blob: 06e6de65f0708004385ac8f493ead50b8449d801 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000315 function definition. Furthermore the inliner doesn't consider such function
316 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000317"``cc 10``" - GHC convention
318 This calling convention has been implemented specifically for use by
319 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
320 It passes everything in registers, going to extremes to achieve this
321 by disabling callee save registers. This calling convention should
322 not be used lightly but only for specific situations such as an
323 alternative to the *register pinning* performance technique often
324 used when implementing functional programming languages. At the
325 moment only X86 supports this convention and it has the following
326 limitations:
327
328 - On *X86-32* only supports up to 4 bit type parameters. No
329 floating point types are supported.
330 - On *X86-64* only supports up to 10 bit type parameters and 6
331 floating point parameters.
332
333 This calling convention supports `tail call
334 optimization <CodeGenerator.html#id80>`_ but requires both the
335 caller and callee are using it.
336"``cc 11``" - The HiPE calling convention
337 This calling convention has been implemented specifically for use by
338 the `High-Performance Erlang
339 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
340 native code compiler of the `Ericsson's Open Source Erlang/OTP
341 system <http://www.erlang.org/download.shtml>`_. It uses more
342 registers for argument passing than the ordinary C calling
343 convention and defines no callee-saved registers. The calling
344 convention properly supports `tail call
345 optimization <CodeGenerator.html#id80>`_ but requires that both the
346 caller and the callee use it. It uses a *register pinning*
347 mechanism, similar to GHC's convention, for keeping frequently
348 accessed runtime components pinned to specific hardware registers.
349 At the moment only X86 supports this convention (both 32 and 64
350 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000351"``webkit_jscc``" - WebKit's JavaScript calling convention
352 This calling convention has been implemented for `WebKit FTL JIT
353 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
354 stack right to left (as cdecl does), and returns a value in the
355 platform's customary return register.
356"``anyregcc``" - Dynamic calling convention for code patching
357 This is a special convention that supports patching an arbitrary code
358 sequence in place of a call site. This convention forces the call
359 arguments into registers but allows them to be dynamcially
360 allocated. This can currently only be used with calls to
361 llvm.experimental.patchpoint because only this intrinsic records
362 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363"``preserve_mostcc``" - The `PreserveMost` calling convention
364 This calling convention attempts to make the code in the caller as little
365 intrusive as possible. This calling convention behaves identical to the `C`
366 calling convention on how arguments and return values are passed, but it
367 uses a different set of caller/callee-saved registers. This alleviates the
368 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000369 call in the caller. If the arguments are passed in callee-saved registers,
370 then they will be preserved by the callee across the call. This doesn't
371 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372
373 - On X86-64 the callee preserves all general purpose registers, except for
374 R11. R11 can be used as a scratch register. Floating-point registers
375 (XMMs/YMMs) are not preserved and need to be saved by the caller.
376
377 The idea behind this convention is to support calls to runtime functions
378 that have a hot path and a cold path. The hot path is usually a small piece
379 of code that doesn't many registers. The cold path might need to call out to
380 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000381 registers, which haven't already been saved by the caller. The
382 `PreserveMost` calling convention is very similar to the `cold` calling
383 convention in terms of caller/callee-saved registers, but they are used for
384 different types of function calls. `coldcc` is for function calls that are
385 rarely executed, whereas `preserve_mostcc` function calls are intended to be
386 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
387 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000388
389 This calling convention will be used by a future version of the ObjectiveC
390 runtime and should therefore still be considered experimental at this time.
391 Although this convention was created to optimize certain runtime calls to
392 the ObjectiveC runtime, it is not limited to this runtime and might be used
393 by other runtimes in the future too. The current implementation only
394 supports X86-64, but the intention is to support more architectures in the
395 future.
396"``preserve_allcc``" - The `PreserveAll` calling convention
397 This calling convention attempts to make the code in the caller even less
398 intrusive than the `PreserveMost` calling convention. This calling
399 convention also behaves identical to the `C` calling convention on how
400 arguments and return values are passed, but it uses a different set of
401 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000402 recovering a large register set before and after the call in the caller. If
403 the arguments are passed in callee-saved registers, then they will be
404 preserved by the callee across the call. This doesn't apply for values
405 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000406
407 - On X86-64 the callee preserves all general purpose registers, except for
408 R11. R11 can be used as a scratch register. Furthermore it also preserves
409 all floating-point registers (XMMs/YMMs).
410
411 The idea behind this convention is to support calls to runtime functions
412 that don't need to call out to any other functions.
413
414 This calling convention, like the `PreserveMost` calling convention, will be
415 used by a future version of the ObjectiveC runtime and should be considered
416 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000417"``cc <n>``" - Numbered convention
418 Any calling convention may be specified by number, allowing
419 target-specific calling conventions to be used. Target specific
420 calling conventions start at 64.
421
422More calling conventions can be added/defined on an as-needed basis, to
423support Pascal conventions or any other well-known target-independent
424convention.
425
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000426.. _visibilitystyles:
427
Sean Silvab084af42012-12-07 10:36:55 +0000428Visibility Styles
429-----------------
430
431All Global Variables and Functions have one of the following visibility
432styles:
433
434"``default``" - Default style
435 On targets that use the ELF object file format, default visibility
436 means that the declaration is visible to other modules and, in
437 shared libraries, means that the declared entity may be overridden.
438 On Darwin, default visibility means that the declaration is visible
439 to other modules. Default visibility corresponds to "external
440 linkage" in the language.
441"``hidden``" - Hidden style
442 Two declarations of an object with hidden visibility refer to the
443 same object if they are in the same shared object. Usually, hidden
444 visibility indicates that the symbol will not be placed into the
445 dynamic symbol table, so no other module (executable or shared
446 library) can reference it directly.
447"``protected``" - Protected style
448 On ELF, protected visibility indicates that the symbol will be
449 placed in the dynamic symbol table, but that references within the
450 defining module will bind to the local symbol. That is, the symbol
451 cannot be overridden by another module.
452
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000453.. _namedtypes:
454
Nico Rieck7157bb72014-01-14 15:22:47 +0000455DLL Storage Classes
456-------------------
457
458All Global Variables, Functions and Aliases can have one of the following
459DLL storage class:
460
461``dllimport``
462 "``dllimport``" causes the compiler to reference a function or variable via
463 a global pointer to a pointer that is set up by the DLL exporting the
464 symbol. On Microsoft Windows targets, the pointer name is formed by
465 combining ``__imp_`` and the function or variable name.
466``dllexport``
467 "``dllexport``" causes the compiler to provide a global pointer to a pointer
468 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
469 Microsoft Windows targets, the pointer name is formed by combining
470 ``__imp_`` and the function or variable name. Since this storage class
471 exists for defining a dll interface, the compiler, assembler and linker know
472 it is externally referenced and must refrain from deleting the symbol.
473
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000474Structure Types
475---------------
Sean Silvab084af42012-12-07 10:36:55 +0000476
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000477LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
478types <t_struct>`. Literal types are uniqued structurally, but identified types
479are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
480to forward declare a type which is not yet available.
481
482An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000483
484.. code-block:: llvm
485
486 %mytype = type { %mytype*, i32 }
487
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000488Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
489literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000490
491.. _globalvars:
492
493Global Variables
494----------------
495
496Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000497instead of run-time.
498
499Global variables definitions must be initialized, may have an explicit section
500to be placed in, and may have an optional explicit alignment specified.
501
502Global variables in other translation units can also be declared, in which
503case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000504
505A variable may be defined as ``thread_local``, which means that it will
506not be shared by threads (each thread will have a separated copy of the
507variable). Not all targets support thread-local variables. Optionally, a
508TLS model may be specified:
509
510``localdynamic``
511 For variables that are only used within the current shared library.
512``initialexec``
513 For variables in modules that will not be loaded dynamically.
514``localexec``
515 For variables defined in the executable and only used within it.
516
517The models correspond to the ELF TLS models; see `ELF Handling For
518Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
519more information on under which circumstances the different models may
520be used. The target may choose a different TLS model if the specified
521model is not supported, or if a better choice of model can be made.
522
Michael Gottesman006039c2013-01-31 05:48:48 +0000523A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000524the contents of the variable will **never** be modified (enabling better
525optimization, allowing the global data to be placed in the read-only
526section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000527initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000528variable.
529
530LLVM explicitly allows *declarations* of global variables to be marked
531constant, even if the final definition of the global is not. This
532capability can be used to enable slightly better optimization of the
533program, but requires the language definition to guarantee that
534optimizations based on the 'constantness' are valid for the translation
535units that do not include the definition.
536
537As SSA values, global variables define pointer values that are in scope
538(i.e. they dominate) all basic blocks in the program. Global variables
539always define a pointer to their "content" type because they describe a
540region of memory, and all memory objects in LLVM are accessed through
541pointers.
542
543Global variables can be marked with ``unnamed_addr`` which indicates
544that the address is not significant, only the content. Constants marked
545like this can be merged with other constants if they have the same
546initializer. Note that a constant with significant address *can* be
547merged with a ``unnamed_addr`` constant, the result being a constant
548whose address is significant.
549
550A global variable may be declared to reside in a target-specific
551numbered address space. For targets that support them, address spaces
552may affect how optimizations are performed and/or what target
553instructions are used to access the variable. The default address space
554is zero. The address space qualifier must precede any other attributes.
555
556LLVM allows an explicit section to be specified for globals. If the
557target supports it, it will emit globals to the section specified.
558
Michael Gottesmane743a302013-02-04 03:22:00 +0000559By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000560variables defined within the module are not modified from their
561initial values before the start of the global initializer. This is
562true even for variables potentially accessible from outside the
563module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000564``@llvm.used`` or dllexported variables. This assumption may be suppressed
565by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000566
Sean Silvab084af42012-12-07 10:36:55 +0000567An explicit alignment may be specified for a global, which must be a
568power of 2. If not present, or if the alignment is set to zero, the
569alignment of the global is set by the target to whatever it feels
570convenient. If an explicit alignment is specified, the global is forced
571to have exactly that alignment. Targets and optimizers are not allowed
572to over-align the global if the global has an assigned section. In this
573case, the extra alignment could be observable: for example, code could
574assume that the globals are densely packed in their section and try to
575iterate over them as an array, alignment padding would break this
576iteration.
577
Nico Rieck7157bb72014-01-14 15:22:47 +0000578Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
579
580Syntax::
581
582 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
583 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
584 <global | constant> <Type>
585 [, section "name"] [, align <Alignment>]
586
Sean Silvab084af42012-12-07 10:36:55 +0000587For example, the following defines a global in a numbered address space
588with an initializer, section, and alignment:
589
590.. code-block:: llvm
591
592 @G = addrspace(5) constant float 1.0, section "foo", align 4
593
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000594The following example just declares a global variable
595
596.. code-block:: llvm
597
598 @G = external global i32
599
Sean Silvab084af42012-12-07 10:36:55 +0000600The following example defines a thread-local global with the
601``initialexec`` TLS model:
602
603.. code-block:: llvm
604
605 @G = thread_local(initialexec) global i32 0, align 4
606
607.. _functionstructure:
608
609Functions
610---------
611
612LLVM function definitions consist of the "``define``" keyword, an
613optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000614style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
615an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000616an optional ``unnamed_addr`` attribute, a return type, an optional
617:ref:`parameter attribute <paramattrs>` for the return type, a function
618name, a (possibly empty) argument list (each with optional :ref:`parameter
619attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
620an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000621collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
622curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000623
624LLVM function declarations consist of the "``declare``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000630name, a possibly empty list of arguments, an optional alignment, an optional
631:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000632
Bill Wendling6822ecb2013-10-27 05:09:12 +0000633A function definition contains a list of basic blocks, forming the CFG (Control
634Flow Graph) for the function. Each basic block may optionally start with a label
635(giving the basic block a symbol table entry), contains a list of instructions,
636and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
637function return). If an explicit label is not provided, a block is assigned an
638implicit numbered label, using the next value from the same counter as used for
639unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
640entry block does not have an explicit label, it will be assigned label "%0",
641then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000642
643The first basic block in a function is special in two ways: it is
644immediately executed on entrance to the function, and it is not allowed
645to have predecessor basic blocks (i.e. there can not be any branches to
646the entry block of a function). Because the block can have no
647predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
648
649LLVM allows an explicit section to be specified for functions. If the
650target supports it, it will emit functions to the section specified.
651
652An explicit alignment may be specified for a function. If not present,
653or if the alignment is set to zero, the alignment of the function is set
654by the target to whatever it feels convenient. If an explicit alignment
655is specified, the function is forced to have at least that much
656alignment. All alignments must be a power of 2.
657
658If the ``unnamed_addr`` attribute is given, the address is know to not
659be significant and two identical functions can be merged.
660
661Syntax::
662
Nico Rieck7157bb72014-01-14 15:22:47 +0000663 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000664 [cconv] [ret attrs]
665 <ResultType> @<FunctionName> ([argument list])
666 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000667 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000668
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000669.. _langref_aliases:
670
Sean Silvab084af42012-12-07 10:36:55 +0000671Aliases
672-------
673
674Aliases act as "second name" for the aliasee value (which can be either
675function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000676Aliases may have an optional :ref:`linkage type <linkage>`, an optional
677:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
678<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000683
Rafael Espindola65785492013-10-07 13:57:59 +0000684The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000685``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000686``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000687might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000688alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000689
Sean Silvab084af42012-12-07 10:36:55 +0000690.. _namedmetadatastructure:
691
692Named Metadata
693--------------
694
695Named metadata is a collection of metadata. :ref:`Metadata
696nodes <metadata>` (but not metadata strings) are the only valid
697operands for a named metadata.
698
699Syntax::
700
701 ; Some unnamed metadata nodes, which are referenced by the named metadata.
702 !0 = metadata !{metadata !"zero"}
703 !1 = metadata !{metadata !"one"}
704 !2 = metadata !{metadata !"two"}
705 ; A named metadata.
706 !name = !{!0, !1, !2}
707
708.. _paramattrs:
709
710Parameter Attributes
711--------------------
712
713The return type and each parameter of a function type may have a set of
714*parameter attributes* associated with them. Parameter attributes are
715used to communicate additional information about the result or
716parameters of a function. Parameter attributes are considered to be part
717of the function, not of the function type, so functions with different
718parameter attributes can have the same function type.
719
720Parameter attributes are simple keywords that follow the type specified.
721If multiple parameter attributes are needed, they are space separated.
722For example:
723
724.. code-block:: llvm
725
726 declare i32 @printf(i8* noalias nocapture, ...)
727 declare i32 @atoi(i8 zeroext)
728 declare signext i8 @returns_signed_char()
729
730Note that any attributes for the function result (``nounwind``,
731``readonly``) come immediately after the argument list.
732
733Currently, only the following parameter attributes are defined:
734
735``zeroext``
736 This indicates to the code generator that the parameter or return
737 value should be zero-extended to the extent required by the target's
738 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
739 the caller (for a parameter) or the callee (for a return value).
740``signext``
741 This indicates to the code generator that the parameter or return
742 value should be sign-extended to the extent required by the target's
743 ABI (which is usually 32-bits) by the caller (for a parameter) or
744 the callee (for a return value).
745``inreg``
746 This indicates that this parameter or return value should be treated
747 in a special target-dependent fashion during while emitting code for
748 a function call or return (usually, by putting it in a register as
749 opposed to memory, though some targets use it to distinguish between
750 two different kinds of registers). Use of this attribute is
751 target-specific.
752``byval``
753 This indicates that the pointer parameter should really be passed by
754 value to the function. The attribute implies that a hidden copy of
755 the pointee is made between the caller and the callee, so the callee
756 is unable to modify the value in the caller. This attribute is only
757 valid on LLVM pointer arguments. It is generally used to pass
758 structs and arrays by value, but is also valid on pointers to
759 scalars. The copy is considered to belong to the caller not the
760 callee (for example, ``readonly`` functions should not write to
761 ``byval`` parameters). This is not a valid attribute for return
762 values.
763
764 The byval attribute also supports specifying an alignment with the
765 align attribute. It indicates the alignment of the stack slot to
766 form and the known alignment of the pointer specified to the call
767 site. If the alignment is not specified, then the code generator
768 makes a target-specific assumption.
769
Reid Klecknera534a382013-12-19 02:14:12 +0000770.. _attr_inalloca:
771
772``inalloca``
773
774.. Warning:: This feature is unstable and not fully implemented.
775
Reid Kleckner60d3a832014-01-16 22:59:24 +0000776 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000777 address of outgoing stack arguments. An ``inalloca`` argument must
778 be a pointer to stack memory produced by an ``alloca`` instruction.
779 The alloca, or argument allocation, must also be tagged with the
780 inalloca keyword. Only the past argument may have the ``inalloca``
781 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000782
Reid Kleckner436c42e2014-01-17 23:58:17 +0000783 An argument allocation may be used by a call at most once because
784 the call may deallocate it. The ``inalloca`` attribute cannot be
785 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000786 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
787 ``inalloca`` attribute also disables LLVM's implicit lowering of
788 large aggregate return values, which means that frontend authors
789 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000790
Reid Kleckner60d3a832014-01-16 22:59:24 +0000791 When the call site is reached, the argument allocation must have
792 been the most recent stack allocation that is still live, or the
793 results are undefined. It is possible to allocate additional stack
794 space after an argument allocation and before its call site, but it
795 must be cleared off with :ref:`llvm.stackrestore
796 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000797
798 See :doc:`InAlloca` for more information on how to use this
799 attribute.
800
Sean Silvab084af42012-12-07 10:36:55 +0000801``sret``
802 This indicates that the pointer parameter specifies the address of a
803 structure that is the return value of the function in the source
804 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000805 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000806 not to trap and to be properly aligned. This may only be applied to
807 the first parameter. This is not a valid attribute for return
808 values.
809``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000810 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000811 the argument or return value do not alias pointer values which are
812 not *based* on it, ignoring certain "irrelevant" dependencies. For a
813 call to the parent function, dependencies between memory references
814 from before or after the call and from those during the call are
815 "irrelevant" to the ``noalias`` keyword for the arguments and return
816 value used in that call. The caller shares the responsibility with
817 the callee for ensuring that these requirements are met. For further
818 details, please see the discussion of the NoAlias response in `alias
819 analysis <AliasAnalysis.html#MustMayNo>`_.
820
821 Note that this definition of ``noalias`` is intentionally similar
822 to the definition of ``restrict`` in C99 for function arguments,
823 though it is slightly weaker.
824
825 For function return values, C99's ``restrict`` is not meaningful,
826 while LLVM's ``noalias`` is.
827``nocapture``
828 This indicates that the callee does not make any copies of the
829 pointer that outlive the callee itself. This is not a valid
830 attribute for return values.
831
832.. _nest:
833
834``nest``
835 This indicates that the pointer parameter can be excised using the
836 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000837 attribute for return values and can only be applied to one parameter.
838
839``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000840 This indicates that the function always returns the argument as its return
841 value. This is an optimization hint to the code generator when generating
842 the caller, allowing tail call optimization and omission of register saves
843 and restores in some cases; it is not checked or enforced when generating
844 the callee. The parameter and the function return type must be valid
845 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
846 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000847
848.. _gc:
849
850Garbage Collector Names
851-----------------------
852
853Each function may specify a garbage collector name, which is simply a
854string:
855
856.. code-block:: llvm
857
858 define void @f() gc "name" { ... }
859
860The compiler declares the supported values of *name*. Specifying a
861collector which will cause the compiler to alter its output in order to
862support the named garbage collection algorithm.
863
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000864.. _prefixdata:
865
866Prefix Data
867-----------
868
869Prefix data is data associated with a function which the code generator
870will emit immediately before the function body. The purpose of this feature
871is to allow frontends to associate language-specific runtime metadata with
872specific functions and make it available through the function pointer while
873still allowing the function pointer to be called. To access the data for a
874given function, a program may bitcast the function pointer to a pointer to
875the constant's type. This implies that the IR symbol points to the start
876of the prefix data.
877
878To maintain the semantics of ordinary function calls, the prefix data must
879have a particular format. Specifically, it must begin with a sequence of
880bytes which decode to a sequence of machine instructions, valid for the
881module's target, which transfer control to the point immediately succeeding
882the prefix data, without performing any other visible action. This allows
883the inliner and other passes to reason about the semantics of the function
884definition without needing to reason about the prefix data. Obviously this
885makes the format of the prefix data highly target dependent.
886
Peter Collingbourne213358a2013-09-23 20:14:21 +0000887Prefix data is laid out as if it were an initializer for a global variable
888of the prefix data's type. No padding is automatically placed between the
889prefix data and the function body. If padding is required, it must be part
890of the prefix data.
891
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000892A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
893which encodes the ``nop`` instruction:
894
895.. code-block:: llvm
896
897 define void @f() prefix i8 144 { ... }
898
899Generally prefix data can be formed by encoding a relative branch instruction
900which skips the metadata, as in this example of valid prefix data for the
901x86_64 architecture, where the first two bytes encode ``jmp .+10``:
902
903.. code-block:: llvm
904
905 %0 = type <{ i8, i8, i8* }>
906
907 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
908
909A function may have prefix data but no body. This has similar semantics
910to the ``available_externally`` linkage in that the data may be used by the
911optimizers but will not be emitted in the object file.
912
Bill Wendling63b88192013-02-06 06:52:58 +0000913.. _attrgrp:
914
915Attribute Groups
916----------------
917
918Attribute groups are groups of attributes that are referenced by objects within
919the IR. They are important for keeping ``.ll`` files readable, because a lot of
920functions will use the same set of attributes. In the degenerative case of a
921``.ll`` file that corresponds to a single ``.c`` file, the single attribute
922group will capture the important command line flags used to build that file.
923
924An attribute group is a module-level object. To use an attribute group, an
925object references the attribute group's ID (e.g. ``#37``). An object may refer
926to more than one attribute group. In that situation, the attributes from the
927different groups are merged.
928
929Here is an example of attribute groups for a function that should always be
930inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
931
932.. code-block:: llvm
933
934 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000935 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000936
937 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000938 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000939
940 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
941 define void @f() #0 #1 { ... }
942
Sean Silvab084af42012-12-07 10:36:55 +0000943.. _fnattrs:
944
945Function Attributes
946-------------------
947
948Function attributes are set to communicate additional information about
949a function. Function attributes are considered to be part of the
950function, not of the function type, so functions with different function
951attributes can have the same function type.
952
953Function attributes are simple keywords that follow the type specified.
954If multiple attributes are needed, they are space separated. For
955example:
956
957.. code-block:: llvm
958
959 define void @f() noinline { ... }
960 define void @f() alwaysinline { ... }
961 define void @f() alwaysinline optsize { ... }
962 define void @f() optsize { ... }
963
Sean Silvab084af42012-12-07 10:36:55 +0000964``alignstack(<n>)``
965 This attribute indicates that, when emitting the prologue and
966 epilogue, the backend should forcibly align the stack pointer.
967 Specify the desired alignment, which must be a power of two, in
968 parentheses.
969``alwaysinline``
970 This attribute indicates that the inliner should attempt to inline
971 this function into callers whenever possible, ignoring any active
972 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000973``builtin``
974 This indicates that the callee function at a call site should be
975 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000976 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000977 direct calls to functions which are declared with the ``nobuiltin``
978 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000979``cold``
980 This attribute indicates that this function is rarely called. When
981 computing edge weights, basic blocks post-dominated by a cold
982 function call are also considered to be cold; and, thus, given low
983 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000984``inlinehint``
985 This attribute indicates that the source code contained a hint that
986 inlining this function is desirable (such as the "inline" keyword in
987 C/C++). It is just a hint; it imposes no requirements on the
988 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000989``minsize``
990 This attribute suggests that optimization passes and code generator
991 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000992 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000993 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000994``naked``
995 This attribute disables prologue / epilogue emission for the
996 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000997``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000998 This indicates that the callee function at a call site is not recognized as
999 a built-in function. LLVM will retain the original call and not replace it
1000 with equivalent code based on the semantics of the built-in function, unless
1001 the call site uses the ``builtin`` attribute. This is valid at call sites
1002 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001003``noduplicate``
1004 This attribute indicates that calls to the function cannot be
1005 duplicated. A call to a ``noduplicate`` function may be moved
1006 within its parent function, but may not be duplicated within
1007 its parent function.
1008
1009 A function containing a ``noduplicate`` call may still
1010 be an inlining candidate, provided that the call is not
1011 duplicated by inlining. That implies that the function has
1012 internal linkage and only has one call site, so the original
1013 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001014``noimplicitfloat``
1015 This attributes disables implicit floating point instructions.
1016``noinline``
1017 This attribute indicates that the inliner should never inline this
1018 function in any situation. This attribute may not be used together
1019 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001020``nonlazybind``
1021 This attribute suppresses lazy symbol binding for the function. This
1022 may make calls to the function faster, at the cost of extra program
1023 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001024``noredzone``
1025 This attribute indicates that the code generator should not use a
1026 red zone, even if the target-specific ABI normally permits it.
1027``noreturn``
1028 This function attribute indicates that the function never returns
1029 normally. This produces undefined behavior at runtime if the
1030 function ever does dynamically return.
1031``nounwind``
1032 This function attribute indicates that the function never returns
1033 with an unwind or exceptional control flow. If the function does
1034 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001035``optnone``
1036 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001037 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001038 exception of interprocedural optimization passes.
1039 This attribute cannot be used together with the ``alwaysinline``
1040 attribute; this attribute is also incompatible
1041 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001042
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001043 This attribute requires the ``noinline`` attribute to be specified on
1044 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001045 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001046 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001047``optsize``
1048 This attribute suggests that optimization passes and code generator
1049 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001050 and otherwise do optimizations specifically to reduce code size as
1051 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001052``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001053 On a function, this attribute indicates that the function computes its
1054 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001055 without dereferencing any pointer arguments or otherwise accessing
1056 any mutable state (e.g. memory, control registers, etc) visible to
1057 caller functions. It does not write through any pointer arguments
1058 (including ``byval`` arguments) and never changes any state visible
1059 to callers. This means that it cannot unwind exceptions by calling
1060 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001061
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001062 On an argument, this attribute indicates that the function does not
1063 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001064 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001065``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001066 On a function, this attribute indicates that the function does not write
1067 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001068 modify any state (e.g. memory, control registers, etc) visible to
1069 caller functions. It may dereference pointer arguments and read
1070 state that may be set in the caller. A readonly function always
1071 returns the same value (or unwinds an exception identically) when
1072 called with the same set of arguments and global state. It cannot
1073 unwind an exception by calling the ``C++`` exception throwing
1074 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001075
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001076 On an argument, this attribute indicates that the function does not write
1077 through this pointer argument, even though it may write to the memory that
1078 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001079``returns_twice``
1080 This attribute indicates that this function can return twice. The C
1081 ``setjmp`` is an example of such a function. The compiler disables
1082 some optimizations (like tail calls) in the caller of these
1083 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001084``sanitize_address``
1085 This attribute indicates that AddressSanitizer checks
1086 (dynamic address safety analysis) are enabled for this function.
1087``sanitize_memory``
1088 This attribute indicates that MemorySanitizer checks (dynamic detection
1089 of accesses to uninitialized memory) are enabled for this function.
1090``sanitize_thread``
1091 This attribute indicates that ThreadSanitizer checks
1092 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001093``ssp``
1094 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001095 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001096 placed on the stack before the local variables that's checked upon
1097 return from the function to see if it has been overwritten. A
1098 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001099 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001100
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001101 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1102 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1103 - Calls to alloca() with variable sizes or constant sizes greater than
1104 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001105
Josh Magee24c7f062014-02-01 01:36:16 +00001106 Variables that are identified as requiring a protector will be arranged
1107 on the stack such that they are adjacent to the stack protector guard.
1108
Sean Silvab084af42012-12-07 10:36:55 +00001109 If a function that has an ``ssp`` attribute is inlined into a
1110 function that doesn't have an ``ssp`` attribute, then the resulting
1111 function will have an ``ssp`` attribute.
1112``sspreq``
1113 This attribute indicates that the function should *always* emit a
1114 stack smashing protector. This overrides the ``ssp`` function
1115 attribute.
1116
Josh Magee24c7f062014-02-01 01:36:16 +00001117 Variables that are identified as requiring a protector will be arranged
1118 on the stack such that they are adjacent to the stack protector guard.
1119 The specific layout rules are:
1120
1121 #. Large arrays and structures containing large arrays
1122 (``>= ssp-buffer-size``) are closest to the stack protector.
1123 #. Small arrays and structures containing small arrays
1124 (``< ssp-buffer-size``) are 2nd closest to the protector.
1125 #. Variables that have had their address taken are 3rd closest to the
1126 protector.
1127
Sean Silvab084af42012-12-07 10:36:55 +00001128 If a function that has an ``sspreq`` attribute is inlined into a
1129 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001130 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1131 an ``sspreq`` attribute.
1132``sspstrong``
1133 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001134 protector. This attribute causes a strong heuristic to be used when
1135 determining if a function needs stack protectors. The strong heuristic
1136 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001137
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001138 - Arrays of any size and type
1139 - Aggregates containing an array of any size and type.
1140 - Calls to alloca().
1141 - Local variables that have had their address taken.
1142
Josh Magee24c7f062014-02-01 01:36:16 +00001143 Variables that are identified as requiring a protector will be arranged
1144 on the stack such that they are adjacent to the stack protector guard.
1145 The specific layout rules are:
1146
1147 #. Large arrays and structures containing large arrays
1148 (``>= ssp-buffer-size``) are closest to the stack protector.
1149 #. Small arrays and structures containing small arrays
1150 (``< ssp-buffer-size``) are 2nd closest to the protector.
1151 #. Variables that have had their address taken are 3rd closest to the
1152 protector.
1153
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001154 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001155
1156 If a function that has an ``sspstrong`` attribute is inlined into a
1157 function that doesn't have an ``sspstrong`` attribute, then the
1158 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001159``uwtable``
1160 This attribute indicates that the ABI being targeted requires that
1161 an unwind table entry be produce for this function even if we can
1162 show that no exceptions passes by it. This is normally the case for
1163 the ELF x86-64 abi, but it can be disabled for some compilation
1164 units.
Sean Silvab084af42012-12-07 10:36:55 +00001165
1166.. _moduleasm:
1167
1168Module-Level Inline Assembly
1169----------------------------
1170
1171Modules may contain "module-level inline asm" blocks, which corresponds
1172to the GCC "file scope inline asm" blocks. These blocks are internally
1173concatenated by LLVM and treated as a single unit, but may be separated
1174in the ``.ll`` file if desired. The syntax is very simple:
1175
1176.. code-block:: llvm
1177
1178 module asm "inline asm code goes here"
1179 module asm "more can go here"
1180
1181The strings can contain any character by escaping non-printable
1182characters. The escape sequence used is simply "\\xx" where "xx" is the
1183two digit hex code for the number.
1184
1185The inline asm code is simply printed to the machine code .s file when
1186assembly code is generated.
1187
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001188.. _langref_datalayout:
1189
Sean Silvab084af42012-12-07 10:36:55 +00001190Data Layout
1191-----------
1192
1193A module may specify a target specific data layout string that specifies
1194how data is to be laid out in memory. The syntax for the data layout is
1195simply:
1196
1197.. code-block:: llvm
1198
1199 target datalayout = "layout specification"
1200
1201The *layout specification* consists of a list of specifications
1202separated by the minus sign character ('-'). Each specification starts
1203with a letter and may include other information after the letter to
1204define some aspect of the data layout. The specifications accepted are
1205as follows:
1206
1207``E``
1208 Specifies that the target lays out data in big-endian form. That is,
1209 the bits with the most significance have the lowest address
1210 location.
1211``e``
1212 Specifies that the target lays out data in little-endian form. That
1213 is, the bits with the least significance have the lowest address
1214 location.
1215``S<size>``
1216 Specifies the natural alignment of the stack in bits. Alignment
1217 promotion of stack variables is limited to the natural stack
1218 alignment to avoid dynamic stack realignment. The stack alignment
1219 must be a multiple of 8-bits. If omitted, the natural stack
1220 alignment defaults to "unspecified", which does not prevent any
1221 alignment promotions.
1222``p[n]:<size>:<abi>:<pref>``
1223 This specifies the *size* of a pointer and its ``<abi>`` and
1224 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001225 bits. The address space, ``n`` is optional, and if not specified,
1226 denotes the default address space 0. The value of ``n`` must be
1227 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001228``i<size>:<abi>:<pref>``
1229 This specifies the alignment for an integer type of a given bit
1230 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1231``v<size>:<abi>:<pref>``
1232 This specifies the alignment for a vector type of a given bit
1233 ``<size>``.
1234``f<size>:<abi>:<pref>``
1235 This specifies the alignment for a floating point type of a given bit
1236 ``<size>``. Only values of ``<size>`` that are supported by the target
1237 will work. 32 (float) and 64 (double) are supported on all targets; 80
1238 or 128 (different flavors of long double) are also supported on some
1239 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001240``a:<abi>:<pref>``
1241 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001242``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001243 If present, specifies that llvm names are mangled in the output. The
1244 options are
1245
1246 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1247 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1248 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1249 symbols get a ``_`` prefix.
1250 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1251 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001252``n<size1>:<size2>:<size3>...``
1253 This specifies a set of native integer widths for the target CPU in
1254 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1255 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1256 this set are considered to support most general arithmetic operations
1257 efficiently.
1258
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001259On every specification that takes a ``<abi>:<pref>``, specifying the
1260``<pref>`` alignment is optional. If omitted, the preceding ``:``
1261should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1262
Sean Silvab084af42012-12-07 10:36:55 +00001263When constructing the data layout for a given target, LLVM starts with a
1264default set of specifications which are then (possibly) overridden by
1265the specifications in the ``datalayout`` keyword. The default
1266specifications are given in this list:
1267
1268- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001269- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1270- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1271 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001272- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001273- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1274- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1275- ``i16:16:16`` - i16 is 16-bit aligned
1276- ``i32:32:32`` - i32 is 32-bit aligned
1277- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1278 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001279- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001280- ``f32:32:32`` - float is 32-bit aligned
1281- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001282- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001283- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1284- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001285- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001286
1287When LLVM is determining the alignment for a given type, it uses the
1288following rules:
1289
1290#. If the type sought is an exact match for one of the specifications,
1291 that specification is used.
1292#. If no match is found, and the type sought is an integer type, then
1293 the smallest integer type that is larger than the bitwidth of the
1294 sought type is used. If none of the specifications are larger than
1295 the bitwidth then the largest integer type is used. For example,
1296 given the default specifications above, the i7 type will use the
1297 alignment of i8 (next largest) while both i65 and i256 will use the
1298 alignment of i64 (largest specified).
1299#. If no match is found, and the type sought is a vector type, then the
1300 largest vector type that is smaller than the sought vector type will
1301 be used as a fall back. This happens because <128 x double> can be
1302 implemented in terms of 64 <2 x double>, for example.
1303
1304The function of the data layout string may not be what you expect.
1305Notably, this is not a specification from the frontend of what alignment
1306the code generator should use.
1307
1308Instead, if specified, the target data layout is required to match what
1309the ultimate *code generator* expects. This string is used by the
1310mid-level optimizers to improve code, and this only works if it matches
1311what the ultimate code generator uses. If you would like to generate IR
1312that does not embed this target-specific detail into the IR, then you
1313don't have to specify the string. This will disable some optimizations
1314that require precise layout information, but this also prevents those
1315optimizations from introducing target specificity into the IR.
1316
Bill Wendling5cc90842013-10-18 23:41:25 +00001317.. _langref_triple:
1318
1319Target Triple
1320-------------
1321
1322A module may specify a target triple string that describes the target
1323host. The syntax for the target triple is simply:
1324
1325.. code-block:: llvm
1326
1327 target triple = "x86_64-apple-macosx10.7.0"
1328
1329The *target triple* string consists of a series of identifiers delimited
1330by the minus sign character ('-'). The canonical forms are:
1331
1332::
1333
1334 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1335 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1336
1337This information is passed along to the backend so that it generates
1338code for the proper architecture. It's possible to override this on the
1339command line with the ``-mtriple`` command line option.
1340
Sean Silvab084af42012-12-07 10:36:55 +00001341.. _pointeraliasing:
1342
1343Pointer Aliasing Rules
1344----------------------
1345
1346Any memory access must be done through a pointer value associated with
1347an address range of the memory access, otherwise the behavior is
1348undefined. Pointer values are associated with address ranges according
1349to the following rules:
1350
1351- A pointer value is associated with the addresses associated with any
1352 value it is *based* on.
1353- An address of a global variable is associated with the address range
1354 of the variable's storage.
1355- The result value of an allocation instruction is associated with the
1356 address range of the allocated storage.
1357- A null pointer in the default address-space is associated with no
1358 address.
1359- An integer constant other than zero or a pointer value returned from
1360 a function not defined within LLVM may be associated with address
1361 ranges allocated through mechanisms other than those provided by
1362 LLVM. Such ranges shall not overlap with any ranges of addresses
1363 allocated by mechanisms provided by LLVM.
1364
1365A pointer value is *based* on another pointer value according to the
1366following rules:
1367
1368- A pointer value formed from a ``getelementptr`` operation is *based*
1369 on the first operand of the ``getelementptr``.
1370- The result value of a ``bitcast`` is *based* on the operand of the
1371 ``bitcast``.
1372- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1373 values that contribute (directly or indirectly) to the computation of
1374 the pointer's value.
1375- The "*based* on" relationship is transitive.
1376
1377Note that this definition of *"based"* is intentionally similar to the
1378definition of *"based"* in C99, though it is slightly weaker.
1379
1380LLVM IR does not associate types with memory. The result type of a
1381``load`` merely indicates the size and alignment of the memory from
1382which to load, as well as the interpretation of the value. The first
1383operand type of a ``store`` similarly only indicates the size and
1384alignment of the store.
1385
1386Consequently, type-based alias analysis, aka TBAA, aka
1387``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1388:ref:`Metadata <metadata>` may be used to encode additional information
1389which specialized optimization passes may use to implement type-based
1390alias analysis.
1391
1392.. _volatile:
1393
1394Volatile Memory Accesses
1395------------------------
1396
1397Certain memory accesses, such as :ref:`load <i_load>`'s,
1398:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1399marked ``volatile``. The optimizers must not change the number of
1400volatile operations or change their order of execution relative to other
1401volatile operations. The optimizers *may* change the order of volatile
1402operations relative to non-volatile operations. This is not Java's
1403"volatile" and has no cross-thread synchronization behavior.
1404
Andrew Trick89fc5a62013-01-30 21:19:35 +00001405IR-level volatile loads and stores cannot safely be optimized into
1406llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1407flagged volatile. Likewise, the backend should never split or merge
1408target-legal volatile load/store instructions.
1409
Andrew Trick7e6f9282013-01-31 00:49:39 +00001410.. admonition:: Rationale
1411
1412 Platforms may rely on volatile loads and stores of natively supported
1413 data width to be executed as single instruction. For example, in C
1414 this holds for an l-value of volatile primitive type with native
1415 hardware support, but not necessarily for aggregate types. The
1416 frontend upholds these expectations, which are intentionally
1417 unspecified in the IR. The rules above ensure that IR transformation
1418 do not violate the frontend's contract with the language.
1419
Sean Silvab084af42012-12-07 10:36:55 +00001420.. _memmodel:
1421
1422Memory Model for Concurrent Operations
1423--------------------------------------
1424
1425The LLVM IR does not define any way to start parallel threads of
1426execution or to register signal handlers. Nonetheless, there are
1427platform-specific ways to create them, and we define LLVM IR's behavior
1428in their presence. This model is inspired by the C++0x memory model.
1429
1430For a more informal introduction to this model, see the :doc:`Atomics`.
1431
1432We define a *happens-before* partial order as the least partial order
1433that
1434
1435- Is a superset of single-thread program order, and
1436- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1437 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1438 techniques, like pthread locks, thread creation, thread joining,
1439 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1440 Constraints <ordering>`).
1441
1442Note that program order does not introduce *happens-before* edges
1443between a thread and signals executing inside that thread.
1444
1445Every (defined) read operation (load instructions, memcpy, atomic
1446loads/read-modify-writes, etc.) R reads a series of bytes written by
1447(defined) write operations (store instructions, atomic
1448stores/read-modify-writes, memcpy, etc.). For the purposes of this
1449section, initialized globals are considered to have a write of the
1450initializer which is atomic and happens before any other read or write
1451of the memory in question. For each byte of a read R, R\ :sub:`byte`
1452may see any write to the same byte, except:
1453
1454- If write\ :sub:`1` happens before write\ :sub:`2`, and
1455 write\ :sub:`2` happens before R\ :sub:`byte`, then
1456 R\ :sub:`byte` does not see write\ :sub:`1`.
1457- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1458 R\ :sub:`byte` does not see write\ :sub:`3`.
1459
1460Given that definition, R\ :sub:`byte` is defined as follows:
1461
1462- If R is volatile, the result is target-dependent. (Volatile is
1463 supposed to give guarantees which can support ``sig_atomic_t`` in
1464 C/C++, and may be used for accesses to addresses which do not behave
1465 like normal memory. It does not generally provide cross-thread
1466 synchronization.)
1467- Otherwise, if there is no write to the same byte that happens before
1468 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1469- Otherwise, if R\ :sub:`byte` may see exactly one write,
1470 R\ :sub:`byte` returns the value written by that write.
1471- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1472 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1473 Memory Ordering Constraints <ordering>` section for additional
1474 constraints on how the choice is made.
1475- Otherwise R\ :sub:`byte` returns ``undef``.
1476
1477R returns the value composed of the series of bytes it read. This
1478implies that some bytes within the value may be ``undef`` **without**
1479the entire value being ``undef``. Note that this only defines the
1480semantics of the operation; it doesn't mean that targets will emit more
1481than one instruction to read the series of bytes.
1482
1483Note that in cases where none of the atomic intrinsics are used, this
1484model places only one restriction on IR transformations on top of what
1485is required for single-threaded execution: introducing a store to a byte
1486which might not otherwise be stored is not allowed in general.
1487(Specifically, in the case where another thread might write to and read
1488from an address, introducing a store can change a load that may see
1489exactly one write into a load that may see multiple writes.)
1490
1491.. _ordering:
1492
1493Atomic Memory Ordering Constraints
1494----------------------------------
1495
1496Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1497:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1498:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1499an ordering parameter that determines which other atomic instructions on
1500the same address they *synchronize with*. These semantics are borrowed
1501from Java and C++0x, but are somewhat more colloquial. If these
1502descriptions aren't precise enough, check those specs (see spec
1503references in the :doc:`atomics guide <Atomics>`).
1504:ref:`fence <i_fence>` instructions treat these orderings somewhat
1505differently since they don't take an address. See that instruction's
1506documentation for details.
1507
1508For a simpler introduction to the ordering constraints, see the
1509:doc:`Atomics`.
1510
1511``unordered``
1512 The set of values that can be read is governed by the happens-before
1513 partial order. A value cannot be read unless some operation wrote
1514 it. This is intended to provide a guarantee strong enough to model
1515 Java's non-volatile shared variables. This ordering cannot be
1516 specified for read-modify-write operations; it is not strong enough
1517 to make them atomic in any interesting way.
1518``monotonic``
1519 In addition to the guarantees of ``unordered``, there is a single
1520 total order for modifications by ``monotonic`` operations on each
1521 address. All modification orders must be compatible with the
1522 happens-before order. There is no guarantee that the modification
1523 orders can be combined to a global total order for the whole program
1524 (and this often will not be possible). The read in an atomic
1525 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1526 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1527 order immediately before the value it writes. If one atomic read
1528 happens before another atomic read of the same address, the later
1529 read must see the same value or a later value in the address's
1530 modification order. This disallows reordering of ``monotonic`` (or
1531 stronger) operations on the same address. If an address is written
1532 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1533 read that address repeatedly, the other threads must eventually see
1534 the write. This corresponds to the C++0x/C1x
1535 ``memory_order_relaxed``.
1536``acquire``
1537 In addition to the guarantees of ``monotonic``, a
1538 *synchronizes-with* edge may be formed with a ``release`` operation.
1539 This is intended to model C++'s ``memory_order_acquire``.
1540``release``
1541 In addition to the guarantees of ``monotonic``, if this operation
1542 writes a value which is subsequently read by an ``acquire``
1543 operation, it *synchronizes-with* that operation. (This isn't a
1544 complete description; see the C++0x definition of a release
1545 sequence.) This corresponds to the C++0x/C1x
1546 ``memory_order_release``.
1547``acq_rel`` (acquire+release)
1548 Acts as both an ``acquire`` and ``release`` operation on its
1549 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1550``seq_cst`` (sequentially consistent)
1551 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1552 operation which only reads, ``release`` for an operation which only
1553 writes), there is a global total order on all
1554 sequentially-consistent operations on all addresses, which is
1555 consistent with the *happens-before* partial order and with the
1556 modification orders of all the affected addresses. Each
1557 sequentially-consistent read sees the last preceding write to the
1558 same address in this global order. This corresponds to the C++0x/C1x
1559 ``memory_order_seq_cst`` and Java volatile.
1560
1561.. _singlethread:
1562
1563If an atomic operation is marked ``singlethread``, it only *synchronizes
1564with* or participates in modification and seq\_cst total orderings with
1565other operations running in the same thread (for example, in signal
1566handlers).
1567
1568.. _fastmath:
1569
1570Fast-Math Flags
1571---------------
1572
1573LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1574:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1575:ref:`frem <i_frem>`) have the following flags that can set to enable
1576otherwise unsafe floating point operations
1577
1578``nnan``
1579 No NaNs - Allow optimizations to assume the arguments and result are not
1580 NaN. Such optimizations are required to retain defined behavior over
1581 NaNs, but the value of the result is undefined.
1582
1583``ninf``
1584 No Infs - Allow optimizations to assume the arguments and result are not
1585 +/-Inf. Such optimizations are required to retain defined behavior over
1586 +/-Inf, but the value of the result is undefined.
1587
1588``nsz``
1589 No Signed Zeros - Allow optimizations to treat the sign of a zero
1590 argument or result as insignificant.
1591
1592``arcp``
1593 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1594 argument rather than perform division.
1595
1596``fast``
1597 Fast - Allow algebraically equivalent transformations that may
1598 dramatically change results in floating point (e.g. reassociate). This
1599 flag implies all the others.
1600
1601.. _typesystem:
1602
1603Type System
1604===========
1605
1606The LLVM type system is one of the most important features of the
1607intermediate representation. Being typed enables a number of
1608optimizations to be performed on the intermediate representation
1609directly, without having to do extra analyses on the side before the
1610transformation. A strong type system makes it easier to read the
1611generated code and enables novel analyses and transformations that are
1612not feasible to perform on normal three address code representations.
1613
Rafael Espindola08013342013-12-07 19:34:20 +00001614.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001615
Rafael Espindola08013342013-12-07 19:34:20 +00001616Void Type
1617---------
Sean Silvab084af42012-12-07 10:36:55 +00001618
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001619:Overview:
1620
Rafael Espindola08013342013-12-07 19:34:20 +00001621
1622The void type does not represent any value and has no size.
1623
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001624:Syntax:
1625
Rafael Espindola08013342013-12-07 19:34:20 +00001626
1627::
1628
1629 void
Sean Silvab084af42012-12-07 10:36:55 +00001630
1631
Rafael Espindola08013342013-12-07 19:34:20 +00001632.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001633
Rafael Espindola08013342013-12-07 19:34:20 +00001634Function Type
1635-------------
Sean Silvab084af42012-12-07 10:36:55 +00001636
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001637:Overview:
1638
Sean Silvab084af42012-12-07 10:36:55 +00001639
Rafael Espindola08013342013-12-07 19:34:20 +00001640The function type can be thought of as a function signature. It consists of a
1641return type and a list of formal parameter types. The return type of a function
1642type is a void type or first class type --- except for :ref:`label <t_label>`
1643and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001644
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001645:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001646
Rafael Espindola08013342013-12-07 19:34:20 +00001647::
Sean Silvab084af42012-12-07 10:36:55 +00001648
Rafael Espindola08013342013-12-07 19:34:20 +00001649 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001650
Rafael Espindola08013342013-12-07 19:34:20 +00001651...where '``<parameter list>``' is a comma-separated list of type
1652specifiers. Optionally, the parameter list may include a type ``...``, which
1653indicates that the function takes a variable number of arguments. Variable
1654argument functions can access their arguments with the :ref:`variable argument
1655handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1656except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001658:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001659
Rafael Espindola08013342013-12-07 19:34:20 +00001660+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1661| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1662+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1663| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1664+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1665| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1666+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1667| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1668+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1669
1670.. _t_firstclass:
1671
1672First Class Types
1673-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001674
1675The :ref:`first class <t_firstclass>` types are perhaps the most important.
1676Values of these types are the only ones which can be produced by
1677instructions.
1678
Rafael Espindola08013342013-12-07 19:34:20 +00001679.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001680
Rafael Espindola08013342013-12-07 19:34:20 +00001681Single Value Types
1682^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001683
Rafael Espindola08013342013-12-07 19:34:20 +00001684These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001685
1686.. _t_integer:
1687
1688Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001689""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001690
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001691:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001692
1693The integer type is a very simple type that simply specifies an
1694arbitrary bit width for the integer type desired. Any bit width from 1
1695bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1696
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001697:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001698
1699::
1700
1701 iN
1702
1703The number of bits the integer will occupy is specified by the ``N``
1704value.
1705
1706Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001707*********
Sean Silvab084af42012-12-07 10:36:55 +00001708
1709+----------------+------------------------------------------------+
1710| ``i1`` | a single-bit integer. |
1711+----------------+------------------------------------------------+
1712| ``i32`` | a 32-bit integer. |
1713+----------------+------------------------------------------------+
1714| ``i1942652`` | a really big integer of over 1 million bits. |
1715+----------------+------------------------------------------------+
1716
1717.. _t_floating:
1718
1719Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001720""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001721
1722.. list-table::
1723 :header-rows: 1
1724
1725 * - Type
1726 - Description
1727
1728 * - ``half``
1729 - 16-bit floating point value
1730
1731 * - ``float``
1732 - 32-bit floating point value
1733
1734 * - ``double``
1735 - 64-bit floating point value
1736
1737 * - ``fp128``
1738 - 128-bit floating point value (112-bit mantissa)
1739
1740 * - ``x86_fp80``
1741 - 80-bit floating point value (X87)
1742
1743 * - ``ppc_fp128``
1744 - 128-bit floating point value (two 64-bits)
1745
1746.. _t_x86mmx:
1747
1748X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001749"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001750
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001751:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001752
1753The x86mmx type represents a value held in an MMX register on an x86
1754machine. The operations allowed on it are quite limited: parameters and
1755return values, load and store, and bitcast. User-specified MMX
1756instructions are represented as intrinsic or asm calls with arguments
1757and/or results of this type. There are no arrays, vectors or constants
1758of this type.
1759
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001760:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001761
1762::
1763
1764 x86mmx
1765
Sean Silvab084af42012-12-07 10:36:55 +00001766
Rafael Espindola08013342013-12-07 19:34:20 +00001767.. _t_pointer:
1768
1769Pointer Type
1770""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001771
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001772:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001773
Rafael Espindola08013342013-12-07 19:34:20 +00001774The pointer type is used to specify memory locations. Pointers are
1775commonly used to reference objects in memory.
1776
1777Pointer types may have an optional address space attribute defining the
1778numbered address space where the pointed-to object resides. The default
1779address space is number zero. The semantics of non-zero address spaces
1780are target-specific.
1781
1782Note that LLVM does not permit pointers to void (``void*``) nor does it
1783permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001784
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001785:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001786
1787::
1788
Rafael Espindola08013342013-12-07 19:34:20 +00001789 <type> *
1790
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001791:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001792
1793+-------------------------+--------------------------------------------------------------------------------------------------------------+
1794| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1795+-------------------------+--------------------------------------------------------------------------------------------------------------+
1796| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1797+-------------------------+--------------------------------------------------------------------------------------------------------------+
1798| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1799+-------------------------+--------------------------------------------------------------------------------------------------------------+
1800
1801.. _t_vector:
1802
1803Vector Type
1804"""""""""""
1805
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001806:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001807
1808A vector type is a simple derived type that represents a vector of
1809elements. Vector types are used when multiple primitive data are
1810operated in parallel using a single instruction (SIMD). A vector type
1811requires a size (number of elements) and an underlying primitive data
1812type. Vector types are considered :ref:`first class <t_firstclass>`.
1813
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001814:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001815
1816::
1817
1818 < <# elements> x <elementtype> >
1819
1820The number of elements is a constant integer value larger than 0;
1821elementtype may be any integer or floating point type, or a pointer to
1822these types. Vectors of size zero are not allowed.
1823
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001824:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001825
1826+-------------------+--------------------------------------------------+
1827| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1828+-------------------+--------------------------------------------------+
1829| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1830+-------------------+--------------------------------------------------+
1831| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1832+-------------------+--------------------------------------------------+
1833| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1834+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001835
1836.. _t_label:
1837
1838Label Type
1839^^^^^^^^^^
1840
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001841:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843The label type represents code labels.
1844
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001845:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001846
1847::
1848
1849 label
1850
1851.. _t_metadata:
1852
1853Metadata Type
1854^^^^^^^^^^^^^
1855
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001856:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001857
1858The metadata type represents embedded metadata. No derived types may be
1859created from metadata except for :ref:`function <t_function>` arguments.
1860
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001861:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001862
1863::
1864
1865 metadata
1866
Sean Silvab084af42012-12-07 10:36:55 +00001867.. _t_aggregate:
1868
1869Aggregate Types
1870^^^^^^^^^^^^^^^
1871
1872Aggregate Types are a subset of derived types that can contain multiple
1873member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1874aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1875aggregate types.
1876
1877.. _t_array:
1878
1879Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001880""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001881
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001882:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001883
1884The array type is a very simple derived type that arranges elements
1885sequentially in memory. The array type requires a size (number of
1886elements) and an underlying data type.
1887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001889
1890::
1891
1892 [<# elements> x <elementtype>]
1893
1894The number of elements is a constant integer value; ``elementtype`` may
1895be any type with a size.
1896
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001897:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899+------------------+--------------------------------------+
1900| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1901+------------------+--------------------------------------+
1902| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1903+------------------+--------------------------------------+
1904| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1905+------------------+--------------------------------------+
1906
1907Here are some examples of multidimensional arrays:
1908
1909+-----------------------------+----------------------------------------------------------+
1910| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1911+-----------------------------+----------------------------------------------------------+
1912| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1913+-----------------------------+----------------------------------------------------------+
1914| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1915+-----------------------------+----------------------------------------------------------+
1916
1917There is no restriction on indexing beyond the end of the array implied
1918by a static type (though there are restrictions on indexing beyond the
1919bounds of an allocated object in some cases). This means that
1920single-dimension 'variable sized array' addressing can be implemented in
1921LLVM with a zero length array type. An implementation of 'pascal style
1922arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1923example.
1924
Sean Silvab084af42012-12-07 10:36:55 +00001925.. _t_struct:
1926
1927Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001928""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001929
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001930:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001931
1932The structure type is used to represent a collection of data members
1933together in memory. The elements of a structure may be any type that has
1934a size.
1935
1936Structures in memory are accessed using '``load``' and '``store``' by
1937getting a pointer to a field with the '``getelementptr``' instruction.
1938Structures in registers are accessed using the '``extractvalue``' and
1939'``insertvalue``' instructions.
1940
1941Structures may optionally be "packed" structures, which indicate that
1942the alignment of the struct is one byte, and that there is no padding
1943between the elements. In non-packed structs, padding between field types
1944is inserted as defined by the DataLayout string in the module, which is
1945required to match what the underlying code generator expects.
1946
1947Structures can either be "literal" or "identified". A literal structure
1948is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1949identified types are always defined at the top level with a name.
1950Literal types are uniqued by their contents and can never be recursive
1951or opaque since there is no way to write one. Identified types can be
1952recursive, can be opaqued, and are never uniqued.
1953
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001954:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001955
1956::
1957
1958 %T1 = type { <type list> } ; Identified normal struct type
1959 %T2 = type <{ <type list> }> ; Identified packed struct type
1960
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001961:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001962
1963+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1964| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1965+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001966| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001967+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1968| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1969+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1970
1971.. _t_opaque:
1972
1973Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001974""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001975
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001976:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001977
1978Opaque structure types are used to represent named structure types that
1979do not have a body specified. This corresponds (for example) to the C
1980notion of a forward declared structure.
1981
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001982:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984::
1985
1986 %X = type opaque
1987 %52 = type opaque
1988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991+--------------+-------------------+
1992| ``opaque`` | An opaque type. |
1993+--------------+-------------------+
1994
Sean Silvab084af42012-12-07 10:36:55 +00001995Constants
1996=========
1997
1998LLVM has several different basic types of constants. This section
1999describes them all and their syntax.
2000
2001Simple Constants
2002----------------
2003
2004**Boolean constants**
2005 The two strings '``true``' and '``false``' are both valid constants
2006 of the ``i1`` type.
2007**Integer constants**
2008 Standard integers (such as '4') are constants of the
2009 :ref:`integer <t_integer>` type. Negative numbers may be used with
2010 integer types.
2011**Floating point constants**
2012 Floating point constants use standard decimal notation (e.g.
2013 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2014 hexadecimal notation (see below). The assembler requires the exact
2015 decimal value of a floating-point constant. For example, the
2016 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2017 decimal in binary. Floating point constants must have a :ref:`floating
2018 point <t_floating>` type.
2019**Null pointer constants**
2020 The identifier '``null``' is recognized as a null pointer constant
2021 and must be of :ref:`pointer type <t_pointer>`.
2022
2023The one non-intuitive notation for constants is the hexadecimal form of
2024floating point constants. For example, the form
2025'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2026than) '``double 4.5e+15``'. The only time hexadecimal floating point
2027constants are required (and the only time that they are generated by the
2028disassembler) is when a floating point constant must be emitted but it
2029cannot be represented as a decimal floating point number in a reasonable
2030number of digits. For example, NaN's, infinities, and other special
2031values are represented in their IEEE hexadecimal format so that assembly
2032and disassembly do not cause any bits to change in the constants.
2033
2034When using the hexadecimal form, constants of types half, float, and
2035double are represented using the 16-digit form shown above (which
2036matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002037must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002038precision, respectively. Hexadecimal format is always used for long
2039double, and there are three forms of long double. The 80-bit format used
2040by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2041128-bit format used by PowerPC (two adjacent doubles) is represented by
2042``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002043represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2044will only work if they match the long double format on your target.
2045The IEEE 16-bit format (half precision) is represented by ``0xH``
2046followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2047(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002048
2049There are no constants of type x86mmx.
2050
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002051.. _complexconstants:
2052
Sean Silvab084af42012-12-07 10:36:55 +00002053Complex Constants
2054-----------------
2055
2056Complex constants are a (potentially recursive) combination of simple
2057constants and smaller complex constants.
2058
2059**Structure constants**
2060 Structure constants are represented with notation similar to
2061 structure type definitions (a comma separated list of elements,
2062 surrounded by braces (``{}``)). For example:
2063 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2064 "``@G = external global i32``". Structure constants must have
2065 :ref:`structure type <t_struct>`, and the number and types of elements
2066 must match those specified by the type.
2067**Array constants**
2068 Array constants are represented with notation similar to array type
2069 definitions (a comma separated list of elements, surrounded by
2070 square brackets (``[]``)). For example:
2071 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2072 :ref:`array type <t_array>`, and the number and types of elements must
2073 match those specified by the type.
2074**Vector constants**
2075 Vector constants are represented with notation similar to vector
2076 type definitions (a comma separated list of elements, surrounded by
2077 less-than/greater-than's (``<>``)). For example:
2078 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2079 must have :ref:`vector type <t_vector>`, and the number and types of
2080 elements must match those specified by the type.
2081**Zero initialization**
2082 The string '``zeroinitializer``' can be used to zero initialize a
2083 value to zero of *any* type, including scalar and
2084 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2085 having to print large zero initializers (e.g. for large arrays) and
2086 is always exactly equivalent to using explicit zero initializers.
2087**Metadata node**
2088 A metadata node is a structure-like constant with :ref:`metadata
2089 type <t_metadata>`. For example:
2090 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2091 constants that are meant to be interpreted as part of the
2092 instruction stream, metadata is a place to attach additional
2093 information such as debug info.
2094
2095Global Variable and Function Addresses
2096--------------------------------------
2097
2098The addresses of :ref:`global variables <globalvars>` and
2099:ref:`functions <functionstructure>` are always implicitly valid
2100(link-time) constants. These constants are explicitly referenced when
2101the :ref:`identifier for the global <identifiers>` is used and always have
2102:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2103file:
2104
2105.. code-block:: llvm
2106
2107 @X = global i32 17
2108 @Y = global i32 42
2109 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2110
2111.. _undefvalues:
2112
2113Undefined Values
2114----------------
2115
2116The string '``undef``' can be used anywhere a constant is expected, and
2117indicates that the user of the value may receive an unspecified
2118bit-pattern. Undefined values may be of any type (other than '``label``'
2119or '``void``') and be used anywhere a constant is permitted.
2120
2121Undefined values are useful because they indicate to the compiler that
2122the program is well defined no matter what value is used. This gives the
2123compiler more freedom to optimize. Here are some examples of
2124(potentially surprising) transformations that are valid (in pseudo IR):
2125
2126.. code-block:: llvm
2127
2128 %A = add %X, undef
2129 %B = sub %X, undef
2130 %C = xor %X, undef
2131 Safe:
2132 %A = undef
2133 %B = undef
2134 %C = undef
2135
2136This is safe because all of the output bits are affected by the undef
2137bits. Any output bit can have a zero or one depending on the input bits.
2138
2139.. code-block:: llvm
2140
2141 %A = or %X, undef
2142 %B = and %X, undef
2143 Safe:
2144 %A = -1
2145 %B = 0
2146 Unsafe:
2147 %A = undef
2148 %B = undef
2149
2150These logical operations have bits that are not always affected by the
2151input. For example, if ``%X`` has a zero bit, then the output of the
2152'``and``' operation will always be a zero for that bit, no matter what
2153the corresponding bit from the '``undef``' is. As such, it is unsafe to
2154optimize or assume that the result of the '``and``' is '``undef``'.
2155However, it is safe to assume that all bits of the '``undef``' could be
21560, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2157all the bits of the '``undef``' operand to the '``or``' could be set,
2158allowing the '``or``' to be folded to -1.
2159
2160.. code-block:: llvm
2161
2162 %A = select undef, %X, %Y
2163 %B = select undef, 42, %Y
2164 %C = select %X, %Y, undef
2165 Safe:
2166 %A = %X (or %Y)
2167 %B = 42 (or %Y)
2168 %C = %Y
2169 Unsafe:
2170 %A = undef
2171 %B = undef
2172 %C = undef
2173
2174This set of examples shows that undefined '``select``' (and conditional
2175branch) conditions can go *either way*, but they have to come from one
2176of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2177both known to have a clear low bit, then ``%A`` would have to have a
2178cleared low bit. However, in the ``%C`` example, the optimizer is
2179allowed to assume that the '``undef``' operand could be the same as
2180``%Y``, allowing the whole '``select``' to be eliminated.
2181
2182.. code-block:: llvm
2183
2184 %A = xor undef, undef
2185
2186 %B = undef
2187 %C = xor %B, %B
2188
2189 %D = undef
2190 %E = icmp lt %D, 4
2191 %F = icmp gte %D, 4
2192
2193 Safe:
2194 %A = undef
2195 %B = undef
2196 %C = undef
2197 %D = undef
2198 %E = undef
2199 %F = undef
2200
2201This example points out that two '``undef``' operands are not
2202necessarily the same. This can be surprising to people (and also matches
2203C semantics) where they assume that "``X^X``" is always zero, even if
2204``X`` is undefined. This isn't true for a number of reasons, but the
2205short answer is that an '``undef``' "variable" can arbitrarily change
2206its value over its "live range". This is true because the variable
2207doesn't actually *have a live range*. Instead, the value is logically
2208read from arbitrary registers that happen to be around when needed, so
2209the value is not necessarily consistent over time. In fact, ``%A`` and
2210``%C`` need to have the same semantics or the core LLVM "replace all
2211uses with" concept would not hold.
2212
2213.. code-block:: llvm
2214
2215 %A = fdiv undef, %X
2216 %B = fdiv %X, undef
2217 Safe:
2218 %A = undef
2219 b: unreachable
2220
2221These examples show the crucial difference between an *undefined value*
2222and *undefined behavior*. An undefined value (like '``undef``') is
2223allowed to have an arbitrary bit-pattern. This means that the ``%A``
2224operation can be constant folded to '``undef``', because the '``undef``'
2225could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2226However, in the second example, we can make a more aggressive
2227assumption: because the ``undef`` is allowed to be an arbitrary value,
2228we are allowed to assume that it could be zero. Since a divide by zero
2229has *undefined behavior*, we are allowed to assume that the operation
2230does not execute at all. This allows us to delete the divide and all
2231code after it. Because the undefined operation "can't happen", the
2232optimizer can assume that it occurs in dead code.
2233
2234.. code-block:: llvm
2235
2236 a: store undef -> %X
2237 b: store %X -> undef
2238 Safe:
2239 a: <deleted>
2240 b: unreachable
2241
2242These examples reiterate the ``fdiv`` example: a store *of* an undefined
2243value can be assumed to not have any effect; we can assume that the
2244value is overwritten with bits that happen to match what was already
2245there. However, a store *to* an undefined location could clobber
2246arbitrary memory, therefore, it has undefined behavior.
2247
2248.. _poisonvalues:
2249
2250Poison Values
2251-------------
2252
2253Poison values are similar to :ref:`undef values <undefvalues>`, however
2254they also represent the fact that an instruction or constant expression
2255which cannot evoke side effects has nevertheless detected a condition
2256which results in undefined behavior.
2257
2258There is currently no way of representing a poison value in the IR; they
2259only exist when produced by operations such as :ref:`add <i_add>` with
2260the ``nsw`` flag.
2261
2262Poison value behavior is defined in terms of value *dependence*:
2263
2264- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2265- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2266 their dynamic predecessor basic block.
2267- Function arguments depend on the corresponding actual argument values
2268 in the dynamic callers of their functions.
2269- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2270 instructions that dynamically transfer control back to them.
2271- :ref:`Invoke <i_invoke>` instructions depend on the
2272 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2273 call instructions that dynamically transfer control back to them.
2274- Non-volatile loads and stores depend on the most recent stores to all
2275 of the referenced memory addresses, following the order in the IR
2276 (including loads and stores implied by intrinsics such as
2277 :ref:`@llvm.memcpy <int_memcpy>`.)
2278- An instruction with externally visible side effects depends on the
2279 most recent preceding instruction with externally visible side
2280 effects, following the order in the IR. (This includes :ref:`volatile
2281 operations <volatile>`.)
2282- An instruction *control-depends* on a :ref:`terminator
2283 instruction <terminators>` if the terminator instruction has
2284 multiple successors and the instruction is always executed when
2285 control transfers to one of the successors, and may not be executed
2286 when control is transferred to another.
2287- Additionally, an instruction also *control-depends* on a terminator
2288 instruction if the set of instructions it otherwise depends on would
2289 be different if the terminator had transferred control to a different
2290 successor.
2291- Dependence is transitive.
2292
2293Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2294with the additional affect that any instruction which has a *dependence*
2295on a poison value has undefined behavior.
2296
2297Here are some examples:
2298
2299.. code-block:: llvm
2300
2301 entry:
2302 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2303 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2304 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2305 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2306
2307 store i32 %poison, i32* @g ; Poison value stored to memory.
2308 %poison2 = load i32* @g ; Poison value loaded back from memory.
2309
2310 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2311
2312 %narrowaddr = bitcast i32* @g to i16*
2313 %wideaddr = bitcast i32* @g to i64*
2314 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2315 %poison4 = load i64* %wideaddr ; Returns a poison value.
2316
2317 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2318 br i1 %cmp, label %true, label %end ; Branch to either destination.
2319
2320 true:
2321 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2322 ; it has undefined behavior.
2323 br label %end
2324
2325 end:
2326 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2327 ; Both edges into this PHI are
2328 ; control-dependent on %cmp, so this
2329 ; always results in a poison value.
2330
2331 store volatile i32 0, i32* @g ; This would depend on the store in %true
2332 ; if %cmp is true, or the store in %entry
2333 ; otherwise, so this is undefined behavior.
2334
2335 br i1 %cmp, label %second_true, label %second_end
2336 ; The same branch again, but this time the
2337 ; true block doesn't have side effects.
2338
2339 second_true:
2340 ; No side effects!
2341 ret void
2342
2343 second_end:
2344 store volatile i32 0, i32* @g ; This time, the instruction always depends
2345 ; on the store in %end. Also, it is
2346 ; control-equivalent to %end, so this is
2347 ; well-defined (ignoring earlier undefined
2348 ; behavior in this example).
2349
2350.. _blockaddress:
2351
2352Addresses of Basic Blocks
2353-------------------------
2354
2355``blockaddress(@function, %block)``
2356
2357The '``blockaddress``' constant computes the address of the specified
2358basic block in the specified function, and always has an ``i8*`` type.
2359Taking the address of the entry block is illegal.
2360
2361This value only has defined behavior when used as an operand to the
2362':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2363against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002364undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002365no label is equal to the null pointer. This may be passed around as an
2366opaque pointer sized value as long as the bits are not inspected. This
2367allows ``ptrtoint`` and arithmetic to be performed on these values so
2368long as the original value is reconstituted before the ``indirectbr``
2369instruction.
2370
2371Finally, some targets may provide defined semantics when using the value
2372as the operand to an inline assembly, but that is target specific.
2373
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002374.. _constantexprs:
2375
Sean Silvab084af42012-12-07 10:36:55 +00002376Constant Expressions
2377--------------------
2378
2379Constant expressions are used to allow expressions involving other
2380constants to be used as constants. Constant expressions may be of any
2381:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2382that does not have side effects (e.g. load and call are not supported).
2383The following is the syntax for constant expressions:
2384
2385``trunc (CST to TYPE)``
2386 Truncate a constant to another type. The bit size of CST must be
2387 larger than the bit size of TYPE. Both types must be integers.
2388``zext (CST to TYPE)``
2389 Zero extend a constant to another type. The bit size of CST must be
2390 smaller than the bit size of TYPE. Both types must be integers.
2391``sext (CST to TYPE)``
2392 Sign extend a constant to another type. The bit size of CST must be
2393 smaller than the bit size of TYPE. Both types must be integers.
2394``fptrunc (CST to TYPE)``
2395 Truncate a floating point constant to another floating point type.
2396 The size of CST must be larger than the size of TYPE. Both types
2397 must be floating point.
2398``fpext (CST to TYPE)``
2399 Floating point extend a constant to another type. The size of CST
2400 must be smaller or equal to the size of TYPE. Both types must be
2401 floating point.
2402``fptoui (CST to TYPE)``
2403 Convert a floating point constant to the corresponding unsigned
2404 integer constant. TYPE must be a scalar or vector integer type. CST
2405 must be of scalar or vector floating point type. Both CST and TYPE
2406 must be scalars, or vectors of the same number of elements. If the
2407 value won't fit in the integer type, the results are undefined.
2408``fptosi (CST to TYPE)``
2409 Convert a floating point constant to the corresponding signed
2410 integer constant. TYPE must be a scalar or vector integer type. CST
2411 must be of scalar or vector floating point type. Both CST and TYPE
2412 must be scalars, or vectors of the same number of elements. If the
2413 value won't fit in the integer type, the results are undefined.
2414``uitofp (CST to TYPE)``
2415 Convert an unsigned integer constant to the corresponding floating
2416 point constant. TYPE must be a scalar or vector floating point type.
2417 CST must be of scalar or vector integer type. Both CST and TYPE must
2418 be scalars, or vectors of the same number of elements. If the value
2419 won't fit in the floating point type, the results are undefined.
2420``sitofp (CST to TYPE)``
2421 Convert a signed integer constant to the corresponding floating
2422 point constant. TYPE must be a scalar or vector floating point type.
2423 CST must be of scalar or vector integer type. Both CST and TYPE must
2424 be scalars, or vectors of the same number of elements. If the value
2425 won't fit in the floating point type, the results are undefined.
2426``ptrtoint (CST to TYPE)``
2427 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002428 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002429 pointer type. The ``CST`` value is zero extended, truncated, or
2430 unchanged to make it fit in ``TYPE``.
2431``inttoptr (CST to TYPE)``
2432 Convert an integer constant to a pointer constant. TYPE must be a
2433 pointer type. CST must be of integer type. The CST value is zero
2434 extended, truncated, or unchanged to make it fit in a pointer size.
2435 This one is *really* dangerous!
2436``bitcast (CST to TYPE)``
2437 Convert a constant, CST, to another TYPE. The constraints of the
2438 operands are the same as those for the :ref:`bitcast
2439 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002440``addrspacecast (CST to TYPE)``
2441 Convert a constant pointer or constant vector of pointer, CST, to another
2442 TYPE in a different address space. The constraints of the operands are the
2443 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002444``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2445 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2446 constants. As with the :ref:`getelementptr <i_getelementptr>`
2447 instruction, the index list may have zero or more indexes, which are
2448 required to make sense for the type of "CSTPTR".
2449``select (COND, VAL1, VAL2)``
2450 Perform the :ref:`select operation <i_select>` on constants.
2451``icmp COND (VAL1, VAL2)``
2452 Performs the :ref:`icmp operation <i_icmp>` on constants.
2453``fcmp COND (VAL1, VAL2)``
2454 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2455``extractelement (VAL, IDX)``
2456 Perform the :ref:`extractelement operation <i_extractelement>` on
2457 constants.
2458``insertelement (VAL, ELT, IDX)``
2459 Perform the :ref:`insertelement operation <i_insertelement>` on
2460 constants.
2461``shufflevector (VEC1, VEC2, IDXMASK)``
2462 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2463 constants.
2464``extractvalue (VAL, IDX0, IDX1, ...)``
2465 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2466 constants. The index list is interpreted in a similar manner as
2467 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2468 least one index value must be specified.
2469``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2470 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2471 The index list is interpreted in a similar manner as indices in a
2472 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2473 value must be specified.
2474``OPCODE (LHS, RHS)``
2475 Perform the specified operation of the LHS and RHS constants. OPCODE
2476 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2477 binary <bitwiseops>` operations. The constraints on operands are
2478 the same as those for the corresponding instruction (e.g. no bitwise
2479 operations on floating point values are allowed).
2480
2481Other Values
2482============
2483
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002484.. _inlineasmexprs:
2485
Sean Silvab084af42012-12-07 10:36:55 +00002486Inline Assembler Expressions
2487----------------------------
2488
2489LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2490Inline Assembly <moduleasm>`) through the use of a special value. This
2491value represents the inline assembler as a string (containing the
2492instructions to emit), a list of operand constraints (stored as a
2493string), a flag that indicates whether or not the inline asm expression
2494has side effects, and a flag indicating whether the function containing
2495the asm needs to align its stack conservatively. An example inline
2496assembler expression is:
2497
2498.. code-block:: llvm
2499
2500 i32 (i32) asm "bswap $0", "=r,r"
2501
2502Inline assembler expressions may **only** be used as the callee operand
2503of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2504Thus, typically we have:
2505
2506.. code-block:: llvm
2507
2508 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2509
2510Inline asms with side effects not visible in the constraint list must be
2511marked as having side effects. This is done through the use of the
2512'``sideeffect``' keyword, like so:
2513
2514.. code-block:: llvm
2515
2516 call void asm sideeffect "eieio", ""()
2517
2518In some cases inline asms will contain code that will not work unless
2519the stack is aligned in some way, such as calls or SSE instructions on
2520x86, yet will not contain code that does that alignment within the asm.
2521The compiler should make conservative assumptions about what the asm
2522might contain and should generate its usual stack alignment code in the
2523prologue if the '``alignstack``' keyword is present:
2524
2525.. code-block:: llvm
2526
2527 call void asm alignstack "eieio", ""()
2528
2529Inline asms also support using non-standard assembly dialects. The
2530assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2531the inline asm is using the Intel dialect. Currently, ATT and Intel are
2532the only supported dialects. An example is:
2533
2534.. code-block:: llvm
2535
2536 call void asm inteldialect "eieio", ""()
2537
2538If multiple keywords appear the '``sideeffect``' keyword must come
2539first, the '``alignstack``' keyword second and the '``inteldialect``'
2540keyword last.
2541
2542Inline Asm Metadata
2543^^^^^^^^^^^^^^^^^^^
2544
2545The call instructions that wrap inline asm nodes may have a
2546"``!srcloc``" MDNode attached to it that contains a list of constant
2547integers. If present, the code generator will use the integer as the
2548location cookie value when report errors through the ``LLVMContext``
2549error reporting mechanisms. This allows a front-end to correlate backend
2550errors that occur with inline asm back to the source code that produced
2551it. For example:
2552
2553.. code-block:: llvm
2554
2555 call void asm sideeffect "something bad", ""(), !srcloc !42
2556 ...
2557 !42 = !{ i32 1234567 }
2558
2559It is up to the front-end to make sense of the magic numbers it places
2560in the IR. If the MDNode contains multiple constants, the code generator
2561will use the one that corresponds to the line of the asm that the error
2562occurs on.
2563
2564.. _metadata:
2565
2566Metadata Nodes and Metadata Strings
2567-----------------------------------
2568
2569LLVM IR allows metadata to be attached to instructions in the program
2570that can convey extra information about the code to the optimizers and
2571code generator. One example application of metadata is source-level
2572debug information. There are two metadata primitives: strings and nodes.
2573All metadata has the ``metadata`` type and is identified in syntax by a
2574preceding exclamation point ('``!``').
2575
2576A metadata string is a string surrounded by double quotes. It can
2577contain any character by escaping non-printable characters with
2578"``\xx``" where "``xx``" is the two digit hex code. For example:
2579"``!"test\00"``".
2580
2581Metadata nodes are represented with notation similar to structure
2582constants (a comma separated list of elements, surrounded by braces and
2583preceded by an exclamation point). Metadata nodes can have any values as
2584their operand. For example:
2585
2586.. code-block:: llvm
2587
2588 !{ metadata !"test\00", i32 10}
2589
2590A :ref:`named metadata <namedmetadatastructure>` is a collection of
2591metadata nodes, which can be looked up in the module symbol table. For
2592example:
2593
2594.. code-block:: llvm
2595
2596 !foo = metadata !{!4, !3}
2597
2598Metadata can be used as function arguments. Here ``llvm.dbg.value``
2599function is using two metadata arguments:
2600
2601.. code-block:: llvm
2602
2603 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2604
2605Metadata can be attached with an instruction. Here metadata ``!21`` is
2606attached to the ``add`` instruction using the ``!dbg`` identifier:
2607
2608.. code-block:: llvm
2609
2610 %indvar.next = add i64 %indvar, 1, !dbg !21
2611
2612More information about specific metadata nodes recognized by the
2613optimizers and code generator is found below.
2614
2615'``tbaa``' Metadata
2616^^^^^^^^^^^^^^^^^^^
2617
2618In LLVM IR, memory does not have types, so LLVM's own type system is not
2619suitable for doing TBAA. Instead, metadata is added to the IR to
2620describe a type system of a higher level language. This can be used to
2621implement typical C/C++ TBAA, but it can also be used to implement
2622custom alias analysis behavior for other languages.
2623
2624The current metadata format is very simple. TBAA metadata nodes have up
2625to three fields, e.g.:
2626
2627.. code-block:: llvm
2628
2629 !0 = metadata !{ metadata !"an example type tree" }
2630 !1 = metadata !{ metadata !"int", metadata !0 }
2631 !2 = metadata !{ metadata !"float", metadata !0 }
2632 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2633
2634The first field is an identity field. It can be any value, usually a
2635metadata string, which uniquely identifies the type. The most important
2636name in the tree is the name of the root node. Two trees with different
2637root node names are entirely disjoint, even if they have leaves with
2638common names.
2639
2640The second field identifies the type's parent node in the tree, or is
2641null or omitted for a root node. A type is considered to alias all of
2642its descendants and all of its ancestors in the tree. Also, a type is
2643considered to alias all types in other trees, so that bitcode produced
2644from multiple front-ends is handled conservatively.
2645
2646If the third field is present, it's an integer which if equal to 1
2647indicates that the type is "constant" (meaning
2648``pointsToConstantMemory`` should return true; see `other useful
2649AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2650
2651'``tbaa.struct``' Metadata
2652^^^^^^^^^^^^^^^^^^^^^^^^^^
2653
2654The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2655aggregate assignment operations in C and similar languages, however it
2656is defined to copy a contiguous region of memory, which is more than
2657strictly necessary for aggregate types which contain holes due to
2658padding. Also, it doesn't contain any TBAA information about the fields
2659of the aggregate.
2660
2661``!tbaa.struct`` metadata can describe which memory subregions in a
2662memcpy are padding and what the TBAA tags of the struct are.
2663
2664The current metadata format is very simple. ``!tbaa.struct`` metadata
2665nodes are a list of operands which are in conceptual groups of three.
2666For each group of three, the first operand gives the byte offset of a
2667field in bytes, the second gives its size in bytes, and the third gives
2668its tbaa tag. e.g.:
2669
2670.. code-block:: llvm
2671
2672 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2673
2674This describes a struct with two fields. The first is at offset 0 bytes
2675with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2676and has size 4 bytes and has tbaa tag !2.
2677
2678Note that the fields need not be contiguous. In this example, there is a
26794 byte gap between the two fields. This gap represents padding which
2680does not carry useful data and need not be preserved.
2681
2682'``fpmath``' Metadata
2683^^^^^^^^^^^^^^^^^^^^^
2684
2685``fpmath`` metadata may be attached to any instruction of floating point
2686type. It can be used to express the maximum acceptable error in the
2687result of that instruction, in ULPs, thus potentially allowing the
2688compiler to use a more efficient but less accurate method of computing
2689it. ULP is defined as follows:
2690
2691 If ``x`` is a real number that lies between two finite consecutive
2692 floating-point numbers ``a`` and ``b``, without being equal to one
2693 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2694 distance between the two non-equal finite floating-point numbers
2695 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2696
2697The metadata node shall consist of a single positive floating point
2698number representing the maximum relative error, for example:
2699
2700.. code-block:: llvm
2701
2702 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2703
2704'``range``' Metadata
2705^^^^^^^^^^^^^^^^^^^^
2706
2707``range`` metadata may be attached only to loads of integer types. It
2708expresses the possible ranges the loaded value is in. The ranges are
2709represented with a flattened list of integers. The loaded value is known
2710to be in the union of the ranges defined by each consecutive pair. Each
2711pair has the following properties:
2712
2713- The type must match the type loaded by the instruction.
2714- The pair ``a,b`` represents the range ``[a,b)``.
2715- Both ``a`` and ``b`` are constants.
2716- The range is allowed to wrap.
2717- The range should not represent the full or empty set. That is,
2718 ``a!=b``.
2719
2720In addition, the pairs must be in signed order of the lower bound and
2721they must be non-contiguous.
2722
2723Examples:
2724
2725.. code-block:: llvm
2726
2727 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2728 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2729 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2730 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2731 ...
2732 !0 = metadata !{ i8 0, i8 2 }
2733 !1 = metadata !{ i8 255, i8 2 }
2734 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2735 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2736
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002737'``llvm.loop``'
2738^^^^^^^^^^^^^^^
2739
2740It is sometimes useful to attach information to loop constructs. Currently,
2741loop metadata is implemented as metadata attached to the branch instruction
2742in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002743guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002744specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002745
2746The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002747itself to avoid merging it with any other identifier metadata, e.g.,
2748during module linkage or function inlining. That is, each loop should refer
2749to their own identification metadata even if they reside in separate functions.
2750The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002751constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002752
2753.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002754
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002755 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002756 !1 = metadata !{ metadata !1 }
2757
Paul Redmond5fdf8362013-05-28 20:00:34 +00002758The loop identifier metadata can be used to specify additional per-loop
2759metadata. Any operands after the first operand can be treated as user-defined
2760metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2761by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002762
Paul Redmond5fdf8362013-05-28 20:00:34 +00002763.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002764
Paul Redmond5fdf8362013-05-28 20:00:34 +00002765 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2766 ...
2767 !0 = metadata !{ metadata !0, metadata !1 }
2768 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002769
2770'``llvm.mem``'
2771^^^^^^^^^^^^^^^
2772
2773Metadata types used to annotate memory accesses with information helpful
2774for optimizations are prefixed with ``llvm.mem``.
2775
2776'``llvm.mem.parallel_loop_access``' Metadata
2777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2778
2779For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002780the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002781also all of the memory accessing instructions in the loop body need to be
2782marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2783is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002784the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002785converted to sequential loops due to optimization passes that are unaware of
2786the parallel semantics and that insert new memory instructions to the loop
2787body.
2788
2789Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002790both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002791metadata types that refer to the same loop identifier metadata.
2792
2793.. code-block:: llvm
2794
2795 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002796 ...
2797 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2798 ...
2799 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2800 ...
2801 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002802
2803 for.end:
2804 ...
2805 !0 = metadata !{ metadata !0 }
2806
2807It is also possible to have nested parallel loops. In that case the
2808memory accesses refer to a list of loop identifier metadata nodes instead of
2809the loop identifier metadata node directly:
2810
2811.. code-block:: llvm
2812
2813 outer.for.body:
2814 ...
2815
2816 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002817 ...
2818 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2819 ...
2820 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2821 ...
2822 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002823
2824 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002825 ...
2826 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2827 ...
2828 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2829 ...
2830 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002831
2832 outer.for.end: ; preds = %for.body
2833 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002834 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2835 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2836 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002837
Paul Redmond5fdf8362013-05-28 20:00:34 +00002838'``llvm.vectorizer``'
2839^^^^^^^^^^^^^^^^^^^^^
2840
2841Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2842vectorization parameters such as vectorization factor and unroll factor.
2843
2844``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2845loop identification metadata.
2846
2847'``llvm.vectorizer.unroll``' Metadata
2848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2849
2850This metadata instructs the loop vectorizer to unroll the specified
2851loop exactly ``N`` times.
2852
2853The first operand is the string ``llvm.vectorizer.unroll`` and the second
2854operand is an integer specifying the unroll factor. For example:
2855
2856.. code-block:: llvm
2857
2858 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2859
2860Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2861loop.
2862
2863If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2864determined automatically.
2865
2866'``llvm.vectorizer.width``' Metadata
2867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2868
Paul Redmondeccbb322013-05-30 17:22:46 +00002869This metadata sets the target width of the vectorizer to ``N``. Without
2870this metadata, the vectorizer will choose a width automatically.
2871Regardless of this metadata, the vectorizer will only vectorize loops if
2872it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002873
2874The first operand is the string ``llvm.vectorizer.width`` and the second
2875operand is an integer specifying the width. For example:
2876
2877.. code-block:: llvm
2878
2879 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2880
2881Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2882loop.
2883
2884If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2885automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002886
Sean Silvab084af42012-12-07 10:36:55 +00002887Module Flags Metadata
2888=====================
2889
2890Information about the module as a whole is difficult to convey to LLVM's
2891subsystems. The LLVM IR isn't sufficient to transmit this information.
2892The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002893this. These flags are in the form of key / value pairs --- much like a
2894dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002895look it up.
2896
2897The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2898Each triplet has the following form:
2899
2900- The first element is a *behavior* flag, which specifies the behavior
2901 when two (or more) modules are merged together, and it encounters two
2902 (or more) metadata with the same ID. The supported behaviors are
2903 described below.
2904- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002905 metadata. Each module may only have one flag entry for each unique ID (not
2906 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002907- The third element is the value of the flag.
2908
2909When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002910``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2911each unique metadata ID string, there will be exactly one entry in the merged
2912modules ``llvm.module.flags`` metadata table, and the value for that entry will
2913be determined by the merge behavior flag, as described below. The only exception
2914is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002915
2916The following behaviors are supported:
2917
2918.. list-table::
2919 :header-rows: 1
2920 :widths: 10 90
2921
2922 * - Value
2923 - Behavior
2924
2925 * - 1
2926 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002927 Emits an error if two values disagree, otherwise the resulting value
2928 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002929
2930 * - 2
2931 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002932 Emits a warning if two values disagree. The result value will be the
2933 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002934
2935 * - 3
2936 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002937 Adds a requirement that another module flag be present and have a
2938 specified value after linking is performed. The value must be a
2939 metadata pair, where the first element of the pair is the ID of the
2940 module flag to be restricted, and the second element of the pair is
2941 the value the module flag should be restricted to. This behavior can
2942 be used to restrict the allowable results (via triggering of an
2943 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002944
2945 * - 4
2946 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002947 Uses the specified value, regardless of the behavior or value of the
2948 other module. If both modules specify **Override**, but the values
2949 differ, an error will be emitted.
2950
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002951 * - 5
2952 - **Append**
2953 Appends the two values, which are required to be metadata nodes.
2954
2955 * - 6
2956 - **AppendUnique**
2957 Appends the two values, which are required to be metadata
2958 nodes. However, duplicate entries in the second list are dropped
2959 during the append operation.
2960
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002961It is an error for a particular unique flag ID to have multiple behaviors,
2962except in the case of **Require** (which adds restrictions on another metadata
2963value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002964
2965An example of module flags:
2966
2967.. code-block:: llvm
2968
2969 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2970 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2971 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2972 !3 = metadata !{ i32 3, metadata !"qux",
2973 metadata !{
2974 metadata !"foo", i32 1
2975 }
2976 }
2977 !llvm.module.flags = !{ !0, !1, !2, !3 }
2978
2979- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2980 if two or more ``!"foo"`` flags are seen is to emit an error if their
2981 values are not equal.
2982
2983- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2984 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002985 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002986
2987- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2988 behavior if two or more ``!"qux"`` flags are seen is to emit a
2989 warning if their values are not equal.
2990
2991- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2992
2993 ::
2994
2995 metadata !{ metadata !"foo", i32 1 }
2996
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002997 The behavior is to emit an error if the ``llvm.module.flags`` does not
2998 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2999 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003000
3001Objective-C Garbage Collection Module Flags Metadata
3002----------------------------------------------------
3003
3004On the Mach-O platform, Objective-C stores metadata about garbage
3005collection in a special section called "image info". The metadata
3006consists of a version number and a bitmask specifying what types of
3007garbage collection are supported (if any) by the file. If two or more
3008modules are linked together their garbage collection metadata needs to
3009be merged rather than appended together.
3010
3011The Objective-C garbage collection module flags metadata consists of the
3012following key-value pairs:
3013
3014.. list-table::
3015 :header-rows: 1
3016 :widths: 30 70
3017
3018 * - Key
3019 - Value
3020
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003021 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003022 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003023
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003024 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003025 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003026 always 0.
3027
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003028 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003029 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003030 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3031 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3032 Objective-C ABI version 2.
3033
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003034 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003035 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003036 not. Valid values are 0, for no garbage collection, and 2, for garbage
3037 collection supported.
3038
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003039 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003040 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003041 If present, its value must be 6. This flag requires that the
3042 ``Objective-C Garbage Collection`` flag have the value 2.
3043
3044Some important flag interactions:
3045
3046- If a module with ``Objective-C Garbage Collection`` set to 0 is
3047 merged with a module with ``Objective-C Garbage Collection`` set to
3048 2, then the resulting module has the
3049 ``Objective-C Garbage Collection`` flag set to 0.
3050- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3051 merged with a module with ``Objective-C GC Only`` set to 6.
3052
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003053Automatic Linker Flags Module Flags Metadata
3054--------------------------------------------
3055
3056Some targets support embedding flags to the linker inside individual object
3057files. Typically this is used in conjunction with language extensions which
3058allow source files to explicitly declare the libraries they depend on, and have
3059these automatically be transmitted to the linker via object files.
3060
3061These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003062using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003063to be ``AppendUnique``, and the value for the key is expected to be a metadata
3064node which should be a list of other metadata nodes, each of which should be a
3065list of metadata strings defining linker options.
3066
3067For example, the following metadata section specifies two separate sets of
3068linker options, presumably to link against ``libz`` and the ``Cocoa``
3069framework::
3070
Michael Liaoa7699082013-03-06 18:24:34 +00003071 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003072 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003073 metadata !{ metadata !"-lz" },
3074 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003075 !llvm.module.flags = !{ !0 }
3076
3077The metadata encoding as lists of lists of options, as opposed to a collapsed
3078list of options, is chosen so that the IR encoding can use multiple option
3079strings to specify e.g., a single library, while still having that specifier be
3080preserved as an atomic element that can be recognized by a target specific
3081assembly writer or object file emitter.
3082
3083Each individual option is required to be either a valid option for the target's
3084linker, or an option that is reserved by the target specific assembly writer or
3085object file emitter. No other aspect of these options is defined by the IR.
3086
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003087.. _intrinsicglobalvariables:
3088
Sean Silvab084af42012-12-07 10:36:55 +00003089Intrinsic Global Variables
3090==========================
3091
3092LLVM has a number of "magic" global variables that contain data that
3093affect code generation or other IR semantics. These are documented here.
3094All globals of this sort should have a section specified as
3095"``llvm.metadata``". This section and all globals that start with
3096"``llvm.``" are reserved for use by LLVM.
3097
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003098.. _gv_llvmused:
3099
Sean Silvab084af42012-12-07 10:36:55 +00003100The '``llvm.used``' Global Variable
3101-----------------------------------
3102
Rafael Espindola74f2e462013-04-22 14:58:02 +00003103The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003104:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003105pointers to named global variables, functions and aliases which may optionally
3106have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003107use of it is:
3108
3109.. code-block:: llvm
3110
3111 @X = global i8 4
3112 @Y = global i32 123
3113
3114 @llvm.used = appending global [2 x i8*] [
3115 i8* @X,
3116 i8* bitcast (i32* @Y to i8*)
3117 ], section "llvm.metadata"
3118
Rafael Espindola74f2e462013-04-22 14:58:02 +00003119If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3120and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003121symbol that it cannot see (which is why they have to be named). For example, if
3122a variable has internal linkage and no references other than that from the
3123``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3124references from inline asms and other things the compiler cannot "see", and
3125corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003126
3127On some targets, the code generator must emit a directive to the
3128assembler or object file to prevent the assembler and linker from
3129molesting the symbol.
3130
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003131.. _gv_llvmcompilerused:
3132
Sean Silvab084af42012-12-07 10:36:55 +00003133The '``llvm.compiler.used``' Global Variable
3134--------------------------------------------
3135
3136The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3137directive, except that it only prevents the compiler from touching the
3138symbol. On targets that support it, this allows an intelligent linker to
3139optimize references to the symbol without being impeded as it would be
3140by ``@llvm.used``.
3141
3142This is a rare construct that should only be used in rare circumstances,
3143and should not be exposed to source languages.
3144
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003145.. _gv_llvmglobalctors:
3146
Sean Silvab084af42012-12-07 10:36:55 +00003147The '``llvm.global_ctors``' Global Variable
3148-------------------------------------------
3149
3150.. code-block:: llvm
3151
3152 %0 = type { i32, void ()* }
3153 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3154
3155The ``@llvm.global_ctors`` array contains a list of constructor
3156functions and associated priorities. The functions referenced by this
3157array will be called in ascending order of priority (i.e. lowest first)
3158when the module is loaded. The order of functions with the same priority
3159is not defined.
3160
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003161.. _llvmglobaldtors:
3162
Sean Silvab084af42012-12-07 10:36:55 +00003163The '``llvm.global_dtors``' Global Variable
3164-------------------------------------------
3165
3166.. code-block:: llvm
3167
3168 %0 = type { i32, void ()* }
3169 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3170
3171The ``@llvm.global_dtors`` array contains a list of destructor functions
3172and associated priorities. The functions referenced by this array will
3173be called in descending order of priority (i.e. highest first) when the
3174module is loaded. The order of functions with the same priority is not
3175defined.
3176
3177Instruction Reference
3178=====================
3179
3180The LLVM instruction set consists of several different classifications
3181of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3182instructions <binaryops>`, :ref:`bitwise binary
3183instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3184:ref:`other instructions <otherops>`.
3185
3186.. _terminators:
3187
3188Terminator Instructions
3189-----------------------
3190
3191As mentioned :ref:`previously <functionstructure>`, every basic block in a
3192program ends with a "Terminator" instruction, which indicates which
3193block should be executed after the current block is finished. These
3194terminator instructions typically yield a '``void``' value: they produce
3195control flow, not values (the one exception being the
3196':ref:`invoke <i_invoke>`' instruction).
3197
3198The terminator instructions are: ':ref:`ret <i_ret>`',
3199':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3200':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3201':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3202
3203.. _i_ret:
3204
3205'``ret``' Instruction
3206^^^^^^^^^^^^^^^^^^^^^
3207
3208Syntax:
3209"""""""
3210
3211::
3212
3213 ret <type> <value> ; Return a value from a non-void function
3214 ret void ; Return from void function
3215
3216Overview:
3217"""""""""
3218
3219The '``ret``' instruction is used to return control flow (and optionally
3220a value) from a function back to the caller.
3221
3222There are two forms of the '``ret``' instruction: one that returns a
3223value and then causes control flow, and one that just causes control
3224flow to occur.
3225
3226Arguments:
3227""""""""""
3228
3229The '``ret``' instruction optionally accepts a single argument, the
3230return value. The type of the return value must be a ':ref:`first
3231class <t_firstclass>`' type.
3232
3233A function is not :ref:`well formed <wellformed>` if it it has a non-void
3234return type and contains a '``ret``' instruction with no return value or
3235a return value with a type that does not match its type, or if it has a
3236void return type and contains a '``ret``' instruction with a return
3237value.
3238
3239Semantics:
3240""""""""""
3241
3242When the '``ret``' instruction is executed, control flow returns back to
3243the calling function's context. If the caller is a
3244":ref:`call <i_call>`" instruction, execution continues at the
3245instruction after the call. If the caller was an
3246":ref:`invoke <i_invoke>`" instruction, execution continues at the
3247beginning of the "normal" destination block. If the instruction returns
3248a value, that value shall set the call or invoke instruction's return
3249value.
3250
3251Example:
3252""""""""
3253
3254.. code-block:: llvm
3255
3256 ret i32 5 ; Return an integer value of 5
3257 ret void ; Return from a void function
3258 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3259
3260.. _i_br:
3261
3262'``br``' Instruction
3263^^^^^^^^^^^^^^^^^^^^
3264
3265Syntax:
3266"""""""
3267
3268::
3269
3270 br i1 <cond>, label <iftrue>, label <iffalse>
3271 br label <dest> ; Unconditional branch
3272
3273Overview:
3274"""""""""
3275
3276The '``br``' instruction is used to cause control flow to transfer to a
3277different basic block in the current function. There are two forms of
3278this instruction, corresponding to a conditional branch and an
3279unconditional branch.
3280
3281Arguments:
3282""""""""""
3283
3284The conditional branch form of the '``br``' instruction takes a single
3285'``i1``' value and two '``label``' values. The unconditional form of the
3286'``br``' instruction takes a single '``label``' value as a target.
3287
3288Semantics:
3289""""""""""
3290
3291Upon execution of a conditional '``br``' instruction, the '``i1``'
3292argument is evaluated. If the value is ``true``, control flows to the
3293'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3294to the '``iffalse``' ``label`` argument.
3295
3296Example:
3297""""""""
3298
3299.. code-block:: llvm
3300
3301 Test:
3302 %cond = icmp eq i32 %a, %b
3303 br i1 %cond, label %IfEqual, label %IfUnequal
3304 IfEqual:
3305 ret i32 1
3306 IfUnequal:
3307 ret i32 0
3308
3309.. _i_switch:
3310
3311'``switch``' Instruction
3312^^^^^^^^^^^^^^^^^^^^^^^^
3313
3314Syntax:
3315"""""""
3316
3317::
3318
3319 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3320
3321Overview:
3322"""""""""
3323
3324The '``switch``' instruction is used to transfer control flow to one of
3325several different places. It is a generalization of the '``br``'
3326instruction, allowing a branch to occur to one of many possible
3327destinations.
3328
3329Arguments:
3330""""""""""
3331
3332The '``switch``' instruction uses three parameters: an integer
3333comparison value '``value``', a default '``label``' destination, and an
3334array of pairs of comparison value constants and '``label``'s. The table
3335is not allowed to contain duplicate constant entries.
3336
3337Semantics:
3338""""""""""
3339
3340The ``switch`` instruction specifies a table of values and destinations.
3341When the '``switch``' instruction is executed, this table is searched
3342for the given value. If the value is found, control flow is transferred
3343to the corresponding destination; otherwise, control flow is transferred
3344to the default destination.
3345
3346Implementation:
3347"""""""""""""""
3348
3349Depending on properties of the target machine and the particular
3350``switch`` instruction, this instruction may be code generated in
3351different ways. For example, it could be generated as a series of
3352chained conditional branches or with a lookup table.
3353
3354Example:
3355""""""""
3356
3357.. code-block:: llvm
3358
3359 ; Emulate a conditional br instruction
3360 %Val = zext i1 %value to i32
3361 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3362
3363 ; Emulate an unconditional br instruction
3364 switch i32 0, label %dest [ ]
3365
3366 ; Implement a jump table:
3367 switch i32 %val, label %otherwise [ i32 0, label %onzero
3368 i32 1, label %onone
3369 i32 2, label %ontwo ]
3370
3371.. _i_indirectbr:
3372
3373'``indirectbr``' Instruction
3374^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3375
3376Syntax:
3377"""""""
3378
3379::
3380
3381 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3382
3383Overview:
3384"""""""""
3385
3386The '``indirectbr``' instruction implements an indirect branch to a
3387label within the current function, whose address is specified by
3388"``address``". Address must be derived from a
3389:ref:`blockaddress <blockaddress>` constant.
3390
3391Arguments:
3392""""""""""
3393
3394The '``address``' argument is the address of the label to jump to. The
3395rest of the arguments indicate the full set of possible destinations
3396that the address may point to. Blocks are allowed to occur multiple
3397times in the destination list, though this isn't particularly useful.
3398
3399This destination list is required so that dataflow analysis has an
3400accurate understanding of the CFG.
3401
3402Semantics:
3403""""""""""
3404
3405Control transfers to the block specified in the address argument. All
3406possible destination blocks must be listed in the label list, otherwise
3407this instruction has undefined behavior. This implies that jumps to
3408labels defined in other functions have undefined behavior as well.
3409
3410Implementation:
3411"""""""""""""""
3412
3413This is typically implemented with a jump through a register.
3414
3415Example:
3416""""""""
3417
3418.. code-block:: llvm
3419
3420 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3421
3422.. _i_invoke:
3423
3424'``invoke``' Instruction
3425^^^^^^^^^^^^^^^^^^^^^^^^
3426
3427Syntax:
3428"""""""
3429
3430::
3431
3432 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3433 to label <normal label> unwind label <exception label>
3434
3435Overview:
3436"""""""""
3437
3438The '``invoke``' instruction causes control to transfer to a specified
3439function, with the possibility of control flow transfer to either the
3440'``normal``' label or the '``exception``' label. If the callee function
3441returns with the "``ret``" instruction, control flow will return to the
3442"normal" label. If the callee (or any indirect callees) returns via the
3443":ref:`resume <i_resume>`" instruction or other exception handling
3444mechanism, control is interrupted and continued at the dynamically
3445nearest "exception" label.
3446
3447The '``exception``' label is a `landing
3448pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3449'``exception``' label is required to have the
3450":ref:`landingpad <i_landingpad>`" instruction, which contains the
3451information about the behavior of the program after unwinding happens,
3452as its first non-PHI instruction. The restrictions on the
3453"``landingpad``" instruction's tightly couples it to the "``invoke``"
3454instruction, so that the important information contained within the
3455"``landingpad``" instruction can't be lost through normal code motion.
3456
3457Arguments:
3458""""""""""
3459
3460This instruction requires several arguments:
3461
3462#. The optional "cconv" marker indicates which :ref:`calling
3463 convention <callingconv>` the call should use. If none is
3464 specified, the call defaults to using C calling conventions.
3465#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3466 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3467 are valid here.
3468#. '``ptr to function ty``': shall be the signature of the pointer to
3469 function value being invoked. In most cases, this is a direct
3470 function invocation, but indirect ``invoke``'s are just as possible,
3471 branching off an arbitrary pointer to function value.
3472#. '``function ptr val``': An LLVM value containing a pointer to a
3473 function to be invoked.
3474#. '``function args``': argument list whose types match the function
3475 signature argument types and parameter attributes. All arguments must
3476 be of :ref:`first class <t_firstclass>` type. If the function signature
3477 indicates the function accepts a variable number of arguments, the
3478 extra arguments can be specified.
3479#. '``normal label``': the label reached when the called function
3480 executes a '``ret``' instruction.
3481#. '``exception label``': the label reached when a callee returns via
3482 the :ref:`resume <i_resume>` instruction or other exception handling
3483 mechanism.
3484#. The optional :ref:`function attributes <fnattrs>` list. Only
3485 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3486 attributes are valid here.
3487
3488Semantics:
3489""""""""""
3490
3491This instruction is designed to operate as a standard '``call``'
3492instruction in most regards. The primary difference is that it
3493establishes an association with a label, which is used by the runtime
3494library to unwind the stack.
3495
3496This instruction is used in languages with destructors to ensure that
3497proper cleanup is performed in the case of either a ``longjmp`` or a
3498thrown exception. Additionally, this is important for implementation of
3499'``catch``' clauses in high-level languages that support them.
3500
3501For the purposes of the SSA form, the definition of the value returned
3502by the '``invoke``' instruction is deemed to occur on the edge from the
3503current block to the "normal" label. If the callee unwinds then no
3504return value is available.
3505
3506Example:
3507""""""""
3508
3509.. code-block:: llvm
3510
3511 %retval = invoke i32 @Test(i32 15) to label %Continue
3512 unwind label %TestCleanup ; {i32}:retval set
3513 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3514 unwind label %TestCleanup ; {i32}:retval set
3515
3516.. _i_resume:
3517
3518'``resume``' Instruction
3519^^^^^^^^^^^^^^^^^^^^^^^^
3520
3521Syntax:
3522"""""""
3523
3524::
3525
3526 resume <type> <value>
3527
3528Overview:
3529"""""""""
3530
3531The '``resume``' instruction is a terminator instruction that has no
3532successors.
3533
3534Arguments:
3535""""""""""
3536
3537The '``resume``' instruction requires one argument, which must have the
3538same type as the result of any '``landingpad``' instruction in the same
3539function.
3540
3541Semantics:
3542""""""""""
3543
3544The '``resume``' instruction resumes propagation of an existing
3545(in-flight) exception whose unwinding was interrupted with a
3546:ref:`landingpad <i_landingpad>` instruction.
3547
3548Example:
3549""""""""
3550
3551.. code-block:: llvm
3552
3553 resume { i8*, i32 } %exn
3554
3555.. _i_unreachable:
3556
3557'``unreachable``' Instruction
3558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3559
3560Syntax:
3561"""""""
3562
3563::
3564
3565 unreachable
3566
3567Overview:
3568"""""""""
3569
3570The '``unreachable``' instruction has no defined semantics. This
3571instruction is used to inform the optimizer that a particular portion of
3572the code is not reachable. This can be used to indicate that the code
3573after a no-return function cannot be reached, and other facts.
3574
3575Semantics:
3576""""""""""
3577
3578The '``unreachable``' instruction has no defined semantics.
3579
3580.. _binaryops:
3581
3582Binary Operations
3583-----------------
3584
3585Binary operators are used to do most of the computation in a program.
3586They require two operands of the same type, execute an operation on
3587them, and produce a single value. The operands might represent multiple
3588data, as is the case with the :ref:`vector <t_vector>` data type. The
3589result value has the same type as its operands.
3590
3591There are several different binary operators:
3592
3593.. _i_add:
3594
3595'``add``' Instruction
3596^^^^^^^^^^^^^^^^^^^^^
3597
3598Syntax:
3599"""""""
3600
3601::
3602
3603 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3604 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3605 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3606 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3607
3608Overview:
3609"""""""""
3610
3611The '``add``' instruction returns the sum of its two operands.
3612
3613Arguments:
3614""""""""""
3615
3616The two arguments to the '``add``' instruction must be
3617:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3618arguments must have identical types.
3619
3620Semantics:
3621""""""""""
3622
3623The value produced is the integer sum of the two operands.
3624
3625If the sum has unsigned overflow, the result returned is the
3626mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3627the result.
3628
3629Because LLVM integers use a two's complement representation, this
3630instruction is appropriate for both signed and unsigned integers.
3631
3632``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3633respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3634result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3635unsigned and/or signed overflow, respectively, occurs.
3636
3637Example:
3638""""""""
3639
3640.. code-block:: llvm
3641
3642 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3643
3644.. _i_fadd:
3645
3646'``fadd``' Instruction
3647^^^^^^^^^^^^^^^^^^^^^^
3648
3649Syntax:
3650"""""""
3651
3652::
3653
3654 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3655
3656Overview:
3657"""""""""
3658
3659The '``fadd``' instruction returns the sum of its two operands.
3660
3661Arguments:
3662""""""""""
3663
3664The two arguments to the '``fadd``' instruction must be :ref:`floating
3665point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3666Both arguments must have identical types.
3667
3668Semantics:
3669""""""""""
3670
3671The value produced is the floating point sum of the two operands. This
3672instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3673which are optimization hints to enable otherwise unsafe floating point
3674optimizations:
3675
3676Example:
3677""""""""
3678
3679.. code-block:: llvm
3680
3681 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3682
3683'``sub``' Instruction
3684^^^^^^^^^^^^^^^^^^^^^
3685
3686Syntax:
3687"""""""
3688
3689::
3690
3691 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3692 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3693 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3694 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3695
3696Overview:
3697"""""""""
3698
3699The '``sub``' instruction returns the difference of its two operands.
3700
3701Note that the '``sub``' instruction is used to represent the '``neg``'
3702instruction present in most other intermediate representations.
3703
3704Arguments:
3705""""""""""
3706
3707The two arguments to the '``sub``' instruction must be
3708:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3709arguments must have identical types.
3710
3711Semantics:
3712""""""""""
3713
3714The value produced is the integer difference of the two operands.
3715
3716If the difference has unsigned overflow, the result returned is the
3717mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3718the result.
3719
3720Because LLVM integers use a two's complement representation, this
3721instruction is appropriate for both signed and unsigned integers.
3722
3723``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3724respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3725result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3726unsigned and/or signed overflow, respectively, occurs.
3727
3728Example:
3729""""""""
3730
3731.. code-block:: llvm
3732
3733 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3734 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3735
3736.. _i_fsub:
3737
3738'``fsub``' Instruction
3739^^^^^^^^^^^^^^^^^^^^^^
3740
3741Syntax:
3742"""""""
3743
3744::
3745
3746 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3747
3748Overview:
3749"""""""""
3750
3751The '``fsub``' instruction returns the difference of its two operands.
3752
3753Note that the '``fsub``' instruction is used to represent the '``fneg``'
3754instruction present in most other intermediate representations.
3755
3756Arguments:
3757""""""""""
3758
3759The two arguments to the '``fsub``' instruction must be :ref:`floating
3760point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3761Both arguments must have identical types.
3762
3763Semantics:
3764""""""""""
3765
3766The value produced is the floating point difference of the two operands.
3767This instruction can also take any number of :ref:`fast-math
3768flags <fastmath>`, which are optimization hints to enable otherwise
3769unsafe floating point optimizations:
3770
3771Example:
3772""""""""
3773
3774.. code-block:: llvm
3775
3776 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3777 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3778
3779'``mul``' Instruction
3780^^^^^^^^^^^^^^^^^^^^^
3781
3782Syntax:
3783"""""""
3784
3785::
3786
3787 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3788 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3789 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3790 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3791
3792Overview:
3793"""""""""
3794
3795The '``mul``' instruction returns the product of its two operands.
3796
3797Arguments:
3798""""""""""
3799
3800The two arguments to the '``mul``' instruction must be
3801:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3802arguments must have identical types.
3803
3804Semantics:
3805""""""""""
3806
3807The value produced is the integer product of the two operands.
3808
3809If the result of the multiplication has unsigned overflow, the result
3810returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3811bit width of the result.
3812
3813Because LLVM integers use a two's complement representation, and the
3814result is the same width as the operands, this instruction returns the
3815correct result for both signed and unsigned integers. If a full product
3816(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3817sign-extended or zero-extended as appropriate to the width of the full
3818product.
3819
3820``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3821respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3822result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3823unsigned and/or signed overflow, respectively, occurs.
3824
3825Example:
3826""""""""
3827
3828.. code-block:: llvm
3829
3830 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3831
3832.. _i_fmul:
3833
3834'``fmul``' Instruction
3835^^^^^^^^^^^^^^^^^^^^^^
3836
3837Syntax:
3838"""""""
3839
3840::
3841
3842 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3843
3844Overview:
3845"""""""""
3846
3847The '``fmul``' instruction returns the product of its two operands.
3848
3849Arguments:
3850""""""""""
3851
3852The two arguments to the '``fmul``' instruction must be :ref:`floating
3853point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3854Both arguments must have identical types.
3855
3856Semantics:
3857""""""""""
3858
3859The value produced is the floating point product of the two operands.
3860This instruction can also take any number of :ref:`fast-math
3861flags <fastmath>`, which are optimization hints to enable otherwise
3862unsafe floating point optimizations:
3863
3864Example:
3865""""""""
3866
3867.. code-block:: llvm
3868
3869 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3870
3871'``udiv``' Instruction
3872^^^^^^^^^^^^^^^^^^^^^^
3873
3874Syntax:
3875"""""""
3876
3877::
3878
3879 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3880 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3881
3882Overview:
3883"""""""""
3884
3885The '``udiv``' instruction returns the quotient of its two operands.
3886
3887Arguments:
3888""""""""""
3889
3890The two arguments to the '``udiv``' instruction must be
3891:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3892arguments must have identical types.
3893
3894Semantics:
3895""""""""""
3896
3897The value produced is the unsigned integer quotient of the two operands.
3898
3899Note that unsigned integer division and signed integer division are
3900distinct operations; for signed integer division, use '``sdiv``'.
3901
3902Division by zero leads to undefined behavior.
3903
3904If the ``exact`` keyword is present, the result value of the ``udiv`` is
3905a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3906such, "((a udiv exact b) mul b) == a").
3907
3908Example:
3909""""""""
3910
3911.. code-block:: llvm
3912
3913 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3914
3915'``sdiv``' Instruction
3916^^^^^^^^^^^^^^^^^^^^^^
3917
3918Syntax:
3919"""""""
3920
3921::
3922
3923 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3924 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3925
3926Overview:
3927"""""""""
3928
3929The '``sdiv``' instruction returns the quotient of its two operands.
3930
3931Arguments:
3932""""""""""
3933
3934The two arguments to the '``sdiv``' instruction must be
3935:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3936arguments must have identical types.
3937
3938Semantics:
3939""""""""""
3940
3941The value produced is the signed integer quotient of the two operands
3942rounded towards zero.
3943
3944Note that signed integer division and unsigned integer division are
3945distinct operations; for unsigned integer division, use '``udiv``'.
3946
3947Division by zero leads to undefined behavior. Overflow also leads to
3948undefined behavior; this is a rare case, but can occur, for example, by
3949doing a 32-bit division of -2147483648 by -1.
3950
3951If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3952a :ref:`poison value <poisonvalues>` if the result would be rounded.
3953
3954Example:
3955""""""""
3956
3957.. code-block:: llvm
3958
3959 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3960
3961.. _i_fdiv:
3962
3963'``fdiv``' Instruction
3964^^^^^^^^^^^^^^^^^^^^^^
3965
3966Syntax:
3967"""""""
3968
3969::
3970
3971 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3972
3973Overview:
3974"""""""""
3975
3976The '``fdiv``' instruction returns the quotient of its two operands.
3977
3978Arguments:
3979""""""""""
3980
3981The two arguments to the '``fdiv``' instruction must be :ref:`floating
3982point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3983Both arguments must have identical types.
3984
3985Semantics:
3986""""""""""
3987
3988The value produced is the floating point quotient of the two operands.
3989This instruction can also take any number of :ref:`fast-math
3990flags <fastmath>`, which are optimization hints to enable otherwise
3991unsafe floating point optimizations:
3992
3993Example:
3994""""""""
3995
3996.. code-block:: llvm
3997
3998 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3999
4000'``urem``' Instruction
4001^^^^^^^^^^^^^^^^^^^^^^
4002
4003Syntax:
4004"""""""
4005
4006::
4007
4008 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4009
4010Overview:
4011"""""""""
4012
4013The '``urem``' instruction returns the remainder from the unsigned
4014division of its two arguments.
4015
4016Arguments:
4017""""""""""
4018
4019The two arguments to the '``urem``' instruction must be
4020:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4021arguments must have identical types.
4022
4023Semantics:
4024""""""""""
4025
4026This instruction returns the unsigned integer *remainder* of a division.
4027This instruction always performs an unsigned division to get the
4028remainder.
4029
4030Note that unsigned integer remainder and signed integer remainder are
4031distinct operations; for signed integer remainder, use '``srem``'.
4032
4033Taking the remainder of a division by zero leads to undefined behavior.
4034
4035Example:
4036""""""""
4037
4038.. code-block:: llvm
4039
4040 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4041
4042'``srem``' Instruction
4043^^^^^^^^^^^^^^^^^^^^^^
4044
4045Syntax:
4046"""""""
4047
4048::
4049
4050 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4051
4052Overview:
4053"""""""""
4054
4055The '``srem``' instruction returns the remainder from the signed
4056division of its two operands. This instruction can also take
4057:ref:`vector <t_vector>` versions of the values in which case the elements
4058must be integers.
4059
4060Arguments:
4061""""""""""
4062
4063The two arguments to the '``srem``' instruction must be
4064:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4065arguments must have identical types.
4066
4067Semantics:
4068""""""""""
4069
4070This instruction returns the *remainder* of a division (where the result
4071is either zero or has the same sign as the dividend, ``op1``), not the
4072*modulo* operator (where the result is either zero or has the same sign
4073as the divisor, ``op2``) of a value. For more information about the
4074difference, see `The Math
4075Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4076table of how this is implemented in various languages, please see
4077`Wikipedia: modulo
4078operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4079
4080Note that signed integer remainder and unsigned integer remainder are
4081distinct operations; for unsigned integer remainder, use '``urem``'.
4082
4083Taking the remainder of a division by zero leads to undefined behavior.
4084Overflow also leads to undefined behavior; this is a rare case, but can
4085occur, for example, by taking the remainder of a 32-bit division of
4086-2147483648 by -1. (The remainder doesn't actually overflow, but this
4087rule lets srem be implemented using instructions that return both the
4088result of the division and the remainder.)
4089
4090Example:
4091""""""""
4092
4093.. code-block:: llvm
4094
4095 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4096
4097.. _i_frem:
4098
4099'``frem``' Instruction
4100^^^^^^^^^^^^^^^^^^^^^^
4101
4102Syntax:
4103"""""""
4104
4105::
4106
4107 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4108
4109Overview:
4110"""""""""
4111
4112The '``frem``' instruction returns the remainder from the division of
4113its two operands.
4114
4115Arguments:
4116""""""""""
4117
4118The two arguments to the '``frem``' instruction must be :ref:`floating
4119point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4120Both arguments must have identical types.
4121
4122Semantics:
4123""""""""""
4124
4125This instruction returns the *remainder* of a division. The remainder
4126has the same sign as the dividend. This instruction can also take any
4127number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4128to enable otherwise unsafe floating point optimizations:
4129
4130Example:
4131""""""""
4132
4133.. code-block:: llvm
4134
4135 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4136
4137.. _bitwiseops:
4138
4139Bitwise Binary Operations
4140-------------------------
4141
4142Bitwise binary operators are used to do various forms of bit-twiddling
4143in a program. They are generally very efficient instructions and can
4144commonly be strength reduced from other instructions. They require two
4145operands of the same type, execute an operation on them, and produce a
4146single value. The resulting value is the same type as its operands.
4147
4148'``shl``' Instruction
4149^^^^^^^^^^^^^^^^^^^^^
4150
4151Syntax:
4152"""""""
4153
4154::
4155
4156 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4157 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4158 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4159 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4160
4161Overview:
4162"""""""""
4163
4164The '``shl``' instruction returns the first operand shifted to the left
4165a specified number of bits.
4166
4167Arguments:
4168""""""""""
4169
4170Both arguments to the '``shl``' instruction must be the same
4171:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4172'``op2``' is treated as an unsigned value.
4173
4174Semantics:
4175""""""""""
4176
4177The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4178where ``n`` is the width of the result. If ``op2`` is (statically or
4179dynamically) negative or equal to or larger than the number of bits in
4180``op1``, the result is undefined. If the arguments are vectors, each
4181vector element of ``op1`` is shifted by the corresponding shift amount
4182in ``op2``.
4183
4184If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4185value <poisonvalues>` if it shifts out any non-zero bits. If the
4186``nsw`` keyword is present, then the shift produces a :ref:`poison
4187value <poisonvalues>` if it shifts out any bits that disagree with the
4188resultant sign bit. As such, NUW/NSW have the same semantics as they
4189would if the shift were expressed as a mul instruction with the same
4190nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4191
4192Example:
4193""""""""
4194
4195.. code-block:: llvm
4196
4197 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4198 <result> = shl i32 4, 2 ; yields {i32}: 16
4199 <result> = shl i32 1, 10 ; yields {i32}: 1024
4200 <result> = shl i32 1, 32 ; undefined
4201 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4202
4203'``lshr``' Instruction
4204^^^^^^^^^^^^^^^^^^^^^^
4205
4206Syntax:
4207"""""""
4208
4209::
4210
4211 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4212 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4213
4214Overview:
4215"""""""""
4216
4217The '``lshr``' instruction (logical shift right) returns the first
4218operand shifted to the right a specified number of bits with zero fill.
4219
4220Arguments:
4221""""""""""
4222
4223Both arguments to the '``lshr``' instruction must be the same
4224:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4225'``op2``' is treated as an unsigned value.
4226
4227Semantics:
4228""""""""""
4229
4230This instruction always performs a logical shift right operation. The
4231most significant bits of the result will be filled with zero bits after
4232the shift. If ``op2`` is (statically or dynamically) equal to or larger
4233than the number of bits in ``op1``, the result is undefined. If the
4234arguments are vectors, each vector element of ``op1`` is shifted by the
4235corresponding shift amount in ``op2``.
4236
4237If the ``exact`` keyword is present, the result value of the ``lshr`` is
4238a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4239non-zero.
4240
4241Example:
4242""""""""
4243
4244.. code-block:: llvm
4245
4246 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4247 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4248 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004249 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004250 <result> = lshr i32 1, 32 ; undefined
4251 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4252
4253'``ashr``' Instruction
4254^^^^^^^^^^^^^^^^^^^^^^
4255
4256Syntax:
4257"""""""
4258
4259::
4260
4261 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4262 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4263
4264Overview:
4265"""""""""
4266
4267The '``ashr``' instruction (arithmetic shift right) returns the first
4268operand shifted to the right a specified number of bits with sign
4269extension.
4270
4271Arguments:
4272""""""""""
4273
4274Both arguments to the '``ashr``' instruction must be the same
4275:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4276'``op2``' is treated as an unsigned value.
4277
4278Semantics:
4279""""""""""
4280
4281This instruction always performs an arithmetic shift right operation,
4282The most significant bits of the result will be filled with the sign bit
4283of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4284than the number of bits in ``op1``, the result is undefined. If the
4285arguments are vectors, each vector element of ``op1`` is shifted by the
4286corresponding shift amount in ``op2``.
4287
4288If the ``exact`` keyword is present, the result value of the ``ashr`` is
4289a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4290non-zero.
4291
4292Example:
4293""""""""
4294
4295.. code-block:: llvm
4296
4297 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4298 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4299 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4300 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4301 <result> = ashr i32 1, 32 ; undefined
4302 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4303
4304'``and``' Instruction
4305^^^^^^^^^^^^^^^^^^^^^
4306
4307Syntax:
4308"""""""
4309
4310::
4311
4312 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4313
4314Overview:
4315"""""""""
4316
4317The '``and``' instruction returns the bitwise logical and of its two
4318operands.
4319
4320Arguments:
4321""""""""""
4322
4323The two arguments to the '``and``' instruction must be
4324:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4325arguments must have identical types.
4326
4327Semantics:
4328""""""""""
4329
4330The truth table used for the '``and``' instruction is:
4331
4332+-----+-----+-----+
4333| In0 | In1 | Out |
4334+-----+-----+-----+
4335| 0 | 0 | 0 |
4336+-----+-----+-----+
4337| 0 | 1 | 0 |
4338+-----+-----+-----+
4339| 1 | 0 | 0 |
4340+-----+-----+-----+
4341| 1 | 1 | 1 |
4342+-----+-----+-----+
4343
4344Example:
4345""""""""
4346
4347.. code-block:: llvm
4348
4349 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4350 <result> = and i32 15, 40 ; yields {i32}:result = 8
4351 <result> = and i32 4, 8 ; yields {i32}:result = 0
4352
4353'``or``' Instruction
4354^^^^^^^^^^^^^^^^^^^^
4355
4356Syntax:
4357"""""""
4358
4359::
4360
4361 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4362
4363Overview:
4364"""""""""
4365
4366The '``or``' instruction returns the bitwise logical inclusive or of its
4367two operands.
4368
4369Arguments:
4370""""""""""
4371
4372The two arguments to the '``or``' instruction must be
4373:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4374arguments must have identical types.
4375
4376Semantics:
4377""""""""""
4378
4379The truth table used for the '``or``' instruction is:
4380
4381+-----+-----+-----+
4382| In0 | In1 | Out |
4383+-----+-----+-----+
4384| 0 | 0 | 0 |
4385+-----+-----+-----+
4386| 0 | 1 | 1 |
4387+-----+-----+-----+
4388| 1 | 0 | 1 |
4389+-----+-----+-----+
4390| 1 | 1 | 1 |
4391+-----+-----+-----+
4392
4393Example:
4394""""""""
4395
4396::
4397
4398 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4399 <result> = or i32 15, 40 ; yields {i32}:result = 47
4400 <result> = or i32 4, 8 ; yields {i32}:result = 12
4401
4402'``xor``' Instruction
4403^^^^^^^^^^^^^^^^^^^^^
4404
4405Syntax:
4406"""""""
4407
4408::
4409
4410 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4411
4412Overview:
4413"""""""""
4414
4415The '``xor``' instruction returns the bitwise logical exclusive or of
4416its two operands. The ``xor`` is used to implement the "one's
4417complement" operation, which is the "~" operator in C.
4418
4419Arguments:
4420""""""""""
4421
4422The two arguments to the '``xor``' instruction must be
4423:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4424arguments must have identical types.
4425
4426Semantics:
4427""""""""""
4428
4429The truth table used for the '``xor``' instruction is:
4430
4431+-----+-----+-----+
4432| In0 | In1 | Out |
4433+-----+-----+-----+
4434| 0 | 0 | 0 |
4435+-----+-----+-----+
4436| 0 | 1 | 1 |
4437+-----+-----+-----+
4438| 1 | 0 | 1 |
4439+-----+-----+-----+
4440| 1 | 1 | 0 |
4441+-----+-----+-----+
4442
4443Example:
4444""""""""
4445
4446.. code-block:: llvm
4447
4448 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4449 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4450 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4451 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4452
4453Vector Operations
4454-----------------
4455
4456LLVM supports several instructions to represent vector operations in a
4457target-independent manner. These instructions cover the element-access
4458and vector-specific operations needed to process vectors effectively.
4459While LLVM does directly support these vector operations, many
4460sophisticated algorithms will want to use target-specific intrinsics to
4461take full advantage of a specific target.
4462
4463.. _i_extractelement:
4464
4465'``extractelement``' Instruction
4466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4467
4468Syntax:
4469"""""""
4470
4471::
4472
4473 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4474
4475Overview:
4476"""""""""
4477
4478The '``extractelement``' instruction extracts a single scalar element
4479from a vector at a specified index.
4480
4481Arguments:
4482""""""""""
4483
4484The first operand of an '``extractelement``' instruction is a value of
4485:ref:`vector <t_vector>` type. The second operand is an index indicating
4486the position from which to extract the element. The index may be a
4487variable.
4488
4489Semantics:
4490""""""""""
4491
4492The result is a scalar of the same type as the element type of ``val``.
4493Its value is the value at position ``idx`` of ``val``. If ``idx``
4494exceeds the length of ``val``, the results are undefined.
4495
4496Example:
4497""""""""
4498
4499.. code-block:: llvm
4500
4501 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4502
4503.. _i_insertelement:
4504
4505'``insertelement``' Instruction
4506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4507
4508Syntax:
4509"""""""
4510
4511::
4512
4513 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4514
4515Overview:
4516"""""""""
4517
4518The '``insertelement``' instruction inserts a scalar element into a
4519vector at a specified index.
4520
4521Arguments:
4522""""""""""
4523
4524The first operand of an '``insertelement``' instruction is a value of
4525:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4526type must equal the element type of the first operand. The third operand
4527is an index indicating the position at which to insert the value. The
4528index may be a variable.
4529
4530Semantics:
4531""""""""""
4532
4533The result is a vector of the same type as ``val``. Its element values
4534are those of ``val`` except at position ``idx``, where it gets the value
4535``elt``. If ``idx`` exceeds the length of ``val``, the results are
4536undefined.
4537
4538Example:
4539""""""""
4540
4541.. code-block:: llvm
4542
4543 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4544
4545.. _i_shufflevector:
4546
4547'``shufflevector``' Instruction
4548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4549
4550Syntax:
4551"""""""
4552
4553::
4554
4555 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4556
4557Overview:
4558"""""""""
4559
4560The '``shufflevector``' instruction constructs a permutation of elements
4561from two input vectors, returning a vector with the same element type as
4562the input and length that is the same as the shuffle mask.
4563
4564Arguments:
4565""""""""""
4566
4567The first two operands of a '``shufflevector``' instruction are vectors
4568with the same type. The third argument is a shuffle mask whose element
4569type is always 'i32'. The result of the instruction is a vector whose
4570length is the same as the shuffle mask and whose element type is the
4571same as the element type of the first two operands.
4572
4573The shuffle mask operand is required to be a constant vector with either
4574constant integer or undef values.
4575
4576Semantics:
4577""""""""""
4578
4579The elements of the two input vectors are numbered from left to right
4580across both of the vectors. The shuffle mask operand specifies, for each
4581element of the result vector, which element of the two input vectors the
4582result element gets. The element selector may be undef (meaning "don't
4583care") and the second operand may be undef if performing a shuffle from
4584only one vector.
4585
4586Example:
4587""""""""
4588
4589.. code-block:: llvm
4590
4591 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4592 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4593 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4594 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4595 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4596 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4597 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4598 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4599
4600Aggregate Operations
4601--------------------
4602
4603LLVM supports several instructions for working with
4604:ref:`aggregate <t_aggregate>` values.
4605
4606.. _i_extractvalue:
4607
4608'``extractvalue``' Instruction
4609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4610
4611Syntax:
4612"""""""
4613
4614::
4615
4616 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4617
4618Overview:
4619"""""""""
4620
4621The '``extractvalue``' instruction extracts the value of a member field
4622from an :ref:`aggregate <t_aggregate>` value.
4623
4624Arguments:
4625""""""""""
4626
4627The first operand of an '``extractvalue``' instruction is a value of
4628:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4629constant indices to specify which value to extract in a similar manner
4630as indices in a '``getelementptr``' instruction.
4631
4632The major differences to ``getelementptr`` indexing are:
4633
4634- Since the value being indexed is not a pointer, the first index is
4635 omitted and assumed to be zero.
4636- At least one index must be specified.
4637- Not only struct indices but also array indices must be in bounds.
4638
4639Semantics:
4640""""""""""
4641
4642The result is the value at the position in the aggregate specified by
4643the index operands.
4644
4645Example:
4646""""""""
4647
4648.. code-block:: llvm
4649
4650 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4651
4652.. _i_insertvalue:
4653
4654'``insertvalue``' Instruction
4655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4656
4657Syntax:
4658"""""""
4659
4660::
4661
4662 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4663
4664Overview:
4665"""""""""
4666
4667The '``insertvalue``' instruction inserts a value into a member field in
4668an :ref:`aggregate <t_aggregate>` value.
4669
4670Arguments:
4671""""""""""
4672
4673The first operand of an '``insertvalue``' instruction is a value of
4674:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4675a first-class value to insert. The following operands are constant
4676indices indicating the position at which to insert the value in a
4677similar manner as indices in a '``extractvalue``' instruction. The value
4678to insert must have the same type as the value identified by the
4679indices.
4680
4681Semantics:
4682""""""""""
4683
4684The result is an aggregate of the same type as ``val``. Its value is
4685that of ``val`` except that the value at the position specified by the
4686indices is that of ``elt``.
4687
4688Example:
4689""""""""
4690
4691.. code-block:: llvm
4692
4693 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4694 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4695 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4696
4697.. _memoryops:
4698
4699Memory Access and Addressing Operations
4700---------------------------------------
4701
4702A key design point of an SSA-based representation is how it represents
4703memory. In LLVM, no memory locations are in SSA form, which makes things
4704very simple. This section describes how to read, write, and allocate
4705memory in LLVM.
4706
4707.. _i_alloca:
4708
4709'``alloca``' Instruction
4710^^^^^^^^^^^^^^^^^^^^^^^^
4711
4712Syntax:
4713"""""""
4714
4715::
4716
Reid Kleckner436c42e2014-01-17 23:58:17 +00004717 <result> = alloca <type>[, inalloca][, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004718
4719Overview:
4720"""""""""
4721
4722The '``alloca``' instruction allocates memory on the stack frame of the
4723currently executing function, to be automatically released when this
4724function returns to its caller. The object is always allocated in the
4725generic address space (address space zero).
4726
4727Arguments:
4728""""""""""
4729
4730The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4731bytes of memory on the runtime stack, returning a pointer of the
4732appropriate type to the program. If "NumElements" is specified, it is
4733the number of elements allocated, otherwise "NumElements" is defaulted
4734to be one. If a constant alignment is specified, the value result of the
4735allocation is guaranteed to be aligned to at least that boundary. If not
4736specified, or if zero, the target can choose to align the allocation on
4737any convenient boundary compatible with the type.
4738
4739'``type``' may be any sized type.
4740
4741Semantics:
4742""""""""""
4743
4744Memory is allocated; a pointer is returned. The operation is undefined
4745if there is insufficient stack space for the allocation. '``alloca``'d
4746memory is automatically released when the function returns. The
4747'``alloca``' instruction is commonly used to represent automatic
4748variables that must have an address available. When the function returns
4749(either with the ``ret`` or ``resume`` instructions), the memory is
4750reclaimed. Allocating zero bytes is legal, but the result is undefined.
4751The order in which memory is allocated (ie., which way the stack grows)
4752is not specified.
4753
4754Example:
4755""""""""
4756
4757.. code-block:: llvm
4758
4759 %ptr = alloca i32 ; yields {i32*}:ptr
4760 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4761 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4762 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4763
4764.. _i_load:
4765
4766'``load``' Instruction
4767^^^^^^^^^^^^^^^^^^^^^^
4768
4769Syntax:
4770"""""""
4771
4772::
4773
4774 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4775 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4776 !<index> = !{ i32 1 }
4777
4778Overview:
4779"""""""""
4780
4781The '``load``' instruction is used to read from memory.
4782
4783Arguments:
4784""""""""""
4785
Eli Bendersky239a78b2013-04-17 20:17:08 +00004786The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004787from which to load. The pointer must point to a :ref:`first
4788class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4789then the optimizer is not allowed to modify the number or order of
4790execution of this ``load`` with other :ref:`volatile
4791operations <volatile>`.
4792
4793If the ``load`` is marked as ``atomic``, it takes an extra
4794:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4795``release`` and ``acq_rel`` orderings are not valid on ``load``
4796instructions. Atomic loads produce :ref:`defined <memmodel>` results
4797when they may see multiple atomic stores. The type of the pointee must
4798be an integer type whose bit width is a power of two greater than or
4799equal to eight and less than or equal to a target-specific size limit.
4800``align`` must be explicitly specified on atomic loads, and the load has
4801undefined behavior if the alignment is not set to a value which is at
4802least the size in bytes of the pointee. ``!nontemporal`` does not have
4803any defined semantics for atomic loads.
4804
4805The optional constant ``align`` argument specifies the alignment of the
4806operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004807or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004808alignment for the target. It is the responsibility of the code emitter
4809to ensure that the alignment information is correct. Overestimating the
4810alignment results in undefined behavior. Underestimating the alignment
4811may produce less efficient code. An alignment of 1 is always safe.
4812
4813The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004814metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004815``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004816metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004817that this load is not expected to be reused in the cache. The code
4818generator may select special instructions to save cache bandwidth, such
4819as the ``MOVNT`` instruction on x86.
4820
4821The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004822metadata name ``<index>`` corresponding to a metadata node with no
4823entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004824instruction tells the optimizer and code generator that this load
4825address points to memory which does not change value during program
4826execution. The optimizer may then move this load around, for example, by
4827hoisting it out of loops using loop invariant code motion.
4828
4829Semantics:
4830""""""""""
4831
4832The location of memory pointed to is loaded. If the value being loaded
4833is of scalar type then the number of bytes read does not exceed the
4834minimum number of bytes needed to hold all bits of the type. For
4835example, loading an ``i24`` reads at most three bytes. When loading a
4836value of a type like ``i20`` with a size that is not an integral number
4837of bytes, the result is undefined if the value was not originally
4838written using a store of the same type.
4839
4840Examples:
4841"""""""""
4842
4843.. code-block:: llvm
4844
4845 %ptr = alloca i32 ; yields {i32*}:ptr
4846 store i32 3, i32* %ptr ; yields {void}
4847 %val = load i32* %ptr ; yields {i32}:val = i32 3
4848
4849.. _i_store:
4850
4851'``store``' Instruction
4852^^^^^^^^^^^^^^^^^^^^^^^
4853
4854Syntax:
4855"""""""
4856
4857::
4858
4859 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4860 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4861
4862Overview:
4863"""""""""
4864
4865The '``store``' instruction is used to write to memory.
4866
4867Arguments:
4868""""""""""
4869
Eli Benderskyca380842013-04-17 17:17:20 +00004870There are two arguments to the ``store`` instruction: a value to store
4871and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004872operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004873the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004874then the optimizer is not allowed to modify the number or order of
4875execution of this ``store`` with other :ref:`volatile
4876operations <volatile>`.
4877
4878If the ``store`` is marked as ``atomic``, it takes an extra
4879:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4880``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4881instructions. Atomic loads produce :ref:`defined <memmodel>` results
4882when they may see multiple atomic stores. The type of the pointee must
4883be an integer type whose bit width is a power of two greater than or
4884equal to eight and less than or equal to a target-specific size limit.
4885``align`` must be explicitly specified on atomic stores, and the store
4886has undefined behavior if the alignment is not set to a value which is
4887at least the size in bytes of the pointee. ``!nontemporal`` does not
4888have any defined semantics for atomic stores.
4889
Eli Benderskyca380842013-04-17 17:17:20 +00004890The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004891operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004892or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004893alignment for the target. It is the responsibility of the code emitter
4894to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004895alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004896alignment may produce less efficient code. An alignment of 1 is always
4897safe.
4898
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004899The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004900name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004901value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004902tells the optimizer and code generator that this load is not expected to
4903be reused in the cache. The code generator may select special
4904instructions to save cache bandwidth, such as the MOVNT instruction on
4905x86.
4906
4907Semantics:
4908""""""""""
4909
Eli Benderskyca380842013-04-17 17:17:20 +00004910The contents of memory are updated to contain ``<value>`` at the
4911location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004912of scalar type then the number of bytes written does not exceed the
4913minimum number of bytes needed to hold all bits of the type. For
4914example, storing an ``i24`` writes at most three bytes. When writing a
4915value of a type like ``i20`` with a size that is not an integral number
4916of bytes, it is unspecified what happens to the extra bits that do not
4917belong to the type, but they will typically be overwritten.
4918
4919Example:
4920""""""""
4921
4922.. code-block:: llvm
4923
4924 %ptr = alloca i32 ; yields {i32*}:ptr
4925 store i32 3, i32* %ptr ; yields {void}
4926 %val = load i32* %ptr ; yields {i32}:val = i32 3
4927
4928.. _i_fence:
4929
4930'``fence``' Instruction
4931^^^^^^^^^^^^^^^^^^^^^^^
4932
4933Syntax:
4934"""""""
4935
4936::
4937
4938 fence [singlethread] <ordering> ; yields {void}
4939
4940Overview:
4941"""""""""
4942
4943The '``fence``' instruction is used to introduce happens-before edges
4944between operations.
4945
4946Arguments:
4947""""""""""
4948
4949'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4950defines what *synchronizes-with* edges they add. They can only be given
4951``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4952
4953Semantics:
4954""""""""""
4955
4956A fence A which has (at least) ``release`` ordering semantics
4957*synchronizes with* a fence B with (at least) ``acquire`` ordering
4958semantics if and only if there exist atomic operations X and Y, both
4959operating on some atomic object M, such that A is sequenced before X, X
4960modifies M (either directly or through some side effect of a sequence
4961headed by X), Y is sequenced before B, and Y observes M. This provides a
4962*happens-before* dependency between A and B. Rather than an explicit
4963``fence``, one (but not both) of the atomic operations X or Y might
4964provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4965still *synchronize-with* the explicit ``fence`` and establish the
4966*happens-before* edge.
4967
4968A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4969``acquire`` and ``release`` semantics specified above, participates in
4970the global program order of other ``seq_cst`` operations and/or fences.
4971
4972The optional ":ref:`singlethread <singlethread>`" argument specifies
4973that the fence only synchronizes with other fences in the same thread.
4974(This is useful for interacting with signal handlers.)
4975
4976Example:
4977""""""""
4978
4979.. code-block:: llvm
4980
4981 fence acquire ; yields {void}
4982 fence singlethread seq_cst ; yields {void}
4983
4984.. _i_cmpxchg:
4985
4986'``cmpxchg``' Instruction
4987^^^^^^^^^^^^^^^^^^^^^^^^^
4988
4989Syntax:
4990"""""""
4991
4992::
4993
4994 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4995
4996Overview:
4997"""""""""
4998
4999The '``cmpxchg``' instruction is used to atomically modify memory. It
5000loads a value in memory and compares it to a given value. If they are
5001equal, it stores a new value into the memory.
5002
5003Arguments:
5004""""""""""
5005
5006There are three arguments to the '``cmpxchg``' instruction: an address
5007to operate on, a value to compare to the value currently be at that
5008address, and a new value to place at that address if the compared values
5009are equal. The type of '<cmp>' must be an integer type whose bit width
5010is a power of two greater than or equal to eight and less than or equal
5011to a target-specific size limit. '<cmp>' and '<new>' must have the same
5012type, and the type of '<pointer>' must be a pointer to that type. If the
5013``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5014to modify the number or order of execution of this ``cmpxchg`` with
5015other :ref:`volatile operations <volatile>`.
5016
5017The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
5018synchronizes with other atomic operations.
5019
5020The optional "``singlethread``" argument declares that the ``cmpxchg``
5021is only atomic with respect to code (usually signal handlers) running in
5022the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5023respect to all other code in the system.
5024
5025The pointer passed into cmpxchg must have alignment greater than or
5026equal to the size in memory of the operand.
5027
5028Semantics:
5029""""""""""
5030
5031The contents of memory at the location specified by the '``<pointer>``'
5032operand is read and compared to '``<cmp>``'; if the read value is the
5033equal, '``<new>``' is written. The original value at the location is
5034returned.
5035
5036A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
5037of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
5038atomic load with an ordering parameter determined by dropping any
5039``release`` part of the ``cmpxchg``'s ordering.
5040
5041Example:
5042""""""""
5043
5044.. code-block:: llvm
5045
5046 entry:
5047 %orig = atomic load i32* %ptr unordered ; yields {i32}
5048 br label %loop
5049
5050 loop:
5051 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5052 %squared = mul i32 %cmp, %cmp
5053 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
5054 %success = icmp eq i32 %cmp, %old
5055 br i1 %success, label %done, label %loop
5056
5057 done:
5058 ...
5059
5060.. _i_atomicrmw:
5061
5062'``atomicrmw``' Instruction
5063^^^^^^^^^^^^^^^^^^^^^^^^^^^
5064
5065Syntax:
5066"""""""
5067
5068::
5069
5070 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5071
5072Overview:
5073"""""""""
5074
5075The '``atomicrmw``' instruction is used to atomically modify memory.
5076
5077Arguments:
5078""""""""""
5079
5080There are three arguments to the '``atomicrmw``' instruction: an
5081operation to apply, an address whose value to modify, an argument to the
5082operation. The operation must be one of the following keywords:
5083
5084- xchg
5085- add
5086- sub
5087- and
5088- nand
5089- or
5090- xor
5091- max
5092- min
5093- umax
5094- umin
5095
5096The type of '<value>' must be an integer type whose bit width is a power
5097of two greater than or equal to eight and less than or equal to a
5098target-specific size limit. The type of the '``<pointer>``' operand must
5099be a pointer to that type. If the ``atomicrmw`` is marked as
5100``volatile``, then the optimizer is not allowed to modify the number or
5101order of execution of this ``atomicrmw`` with other :ref:`volatile
5102operations <volatile>`.
5103
5104Semantics:
5105""""""""""
5106
5107The contents of memory at the location specified by the '``<pointer>``'
5108operand are atomically read, modified, and written back. The original
5109value at the location is returned. The modification is specified by the
5110operation argument:
5111
5112- xchg: ``*ptr = val``
5113- add: ``*ptr = *ptr + val``
5114- sub: ``*ptr = *ptr - val``
5115- and: ``*ptr = *ptr & val``
5116- nand: ``*ptr = ~(*ptr & val)``
5117- or: ``*ptr = *ptr | val``
5118- xor: ``*ptr = *ptr ^ val``
5119- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5120- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5121- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5122 comparison)
5123- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5124 comparison)
5125
5126Example:
5127""""""""
5128
5129.. code-block:: llvm
5130
5131 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5132
5133.. _i_getelementptr:
5134
5135'``getelementptr``' Instruction
5136^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5137
5138Syntax:
5139"""""""
5140
5141::
5142
5143 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5144 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5145 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5146
5147Overview:
5148"""""""""
5149
5150The '``getelementptr``' instruction is used to get the address of a
5151subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5152address calculation only and does not access memory.
5153
5154Arguments:
5155""""""""""
5156
5157The first argument is always a pointer or a vector of pointers, and
5158forms the basis of the calculation. The remaining arguments are indices
5159that indicate which of the elements of the aggregate object are indexed.
5160The interpretation of each index is dependent on the type being indexed
5161into. The first index always indexes the pointer value given as the
5162first argument, the second index indexes a value of the type pointed to
5163(not necessarily the value directly pointed to, since the first index
5164can be non-zero), etc. The first type indexed into must be a pointer
5165value, subsequent types can be arrays, vectors, and structs. Note that
5166subsequent types being indexed into can never be pointers, since that
5167would require loading the pointer before continuing calculation.
5168
5169The type of each index argument depends on the type it is indexing into.
5170When indexing into a (optionally packed) structure, only ``i32`` integer
5171**constants** are allowed (when using a vector of indices they must all
5172be the **same** ``i32`` integer constant). When indexing into an array,
5173pointer or vector, integers of any width are allowed, and they are not
5174required to be constant. These integers are treated as signed values
5175where relevant.
5176
5177For example, let's consider a C code fragment and how it gets compiled
5178to LLVM:
5179
5180.. code-block:: c
5181
5182 struct RT {
5183 char A;
5184 int B[10][20];
5185 char C;
5186 };
5187 struct ST {
5188 int X;
5189 double Y;
5190 struct RT Z;
5191 };
5192
5193 int *foo(struct ST *s) {
5194 return &s[1].Z.B[5][13];
5195 }
5196
5197The LLVM code generated by Clang is:
5198
5199.. code-block:: llvm
5200
5201 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5202 %struct.ST = type { i32, double, %struct.RT }
5203
5204 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5205 entry:
5206 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5207 ret i32* %arrayidx
5208 }
5209
5210Semantics:
5211""""""""""
5212
5213In the example above, the first index is indexing into the
5214'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5215= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5216indexes into the third element of the structure, yielding a
5217'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5218structure. The third index indexes into the second element of the
5219structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5220dimensions of the array are subscripted into, yielding an '``i32``'
5221type. The '``getelementptr``' instruction returns a pointer to this
5222element, thus computing a value of '``i32*``' type.
5223
5224Note that it is perfectly legal to index partially through a structure,
5225returning a pointer to an inner element. Because of this, the LLVM code
5226for the given testcase is equivalent to:
5227
5228.. code-block:: llvm
5229
5230 define i32* @foo(%struct.ST* %s) {
5231 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5232 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5233 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5234 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5235 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5236 ret i32* %t5
5237 }
5238
5239If the ``inbounds`` keyword is present, the result value of the
5240``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5241pointer is not an *in bounds* address of an allocated object, or if any
5242of the addresses that would be formed by successive addition of the
5243offsets implied by the indices to the base address with infinitely
5244precise signed arithmetic are not an *in bounds* address of that
5245allocated object. The *in bounds* addresses for an allocated object are
5246all the addresses that point into the object, plus the address one byte
5247past the end. In cases where the base is a vector of pointers the
5248``inbounds`` keyword applies to each of the computations element-wise.
5249
5250If the ``inbounds`` keyword is not present, the offsets are added to the
5251base address with silently-wrapping two's complement arithmetic. If the
5252offsets have a different width from the pointer, they are sign-extended
5253or truncated to the width of the pointer. The result value of the
5254``getelementptr`` may be outside the object pointed to by the base
5255pointer. The result value may not necessarily be used to access memory
5256though, even if it happens to point into allocated storage. See the
5257:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5258information.
5259
5260The getelementptr instruction is often confusing. For some more insight
5261into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5262
5263Example:
5264""""""""
5265
5266.. code-block:: llvm
5267
5268 ; yields [12 x i8]*:aptr
5269 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5270 ; yields i8*:vptr
5271 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5272 ; yields i8*:eptr
5273 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5274 ; yields i32*:iptr
5275 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5276
5277In cases where the pointer argument is a vector of pointers, each index
5278must be a vector with the same number of elements. For example:
5279
5280.. code-block:: llvm
5281
5282 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5283
5284Conversion Operations
5285---------------------
5286
5287The instructions in this category are the conversion instructions
5288(casting) which all take a single operand and a type. They perform
5289various bit conversions on the operand.
5290
5291'``trunc .. to``' Instruction
5292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5293
5294Syntax:
5295"""""""
5296
5297::
5298
5299 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5300
5301Overview:
5302"""""""""
5303
5304The '``trunc``' instruction truncates its operand to the type ``ty2``.
5305
5306Arguments:
5307""""""""""
5308
5309The '``trunc``' instruction takes a value to trunc, and a type to trunc
5310it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5311of the same number of integers. The bit size of the ``value`` must be
5312larger than the bit size of the destination type, ``ty2``. Equal sized
5313types are not allowed.
5314
5315Semantics:
5316""""""""""
5317
5318The '``trunc``' instruction truncates the high order bits in ``value``
5319and converts the remaining bits to ``ty2``. Since the source size must
5320be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5321It will always truncate bits.
5322
5323Example:
5324""""""""
5325
5326.. code-block:: llvm
5327
5328 %X = trunc i32 257 to i8 ; yields i8:1
5329 %Y = trunc i32 123 to i1 ; yields i1:true
5330 %Z = trunc i32 122 to i1 ; yields i1:false
5331 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5332
5333'``zext .. to``' Instruction
5334^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5335
5336Syntax:
5337"""""""
5338
5339::
5340
5341 <result> = zext <ty> <value> to <ty2> ; yields ty2
5342
5343Overview:
5344"""""""""
5345
5346The '``zext``' instruction zero extends its operand to type ``ty2``.
5347
5348Arguments:
5349""""""""""
5350
5351The '``zext``' instruction takes a value to cast, and a type to cast it
5352to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5353the same number of integers. The bit size of the ``value`` must be
5354smaller than the bit size of the destination type, ``ty2``.
5355
5356Semantics:
5357""""""""""
5358
5359The ``zext`` fills the high order bits of the ``value`` with zero bits
5360until it reaches the size of the destination type, ``ty2``.
5361
5362When zero extending from i1, the result will always be either 0 or 1.
5363
5364Example:
5365""""""""
5366
5367.. code-block:: llvm
5368
5369 %X = zext i32 257 to i64 ; yields i64:257
5370 %Y = zext i1 true to i32 ; yields i32:1
5371 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5372
5373'``sext .. to``' Instruction
5374^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5375
5376Syntax:
5377"""""""
5378
5379::
5380
5381 <result> = sext <ty> <value> to <ty2> ; yields ty2
5382
5383Overview:
5384"""""""""
5385
5386The '``sext``' sign extends ``value`` to the type ``ty2``.
5387
5388Arguments:
5389""""""""""
5390
5391The '``sext``' instruction takes a value to cast, and a type to cast it
5392to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5393the same number of integers. The bit size of the ``value`` must be
5394smaller than the bit size of the destination type, ``ty2``.
5395
5396Semantics:
5397""""""""""
5398
5399The '``sext``' instruction performs a sign extension by copying the sign
5400bit (highest order bit) of the ``value`` until it reaches the bit size
5401of the type ``ty2``.
5402
5403When sign extending from i1, the extension always results in -1 or 0.
5404
5405Example:
5406""""""""
5407
5408.. code-block:: llvm
5409
5410 %X = sext i8 -1 to i16 ; yields i16 :65535
5411 %Y = sext i1 true to i32 ; yields i32:-1
5412 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5413
5414'``fptrunc .. to``' Instruction
5415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5416
5417Syntax:
5418"""""""
5419
5420::
5421
5422 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5423
5424Overview:
5425"""""""""
5426
5427The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5428
5429Arguments:
5430""""""""""
5431
5432The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5433value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5434The size of ``value`` must be larger than the size of ``ty2``. This
5435implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5436
5437Semantics:
5438""""""""""
5439
5440The '``fptrunc``' instruction truncates a ``value`` from a larger
5441:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5442point <t_floating>` type. If the value cannot fit within the
5443destination type, ``ty2``, then the results are undefined.
5444
5445Example:
5446""""""""
5447
5448.. code-block:: llvm
5449
5450 %X = fptrunc double 123.0 to float ; yields float:123.0
5451 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5452
5453'``fpext .. to``' Instruction
5454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5455
5456Syntax:
5457"""""""
5458
5459::
5460
5461 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5462
5463Overview:
5464"""""""""
5465
5466The '``fpext``' extends a floating point ``value`` to a larger floating
5467point value.
5468
5469Arguments:
5470""""""""""
5471
5472The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5473``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5474to. The source type must be smaller than the destination type.
5475
5476Semantics:
5477""""""""""
5478
5479The '``fpext``' instruction extends the ``value`` from a smaller
5480:ref:`floating point <t_floating>` type to a larger :ref:`floating
5481point <t_floating>` type. The ``fpext`` cannot be used to make a
5482*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5483*no-op cast* for a floating point cast.
5484
5485Example:
5486""""""""
5487
5488.. code-block:: llvm
5489
5490 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5491 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5492
5493'``fptoui .. to``' Instruction
5494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5495
5496Syntax:
5497"""""""
5498
5499::
5500
5501 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5502
5503Overview:
5504"""""""""
5505
5506The '``fptoui``' converts a floating point ``value`` to its unsigned
5507integer equivalent of type ``ty2``.
5508
5509Arguments:
5510""""""""""
5511
5512The '``fptoui``' instruction takes a value to cast, which must be a
5513scalar or vector :ref:`floating point <t_floating>` value, and a type to
5514cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5515``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5516type with the same number of elements as ``ty``
5517
5518Semantics:
5519""""""""""
5520
5521The '``fptoui``' instruction converts its :ref:`floating
5522point <t_floating>` operand into the nearest (rounding towards zero)
5523unsigned integer value. If the value cannot fit in ``ty2``, the results
5524are undefined.
5525
5526Example:
5527""""""""
5528
5529.. code-block:: llvm
5530
5531 %X = fptoui double 123.0 to i32 ; yields i32:123
5532 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5533 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5534
5535'``fptosi .. to``' Instruction
5536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5537
5538Syntax:
5539"""""""
5540
5541::
5542
5543 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5544
5545Overview:
5546"""""""""
5547
5548The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5549``value`` to type ``ty2``.
5550
5551Arguments:
5552""""""""""
5553
5554The '``fptosi``' instruction takes a value to cast, which must be a
5555scalar or vector :ref:`floating point <t_floating>` value, and a type to
5556cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5557``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5558type with the same number of elements as ``ty``
5559
5560Semantics:
5561""""""""""
5562
5563The '``fptosi``' instruction converts its :ref:`floating
5564point <t_floating>` operand into the nearest (rounding towards zero)
5565signed integer value. If the value cannot fit in ``ty2``, the results
5566are undefined.
5567
5568Example:
5569""""""""
5570
5571.. code-block:: llvm
5572
5573 %X = fptosi double -123.0 to i32 ; yields i32:-123
5574 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5575 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5576
5577'``uitofp .. to``' Instruction
5578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5579
5580Syntax:
5581"""""""
5582
5583::
5584
5585 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5586
5587Overview:
5588"""""""""
5589
5590The '``uitofp``' instruction regards ``value`` as an unsigned integer
5591and converts that value to the ``ty2`` type.
5592
5593Arguments:
5594""""""""""
5595
5596The '``uitofp``' instruction takes a value to cast, which must be a
5597scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5598``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5599``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5600type with the same number of elements as ``ty``
5601
5602Semantics:
5603""""""""""
5604
5605The '``uitofp``' instruction interprets its operand as an unsigned
5606integer quantity and converts it to the corresponding floating point
5607value. If the value cannot fit in the floating point value, the results
5608are undefined.
5609
5610Example:
5611""""""""
5612
5613.. code-block:: llvm
5614
5615 %X = uitofp i32 257 to float ; yields float:257.0
5616 %Y = uitofp i8 -1 to double ; yields double:255.0
5617
5618'``sitofp .. to``' Instruction
5619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5620
5621Syntax:
5622"""""""
5623
5624::
5625
5626 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5627
5628Overview:
5629"""""""""
5630
5631The '``sitofp``' instruction regards ``value`` as a signed integer and
5632converts that value to the ``ty2`` type.
5633
5634Arguments:
5635""""""""""
5636
5637The '``sitofp``' instruction takes a value to cast, which must be a
5638scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5639``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5640``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5641type with the same number of elements as ``ty``
5642
5643Semantics:
5644""""""""""
5645
5646The '``sitofp``' instruction interprets its operand as a signed integer
5647quantity and converts it to the corresponding floating point value. If
5648the value cannot fit in the floating point value, the results are
5649undefined.
5650
5651Example:
5652""""""""
5653
5654.. code-block:: llvm
5655
5656 %X = sitofp i32 257 to float ; yields float:257.0
5657 %Y = sitofp i8 -1 to double ; yields double:-1.0
5658
5659.. _i_ptrtoint:
5660
5661'``ptrtoint .. to``' Instruction
5662^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5663
5664Syntax:
5665"""""""
5666
5667::
5668
5669 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5670
5671Overview:
5672"""""""""
5673
5674The '``ptrtoint``' instruction converts the pointer or a vector of
5675pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5676
5677Arguments:
5678""""""""""
5679
5680The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5681a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5682type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5683a vector of integers type.
5684
5685Semantics:
5686""""""""""
5687
5688The '``ptrtoint``' instruction converts ``value`` to integer type
5689``ty2`` by interpreting the pointer value as an integer and either
5690truncating or zero extending that value to the size of the integer type.
5691If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5692``value`` is larger than ``ty2`` then a truncation is done. If they are
5693the same size, then nothing is done (*no-op cast*) other than a type
5694change.
5695
5696Example:
5697""""""""
5698
5699.. code-block:: llvm
5700
5701 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5702 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5703 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5704
5705.. _i_inttoptr:
5706
5707'``inttoptr .. to``' Instruction
5708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5709
5710Syntax:
5711"""""""
5712
5713::
5714
5715 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5716
5717Overview:
5718"""""""""
5719
5720The '``inttoptr``' instruction converts an integer ``value`` to a
5721pointer type, ``ty2``.
5722
5723Arguments:
5724""""""""""
5725
5726The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5727cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5728type.
5729
5730Semantics:
5731""""""""""
5732
5733The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5734applying either a zero extension or a truncation depending on the size
5735of the integer ``value``. If ``value`` is larger than the size of a
5736pointer then a truncation is done. If ``value`` is smaller than the size
5737of a pointer then a zero extension is done. If they are the same size,
5738nothing is done (*no-op cast*).
5739
5740Example:
5741""""""""
5742
5743.. code-block:: llvm
5744
5745 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5746 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5747 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5748 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5749
5750.. _i_bitcast:
5751
5752'``bitcast .. to``' Instruction
5753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5754
5755Syntax:
5756"""""""
5757
5758::
5759
5760 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5761
5762Overview:
5763"""""""""
5764
5765The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5766changing any bits.
5767
5768Arguments:
5769""""""""""
5770
5771The '``bitcast``' instruction takes a value to cast, which must be a
5772non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005773also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5774bit sizes of ``value`` and the destination type, ``ty2``, must be
5775identical. If the source type is a pointer, the destination type must
5776also be a pointer of the same size. This instruction supports bitwise
5777conversion of vectors to integers and to vectors of other types (as
5778long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005779
5780Semantics:
5781""""""""""
5782
Matt Arsenault24b49c42013-07-31 17:49:08 +00005783The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5784is always a *no-op cast* because no bits change with this
5785conversion. The conversion is done as if the ``value`` had been stored
5786to memory and read back as type ``ty2``. Pointer (or vector of
5787pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005788pointers) types with the same address space through this instruction.
5789To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5790or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005791
5792Example:
5793""""""""
5794
5795.. code-block:: llvm
5796
5797 %X = bitcast i8 255 to i8 ; yields i8 :-1
5798 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5799 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5800 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5801
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005802.. _i_addrspacecast:
5803
5804'``addrspacecast .. to``' Instruction
5805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5806
5807Syntax:
5808"""""""
5809
5810::
5811
5812 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5813
5814Overview:
5815"""""""""
5816
5817The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5818address space ``n`` to type ``pty2`` in address space ``m``.
5819
5820Arguments:
5821""""""""""
5822
5823The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5824to cast and a pointer type to cast it to, which must have a different
5825address space.
5826
5827Semantics:
5828""""""""""
5829
5830The '``addrspacecast``' instruction converts the pointer value
5831``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005832value modification, depending on the target and the address space
5833pair. Pointer conversions within the same address space must be
5834performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005835conversion is legal then both result and operand refer to the same memory
5836location.
5837
5838Example:
5839""""""""
5840
5841.. code-block:: llvm
5842
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005843 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5844 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5845 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005846
Sean Silvab084af42012-12-07 10:36:55 +00005847.. _otherops:
5848
5849Other Operations
5850----------------
5851
5852The instructions in this category are the "miscellaneous" instructions,
5853which defy better classification.
5854
5855.. _i_icmp:
5856
5857'``icmp``' Instruction
5858^^^^^^^^^^^^^^^^^^^^^^
5859
5860Syntax:
5861"""""""
5862
5863::
5864
5865 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5866
5867Overview:
5868"""""""""
5869
5870The '``icmp``' instruction returns a boolean value or a vector of
5871boolean values based on comparison of its two integer, integer vector,
5872pointer, or pointer vector operands.
5873
5874Arguments:
5875""""""""""
5876
5877The '``icmp``' instruction takes three operands. The first operand is
5878the condition code indicating the kind of comparison to perform. It is
5879not a value, just a keyword. The possible condition code are:
5880
5881#. ``eq``: equal
5882#. ``ne``: not equal
5883#. ``ugt``: unsigned greater than
5884#. ``uge``: unsigned greater or equal
5885#. ``ult``: unsigned less than
5886#. ``ule``: unsigned less or equal
5887#. ``sgt``: signed greater than
5888#. ``sge``: signed greater or equal
5889#. ``slt``: signed less than
5890#. ``sle``: signed less or equal
5891
5892The remaining two arguments must be :ref:`integer <t_integer>` or
5893:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5894must also be identical types.
5895
5896Semantics:
5897""""""""""
5898
5899The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5900code given as ``cond``. The comparison performed always yields either an
5901:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5902
5903#. ``eq``: yields ``true`` if the operands are equal, ``false``
5904 otherwise. No sign interpretation is necessary or performed.
5905#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5906 otherwise. No sign interpretation is necessary or performed.
5907#. ``ugt``: interprets the operands as unsigned values and yields
5908 ``true`` if ``op1`` is greater than ``op2``.
5909#. ``uge``: interprets the operands as unsigned values and yields
5910 ``true`` if ``op1`` is greater than or equal to ``op2``.
5911#. ``ult``: interprets the operands as unsigned values and yields
5912 ``true`` if ``op1`` is less than ``op2``.
5913#. ``ule``: interprets the operands as unsigned values and yields
5914 ``true`` if ``op1`` is less than or equal to ``op2``.
5915#. ``sgt``: interprets the operands as signed values and yields ``true``
5916 if ``op1`` is greater than ``op2``.
5917#. ``sge``: interprets the operands as signed values and yields ``true``
5918 if ``op1`` is greater than or equal to ``op2``.
5919#. ``slt``: interprets the operands as signed values and yields ``true``
5920 if ``op1`` is less than ``op2``.
5921#. ``sle``: interprets the operands as signed values and yields ``true``
5922 if ``op1`` is less than or equal to ``op2``.
5923
5924If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5925are compared as if they were integers.
5926
5927If the operands are integer vectors, then they are compared element by
5928element. The result is an ``i1`` vector with the same number of elements
5929as the values being compared. Otherwise, the result is an ``i1``.
5930
5931Example:
5932""""""""
5933
5934.. code-block:: llvm
5935
5936 <result> = icmp eq i32 4, 5 ; yields: result=false
5937 <result> = icmp ne float* %X, %X ; yields: result=false
5938 <result> = icmp ult i16 4, 5 ; yields: result=true
5939 <result> = icmp sgt i16 4, 5 ; yields: result=false
5940 <result> = icmp ule i16 -4, 5 ; yields: result=false
5941 <result> = icmp sge i16 4, 5 ; yields: result=false
5942
5943Note that the code generator does not yet support vector types with the
5944``icmp`` instruction.
5945
5946.. _i_fcmp:
5947
5948'``fcmp``' Instruction
5949^^^^^^^^^^^^^^^^^^^^^^
5950
5951Syntax:
5952"""""""
5953
5954::
5955
5956 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5957
5958Overview:
5959"""""""""
5960
5961The '``fcmp``' instruction returns a boolean value or vector of boolean
5962values based on comparison of its operands.
5963
5964If the operands are floating point scalars, then the result type is a
5965boolean (:ref:`i1 <t_integer>`).
5966
5967If the operands are floating point vectors, then the result type is a
5968vector of boolean with the same number of elements as the operands being
5969compared.
5970
5971Arguments:
5972""""""""""
5973
5974The '``fcmp``' instruction takes three operands. The first operand is
5975the condition code indicating the kind of comparison to perform. It is
5976not a value, just a keyword. The possible condition code are:
5977
5978#. ``false``: no comparison, always returns false
5979#. ``oeq``: ordered and equal
5980#. ``ogt``: ordered and greater than
5981#. ``oge``: ordered and greater than or equal
5982#. ``olt``: ordered and less than
5983#. ``ole``: ordered and less than or equal
5984#. ``one``: ordered and not equal
5985#. ``ord``: ordered (no nans)
5986#. ``ueq``: unordered or equal
5987#. ``ugt``: unordered or greater than
5988#. ``uge``: unordered or greater than or equal
5989#. ``ult``: unordered or less than
5990#. ``ule``: unordered or less than or equal
5991#. ``une``: unordered or not equal
5992#. ``uno``: unordered (either nans)
5993#. ``true``: no comparison, always returns true
5994
5995*Ordered* means that neither operand is a QNAN while *unordered* means
5996that either operand may be a QNAN.
5997
5998Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5999point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6000type. They must have identical types.
6001
6002Semantics:
6003""""""""""
6004
6005The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6006condition code given as ``cond``. If the operands are vectors, then the
6007vectors are compared element by element. Each comparison performed
6008always yields an :ref:`i1 <t_integer>` result, as follows:
6009
6010#. ``false``: always yields ``false``, regardless of operands.
6011#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6012 is equal to ``op2``.
6013#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6014 is greater than ``op2``.
6015#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6016 is greater than or equal to ``op2``.
6017#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6018 is less than ``op2``.
6019#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6020 is less than or equal to ``op2``.
6021#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6022 is not equal to ``op2``.
6023#. ``ord``: yields ``true`` if both operands are not a QNAN.
6024#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6025 equal to ``op2``.
6026#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6027 greater than ``op2``.
6028#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6029 greater than or equal to ``op2``.
6030#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6031 less than ``op2``.
6032#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6033 less than or equal to ``op2``.
6034#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6035 not equal to ``op2``.
6036#. ``uno``: yields ``true`` if either operand is a QNAN.
6037#. ``true``: always yields ``true``, regardless of operands.
6038
6039Example:
6040""""""""
6041
6042.. code-block:: llvm
6043
6044 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6045 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6046 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6047 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6048
6049Note that the code generator does not yet support vector types with the
6050``fcmp`` instruction.
6051
6052.. _i_phi:
6053
6054'``phi``' Instruction
6055^^^^^^^^^^^^^^^^^^^^^
6056
6057Syntax:
6058"""""""
6059
6060::
6061
6062 <result> = phi <ty> [ <val0>, <label0>], ...
6063
6064Overview:
6065"""""""""
6066
6067The '``phi``' instruction is used to implement the φ node in the SSA
6068graph representing the function.
6069
6070Arguments:
6071""""""""""
6072
6073The type of the incoming values is specified with the first type field.
6074After this, the '``phi``' instruction takes a list of pairs as
6075arguments, with one pair for each predecessor basic block of the current
6076block. Only values of :ref:`first class <t_firstclass>` type may be used as
6077the value arguments to the PHI node. Only labels may be used as the
6078label arguments.
6079
6080There must be no non-phi instructions between the start of a basic block
6081and the PHI instructions: i.e. PHI instructions must be first in a basic
6082block.
6083
6084For the purposes of the SSA form, the use of each incoming value is
6085deemed to occur on the edge from the corresponding predecessor block to
6086the current block (but after any definition of an '``invoke``'
6087instruction's return value on the same edge).
6088
6089Semantics:
6090""""""""""
6091
6092At runtime, the '``phi``' instruction logically takes on the value
6093specified by the pair corresponding to the predecessor basic block that
6094executed just prior to the current block.
6095
6096Example:
6097""""""""
6098
6099.. code-block:: llvm
6100
6101 Loop: ; Infinite loop that counts from 0 on up...
6102 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6103 %nextindvar = add i32 %indvar, 1
6104 br label %Loop
6105
6106.. _i_select:
6107
6108'``select``' Instruction
6109^^^^^^^^^^^^^^^^^^^^^^^^
6110
6111Syntax:
6112"""""""
6113
6114::
6115
6116 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6117
6118 selty is either i1 or {<N x i1>}
6119
6120Overview:
6121"""""""""
6122
6123The '``select``' instruction is used to choose one value based on a
6124condition, without branching.
6125
6126Arguments:
6127""""""""""
6128
6129The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6130values indicating the condition, and two values of the same :ref:`first
6131class <t_firstclass>` type. If the val1/val2 are vectors and the
6132condition is a scalar, then entire vectors are selected, not individual
6133elements.
6134
6135Semantics:
6136""""""""""
6137
6138If the condition is an i1 and it evaluates to 1, the instruction returns
6139the first value argument; otherwise, it returns the second value
6140argument.
6141
6142If the condition is a vector of i1, then the value arguments must be
6143vectors of the same size, and the selection is done element by element.
6144
6145Example:
6146""""""""
6147
6148.. code-block:: llvm
6149
6150 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6151
6152.. _i_call:
6153
6154'``call``' Instruction
6155^^^^^^^^^^^^^^^^^^^^^^
6156
6157Syntax:
6158"""""""
6159
6160::
6161
6162 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6163
6164Overview:
6165"""""""""
6166
6167The '``call``' instruction represents a simple function call.
6168
6169Arguments:
6170""""""""""
6171
6172This instruction requires several arguments:
6173
6174#. The optional "tail" marker indicates that the callee function does
6175 not access any allocas or varargs in the caller. Note that calls may
6176 be marked "tail" even if they do not occur before a
6177 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6178 function call is eligible for tail call optimization, but `might not
6179 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6180 The code generator may optimize calls marked "tail" with either 1)
6181 automatic `sibling call
6182 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6183 callee have matching signatures, or 2) forced tail call optimization
6184 when the following extra requirements are met:
6185
6186 - Caller and callee both have the calling convention ``fastcc``.
6187 - The call is in tail position (ret immediately follows call and ret
6188 uses value of call or is void).
6189 - Option ``-tailcallopt`` is enabled, or
6190 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6191 - `Platform specific constraints are
6192 met. <CodeGenerator.html#tailcallopt>`_
6193
6194#. The optional "cconv" marker indicates which :ref:`calling
6195 convention <callingconv>` the call should use. If none is
6196 specified, the call defaults to using C calling conventions. The
6197 calling convention of the call must match the calling convention of
6198 the target function, or else the behavior is undefined.
6199#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6200 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6201 are valid here.
6202#. '``ty``': the type of the call instruction itself which is also the
6203 type of the return value. Functions that return no value are marked
6204 ``void``.
6205#. '``fnty``': shall be the signature of the pointer to function value
6206 being invoked. The argument types must match the types implied by
6207 this signature. This type can be omitted if the function is not
6208 varargs and if the function type does not return a pointer to a
6209 function.
6210#. '``fnptrval``': An LLVM value containing a pointer to a function to
6211 be invoked. In most cases, this is a direct function invocation, but
6212 indirect ``call``'s are just as possible, calling an arbitrary pointer
6213 to function value.
6214#. '``function args``': argument list whose types match the function
6215 signature argument types and parameter attributes. All arguments must
6216 be of :ref:`first class <t_firstclass>` type. If the function signature
6217 indicates the function accepts a variable number of arguments, the
6218 extra arguments can be specified.
6219#. The optional :ref:`function attributes <fnattrs>` list. Only
6220 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6221 attributes are valid here.
6222
6223Semantics:
6224""""""""""
6225
6226The '``call``' instruction is used to cause control flow to transfer to
6227a specified function, with its incoming arguments bound to the specified
6228values. Upon a '``ret``' instruction in the called function, control
6229flow continues with the instruction after the function call, and the
6230return value of the function is bound to the result argument.
6231
6232Example:
6233""""""""
6234
6235.. code-block:: llvm
6236
6237 %retval = call i32 @test(i32 %argc)
6238 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6239 %X = tail call i32 @foo() ; yields i32
6240 %Y = tail call fastcc i32 @foo() ; yields i32
6241 call void %foo(i8 97 signext)
6242
6243 %struct.A = type { i32, i8 }
6244 %r = call %struct.A @foo() ; yields { 32, i8 }
6245 %gr = extractvalue %struct.A %r, 0 ; yields i32
6246 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6247 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6248 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6249
6250llvm treats calls to some functions with names and arguments that match
6251the standard C99 library as being the C99 library functions, and may
6252perform optimizations or generate code for them under that assumption.
6253This is something we'd like to change in the future to provide better
6254support for freestanding environments and non-C-based languages.
6255
6256.. _i_va_arg:
6257
6258'``va_arg``' Instruction
6259^^^^^^^^^^^^^^^^^^^^^^^^
6260
6261Syntax:
6262"""""""
6263
6264::
6265
6266 <resultval> = va_arg <va_list*> <arglist>, <argty>
6267
6268Overview:
6269"""""""""
6270
6271The '``va_arg``' instruction is used to access arguments passed through
6272the "variable argument" area of a function call. It is used to implement
6273the ``va_arg`` macro in C.
6274
6275Arguments:
6276""""""""""
6277
6278This instruction takes a ``va_list*`` value and the type of the
6279argument. It returns a value of the specified argument type and
6280increments the ``va_list`` to point to the next argument. The actual
6281type of ``va_list`` is target specific.
6282
6283Semantics:
6284""""""""""
6285
6286The '``va_arg``' instruction loads an argument of the specified type
6287from the specified ``va_list`` and causes the ``va_list`` to point to
6288the next argument. For more information, see the variable argument
6289handling :ref:`Intrinsic Functions <int_varargs>`.
6290
6291It is legal for this instruction to be called in a function which does
6292not take a variable number of arguments, for example, the ``vfprintf``
6293function.
6294
6295``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6296function <intrinsics>` because it takes a type as an argument.
6297
6298Example:
6299""""""""
6300
6301See the :ref:`variable argument processing <int_varargs>` section.
6302
6303Note that the code generator does not yet fully support va\_arg on many
6304targets. Also, it does not currently support va\_arg with aggregate
6305types on any target.
6306
6307.. _i_landingpad:
6308
6309'``landingpad``' Instruction
6310^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6311
6312Syntax:
6313"""""""
6314
6315::
6316
6317 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6318 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6319
6320 <clause> := catch <type> <value>
6321 <clause> := filter <array constant type> <array constant>
6322
6323Overview:
6324"""""""""
6325
6326The '``landingpad``' instruction is used by `LLVM's exception handling
6327system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006328is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006329code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6330defines values supplied by the personality function (``pers_fn``) upon
6331re-entry to the function. The ``resultval`` has the type ``resultty``.
6332
6333Arguments:
6334""""""""""
6335
6336This instruction takes a ``pers_fn`` value. This is the personality
6337function associated with the unwinding mechanism. The optional
6338``cleanup`` flag indicates that the landing pad block is a cleanup.
6339
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006340A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006341contains the global variable representing the "type" that may be caught
6342or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6343clause takes an array constant as its argument. Use
6344"``[0 x i8**] undef``" for a filter which cannot throw. The
6345'``landingpad``' instruction must contain *at least* one ``clause`` or
6346the ``cleanup`` flag.
6347
6348Semantics:
6349""""""""""
6350
6351The '``landingpad``' instruction defines the values which are set by the
6352personality function (``pers_fn``) upon re-entry to the function, and
6353therefore the "result type" of the ``landingpad`` instruction. As with
6354calling conventions, how the personality function results are
6355represented in LLVM IR is target specific.
6356
6357The clauses are applied in order from top to bottom. If two
6358``landingpad`` instructions are merged together through inlining, the
6359clauses from the calling function are appended to the list of clauses.
6360When the call stack is being unwound due to an exception being thrown,
6361the exception is compared against each ``clause`` in turn. If it doesn't
6362match any of the clauses, and the ``cleanup`` flag is not set, then
6363unwinding continues further up the call stack.
6364
6365The ``landingpad`` instruction has several restrictions:
6366
6367- A landing pad block is a basic block which is the unwind destination
6368 of an '``invoke``' instruction.
6369- A landing pad block must have a '``landingpad``' instruction as its
6370 first non-PHI instruction.
6371- There can be only one '``landingpad``' instruction within the landing
6372 pad block.
6373- A basic block that is not a landing pad block may not include a
6374 '``landingpad``' instruction.
6375- All '``landingpad``' instructions in a function must have the same
6376 personality function.
6377
6378Example:
6379""""""""
6380
6381.. code-block:: llvm
6382
6383 ;; A landing pad which can catch an integer.
6384 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6385 catch i8** @_ZTIi
6386 ;; A landing pad that is a cleanup.
6387 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6388 cleanup
6389 ;; A landing pad which can catch an integer and can only throw a double.
6390 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6391 catch i8** @_ZTIi
6392 filter [1 x i8**] [@_ZTId]
6393
6394.. _intrinsics:
6395
6396Intrinsic Functions
6397===================
6398
6399LLVM supports the notion of an "intrinsic function". These functions
6400have well known names and semantics and are required to follow certain
6401restrictions. Overall, these intrinsics represent an extension mechanism
6402for the LLVM language that does not require changing all of the
6403transformations in LLVM when adding to the language (or the bitcode
6404reader/writer, the parser, etc...).
6405
6406Intrinsic function names must all start with an "``llvm.``" prefix. This
6407prefix is reserved in LLVM for intrinsic names; thus, function names may
6408not begin with this prefix. Intrinsic functions must always be external
6409functions: you cannot define the body of intrinsic functions. Intrinsic
6410functions may only be used in call or invoke instructions: it is illegal
6411to take the address of an intrinsic function. Additionally, because
6412intrinsic functions are part of the LLVM language, it is required if any
6413are added that they be documented here.
6414
6415Some intrinsic functions can be overloaded, i.e., the intrinsic
6416represents a family of functions that perform the same operation but on
6417different data types. Because LLVM can represent over 8 million
6418different integer types, overloading is used commonly to allow an
6419intrinsic function to operate on any integer type. One or more of the
6420argument types or the result type can be overloaded to accept any
6421integer type. Argument types may also be defined as exactly matching a
6422previous argument's type or the result type. This allows an intrinsic
6423function which accepts multiple arguments, but needs all of them to be
6424of the same type, to only be overloaded with respect to a single
6425argument or the result.
6426
6427Overloaded intrinsics will have the names of its overloaded argument
6428types encoded into its function name, each preceded by a period. Only
6429those types which are overloaded result in a name suffix. Arguments
6430whose type is matched against another type do not. For example, the
6431``llvm.ctpop`` function can take an integer of any width and returns an
6432integer of exactly the same integer width. This leads to a family of
6433functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6434``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6435overloaded, and only one type suffix is required. Because the argument's
6436type is matched against the return type, it does not require its own
6437name suffix.
6438
6439To learn how to add an intrinsic function, please see the `Extending
6440LLVM Guide <ExtendingLLVM.html>`_.
6441
6442.. _int_varargs:
6443
6444Variable Argument Handling Intrinsics
6445-------------------------------------
6446
6447Variable argument support is defined in LLVM with the
6448:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6449functions. These functions are related to the similarly named macros
6450defined in the ``<stdarg.h>`` header file.
6451
6452All of these functions operate on arguments that use a target-specific
6453value type "``va_list``". The LLVM assembly language reference manual
6454does not define what this type is, so all transformations should be
6455prepared to handle these functions regardless of the type used.
6456
6457This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6458variable argument handling intrinsic functions are used.
6459
6460.. code-block:: llvm
6461
6462 define i32 @test(i32 %X, ...) {
6463 ; Initialize variable argument processing
6464 %ap = alloca i8*
6465 %ap2 = bitcast i8** %ap to i8*
6466 call void @llvm.va_start(i8* %ap2)
6467
6468 ; Read a single integer argument
6469 %tmp = va_arg i8** %ap, i32
6470
6471 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6472 %aq = alloca i8*
6473 %aq2 = bitcast i8** %aq to i8*
6474 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6475 call void @llvm.va_end(i8* %aq2)
6476
6477 ; Stop processing of arguments.
6478 call void @llvm.va_end(i8* %ap2)
6479 ret i32 %tmp
6480 }
6481
6482 declare void @llvm.va_start(i8*)
6483 declare void @llvm.va_copy(i8*, i8*)
6484 declare void @llvm.va_end(i8*)
6485
6486.. _int_va_start:
6487
6488'``llvm.va_start``' Intrinsic
6489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6490
6491Syntax:
6492"""""""
6493
6494::
6495
Nick Lewycky04f6de02013-09-11 22:04:52 +00006496 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006497
6498Overview:
6499"""""""""
6500
6501The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6502subsequent use by ``va_arg``.
6503
6504Arguments:
6505""""""""""
6506
6507The argument is a pointer to a ``va_list`` element to initialize.
6508
6509Semantics:
6510""""""""""
6511
6512The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6513available in C. In a target-dependent way, it initializes the
6514``va_list`` element to which the argument points, so that the next call
6515to ``va_arg`` will produce the first variable argument passed to the
6516function. Unlike the C ``va_start`` macro, this intrinsic does not need
6517to know the last argument of the function as the compiler can figure
6518that out.
6519
6520'``llvm.va_end``' Intrinsic
6521^^^^^^^^^^^^^^^^^^^^^^^^^^^
6522
6523Syntax:
6524"""""""
6525
6526::
6527
6528 declare void @llvm.va_end(i8* <arglist>)
6529
6530Overview:
6531"""""""""
6532
6533The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6534initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6535
6536Arguments:
6537""""""""""
6538
6539The argument is a pointer to a ``va_list`` to destroy.
6540
6541Semantics:
6542""""""""""
6543
6544The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6545available in C. In a target-dependent way, it destroys the ``va_list``
6546element to which the argument points. Calls to
6547:ref:`llvm.va_start <int_va_start>` and
6548:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6549``llvm.va_end``.
6550
6551.. _int_va_copy:
6552
6553'``llvm.va_copy``' Intrinsic
6554^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6555
6556Syntax:
6557"""""""
6558
6559::
6560
6561 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6562
6563Overview:
6564"""""""""
6565
6566The '``llvm.va_copy``' intrinsic copies the current argument position
6567from the source argument list to the destination argument list.
6568
6569Arguments:
6570""""""""""
6571
6572The first argument is a pointer to a ``va_list`` element to initialize.
6573The second argument is a pointer to a ``va_list`` element to copy from.
6574
6575Semantics:
6576""""""""""
6577
6578The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6579available in C. In a target-dependent way, it copies the source
6580``va_list`` element into the destination ``va_list`` element. This
6581intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6582arbitrarily complex and require, for example, memory allocation.
6583
6584Accurate Garbage Collection Intrinsics
6585--------------------------------------
6586
6587LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6588(GC) requires the implementation and generation of these intrinsics.
6589These intrinsics allow identification of :ref:`GC roots on the
6590stack <int_gcroot>`, as well as garbage collector implementations that
6591require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6592Front-ends for type-safe garbage collected languages should generate
6593these intrinsics to make use of the LLVM garbage collectors. For more
6594details, see `Accurate Garbage Collection with
6595LLVM <GarbageCollection.html>`_.
6596
6597The garbage collection intrinsics only operate on objects in the generic
6598address space (address space zero).
6599
6600.. _int_gcroot:
6601
6602'``llvm.gcroot``' Intrinsic
6603^^^^^^^^^^^^^^^^^^^^^^^^^^^
6604
6605Syntax:
6606"""""""
6607
6608::
6609
6610 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6611
6612Overview:
6613"""""""""
6614
6615The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6616the code generator, and allows some metadata to be associated with it.
6617
6618Arguments:
6619""""""""""
6620
6621The first argument specifies the address of a stack object that contains
6622the root pointer. The second pointer (which must be either a constant or
6623a global value address) contains the meta-data to be associated with the
6624root.
6625
6626Semantics:
6627""""""""""
6628
6629At runtime, a call to this intrinsic stores a null pointer into the
6630"ptrloc" location. At compile-time, the code generator generates
6631information to allow the runtime to find the pointer at GC safe points.
6632The '``llvm.gcroot``' intrinsic may only be used in a function which
6633:ref:`specifies a GC algorithm <gc>`.
6634
6635.. _int_gcread:
6636
6637'``llvm.gcread``' Intrinsic
6638^^^^^^^^^^^^^^^^^^^^^^^^^^^
6639
6640Syntax:
6641"""""""
6642
6643::
6644
6645 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6646
6647Overview:
6648"""""""""
6649
6650The '``llvm.gcread``' intrinsic identifies reads of references from heap
6651locations, allowing garbage collector implementations that require read
6652barriers.
6653
6654Arguments:
6655""""""""""
6656
6657The second argument is the address to read from, which should be an
6658address allocated from the garbage collector. The first object is a
6659pointer to the start of the referenced object, if needed by the language
6660runtime (otherwise null).
6661
6662Semantics:
6663""""""""""
6664
6665The '``llvm.gcread``' intrinsic has the same semantics as a load
6666instruction, but may be replaced with substantially more complex code by
6667the garbage collector runtime, as needed. The '``llvm.gcread``'
6668intrinsic may only be used in a function which :ref:`specifies a GC
6669algorithm <gc>`.
6670
6671.. _int_gcwrite:
6672
6673'``llvm.gcwrite``' Intrinsic
6674^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6675
6676Syntax:
6677"""""""
6678
6679::
6680
6681 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6682
6683Overview:
6684"""""""""
6685
6686The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6687locations, allowing garbage collector implementations that require write
6688barriers (such as generational or reference counting collectors).
6689
6690Arguments:
6691""""""""""
6692
6693The first argument is the reference to store, the second is the start of
6694the object to store it to, and the third is the address of the field of
6695Obj to store to. If the runtime does not require a pointer to the
6696object, Obj may be null.
6697
6698Semantics:
6699""""""""""
6700
6701The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6702instruction, but may be replaced with substantially more complex code by
6703the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6704intrinsic may only be used in a function which :ref:`specifies a GC
6705algorithm <gc>`.
6706
6707Code Generator Intrinsics
6708-------------------------
6709
6710These intrinsics are provided by LLVM to expose special features that
6711may only be implemented with code generator support.
6712
6713'``llvm.returnaddress``' Intrinsic
6714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6715
6716Syntax:
6717"""""""
6718
6719::
6720
6721 declare i8 *@llvm.returnaddress(i32 <level>)
6722
6723Overview:
6724"""""""""
6725
6726The '``llvm.returnaddress``' intrinsic attempts to compute a
6727target-specific value indicating the return address of the current
6728function or one of its callers.
6729
6730Arguments:
6731""""""""""
6732
6733The argument to this intrinsic indicates which function to return the
6734address for. Zero indicates the calling function, one indicates its
6735caller, etc. The argument is **required** to be a constant integer
6736value.
6737
6738Semantics:
6739""""""""""
6740
6741The '``llvm.returnaddress``' intrinsic either returns a pointer
6742indicating the return address of the specified call frame, or zero if it
6743cannot be identified. The value returned by this intrinsic is likely to
6744be incorrect or 0 for arguments other than zero, so it should only be
6745used for debugging purposes.
6746
6747Note that calling this intrinsic does not prevent function inlining or
6748other aggressive transformations, so the value returned may not be that
6749of the obvious source-language caller.
6750
6751'``llvm.frameaddress``' Intrinsic
6752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6753
6754Syntax:
6755"""""""
6756
6757::
6758
6759 declare i8* @llvm.frameaddress(i32 <level>)
6760
6761Overview:
6762"""""""""
6763
6764The '``llvm.frameaddress``' intrinsic attempts to return the
6765target-specific frame pointer value for the specified stack frame.
6766
6767Arguments:
6768""""""""""
6769
6770The argument to this intrinsic indicates which function to return the
6771frame pointer for. Zero indicates the calling function, one indicates
6772its caller, etc. The argument is **required** to be a constant integer
6773value.
6774
6775Semantics:
6776""""""""""
6777
6778The '``llvm.frameaddress``' intrinsic either returns a pointer
6779indicating the frame address of the specified call frame, or zero if it
6780cannot be identified. The value returned by this intrinsic is likely to
6781be incorrect or 0 for arguments other than zero, so it should only be
6782used for debugging purposes.
6783
6784Note that calling this intrinsic does not prevent function inlining or
6785other aggressive transformations, so the value returned may not be that
6786of the obvious source-language caller.
6787
6788.. _int_stacksave:
6789
6790'``llvm.stacksave``' Intrinsic
6791^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6792
6793Syntax:
6794"""""""
6795
6796::
6797
6798 declare i8* @llvm.stacksave()
6799
6800Overview:
6801"""""""""
6802
6803The '``llvm.stacksave``' intrinsic is used to remember the current state
6804of the function stack, for use with
6805:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6806implementing language features like scoped automatic variable sized
6807arrays in C99.
6808
6809Semantics:
6810""""""""""
6811
6812This intrinsic returns a opaque pointer value that can be passed to
6813:ref:`llvm.stackrestore <int_stackrestore>`. When an
6814``llvm.stackrestore`` intrinsic is executed with a value saved from
6815``llvm.stacksave``, it effectively restores the state of the stack to
6816the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6817practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6818were allocated after the ``llvm.stacksave`` was executed.
6819
6820.. _int_stackrestore:
6821
6822'``llvm.stackrestore``' Intrinsic
6823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6824
6825Syntax:
6826"""""""
6827
6828::
6829
6830 declare void @llvm.stackrestore(i8* %ptr)
6831
6832Overview:
6833"""""""""
6834
6835The '``llvm.stackrestore``' intrinsic is used to restore the state of
6836the function stack to the state it was in when the corresponding
6837:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6838useful for implementing language features like scoped automatic variable
6839sized arrays in C99.
6840
6841Semantics:
6842""""""""""
6843
6844See the description for :ref:`llvm.stacksave <int_stacksave>`.
6845
6846'``llvm.prefetch``' Intrinsic
6847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6848
6849Syntax:
6850"""""""
6851
6852::
6853
6854 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6855
6856Overview:
6857"""""""""
6858
6859The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6860insert a prefetch instruction if supported; otherwise, it is a noop.
6861Prefetches have no effect on the behavior of the program but can change
6862its performance characteristics.
6863
6864Arguments:
6865""""""""""
6866
6867``address`` is the address to be prefetched, ``rw`` is the specifier
6868determining if the fetch should be for a read (0) or write (1), and
6869``locality`` is a temporal locality specifier ranging from (0) - no
6870locality, to (3) - extremely local keep in cache. The ``cache type``
6871specifies whether the prefetch is performed on the data (1) or
6872instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6873arguments must be constant integers.
6874
6875Semantics:
6876""""""""""
6877
6878This intrinsic does not modify the behavior of the program. In
6879particular, prefetches cannot trap and do not produce a value. On
6880targets that support this intrinsic, the prefetch can provide hints to
6881the processor cache for better performance.
6882
6883'``llvm.pcmarker``' Intrinsic
6884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6885
6886Syntax:
6887"""""""
6888
6889::
6890
6891 declare void @llvm.pcmarker(i32 <id>)
6892
6893Overview:
6894"""""""""
6895
6896The '``llvm.pcmarker``' intrinsic is a method to export a Program
6897Counter (PC) in a region of code to simulators and other tools. The
6898method is target specific, but it is expected that the marker will use
6899exported symbols to transmit the PC of the marker. The marker makes no
6900guarantees that it will remain with any specific instruction after
6901optimizations. It is possible that the presence of a marker will inhibit
6902optimizations. The intended use is to be inserted after optimizations to
6903allow correlations of simulation runs.
6904
6905Arguments:
6906""""""""""
6907
6908``id`` is a numerical id identifying the marker.
6909
6910Semantics:
6911""""""""""
6912
6913This intrinsic does not modify the behavior of the program. Backends
6914that do not support this intrinsic may ignore it.
6915
6916'``llvm.readcyclecounter``' Intrinsic
6917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6918
6919Syntax:
6920"""""""
6921
6922::
6923
6924 declare i64 @llvm.readcyclecounter()
6925
6926Overview:
6927"""""""""
6928
6929The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6930counter register (or similar low latency, high accuracy clocks) on those
6931targets that support it. On X86, it should map to RDTSC. On Alpha, it
6932should map to RPCC. As the backing counters overflow quickly (on the
6933order of 9 seconds on alpha), this should only be used for small
6934timings.
6935
6936Semantics:
6937""""""""""
6938
6939When directly supported, reading the cycle counter should not modify any
6940memory. Implementations are allowed to either return a application
6941specific value or a system wide value. On backends without support, this
6942is lowered to a constant 0.
6943
Tim Northoverbc933082013-05-23 19:11:20 +00006944Note that runtime support may be conditional on the privilege-level code is
6945running at and the host platform.
6946
Sean Silvab084af42012-12-07 10:36:55 +00006947Standard C Library Intrinsics
6948-----------------------------
6949
6950LLVM provides intrinsics for a few important standard C library
6951functions. These intrinsics allow source-language front-ends to pass
6952information about the alignment of the pointer arguments to the code
6953generator, providing opportunity for more efficient code generation.
6954
6955.. _int_memcpy:
6956
6957'``llvm.memcpy``' Intrinsic
6958^^^^^^^^^^^^^^^^^^^^^^^^^^^
6959
6960Syntax:
6961"""""""
6962
6963This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6964integer bit width and for different address spaces. Not all targets
6965support all bit widths however.
6966
6967::
6968
6969 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6970 i32 <len>, i32 <align>, i1 <isvolatile>)
6971 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6972 i64 <len>, i32 <align>, i1 <isvolatile>)
6973
6974Overview:
6975"""""""""
6976
6977The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6978source location to the destination location.
6979
6980Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6981intrinsics do not return a value, takes extra alignment/isvolatile
6982arguments and the pointers can be in specified address spaces.
6983
6984Arguments:
6985""""""""""
6986
6987The first argument is a pointer to the destination, the second is a
6988pointer to the source. The third argument is an integer argument
6989specifying the number of bytes to copy, the fourth argument is the
6990alignment of the source and destination locations, and the fifth is a
6991boolean indicating a volatile access.
6992
6993If the call to this intrinsic has an alignment value that is not 0 or 1,
6994then the caller guarantees that both the source and destination pointers
6995are aligned to that boundary.
6996
6997If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6998a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6999very cleanly specified and it is unwise to depend on it.
7000
7001Semantics:
7002""""""""""
7003
7004The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7005source location to the destination location, which are not allowed to
7006overlap. It copies "len" bytes of memory over. If the argument is known
7007to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007008argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007009
7010'``llvm.memmove``' Intrinsic
7011^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7012
7013Syntax:
7014"""""""
7015
7016This is an overloaded intrinsic. You can use llvm.memmove on any integer
7017bit width and for different address space. Not all targets support all
7018bit widths however.
7019
7020::
7021
7022 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7023 i32 <len>, i32 <align>, i1 <isvolatile>)
7024 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7025 i64 <len>, i32 <align>, i1 <isvolatile>)
7026
7027Overview:
7028"""""""""
7029
7030The '``llvm.memmove.*``' intrinsics move a block of memory from the
7031source location to the destination location. It is similar to the
7032'``llvm.memcpy``' intrinsic but allows the two memory locations to
7033overlap.
7034
7035Note that, unlike the standard libc function, the ``llvm.memmove.*``
7036intrinsics do not return a value, takes extra alignment/isvolatile
7037arguments and the pointers can be in specified address spaces.
7038
7039Arguments:
7040""""""""""
7041
7042The first argument is a pointer to the destination, the second is a
7043pointer to the source. The third argument is an integer argument
7044specifying the number of bytes to copy, the fourth argument is the
7045alignment of the source and destination locations, and the fifth is a
7046boolean indicating a volatile access.
7047
7048If the call to this intrinsic has an alignment value that is not 0 or 1,
7049then the caller guarantees that the source and destination pointers are
7050aligned to that boundary.
7051
7052If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7053is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7054not very cleanly specified and it is unwise to depend on it.
7055
7056Semantics:
7057""""""""""
7058
7059The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7060source location to the destination location, which may overlap. It
7061copies "len" bytes of memory over. If the argument is known to be
7062aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007063otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007064
7065'``llvm.memset.*``' Intrinsics
7066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7067
7068Syntax:
7069"""""""
7070
7071This is an overloaded intrinsic. You can use llvm.memset on any integer
7072bit width and for different address spaces. However, not all targets
7073support all bit widths.
7074
7075::
7076
7077 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7078 i32 <len>, i32 <align>, i1 <isvolatile>)
7079 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7080 i64 <len>, i32 <align>, i1 <isvolatile>)
7081
7082Overview:
7083"""""""""
7084
7085The '``llvm.memset.*``' intrinsics fill a block of memory with a
7086particular byte value.
7087
7088Note that, unlike the standard libc function, the ``llvm.memset``
7089intrinsic does not return a value and takes extra alignment/volatile
7090arguments. Also, the destination can be in an arbitrary address space.
7091
7092Arguments:
7093""""""""""
7094
7095The first argument is a pointer to the destination to fill, the second
7096is the byte value with which to fill it, the third argument is an
7097integer argument specifying the number of bytes to fill, and the fourth
7098argument is the known alignment of the destination location.
7099
7100If the call to this intrinsic has an alignment value that is not 0 or 1,
7101then the caller guarantees that the destination pointer is aligned to
7102that boundary.
7103
7104If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7105a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7106very cleanly specified and it is unwise to depend on it.
7107
7108Semantics:
7109""""""""""
7110
7111The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7112at the destination location. If the argument is known to be aligned to
7113some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007114it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007115
7116'``llvm.sqrt.*``' Intrinsic
7117^^^^^^^^^^^^^^^^^^^^^^^^^^^
7118
7119Syntax:
7120"""""""
7121
7122This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7123floating point or vector of floating point type. Not all targets support
7124all types however.
7125
7126::
7127
7128 declare float @llvm.sqrt.f32(float %Val)
7129 declare double @llvm.sqrt.f64(double %Val)
7130 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7131 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7132 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7133
7134Overview:
7135"""""""""
7136
7137The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7138returning the same value as the libm '``sqrt``' functions would. Unlike
7139``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7140negative numbers other than -0.0 (which allows for better optimization,
7141because there is no need to worry about errno being set).
7142``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7143
7144Arguments:
7145""""""""""
7146
7147The argument and return value are floating point numbers of the same
7148type.
7149
7150Semantics:
7151""""""""""
7152
7153This function returns the sqrt of the specified operand if it is a
7154nonnegative floating point number.
7155
7156'``llvm.powi.*``' Intrinsic
7157^^^^^^^^^^^^^^^^^^^^^^^^^^^
7158
7159Syntax:
7160"""""""
7161
7162This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7163floating point or vector of floating point type. Not all targets support
7164all types however.
7165
7166::
7167
7168 declare float @llvm.powi.f32(float %Val, i32 %power)
7169 declare double @llvm.powi.f64(double %Val, i32 %power)
7170 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7171 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7172 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7173
7174Overview:
7175"""""""""
7176
7177The '``llvm.powi.*``' intrinsics return the first operand raised to the
7178specified (positive or negative) power. The order of evaluation of
7179multiplications is not defined. When a vector of floating point type is
7180used, the second argument remains a scalar integer value.
7181
7182Arguments:
7183""""""""""
7184
7185The second argument is an integer power, and the first is a value to
7186raise to that power.
7187
7188Semantics:
7189""""""""""
7190
7191This function returns the first value raised to the second power with an
7192unspecified sequence of rounding operations.
7193
7194'``llvm.sin.*``' Intrinsic
7195^^^^^^^^^^^^^^^^^^^^^^^^^^
7196
7197Syntax:
7198"""""""
7199
7200This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7201floating point or vector of floating point type. Not all targets support
7202all types however.
7203
7204::
7205
7206 declare float @llvm.sin.f32(float %Val)
7207 declare double @llvm.sin.f64(double %Val)
7208 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7209 declare fp128 @llvm.sin.f128(fp128 %Val)
7210 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7211
7212Overview:
7213"""""""""
7214
7215The '``llvm.sin.*``' intrinsics return the sine of the operand.
7216
7217Arguments:
7218""""""""""
7219
7220The argument and return value are floating point numbers of the same
7221type.
7222
7223Semantics:
7224""""""""""
7225
7226This function returns the sine of the specified operand, returning the
7227same values as the libm ``sin`` functions would, and handles error
7228conditions in the same way.
7229
7230'``llvm.cos.*``' Intrinsic
7231^^^^^^^^^^^^^^^^^^^^^^^^^^
7232
7233Syntax:
7234"""""""
7235
7236This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7237floating point or vector of floating point type. Not all targets support
7238all types however.
7239
7240::
7241
7242 declare float @llvm.cos.f32(float %Val)
7243 declare double @llvm.cos.f64(double %Val)
7244 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7245 declare fp128 @llvm.cos.f128(fp128 %Val)
7246 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7247
7248Overview:
7249"""""""""
7250
7251The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7252
7253Arguments:
7254""""""""""
7255
7256The argument and return value are floating point numbers of the same
7257type.
7258
7259Semantics:
7260""""""""""
7261
7262This function returns the cosine of the specified operand, returning the
7263same values as the libm ``cos`` functions would, and handles error
7264conditions in the same way.
7265
7266'``llvm.pow.*``' Intrinsic
7267^^^^^^^^^^^^^^^^^^^^^^^^^^
7268
7269Syntax:
7270"""""""
7271
7272This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7273floating point or vector of floating point type. Not all targets support
7274all types however.
7275
7276::
7277
7278 declare float @llvm.pow.f32(float %Val, float %Power)
7279 declare double @llvm.pow.f64(double %Val, double %Power)
7280 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7281 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7282 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7283
7284Overview:
7285"""""""""
7286
7287The '``llvm.pow.*``' intrinsics return the first operand raised to the
7288specified (positive or negative) power.
7289
7290Arguments:
7291""""""""""
7292
7293The second argument is a floating point power, and the first is a value
7294to raise to that power.
7295
7296Semantics:
7297""""""""""
7298
7299This function returns the first value raised to the second power,
7300returning the same values as the libm ``pow`` functions would, and
7301handles error conditions in the same way.
7302
7303'``llvm.exp.*``' Intrinsic
7304^^^^^^^^^^^^^^^^^^^^^^^^^^
7305
7306Syntax:
7307"""""""
7308
7309This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7310floating point or vector of floating point type. Not all targets support
7311all types however.
7312
7313::
7314
7315 declare float @llvm.exp.f32(float %Val)
7316 declare double @llvm.exp.f64(double %Val)
7317 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7318 declare fp128 @llvm.exp.f128(fp128 %Val)
7319 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7320
7321Overview:
7322"""""""""
7323
7324The '``llvm.exp.*``' intrinsics perform the exp function.
7325
7326Arguments:
7327""""""""""
7328
7329The argument and return value are floating point numbers of the same
7330type.
7331
7332Semantics:
7333""""""""""
7334
7335This function returns the same values as the libm ``exp`` functions
7336would, and handles error conditions in the same way.
7337
7338'``llvm.exp2.*``' Intrinsic
7339^^^^^^^^^^^^^^^^^^^^^^^^^^^
7340
7341Syntax:
7342"""""""
7343
7344This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7345floating point or vector of floating point type. Not all targets support
7346all types however.
7347
7348::
7349
7350 declare float @llvm.exp2.f32(float %Val)
7351 declare double @llvm.exp2.f64(double %Val)
7352 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7353 declare fp128 @llvm.exp2.f128(fp128 %Val)
7354 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7355
7356Overview:
7357"""""""""
7358
7359The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7360
7361Arguments:
7362""""""""""
7363
7364The argument and return value are floating point numbers of the same
7365type.
7366
7367Semantics:
7368""""""""""
7369
7370This function returns the same values as the libm ``exp2`` functions
7371would, and handles error conditions in the same way.
7372
7373'``llvm.log.*``' Intrinsic
7374^^^^^^^^^^^^^^^^^^^^^^^^^^
7375
7376Syntax:
7377"""""""
7378
7379This is an overloaded intrinsic. You can use ``llvm.log`` on any
7380floating point or vector of floating point type. Not all targets support
7381all types however.
7382
7383::
7384
7385 declare float @llvm.log.f32(float %Val)
7386 declare double @llvm.log.f64(double %Val)
7387 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7388 declare fp128 @llvm.log.f128(fp128 %Val)
7389 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7390
7391Overview:
7392"""""""""
7393
7394The '``llvm.log.*``' intrinsics perform the log function.
7395
7396Arguments:
7397""""""""""
7398
7399The argument and return value are floating point numbers of the same
7400type.
7401
7402Semantics:
7403""""""""""
7404
7405This function returns the same values as the libm ``log`` functions
7406would, and handles error conditions in the same way.
7407
7408'``llvm.log10.*``' Intrinsic
7409^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7410
7411Syntax:
7412"""""""
7413
7414This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7415floating point or vector of floating point type. Not all targets support
7416all types however.
7417
7418::
7419
7420 declare float @llvm.log10.f32(float %Val)
7421 declare double @llvm.log10.f64(double %Val)
7422 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7423 declare fp128 @llvm.log10.f128(fp128 %Val)
7424 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7425
7426Overview:
7427"""""""""
7428
7429The '``llvm.log10.*``' intrinsics perform the log10 function.
7430
7431Arguments:
7432""""""""""
7433
7434The argument and return value are floating point numbers of the same
7435type.
7436
7437Semantics:
7438""""""""""
7439
7440This function returns the same values as the libm ``log10`` functions
7441would, and handles error conditions in the same way.
7442
7443'``llvm.log2.*``' Intrinsic
7444^^^^^^^^^^^^^^^^^^^^^^^^^^^
7445
7446Syntax:
7447"""""""
7448
7449This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7450floating point or vector of floating point type. Not all targets support
7451all types however.
7452
7453::
7454
7455 declare float @llvm.log2.f32(float %Val)
7456 declare double @llvm.log2.f64(double %Val)
7457 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7458 declare fp128 @llvm.log2.f128(fp128 %Val)
7459 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7460
7461Overview:
7462"""""""""
7463
7464The '``llvm.log2.*``' intrinsics perform the log2 function.
7465
7466Arguments:
7467""""""""""
7468
7469The argument and return value are floating point numbers of the same
7470type.
7471
7472Semantics:
7473""""""""""
7474
7475This function returns the same values as the libm ``log2`` functions
7476would, and handles error conditions in the same way.
7477
7478'``llvm.fma.*``' Intrinsic
7479^^^^^^^^^^^^^^^^^^^^^^^^^^
7480
7481Syntax:
7482"""""""
7483
7484This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7485floating point or vector of floating point type. Not all targets support
7486all types however.
7487
7488::
7489
7490 declare float @llvm.fma.f32(float %a, float %b, float %c)
7491 declare double @llvm.fma.f64(double %a, double %b, double %c)
7492 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7493 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7494 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7495
7496Overview:
7497"""""""""
7498
7499The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7500operation.
7501
7502Arguments:
7503""""""""""
7504
7505The argument and return value are floating point numbers of the same
7506type.
7507
7508Semantics:
7509""""""""""
7510
7511This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007512would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007513
7514'``llvm.fabs.*``' Intrinsic
7515^^^^^^^^^^^^^^^^^^^^^^^^^^^
7516
7517Syntax:
7518"""""""
7519
7520This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7521floating point or vector of floating point type. Not all targets support
7522all types however.
7523
7524::
7525
7526 declare float @llvm.fabs.f32(float %Val)
7527 declare double @llvm.fabs.f64(double %Val)
7528 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7529 declare fp128 @llvm.fabs.f128(fp128 %Val)
7530 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7531
7532Overview:
7533"""""""""
7534
7535The '``llvm.fabs.*``' intrinsics return the absolute value of the
7536operand.
7537
7538Arguments:
7539""""""""""
7540
7541The argument and return value are floating point numbers of the same
7542type.
7543
7544Semantics:
7545""""""""""
7546
7547This function returns the same values as the libm ``fabs`` functions
7548would, and handles error conditions in the same way.
7549
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007550'``llvm.copysign.*``' Intrinsic
7551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7552
7553Syntax:
7554"""""""
7555
7556This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7557floating point or vector of floating point type. Not all targets support
7558all types however.
7559
7560::
7561
7562 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7563 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7564 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7565 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7566 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7567
7568Overview:
7569"""""""""
7570
7571The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7572first operand and the sign of the second operand.
7573
7574Arguments:
7575""""""""""
7576
7577The arguments and return value are floating point numbers of the same
7578type.
7579
7580Semantics:
7581""""""""""
7582
7583This function returns the same values as the libm ``copysign``
7584functions would, and handles error conditions in the same way.
7585
Sean Silvab084af42012-12-07 10:36:55 +00007586'``llvm.floor.*``' Intrinsic
7587^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7588
7589Syntax:
7590"""""""
7591
7592This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7593floating point or vector of floating point type. Not all targets support
7594all types however.
7595
7596::
7597
7598 declare float @llvm.floor.f32(float %Val)
7599 declare double @llvm.floor.f64(double %Val)
7600 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7601 declare fp128 @llvm.floor.f128(fp128 %Val)
7602 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7603
7604Overview:
7605"""""""""
7606
7607The '``llvm.floor.*``' intrinsics return the floor of the operand.
7608
7609Arguments:
7610""""""""""
7611
7612The argument and return value are floating point numbers of the same
7613type.
7614
7615Semantics:
7616""""""""""
7617
7618This function returns the same values as the libm ``floor`` functions
7619would, and handles error conditions in the same way.
7620
7621'``llvm.ceil.*``' Intrinsic
7622^^^^^^^^^^^^^^^^^^^^^^^^^^^
7623
7624Syntax:
7625"""""""
7626
7627This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7628floating point or vector of floating point type. Not all targets support
7629all types however.
7630
7631::
7632
7633 declare float @llvm.ceil.f32(float %Val)
7634 declare double @llvm.ceil.f64(double %Val)
7635 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7636 declare fp128 @llvm.ceil.f128(fp128 %Val)
7637 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7638
7639Overview:
7640"""""""""
7641
7642The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7643
7644Arguments:
7645""""""""""
7646
7647The argument and return value are floating point numbers of the same
7648type.
7649
7650Semantics:
7651""""""""""
7652
7653This function returns the same values as the libm ``ceil`` functions
7654would, and handles error conditions in the same way.
7655
7656'``llvm.trunc.*``' Intrinsic
7657^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7658
7659Syntax:
7660"""""""
7661
7662This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7663floating point or vector of floating point type. Not all targets support
7664all types however.
7665
7666::
7667
7668 declare float @llvm.trunc.f32(float %Val)
7669 declare double @llvm.trunc.f64(double %Val)
7670 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7671 declare fp128 @llvm.trunc.f128(fp128 %Val)
7672 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7673
7674Overview:
7675"""""""""
7676
7677The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7678nearest integer not larger in magnitude than the operand.
7679
7680Arguments:
7681""""""""""
7682
7683The argument and return value are floating point numbers of the same
7684type.
7685
7686Semantics:
7687""""""""""
7688
7689This function returns the same values as the libm ``trunc`` functions
7690would, and handles error conditions in the same way.
7691
7692'``llvm.rint.*``' Intrinsic
7693^^^^^^^^^^^^^^^^^^^^^^^^^^^
7694
7695Syntax:
7696"""""""
7697
7698This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7699floating point or vector of floating point type. Not all targets support
7700all types however.
7701
7702::
7703
7704 declare float @llvm.rint.f32(float %Val)
7705 declare double @llvm.rint.f64(double %Val)
7706 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7707 declare fp128 @llvm.rint.f128(fp128 %Val)
7708 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7709
7710Overview:
7711"""""""""
7712
7713The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7714nearest integer. It may raise an inexact floating-point exception if the
7715operand isn't an integer.
7716
7717Arguments:
7718""""""""""
7719
7720The argument and return value are floating point numbers of the same
7721type.
7722
7723Semantics:
7724""""""""""
7725
7726This function returns the same values as the libm ``rint`` functions
7727would, and handles error conditions in the same way.
7728
7729'``llvm.nearbyint.*``' Intrinsic
7730^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7731
7732Syntax:
7733"""""""
7734
7735This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7736floating point or vector of floating point type. Not all targets support
7737all types however.
7738
7739::
7740
7741 declare float @llvm.nearbyint.f32(float %Val)
7742 declare double @llvm.nearbyint.f64(double %Val)
7743 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7744 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7745 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7746
7747Overview:
7748"""""""""
7749
7750The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7751nearest integer.
7752
7753Arguments:
7754""""""""""
7755
7756The argument and return value are floating point numbers of the same
7757type.
7758
7759Semantics:
7760""""""""""
7761
7762This function returns the same values as the libm ``nearbyint``
7763functions would, and handles error conditions in the same way.
7764
Hal Finkel171817e2013-08-07 22:49:12 +00007765'``llvm.round.*``' Intrinsic
7766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7767
7768Syntax:
7769"""""""
7770
7771This is an overloaded intrinsic. You can use ``llvm.round`` on any
7772floating point or vector of floating point type. Not all targets support
7773all types however.
7774
7775::
7776
7777 declare float @llvm.round.f32(float %Val)
7778 declare double @llvm.round.f64(double %Val)
7779 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7780 declare fp128 @llvm.round.f128(fp128 %Val)
7781 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7782
7783Overview:
7784"""""""""
7785
7786The '``llvm.round.*``' intrinsics returns the operand rounded to the
7787nearest integer.
7788
7789Arguments:
7790""""""""""
7791
7792The argument and return value are floating point numbers of the same
7793type.
7794
7795Semantics:
7796""""""""""
7797
7798This function returns the same values as the libm ``round``
7799functions would, and handles error conditions in the same way.
7800
Sean Silvab084af42012-12-07 10:36:55 +00007801Bit Manipulation Intrinsics
7802---------------------------
7803
7804LLVM provides intrinsics for a few important bit manipulation
7805operations. These allow efficient code generation for some algorithms.
7806
7807'``llvm.bswap.*``' Intrinsics
7808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7809
7810Syntax:
7811"""""""
7812
7813This is an overloaded intrinsic function. You can use bswap on any
7814integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7815
7816::
7817
7818 declare i16 @llvm.bswap.i16(i16 <id>)
7819 declare i32 @llvm.bswap.i32(i32 <id>)
7820 declare i64 @llvm.bswap.i64(i64 <id>)
7821
7822Overview:
7823"""""""""
7824
7825The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7826values with an even number of bytes (positive multiple of 16 bits).
7827These are useful for performing operations on data that is not in the
7828target's native byte order.
7829
7830Semantics:
7831""""""""""
7832
7833The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7834and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7835intrinsic returns an i32 value that has the four bytes of the input i32
7836swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7837returned i32 will have its bytes in 3, 2, 1, 0 order. The
7838``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7839concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7840respectively).
7841
7842'``llvm.ctpop.*``' Intrinsic
7843^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7844
7845Syntax:
7846"""""""
7847
7848This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7849bit width, or on any vector with integer elements. Not all targets
7850support all bit widths or vector types, however.
7851
7852::
7853
7854 declare i8 @llvm.ctpop.i8(i8 <src>)
7855 declare i16 @llvm.ctpop.i16(i16 <src>)
7856 declare i32 @llvm.ctpop.i32(i32 <src>)
7857 declare i64 @llvm.ctpop.i64(i64 <src>)
7858 declare i256 @llvm.ctpop.i256(i256 <src>)
7859 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7860
7861Overview:
7862"""""""""
7863
7864The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7865in a value.
7866
7867Arguments:
7868""""""""""
7869
7870The only argument is the value to be counted. The argument may be of any
7871integer type, or a vector with integer elements. The return type must
7872match the argument type.
7873
7874Semantics:
7875""""""""""
7876
7877The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7878each element of a vector.
7879
7880'``llvm.ctlz.*``' Intrinsic
7881^^^^^^^^^^^^^^^^^^^^^^^^^^^
7882
7883Syntax:
7884"""""""
7885
7886This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7887integer bit width, or any vector whose elements are integers. Not all
7888targets support all bit widths or vector types, however.
7889
7890::
7891
7892 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7893 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7894 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7895 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7896 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7897 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7898
7899Overview:
7900"""""""""
7901
7902The '``llvm.ctlz``' family of intrinsic functions counts the number of
7903leading zeros in a variable.
7904
7905Arguments:
7906""""""""""
7907
7908The first argument is the value to be counted. This argument may be of
7909any integer type, or a vectory with integer element type. The return
7910type must match the first argument type.
7911
7912The second argument must be a constant and is a flag to indicate whether
7913the intrinsic should ensure that a zero as the first argument produces a
7914defined result. Historically some architectures did not provide a
7915defined result for zero values as efficiently, and many algorithms are
7916now predicated on avoiding zero-value inputs.
7917
7918Semantics:
7919""""""""""
7920
7921The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7922zeros in a variable, or within each element of the vector. If
7923``src == 0`` then the result is the size in bits of the type of ``src``
7924if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7925``llvm.ctlz(i32 2) = 30``.
7926
7927'``llvm.cttz.*``' Intrinsic
7928^^^^^^^^^^^^^^^^^^^^^^^^^^^
7929
7930Syntax:
7931"""""""
7932
7933This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7934integer bit width, or any vector of integer elements. Not all targets
7935support all bit widths or vector types, however.
7936
7937::
7938
7939 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7940 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7941 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7942 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7943 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7944 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7945
7946Overview:
7947"""""""""
7948
7949The '``llvm.cttz``' family of intrinsic functions counts the number of
7950trailing zeros.
7951
7952Arguments:
7953""""""""""
7954
7955The first argument is the value to be counted. This argument may be of
7956any integer type, or a vectory with integer element type. The return
7957type must match the first argument type.
7958
7959The second argument must be a constant and is a flag to indicate whether
7960the intrinsic should ensure that a zero as the first argument produces a
7961defined result. Historically some architectures did not provide a
7962defined result for zero values as efficiently, and many algorithms are
7963now predicated on avoiding zero-value inputs.
7964
7965Semantics:
7966""""""""""
7967
7968The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7969zeros in a variable, or within each element of a vector. If ``src == 0``
7970then the result is the size in bits of the type of ``src`` if
7971``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7972``llvm.cttz(2) = 1``.
7973
7974Arithmetic with Overflow Intrinsics
7975-----------------------------------
7976
7977LLVM provides intrinsics for some arithmetic with overflow operations.
7978
7979'``llvm.sadd.with.overflow.*``' Intrinsics
7980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7981
7982Syntax:
7983"""""""
7984
7985This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7986on any integer bit width.
7987
7988::
7989
7990 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7991 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7992 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7993
7994Overview:
7995"""""""""
7996
7997The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7998a signed addition of the two arguments, and indicate whether an overflow
7999occurred during the signed summation.
8000
8001Arguments:
8002""""""""""
8003
8004The arguments (%a and %b) and the first element of the result structure
8005may be of integer types of any bit width, but they must have the same
8006bit width. The second element of the result structure must be of type
8007``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8008addition.
8009
8010Semantics:
8011""""""""""
8012
8013The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008014a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008015first element of which is the signed summation, and the second element
8016of which is a bit specifying if the signed summation resulted in an
8017overflow.
8018
8019Examples:
8020"""""""""
8021
8022.. code-block:: llvm
8023
8024 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8025 %sum = extractvalue {i32, i1} %res, 0
8026 %obit = extractvalue {i32, i1} %res, 1
8027 br i1 %obit, label %overflow, label %normal
8028
8029'``llvm.uadd.with.overflow.*``' Intrinsics
8030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8031
8032Syntax:
8033"""""""
8034
8035This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8036on any integer bit width.
8037
8038::
8039
8040 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8041 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8042 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8043
8044Overview:
8045"""""""""
8046
8047The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8048an unsigned addition of the two arguments, and indicate whether a carry
8049occurred during the unsigned summation.
8050
8051Arguments:
8052""""""""""
8053
8054The arguments (%a and %b) and the first element of the result structure
8055may be of integer types of any bit width, but they must have the same
8056bit width. The second element of the result structure must be of type
8057``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8058addition.
8059
8060Semantics:
8061""""""""""
8062
8063The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008064an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008065first element of which is the sum, and the second element of which is a
8066bit specifying if the unsigned summation resulted in a carry.
8067
8068Examples:
8069"""""""""
8070
8071.. code-block:: llvm
8072
8073 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8074 %sum = extractvalue {i32, i1} %res, 0
8075 %obit = extractvalue {i32, i1} %res, 1
8076 br i1 %obit, label %carry, label %normal
8077
8078'``llvm.ssub.with.overflow.*``' Intrinsics
8079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8080
8081Syntax:
8082"""""""
8083
8084This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8085on any integer bit width.
8086
8087::
8088
8089 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8090 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8091 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8092
8093Overview:
8094"""""""""
8095
8096The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8097a signed subtraction of the two arguments, and indicate whether an
8098overflow occurred during the signed subtraction.
8099
8100Arguments:
8101""""""""""
8102
8103The arguments (%a and %b) and the first element of the result structure
8104may be of integer types of any bit width, but they must have the same
8105bit width. The second element of the result structure must be of type
8106``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8107subtraction.
8108
8109Semantics:
8110""""""""""
8111
8112The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008113a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008114first element of which is the subtraction, and the second element of
8115which is a bit specifying if the signed subtraction resulted in an
8116overflow.
8117
8118Examples:
8119"""""""""
8120
8121.. code-block:: llvm
8122
8123 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8124 %sum = extractvalue {i32, i1} %res, 0
8125 %obit = extractvalue {i32, i1} %res, 1
8126 br i1 %obit, label %overflow, label %normal
8127
8128'``llvm.usub.with.overflow.*``' Intrinsics
8129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8130
8131Syntax:
8132"""""""
8133
8134This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8135on any integer bit width.
8136
8137::
8138
8139 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8140 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8141 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8142
8143Overview:
8144"""""""""
8145
8146The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8147an unsigned subtraction of the two arguments, and indicate whether an
8148overflow occurred during the unsigned subtraction.
8149
8150Arguments:
8151""""""""""
8152
8153The arguments (%a and %b) and the first element of the result structure
8154may be of integer types of any bit width, but they must have the same
8155bit width. The second element of the result structure must be of type
8156``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8157subtraction.
8158
8159Semantics:
8160""""""""""
8161
8162The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008163an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008164the first element of which is the subtraction, and the second element of
8165which is a bit specifying if the unsigned subtraction resulted in an
8166overflow.
8167
8168Examples:
8169"""""""""
8170
8171.. code-block:: llvm
8172
8173 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8174 %sum = extractvalue {i32, i1} %res, 0
8175 %obit = extractvalue {i32, i1} %res, 1
8176 br i1 %obit, label %overflow, label %normal
8177
8178'``llvm.smul.with.overflow.*``' Intrinsics
8179^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8180
8181Syntax:
8182"""""""
8183
8184This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8185on any integer bit width.
8186
8187::
8188
8189 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8190 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8191 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8192
8193Overview:
8194"""""""""
8195
8196The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8197a signed multiplication of the two arguments, and indicate whether an
8198overflow occurred during the signed multiplication.
8199
8200Arguments:
8201""""""""""
8202
8203The arguments (%a and %b) and the first element of the result structure
8204may be of integer types of any bit width, but they must have the same
8205bit width. The second element of the result structure must be of type
8206``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8207multiplication.
8208
8209Semantics:
8210""""""""""
8211
8212The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008213a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008214the first element of which is the multiplication, and the second element
8215of which is a bit specifying if the signed multiplication resulted in an
8216overflow.
8217
8218Examples:
8219"""""""""
8220
8221.. code-block:: llvm
8222
8223 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8224 %sum = extractvalue {i32, i1} %res, 0
8225 %obit = extractvalue {i32, i1} %res, 1
8226 br i1 %obit, label %overflow, label %normal
8227
8228'``llvm.umul.with.overflow.*``' Intrinsics
8229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8230
8231Syntax:
8232"""""""
8233
8234This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8235on any integer bit width.
8236
8237::
8238
8239 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8240 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8241 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8242
8243Overview:
8244"""""""""
8245
8246The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8247a unsigned multiplication of the two arguments, and indicate whether an
8248overflow occurred during the unsigned multiplication.
8249
8250Arguments:
8251""""""""""
8252
8253The arguments (%a and %b) and the first element of the result structure
8254may be of integer types of any bit width, but they must have the same
8255bit width. The second element of the result structure must be of type
8256``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8257multiplication.
8258
8259Semantics:
8260""""""""""
8261
8262The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008263an unsigned multiplication of the two arguments. They return a structure ---
8264the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008265element of which is a bit specifying if the unsigned multiplication
8266resulted in an overflow.
8267
8268Examples:
8269"""""""""
8270
8271.. code-block:: llvm
8272
8273 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8274 %sum = extractvalue {i32, i1} %res, 0
8275 %obit = extractvalue {i32, i1} %res, 1
8276 br i1 %obit, label %overflow, label %normal
8277
8278Specialised Arithmetic Intrinsics
8279---------------------------------
8280
8281'``llvm.fmuladd.*``' Intrinsic
8282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8283
8284Syntax:
8285"""""""
8286
8287::
8288
8289 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8290 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8291
8292Overview:
8293"""""""""
8294
8295The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008296expressions that can be fused if the code generator determines that (a) the
8297target instruction set has support for a fused operation, and (b) that the
8298fused operation is more efficient than the equivalent, separate pair of mul
8299and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008300
8301Arguments:
8302""""""""""
8303
8304The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8305multiplicands, a and b, and an addend c.
8306
8307Semantics:
8308""""""""""
8309
8310The expression:
8311
8312::
8313
8314 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8315
8316is equivalent to the expression a \* b + c, except that rounding will
8317not be performed between the multiplication and addition steps if the
8318code generator fuses the operations. Fusion is not guaranteed, even if
8319the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008320corresponding llvm.fma.\* intrinsic function should be used
8321instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008322
8323Examples:
8324"""""""""
8325
8326.. code-block:: llvm
8327
8328 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8329
8330Half Precision Floating Point Intrinsics
8331----------------------------------------
8332
8333For most target platforms, half precision floating point is a
8334storage-only format. This means that it is a dense encoding (in memory)
8335but does not support computation in the format.
8336
8337This means that code must first load the half-precision floating point
8338value as an i16, then convert it to float with
8339:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8340then be performed on the float value (including extending to double
8341etc). To store the value back to memory, it is first converted to float
8342if needed, then converted to i16 with
8343:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8344i16 value.
8345
8346.. _int_convert_to_fp16:
8347
8348'``llvm.convert.to.fp16``' Intrinsic
8349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8350
8351Syntax:
8352"""""""
8353
8354::
8355
8356 declare i16 @llvm.convert.to.fp16(f32 %a)
8357
8358Overview:
8359"""""""""
8360
8361The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8362from single precision floating point format to half precision floating
8363point format.
8364
8365Arguments:
8366""""""""""
8367
8368The intrinsic function contains single argument - the value to be
8369converted.
8370
8371Semantics:
8372""""""""""
8373
8374The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8375from single precision floating point format to half precision floating
8376point format. The return value is an ``i16`` which contains the
8377converted number.
8378
8379Examples:
8380"""""""""
8381
8382.. code-block:: llvm
8383
8384 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8385 store i16 %res, i16* @x, align 2
8386
8387.. _int_convert_from_fp16:
8388
8389'``llvm.convert.from.fp16``' Intrinsic
8390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395::
8396
8397 declare f32 @llvm.convert.from.fp16(i16 %a)
8398
8399Overview:
8400"""""""""
8401
8402The '``llvm.convert.from.fp16``' intrinsic function performs a
8403conversion from half precision floating point format to single precision
8404floating point format.
8405
8406Arguments:
8407""""""""""
8408
8409The intrinsic function contains single argument - the value to be
8410converted.
8411
8412Semantics:
8413""""""""""
8414
8415The '``llvm.convert.from.fp16``' intrinsic function performs a
8416conversion from half single precision floating point format to single
8417precision floating point format. The input half-float value is
8418represented by an ``i16`` value.
8419
8420Examples:
8421"""""""""
8422
8423.. code-block:: llvm
8424
8425 %a = load i16* @x, align 2
8426 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8427
8428Debugger Intrinsics
8429-------------------
8430
8431The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8432prefix), are described in the `LLVM Source Level
8433Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8434document.
8435
8436Exception Handling Intrinsics
8437-----------------------------
8438
8439The LLVM exception handling intrinsics (which all start with
8440``llvm.eh.`` prefix), are described in the `LLVM Exception
8441Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8442
8443.. _int_trampoline:
8444
8445Trampoline Intrinsics
8446---------------------
8447
8448These intrinsics make it possible to excise one parameter, marked with
8449the :ref:`nest <nest>` attribute, from a function. The result is a
8450callable function pointer lacking the nest parameter - the caller does
8451not need to provide a value for it. Instead, the value to use is stored
8452in advance in a "trampoline", a block of memory usually allocated on the
8453stack, which also contains code to splice the nest value into the
8454argument list. This is used to implement the GCC nested function address
8455extension.
8456
8457For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8458then the resulting function pointer has signature ``i32 (i32, i32)*``.
8459It can be created as follows:
8460
8461.. code-block:: llvm
8462
8463 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8464 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8465 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8466 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8467 %fp = bitcast i8* %p to i32 (i32, i32)*
8468
8469The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8470``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8471
8472.. _int_it:
8473
8474'``llvm.init.trampoline``' Intrinsic
8475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8476
8477Syntax:
8478"""""""
8479
8480::
8481
8482 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8483
8484Overview:
8485"""""""""
8486
8487This fills the memory pointed to by ``tramp`` with executable code,
8488turning it into a trampoline.
8489
8490Arguments:
8491""""""""""
8492
8493The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8494pointers. The ``tramp`` argument must point to a sufficiently large and
8495sufficiently aligned block of memory; this memory is written to by the
8496intrinsic. Note that the size and the alignment are target-specific -
8497LLVM currently provides no portable way of determining them, so a
8498front-end that generates this intrinsic needs to have some
8499target-specific knowledge. The ``func`` argument must hold a function
8500bitcast to an ``i8*``.
8501
8502Semantics:
8503""""""""""
8504
8505The block of memory pointed to by ``tramp`` is filled with target
8506dependent code, turning it into a function. Then ``tramp`` needs to be
8507passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8508be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8509function's signature is the same as that of ``func`` with any arguments
8510marked with the ``nest`` attribute removed. At most one such ``nest``
8511argument is allowed, and it must be of pointer type. Calling the new
8512function is equivalent to calling ``func`` with the same argument list,
8513but with ``nval`` used for the missing ``nest`` argument. If, after
8514calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8515modified, then the effect of any later call to the returned function
8516pointer is undefined.
8517
8518.. _int_at:
8519
8520'``llvm.adjust.trampoline``' Intrinsic
8521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8522
8523Syntax:
8524"""""""
8525
8526::
8527
8528 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8529
8530Overview:
8531"""""""""
8532
8533This performs any required machine-specific adjustment to the address of
8534a trampoline (passed as ``tramp``).
8535
8536Arguments:
8537""""""""""
8538
8539``tramp`` must point to a block of memory which already has trampoline
8540code filled in by a previous call to
8541:ref:`llvm.init.trampoline <int_it>`.
8542
8543Semantics:
8544""""""""""
8545
8546On some architectures the address of the code to be executed needs to be
8547different to the address where the trampoline is actually stored. This
8548intrinsic returns the executable address corresponding to ``tramp``
8549after performing the required machine specific adjustments. The pointer
8550returned can then be :ref:`bitcast and executed <int_trampoline>`.
8551
8552Memory Use Markers
8553------------------
8554
8555This class of intrinsics exists to information about the lifetime of
8556memory objects and ranges where variables are immutable.
8557
Reid Klecknera534a382013-12-19 02:14:12 +00008558.. _int_lifestart:
8559
Sean Silvab084af42012-12-07 10:36:55 +00008560'``llvm.lifetime.start``' Intrinsic
8561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8562
8563Syntax:
8564"""""""
8565
8566::
8567
8568 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8569
8570Overview:
8571"""""""""
8572
8573The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8574object's lifetime.
8575
8576Arguments:
8577""""""""""
8578
8579The first argument is a constant integer representing the size of the
8580object, or -1 if it is variable sized. The second argument is a pointer
8581to the object.
8582
8583Semantics:
8584""""""""""
8585
8586This intrinsic indicates that before this point in the code, the value
8587of the memory pointed to by ``ptr`` is dead. This means that it is known
8588to never be used and has an undefined value. A load from the pointer
8589that precedes this intrinsic can be replaced with ``'undef'``.
8590
Reid Klecknera534a382013-12-19 02:14:12 +00008591.. _int_lifeend:
8592
Sean Silvab084af42012-12-07 10:36:55 +00008593'``llvm.lifetime.end``' Intrinsic
8594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8595
8596Syntax:
8597"""""""
8598
8599::
8600
8601 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8602
8603Overview:
8604"""""""""
8605
8606The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8607object's lifetime.
8608
8609Arguments:
8610""""""""""
8611
8612The first argument is a constant integer representing the size of the
8613object, or -1 if it is variable sized. The second argument is a pointer
8614to the object.
8615
8616Semantics:
8617""""""""""
8618
8619This intrinsic indicates that after this point in the code, the value of
8620the memory pointed to by ``ptr`` is dead. This means that it is known to
8621never be used and has an undefined value. Any stores into the memory
8622object following this intrinsic may be removed as dead.
8623
8624'``llvm.invariant.start``' Intrinsic
8625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8626
8627Syntax:
8628"""""""
8629
8630::
8631
8632 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8633
8634Overview:
8635"""""""""
8636
8637The '``llvm.invariant.start``' intrinsic specifies that the contents of
8638a memory object will not change.
8639
8640Arguments:
8641""""""""""
8642
8643The first argument is a constant integer representing the size of the
8644object, or -1 if it is variable sized. The second argument is a pointer
8645to the object.
8646
8647Semantics:
8648""""""""""
8649
8650This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8651the return value, the referenced memory location is constant and
8652unchanging.
8653
8654'``llvm.invariant.end``' Intrinsic
8655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8656
8657Syntax:
8658"""""""
8659
8660::
8661
8662 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8663
8664Overview:
8665"""""""""
8666
8667The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8668memory object are mutable.
8669
8670Arguments:
8671""""""""""
8672
8673The first argument is the matching ``llvm.invariant.start`` intrinsic.
8674The second argument is a constant integer representing the size of the
8675object, or -1 if it is variable sized and the third argument is a
8676pointer to the object.
8677
8678Semantics:
8679""""""""""
8680
8681This intrinsic indicates that the memory is mutable again.
8682
8683General Intrinsics
8684------------------
8685
8686This class of intrinsics is designed to be generic and has no specific
8687purpose.
8688
8689'``llvm.var.annotation``' Intrinsic
8690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8691
8692Syntax:
8693"""""""
8694
8695::
8696
8697 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8698
8699Overview:
8700"""""""""
8701
8702The '``llvm.var.annotation``' intrinsic.
8703
8704Arguments:
8705""""""""""
8706
8707The first argument is a pointer to a value, the second is a pointer to a
8708global string, the third is a pointer to a global string which is the
8709source file name, and the last argument is the line number.
8710
8711Semantics:
8712""""""""""
8713
8714This intrinsic allows annotation of local variables with arbitrary
8715strings. This can be useful for special purpose optimizations that want
8716to look for these annotations. These have no other defined use; they are
8717ignored by code generation and optimization.
8718
Michael Gottesman88d18832013-03-26 00:34:27 +00008719'``llvm.ptr.annotation.*``' Intrinsic
8720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8721
8722Syntax:
8723"""""""
8724
8725This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8726pointer to an integer of any width. *NOTE* you must specify an address space for
8727the pointer. The identifier for the default address space is the integer
8728'``0``'.
8729
8730::
8731
8732 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8733 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8734 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8735 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8736 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8737
8738Overview:
8739"""""""""
8740
8741The '``llvm.ptr.annotation``' intrinsic.
8742
8743Arguments:
8744""""""""""
8745
8746The first argument is a pointer to an integer value of arbitrary bitwidth
8747(result of some expression), the second is a pointer to a global string, the
8748third is a pointer to a global string which is the source file name, and the
8749last argument is the line number. It returns the value of the first argument.
8750
8751Semantics:
8752""""""""""
8753
8754This intrinsic allows annotation of a pointer to an integer with arbitrary
8755strings. This can be useful for special purpose optimizations that want to look
8756for these annotations. These have no other defined use; they are ignored by code
8757generation and optimization.
8758
Sean Silvab084af42012-12-07 10:36:55 +00008759'``llvm.annotation.*``' Intrinsic
8760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8761
8762Syntax:
8763"""""""
8764
8765This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8766any integer bit width.
8767
8768::
8769
8770 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8771 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8772 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8773 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8774 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8775
8776Overview:
8777"""""""""
8778
8779The '``llvm.annotation``' intrinsic.
8780
8781Arguments:
8782""""""""""
8783
8784The first argument is an integer value (result of some expression), the
8785second is a pointer to a global string, the third is a pointer to a
8786global string which is the source file name, and the last argument is
8787the line number. It returns the value of the first argument.
8788
8789Semantics:
8790""""""""""
8791
8792This intrinsic allows annotations to be put on arbitrary expressions
8793with arbitrary strings. This can be useful for special purpose
8794optimizations that want to look for these annotations. These have no
8795other defined use; they are ignored by code generation and optimization.
8796
8797'``llvm.trap``' Intrinsic
8798^^^^^^^^^^^^^^^^^^^^^^^^^
8799
8800Syntax:
8801"""""""
8802
8803::
8804
8805 declare void @llvm.trap() noreturn nounwind
8806
8807Overview:
8808"""""""""
8809
8810The '``llvm.trap``' intrinsic.
8811
8812Arguments:
8813""""""""""
8814
8815None.
8816
8817Semantics:
8818""""""""""
8819
8820This intrinsic is lowered to the target dependent trap instruction. If
8821the target does not have a trap instruction, this intrinsic will be
8822lowered to a call of the ``abort()`` function.
8823
8824'``llvm.debugtrap``' Intrinsic
8825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8826
8827Syntax:
8828"""""""
8829
8830::
8831
8832 declare void @llvm.debugtrap() nounwind
8833
8834Overview:
8835"""""""""
8836
8837The '``llvm.debugtrap``' intrinsic.
8838
8839Arguments:
8840""""""""""
8841
8842None.
8843
8844Semantics:
8845""""""""""
8846
8847This intrinsic is lowered to code which is intended to cause an
8848execution trap with the intention of requesting the attention of a
8849debugger.
8850
8851'``llvm.stackprotector``' Intrinsic
8852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8853
8854Syntax:
8855"""""""
8856
8857::
8858
8859 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8860
8861Overview:
8862"""""""""
8863
8864The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8865onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8866is placed on the stack before local variables.
8867
8868Arguments:
8869""""""""""
8870
8871The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8872The first argument is the value loaded from the stack guard
8873``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8874enough space to hold the value of the guard.
8875
8876Semantics:
8877""""""""""
8878
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008879This intrinsic causes the prologue/epilogue inserter to force the position of
8880the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8881to ensure that if a local variable on the stack is overwritten, it will destroy
8882the value of the guard. When the function exits, the guard on the stack is
8883checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8884different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8885calling the ``__stack_chk_fail()`` function.
8886
8887'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008888^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008889
8890Syntax:
8891"""""""
8892
8893::
8894
8895 declare void @llvm.stackprotectorcheck(i8** <guard>)
8896
8897Overview:
8898"""""""""
8899
8900The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008901created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008902``__stack_chk_fail()`` function.
8903
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008904Arguments:
8905""""""""""
8906
8907The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8908the variable ``@__stack_chk_guard``.
8909
8910Semantics:
8911""""""""""
8912
8913This intrinsic is provided to perform the stack protector check by comparing
8914``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8915values do not match call the ``__stack_chk_fail()`` function.
8916
8917The reason to provide this as an IR level intrinsic instead of implementing it
8918via other IR operations is that in order to perform this operation at the IR
8919level without an intrinsic, one would need to create additional basic blocks to
8920handle the success/failure cases. This makes it difficult to stop the stack
8921protector check from disrupting sibling tail calls in Codegen. With this
8922intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008923codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008924
Sean Silvab084af42012-12-07 10:36:55 +00008925'``llvm.objectsize``' Intrinsic
8926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8927
8928Syntax:
8929"""""""
8930
8931::
8932
8933 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8934 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8935
8936Overview:
8937"""""""""
8938
8939The ``llvm.objectsize`` intrinsic is designed to provide information to
8940the optimizers to determine at compile time whether a) an operation
8941(like memcpy) will overflow a buffer that corresponds to an object, or
8942b) that a runtime check for overflow isn't necessary. An object in this
8943context means an allocation of a specific class, structure, array, or
8944other object.
8945
8946Arguments:
8947""""""""""
8948
8949The ``llvm.objectsize`` intrinsic takes two arguments. The first
8950argument is a pointer to or into the ``object``. The second argument is
8951a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8952or -1 (if false) when the object size is unknown. The second argument
8953only accepts constants.
8954
8955Semantics:
8956""""""""""
8957
8958The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8959the size of the object concerned. If the size cannot be determined at
8960compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8961on the ``min`` argument).
8962
8963'``llvm.expect``' Intrinsic
8964^^^^^^^^^^^^^^^^^^^^^^^^^^^
8965
8966Syntax:
8967"""""""
8968
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00008969This is an overloaded intrinsic. You can use ``llvm.expect`` on any
8970integer bit width.
8971
Sean Silvab084af42012-12-07 10:36:55 +00008972::
8973
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00008974 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00008975 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8976 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8977
8978Overview:
8979"""""""""
8980
8981The ``llvm.expect`` intrinsic provides information about expected (the
8982most probable) value of ``val``, which can be used by optimizers.
8983
8984Arguments:
8985""""""""""
8986
8987The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8988a value. The second argument is an expected value, this needs to be a
8989constant value, variables are not allowed.
8990
8991Semantics:
8992""""""""""
8993
8994This intrinsic is lowered to the ``val``.
8995
8996'``llvm.donothing``' Intrinsic
8997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8998
8999Syntax:
9000"""""""
9001
9002::
9003
9004 declare void @llvm.donothing() nounwind readnone
9005
9006Overview:
9007"""""""""
9008
9009The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9010only intrinsic that can be called with an invoke instruction.
9011
9012Arguments:
9013""""""""""
9014
9015None.
9016
9017Semantics:
9018""""""""""
9019
9020This intrinsic does nothing, and it's removed by optimizers and ignored
9021by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009022
9023Stack Map Intrinsics
9024--------------------
9025
9026LLVM provides experimental intrinsics to support runtime patching
9027mechanisms commonly desired in dynamic language JITs. These intrinsics
9028are described in :doc:`StackMaps`.