass a non-null exiting block!");
4612 assert(L->isLoopExiting(ExitingBlock) &&
4613 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004614 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004615 if (ExitCount == getCouldNotCompute())
4616 return 1;
4617
4618 // Get the trip count from the BE count by adding 1.
4619 const SCEV *TCMul = getAddExpr(ExitCount,
4620 getConstant(ExitCount->getType(), 1));
4621 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4622 // to factor simple cases.
4623 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4624 TCMul = Mul->getOperand(0);
4625
4626 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4627 if (!MulC)
4628 return 1;
4629
4630 ConstantInt *Result = MulC->getValue();
4631
Hal Finkel30bd9342012-10-24 19:46:44 +00004632 // Guard against huge trip counts (this requires checking
4633 // for zero to handle the case where the trip count == -1 and the
4634 // addition wraps).
4635 if (!Result || Result->getValue().getActiveBits() > 32 ||
4636 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004637 return 1;
4638
4639 return (unsigned)Result->getZExtValue();
4640}
4641
Andrew Trick3ca3f982011-07-26 17:19:55 +00004642// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004643// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004644// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004645const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4646 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004647}
4648
Dan Gohman0bddac12009-02-24 18:55:53 +00004649/// getBackedgeTakenCount - If the specified loop has a predictable
4650/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4651/// object. The backedge-taken count is the number of times the loop header
4652/// will be branched to from within the loop. This is one less than the
4653/// trip count of the loop, since it doesn't count the first iteration,
4654/// when the header is branched to from outside the loop.
4655///
4656/// Note that it is not valid to call this method on a loop without a
4657/// loop-invariant backedge-taken count (see
4658/// hasLoopInvariantBackedgeTakenCount).
4659///
Dan Gohmanaf752342009-07-07 17:06:11 +00004660const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004661 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004662}
4663
4664/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4665/// return the least SCEV value that is known never to be less than the
4666/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004667const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004668 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004669}
4670
Dan Gohmandc191042009-07-08 19:23:34 +00004671/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4672/// onto the given Worklist.
4673static void
4674PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4675 BasicBlock *Header = L->getHeader();
4676
4677 // Push all Loop-header PHIs onto the Worklist stack.
4678 for (BasicBlock::iterator I = Header->begin();
4679 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4680 Worklist.push_back(PN);
4681}
4682
Dan Gohman2b8da352009-04-30 20:47:05 +00004683const ScalarEvolution::BackedgeTakenInfo &
4684ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004685 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004686 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004687 // update the value. The temporary CouldNotCompute value tells SCEV
4688 // code elsewhere that it shouldn't attempt to request a new
4689 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004690 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004691 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004692 if (!Pair.second)
4693 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004694
Andrew Trick3ca3f982011-07-26 17:19:55 +00004695 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4696 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4697 // must be cleared in this scope.
4698 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4699
4700 if (Result.getExact(this) != getCouldNotCompute()) {
4701 assert(isLoopInvariant(Result.getExact(this), L) &&
4702 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004703 "Computed backedge-taken count isn't loop invariant for loop!");
4704 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004705 }
4706 else if (Result.getMax(this) == getCouldNotCompute() &&
4707 isa<PHINode>(L->getHeader()->begin())) {
4708 // Only count loops that have phi nodes as not being computable.
4709 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004710 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004711
Chris Lattnera337f5e2011-01-09 02:16:18 +00004712 // Now that we know more about the trip count for this loop, forget any
4713 // existing SCEV values for PHI nodes in this loop since they are only
4714 // conservative estimates made without the benefit of trip count
4715 // information. This is similar to the code in forgetLoop, except that
4716 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004717 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004718 SmallVector<Instruction *, 16> Worklist;
4719 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004720
Chris Lattnera337f5e2011-01-09 02:16:18 +00004721 SmallPtrSet<Instruction *, 8> Visited;
4722 while (!Worklist.empty()) {
4723 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004724 if (!Visited.insert(I).second)
4725 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004726
Chris Lattnera337f5e2011-01-09 02:16:18 +00004727 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004728 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004729 if (It != ValueExprMap.end()) {
4730 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004731
Chris Lattnera337f5e2011-01-09 02:16:18 +00004732 // SCEVUnknown for a PHI either means that it has an unrecognized
4733 // structure, or it's a PHI that's in the progress of being computed
4734 // by createNodeForPHI. In the former case, additional loop trip
4735 // count information isn't going to change anything. In the later
4736 // case, createNodeForPHI will perform the necessary updates on its
4737 // own when it gets to that point.
4738 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4739 forgetMemoizedResults(Old);
4740 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004741 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004742 if (PHINode *PN = dyn_cast<PHINode>(I))
4743 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004744 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004745
4746 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004747 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004748 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004749
4750 // Re-lookup the insert position, since the call to
4751 // ComputeBackedgeTakenCount above could result in a
4752 // recusive call to getBackedgeTakenInfo (on a different
4753 // loop), which would invalidate the iterator computed
4754 // earlier.
4755 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004756}
4757
Dan Gohman880c92a2009-10-31 15:04:55 +00004758/// forgetLoop - This method should be called by the client when it has
4759/// changed a loop in a way that may effect ScalarEvolution's ability to
4760/// compute a trip count, or if the loop is deleted.
4761void ScalarEvolution::forgetLoop(const Loop *L) {
4762 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004763 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4764 BackedgeTakenCounts.find(L);
4765 if (BTCPos != BackedgeTakenCounts.end()) {
4766 BTCPos->second.clear();
4767 BackedgeTakenCounts.erase(BTCPos);
4768 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004769
Dan Gohman880c92a2009-10-31 15:04:55 +00004770 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004771 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004772 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004773
Dan Gohmandc191042009-07-08 19:23:34 +00004774 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004775 while (!Worklist.empty()) {
4776 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004777 if (!Visited.insert(I).second)
4778 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004779
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004780 ValueExprMapType::iterator It =
4781 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004782 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004783 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004784 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004785 if (PHINode *PN = dyn_cast<PHINode>(I))
4786 ConstantEvolutionLoopExitValue.erase(PN);
4787 }
4788
4789 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004790 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004791
4792 // Forget all contained loops too, to avoid dangling entries in the
4793 // ValuesAtScopes map.
4794 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4795 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004796}
4797
Eric Christopheref6d5932010-07-29 01:25:38 +00004798/// forgetValue - This method should be called by the client when it has
4799/// changed a value in a way that may effect its value, or which may
4800/// disconnect it from a def-use chain linking it to a loop.
4801void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004802 Instruction *I = dyn_cast<Instruction>(V);
4803 if (!I) return;
4804
4805 // Drop information about expressions based on loop-header PHIs.
4806 SmallVector<Instruction *, 16> Worklist;
4807 Worklist.push_back(I);
4808
4809 SmallPtrSet<Instruction *, 8> Visited;
4810 while (!Worklist.empty()) {
4811 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004812 if (!Visited.insert(I).second)
4813 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004814
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004815 ValueExprMapType::iterator It =
4816 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004817 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004818 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004819 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004820 if (PHINode *PN = dyn_cast<PHINode>(I))
4821 ConstantEvolutionLoopExitValue.erase(PN);
4822 }
4823
4824 PushDefUseChildren(I, Worklist);
4825 }
4826}
4827
Andrew Trick3ca3f982011-07-26 17:19:55 +00004828/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00004829/// exits. A computable result can only be returned for loops with a single
4830/// exit. Returning the minimum taken count among all exits is incorrect
4831/// because one of the loop's exit limit's may have been skipped. HowFarToZero
4832/// assumes that the limit of each loop test is never skipped. This is a valid
4833/// assumption as long as the loop exits via that test. For precise results, it
4834/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00004835/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004836const SCEV *
4837ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4838 // If any exits were not computable, the loop is not computable.
4839 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4840
Andrew Trick90c7a102011-11-16 00:52:40 +00004841 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004842 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004843 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4844
Craig Topper9f008862014-04-15 04:59:12 +00004845 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004846 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004847 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004848
4849 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4850
4851 if (!BECount)
4852 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004853 else if (BECount != ENT->ExactNotTaken)
4854 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004855 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004856 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004857 return BECount;
4858}
4859
4860/// getExact - Get the exact not taken count for this loop exit.
4861const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004862ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004863 ScalarEvolution *SE) const {
4864 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004865 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004866
Andrew Trick77c55422011-08-02 04:23:35 +00004867 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004868 return ENT->ExactNotTaken;
4869 }
4870 return SE->getCouldNotCompute();
4871}
4872
4873/// getMax - Get the max backedge taken count for the loop.
4874const SCEV *
4875ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4876 return Max ? Max : SE->getCouldNotCompute();
4877}
4878
Andrew Trick9093e152013-03-26 03:14:53 +00004879bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4880 ScalarEvolution *SE) const {
4881 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4882 return true;
4883
4884 if (!ExitNotTaken.ExitingBlock)
4885 return false;
4886
4887 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004888 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004889
4890 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4891 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4892 return true;
4893 }
4894 }
4895 return false;
4896}
4897
Andrew Trick3ca3f982011-07-26 17:19:55 +00004898/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4899/// computable exit into a persistent ExitNotTakenInfo array.
4900ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4901 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4902 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4903
4904 if (!Complete)
4905 ExitNotTaken.setIncomplete();
4906
4907 unsigned NumExits = ExitCounts.size();
4908 if (NumExits == 0) return;
4909
Andrew Trick77c55422011-08-02 04:23:35 +00004910 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004911 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4912 if (NumExits == 1) return;
4913
4914 // Handle the rare case of multiple computable exits.
4915 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4916
4917 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4918 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4919 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004920 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004921 ENT->ExactNotTaken = ExitCounts[i].second;
4922 }
4923}
4924
4925/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4926void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004927 ExitNotTaken.ExitingBlock = nullptr;
4928 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004929 delete[] ExitNotTaken.getNextExit();
4930}
4931
Dan Gohman0bddac12009-02-24 18:55:53 +00004932/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4933/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004934ScalarEvolution::BackedgeTakenInfo
4935ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004936 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004937 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004938
Andrew Trick839e30b2014-05-23 19:47:13 +00004939 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004940 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004941 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004942 const SCEV *MustExitMaxBECount = nullptr;
4943 const SCEV *MayExitMaxBECount = nullptr;
4944
4945 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4946 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004947 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004948 BasicBlock *ExitBB = ExitingBlocks[i];
4949 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4950
4951 // 1. For each exit that can be computed, add an entry to ExitCounts.
4952 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004953 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004954 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004955 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004956 CouldComputeBECount = false;
4957 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004958 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004959
Andrew Trick839e30b2014-05-23 19:47:13 +00004960 // 2. Derive the loop's MaxBECount from each exit's max number of
4961 // non-exiting iterations. Partition the loop exits into two kinds:
4962 // LoopMustExits and LoopMayExits.
4963 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004964 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4965 // is a LoopMayExit. If any computable LoopMustExit is found, then
4966 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4967 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4968 // considered greater than any computable EL.Max.
4969 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004970 DT->dominates(ExitBB, Latch)) {
4971 if (!MustExitMaxBECount)
4972 MustExitMaxBECount = EL.Max;
4973 else {
4974 MustExitMaxBECount =
4975 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004976 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004977 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4978 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4979 MayExitMaxBECount = EL.Max;
4980 else {
4981 MayExitMaxBECount =
4982 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4983 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004984 }
Dan Gohman96212b62009-06-22 00:31:57 +00004985 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004986 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4987 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004988 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004989}
4990
Andrew Trick3ca3f982011-07-26 17:19:55 +00004991/// ComputeExitLimit - Compute the number of times the backedge of the specified
4992/// loop will execute if it exits via the specified block.
4993ScalarEvolution::ExitLimit
4994ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004995
4996 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004997 // exit at this block and remember the exit block and whether all other targets
4998 // lead to the loop header.
4999 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005000 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005001 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5002 SI != SE; ++SI)
5003 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005004 if (Exit) // Multiple exit successors.
5005 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005006 Exit = *SI;
5007 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005008 MustExecuteLoopHeader = false;
5009 }
Dan Gohmance973df2009-06-24 04:48:43 +00005010
Chris Lattner18954852007-01-07 02:24:26 +00005011 // At this point, we know we have a conditional branch that determines whether
5012 // the loop is exited. However, we don't know if the branch is executed each
5013 // time through the loop. If not, then the execution count of the branch will
5014 // not be equal to the trip count of the loop.
5015 //
5016 // Currently we check for this by checking to see if the Exit branch goes to
5017 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005018 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005019 // loop header. This is common for un-rotated loops.
5020 //
5021 // If both of those tests fail, walk up the unique predecessor chain to the
5022 // header, stopping if there is an edge that doesn't exit the loop. If the
5023 // header is reached, the execution count of the branch will be equal to the
5024 // trip count of the loop.
5025 //
5026 // More extensive analysis could be done to handle more cases here.
5027 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005028 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005029 // The simple checks failed, try climbing the unique predecessor chain
5030 // up to the header.
5031 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005032 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005033 BasicBlock *Pred = BB->getUniquePredecessor();
5034 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005035 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005036 TerminatorInst *PredTerm = Pred->getTerminator();
5037 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
5038 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
5039 if (PredSucc == BB)
5040 continue;
5041 // If the predecessor has a successor that isn't BB and isn't
5042 // outside the loop, assume the worst.
5043 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005044 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005045 }
5046 if (Pred == L->getHeader()) {
5047 Ok = true;
5048 break;
5049 }
5050 BB = Pred;
5051 }
5052 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005053 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005054 }
5055
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005056 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005057 TerminatorInst *Term = ExitingBlock->getTerminator();
5058 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5059 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5060 // Proceed to the next level to examine the exit condition expression.
5061 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5062 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005063 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005064 }
5065
5066 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5067 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005068 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005069
5070 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005071}
5072
Andrew Trick3ca3f982011-07-26 17:19:55 +00005073/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005074/// backedge of the specified loop will execute if its exit condition
5075/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005076///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005077/// @param ControlsExit is true if ExitCond directly controls the exit
5078/// branch. In this case, we can assume that the loop exits only if the
5079/// condition is true and can infer that failing to meet the condition prior to
5080/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005081ScalarEvolution::ExitLimit
5082ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
5083 Value *ExitCond,
5084 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005085 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005086 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005087 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005088 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5089 if (BO->getOpcode() == Instruction::And) {
5090 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005091 bool EitherMayExit = L->contains(TBB);
5092 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005093 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005094 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005095 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005096 const SCEV *BECount = getCouldNotCompute();
5097 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005098 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005099 // Both conditions must be true for the loop to continue executing.
5100 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005101 if (EL0.Exact == getCouldNotCompute() ||
5102 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005103 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005104 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005105 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5106 if (EL0.Max == getCouldNotCompute())
5107 MaxBECount = EL1.Max;
5108 else if (EL1.Max == getCouldNotCompute())
5109 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005110 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005111 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005112 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005113 // Both conditions must be true at the same time for the loop to exit.
5114 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005115 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005116 if (EL0.Max == EL1.Max)
5117 MaxBECount = EL0.Max;
5118 if (EL0.Exact == EL1.Exact)
5119 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005120 }
5121
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005122 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005123 }
5124 if (BO->getOpcode() == Instruction::Or) {
5125 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005126 bool EitherMayExit = L->contains(FBB);
5127 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005128 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005129 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005130 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005131 const SCEV *BECount = getCouldNotCompute();
5132 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005133 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005134 // Both conditions must be false for the loop to continue executing.
5135 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005136 if (EL0.Exact == getCouldNotCompute() ||
5137 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005138 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005139 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005140 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5141 if (EL0.Max == getCouldNotCompute())
5142 MaxBECount = EL1.Max;
5143 else if (EL1.Max == getCouldNotCompute())
5144 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005145 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005146 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005147 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005148 // Both conditions must be false at the same time for the loop to exit.
5149 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005150 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005151 if (EL0.Max == EL1.Max)
5152 MaxBECount = EL0.Max;
5153 if (EL0.Exact == EL1.Exact)
5154 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005155 }
5156
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005157 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005158 }
5159 }
5160
5161 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005162 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005163 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005164 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005165
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005166 // Check for a constant condition. These are normally stripped out by
5167 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5168 // preserve the CFG and is temporarily leaving constant conditions
5169 // in place.
5170 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5171 if (L->contains(FBB) == !CI->getZExtValue())
5172 // The backedge is always taken.
5173 return getCouldNotCompute();
5174 else
5175 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005176 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005177 }
5178
Eli Friedmanebf98b02009-05-09 12:32:42 +00005179 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005180 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005181}
5182
Andrew Trick3ca3f982011-07-26 17:19:55 +00005183/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005184/// backedge of the specified loop will execute if its exit condition
5185/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005186ScalarEvolution::ExitLimit
5187ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5188 ICmpInst *ExitCond,
5189 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005190 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005191 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005192
Reid Spencer266e42b2006-12-23 06:05:41 +00005193 // If the condition was exit on true, convert the condition to exit on false
5194 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005195 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005196 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005197 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005198 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005199
5200 // Handle common loops like: for (X = "string"; *X; ++X)
5201 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5202 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005203 ExitLimit ItCnt =
5204 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005205 if (ItCnt.hasAnyInfo())
5206 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005207 }
5208
Dan Gohmanaf752342009-07-07 17:06:11 +00005209 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5210 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005211
5212 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005213 LHS = getSCEVAtScope(LHS, L);
5214 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005215
Dan Gohmance973df2009-06-24 04:48:43 +00005216 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005217 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005218 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005219 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005220 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005221 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005222 }
5223
Dan Gohman81585c12010-05-03 16:35:17 +00005224 // Simplify the operands before analyzing them.
5225 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5226
Chris Lattnerd934c702004-04-02 20:23:17 +00005227 // If we have a comparison of a chrec against a constant, try to use value
5228 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005229 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5230 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005231 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005232 // Form the constant range.
5233 ConstantRange CompRange(
5234 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005235
Dan Gohmanaf752342009-07-07 17:06:11 +00005236 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005237 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005238 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005239
Chris Lattnerd934c702004-04-02 20:23:17 +00005240 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005241 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005242 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005243 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005244 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005245 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005246 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005247 case ICmpInst::ICMP_EQ: { // while (X == Y)
5248 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005249 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5250 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005251 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005252 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005253 case ICmpInst::ICMP_SLT:
5254 case ICmpInst::ICMP_ULT: { // while (X < Y)
5255 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005256 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005257 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005258 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005259 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005260 case ICmpInst::ICMP_SGT:
5261 case ICmpInst::ICMP_UGT: { // while (X > Y)
5262 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005263 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005264 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005265 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005266 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005267 default:
Chris Lattner09169212004-04-02 20:26:46 +00005268#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005269 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005270 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005271 dbgs() << "[unsigned] ";
5272 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005273 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005274 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005275#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005276 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005277 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005278 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005279}
5280
Benjamin Kramer5a188542014-02-11 15:44:32 +00005281ScalarEvolution::ExitLimit
5282ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5283 SwitchInst *Switch,
5284 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005285 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005286 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5287
5288 // Give up if the exit is the default dest of a switch.
5289 if (Switch->getDefaultDest() == ExitingBlock)
5290 return getCouldNotCompute();
5291
5292 assert(L->contains(Switch->getDefaultDest()) &&
5293 "Default case must not exit the loop!");
5294 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5295 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5296
5297 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005298 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005299 if (EL.hasAnyInfo())
5300 return EL;
5301
5302 return getCouldNotCompute();
5303}
5304
Chris Lattnerec901cc2004-10-12 01:49:27 +00005305static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005306EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5307 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005308 const SCEV *InVal = SE.getConstant(C);
5309 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005310 assert(isa<SCEVConstant>(Val) &&
5311 "Evaluation of SCEV at constant didn't fold correctly?");
5312 return cast<SCEVConstant>(Val)->getValue();
5313}
5314
Andrew Trick3ca3f982011-07-26 17:19:55 +00005315/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005316/// 'icmp op load X, cst', try to see if we can compute the backedge
5317/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005318ScalarEvolution::ExitLimit
5319ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5320 LoadInst *LI,
5321 Constant *RHS,
5322 const Loop *L,
5323 ICmpInst::Predicate predicate) {
5324
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005325 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005326
5327 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005328 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005329 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005330 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005331
5332 // Make sure that it is really a constant global we are gepping, with an
5333 // initializer, and make sure the first IDX is really 0.
5334 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005335 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005336 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5337 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005338 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005339
5340 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005341 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005342 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005343 unsigned VarIdxNum = 0;
5344 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5345 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5346 Indexes.push_back(CI);
5347 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005348 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005349 VarIdx = GEP->getOperand(i);
5350 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005351 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005352 }
5353
Andrew Trick7004e4b2012-03-26 22:33:59 +00005354 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5355 if (!VarIdx)
5356 return getCouldNotCompute();
5357
Chris Lattnerec901cc2004-10-12 01:49:27 +00005358 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5359 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005360 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005361 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005362
5363 // We can only recognize very limited forms of loop index expressions, in
5364 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005365 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005366 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005367 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5368 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005369 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005370
5371 unsigned MaxSteps = MaxBruteForceIterations;
5372 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005373 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005374 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005375 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005376
5377 // Form the GEP offset.
5378 Indexes[VarIdxNum] = Val;
5379
Chris Lattnere166a852012-01-24 05:49:24 +00005380 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5381 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005382 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005383
5384 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005385 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005386 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005387 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005388#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005389 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005390 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5391 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005392#endif
5393 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005394 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005395 }
5396 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005397 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005398}
5399
5400
Chris Lattnerdd730472004-04-17 22:58:41 +00005401/// CanConstantFold - Return true if we can constant fold an instruction of the
5402/// specified type, assuming that all operands were constants.
5403static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005404 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005405 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5406 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005407 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005408
Chris Lattnerdd730472004-04-17 22:58:41 +00005409 if (const CallInst *CI = dyn_cast<CallInst>(I))
5410 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005411 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005412 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005413}
5414
Andrew Trick3a86ba72011-10-05 03:25:31 +00005415/// Determine whether this instruction can constant evolve within this loop
5416/// assuming its operands can all constant evolve.
5417static bool canConstantEvolve(Instruction *I, const Loop *L) {
5418 // An instruction outside of the loop can't be derived from a loop PHI.
5419 if (!L->contains(I)) return false;
5420
5421 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005422 // We don't currently keep track of the control flow needed to evaluate
5423 // PHIs, so we cannot handle PHIs inside of loops.
5424 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005425 }
5426
5427 // If we won't be able to constant fold this expression even if the operands
5428 // are constants, bail early.
5429 return CanConstantFold(I);
5430}
5431
5432/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5433/// recursing through each instruction operand until reaching a loop header phi.
5434static PHINode *
5435getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005436 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005437
5438 // Otherwise, we can evaluate this instruction if all of its operands are
5439 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005440 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005441 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5442 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5443
5444 if (isa<Constant>(*OpI)) continue;
5445
5446 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005447 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005448
5449 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005450 if (!P)
5451 // If this operand is already visited, reuse the prior result.
5452 // We may have P != PHI if this is the deepest point at which the
5453 // inconsistent paths meet.
5454 P = PHIMap.lookup(OpInst);
5455 if (!P) {
5456 // Recurse and memoize the results, whether a phi is found or not.
5457 // This recursive call invalidates pointers into PHIMap.
5458 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5459 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005460 }
Craig Topper9f008862014-04-15 04:59:12 +00005461 if (!P)
5462 return nullptr; // Not evolving from PHI
5463 if (PHI && PHI != P)
5464 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005465 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005466 }
5467 // This is a expression evolving from a constant PHI!
5468 return PHI;
5469}
5470
Chris Lattnerdd730472004-04-17 22:58:41 +00005471/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5472/// in the loop that V is derived from. We allow arbitrary operations along the
5473/// way, but the operands of an operation must either be constants or a value
5474/// derived from a constant PHI. If this expression does not fit with these
5475/// constraints, return null.
5476static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005477 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005478 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005479
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005480 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005481 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005482 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005483
Andrew Trick3a86ba72011-10-05 03:25:31 +00005484 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005485 DenseMap<Instruction *, PHINode *> PHIMap;
5486 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005487}
5488
5489/// EvaluateExpression - Given an expression that passes the
5490/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5491/// in the loop has the value PHIVal. If we can't fold this expression for some
5492/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005493static Constant *EvaluateExpression(Value *V, const Loop *L,
5494 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005495 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005496 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005497 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005498 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005499 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005500 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005501
Andrew Trick3a86ba72011-10-05 03:25:31 +00005502 if (Constant *C = Vals.lookup(I)) return C;
5503
Nick Lewyckya6674c72011-10-22 19:58:20 +00005504 // An instruction inside the loop depends on a value outside the loop that we
5505 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005506 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005507
5508 // An unmapped PHI can be due to a branch or another loop inside this loop,
5509 // or due to this not being the initial iteration through a loop where we
5510 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005511 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005512
Dan Gohmanf820bd32010-06-22 13:15:46 +00005513 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005514
5515 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005516 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5517 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005518 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005519 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005520 continue;
5521 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005522 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005523 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005524 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005525 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005526 }
5527
Nick Lewyckya6674c72011-10-22 19:58:20 +00005528 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005529 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005530 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005531 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5532 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005533 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005534 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005535 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005536 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005537}
5538
5539/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5540/// in the header of its containing loop, we know the loop executes a
5541/// constant number of times, and the PHI node is just a recurrence
5542/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005543Constant *
5544ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005545 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005546 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005547 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005548 ConstantEvolutionLoopExitValue.find(PN);
5549 if (I != ConstantEvolutionLoopExitValue.end())
5550 return I->second;
5551
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005552 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005553 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005554
5555 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5556
Andrew Trick3a86ba72011-10-05 03:25:31 +00005557 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005558 BasicBlock *Header = L->getHeader();
5559 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005560
Chris Lattnerdd730472004-04-17 22:58:41 +00005561 // Since the loop is canonicalized, the PHI node must have two entries. One
5562 // entry must be a constant (coming in from outside of the loop), and the
5563 // second must be derived from the same PHI.
5564 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005565 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005566 for (BasicBlock::iterator I = Header->begin();
5567 (PHI = dyn_cast<PHINode>(I)); ++I) {
5568 Constant *StartCST =
5569 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005570 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005571 CurrentIterVals[PHI] = StartCST;
5572 }
5573 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005574 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005575
5576 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005577
5578 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005579 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005580 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005581
Dan Gohman0bddac12009-02-24 18:55:53 +00005582 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005583 unsigned IterationNum = 0;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005584 const DataLayout &DL = F->getParent()->getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005585 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005586 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005587 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005588
Nick Lewyckya6674c72011-10-22 19:58:20 +00005589 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005590 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005591 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005592 Constant *NextPHI =
5593 EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005594 if (!NextPHI)
5595 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005596 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005597
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005598 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5599
Nick Lewyckya6674c72011-10-22 19:58:20 +00005600 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5601 // cease to be able to evaluate one of them or if they stop evolving,
5602 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005603 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005604 for (DenseMap<Instruction *, Constant *>::const_iterator
5605 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5606 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005607 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005608 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5609 }
5610 // We use two distinct loops because EvaluateExpression may invalidate any
5611 // iterators into CurrentIterVals.
5612 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5613 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5614 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005615 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005616 if (!NextPHI) { // Not already computed.
5617 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005618 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005619 }
5620 if (NextPHI != I->second)
5621 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005622 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005623
5624 // If all entries in CurrentIterVals == NextIterVals then we can stop
5625 // iterating, the loop can't continue to change.
5626 if (StoppedEvolving)
5627 return RetVal = CurrentIterVals[PN];
5628
Andrew Trick3a86ba72011-10-05 03:25:31 +00005629 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005630 }
5631}
5632
Andrew Trick3ca3f982011-07-26 17:19:55 +00005633/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005634/// constant number of times (the condition evolves only from constants),
5635/// try to evaluate a few iterations of the loop until we get the exit
5636/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005637/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005638const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5639 Value *Cond,
5640 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005641 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005642 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005643
Dan Gohman866971e2010-06-19 14:17:24 +00005644 // If the loop is canonicalized, the PHI will have exactly two entries.
5645 // That's the only form we support here.
5646 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5647
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005648 DenseMap<Instruction *, Constant *> CurrentIterVals;
5649 BasicBlock *Header = L->getHeader();
5650 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5651
Dan Gohman866971e2010-06-19 14:17:24 +00005652 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005653 // second must be derived from the same PHI.
5654 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005655 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005656 for (BasicBlock::iterator I = Header->begin();
5657 (PHI = dyn_cast<PHINode>(I)); ++I) {
5658 Constant *StartCST =
5659 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005660 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005661 CurrentIterVals[PHI] = StartCST;
5662 }
5663 if (!CurrentIterVals.count(PN))
5664 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005665
5666 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5667 // the loop symbolically to determine when the condition gets a value of
5668 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00005669 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005670 const DataLayout &DL = F->getParent()->getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005671 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005672 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
5673 EvaluateExpression(Cond, L, CurrentIterVals, DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005674
Zhou Sheng75b871f2007-01-11 12:24:14 +00005675 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005676 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005677
Reid Spencer983e3b32007-03-01 07:25:48 +00005678 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005679 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005680 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005681 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005682
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005683 // Update all the PHI nodes for the next iteration.
5684 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005685
5686 // Create a list of which PHIs we need to compute. We want to do this before
5687 // calling EvaluateExpression on them because that may invalidate iterators
5688 // into CurrentIterVals.
5689 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005690 for (DenseMap<Instruction *, Constant *>::const_iterator
5691 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5692 PHINode *PHI = dyn_cast<PHINode>(I->first);
5693 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005694 PHIsToCompute.push_back(PHI);
5695 }
5696 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5697 E = PHIsToCompute.end(); I != E; ++I) {
5698 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005699 Constant *&NextPHI = NextIterVals[PHI];
5700 if (NextPHI) continue; // Already computed!
5701
5702 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005703 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005704 }
5705 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005706 }
5707
5708 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005709 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005710}
5711
Dan Gohman237d9e52009-09-03 15:00:26 +00005712/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005713/// at the specified scope in the program. The L value specifies a loop
5714/// nest to evaluate the expression at, where null is the top-level or a
5715/// specified loop is immediately inside of the loop.
5716///
5717/// This method can be used to compute the exit value for a variable defined
5718/// in a loop by querying what the value will hold in the parent loop.
5719///
Dan Gohman8ca08852009-05-24 23:25:42 +00005720/// In the case that a relevant loop exit value cannot be computed, the
5721/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005722const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005723 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005724 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5725 for (unsigned u = 0; u < Values.size(); u++) {
5726 if (Values[u].first == L)
5727 return Values[u].second ? Values[u].second : V;
5728 }
Craig Topper9f008862014-04-15 04:59:12 +00005729 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005730 // Otherwise compute it.
5731 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005732 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5733 for (unsigned u = Values2.size(); u > 0; u--) {
5734 if (Values2[u - 1].first == L) {
5735 Values2[u - 1].second = C;
5736 break;
5737 }
5738 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005739 return C;
5740}
5741
Nick Lewyckya6674c72011-10-22 19:58:20 +00005742/// This builds up a Constant using the ConstantExpr interface. That way, we
5743/// will return Constants for objects which aren't represented by a
5744/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5745/// Returns NULL if the SCEV isn't representable as a Constant.
5746static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005747 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005748 case scCouldNotCompute:
5749 case scAddRecExpr:
5750 break;
5751 case scConstant:
5752 return cast<SCEVConstant>(V)->getValue();
5753 case scUnknown:
5754 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5755 case scSignExtend: {
5756 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5757 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5758 return ConstantExpr::getSExt(CastOp, SS->getType());
5759 break;
5760 }
5761 case scZeroExtend: {
5762 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5763 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5764 return ConstantExpr::getZExt(CastOp, SZ->getType());
5765 break;
5766 }
5767 case scTruncate: {
5768 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5769 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5770 return ConstantExpr::getTrunc(CastOp, ST->getType());
5771 break;
5772 }
5773 case scAddExpr: {
5774 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5775 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005776 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5777 unsigned AS = PTy->getAddressSpace();
5778 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5779 C = ConstantExpr::getBitCast(C, DestPtrTy);
5780 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005781 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5782 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005783 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005784
5785 // First pointer!
5786 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005787 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005788 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005789 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005790 // The offsets have been converted to bytes. We can add bytes to an
5791 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005792 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005793 }
5794
5795 // Don't bother trying to sum two pointers. We probably can't
5796 // statically compute a load that results from it anyway.
5797 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005798 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005799
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005800 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5801 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005802 C2 = ConstantExpr::getIntegerCast(
5803 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00005804 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005805 } else
5806 C = ConstantExpr::getAdd(C, C2);
5807 }
5808 return C;
5809 }
5810 break;
5811 }
5812 case scMulExpr: {
5813 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5814 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5815 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005816 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005817 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5818 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005819 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005820 C = ConstantExpr::getMul(C, C2);
5821 }
5822 return C;
5823 }
5824 break;
5825 }
5826 case scUDivExpr: {
5827 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5828 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5829 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5830 if (LHS->getType() == RHS->getType())
5831 return ConstantExpr::getUDiv(LHS, RHS);
5832 break;
5833 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005834 case scSMaxExpr:
5835 case scUMaxExpr:
5836 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005837 }
Craig Topper9f008862014-04-15 04:59:12 +00005838 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005839}
5840
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005841const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005842 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005843
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005844 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005845 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005846 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005847 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005848 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005849 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5850 if (PHINode *PN = dyn_cast<PHINode>(I))
5851 if (PN->getParent() == LI->getHeader()) {
5852 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005853 // to see if the loop that contains it has a known backedge-taken
5854 // count. If so, we may be able to force computation of the exit
5855 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005856 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005857 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005858 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005859 // Okay, we know how many times the containing loop executes. If
5860 // this is a constant evolving PHI node, get the final value at
5861 // the specified iteration number.
5862 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005863 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005864 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005865 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005866 }
5867 }
5868
Reid Spencere6328ca2006-12-04 21:33:23 +00005869 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005870 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005871 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005872 // result. This is particularly useful for computing loop exit values.
5873 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005874 SmallVector<Constant *, 4> Operands;
5875 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005876 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5877 Value *Op = I->getOperand(i);
5878 if (Constant *C = dyn_cast<Constant>(Op)) {
5879 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005880 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005881 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005882
5883 // If any of the operands is non-constant and if they are
5884 // non-integer and non-pointer, don't even try to analyze them
5885 // with scev techniques.
5886 if (!isSCEVable(Op->getType()))
5887 return V;
5888
5889 const SCEV *OrigV = getSCEV(Op);
5890 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5891 MadeImprovement |= OrigV != OpV;
5892
Nick Lewyckya6674c72011-10-22 19:58:20 +00005893 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005894 if (!C) return V;
5895 if (C->getType() != Op->getType())
5896 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5897 Op->getType(),
5898 false),
5899 C, Op->getType());
5900 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005901 }
Dan Gohmance973df2009-06-24 04:48:43 +00005902
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005903 // Check to see if getSCEVAtScope actually made an improvement.
5904 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005905 Constant *C = nullptr;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005906 const DataLayout &DL = F->getParent()->getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005907 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005908 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5909 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005910 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5911 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005912 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005913 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005914 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
5915 DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005916 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005917 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005918 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005919 }
5920 }
5921
5922 // This is some other type of SCEVUnknown, just return it.
5923 return V;
5924 }
5925
Dan Gohmana30370b2009-05-04 22:02:23 +00005926 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005927 // Avoid performing the look-up in the common case where the specified
5928 // expression has no loop-variant portions.
5929 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005930 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005931 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005932 // Okay, at least one of these operands is loop variant but might be
5933 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005934 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5935 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005936 NewOps.push_back(OpAtScope);
5937
5938 for (++i; i != e; ++i) {
5939 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005940 NewOps.push_back(OpAtScope);
5941 }
5942 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005943 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005944 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005945 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005946 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005947 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005948 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005949 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005950 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005951 }
5952 }
5953 // If we got here, all operands are loop invariant.
5954 return Comm;
5955 }
5956
Dan Gohmana30370b2009-05-04 22:02:23 +00005957 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005958 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5959 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005960 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5961 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005962 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005963 }
5964
5965 // If this is a loop recurrence for a loop that does not contain L, then we
5966 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005967 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005968 // First, attempt to evaluate each operand.
5969 // Avoid performing the look-up in the common case where the specified
5970 // expression has no loop-variant portions.
5971 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5972 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5973 if (OpAtScope == AddRec->getOperand(i))
5974 continue;
5975
5976 // Okay, at least one of these operands is loop variant but might be
5977 // foldable. Build a new instance of the folded commutative expression.
5978 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5979 AddRec->op_begin()+i);
5980 NewOps.push_back(OpAtScope);
5981 for (++i; i != e; ++i)
5982 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5983
Andrew Trick759ba082011-04-27 01:21:25 +00005984 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005985 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005986 AddRec->getNoWrapFlags(SCEV::FlagNW));
5987 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005988 // The addrec may be folded to a nonrecurrence, for example, if the
5989 // induction variable is multiplied by zero after constant folding. Go
5990 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005991 if (!AddRec)
5992 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005993 break;
5994 }
5995
5996 // If the scope is outside the addrec's loop, evaluate it by using the
5997 // loop exit value of the addrec.
5998 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005999 // To evaluate this recurrence, we need to know how many times the AddRec
6000 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006001 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006002 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006003
Eli Friedman61f67622008-08-04 23:49:06 +00006004 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006005 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006006 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006007
Dan Gohman8ca08852009-05-24 23:25:42 +00006008 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006009 }
6010
Dan Gohmana30370b2009-05-04 22:02:23 +00006011 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006012 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006013 if (Op == Cast->getOperand())
6014 return Cast; // must be loop invariant
6015 return getZeroExtendExpr(Op, Cast->getType());
6016 }
6017
Dan Gohmana30370b2009-05-04 22:02:23 +00006018 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006019 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006020 if (Op == Cast->getOperand())
6021 return Cast; // must be loop invariant
6022 return getSignExtendExpr(Op, Cast->getType());
6023 }
6024
Dan Gohmana30370b2009-05-04 22:02:23 +00006025 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006026 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006027 if (Op == Cast->getOperand())
6028 return Cast; // must be loop invariant
6029 return getTruncateExpr(Op, Cast->getType());
6030 }
6031
Torok Edwinfbcc6632009-07-14 16:55:14 +00006032 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006033}
6034
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006035/// getSCEVAtScope - This is a convenience function which does
6036/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006037const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006038 return getSCEVAtScope(getSCEV(V), L);
6039}
6040
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006041/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6042/// following equation:
6043///
6044/// A * X = B (mod N)
6045///
6046/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6047/// A and B isn't important.
6048///
6049/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006050static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006051 ScalarEvolution &SE) {
6052 uint32_t BW = A.getBitWidth();
6053 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6054 assert(A != 0 && "A must be non-zero.");
6055
6056 // 1. D = gcd(A, N)
6057 //
6058 // The gcd of A and N may have only one prime factor: 2. The number of
6059 // trailing zeros in A is its multiplicity
6060 uint32_t Mult2 = A.countTrailingZeros();
6061 // D = 2^Mult2
6062
6063 // 2. Check if B is divisible by D.
6064 //
6065 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6066 // is not less than multiplicity of this prime factor for D.
6067 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006068 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006069
6070 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6071 // modulo (N / D).
6072 //
6073 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6074 // bit width during computations.
6075 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6076 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006077 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006078 APInt I = AD.multiplicativeInverse(Mod);
6079
6080 // 4. Compute the minimum unsigned root of the equation:
6081 // I * (B / D) mod (N / D)
6082 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6083
6084 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6085 // bits.
6086 return SE.getConstant(Result.trunc(BW));
6087}
Chris Lattnerd934c702004-04-02 20:23:17 +00006088
6089/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6090/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6091/// might be the same) or two SCEVCouldNotCompute objects.
6092///
Dan Gohmanaf752342009-07-07 17:06:11 +00006093static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006094SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006095 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006096 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6097 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6098 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006099
Chris Lattnerd934c702004-04-02 20:23:17 +00006100 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006101 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006102 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006103 return std::make_pair(CNC, CNC);
6104 }
6105
Reid Spencer983e3b32007-03-01 07:25:48 +00006106 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006107 const APInt &L = LC->getValue()->getValue();
6108 const APInt &M = MC->getValue()->getValue();
6109 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006110 APInt Two(BitWidth, 2);
6111 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006112
Dan Gohmance973df2009-06-24 04:48:43 +00006113 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006114 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006115 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006116 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6117 // The B coefficient is M-N/2
6118 APInt B(M);
6119 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006120
Reid Spencer983e3b32007-03-01 07:25:48 +00006121 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006122 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006123
Reid Spencer983e3b32007-03-01 07:25:48 +00006124 // Compute the B^2-4ac term.
6125 APInt SqrtTerm(B);
6126 SqrtTerm *= B;
6127 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006128
Nick Lewyckyfb780832012-08-01 09:14:36 +00006129 if (SqrtTerm.isNegative()) {
6130 // The loop is provably infinite.
6131 const SCEV *CNC = SE.getCouldNotCompute();
6132 return std::make_pair(CNC, CNC);
6133 }
6134
Reid Spencer983e3b32007-03-01 07:25:48 +00006135 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6136 // integer value or else APInt::sqrt() will assert.
6137 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006138
Dan Gohmance973df2009-06-24 04:48:43 +00006139 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006140 // The divisions must be performed as signed divisions.
6141 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006142 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006143 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006144 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006145 return std::make_pair(CNC, CNC);
6146 }
6147
Owen Anderson47db9412009-07-22 00:24:57 +00006148 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006149
6150 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006151 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006152 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006153 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006154
Dan Gohmance973df2009-06-24 04:48:43 +00006155 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006156 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006157 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006158}
6159
6160/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006161/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006162///
6163/// This is only used for loops with a "x != y" exit test. The exit condition is
6164/// now expressed as a single expression, V = x-y. So the exit test is
6165/// effectively V != 0. We know and take advantage of the fact that this
6166/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006167ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006168ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006169 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006170 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006171 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006172 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006173 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006174 }
6175
Dan Gohman48f82222009-05-04 22:30:44 +00006176 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006177 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006178 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006179
Chris Lattnerdff679f2011-01-09 22:39:48 +00006180 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6181 // the quadratic equation to solve it.
6182 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6183 std::pair<const SCEV *,const SCEV *> Roots =
6184 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006185 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6186 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006187 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006188#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006189 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006190 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006191#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006192 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006193 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006194 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6195 R1->getValue(),
6196 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006197 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006198 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006199
Chris Lattnerd934c702004-04-02 20:23:17 +00006200 // We can only use this value if the chrec ends up with an exact zero
6201 // value at this index. When solving for "X*X != 5", for example, we
6202 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006203 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006204 if (Val->isZero())
6205 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006206 }
6207 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006208 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006209 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006210
Chris Lattnerdff679f2011-01-09 22:39:48 +00006211 // Otherwise we can only handle this if it is affine.
6212 if (!AddRec->isAffine())
6213 return getCouldNotCompute();
6214
6215 // If this is an affine expression, the execution count of this branch is
6216 // the minimum unsigned root of the following equation:
6217 //
6218 // Start + Step*N = 0 (mod 2^BW)
6219 //
6220 // equivalent to:
6221 //
6222 // Step*N = -Start (mod 2^BW)
6223 //
6224 // where BW is the common bit width of Start and Step.
6225
6226 // Get the initial value for the loop.
6227 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6228 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6229
6230 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006231 //
6232 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6233 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6234 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6235 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006236 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006237 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006238 return getCouldNotCompute();
6239
Andrew Trick8b55b732011-03-14 16:50:06 +00006240 // For positive steps (counting up until unsigned overflow):
6241 // N = -Start/Step (as unsigned)
6242 // For negative steps (counting down to zero):
6243 // N = Start/-Step
6244 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006245 bool CountDown = StepC->getValue()->getValue().isNegative();
6246 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006247
6248 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006249 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6250 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006251 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6252 ConstantRange CR = getUnsignedRange(Start);
6253 const SCEV *MaxBECount;
6254 if (!CountDown && CR.getUnsignedMin().isMinValue())
6255 // When counting up, the worst starting value is 1, not 0.
6256 MaxBECount = CR.getUnsignedMax().isMinValue()
6257 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6258 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6259 else
6260 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6261 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006262 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006263 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006264
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006265 // As a special case, handle the instance where Step is a positive power of
6266 // two. In this case, determining whether Step divides Distance evenly can be
6267 // done by counting and comparing the number of trailing zeros of Step and
6268 // Distance.
6269 if (!CountDown) {
6270 const APInt &StepV = StepC->getValue()->getValue();
6271 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6272 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6273 // case is not handled as this code is guarded by !CountDown.
6274 if (StepV.isPowerOf2() &&
6275 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6276 return getUDivExactExpr(Distance, Step);
6277 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006278
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006279 // If the condition controls loop exit (the loop exits only if the expression
6280 // is true) and the addition is no-wrap we can use unsigned divide to
6281 // compute the backedge count. In this case, the step may not divide the
6282 // distance, but we don't care because if the condition is "missed" the loop
6283 // will have undefined behavior due to wrapping.
6284 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6285 const SCEV *Exact =
6286 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6287 return ExitLimit(Exact, Exact);
6288 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006289
Chris Lattnerdff679f2011-01-09 22:39:48 +00006290 // Then, try to solve the above equation provided that Start is constant.
6291 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6292 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6293 -StartC->getValue()->getValue(),
6294 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006295 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006296}
6297
6298/// HowFarToNonZero - Return the number of times a backedge checking the
6299/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006300/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006301ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006302ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006303 // Loops that look like: while (X == 0) are very strange indeed. We don't
6304 // handle them yet except for the trivial case. This could be expanded in the
6305 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006306
Chris Lattnerd934c702004-04-02 20:23:17 +00006307 // If the value is a constant, check to see if it is known to be non-zero
6308 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006309 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006310 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006311 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006312 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006313 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006314
Chris Lattnerd934c702004-04-02 20:23:17 +00006315 // We could implement others, but I really doubt anyone writes loops like
6316 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006317 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006318}
6319
Dan Gohmanf9081a22008-09-15 22:18:04 +00006320/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6321/// (which may not be an immediate predecessor) which has exactly one
6322/// successor from which BB is reachable, or null if no such block is
6323/// found.
6324///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006325std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006326ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006327 // If the block has a unique predecessor, then there is no path from the
6328 // predecessor to the block that does not go through the direct edge
6329 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006330 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006331 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006332
6333 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006334 // If the header has a unique predecessor outside the loop, it must be
6335 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006336 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006337 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006338
Dan Gohman4e3c1132010-04-15 16:19:08 +00006339 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006340}
6341
Dan Gohman450f4e02009-06-20 00:35:32 +00006342/// HasSameValue - SCEV structural equivalence is usually sufficient for
6343/// testing whether two expressions are equal, however for the purposes of
6344/// looking for a condition guarding a loop, it can be useful to be a little
6345/// more general, since a front-end may have replicated the controlling
6346/// expression.
6347///
Dan Gohmanaf752342009-07-07 17:06:11 +00006348static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006349 // Quick check to see if they are the same SCEV.
6350 if (A == B) return true;
6351
6352 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6353 // two different instructions with the same value. Check for this case.
6354 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6355 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6356 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6357 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006358 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006359 return true;
6360
6361 // Otherwise assume they may have a different value.
6362 return false;
6363}
6364
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006365/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006366/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006367///
6368bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006369 const SCEV *&LHS, const SCEV *&RHS,
6370 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006371 bool Changed = false;
6372
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006373 // If we hit the max recursion limit bail out.
6374 if (Depth >= 3)
6375 return false;
6376
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006377 // Canonicalize a constant to the right side.
6378 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6379 // Check for both operands constant.
6380 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6381 if (ConstantExpr::getICmp(Pred,
6382 LHSC->getValue(),
6383 RHSC->getValue())->isNullValue())
6384 goto trivially_false;
6385 else
6386 goto trivially_true;
6387 }
6388 // Otherwise swap the operands to put the constant on the right.
6389 std::swap(LHS, RHS);
6390 Pred = ICmpInst::getSwappedPredicate(Pred);
6391 Changed = true;
6392 }
6393
6394 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006395 // addrec's loop, put the addrec on the left. Also make a dominance check,
6396 // as both operands could be addrecs loop-invariant in each other's loop.
6397 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6398 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006399 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006400 std::swap(LHS, RHS);
6401 Pred = ICmpInst::getSwappedPredicate(Pred);
6402 Changed = true;
6403 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006404 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006405
6406 // If there's a constant operand, canonicalize comparisons with boundary
6407 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6408 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6409 const APInt &RA = RC->getValue()->getValue();
6410 switch (Pred) {
6411 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6412 case ICmpInst::ICMP_EQ:
6413 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006414 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6415 if (!RA)
6416 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6417 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006418 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6419 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006420 RHS = AE->getOperand(1);
6421 LHS = ME->getOperand(1);
6422 Changed = true;
6423 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006424 break;
6425 case ICmpInst::ICMP_UGE:
6426 if ((RA - 1).isMinValue()) {
6427 Pred = ICmpInst::ICMP_NE;
6428 RHS = getConstant(RA - 1);
6429 Changed = true;
6430 break;
6431 }
6432 if (RA.isMaxValue()) {
6433 Pred = ICmpInst::ICMP_EQ;
6434 Changed = true;
6435 break;
6436 }
6437 if (RA.isMinValue()) goto trivially_true;
6438
6439 Pred = ICmpInst::ICMP_UGT;
6440 RHS = getConstant(RA - 1);
6441 Changed = true;
6442 break;
6443 case ICmpInst::ICMP_ULE:
6444 if ((RA + 1).isMaxValue()) {
6445 Pred = ICmpInst::ICMP_NE;
6446 RHS = getConstant(RA + 1);
6447 Changed = true;
6448 break;
6449 }
6450 if (RA.isMinValue()) {
6451 Pred = ICmpInst::ICMP_EQ;
6452 Changed = true;
6453 break;
6454 }
6455 if (RA.isMaxValue()) goto trivially_true;
6456
6457 Pred = ICmpInst::ICMP_ULT;
6458 RHS = getConstant(RA + 1);
6459 Changed = true;
6460 break;
6461 case ICmpInst::ICMP_SGE:
6462 if ((RA - 1).isMinSignedValue()) {
6463 Pred = ICmpInst::ICMP_NE;
6464 RHS = getConstant(RA - 1);
6465 Changed = true;
6466 break;
6467 }
6468 if (RA.isMaxSignedValue()) {
6469 Pred = ICmpInst::ICMP_EQ;
6470 Changed = true;
6471 break;
6472 }
6473 if (RA.isMinSignedValue()) goto trivially_true;
6474
6475 Pred = ICmpInst::ICMP_SGT;
6476 RHS = getConstant(RA - 1);
6477 Changed = true;
6478 break;
6479 case ICmpInst::ICMP_SLE:
6480 if ((RA + 1).isMaxSignedValue()) {
6481 Pred = ICmpInst::ICMP_NE;
6482 RHS = getConstant(RA + 1);
6483 Changed = true;
6484 break;
6485 }
6486 if (RA.isMinSignedValue()) {
6487 Pred = ICmpInst::ICMP_EQ;
6488 Changed = true;
6489 break;
6490 }
6491 if (RA.isMaxSignedValue()) goto trivially_true;
6492
6493 Pred = ICmpInst::ICMP_SLT;
6494 RHS = getConstant(RA + 1);
6495 Changed = true;
6496 break;
6497 case ICmpInst::ICMP_UGT:
6498 if (RA.isMinValue()) {
6499 Pred = ICmpInst::ICMP_NE;
6500 Changed = true;
6501 break;
6502 }
6503 if ((RA + 1).isMaxValue()) {
6504 Pred = ICmpInst::ICMP_EQ;
6505 RHS = getConstant(RA + 1);
6506 Changed = true;
6507 break;
6508 }
6509 if (RA.isMaxValue()) goto trivially_false;
6510 break;
6511 case ICmpInst::ICMP_ULT:
6512 if (RA.isMaxValue()) {
6513 Pred = ICmpInst::ICMP_NE;
6514 Changed = true;
6515 break;
6516 }
6517 if ((RA - 1).isMinValue()) {
6518 Pred = ICmpInst::ICMP_EQ;
6519 RHS = getConstant(RA - 1);
6520 Changed = true;
6521 break;
6522 }
6523 if (RA.isMinValue()) goto trivially_false;
6524 break;
6525 case ICmpInst::ICMP_SGT:
6526 if (RA.isMinSignedValue()) {
6527 Pred = ICmpInst::ICMP_NE;
6528 Changed = true;
6529 break;
6530 }
6531 if ((RA + 1).isMaxSignedValue()) {
6532 Pred = ICmpInst::ICMP_EQ;
6533 RHS = getConstant(RA + 1);
6534 Changed = true;
6535 break;
6536 }
6537 if (RA.isMaxSignedValue()) goto trivially_false;
6538 break;
6539 case ICmpInst::ICMP_SLT:
6540 if (RA.isMaxSignedValue()) {
6541 Pred = ICmpInst::ICMP_NE;
6542 Changed = true;
6543 break;
6544 }
6545 if ((RA - 1).isMinSignedValue()) {
6546 Pred = ICmpInst::ICMP_EQ;
6547 RHS = getConstant(RA - 1);
6548 Changed = true;
6549 break;
6550 }
6551 if (RA.isMinSignedValue()) goto trivially_false;
6552 break;
6553 }
6554 }
6555
6556 // Check for obvious equality.
6557 if (HasSameValue(LHS, RHS)) {
6558 if (ICmpInst::isTrueWhenEqual(Pred))
6559 goto trivially_true;
6560 if (ICmpInst::isFalseWhenEqual(Pred))
6561 goto trivially_false;
6562 }
6563
Dan Gohman81585c12010-05-03 16:35:17 +00006564 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6565 // adding or subtracting 1 from one of the operands.
6566 switch (Pred) {
6567 case ICmpInst::ICMP_SLE:
6568 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6569 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006570 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006571 Pred = ICmpInst::ICMP_SLT;
6572 Changed = true;
6573 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006574 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006575 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006576 Pred = ICmpInst::ICMP_SLT;
6577 Changed = true;
6578 }
6579 break;
6580 case ICmpInst::ICMP_SGE:
6581 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006582 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006583 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006584 Pred = ICmpInst::ICMP_SGT;
6585 Changed = true;
6586 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6587 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006588 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006589 Pred = ICmpInst::ICMP_SGT;
6590 Changed = true;
6591 }
6592 break;
6593 case ICmpInst::ICMP_ULE:
6594 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006595 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006596 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006597 Pred = ICmpInst::ICMP_ULT;
6598 Changed = true;
6599 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006600 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006601 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006602 Pred = ICmpInst::ICMP_ULT;
6603 Changed = true;
6604 }
6605 break;
6606 case ICmpInst::ICMP_UGE:
6607 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006608 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006609 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006610 Pred = ICmpInst::ICMP_UGT;
6611 Changed = true;
6612 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006613 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006614 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006615 Pred = ICmpInst::ICMP_UGT;
6616 Changed = true;
6617 }
6618 break;
6619 default:
6620 break;
6621 }
6622
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006623 // TODO: More simplifications are possible here.
6624
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006625 // Recursively simplify until we either hit a recursion limit or nothing
6626 // changes.
6627 if (Changed)
6628 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6629
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006630 return Changed;
6631
6632trivially_true:
6633 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006634 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006635 Pred = ICmpInst::ICMP_EQ;
6636 return true;
6637
6638trivially_false:
6639 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006640 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006641 Pred = ICmpInst::ICMP_NE;
6642 return true;
6643}
6644
Dan Gohmane65c9172009-07-13 21:35:55 +00006645bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6646 return getSignedRange(S).getSignedMax().isNegative();
6647}
6648
6649bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6650 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6651}
6652
6653bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6654 return !getSignedRange(S).getSignedMin().isNegative();
6655}
6656
6657bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6658 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6659}
6660
6661bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6662 return isKnownNegative(S) || isKnownPositive(S);
6663}
6664
6665bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6666 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006667 // Canonicalize the inputs first.
6668 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6669
Dan Gohman07591692010-04-11 22:16:48 +00006670 // If LHS or RHS is an addrec, check to see if the condition is true in
6671 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006672 // If LHS and RHS are both addrec, both conditions must be true in
6673 // every iteration of the loop.
6674 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6675 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6676 bool LeftGuarded = false;
6677 bool RightGuarded = false;
6678 if (LAR) {
6679 const Loop *L = LAR->getLoop();
6680 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6681 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6682 if (!RAR) return true;
6683 LeftGuarded = true;
6684 }
6685 }
6686 if (RAR) {
6687 const Loop *L = RAR->getLoop();
6688 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6689 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6690 if (!LAR) return true;
6691 RightGuarded = true;
6692 }
6693 }
6694 if (LeftGuarded && RightGuarded)
6695 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006696
Dan Gohman07591692010-04-11 22:16:48 +00006697 // Otherwise see what can be done with known constant ranges.
6698 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6699}
6700
Sanjoy Das5dab2052015-07-27 21:42:49 +00006701bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
6702 ICmpInst::Predicate Pred,
6703 bool &Increasing) {
6704 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
6705
6706#ifndef NDEBUG
6707 // Verify an invariant: inverting the predicate should turn a monotonically
6708 // increasing change to a monotonically decreasing one, and vice versa.
6709 bool IncreasingSwapped;
6710 bool ResultSwapped = isMonotonicPredicateImpl(
6711 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
6712
6713 assert(Result == ResultSwapped && "should be able to analyze both!");
6714 if (ResultSwapped)
6715 assert(Increasing == !IncreasingSwapped &&
6716 "monotonicity should flip as we flip the predicate");
6717#endif
6718
6719 return Result;
6720}
6721
6722bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
6723 ICmpInst::Predicate Pred,
6724 bool &Increasing) {
6725 SCEV::NoWrapFlags FlagsRequired = SCEV::FlagAnyWrap;
6726 bool IncreasingOnNonNegativeStep = false;
6727
6728 switch (Pred) {
6729 default:
6730 return false; // Conservative answer
6731
6732 case ICmpInst::ICMP_UGT:
6733 case ICmpInst::ICMP_UGE:
6734 FlagsRequired = SCEV::FlagNUW;
6735 IncreasingOnNonNegativeStep = true;
6736 break;
6737
6738 case ICmpInst::ICMP_ULT:
6739 case ICmpInst::ICMP_ULE:
6740 FlagsRequired = SCEV::FlagNUW;
6741 IncreasingOnNonNegativeStep = false;
6742 break;
6743
6744 case ICmpInst::ICMP_SGT:
6745 case ICmpInst::ICMP_SGE:
6746 FlagsRequired = SCEV::FlagNSW;
6747 IncreasingOnNonNegativeStep = true;
6748 break;
6749
6750 case ICmpInst::ICMP_SLT:
6751 case ICmpInst::ICMP_SLE:
6752 FlagsRequired = SCEV::FlagNSW;
6753 IncreasingOnNonNegativeStep = false;
6754 break;
6755 }
6756
6757 if (!LHS->getNoWrapFlags(FlagsRequired))
6758 return false;
6759
6760 // A zero step value for LHS means the induction variable is essentially a
6761 // loop invariant value. We don't really depend on the predicate actually
6762 // flipping from false to true (for increasing predicates, and the other way
6763 // around for decreasing predicates), all we care about is that *if* the
6764 // predicate changes then it only changes from false to true.
6765 //
6766 // A zero step value in itself is not very useful, but there may be places
6767 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
6768 // as general as possible.
6769
6770 if (isKnownNonNegative(LHS->getStepRecurrence(*this))) {
6771 Increasing = IncreasingOnNonNegativeStep;
6772 return true;
6773 }
6774
6775 if (isKnownNonPositive(LHS->getStepRecurrence(*this))) {
6776 Increasing = !IncreasingOnNonNegativeStep;
6777 return true;
6778 }
6779
6780 return false;
6781}
6782
6783bool ScalarEvolution::isLoopInvariantPredicate(
6784 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
6785 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
6786 const SCEV *&InvariantRHS) {
6787
6788 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
6789 if (!isLoopInvariant(RHS, L)) {
6790 if (!isLoopInvariant(LHS, L))
6791 return false;
6792
6793 std::swap(LHS, RHS);
6794 Pred = ICmpInst::getSwappedPredicate(Pred);
6795 }
6796
6797 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
6798 if (!ArLHS || ArLHS->getLoop() != L)
6799 return false;
6800
6801 bool Increasing;
6802 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
6803 return false;
6804
6805 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
6806 // true as the loop iterates, and the backedge is control dependent on
6807 // "ArLHS `Pred` RHS" == true then we can reason as follows:
6808 //
6809 // * if the predicate was false in the first iteration then the predicate
6810 // is never evaluated again, since the loop exits without taking the
6811 // backedge.
6812 // * if the predicate was true in the first iteration then it will
6813 // continue to be true for all future iterations since it is
6814 // monotonically increasing.
6815 //
6816 // For both the above possibilities, we can replace the loop varying
6817 // predicate with its value on the first iteration of the loop (which is
6818 // loop invariant).
6819 //
6820 // A similar reasoning applies for a monotonically decreasing predicate, by
6821 // replacing true with false and false with true in the above two bullets.
6822
6823 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
6824
6825 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
6826 return false;
6827
6828 InvariantPred = Pred;
6829 InvariantLHS = ArLHS->getStart();
6830 InvariantRHS = RHS;
6831 return true;
6832}
6833
Dan Gohman07591692010-04-11 22:16:48 +00006834bool
6835ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6836 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006837 if (HasSameValue(LHS, RHS))
6838 return ICmpInst::isTrueWhenEqual(Pred);
6839
Dan Gohman07591692010-04-11 22:16:48 +00006840 // This code is split out from isKnownPredicate because it is called from
6841 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006842 switch (Pred) {
6843 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006844 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006845 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006846 std::swap(LHS, RHS);
6847 case ICmpInst::ICMP_SLT: {
6848 ConstantRange LHSRange = getSignedRange(LHS);
6849 ConstantRange RHSRange = getSignedRange(RHS);
6850 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6851 return true;
6852 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6853 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006854 break;
6855 }
6856 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006857 std::swap(LHS, RHS);
6858 case ICmpInst::ICMP_SLE: {
6859 ConstantRange LHSRange = getSignedRange(LHS);
6860 ConstantRange RHSRange = getSignedRange(RHS);
6861 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6862 return true;
6863 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6864 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006865 break;
6866 }
6867 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006868 std::swap(LHS, RHS);
6869 case ICmpInst::ICMP_ULT: {
6870 ConstantRange LHSRange = getUnsignedRange(LHS);
6871 ConstantRange RHSRange = getUnsignedRange(RHS);
6872 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6873 return true;
6874 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6875 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006876 break;
6877 }
6878 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006879 std::swap(LHS, RHS);
6880 case ICmpInst::ICMP_ULE: {
6881 ConstantRange LHSRange = getUnsignedRange(LHS);
6882 ConstantRange RHSRange = getUnsignedRange(RHS);
6883 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6884 return true;
6885 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6886 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006887 break;
6888 }
6889 case ICmpInst::ICMP_NE: {
6890 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6891 return true;
6892 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6893 return true;
6894
6895 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6896 if (isKnownNonZero(Diff))
6897 return true;
6898 break;
6899 }
6900 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006901 // The check at the top of the function catches the case where
6902 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006903 break;
6904 }
6905 return false;
6906}
6907
6908/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6909/// protected by a conditional between LHS and RHS. This is used to
6910/// to eliminate casts.
6911bool
6912ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6913 ICmpInst::Predicate Pred,
6914 const SCEV *LHS, const SCEV *RHS) {
6915 // Interpret a null as meaning no loop, where there is obviously no guard
6916 // (interprocedural conditions notwithstanding).
6917 if (!L) return true;
6918
Sanjoy Das1f05c512014-10-10 21:22:34 +00006919 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6920
Dan Gohmane65c9172009-07-13 21:35:55 +00006921 BasicBlock *Latch = L->getLoopLatch();
6922 if (!Latch)
6923 return false;
6924
6925 BranchInst *LoopContinuePredicate =
6926 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006927 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6928 isImpliedCond(Pred, LHS, RHS,
6929 LoopContinuePredicate->getCondition(),
6930 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6931 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006932
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006933 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006934 for (auto &AssumeVH : AC->assumptions()) {
6935 if (!AssumeVH)
6936 continue;
6937 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006938 if (!DT->dominates(CI, Latch->getTerminator()))
6939 continue;
6940
6941 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6942 return true;
6943 }
6944
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00006945 struct ClearWalkingBEDominatingCondsOnExit {
6946 ScalarEvolution &SE;
6947
6948 explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE)
Hans Wennborg13958b72015-07-22 20:46:11 +00006949 : SE(SE){}
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00006950
6951 ~ClearWalkingBEDominatingCondsOnExit() {
6952 SE.WalkingBEDominatingConds = false;
6953 }
6954 };
6955
6956 // We don't want more than one activation of the following loop on the stack
6957 // -- that can lead to O(n!) time complexity.
6958 if (WalkingBEDominatingConds)
6959 return false;
6960
6961 WalkingBEDominatingConds = true;
6962 ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this);
6963
6964 // If the loop is not reachable from the entry block, we risk running into an
6965 // infinite loop as we walk up into the dom tree. These loops do not matter
6966 // anyway, so we just return a conservative answer when we see them.
6967 if (!DT->isReachableFromEntry(L->getHeader()))
6968 return false;
6969
6970 for (DomTreeNode *DTN = (*DT)[Latch], *HeaderDTN = (*DT)[L->getHeader()];
6971 DTN != HeaderDTN;
6972 DTN = DTN->getIDom()) {
6973
6974 assert(DTN && "should reach the loop header before reaching the root!");
6975
6976 BasicBlock *BB = DTN->getBlock();
6977 BasicBlock *PBB = BB->getSinglePredecessor();
6978 if (!PBB)
6979 continue;
6980
6981 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
6982 if (!ContinuePredicate || !ContinuePredicate->isConditional())
6983 continue;
6984
6985 Value *Condition = ContinuePredicate->getCondition();
6986
6987 // If we have an edge `E` within the loop body that dominates the only
6988 // latch, the condition guarding `E` also guards the backedge. This
6989 // reasoning works only for loops with a single latch.
6990
6991 BasicBlockEdge DominatingEdge(PBB, BB);
6992 if (DominatingEdge.isSingleEdge()) {
6993 // We're constructively (and conservatively) enumerating edges within the
6994 // loop body that dominate the latch. The dominator tree better agree
6995 // with us on this:
6996 assert(DT->dominates(DominatingEdge, Latch) && "should be!");
6997
6998 if (isImpliedCond(Pred, LHS, RHS, Condition,
6999 BB != ContinuePredicate->getSuccessor(0)))
7000 return true;
7001 }
7002 }
7003
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007004 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007005}
7006
Dan Gohmanb50349a2010-04-11 19:27:13 +00007007/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007008/// by a conditional between LHS and RHS. This is used to help avoid max
7009/// expressions in loop trip counts, and to eliminate casts.
7010bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007011ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7012 ICmpInst::Predicate Pred,
7013 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007014 // Interpret a null as meaning no loop, where there is obviously no guard
7015 // (interprocedural conditions notwithstanding).
7016 if (!L) return false;
7017
Sanjoy Das1f05c512014-10-10 21:22:34 +00007018 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7019
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007020 // Starting at the loop predecessor, climb up the predecessor chain, as long
7021 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007022 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007023 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007024 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007025 Pair.first;
7026 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007027
7028 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007029 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007030 if (!LoopEntryPredicate ||
7031 LoopEntryPredicate->isUnconditional())
7032 continue;
7033
Dan Gohmane18c2d62010-08-10 23:46:30 +00007034 if (isImpliedCond(Pred, LHS, RHS,
7035 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007036 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007037 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007038 }
7039
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007040 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00007041 for (auto &AssumeVH : AC->assumptions()) {
7042 if (!AssumeVH)
7043 continue;
7044 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007045 if (!DT->dominates(CI, L->getHeader()))
7046 continue;
7047
7048 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7049 return true;
7050 }
7051
Dan Gohman2a62fd92008-08-12 20:17:31 +00007052 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007053}
7054
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007055/// RAII wrapper to prevent recursive application of isImpliedCond.
7056/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7057/// currently evaluating isImpliedCond.
7058struct MarkPendingLoopPredicate {
7059 Value *Cond;
7060 DenseSet<Value*> &LoopPreds;
7061 bool Pending;
7062
7063 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7064 : Cond(C), LoopPreds(LP) {
7065 Pending = !LoopPreds.insert(Cond).second;
7066 }
7067 ~MarkPendingLoopPredicate() {
7068 if (!Pending)
7069 LoopPreds.erase(Cond);
7070 }
7071};
7072
Dan Gohman430f0cc2009-07-21 23:03:19 +00007073/// isImpliedCond - Test whether the condition described by Pred, LHS,
7074/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007075bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007076 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007077 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007078 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007079 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7080 if (Mark.Pending)
7081 return false;
7082
Dan Gohman8b0a4192010-03-01 17:49:51 +00007083 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007084 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007085 if (BO->getOpcode() == Instruction::And) {
7086 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007087 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7088 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007089 } else if (BO->getOpcode() == Instruction::Or) {
7090 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007091 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7092 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007093 }
7094 }
7095
Dan Gohmane18c2d62010-08-10 23:46:30 +00007096 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007097 if (!ICI) return false;
7098
Andrew Trickfa594032012-11-29 18:35:13 +00007099 // Now that we found a conditional branch that dominates the loop or controls
7100 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007101 ICmpInst::Predicate FoundPred;
7102 if (Inverse)
7103 FoundPred = ICI->getInversePredicate();
7104 else
7105 FoundPred = ICI->getPredicate();
7106
7107 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7108 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007109
Sanjoy Das14598832015-03-26 17:28:26 +00007110 // Balance the types.
7111 if (getTypeSizeInBits(LHS->getType()) <
7112 getTypeSizeInBits(FoundLHS->getType())) {
7113 if (CmpInst::isSigned(Pred)) {
7114 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7115 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7116 } else {
7117 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7118 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7119 }
7120 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007121 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007122 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007123 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7124 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7125 } else {
7126 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7127 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7128 }
7129 }
7130
Dan Gohman430f0cc2009-07-21 23:03:19 +00007131 // Canonicalize the query to match the way instcombine will have
7132 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007133 if (SimplifyICmpOperands(Pred, LHS, RHS))
7134 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007135 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007136 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7137 if (FoundLHS == FoundRHS)
7138 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007139
7140 // Check to see if we can make the LHS or RHS match.
7141 if (LHS == FoundRHS || RHS == FoundLHS) {
7142 if (isa<SCEVConstant>(RHS)) {
7143 std::swap(FoundLHS, FoundRHS);
7144 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7145 } else {
7146 std::swap(LHS, RHS);
7147 Pred = ICmpInst::getSwappedPredicate(Pred);
7148 }
7149 }
7150
7151 // Check whether the found predicate is the same as the desired predicate.
7152 if (FoundPred == Pred)
7153 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7154
7155 // Check whether swapping the found predicate makes it the same as the
7156 // desired predicate.
7157 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7158 if (isa<SCEVConstant>(RHS))
7159 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7160 else
7161 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7162 RHS, LHS, FoundLHS, FoundRHS);
7163 }
7164
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007165 // Check if we can make progress by sharpening ranges.
7166 if (FoundPred == ICmpInst::ICMP_NE &&
7167 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7168
7169 const SCEVConstant *C = nullptr;
7170 const SCEV *V = nullptr;
7171
7172 if (isa<SCEVConstant>(FoundLHS)) {
7173 C = cast<SCEVConstant>(FoundLHS);
7174 V = FoundRHS;
7175 } else {
7176 C = cast<SCEVConstant>(FoundRHS);
7177 V = FoundLHS;
7178 }
7179
7180 // The guarding predicate tells us that C != V. If the known range
7181 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7182 // range we consider has to correspond to same signedness as the
7183 // predicate we're interested in folding.
7184
7185 APInt Min = ICmpInst::isSigned(Pred) ?
7186 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7187
7188 if (Min == C->getValue()->getValue()) {
7189 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7190 // This is true even if (Min + 1) wraps around -- in case of
7191 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7192
7193 APInt SharperMin = Min + 1;
7194
7195 switch (Pred) {
7196 case ICmpInst::ICMP_SGE:
7197 case ICmpInst::ICMP_UGE:
7198 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7199 // RHS, we're done.
7200 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7201 getConstant(SharperMin)))
7202 return true;
7203
7204 case ICmpInst::ICMP_SGT:
7205 case ICmpInst::ICMP_UGT:
7206 // We know from the range information that (V `Pred` Min ||
7207 // V == Min). We know from the guarding condition that !(V
7208 // == Min). This gives us
7209 //
7210 // V `Pred` Min || V == Min && !(V == Min)
7211 // => V `Pred` Min
7212 //
7213 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7214
7215 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7216 return true;
7217
7218 default:
7219 // No change
7220 break;
7221 }
7222 }
7223 }
7224
Dan Gohman430f0cc2009-07-21 23:03:19 +00007225 // Check whether the actual condition is beyond sufficient.
7226 if (FoundPred == ICmpInst::ICMP_EQ)
7227 if (ICmpInst::isTrueWhenEqual(Pred))
7228 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7229 return true;
7230 if (Pred == ICmpInst::ICMP_NE)
7231 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7232 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7233 return true;
7234
7235 // Otherwise assume the worst.
7236 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007237}
7238
Dan Gohman430f0cc2009-07-21 23:03:19 +00007239/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007240/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007241/// and FoundRHS is true.
7242bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7243 const SCEV *LHS, const SCEV *RHS,
7244 const SCEV *FoundLHS,
7245 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007246 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7247 return true;
7248
Dan Gohman430f0cc2009-07-21 23:03:19 +00007249 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7250 FoundLHS, FoundRHS) ||
7251 // ~x < ~y --> x > y
7252 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7253 getNotSCEV(FoundRHS),
7254 getNotSCEV(FoundLHS));
7255}
7256
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007257
7258/// If Expr computes ~A, return A else return nullptr
7259static const SCEV *MatchNotExpr(const SCEV *Expr) {
7260 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7261 if (!Add || Add->getNumOperands() != 2) return nullptr;
7262
7263 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
7264 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
7265 return nullptr;
7266
7267 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7268 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
7269
7270 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
7271 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
7272 return nullptr;
7273
7274 return AddRHS->getOperand(1);
7275}
7276
7277
7278/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7279template<typename MaxExprType>
7280static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7281 const SCEV *Candidate) {
7282 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7283 if (!MaxExpr) return false;
7284
7285 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7286 return It != MaxExpr->op_end();
7287}
7288
7289
7290/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7291template<typename MaxExprType>
7292static bool IsMinConsistingOf(ScalarEvolution &SE,
7293 const SCEV *MaybeMinExpr,
7294 const SCEV *Candidate) {
7295 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7296 if (!MaybeMaxExpr)
7297 return false;
7298
7299 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7300}
7301
7302
7303/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7304/// expression?
7305static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7306 ICmpInst::Predicate Pred,
7307 const SCEV *LHS, const SCEV *RHS) {
7308 switch (Pred) {
7309 default:
7310 return false;
7311
7312 case ICmpInst::ICMP_SGE:
7313 std::swap(LHS, RHS);
7314 // fall through
7315 case ICmpInst::ICMP_SLE:
7316 return
7317 // min(A, ...) <= A
7318 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7319 // A <= max(A, ...)
7320 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7321
7322 case ICmpInst::ICMP_UGE:
7323 std::swap(LHS, RHS);
7324 // fall through
7325 case ICmpInst::ICMP_ULE:
7326 return
7327 // min(A, ...) <= A
7328 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7329 // A <= max(A, ...)
7330 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7331 }
7332
7333 llvm_unreachable("covered switch fell through?!");
7334}
7335
Dan Gohman430f0cc2009-07-21 23:03:19 +00007336/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007337/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007338/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007339bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007340ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7341 const SCEV *LHS, const SCEV *RHS,
7342 const SCEV *FoundLHS,
7343 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007344 auto IsKnownPredicateFull =
7345 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7346 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
7347 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
7348 };
7349
Dan Gohmane65c9172009-07-13 21:35:55 +00007350 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007351 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7352 case ICmpInst::ICMP_EQ:
7353 case ICmpInst::ICMP_NE:
7354 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7355 return true;
7356 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007357 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007358 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007359 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7360 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007361 return true;
7362 break;
7363 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007364 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007365 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7366 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007367 return true;
7368 break;
7369 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007370 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007371 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7372 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007373 return true;
7374 break;
7375 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007376 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007377 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7378 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007379 return true;
7380 break;
7381 }
7382
7383 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007384}
7385
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007386/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7387/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7388bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7389 const SCEV *LHS,
7390 const SCEV *RHS,
7391 const SCEV *FoundLHS,
7392 const SCEV *FoundRHS) {
7393 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7394 // The restriction on `FoundRHS` be lifted easily -- it exists only to
7395 // reduce the compile time impact of this optimization.
7396 return false;
7397
7398 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7399 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7400 !isa<SCEVConstant>(AddLHS->getOperand(0)))
7401 return false;
7402
7403 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7404
7405 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7406 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7407 ConstantRange FoundLHSRange =
7408 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7409
7410 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7411 // for `LHS`:
7412 APInt Addend =
7413 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7414 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7415
7416 // We can also compute the range of values for `LHS` that satisfy the
7417 // consequent, "`LHS` `Pred` `RHS`":
7418 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7419 ConstantRange SatisfyingLHSRange =
7420 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7421
7422 // The antecedent implies the consequent if every value of `LHS` that
7423 // satisfies the antecedent also satisfies the consequent.
7424 return SatisfyingLHSRange.contains(LHSRange);
7425}
7426
Johannes Doerfert2683e562015-02-09 12:34:23 +00007427// Verify if an linear IV with positive stride can overflow when in a
7428// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007429// stride and the knowledge of NSW/NUW flags on the recurrence.
7430bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7431 bool IsSigned, bool NoWrap) {
7432 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007433
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007434 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7435 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007436
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007437 if (IsSigned) {
7438 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7439 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7440 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7441 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007442
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007443 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7444 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007445 }
Dan Gohman01048422009-06-21 23:46:38 +00007446
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007447 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7448 APInt MaxValue = APInt::getMaxValue(BitWidth);
7449 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7450 .getUnsignedMax();
7451
7452 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7453 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7454}
7455
Johannes Doerfert2683e562015-02-09 12:34:23 +00007456// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007457// greater-than comparison, knowing the invariant term of the comparison,
7458// the stride and the knowledge of NSW/NUW flags on the recurrence.
7459bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7460 bool IsSigned, bool NoWrap) {
7461 if (NoWrap) return false;
7462
7463 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7464 const SCEV *One = getConstant(Stride->getType(), 1);
7465
7466 if (IsSigned) {
7467 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7468 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7469 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7470 .getSignedMax();
7471
7472 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7473 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7474 }
7475
7476 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7477 APInt MinValue = APInt::getMinValue(BitWidth);
7478 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7479 .getUnsignedMax();
7480
7481 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7482 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7483}
7484
7485// Compute the backedge taken count knowing the interval difference, the
7486// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00007487const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007488 bool Equality) {
7489 const SCEV *One = getConstant(Step->getType(), 1);
7490 Delta = Equality ? getAddExpr(Delta, Step)
7491 : getAddExpr(Delta, getMinusSCEV(Step, One));
7492 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007493}
7494
Chris Lattner587a75b2005-08-15 23:33:51 +00007495/// HowManyLessThans - Return the number of times a backedge containing the
7496/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007497/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007498///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007499/// @param ControlsExit is true when the LHS < RHS condition directly controls
7500/// the branch (loops exits only if condition is true). In this case, we can use
7501/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007502ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007503ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007504 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007505 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007506 // We handle only IV < Invariant
7507 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007508 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007509
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007510 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007511
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007512 // Avoid weird loops
7513 if (!IV || IV->getLoop() != L || !IV->isAffine())
7514 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007515
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007516 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007517 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007518
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007519 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007520
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007521 // Avoid negative or zero stride values
7522 if (!isKnownPositive(Stride))
7523 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007524
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007525 // Avoid proven overflow cases: this will ensure that the backedge taken count
7526 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007527 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007528 // behaviors like the case of C language.
7529 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7530 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007531
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007532 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7533 : ICmpInst::ICMP_ULT;
7534 const SCEV *Start = IV->getStart();
7535 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007536 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7537 const SCEV *Diff = getMinusSCEV(RHS, Start);
7538 // If we have NoWrap set, then we can assume that the increment won't
7539 // overflow, in which case if RHS - Start is a constant, we don't need to
7540 // do a max operation since we can just figure it out statically
7541 if (NoWrap && isa<SCEVConstant>(Diff)) {
7542 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7543 if (D.isNegative())
7544 End = Start;
7545 } else
7546 End = IsSigned ? getSMaxExpr(RHS, Start)
7547 : getUMaxExpr(RHS, Start);
7548 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007549
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007550 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007551
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007552 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7553 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007554
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007555 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7556 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007557
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007558 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7559 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7560 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007561
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007562 // Although End can be a MAX expression we estimate MaxEnd considering only
7563 // the case End = RHS. This is safe because in the other case (End - Start)
7564 // is zero, leading to a zero maximum backedge taken count.
7565 APInt MaxEnd =
7566 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7567 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7568
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007569 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007570 if (isa<SCEVConstant>(BECount))
7571 MaxBECount = BECount;
7572 else
7573 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7574 getConstant(MinStride), false);
7575
7576 if (isa<SCEVCouldNotCompute>(MaxBECount))
7577 MaxBECount = BECount;
7578
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007579 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007580}
7581
7582ScalarEvolution::ExitLimit
7583ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7584 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007585 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007586 // We handle only IV > Invariant
7587 if (!isLoopInvariant(RHS, L))
7588 return getCouldNotCompute();
7589
7590 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7591
7592 // Avoid weird loops
7593 if (!IV || IV->getLoop() != L || !IV->isAffine())
7594 return getCouldNotCompute();
7595
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007596 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007597 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7598
7599 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7600
7601 // Avoid negative or zero stride values
7602 if (!isKnownPositive(Stride))
7603 return getCouldNotCompute();
7604
7605 // Avoid proven overflow cases: this will ensure that the backedge taken count
7606 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007607 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007608 // behaviors like the case of C language.
7609 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7610 return getCouldNotCompute();
7611
7612 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7613 : ICmpInst::ICMP_UGT;
7614
7615 const SCEV *Start = IV->getStart();
7616 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007617 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7618 const SCEV *Diff = getMinusSCEV(RHS, Start);
7619 // If we have NoWrap set, then we can assume that the increment won't
7620 // overflow, in which case if RHS - Start is a constant, we don't need to
7621 // do a max operation since we can just figure it out statically
7622 if (NoWrap && isa<SCEVConstant>(Diff)) {
7623 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7624 if (!D.isNegative())
7625 End = Start;
7626 } else
7627 End = IsSigned ? getSMinExpr(RHS, Start)
7628 : getUMinExpr(RHS, Start);
7629 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007630
7631 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7632
7633 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7634 : getUnsignedRange(Start).getUnsignedMax();
7635
7636 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7637 : getUnsignedRange(Stride).getUnsignedMin();
7638
7639 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7640 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7641 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7642
7643 // Although End can be a MIN expression we estimate MinEnd considering only
7644 // the case End = RHS. This is safe because in the other case (Start - End)
7645 // is zero, leading to a zero maximum backedge taken count.
7646 APInt MinEnd =
7647 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7648 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7649
7650
7651 const SCEV *MaxBECount = getCouldNotCompute();
7652 if (isa<SCEVConstant>(BECount))
7653 MaxBECount = BECount;
7654 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00007655 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007656 getConstant(MinStride), false);
7657
7658 if (isa<SCEVCouldNotCompute>(MaxBECount))
7659 MaxBECount = BECount;
7660
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007661 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007662}
7663
Chris Lattnerd934c702004-04-02 20:23:17 +00007664/// getNumIterationsInRange - Return the number of iterations of this loop that
7665/// produce values in the specified constant range. Another way of looking at
7666/// this is that it returns the first iteration number where the value is not in
7667/// the condition, thus computing the exit count. If the iteration count can't
7668/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007669const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007670 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007671 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007672 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007673
7674 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007675 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007676 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007677 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007678 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007679 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007680 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007681 if (const SCEVAddRecExpr *ShiftedAddRec =
7682 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007683 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007684 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007685 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007686 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007687 }
7688
7689 // The only time we can solve this is when we have all constant indices.
7690 // Otherwise, we cannot determine the overflow conditions.
7691 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7692 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007693 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007694
7695
7696 // Okay at this point we know that all elements of the chrec are constants and
7697 // that the start element is zero.
7698
7699 // First check to see if the range contains zero. If not, the first
7700 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007701 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007702 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007703 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007704
Chris Lattnerd934c702004-04-02 20:23:17 +00007705 if (isAffine()) {
7706 // If this is an affine expression then we have this situation:
7707 // Solve {0,+,A} in Range === Ax in Range
7708
Nick Lewycky52460262007-07-16 02:08:00 +00007709 // We know that zero is in the range. If A is positive then we know that
7710 // the upper value of the range must be the first possible exit value.
7711 // If A is negative then the lower of the range is the last possible loop
7712 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007713 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007714 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7715 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007716
Nick Lewycky52460262007-07-16 02:08:00 +00007717 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007718 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007719 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007720
7721 // Evaluate at the exit value. If we really did fall out of the valid
7722 // range, then we computed our trip count, otherwise wrap around or other
7723 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007724 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007725 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007726 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007727
7728 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007729 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007730 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007731 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007732 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007733 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007734 } else if (isQuadratic()) {
7735 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7736 // quadratic equation to solve it. To do this, we must frame our problem in
7737 // terms of figuring out when zero is crossed, instead of when
7738 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007739 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007740 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007741 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7742 // getNoWrapFlags(FlagNW)
7743 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007744
7745 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007746 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007747 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007748 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7749 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007750 if (R1) {
7751 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007752 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007753 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007754 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00007755 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00007756 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007757
Chris Lattnerd934c702004-04-02 20:23:17 +00007758 // Make sure the root is not off by one. The returned iteration should
7759 // not be in the range, but the previous one should be. When solving
7760 // for "X*X < 5", for example, we should not return a root of 2.
7761 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007762 R1->getValue(),
7763 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007764 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007765 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007766 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007767 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007768
Dan Gohmana37eaf22007-10-22 18:31:58 +00007769 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007770 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007771 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007772 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007773 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007774
Chris Lattnerd934c702004-04-02 20:23:17 +00007775 // If R1 was not in the range, then it is a good return value. Make
7776 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007777 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007778 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007779 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007780 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007781 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007782 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007783 }
7784 }
7785 }
7786
Dan Gohman31efa302009-04-18 17:58:19 +00007787 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007788}
7789
Sebastian Pop448712b2014-05-07 18:01:20 +00007790namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007791struct FindUndefs {
7792 bool Found;
7793 FindUndefs() : Found(false) {}
7794
7795 bool follow(const SCEV *S) {
7796 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7797 if (isa<UndefValue>(C->getValue()))
7798 Found = true;
7799 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7800 if (isa<UndefValue>(C->getValue()))
7801 Found = true;
7802 }
7803
7804 // Keep looking if we haven't found it yet.
7805 return !Found;
7806 }
7807 bool isDone() const {
7808 // Stop recursion if we have found an undef.
7809 return Found;
7810 }
7811};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00007812}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007813
7814// Return true when S contains at least an undef value.
7815static inline bool
7816containsUndefs(const SCEV *S) {
7817 FindUndefs F;
7818 SCEVTraversal<FindUndefs> ST(F);
7819 ST.visitAll(S);
7820
7821 return F.Found;
7822}
7823
7824namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007825// Collect all steps of SCEV expressions.
7826struct SCEVCollectStrides {
7827 ScalarEvolution &SE;
7828 SmallVectorImpl<const SCEV *> &Strides;
7829
7830 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7831 : SE(SE), Strides(S) {}
7832
7833 bool follow(const SCEV *S) {
7834 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7835 Strides.push_back(AR->getStepRecurrence(SE));
7836 return true;
7837 }
7838 bool isDone() const { return false; }
7839};
7840
7841// Collect all SCEVUnknown and SCEVMulExpr expressions.
7842struct SCEVCollectTerms {
7843 SmallVectorImpl<const SCEV *> &Terms;
7844
7845 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7846 : Terms(T) {}
7847
7848 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007849 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007850 if (!containsUndefs(S))
7851 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007852
7853 // Stop recursion: once we collected a term, do not walk its operands.
7854 return false;
7855 }
7856
7857 // Keep looking.
7858 return true;
7859 }
7860 bool isDone() const { return false; }
7861};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00007862}
Sebastian Pop448712b2014-05-07 18:01:20 +00007863
7864/// Find parametric terms in this SCEVAddRecExpr.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00007865void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
7866 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007867 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00007868 SCEVCollectStrides StrideCollector(*this, Strides);
7869 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00007870
7871 DEBUG({
7872 dbgs() << "Strides:\n";
7873 for (const SCEV *S : Strides)
7874 dbgs() << *S << "\n";
7875 });
7876
7877 for (const SCEV *S : Strides) {
7878 SCEVCollectTerms TermCollector(Terms);
7879 visitAll(S, TermCollector);
7880 }
7881
7882 DEBUG({
7883 dbgs() << "Terms:\n";
7884 for (const SCEV *T : Terms)
7885 dbgs() << *T << "\n";
7886 });
7887}
7888
Sebastian Popb1a548f2014-05-12 19:01:53 +00007889static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007890 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007891 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007892 int Last = Terms.size() - 1;
7893 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007894
Sebastian Pop448712b2014-05-07 18:01:20 +00007895 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007896 if (Last == 0) {
7897 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007898 SmallVector<const SCEV *, 2> Qs;
7899 for (const SCEV *Op : M->operands())
7900 if (!isa<SCEVConstant>(Op))
7901 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007902
Sebastian Pope30bd352014-05-27 22:41:56 +00007903 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007904 }
7905
Sebastian Pope30bd352014-05-27 22:41:56 +00007906 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007907 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007908 }
7909
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007910 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007911 // Normalize the terms before the next call to findArrayDimensionsRec.
7912 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007913 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007914
7915 // Bail out when GCD does not evenly divide one of the terms.
7916 if (!R->isZero())
7917 return false;
7918
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007919 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007920 }
7921
Tobias Grosser3080cf12014-05-08 07:55:34 +00007922 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007923 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7924 return isa<SCEVConstant>(E);
7925 }),
7926 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007927
Sebastian Pop448712b2014-05-07 18:01:20 +00007928 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007929 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7930 return false;
7931
Sebastian Pope30bd352014-05-27 22:41:56 +00007932 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007933 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007934}
Sebastian Popc62c6792013-11-12 22:47:20 +00007935
Sebastian Pop448712b2014-05-07 18:01:20 +00007936namespace {
7937struct FindParameter {
7938 bool FoundParameter;
7939 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007940
Sebastian Pop448712b2014-05-07 18:01:20 +00007941 bool follow(const SCEV *S) {
7942 if (isa<SCEVUnknown>(S)) {
7943 FoundParameter = true;
7944 // Stop recursion: we found a parameter.
7945 return false;
7946 }
7947 // Keep looking.
7948 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007949 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007950 bool isDone() const {
7951 // Stop recursion if we have found a parameter.
7952 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007953 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007954};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00007955}
Sebastian Popc62c6792013-11-12 22:47:20 +00007956
Sebastian Pop448712b2014-05-07 18:01:20 +00007957// Returns true when S contains at least a SCEVUnknown parameter.
7958static inline bool
7959containsParameters(const SCEV *S) {
7960 FindParameter F;
7961 SCEVTraversal<FindParameter> ST(F);
7962 ST.visitAll(S);
7963
7964 return F.FoundParameter;
7965}
7966
7967// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7968static inline bool
7969containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7970 for (const SCEV *T : Terms)
7971 if (containsParameters(T))
7972 return true;
7973 return false;
7974}
7975
7976// Return the number of product terms in S.
7977static inline int numberOfTerms(const SCEV *S) {
7978 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7979 return Expr->getNumOperands();
7980 return 1;
7981}
7982
Sebastian Popa6e58602014-05-27 22:41:45 +00007983static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7984 if (isa<SCEVConstant>(T))
7985 return nullptr;
7986
7987 if (isa<SCEVUnknown>(T))
7988 return T;
7989
7990 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7991 SmallVector<const SCEV *, 2> Factors;
7992 for (const SCEV *Op : M->operands())
7993 if (!isa<SCEVConstant>(Op))
7994 Factors.push_back(Op);
7995
7996 return SE.getMulExpr(Factors);
7997 }
7998
7999 return T;
8000}
8001
8002/// Return the size of an element read or written by Inst.
8003const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8004 Type *Ty;
8005 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8006 Ty = Store->getValueOperand()->getType();
8007 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008008 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008009 else
8010 return nullptr;
8011
8012 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8013 return getSizeOfExpr(ETy, Ty);
8014}
8015
Sebastian Pop448712b2014-05-07 18:01:20 +00008016/// Second step of delinearization: compute the array dimensions Sizes from the
8017/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008018void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8019 SmallVectorImpl<const SCEV *> &Sizes,
8020 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008021
Sebastian Pop53524082014-05-29 19:44:05 +00008022 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008023 return;
8024
8025 // Early return when Terms do not contain parameters: we do not delinearize
8026 // non parametric SCEVs.
8027 if (!containsParameters(Terms))
8028 return;
8029
8030 DEBUG({
8031 dbgs() << "Terms:\n";
8032 for (const SCEV *T : Terms)
8033 dbgs() << *T << "\n";
8034 });
8035
8036 // Remove duplicates.
8037 std::sort(Terms.begin(), Terms.end());
8038 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8039
8040 // Put larger terms first.
8041 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8042 return numberOfTerms(LHS) > numberOfTerms(RHS);
8043 });
8044
Sebastian Popa6e58602014-05-27 22:41:45 +00008045 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8046
8047 // Divide all terms by the element size.
8048 for (const SCEV *&Term : Terms) {
8049 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008050 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00008051 Term = Q;
8052 }
8053
8054 SmallVector<const SCEV *, 4> NewTerms;
8055
8056 // Remove constant factors.
8057 for (const SCEV *T : Terms)
8058 if (const SCEV *NewT = removeConstantFactors(SE, T))
8059 NewTerms.push_back(NewT);
8060
Sebastian Pop448712b2014-05-07 18:01:20 +00008061 DEBUG({
8062 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008063 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008064 dbgs() << *T << "\n";
8065 });
8066
Sebastian Popa6e58602014-05-27 22:41:45 +00008067 if (NewTerms.empty() ||
8068 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008069 Sizes.clear();
8070 return;
8071 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008072
Sebastian Popa6e58602014-05-27 22:41:45 +00008073 // The last element to be pushed into Sizes is the size of an element.
8074 Sizes.push_back(ElementSize);
8075
Sebastian Pop448712b2014-05-07 18:01:20 +00008076 DEBUG({
8077 dbgs() << "Sizes:\n";
8078 for (const SCEV *S : Sizes)
8079 dbgs() << *S << "\n";
8080 });
8081}
8082
8083/// Third step of delinearization: compute the access functions for the
8084/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008085void ScalarEvolution::computeAccessFunctions(
8086 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8087 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008088
Sebastian Popb1a548f2014-05-12 19:01:53 +00008089 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008090 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008091 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008092
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008093 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr))
8094 if (!AR->isAffine())
8095 return;
8096
8097 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008098 int Last = Sizes.size() - 1;
8099 for (int i = Last; i >= 0; i--) {
8100 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008101 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008102
8103 DEBUG({
8104 dbgs() << "Res: " << *Res << "\n";
8105 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8106 dbgs() << "Res divided by Sizes[i]:\n";
8107 dbgs() << "Quotient: " << *Q << "\n";
8108 dbgs() << "Remainder: " << *R << "\n";
8109 });
8110
8111 Res = Q;
8112
Sebastian Popa6e58602014-05-27 22:41:45 +00008113 // Do not record the last subscript corresponding to the size of elements in
8114 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008115 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008116
8117 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008118 if (isa<SCEVAddRecExpr>(R)) {
8119 Subscripts.clear();
8120 Sizes.clear();
8121 return;
8122 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008123
Sebastian Pop448712b2014-05-07 18:01:20 +00008124 continue;
8125 }
8126
8127 // Record the access function for the current subscript.
8128 Subscripts.push_back(R);
8129 }
8130
8131 // Also push in last position the remainder of the last division: it will be
8132 // the access function of the innermost dimension.
8133 Subscripts.push_back(Res);
8134
8135 std::reverse(Subscripts.begin(), Subscripts.end());
8136
8137 DEBUG({
8138 dbgs() << "Subscripts:\n";
8139 for (const SCEV *S : Subscripts)
8140 dbgs() << *S << "\n";
8141 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008142}
8143
Sebastian Popc62c6792013-11-12 22:47:20 +00008144/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8145/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008146/// is the offset start of the array. The SCEV->delinearize algorithm computes
8147/// the multiples of SCEV coefficients: that is a pattern matching of sub
8148/// expressions in the stride and base of a SCEV corresponding to the
8149/// computation of a GCD (greatest common divisor) of base and stride. When
8150/// SCEV->delinearize fails, it returns the SCEV unchanged.
8151///
8152/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8153///
8154/// void foo(long n, long m, long o, double A[n][m][o]) {
8155///
8156/// for (long i = 0; i < n; i++)
8157/// for (long j = 0; j < m; j++)
8158/// for (long k = 0; k < o; k++)
8159/// A[i][j][k] = 1.0;
8160/// }
8161///
8162/// the delinearization input is the following AddRec SCEV:
8163///
8164/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8165///
8166/// From this SCEV, we are able to say that the base offset of the access is %A
8167/// because it appears as an offset that does not divide any of the strides in
8168/// the loops:
8169///
8170/// CHECK: Base offset: %A
8171///
8172/// and then SCEV->delinearize determines the size of some of the dimensions of
8173/// the array as these are the multiples by which the strides are happening:
8174///
8175/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8176///
8177/// Note that the outermost dimension remains of UnknownSize because there are
8178/// no strides that would help identifying the size of the last dimension: when
8179/// the array has been statically allocated, one could compute the size of that
8180/// dimension by dividing the overall size of the array by the size of the known
8181/// dimensions: %m * %o * 8.
8182///
8183/// Finally delinearize provides the access functions for the array reference
8184/// that does correspond to A[i][j][k] of the above C testcase:
8185///
8186/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8187///
8188/// The testcases are checking the output of a function pass:
8189/// DelinearizationPass that walks through all loads and stores of a function
8190/// asking for the SCEV of the memory access with respect to all enclosing
8191/// loops, calling SCEV->delinearize on that and printing the results.
8192
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008193void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008194 SmallVectorImpl<const SCEV *> &Subscripts,
8195 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008196 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008197 // First step: collect parametric terms.
8198 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008199 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008200
Sebastian Popb1a548f2014-05-12 19:01:53 +00008201 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008202 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008203
Sebastian Pop448712b2014-05-07 18:01:20 +00008204 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008205 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008206
Sebastian Popb1a548f2014-05-12 19:01:53 +00008207 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008208 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008209
Sebastian Pop448712b2014-05-07 18:01:20 +00008210 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008211 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00008212
Sebastian Pop28e6b972014-05-27 22:41:51 +00008213 if (Subscripts.empty())
8214 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008215
Sebastian Pop448712b2014-05-07 18:01:20 +00008216 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008217 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00008218 dbgs() << "ArrayDecl[UnknownSize]";
8219 for (const SCEV *S : Sizes)
8220 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00008221
Sebastian Pop444621a2014-05-09 22:45:02 +00008222 dbgs() << "\nArrayRef";
8223 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00008224 dbgs() << "[" << *S << "]";
8225 dbgs() << "\n";
8226 });
Sebastian Popc62c6792013-11-12 22:47:20 +00008227}
Chris Lattnerd934c702004-04-02 20:23:17 +00008228
8229//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00008230// SCEVCallbackVH Class Implementation
8231//===----------------------------------------------------------------------===//
8232
Dan Gohmand33a0902009-05-19 19:22:47 +00008233void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00008234 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00008235 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
8236 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008237 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00008238 // this now dangles!
8239}
8240
Dan Gohman7a066722010-07-28 01:09:07 +00008241void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00008242 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00008243
Dan Gohman48f82222009-05-04 22:30:44 +00008244 // Forget all the expressions associated with users of the old value,
8245 // so that future queries will recompute the expressions using the new
8246 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00008247 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00008248 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00008249 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00008250 while (!Worklist.empty()) {
8251 User *U = Worklist.pop_back_val();
8252 // Deleting the Old value will cause this to dangle. Postpone
8253 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008254 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00008255 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00008256 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00008257 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00008258 if (PHINode *PN = dyn_cast<PHINode>(U))
8259 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008260 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00008261 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00008262 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008263 // Delete the Old value.
8264 if (PHINode *PN = dyn_cast<PHINode>(Old))
8265 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008266 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008267 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00008268}
8269
Dan Gohmand33a0902009-05-19 19:22:47 +00008270ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00008271 : CallbackVH(V), SE(se) {}
8272
8273//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00008274// ScalarEvolution Class Implementation
8275//===----------------------------------------------------------------------===//
8276
Dan Gohmanc8e23622009-04-21 23:15:49 +00008277ScalarEvolution::ScalarEvolution()
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00008278 : FunctionPass(ID), WalkingBEDominatingConds(false), ValuesAtScopes(64),
8279 LoopDispositions(64), BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00008280 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00008281}
8282
Chris Lattnerd934c702004-04-02 20:23:17 +00008283bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00008284 this->F = &F;
Chandler Carruth66b31302015-01-04 12:03:27 +00008285 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth4f8f3072015-01-17 14:16:18 +00008286 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00008287 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Chandler Carruth73523022014-01-13 13:07:17 +00008288 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00008289 return false;
8290}
8291
8292void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00008293 // Iterate through all the SCEVUnknown instances and call their
8294 // destructors, so that they release their references to their values.
8295 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
8296 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00008297 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00008298
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008299 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008300
8301 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
8302 // that a loop had multiple computable exits.
8303 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8304 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
8305 I != E; ++I) {
8306 I->second.clear();
8307 }
8308
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008309 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00008310 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008311
Dan Gohmanc8e23622009-04-21 23:15:49 +00008312 BackedgeTakenCounts.clear();
8313 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00008314 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008315 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008316 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00008317 UnsignedRanges.clear();
8318 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008319 UniqueSCEVs.clear();
8320 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00008321}
8322
8323void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
8324 AU.setPreservesAll();
Craig Topperac7947e2015-07-23 07:33:48 +00008325 AU.addRequiredTransitive<AssumptionCacheTracker>();
Chandler Carruth4f8f3072015-01-17 14:16:18 +00008326 AU.addRequiredTransitive<LoopInfoWrapperPass>();
Chandler Carruth73523022014-01-13 13:07:17 +00008327 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Craig Topperac7947e2015-07-23 07:33:48 +00008328 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00008329}
8330
Dan Gohmanc8e23622009-04-21 23:15:49 +00008331bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008332 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008333}
8334
Dan Gohmanc8e23622009-04-21 23:15:49 +00008335static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008336 const Loop *L) {
8337 // Print all inner loops first
8338 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8339 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008340
Dan Gohmanbc694912010-01-09 18:17:45 +00008341 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008342 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008343 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008344
Dan Gohmancb0efec2009-12-18 01:14:11 +00008345 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008346 L->getExitBlocks(ExitBlocks);
8347 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008348 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008349
Dan Gohman0bddac12009-02-24 18:55:53 +00008350 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8351 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008352 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008353 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008354 }
8355
Dan Gohmanbc694912010-01-09 18:17:45 +00008356 OS << "\n"
8357 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008358 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008359 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008360
8361 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8362 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8363 } else {
8364 OS << "Unpredictable max backedge-taken count. ";
8365 }
8366
8367 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008368}
8369
Dan Gohmancb0efec2009-12-18 01:14:11 +00008370void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008371 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008372 // out SCEV values of all instructions that are interesting. Doing
8373 // this potentially causes it to create new SCEV objects though,
8374 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008375 // observable from outside the class though, so casting away the
8376 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008377 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008378
Dan Gohmanbc694912010-01-09 18:17:45 +00008379 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008380 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008381 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008382 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00008383 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00008384 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008385 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008386 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008387 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008388 if (!isa<SCEVCouldNotCompute>(SV)) {
8389 OS << " U: ";
8390 SE.getUnsignedRange(SV).print(OS);
8391 OS << " S: ";
8392 SE.getSignedRange(SV).print(OS);
8393 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008394
Dan Gohmanb9063a82009-06-19 17:49:54 +00008395 const Loop *L = LI->getLoopFor((*I).getParent());
8396
Dan Gohmanaf752342009-07-07 17:06:11 +00008397 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008398 if (AtUse != SV) {
8399 OS << " --> ";
8400 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008401 if (!isa<SCEVCouldNotCompute>(AtUse)) {
8402 OS << " U: ";
8403 SE.getUnsignedRange(AtUse).print(OS);
8404 OS << " S: ";
8405 SE.getSignedRange(AtUse).print(OS);
8406 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00008407 }
8408
8409 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00008410 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008411 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00008412 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008413 OS << "<<Unknown>>";
8414 } else {
8415 OS << *ExitValue;
8416 }
8417 }
8418
Chris Lattnerd934c702004-04-02 20:23:17 +00008419 OS << "\n";
8420 }
8421
Dan Gohmanbc694912010-01-09 18:17:45 +00008422 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008423 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008424 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00008425 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8426 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008427}
Dan Gohmane20f8242009-04-21 00:47:46 +00008428
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008429ScalarEvolution::LoopDisposition
8430ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008431 auto &Values = LoopDispositions[S];
8432 for (auto &V : Values) {
8433 if (V.getPointer() == L)
8434 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008435 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008436 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008437 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008438 auto &Values2 = LoopDispositions[S];
8439 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8440 if (V.getPointer() == L) {
8441 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008442 break;
8443 }
8444 }
8445 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008446}
8447
8448ScalarEvolution::LoopDisposition
8449ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008450 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008451 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008452 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008453 case scTruncate:
8454 case scZeroExtend:
8455 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008456 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008457 case scAddRecExpr: {
8458 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8459
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008460 // If L is the addrec's loop, it's computable.
8461 if (AR->getLoop() == L)
8462 return LoopComputable;
8463
Dan Gohmanafd6db92010-11-17 21:23:15 +00008464 // Add recurrences are never invariant in the function-body (null loop).
8465 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008466 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008467
8468 // This recurrence is variant w.r.t. L if L contains AR's loop.
8469 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008470 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008471
8472 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8473 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008474 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008475
8476 // This recurrence is variant w.r.t. L if any of its operands
8477 // are variant.
8478 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8479 I != E; ++I)
8480 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008481 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008482
8483 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008484 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008485 }
8486 case scAddExpr:
8487 case scMulExpr:
8488 case scUMaxExpr:
8489 case scSMaxExpr: {
8490 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008491 bool HasVarying = false;
8492 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8493 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008494 LoopDisposition D = getLoopDisposition(*I, L);
8495 if (D == LoopVariant)
8496 return LoopVariant;
8497 if (D == LoopComputable)
8498 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008499 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008500 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008501 }
8502 case scUDivExpr: {
8503 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008504 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8505 if (LD == LoopVariant)
8506 return LoopVariant;
8507 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8508 if (RD == LoopVariant)
8509 return LoopVariant;
8510 return (LD == LoopInvariant && RD == LoopInvariant) ?
8511 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008512 }
8513 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008514 // All non-instruction values are loop invariant. All instructions are loop
8515 // invariant if they are not contained in the specified loop.
8516 // Instructions are never considered invariant in the function body
8517 // (null loop) because they are defined within the "loop".
8518 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8519 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8520 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008521 case scCouldNotCompute:
8522 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008523 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008524 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008525}
8526
8527bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8528 return getLoopDisposition(S, L) == LoopInvariant;
8529}
8530
8531bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8532 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008533}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008534
Dan Gohman8ea83d82010-11-18 00:34:22 +00008535ScalarEvolution::BlockDisposition
8536ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008537 auto &Values = BlockDispositions[S];
8538 for (auto &V : Values) {
8539 if (V.getPointer() == BB)
8540 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008541 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008542 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008543 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008544 auto &Values2 = BlockDispositions[S];
8545 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8546 if (V.getPointer() == BB) {
8547 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008548 break;
8549 }
8550 }
8551 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008552}
8553
Dan Gohman8ea83d82010-11-18 00:34:22 +00008554ScalarEvolution::BlockDisposition
8555ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008556 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008557 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008558 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008559 case scTruncate:
8560 case scZeroExtend:
8561 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008562 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008563 case scAddRecExpr: {
8564 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008565 // to test for proper dominance too, because the instruction which
8566 // produces the addrec's value is a PHI, and a PHI effectively properly
8567 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008568 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8569 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008570 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008571 }
8572 // FALL THROUGH into SCEVNAryExpr handling.
8573 case scAddExpr:
8574 case scMulExpr:
8575 case scUMaxExpr:
8576 case scSMaxExpr: {
8577 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008578 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008579 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008580 I != E; ++I) {
8581 BlockDisposition D = getBlockDisposition(*I, BB);
8582 if (D == DoesNotDominateBlock)
8583 return DoesNotDominateBlock;
8584 if (D == DominatesBlock)
8585 Proper = false;
8586 }
8587 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008588 }
8589 case scUDivExpr: {
8590 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008591 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8592 BlockDisposition LD = getBlockDisposition(LHS, BB);
8593 if (LD == DoesNotDominateBlock)
8594 return DoesNotDominateBlock;
8595 BlockDisposition RD = getBlockDisposition(RHS, BB);
8596 if (RD == DoesNotDominateBlock)
8597 return DoesNotDominateBlock;
8598 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8599 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008600 }
8601 case scUnknown:
8602 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008603 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8604 if (I->getParent() == BB)
8605 return DominatesBlock;
8606 if (DT->properlyDominates(I->getParent(), BB))
8607 return ProperlyDominatesBlock;
8608 return DoesNotDominateBlock;
8609 }
8610 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008611 case scCouldNotCompute:
8612 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008613 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008614 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008615}
8616
8617bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8618 return getBlockDisposition(S, BB) >= DominatesBlock;
8619}
8620
8621bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8622 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008623}
Dan Gohman534749b2010-11-17 22:27:42 +00008624
Andrew Trick365e31c2012-07-13 23:33:03 +00008625namespace {
8626// Search for a SCEV expression node within an expression tree.
8627// Implements SCEVTraversal::Visitor.
8628struct SCEVSearch {
8629 const SCEV *Node;
8630 bool IsFound;
8631
8632 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8633
8634 bool follow(const SCEV *S) {
8635 IsFound |= (S == Node);
8636 return !IsFound;
8637 }
8638 bool isDone() const { return IsFound; }
8639};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008640}
Andrew Trick365e31c2012-07-13 23:33:03 +00008641
Dan Gohman534749b2010-11-17 22:27:42 +00008642bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008643 SCEVSearch Search(Op);
8644 visitAll(S, Search);
8645 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008646}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008647
8648void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8649 ValuesAtScopes.erase(S);
8650 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008651 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008652 UnsignedRanges.erase(S);
8653 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008654
8655 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8656 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8657 BackedgeTakenInfo &BEInfo = I->second;
8658 if (BEInfo.hasOperand(S, this)) {
8659 BEInfo.clear();
8660 BackedgeTakenCounts.erase(I++);
8661 }
8662 else
8663 ++I;
8664 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008665}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008666
8667typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008668
Alp Tokercb402912014-01-24 17:20:08 +00008669/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008670static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8671 size_t Pos = 0;
8672 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8673 Str.replace(Pos, From.size(), To.data(), To.size());
8674 Pos += To.size();
8675 }
8676}
8677
Benjamin Kramer214935e2012-10-26 17:31:32 +00008678/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8679static void
8680getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8681 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8682 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8683
8684 std::string &S = Map[L];
8685 if (S.empty()) {
8686 raw_string_ostream OS(S);
8687 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008688
8689 // false and 0 are semantically equivalent. This can happen in dead loops.
8690 replaceSubString(OS.str(), "false", "0");
8691 // Remove wrap flags, their use in SCEV is highly fragile.
8692 // FIXME: Remove this when SCEV gets smarter about them.
8693 replaceSubString(OS.str(), "<nw>", "");
8694 replaceSubString(OS.str(), "<nsw>", "");
8695 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008696 }
8697 }
8698}
8699
8700void ScalarEvolution::verifyAnalysis() const {
8701 if (!VerifySCEV)
8702 return;
8703
8704 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8705
8706 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8707 // FIXME: It would be much better to store actual values instead of strings,
8708 // but SCEV pointers will change if we drop the caches.
8709 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8710 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8711 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8712
8713 // Gather stringified backedge taken counts for all loops without using
8714 // SCEV's caches.
8715 SE.releaseMemory();
8716 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8717 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8718
8719 // Now compare whether they're the same with and without caches. This allows
8720 // verifying that no pass changed the cache.
8721 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8722 "New loops suddenly appeared!");
8723
8724 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8725 OldE = BackedgeDumpsOld.end(),
8726 NewI = BackedgeDumpsNew.begin();
8727 OldI != OldE; ++OldI, ++NewI) {
8728 assert(OldI->first == NewI->first && "Loop order changed!");
8729
8730 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8731 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008732 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008733 // means that a pass is buggy or SCEV has to learn a new pattern but is
8734 // usually not harmful.
8735 if (OldI->second != NewI->second &&
8736 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008737 NewI->second.find("undef") == std::string::npos &&
8738 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008739 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008740 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008741 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008742 << "' changed from '" << OldI->second
8743 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008744 std::abort();
8745 }
8746 }
8747
8748 // TODO: Verify more things.
8749}