blob: c3a5e6af62beb440e4e6303c97e16e4a5e564803 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
122static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
125void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Jingyue Wuca321902015-05-14 23:53:19 +0000133bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134 AssumptionCache *AC, const Instruction *CxtI,
135 const DominatorTree *DT) {
136 assert(LHS->getType() == RHS->getType() &&
137 "LHS and RHS should have the same type");
138 assert(LHS->getType()->isIntOrIntVectorTy() &&
139 "LHS and RHS should be integers");
140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146}
147
Hal Finkel60db0582014-09-07 18:57:58 +0000148static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000149 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000150
151void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000152 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000153 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000154 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000157}
158
159static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000160 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000161
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const Instruction *CxtI,
165 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168}
169
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171
172bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173 AssumptionCache *AC, const Instruction *CxtI,
174 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Jingyue Wu10fcea52015-08-20 18:27:04 +0000178bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179 AssumptionCache *AC, const Instruction *CxtI,
180 const DominatorTree *DT) {
181 bool NonNegative, Negative;
182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183 return NonNegative;
184}
185
Philip Reames8f12eba2016-03-09 21:31:47 +0000186bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 if (auto *CI = dyn_cast<ConstantInt>(V))
190 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000191
Philip Reames8f12eba2016-03-09 21:31:47 +0000192 // TODO: We'd doing two recursive queries here. We should factor this such
193 // that only a single query is needed.
194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196}
197
Nick Lewycky762f8a82016-04-21 00:53:14 +0000198bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199 AssumptionCache *AC, const Instruction *CxtI,
200 const DominatorTree *DT) {
201 bool NonNegative, Negative;
202 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203 return Negative;
204}
205
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000206static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000207
208bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209 AssumptionCache *AC, const Instruction *CxtI,
210 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000211 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212 safeCxtI(V1, safeCxtI(V2, CxtI)),
213 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000214}
215
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000216static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000218
219bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220 unsigned Depth, AssumptionCache *AC,
221 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000222 return ::MaskedValueIsZero(V, Mask, Depth,
223 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000224}
225
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000226static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000227
228unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229 unsigned Depth, AssumptionCache *AC,
230 const Instruction *CxtI,
231 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000232 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000233}
234
Jay Foada0653a32014-05-14 21:14:37 +0000235static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236 APInt &KnownZero, APInt &KnownOne,
237 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000239 if (!Add) {
240 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241 // We know that the top bits of C-X are clear if X contains less bits
242 // than C (i.e. no wrap-around can happen). For example, 20-X is
243 // positive if we can prove that X is >= 0 and < 16.
244 if (!CLHS->getValue().isNegative()) {
245 unsigned BitWidth = KnownZero.getBitWidth();
246 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247 // NLZ can't be BitWidth with no sign bit
248 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000249 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000250
251 // If all of the MaskV bits are known to be zero, then we know the
252 // output top bits are zero, because we now know that the output is
253 // from [0-C].
254 if ((KnownZero2 & MaskV) == MaskV) {
255 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256 // Top bits known zero.
257 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258 }
259 }
260 }
261 }
262
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000263 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000264
David Majnemer97ddca32014-08-22 00:40:43 +0000265 // If an initial sequence of bits in the result is not needed, the
266 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000267 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000270
David Majnemer97ddca32014-08-22 00:40:43 +0000271 // Carry in a 1 for a subtract, rather than a 0.
272 APInt CarryIn(BitWidth, 0);
273 if (!Add) {
274 // Sum = LHS + ~RHS + 1
275 std::swap(KnownZero2, KnownOne2);
276 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277 }
278
David Majnemer97ddca32014-08-22 00:40:43 +0000279 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281
282 // Compute known bits of the carry.
283 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285
286 // Compute set of known bits (where all three relevant bits are known).
287 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288 APInt RHSKnown = KnownZero2 | KnownOne2;
289 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290 APInt Known = LHSKnown & RHSKnown & CarryKnown;
291
292 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293 "known bits of sum differ");
294
295 // Compute known bits of the result.
296 KnownZero = ~PossibleSumOne & Known;
297 KnownOne = PossibleSumOne & Known;
298
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000299 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000300 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000301 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000302 // Adding two non-negative numbers, or subtracting a negative number from
303 // a non-negative one, can't wrap into negative.
304 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305 KnownZero |= APInt::getSignBit(BitWidth);
306 // Adding two negative numbers, or subtracting a non-negative number from
307 // a negative one, can't wrap into non-negative.
308 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000310 }
311 }
312}
313
Jay Foada0653a32014-05-14 21:14:37 +0000314static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315 APInt &KnownZero, APInt &KnownOne,
316 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000318 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000319 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
330 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332 bool isKnownNegativeOp1 = KnownOne.isNegative();
333 bool isKnownNegativeOp0 = KnownOne2.isNegative();
334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
347 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000348 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 // More trickiness is possible, but this is sufficient for the
350 // interesting case of alignment computation.
351 KnownOne.clearAllBits();
352 unsigned TrailZ = KnownZero.countTrailingOnes() +
353 KnownZero2.countTrailingOnes();
354 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
355 KnownZero2.countLeadingOnes(),
356 BitWidth) - BitWidth;
357
358 TrailZ = std::min(TrailZ, BitWidth);
359 LeadZ = std::min(LeadZ, BitWidth);
360 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362
363 // Only make use of no-wrap flags if we failed to compute the sign bit
364 // directly. This matters if the multiplication always overflows, in
365 // which case we prefer to follow the result of the direct computation,
366 // though as the program is invoking undefined behaviour we can choose
367 // whatever we like here.
368 if (isKnownNonNegative && !KnownOne.isNegative())
369 KnownZero.setBit(BitWidth - 1);
370 else if (isKnownNegative && !KnownZero.isNegative())
371 KnownOne.setBit(BitWidth - 1);
372}
373
Jingyue Wu37fcb592014-06-19 16:50:16 +0000374void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000375 APInt &KnownZero,
376 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000378 unsigned NumRanges = Ranges.getNumOperands() / 2;
379 assert(NumRanges >= 1);
380
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000381 KnownZero.setAllBits();
382 KnownOne.setAllBits();
383
Rafael Espindola53190532012-03-30 15:52:11 +0000384 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000385 ConstantInt *Lower =
386 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387 ConstantInt *Upper =
388 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000389 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000390
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000391 // The first CommonPrefixBits of all values in Range are equal.
392 unsigned CommonPrefixBits =
393 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394
395 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396 KnownOne &= Range.getUnsignedMax() & Mask;
397 KnownZero &= ~Range.getUnsignedMax() & Mask;
398 }
Rafael Espindola53190532012-03-30 15:52:11 +0000399}
Jay Foad5a29c362014-05-15 12:12:55 +0000400
Hal Finkel60db0582014-09-07 18:57:58 +0000401static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402 SmallVector<const Value *, 16> WorkSet(1, I);
403 SmallPtrSet<const Value *, 32> Visited;
404 SmallPtrSet<const Value *, 16> EphValues;
405
Hal Finkelf2199b22015-10-23 20:37:08 +0000406 // The instruction defining an assumption's condition itself is always
407 // considered ephemeral to that assumption (even if it has other
408 // non-ephemeral users). See r246696's test case for an example.
409 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410 return true;
411
Hal Finkel60db0582014-09-07 18:57:58 +0000412 while (!WorkSet.empty()) {
413 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000414 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000415 continue;
416
417 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000418 if (std::all_of(V->user_begin(), V->user_end(),
419 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000420 if (V == E)
421 return true;
422
423 EphValues.insert(V);
424 if (const User *U = dyn_cast<User>(V))
425 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426 J != JE; ++J) {
427 if (isSafeToSpeculativelyExecute(*J))
428 WorkSet.push_back(*J);
429 }
430 }
431 }
432
433 return false;
434}
435
436// Is this an intrinsic that cannot be speculated but also cannot trap?
437static bool isAssumeLikeIntrinsic(const Instruction *I) {
438 if (const CallInst *CI = dyn_cast<CallInst>(I))
439 if (Function *F = CI->getCalledFunction())
440 switch (F->getIntrinsicID()) {
441 default: break;
442 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443 case Intrinsic::assume:
444 case Intrinsic::dbg_declare:
445 case Intrinsic::dbg_value:
446 case Intrinsic::invariant_start:
447 case Intrinsic::invariant_end:
448 case Intrinsic::lifetime_start:
449 case Intrinsic::lifetime_end:
450 case Intrinsic::objectsize:
451 case Intrinsic::ptr_annotation:
452 case Intrinsic::var_annotation:
453 return true;
454 }
455
456 return false;
457}
458
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000459static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000461 Instruction *Inv = cast<Instruction>(V);
462
463 // There are two restrictions on the use of an assume:
464 // 1. The assume must dominate the context (or the control flow must
465 // reach the assume whenever it reaches the context).
466 // 2. The context must not be in the assume's set of ephemeral values
467 // (otherwise we will use the assume to prove that the condition
468 // feeding the assume is trivially true, thus causing the removal of
469 // the assume).
470
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000471 if (DT) {
472 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000473 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000474 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000475 // The context comes first, but they're both in the same block. Make sure
476 // there is nothing in between that might interrupt the control flow.
477 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000478 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000479 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000480 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000481 return false;
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000484 }
485
486 return false;
487 }
488
489 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000490 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000491 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000492 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000493 // Search forward from the assume until we reach the context (or the end
494 // of the block); the common case is that the assume will come first.
495 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000497 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000498 return true;
499
500 // The context must come first...
501 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000502 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000504 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return false;
506
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000507 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000508 }
509
510 return false;
511}
512
513bool llvm::isValidAssumeForContext(const Instruction *I,
514 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000515 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000516 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Hal Finkel60db0582014-09-07 18:57:58 +0000519static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Chandler Carruth66b31302015-01-04 12:03:27 +0000529 for (auto &AssumeVH : Q.AC->assumptions()) {
530 if (!AssumeVH)
531 continue;
532 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000534 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000535 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000536 continue;
537
Philip Reames00d3b272014-11-24 23:44:28 +0000538 // Warning: This loop can end up being somewhat performance sensetive.
539 // We're running this loop for once for each value queried resulting in a
540 // runtime of ~O(#assumes * #values).
541
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000543 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000544
Philip Reames00d3b272014-11-24 23:44:28 +0000545 Value *Arg = I->getArgOperand(0);
546
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000548 assert(BitWidth == 1 && "assume operand is not i1?");
549 KnownZero.clearAllBits();
550 KnownOne.setAllBits();
551 return;
552 }
553
David Majnemer9b609752014-12-12 23:59:29 +0000554 // The remaining tests are all recursive, so bail out if we hit the limit.
555 if (Depth == MaxDepth)
556 continue;
557
Hal Finkel60db0582014-09-07 18:57:58 +0000558 Value *A, *B;
559 auto m_V = m_CombineOr(m_Specific(V),
560 m_CombineOr(m_PtrToInt(m_Specific(V)),
561 m_BitCast(m_Specific(V))));
562
563 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000564 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000565 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000570 KnownZero |= RHSKnownZero;
571 KnownOne |= RHSKnownOne;
572 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000573 } else if (match(Arg,
574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 Pred == ICmpInst::ICMP_EQ &&
576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000581
582 // For those bits in the mask that are known to be one, we can propagate
583 // known bits from the RHS to V.
584 KnownZero |= RHSKnownZero & MaskKnownOne;
585 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000589 Pred == ICmpInst::ICMP_EQ &&
590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000595
596 // For those bits in the mask that are known to be one, we can propagate
597 // inverted known bits from the RHS to V.
598 KnownZero |= RHSKnownOne & MaskKnownOne;
599 KnownOne |= RHSKnownZero & MaskKnownOne;
600 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000601 } else if (match(Arg,
602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000603 Pred == ICmpInst::ICMP_EQ &&
604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000609
610 // For those bits in B that are known to be zero, we can propagate known
611 // bits from the RHS to V.
612 KnownZero |= RHSKnownZero & BKnownZero;
613 KnownOne |= RHSKnownOne & BKnownZero;
614 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000617 Pred == ICmpInst::ICMP_EQ &&
618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623
624 // For those bits in B that are known to be zero, we can propagate
625 // inverted known bits from the RHS to V.
626 KnownZero |= RHSKnownOne & BKnownZero;
627 KnownOne |= RHSKnownZero & BKnownZero;
628 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000629 } else if (match(Arg,
630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000631 Pred == ICmpInst::ICMP_EQ &&
632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637
638 // For those bits in B that are known to be zero, we can propagate known
639 // bits from the RHS to V. For those bits in B that are known to be one,
640 // we can propagate inverted known bits from the RHS to V.
641 KnownZero |= RHSKnownZero & BKnownZero;
642 KnownOne |= RHSKnownOne & BKnownZero;
643 KnownZero |= RHSKnownOne & BKnownOne;
644 KnownOne |= RHSKnownZero & BKnownOne;
645 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000648 Pred == ICmpInst::ICMP_EQ &&
649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654
655 // For those bits in B that are known to be zero, we can propagate
656 // inverted known bits from the RHS to V. For those bits in B that are
657 // known to be one, we can propagate known bits from the RHS to V.
658 KnownZero |= RHSKnownOne & BKnownZero;
659 KnownOne |= RHSKnownZero & BKnownZero;
660 KnownZero |= RHSKnownZero & BKnownOne;
661 KnownOne |= RHSKnownOne & BKnownOne;
662 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000665 Pred == ICmpInst::ICMP_EQ &&
666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000669 // For those bits in RHS that are known, we can propagate them to known
670 // bits in V shifted to the right by C.
671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
673 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000676 Pred == ICmpInst::ICMP_EQ &&
677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // For those bits in RHS that are known, we can propagate them inverted
681 // to known bits in V shifted to the right by C.
682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
684 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg,
686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000687 m_AShr(m_V, m_ConstantInt(C))),
688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them to known
694 // bits in V shifted to the right by C.
695 KnownZero |= RHSKnownZero << C->getZExtValue();
696 KnownOne |= RHSKnownOne << C->getZExtValue();
697 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000699 m_LShr(m_V, m_ConstantInt(C)),
700 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000701 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000702 Pred == ICmpInst::ICMP_EQ &&
703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // For those bits in RHS that are known, we can propagate them inverted
707 // to known bits in V shifted to the right by C.
708 KnownZero |= RHSKnownOne << C->getZExtValue();
709 KnownOne |= RHSKnownZero << C->getZExtValue();
710 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_SGE &&
713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716
717 if (RHSKnownZero.isNegative()) {
718 // We know that the sign bit is zero.
719 KnownZero |= APInt::getSignBit(BitWidth);
720 }
721 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000723 Pred == ICmpInst::ICMP_SGT &&
724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000727
728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729 // We know that the sign bit is zero.
730 KnownZero |= APInt::getSignBit(BitWidth);
731 }
732 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000734 Pred == ICmpInst::ICMP_SLE &&
735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738
739 if (RHSKnownOne.isNegative()) {
740 // We know that the sign bit is one.
741 KnownOne |= APInt::getSignBit(BitWidth);
742 }
743 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 Pred == ICmpInst::ICMP_SLT &&
746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000749
750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751 // We know that the sign bit is one.
752 KnownOne |= APInt::getSignBit(BitWidth);
753 }
754 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 Pred == ICmpInst::ICMP_ULE &&
757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760
761 // Whatever high bits in c are zero are known to be zero.
762 KnownZero |=
763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000766 Pred == ICmpInst::ICMP_ULT &&
767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770
771 // Whatever high bits in c are zero are known to be zero (if c is a power
772 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 KnownZero |=
775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776 else
777 KnownZero |=
778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000779 }
780 }
781}
782
Hal Finkelf2199b22015-10-23 20:37:08 +0000783// Compute known bits from a shift operator, including those with a
784// non-constant shift amount. KnownZero and KnownOne are the outputs of this
785// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787// functors that, given the known-zero or known-one bits respectively, and a
788// shift amount, compute the implied known-zero or known-one bits of the shift
789// operator's result respectively for that shift amount. The results from calling
790// KZF and KOF are conservatively combined for all permitted shift amounts.
791template <typename KZFunctor, typename KOFunctor>
792static void computeKnownBitsFromShiftOperator(Operator *I,
793 APInt &KnownZero, APInt &KnownOne,
794 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000795 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000796 unsigned BitWidth = KnownZero.getBitWidth();
797
798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000802 KnownZero = KZF(KnownZero, ShiftAmt);
803 KnownOne = KOF(KnownOne, ShiftAmt);
804 return;
805 }
806
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000807 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000808
809 // Note: We cannot use KnownZero.getLimitedValue() here, because if
810 // BitWidth > 64 and any upper bits are known, we'll end up returning the
811 // limit value (which implies all bits are known).
812 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814
815 // It would be more-clearly correct to use the two temporaries for this
816 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000817 KnownZero.clearAllBits();
818 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000819
James Molloy493e57d2015-10-26 14:10:46 +0000820 // If we know the shifter operand is nonzero, we can sometimes infer more
821 // known bits. However this is expensive to compute, so be lazy about it and
822 // only compute it when absolutely necessary.
823 Optional<bool> ShifterOperandIsNonZero;
824
Hal Finkelf2199b22015-10-23 20:37:08 +0000825 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000826 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000828 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000829 if (!*ShifterOperandIsNonZero)
830 return;
831 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000832
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000833 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000834
835 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837 // Combine the shifted known input bits only for those shift amounts
838 // compatible with its known constraints.
839 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840 continue;
841 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000843 // If we know the shifter is nonzero, we may be able to infer more known
844 // bits. This check is sunk down as far as possible to avoid the expensive
845 // call to isKnownNonZero if the cheaper checks above fail.
846 if (ShiftAmt == 0) {
847 if (!ShifterOperandIsNonZero.hasValue())
848 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000849 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000850 if (*ShifterOperandIsNonZero)
851 continue;
852 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000853
854 KnownZero &= KZF(KnownZero2, ShiftAmt);
855 KnownOne &= KOF(KnownOne2, ShiftAmt);
856 }
857
858 // If there are no compatible shift amounts, then we've proven that the shift
859 // amount must be >= the BitWidth, and the result is undefined. We could
860 // return anything we'd like, but we need to make sure the sets of known bits
861 // stay disjoint (it should be better for some other code to actually
862 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000863 if ((KnownZero & KnownOne) != 0) {
864 KnownZero.clearAllBits();
865 KnownOne.clearAllBits();
866 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000867}
868
Jingyue Wu12b0c282015-06-15 05:46:29 +0000869static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000870 APInt &KnownOne, unsigned Depth,
871 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000872 unsigned BitWidth = KnownZero.getBitWidth();
873
Chris Lattner965c7692008-06-02 01:18:21 +0000874 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000875 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000876 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000877 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000878 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000879 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000880 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000881 case Instruction::And: {
882 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000883 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000885
Chris Lattner965c7692008-06-02 01:18:21 +0000886 // Output known-1 bits are only known if set in both the LHS & RHS.
887 KnownOne &= KnownOne2;
888 // Output known-0 are known to be clear if zero in either the LHS | RHS.
889 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000890
891 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892 // here we handle the more general case of adding any odd number by
893 // matching the form add(x, add(x, y)) where y is odd.
894 // TODO: This could be generalized to clearing any bit set in y where the
895 // following bit is known to be unset in y.
896 Value *Y = nullptr;
897 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898 m_Value(Y))) ||
899 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900 m_Value(Y)))) {
901 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000902 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000903 if (KnownOne3.countTrailingOnes() > 0)
904 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905 }
Jay Foad5a29c362014-05-15 12:12:55 +0000906 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000907 }
908 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000909 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000911
Chris Lattner965c7692008-06-02 01:18:21 +0000912 // Output known-0 bits are only known if clear in both the LHS & RHS.
913 KnownZero &= KnownZero2;
914 // Output known-1 are known to be set if set in either the LHS | RHS.
915 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000916 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000917 }
918 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000919 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000921
Chris Lattner965c7692008-06-02 01:18:21 +0000922 // Output known-0 bits are known if clear or set in both the LHS & RHS.
923 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924 // Output known-1 are known to be set if set in only one of the LHS, RHS.
925 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000927 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000928 }
929 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000930 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000931 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000932 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000933 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000934 }
935 case Instruction::UDiv: {
936 // For the purposes of computing leading zeros we can conservatively
937 // treat a udiv as a logical right shift by the power of 2 known to
938 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000940 unsigned LeadZ = KnownZero2.countLeadingOnes();
941
Jay Foad25a5e4c2010-12-01 08:53:58 +0000942 KnownOne2.clearAllBits();
943 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000945 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946 if (RHSUnknownLeadingOnes != BitWidth)
947 LeadZ = std::min(BitWidth,
948 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000950 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000951 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000952 }
David Majnemera19d0f22016-08-06 08:16:00 +0000953 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000954 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000956
David Majnemera19d0f22016-08-06 08:16:00 +0000957 Value *LHS, *RHS;
958 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
959 if (SelectPatternResult::isMinOrMax(SPF)) {
960 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
961 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
962 } else {
963 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
964 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
965 }
966
967 unsigned MaxHighOnes = 0;
968 unsigned MaxHighZeros = 0;
969 if (SPF == SPF_SMAX) {
970 // If both sides are negative, the result is negative.
971 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
972 // We can derive a lower bound on the result by taking the max of the
973 // leading one bits.
974 MaxHighOnes =
975 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
976 // If either side is non-negative, the result is non-negative.
977 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
978 MaxHighZeros = 1;
979 } else if (SPF == SPF_SMIN) {
980 // If both sides are non-negative, the result is non-negative.
981 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
982 // We can derive an upper bound on the result by taking the max of the
983 // leading zero bits.
984 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
985 KnownZero2.countLeadingOnes());
986 // If either side is negative, the result is negative.
987 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
988 MaxHighOnes = 1;
989 } else if (SPF == SPF_UMAX) {
990 // We can derive a lower bound on the result by taking the max of the
991 // leading one bits.
992 MaxHighOnes =
993 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
994 } else if (SPF == SPF_UMIN) {
995 // We can derive an upper bound on the result by taking the max of the
996 // leading zero bits.
997 MaxHighZeros =
998 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
999 }
1000
Chris Lattner965c7692008-06-02 01:18:21 +00001001 // Only known if known in both the LHS and RHS.
1002 KnownOne &= KnownOne2;
1003 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001004 if (MaxHighOnes > 0)
1005 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1006 if (MaxHighZeros > 0)
1007 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001008 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001009 }
Chris Lattner965c7692008-06-02 01:18:21 +00001010 case Instruction::FPTrunc:
1011 case Instruction::FPExt:
1012 case Instruction::FPToUI:
1013 case Instruction::FPToSI:
1014 case Instruction::SIToFP:
1015 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001016 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001017 case Instruction::PtrToInt:
1018 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001019 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001020 // FALL THROUGH and handle them the same as zext/trunc.
1021 case Instruction::ZExt:
1022 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001023 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001024
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001025 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001026 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1027 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001028 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001029
1030 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001031 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1032 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001033 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001034 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1035 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001036 // Any top bits are known to be zero.
1037 if (BitWidth > SrcBitWidth)
1038 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001039 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001040 }
1041 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001042 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001043 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001044 // TODO: For now, not handling conversions like:
1045 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001046 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001047 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001048 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001049 }
1050 break;
1051 }
1052 case Instruction::SExt: {
1053 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001054 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001055
Jay Foad583abbc2010-12-07 08:25:19 +00001056 KnownZero = KnownZero.trunc(SrcBitWidth);
1057 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001058 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001059 KnownZero = KnownZero.zext(BitWidth);
1060 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001061
1062 // If the sign bit of the input is known set or clear, then we know the
1063 // top bits of the result.
1064 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1065 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1066 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1067 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001068 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001069 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001070 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001071 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001072 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1073 return (KnownZero << ShiftAmt) |
1074 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1075 };
1076
1077 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1078 return KnownOne << ShiftAmt;
1079 };
1080
1081 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001082 KnownZero2, KnownOne2, Depth, Q, KZF,
1083 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001084 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001085 }
1086 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001087 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001088 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1089 return APIntOps::lshr(KnownZero, ShiftAmt) |
1090 // High bits known zero.
1091 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1092 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001093
Hal Finkelf2199b22015-10-23 20:37:08 +00001094 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1095 return APIntOps::lshr(KnownOne, ShiftAmt);
1096 };
1097
1098 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001099 KnownZero2, KnownOne2, Depth, Q, KZF,
1100 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001101 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001102 }
1103 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001104 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001105 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1106 return APIntOps::ashr(KnownZero, ShiftAmt);
1107 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001108
Hal Finkelf2199b22015-10-23 20:37:08 +00001109 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1110 return APIntOps::ashr(KnownOne, ShiftAmt);
1111 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001112
Hal Finkelf2199b22015-10-23 20:37:08 +00001113 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001114 KnownZero2, KnownOne2, Depth, Q, KZF,
1115 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001116 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001117 }
Chris Lattner965c7692008-06-02 01:18:21 +00001118 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001119 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001120 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001121 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1122 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001123 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001124 }
Chris Lattner965c7692008-06-02 01:18:21 +00001125 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001126 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001127 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001128 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1129 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001130 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001131 }
1132 case Instruction::SRem:
1133 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001134 APInt RA = Rem->getValue().abs();
1135 if (RA.isPowerOf2()) {
1136 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001137 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001138 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001139
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001140 // The low bits of the first operand are unchanged by the srem.
1141 KnownZero = KnownZero2 & LowBits;
1142 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001143
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001144 // If the first operand is non-negative or has all low bits zero, then
1145 // the upper bits are all zero.
1146 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1147 KnownZero |= ~LowBits;
1148
1149 // If the first operand is negative and not all low bits are zero, then
1150 // the upper bits are all one.
1151 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1152 KnownOne |= ~LowBits;
1153
Craig Topper1bef2c82012-12-22 19:15:35 +00001154 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001155 }
1156 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001157
1158 // The sign bit is the LHS's sign bit, except when the result of the
1159 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001160 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001161 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001162 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1163 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001164 // If it's known zero, our sign bit is also zero.
1165 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001166 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001167 }
1168
Chris Lattner965c7692008-06-02 01:18:21 +00001169 break;
1170 case Instruction::URem: {
1171 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001172 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001173 if (RA.isPowerOf2()) {
1174 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001175 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001176 KnownZero |= ~LowBits;
1177 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001178 break;
1179 }
1180 }
1181
1182 // Since the result is less than or equal to either operand, any leading
1183 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001184 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1185 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001186
Chris Lattner4612ae12009-01-20 18:22:57 +00001187 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001188 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001189 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001190 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001191 break;
1192 }
1193
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001194 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001195 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001196 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001197 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001198 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001199
Chris Lattner965c7692008-06-02 01:18:21 +00001200 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001201 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001202 break;
1203 }
1204 case Instruction::GetElementPtr: {
1205 // Analyze all of the subscripts of this getelementptr instruction
1206 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001207 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001208 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1209 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001210 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1211
1212 gep_type_iterator GTI = gep_type_begin(I);
1213 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1214 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001215 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001216 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001217
1218 // Handle case when index is vector zeroinitializer
1219 Constant *CIndex = cast<Constant>(Index);
1220 if (CIndex->isZeroValue())
1221 continue;
1222
1223 if (CIndex->getType()->isVectorTy())
1224 Index = CIndex->getSplatValue();
1225
Chris Lattner965c7692008-06-02 01:18:21 +00001226 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001227 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001228 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001229 TrailZ = std::min<unsigned>(TrailZ,
1230 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001231 } else {
1232 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001233 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001234 if (!IndexedTy->isSized()) {
1235 TrailZ = 0;
1236 break;
1237 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001238 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001239 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001240 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001241 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001242 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001243 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001244 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001245 }
1246 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001247
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001248 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001249 break;
1250 }
1251 case Instruction::PHI: {
1252 PHINode *P = cast<PHINode>(I);
1253 // Handle the case of a simple two-predecessor recurrence PHI.
1254 // There's a lot more that could theoretically be done here, but
1255 // this is sufficient to catch some interesting cases.
1256 if (P->getNumIncomingValues() == 2) {
1257 for (unsigned i = 0; i != 2; ++i) {
1258 Value *L = P->getIncomingValue(i);
1259 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001260 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001261 if (!LU)
1262 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001263 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001264 // Check for operations that have the property that if
1265 // both their operands have low zero bits, the result
1266 // will have low zero bits.
1267 if (Opcode == Instruction::Add ||
1268 Opcode == Instruction::Sub ||
1269 Opcode == Instruction::And ||
1270 Opcode == Instruction::Or ||
1271 Opcode == Instruction::Mul) {
1272 Value *LL = LU->getOperand(0);
1273 Value *LR = LU->getOperand(1);
1274 // Find a recurrence.
1275 if (LL == I)
1276 L = LR;
1277 else if (LR == I)
1278 L = LL;
1279 else
1280 break;
1281 // Ok, we have a PHI of the form L op= R. Check for low
1282 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001283 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001284
1285 // We need to take the minimum number of known bits
1286 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001287 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001288
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001289 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001290 std::min(KnownZero2.countTrailingOnes(),
1291 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001292 break;
1293 }
1294 }
1295 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001296
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001297 // Unreachable blocks may have zero-operand PHI nodes.
1298 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001299 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001300
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001301 // Otherwise take the unions of the known bit sets of the operands,
1302 // taking conservative care to avoid excessive recursion.
1303 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001304 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001305 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001306 break;
1307
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001308 KnownZero = APInt::getAllOnesValue(BitWidth);
1309 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001310 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001311 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001312 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001313
1314 KnownZero2 = APInt(BitWidth, 0);
1315 KnownOne2 = APInt(BitWidth, 0);
1316 // Recurse, but cap the recursion to one level, because we don't
1317 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001318 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001319 KnownZero &= KnownZero2;
1320 KnownOne &= KnownOne2;
1321 // If all bits have been ruled out, there's no need to check
1322 // more operands.
1323 if (!KnownZero && !KnownOne)
1324 break;
1325 }
1326 }
Chris Lattner965c7692008-06-02 01:18:21 +00001327 break;
1328 }
1329 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001330 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001331 // If range metadata is attached to this call, set known bits from that,
1332 // and then intersect with known bits based on other properties of the
1333 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001334 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001335 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001336 if (Value *RV = CallSite(I).getReturnedArgOperand()) {
1337 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1338 KnownZero |= KnownZero2;
1339 KnownOne |= KnownOne2;
1340 }
Chris Lattner965c7692008-06-02 01:18:21 +00001341 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1342 switch (II->getIntrinsicID()) {
1343 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001344 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001345 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001346 KnownZero |= KnownZero2.byteSwap();
1347 KnownOne |= KnownOne2.byteSwap();
1348 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001349 case Intrinsic::ctlz:
1350 case Intrinsic::cttz: {
1351 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001352 // If this call is undefined for 0, the result will be less than 2^n.
1353 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1354 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001355 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001356 break;
1357 }
1358 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001359 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001360 // We can bound the space the count needs. Also, bits known to be zero
1361 // can't contribute to the population.
1362 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1363 unsigned LeadingZeros =
1364 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001365 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001366 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1367 KnownOne &= ~KnownZero;
1368 // TODO: we could bound KnownOne using the lower bound on the number
1369 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001370 break;
1371 }
Chad Rosierb3628842011-05-26 23:13:19 +00001372 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001373 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001374 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001375 }
1376 }
1377 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001378 case Instruction::ExtractValue:
1379 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1380 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1381 if (EVI->getNumIndices() != 1) break;
1382 if (EVI->getIndices()[0] == 0) {
1383 switch (II->getIntrinsicID()) {
1384 default: break;
1385 case Intrinsic::uadd_with_overflow:
1386 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001387 computeKnownBitsAddSub(true, II->getArgOperand(0),
1388 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001389 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001390 break;
1391 case Intrinsic::usub_with_overflow:
1392 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001393 computeKnownBitsAddSub(false, II->getArgOperand(0),
1394 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001395 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001396 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001397 case Intrinsic::umul_with_overflow:
1398 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001399 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001400 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1401 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001402 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001403 }
1404 }
1405 }
Chris Lattner965c7692008-06-02 01:18:21 +00001406 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001407}
1408
1409/// Determine which bits of V are known to be either zero or one and return
1410/// them in the KnownZero/KnownOne bit sets.
1411///
1412/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1413/// we cannot optimize based on the assumption that it is zero without changing
1414/// it to be an explicit zero. If we don't change it to zero, other code could
1415/// optimized based on the contradictory assumption that it is non-zero.
1416/// Because instcombine aggressively folds operations with undef args anyway,
1417/// this won't lose us code quality.
1418///
1419/// This function is defined on values with integer type, values with pointer
1420/// type, and vectors of integers. In the case
1421/// where V is a vector, known zero, and known one values are the
1422/// same width as the vector element, and the bit is set only if it is true
1423/// for all of the elements in the vector.
1424void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001425 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001426 assert(V && "No Value?");
1427 assert(Depth <= MaxDepth && "Limit Search Depth");
1428 unsigned BitWidth = KnownZero.getBitWidth();
1429
1430 assert((V->getType()->isIntOrIntVectorTy() ||
1431 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001432 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001433 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001434 (!V->getType()->isIntOrIntVectorTy() ||
1435 V->getType()->getScalarSizeInBits() == BitWidth) &&
1436 KnownZero.getBitWidth() == BitWidth &&
1437 KnownOne.getBitWidth() == BitWidth &&
1438 "V, KnownOne and KnownZero should have same BitWidth");
1439
1440 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1441 // We know all of the bits for a constant!
1442 KnownOne = CI->getValue();
1443 KnownZero = ~KnownOne;
1444 return;
1445 }
1446 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001447 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001448 KnownOne.clearAllBits();
1449 KnownZero = APInt::getAllOnesValue(BitWidth);
1450 return;
1451 }
1452 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001453 // each element.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001454 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1455 // We know that CDS must be a vector of integers. Take the intersection of
1456 // each element.
1457 KnownZero.setAllBits(); KnownOne.setAllBits();
1458 APInt Elt(KnownZero.getBitWidth(), 0);
1459 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1460 Elt = CDS->getElementAsInteger(i);
1461 KnownZero &= ~Elt;
1462 KnownOne &= Elt;
1463 }
1464 return;
1465 }
1466
David Majnemer3918cdd2016-05-04 06:13:33 +00001467 if (auto *CV = dyn_cast<ConstantVector>(V)) {
1468 // We know that CV must be a vector of integers. Take the intersection of
1469 // each element.
1470 KnownZero.setAllBits(); KnownOne.setAllBits();
1471 APInt Elt(KnownZero.getBitWidth(), 0);
1472 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1473 Constant *Element = CV->getAggregateElement(i);
1474 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1475 if (!ElementCI) {
1476 KnownZero.clearAllBits();
1477 KnownOne.clearAllBits();
1478 return;
1479 }
1480 Elt = ElementCI->getValue();
1481 KnownZero &= ~Elt;
1482 KnownOne &= Elt;
1483 }
1484 return;
1485 }
1486
Jingyue Wu12b0c282015-06-15 05:46:29 +00001487 // Start out not knowing anything.
1488 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1489
1490 // Limit search depth.
1491 // All recursive calls that increase depth must come after this.
1492 if (Depth == MaxDepth)
1493 return;
1494
1495 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1496 // the bits of its aliasee.
1497 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001498 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001499 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001500 return;
1501 }
1502
1503 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001504 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001505
Artur Pilipenko029d8532015-09-30 11:55:45 +00001506 // Aligned pointers have trailing zeros - refine KnownZero set
1507 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001508 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001509 if (Align)
1510 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1511 }
1512
Philip Reames146307e2016-03-03 19:44:06 +00001513 // computeKnownBitsFromAssume strictly refines KnownZero and
1514 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001515
1516 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001517 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001518
Jay Foad5a29c362014-05-15 12:12:55 +00001519 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001520}
1521
Sanjay Patelaee84212014-11-04 16:27:42 +00001522/// Determine whether the sign bit is known to be zero or one.
1523/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001524void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001525 unsigned Depth, const Query &Q) {
1526 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001527 if (!BitWidth) {
1528 KnownZero = false;
1529 KnownOne = false;
1530 return;
1531 }
1532 APInt ZeroBits(BitWidth, 0);
1533 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001534 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001535 KnownOne = OneBits[BitWidth - 1];
1536 KnownZero = ZeroBits[BitWidth - 1];
1537}
1538
Sanjay Patelaee84212014-11-04 16:27:42 +00001539/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001540/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001541/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001542/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001543bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001544 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001545 if (Constant *C = dyn_cast<Constant>(V)) {
1546 if (C->isNullValue())
1547 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001548
1549 const APInt *ConstIntOrConstSplatInt;
1550 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1551 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001552 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001553
1554 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1555 // it is shifted off the end then the result is undefined.
1556 if (match(V, m_Shl(m_One(), m_Value())))
1557 return true;
1558
1559 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1560 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001561 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001562 return true;
1563
1564 // The remaining tests are all recursive, so bail out if we hit the limit.
1565 if (Depth++ == MaxDepth)
1566 return false;
1567
Craig Topper9f008862014-04-15 04:59:12 +00001568 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001569 // A shift left or a logical shift right of a power of two is a power of two
1570 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001571 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001572 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001573 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001574
Duncan Sandsd3951082011-01-25 09:38:29 +00001575 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001576 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001577
1578 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001579 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1580 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001581
Duncan Sandsba286d72011-10-26 20:55:21 +00001582 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1583 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001584 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1585 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001586 return true;
1587 // X & (-X) is always a power of two or zero.
1588 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1589 return true;
1590 return false;
1591 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001592
David Majnemerb7d54092013-07-30 21:01:36 +00001593 // Adding a power-of-two or zero to the same power-of-two or zero yields
1594 // either the original power-of-two, a larger power-of-two or zero.
1595 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1596 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1597 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1598 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1599 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001600 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001601 return true;
1602 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1603 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001604 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001605 return true;
1606
1607 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1608 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001609 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001610
1611 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001612 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001613 // If i8 V is a power of two or zero:
1614 // ZeroBits: 1 1 1 0 1 1 1 1
1615 // ~ZeroBits: 0 0 0 1 0 0 0 0
1616 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1617 // If OrZero isn't set, we cannot give back a zero result.
1618 // Make sure either the LHS or RHS has a bit set.
1619 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1620 return true;
1621 }
1622 }
David Majnemerbeab5672013-05-18 19:30:37 +00001623
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001624 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001625 // is a power of two only if the first operand is a power of two and not
1626 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001627 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1628 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001629 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001630 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001631 }
1632
Duncan Sandsd3951082011-01-25 09:38:29 +00001633 return false;
1634}
1635
Chandler Carruth80d3e562012-12-07 02:08:58 +00001636/// \brief Test whether a GEP's result is known to be non-null.
1637///
1638/// Uses properties inherent in a GEP to try to determine whether it is known
1639/// to be non-null.
1640///
1641/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001642static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1643 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001644 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1645 return false;
1646
1647 // FIXME: Support vector-GEPs.
1648 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1649
1650 // If the base pointer is non-null, we cannot walk to a null address with an
1651 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001652 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001653 return true;
1654
Chandler Carruth80d3e562012-12-07 02:08:58 +00001655 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1656 // If so, then the GEP cannot produce a null pointer, as doing so would
1657 // inherently violate the inbounds contract within address space zero.
1658 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1659 GTI != GTE; ++GTI) {
1660 // Struct types are easy -- they must always be indexed by a constant.
1661 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1662 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1663 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001664 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001665 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1666 if (ElementOffset > 0)
1667 return true;
1668 continue;
1669 }
1670
1671 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001672 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001673 continue;
1674
1675 // Fast path the constant operand case both for efficiency and so we don't
1676 // increment Depth when just zipping down an all-constant GEP.
1677 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1678 if (!OpC->isZero())
1679 return true;
1680 continue;
1681 }
1682
1683 // We post-increment Depth here because while isKnownNonZero increments it
1684 // as well, when we pop back up that increment won't persist. We don't want
1685 // to recurse 10k times just because we have 10k GEP operands. We don't
1686 // bail completely out because we want to handle constant GEPs regardless
1687 // of depth.
1688 if (Depth++ >= MaxDepth)
1689 continue;
1690
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001691 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001692 return true;
1693 }
1694
1695 return false;
1696}
1697
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001698/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1699/// ensure that the value it's attached to is never Value? 'RangeType' is
1700/// is the type of the value described by the range.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001701static bool rangeMetadataExcludesValue(MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001702 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1703 assert(NumRanges >= 1);
1704 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001705 ConstantInt *Lower =
1706 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1707 ConstantInt *Upper =
1708 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001709 ConstantRange Range(Lower->getValue(), Upper->getValue());
1710 if (Range.contains(Value))
1711 return false;
1712 }
1713 return true;
1714}
1715
Sanjay Patelaee84212014-11-04 16:27:42 +00001716/// Return true if the given value is known to be non-zero when defined.
1717/// For vectors return true if every element is known to be non-zero when
1718/// defined. Supports values with integer or pointer type and vectors of
1719/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001720bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001721 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001722 if (C->isNullValue())
1723 return false;
1724 if (isa<ConstantInt>(C))
1725 // Must be non-zero due to null test above.
1726 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001727
1728 // For constant vectors, check that all elements are undefined or known
1729 // non-zero to determine that the whole vector is known non-zero.
1730 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1731 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1732 Constant *Elt = C->getAggregateElement(i);
1733 if (!Elt || Elt->isNullValue())
1734 return false;
1735 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1736 return false;
1737 }
1738 return true;
1739 }
1740
Duncan Sandsd3951082011-01-25 09:38:29 +00001741 return false;
1742 }
1743
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001744 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001745 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001746 // If the possible ranges don't contain zero, then the value is
1747 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001748 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001749 const APInt ZeroValue(Ty->getBitWidth(), 0);
1750 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1751 return true;
1752 }
1753 }
1754 }
1755
Duncan Sandsd3951082011-01-25 09:38:29 +00001756 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001757 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001758 return false;
1759
Chandler Carruth80d3e562012-12-07 02:08:58 +00001760 // Check for pointer simplifications.
1761 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001762 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001763 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001764 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001765 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001766 return true;
1767 }
1768
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001769 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001770
1771 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001772 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001773 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001774 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001775
1776 // ext X != 0 if X != 0.
1777 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001778 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001779
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001780 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001781 // if the lowest bit is shifted off the end.
1782 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001783 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001784 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001785 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001786 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001787
Duncan Sandsd3951082011-01-25 09:38:29 +00001788 APInt KnownZero(BitWidth, 0);
1789 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001790 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001791 if (KnownOne[0])
1792 return true;
1793 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001794 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001795 // defined if the sign bit is shifted off the end.
1796 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001797 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001798 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001799 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001800 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001801
Duncan Sandsd3951082011-01-25 09:38:29 +00001802 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001803 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001804 if (XKnownNegative)
1805 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001806
1807 // If the shifter operand is a constant, and all of the bits shifted
1808 // out are known to be zero, and X is known non-zero then at least one
1809 // non-zero bit must remain.
1810 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1811 APInt KnownZero(BitWidth, 0);
1812 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001813 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001814
James Molloyb6be1eb2015-09-24 16:06:32 +00001815 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1816 // Is there a known one in the portion not shifted out?
1817 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1818 return true;
1819 // Are all the bits to be shifted out known zero?
1820 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001821 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001822 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001823 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001824 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001825 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001826 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001827 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001828 // X + Y.
1829 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1830 bool XKnownNonNegative, XKnownNegative;
1831 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001832 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1833 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001834
1835 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001836 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001837 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001838 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001839 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001840
1841 // If X and Y are both negative (as signed values) then their sum is not
1842 // zero unless both X and Y equal INT_MIN.
1843 if (BitWidth && XKnownNegative && YKnownNegative) {
1844 APInt KnownZero(BitWidth, 0);
1845 APInt KnownOne(BitWidth, 0);
1846 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1847 // The sign bit of X is set. If some other bit is set then X is not equal
1848 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001849 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001850 if ((KnownOne & Mask) != 0)
1851 return true;
1852 // The sign bit of Y is set. If some other bit is set then Y is not equal
1853 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001854 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001855 if ((KnownOne & Mask) != 0)
1856 return true;
1857 }
1858
1859 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001860 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001861 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001862 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001863 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001864 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001865 return true;
1866 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001867 // X * Y.
1868 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1869 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1870 // If X and Y are non-zero then so is X * Y as long as the multiplication
1871 // does not overflow.
1872 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001873 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001874 return true;
1875 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001876 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1877 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001878 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1879 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001880 return true;
1881 }
James Molloy897048b2015-09-29 14:08:45 +00001882 // PHI
1883 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1884 // Try and detect a recurrence that monotonically increases from a
1885 // starting value, as these are common as induction variables.
1886 if (PN->getNumIncomingValues() == 2) {
1887 Value *Start = PN->getIncomingValue(0);
1888 Value *Induction = PN->getIncomingValue(1);
1889 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1890 std::swap(Start, Induction);
1891 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1892 if (!C->isZero() && !C->isNegative()) {
1893 ConstantInt *X;
1894 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1895 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1896 !X->isNegative())
1897 return true;
1898 }
1899 }
1900 }
Jun Bum Limca832662016-02-01 17:03:07 +00001901 // Check if all incoming values are non-zero constant.
1902 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1903 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1904 });
1905 if (AllNonZeroConstants)
1906 return true;
James Molloy897048b2015-09-29 14:08:45 +00001907 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001908
1909 if (!BitWidth) return false;
1910 APInt KnownZero(BitWidth, 0);
1911 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001912 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001913 return KnownOne != 0;
1914}
1915
James Molloy1d88d6f2015-10-22 13:18:42 +00001916/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001917static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001918 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1919 if (!BO || BO->getOpcode() != Instruction::Add)
1920 return false;
1921 Value *Op = nullptr;
1922 if (V2 == BO->getOperand(0))
1923 Op = BO->getOperand(1);
1924 else if (V2 == BO->getOperand(1))
1925 Op = BO->getOperand(0);
1926 else
1927 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001928 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001929}
1930
1931/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001932static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001933 if (V1->getType()->isVectorTy() || V1 == V2)
1934 return false;
1935 if (V1->getType() != V2->getType())
1936 // We can't look through casts yet.
1937 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001938 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001939 return true;
1940
1941 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1942 // Are any known bits in V1 contradictory to known bits in V2? If V1
1943 // has a known zero where V2 has a known one, they must not be equal.
1944 auto BitWidth = Ty->getBitWidth();
1945 APInt KnownZero1(BitWidth, 0);
1946 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001947 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001948 APInt KnownZero2(BitWidth, 0);
1949 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001950 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001951
1952 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1953 if (OppositeBits.getBoolValue())
1954 return true;
1955 }
1956 return false;
1957}
1958
Sanjay Patelaee84212014-11-04 16:27:42 +00001959/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1960/// simplify operations downstream. Mask is known to be zero for bits that V
1961/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001962///
1963/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001964/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001965/// where V is a vector, the mask, known zero, and known one values are the
1966/// same width as the vector element, and the bit is set only if it is true
1967/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001968bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1969 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001970 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001971 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001972 return (KnownZero & Mask) == Mask;
1973}
1974
Sanjay Patela06d9892016-06-22 19:20:59 +00001975/// For vector constants, loop over the elements and find the constant with the
1976/// minimum number of sign bits. Return 0 if the value is not a vector constant
1977/// or if any element was not analyzed; otherwise, return the count for the
1978/// element with the minimum number of sign bits.
1979static unsigned computeNumSignBitsVectorConstant(Value *V, unsigned TyBits) {
1980 auto *CV = dyn_cast<Constant>(V);
1981 if (!CV || !CV->getType()->isVectorTy())
1982 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00001983
Sanjay Patela06d9892016-06-22 19:20:59 +00001984 unsigned MinSignBits = TyBits;
1985 unsigned NumElts = CV->getType()->getVectorNumElements();
1986 for (unsigned i = 0; i != NumElts; ++i) {
1987 // If we find a non-ConstantInt, bail out.
1988 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
1989 if (!Elt)
1990 return 0;
1991
1992 // If the sign bit is 1, flip the bits, so we always count leading zeros.
1993 APInt EltVal = Elt->getValue();
1994 if (EltVal.isNegative())
1995 EltVal = ~EltVal;
1996 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
1997 }
1998
1999 return MinSignBits;
2000}
Chris Lattner965c7692008-06-02 01:18:21 +00002001
Sanjay Patelaee84212014-11-04 16:27:42 +00002002/// Return the number of times the sign bit of the register is replicated into
2003/// the other bits. We know that at least 1 bit is always equal to the sign bit
2004/// (itself), but other cases can give us information. For example, immediately
2005/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002006/// other, so we return 3. For vectors, return the number of sign bits for the
2007/// vector element with the mininum number of known sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002008unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
2009 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002010 unsigned Tmp, Tmp2;
2011 unsigned FirstAnswer = 1;
2012
Jay Foada0653a32014-05-14 21:14:37 +00002013 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002014 // below.
2015
Chris Lattner965c7692008-06-02 01:18:21 +00002016 if (Depth == 6)
2017 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002018
Dan Gohman80ca01c2009-07-17 20:47:02 +00002019 Operator *U = dyn_cast<Operator>(V);
2020 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002021 default: break;
2022 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002023 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002024 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002025
Nadav Rotemc99a3872015-03-06 00:23:58 +00002026 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002027 const APInt *Denominator;
2028 // sdiv X, C -> adds log(C) sign bits.
2029 if (match(U->getOperand(1), m_APInt(Denominator))) {
2030
2031 // Ignore non-positive denominator.
2032 if (!Denominator->isStrictlyPositive())
2033 break;
2034
2035 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002036 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002037
2038 // Add floor(log(C)) bits to the numerator bits.
2039 return std::min(TyBits, NumBits + Denominator->logBase2());
2040 }
2041 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002042 }
2043
2044 case Instruction::SRem: {
2045 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002046 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2047 // positive constant. This let us put a lower bound on the number of sign
2048 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002049 if (match(U->getOperand(1), m_APInt(Denominator))) {
2050
2051 // Ignore non-positive denominator.
2052 if (!Denominator->isStrictlyPositive())
2053 break;
2054
2055 // Calculate the incoming numerator bits. SRem by a positive constant
2056 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002057 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002058 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002059
2060 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002061 // denominator. Given that the denominator is positive, there are two
2062 // cases:
2063 //
2064 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2065 // (1 << ceilLogBase2(C)).
2066 //
2067 // 2. the numerator is negative. Then the result range is (-C,0] and
2068 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2069 //
2070 // Thus a lower bound on the number of sign bits is `TyBits -
2071 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002072
Sanjoy Dase561fee2015-03-25 22:33:53 +00002073 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002074 return std::max(NumrBits, ResBits);
2075 }
2076 break;
2077 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002078
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002079 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002080 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002081 // ashr X, C -> adds C sign bits. Vectors too.
2082 const APInt *ShAmt;
2083 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2084 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002085 if (Tmp > TyBits) Tmp = TyBits;
2086 }
2087 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002088 }
2089 case Instruction::Shl: {
2090 const APInt *ShAmt;
2091 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002092 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002093 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002094 Tmp2 = ShAmt->getZExtValue();
2095 if (Tmp2 >= TyBits || // Bad shift.
2096 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2097 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002098 }
2099 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002100 }
Chris Lattner965c7692008-06-02 01:18:21 +00002101 case Instruction::And:
2102 case Instruction::Or:
2103 case Instruction::Xor: // NOT is handled here.
2104 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002105 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002106 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002107 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002108 FirstAnswer = std::min(Tmp, Tmp2);
2109 // We computed what we know about the sign bits as our first
2110 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002111 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002112 }
2113 break;
2114
2115 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002116 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002117 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002118 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002119 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002120
Chris Lattner965c7692008-06-02 01:18:21 +00002121 case Instruction::Add:
2122 // Add can have at most one carry bit. Thus we know that the output
2123 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002124 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002125 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002126
Chris Lattner965c7692008-06-02 01:18:21 +00002127 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002128 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002129 if (CRHS->isAllOnesValue()) {
2130 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002131 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002132
Chris Lattner965c7692008-06-02 01:18:21 +00002133 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2134 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002135 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002136 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002137
Chris Lattner965c7692008-06-02 01:18:21 +00002138 // If we are subtracting one from a positive number, there is no carry
2139 // out of the result.
2140 if (KnownZero.isNegative())
2141 return Tmp;
2142 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002143
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002144 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002145 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002146 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002147
Chris Lattner965c7692008-06-02 01:18:21 +00002148 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002149 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002150 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002151
Chris Lattner965c7692008-06-02 01:18:21 +00002152 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002153 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002154 if (CLHS->isNullValue()) {
2155 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002156 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002157 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2158 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002159 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002160 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002161
Chris Lattner965c7692008-06-02 01:18:21 +00002162 // If the input is known to be positive (the sign bit is known clear),
2163 // the output of the NEG has the same number of sign bits as the input.
2164 if (KnownZero.isNegative())
2165 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002166
Chris Lattner965c7692008-06-02 01:18:21 +00002167 // Otherwise, we treat this like a SUB.
2168 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002169
Chris Lattner965c7692008-06-02 01:18:21 +00002170 // Sub can have at most one carry bit. Thus we know that the output
2171 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002172 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002173 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002174 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002175
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002176 case Instruction::PHI: {
2177 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002178 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002179 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002180 if (NumIncomingValues > 4) break;
2181 // Unreachable blocks may have zero-operand PHI nodes.
2182 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002183
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002184 // Take the minimum of all incoming values. This can't infinitely loop
2185 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002186 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002187 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002188 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002189 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002190 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002191 }
2192 return Tmp;
2193 }
2194
Chris Lattner965c7692008-06-02 01:18:21 +00002195 case Instruction::Trunc:
2196 // FIXME: it's tricky to do anything useful for this, but it is an important
2197 // case for targets like X86.
2198 break;
2199 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002200
Chris Lattner965c7692008-06-02 01:18:21 +00002201 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2202 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002203
2204 // If we can examine all elements of a vector constant successfully, we're
2205 // done (we can't do any better than that). If not, keep trying.
2206 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2207 return VecSignBits;
2208
Chris Lattner965c7692008-06-02 01:18:21 +00002209 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002210 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002211
Sanjay Patele0536212016-06-23 17:41:59 +00002212 // If we know that the sign bit is either zero or one, determine the number of
2213 // identical bits in the top of the input value.
2214 if (KnownZero.isNegative())
2215 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002216
Sanjay Patele0536212016-06-23 17:41:59 +00002217 if (KnownOne.isNegative())
2218 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2219
2220 // computeKnownBits gave us no extra information about the top bits.
2221 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002222}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002223
Sanjay Patelaee84212014-11-04 16:27:42 +00002224/// This function computes the integer multiple of Base that equals V.
2225/// If successful, it returns true and returns the multiple in
2226/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002227/// through SExt instructions only if LookThroughSExt is true.
2228bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002229 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002230 const unsigned MaxDepth = 6;
2231
Dan Gohman6a976bb2009-11-18 00:58:27 +00002232 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002233 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002234 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002235
Chris Lattner229907c2011-07-18 04:54:35 +00002236 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002237
Dan Gohman6a976bb2009-11-18 00:58:27 +00002238 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002239
2240 if (Base == 0)
2241 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002242
Victor Hernandez47444882009-11-10 08:28:35 +00002243 if (Base == 1) {
2244 Multiple = V;
2245 return true;
2246 }
2247
2248 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2249 Constant *BaseVal = ConstantInt::get(T, Base);
2250 if (CO && CO == BaseVal) {
2251 // Multiple is 1.
2252 Multiple = ConstantInt::get(T, 1);
2253 return true;
2254 }
2255
2256 if (CI && CI->getZExtValue() % Base == 0) {
2257 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002258 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002259 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002260
Victor Hernandez47444882009-11-10 08:28:35 +00002261 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002262
Victor Hernandez47444882009-11-10 08:28:35 +00002263 Operator *I = dyn_cast<Operator>(V);
2264 if (!I) return false;
2265
2266 switch (I->getOpcode()) {
2267 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002268 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002269 if (!LookThroughSExt) return false;
2270 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002271 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002272 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2273 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002274 case Instruction::Shl:
2275 case Instruction::Mul: {
2276 Value *Op0 = I->getOperand(0);
2277 Value *Op1 = I->getOperand(1);
2278
2279 if (I->getOpcode() == Instruction::Shl) {
2280 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2281 if (!Op1CI) return false;
2282 // Turn Op0 << Op1 into Op0 * 2^Op1
2283 APInt Op1Int = Op1CI->getValue();
2284 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002285 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002286 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002287 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002288 }
2289
Craig Topper9f008862014-04-15 04:59:12 +00002290 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002291 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2292 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2293 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002294 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002295 MulC->getType()->getPrimitiveSizeInBits())
2296 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002297 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002298 MulC->getType()->getPrimitiveSizeInBits())
2299 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002300
Chris Lattner72d283c2010-09-05 17:20:46 +00002301 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2302 Multiple = ConstantExpr::getMul(MulC, Op1C);
2303 return true;
2304 }
Victor Hernandez47444882009-11-10 08:28:35 +00002305
2306 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2307 if (Mul0CI->getValue() == 1) {
2308 // V == Base * Op1, so return Op1
2309 Multiple = Op1;
2310 return true;
2311 }
2312 }
2313
Craig Topper9f008862014-04-15 04:59:12 +00002314 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002315 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2316 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2317 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002318 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002319 MulC->getType()->getPrimitiveSizeInBits())
2320 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002321 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002322 MulC->getType()->getPrimitiveSizeInBits())
2323 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002324
Chris Lattner72d283c2010-09-05 17:20:46 +00002325 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2326 Multiple = ConstantExpr::getMul(MulC, Op0C);
2327 return true;
2328 }
Victor Hernandez47444882009-11-10 08:28:35 +00002329
2330 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2331 if (Mul1CI->getValue() == 1) {
2332 // V == Base * Op0, so return Op0
2333 Multiple = Op0;
2334 return true;
2335 }
2336 }
Victor Hernandez47444882009-11-10 08:28:35 +00002337 }
2338 }
2339
2340 // We could not determine if V is a multiple of Base.
2341 return false;
2342}
2343
David Majnemerb4b27232016-04-19 19:10:21 +00002344Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2345 const TargetLibraryInfo *TLI) {
2346 const Function *F = ICS.getCalledFunction();
2347 if (!F)
2348 return Intrinsic::not_intrinsic;
2349
2350 if (F->isIntrinsic())
2351 return F->getIntrinsicID();
2352
2353 if (!TLI)
2354 return Intrinsic::not_intrinsic;
2355
2356 LibFunc::Func Func;
2357 // We're going to make assumptions on the semantics of the functions, check
2358 // that the target knows that it's available in this environment and it does
2359 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002360 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2361 return Intrinsic::not_intrinsic;
2362
2363 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002364 return Intrinsic::not_intrinsic;
2365
2366 // Otherwise check if we have a call to a function that can be turned into a
2367 // vector intrinsic.
2368 switch (Func) {
2369 default:
2370 break;
2371 case LibFunc::sin:
2372 case LibFunc::sinf:
2373 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002374 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002375 case LibFunc::cos:
2376 case LibFunc::cosf:
2377 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002378 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002379 case LibFunc::exp:
2380 case LibFunc::expf:
2381 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002382 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002383 case LibFunc::exp2:
2384 case LibFunc::exp2f:
2385 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002386 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002387 case LibFunc::log:
2388 case LibFunc::logf:
2389 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002390 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002391 case LibFunc::log10:
2392 case LibFunc::log10f:
2393 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002394 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002395 case LibFunc::log2:
2396 case LibFunc::log2f:
2397 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002398 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002399 case LibFunc::fabs:
2400 case LibFunc::fabsf:
2401 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002402 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002403 case LibFunc::fmin:
2404 case LibFunc::fminf:
2405 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002406 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002407 case LibFunc::fmax:
2408 case LibFunc::fmaxf:
2409 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002410 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002411 case LibFunc::copysign:
2412 case LibFunc::copysignf:
2413 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002414 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002415 case LibFunc::floor:
2416 case LibFunc::floorf:
2417 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002418 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002419 case LibFunc::ceil:
2420 case LibFunc::ceilf:
2421 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002422 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002423 case LibFunc::trunc:
2424 case LibFunc::truncf:
2425 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002426 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002427 case LibFunc::rint:
2428 case LibFunc::rintf:
2429 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002430 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002431 case LibFunc::nearbyint:
2432 case LibFunc::nearbyintf:
2433 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002434 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002435 case LibFunc::round:
2436 case LibFunc::roundf:
2437 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002438 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002439 case LibFunc::pow:
2440 case LibFunc::powf:
2441 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002442 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002443 case LibFunc::sqrt:
2444 case LibFunc::sqrtf:
2445 case LibFunc::sqrtl:
2446 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002447 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002448 return Intrinsic::not_intrinsic;
2449 }
2450
2451 return Intrinsic::not_intrinsic;
2452}
2453
Sanjay Patelaee84212014-11-04 16:27:42 +00002454/// Return true if we can prove that the specified FP value is never equal to
2455/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002456///
2457/// NOTE: this function will need to be revisited when we support non-default
2458/// rounding modes!
2459///
David Majnemer3ee5f342016-04-13 06:55:52 +00002460bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2461 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002462 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2463 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002464
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002465 // FIXME: Magic number! At the least, this should be given a name because it's
2466 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2467 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002468 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002469 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002470
Dan Gohman80ca01c2009-07-17 20:47:02 +00002471 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002472 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002473
2474 // Check if the nsz fast-math flag is set
2475 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2476 if (FPO->hasNoSignedZeros())
2477 return true;
2478
Chris Lattnera12a6de2008-06-02 01:29:46 +00002479 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002480 if (I->getOpcode() == Instruction::FAdd)
2481 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2482 if (CFP->isNullValue())
2483 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002484
Chris Lattnera12a6de2008-06-02 01:29:46 +00002485 // sitofp and uitofp turn into +0.0 for zero.
2486 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2487 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002488
David Majnemer3ee5f342016-04-13 06:55:52 +00002489 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002490 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002491 switch (IID) {
2492 default:
2493 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002494 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002495 case Intrinsic::sqrt:
2496 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2497 // fabs(x) != -0.0
2498 case Intrinsic::fabs:
2499 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002500 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002501 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002502
Chris Lattnera12a6de2008-06-02 01:29:46 +00002503 return false;
2504}
2505
David Majnemer3ee5f342016-04-13 06:55:52 +00002506bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2507 const TargetLibraryInfo *TLI,
2508 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002509 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2510 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2511
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002512 // FIXME: Magic number! At the least, this should be given a name because it's
2513 // used similarly in CannotBeNegativeZero(). A better fix may be to
2514 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002515 if (Depth == 6)
2516 return false; // Limit search depth.
2517
2518 const Operator *I = dyn_cast<Operator>(V);
2519 if (!I) return false;
2520
2521 switch (I->getOpcode()) {
2522 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002523 // Unsigned integers are always nonnegative.
2524 case Instruction::UIToFP:
2525 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002526 case Instruction::FMul:
2527 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002528 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002529 return true;
2530 // Fall through
2531 case Instruction::FAdd:
2532 case Instruction::FDiv:
2533 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002534 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2535 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002536 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002537 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2538 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002539 case Instruction::FPExt:
2540 case Instruction::FPTrunc:
2541 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002542 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2543 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002544 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002545 switch (IID) {
2546 default:
2547 break;
2548 case Intrinsic::maxnum:
2549 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2550 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2551 case Intrinsic::minnum:
2552 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2553 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2554 case Intrinsic::exp:
2555 case Intrinsic::exp2:
2556 case Intrinsic::fabs:
2557 case Intrinsic::sqrt:
2558 return true;
2559 case Intrinsic::powi:
2560 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2561 // powi(x,n) is non-negative if n is even.
2562 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2563 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002564 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002565 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2566 case Intrinsic::fma:
2567 case Intrinsic::fmuladd:
2568 // x*x+y is non-negative if y is non-negative.
2569 return I->getOperand(0) == I->getOperand(1) &&
2570 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2571 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002572 break;
2573 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002574 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002575}
2576
Sanjay Patelaee84212014-11-04 16:27:42 +00002577/// If the specified value can be set by repeating the same byte in memory,
2578/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002579/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2580/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2581/// byte store (e.g. i16 0x1234), return null.
2582Value *llvm::isBytewiseValue(Value *V) {
2583 // All byte-wide stores are splatable, even of arbitrary variables.
2584 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002585
2586 // Handle 'null' ConstantArrayZero etc.
2587 if (Constant *C = dyn_cast<Constant>(V))
2588 if (C->isNullValue())
2589 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002590
Chris Lattner9cb10352010-12-26 20:15:01 +00002591 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002592 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002593 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2594 if (CFP->getType()->isFloatTy())
2595 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2596 if (CFP->getType()->isDoubleTy())
2597 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2598 // Don't handle long double formats, which have strange constraints.
2599 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002600
Benjamin Kramer17d90152015-02-07 19:29:02 +00002601 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002602 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002603 if (CI->getBitWidth() % 8 == 0) {
2604 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002605
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002606 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002607 return nullptr;
2608 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002609 }
2610 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002611
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002612 // A ConstantDataArray/Vector is splatable if all its members are equal and
2613 // also splatable.
2614 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2615 Value *Elt = CA->getElementAsConstant(0);
2616 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002617 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002618 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002619
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002620 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2621 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002622 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002623
Chris Lattner9cb10352010-12-26 20:15:01 +00002624 return Val;
2625 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002626
Chris Lattner9cb10352010-12-26 20:15:01 +00002627 // Conceptually, we could handle things like:
2628 // %a = zext i8 %X to i16
2629 // %b = shl i16 %a, 8
2630 // %c = or i16 %a, %b
2631 // but until there is an example that actually needs this, it doesn't seem
2632 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002633 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002634}
2635
2636
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002637// This is the recursive version of BuildSubAggregate. It takes a few different
2638// arguments. Idxs is the index within the nested struct From that we are
2639// looking at now (which is of type IndexedType). IdxSkip is the number of
2640// indices from Idxs that should be left out when inserting into the resulting
2641// struct. To is the result struct built so far, new insertvalue instructions
2642// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002643static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002644 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002645 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002646 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002647 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002648 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002649 // Save the original To argument so we can modify it
2650 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002651 // General case, the type indexed by Idxs is a struct
2652 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2653 // Process each struct element recursively
2654 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002655 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002656 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002657 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002658 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002659 if (!To) {
2660 // Couldn't find any inserted value for this index? Cleanup
2661 while (PrevTo != OrigTo) {
2662 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2663 PrevTo = Del->getAggregateOperand();
2664 Del->eraseFromParent();
2665 }
2666 // Stop processing elements
2667 break;
2668 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002669 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002670 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002671 if (To)
2672 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002673 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002674 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2675 // the struct's elements had a value that was inserted directly. In the latter
2676 // case, perhaps we can't determine each of the subelements individually, but
2677 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002678
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002679 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002680 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002681
2682 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002683 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002684
2685 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002686 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002687 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002688}
2689
2690// This helper takes a nested struct and extracts a part of it (which is again a
2691// struct) into a new value. For example, given the struct:
2692// { a, { b, { c, d }, e } }
2693// and the indices "1, 1" this returns
2694// { c, d }.
2695//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002696// It does this by inserting an insertvalue for each element in the resulting
2697// struct, as opposed to just inserting a single struct. This will only work if
2698// each of the elements of the substruct are known (ie, inserted into From by an
2699// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002700//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002701// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002702static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002703 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002704 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002705 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002706 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002707 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002708 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002709 unsigned IdxSkip = Idxs.size();
2710
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002711 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002712}
2713
Sanjay Patelaee84212014-11-04 16:27:42 +00002714/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002715/// the scalar value indexed is already around as a register, for example if it
2716/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002717///
2718/// If InsertBefore is not null, this function will duplicate (modified)
2719/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002720Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2721 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002722 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002723 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002724 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002725 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002726 // We have indices, so V should have an indexable type.
2727 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2728 "Not looking at a struct or array?");
2729 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2730 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002731
Chris Lattner67058832012-01-25 06:48:06 +00002732 if (Constant *C = dyn_cast<Constant>(V)) {
2733 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002734 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002735 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2736 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002737
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002738 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002739 // Loop the indices for the insertvalue instruction in parallel with the
2740 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002741 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002742 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2743 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002744 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002745 // We can't handle this without inserting insertvalues
2746 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002747 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002748
2749 // The requested index identifies a part of a nested aggregate. Handle
2750 // this specially. For example,
2751 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2752 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2753 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2754 // This can be changed into
2755 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2756 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2757 // which allows the unused 0,0 element from the nested struct to be
2758 // removed.
2759 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2760 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002761 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002762
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002763 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002764 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002765 // looking for, then.
2766 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002767 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002768 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002769 }
2770 // If we end up here, the indices of the insertvalue match with those
2771 // requested (though possibly only partially). Now we recursively look at
2772 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002773 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002774 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002775 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002776 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002777
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002778 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002779 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002780 // something else, we can extract from that something else directly instead.
2781 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002782
2783 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002784 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002785 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002786 SmallVector<unsigned, 5> Idxs;
2787 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002788 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002789 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002790
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002791 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002792 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002793
Craig Topper1bef2c82012-12-22 19:15:35 +00002794 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002795 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002796
Jay Foad57aa6362011-07-13 10:26:04 +00002797 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002798 }
2799 // Otherwise, we don't know (such as, extracting from a function return value
2800 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002801 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002802}
Evan Chengda3db112008-06-30 07:31:25 +00002803
Sanjay Patelaee84212014-11-04 16:27:42 +00002804/// Analyze the specified pointer to see if it can be expressed as a base
2805/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002806Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002807 const DataLayout &DL) {
2808 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002809 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002810
2811 // We walk up the defs but use a visited set to handle unreachable code. In
2812 // that case, we stop after accumulating the cycle once (not that it
2813 // matters).
2814 SmallPtrSet<Value *, 16> Visited;
2815 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002816 if (Ptr->getType()->isVectorTy())
2817 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002818
Nuno Lopes368c4d02012-12-31 20:48:35 +00002819 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002820 APInt GEPOffset(BitWidth, 0);
2821 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2822 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002823
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002824 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002825
Nuno Lopes368c4d02012-12-31 20:48:35 +00002826 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002827 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2828 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002829 Ptr = cast<Operator>(Ptr)->getOperand(0);
2830 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002831 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002832 break;
2833 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002834 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002835 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002836 }
2837 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002838 Offset = ByteOffset.getSExtValue();
2839 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002840}
2841
David L Kreitzer752c1442016-04-13 14:31:06 +00002842bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2843 // Make sure the GEP has exactly three arguments.
2844 if (GEP->getNumOperands() != 3)
2845 return false;
2846
2847 // Make sure the index-ee is a pointer to array of i8.
2848 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2849 if (!AT || !AT->getElementType()->isIntegerTy(8))
2850 return false;
2851
2852 // Check to make sure that the first operand of the GEP is an integer and
2853 // has value 0 so that we are sure we're indexing into the initializer.
2854 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2855 if (!FirstIdx || !FirstIdx->isZero())
2856 return false;
2857
2858 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002859}
Chris Lattnere28618d2010-11-30 22:25:26 +00002860
Sanjay Patelaee84212014-11-04 16:27:42 +00002861/// This function computes the length of a null-terminated C string pointed to
2862/// by V. If successful, it returns true and returns the string in Str.
2863/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002864bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2865 uint64_t Offset, bool TrimAtNul) {
2866 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002867
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002868 // Look through bitcast instructions and geps.
2869 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002870
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002871 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002872 // offset.
2873 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002874 // The GEP operator should be based on a pointer to string constant, and is
2875 // indexing into the string constant.
2876 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002877 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002878
Evan Chengda3db112008-06-30 07:31:25 +00002879 // If the second index isn't a ConstantInt, then this is a variable index
2880 // into the array. If this occurs, we can't say anything meaningful about
2881 // the string.
2882 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002883 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002884 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002885 else
2886 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002887 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2888 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002889 }
Nick Lewycky46209882011-10-20 00:34:35 +00002890
Evan Chengda3db112008-06-30 07:31:25 +00002891 // The GEP instruction, constant or instruction, must reference a global
2892 // variable that is a constant and is initialized. The referenced constant
2893 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002894 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002895 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002896 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002897
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002898 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002899 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002900 // This is a degenerate case. The initializer is constant zero so the
2901 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002902 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002903 return true;
2904 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002905
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002906 // This must be a ConstantDataArray.
2907 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002908 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002909 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002910
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002911 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002912 uint64_t NumElts = Array->getType()->getArrayNumElements();
2913
2914 // Start out with the entire array in the StringRef.
2915 Str = Array->getAsString();
2916
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002917 if (Offset > NumElts)
2918 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002919
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002920 // Skip over 'offset' bytes.
2921 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002922
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002923 if (TrimAtNul) {
2924 // Trim off the \0 and anything after it. If the array is not nul
2925 // terminated, we just return the whole end of string. The client may know
2926 // some other way that the string is length-bound.
2927 Str = Str.substr(0, Str.find('\0'));
2928 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002929 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002930}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002931
2932// These next two are very similar to the above, but also look through PHI
2933// nodes.
2934// TODO: See if we can integrate these two together.
2935
Sanjay Patelaee84212014-11-04 16:27:42 +00002936/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002937/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002938static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002939 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002940 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002941
2942 // If this is a PHI node, there are two cases: either we have already seen it
2943 // or we haven't.
2944 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002945 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002946 return ~0ULL; // already in the set.
2947
2948 // If it was new, see if all the input strings are the same length.
2949 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002950 for (Value *IncValue : PN->incoming_values()) {
2951 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002952 if (Len == 0) return 0; // Unknown length -> unknown.
2953
2954 if (Len == ~0ULL) continue;
2955
2956 if (Len != LenSoFar && LenSoFar != ~0ULL)
2957 return 0; // Disagree -> unknown.
2958 LenSoFar = Len;
2959 }
2960
2961 // Success, all agree.
2962 return LenSoFar;
2963 }
2964
2965 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2966 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2967 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2968 if (Len1 == 0) return 0;
2969 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2970 if (Len2 == 0) return 0;
2971 if (Len1 == ~0ULL) return Len2;
2972 if (Len2 == ~0ULL) return Len1;
2973 if (Len1 != Len2) return 0;
2974 return Len1;
2975 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002976
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002977 // Otherwise, see if we can read the string.
2978 StringRef StrData;
2979 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002980 return 0;
2981
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002982 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002983}
2984
Sanjay Patelaee84212014-11-04 16:27:42 +00002985/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002986/// the specified pointer, return 'len+1'. If we can't, return 0.
2987uint64_t llvm::GetStringLength(Value *V) {
2988 if (!V->getType()->isPointerTy()) return 0;
2989
2990 SmallPtrSet<PHINode*, 32> PHIs;
2991 uint64_t Len = GetStringLengthH(V, PHIs);
2992 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2993 // an empty string as a length.
2994 return Len == ~0ULL ? 1 : Len;
2995}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002996
Adam Nemete2b885c2015-04-23 20:09:20 +00002997/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2998/// previous iteration of the loop was referring to the same object as \p PN.
2999static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3000 // Find the loop-defined value.
3001 Loop *L = LI->getLoopFor(PN->getParent());
3002 if (PN->getNumIncomingValues() != 2)
3003 return true;
3004
3005 // Find the value from previous iteration.
3006 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3007 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3008 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3009 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3010 return true;
3011
3012 // If a new pointer is loaded in the loop, the pointer references a different
3013 // object in every iteration. E.g.:
3014 // for (i)
3015 // int *p = a[i];
3016 // ...
3017 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3018 if (!L->isLoopInvariant(Load->getPointerOperand()))
3019 return false;
3020 return true;
3021}
3022
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003023Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3024 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003025 if (!V->getType()->isPointerTy())
3026 return V;
3027 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3028 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3029 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003030 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3031 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003032 V = cast<Operator>(V)->getOperand(0);
3033 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003034 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003035 return V;
3036 V = GA->getAliasee();
3037 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003038 if (auto CS = CallSite(V))
3039 if (Value *RV = CS.getReturnedArgOperand()) {
3040 V = RV;
3041 continue;
3042 }
3043
Dan Gohman05b18f12010-12-15 20:49:55 +00003044 // See if InstructionSimplify knows any relevant tricks.
3045 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003046 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003047 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003048 V = Simplified;
3049 continue;
3050 }
3051
Dan Gohmana4fcd242010-12-15 20:02:24 +00003052 return V;
3053 }
3054 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3055 }
3056 return V;
3057}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003058
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003059void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003060 const DataLayout &DL, LoopInfo *LI,
3061 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003062 SmallPtrSet<Value *, 4> Visited;
3063 SmallVector<Value *, 4> Worklist;
3064 Worklist.push_back(V);
3065 do {
3066 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003067 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003068
David Blaikie70573dc2014-11-19 07:49:26 +00003069 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003070 continue;
3071
3072 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3073 Worklist.push_back(SI->getTrueValue());
3074 Worklist.push_back(SI->getFalseValue());
3075 continue;
3076 }
3077
3078 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003079 // If this PHI changes the underlying object in every iteration of the
3080 // loop, don't look through it. Consider:
3081 // int **A;
3082 // for (i) {
3083 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3084 // Curr = A[i];
3085 // *Prev, *Curr;
3086 //
3087 // Prev is tracking Curr one iteration behind so they refer to different
3088 // underlying objects.
3089 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3090 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003091 for (Value *IncValue : PN->incoming_values())
3092 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003093 continue;
3094 }
3095
3096 Objects.push_back(P);
3097 } while (!Worklist.empty());
3098}
3099
Sanjay Patelaee84212014-11-04 16:27:42 +00003100/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003101bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003102 for (const User *U : V->users()) {
3103 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003104 if (!II) return false;
3105
3106 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3107 II->getIntrinsicID() != Intrinsic::lifetime_end)
3108 return false;
3109 }
3110 return true;
3111}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003112
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003113bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3114 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003115 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003116 const Operator *Inst = dyn_cast<Operator>(V);
3117 if (!Inst)
3118 return false;
3119
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003120 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3121 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3122 if (C->canTrap())
3123 return false;
3124
3125 switch (Inst->getOpcode()) {
3126 default:
3127 return true;
3128 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003129 case Instruction::URem: {
3130 // x / y is undefined if y == 0.
3131 const APInt *V;
3132 if (match(Inst->getOperand(1), m_APInt(V)))
3133 return *V != 0;
3134 return false;
3135 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003136 case Instruction::SDiv:
3137 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003138 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003139 const APInt *Numerator, *Denominator;
3140 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3141 return false;
3142 // We cannot hoist this division if the denominator is 0.
3143 if (*Denominator == 0)
3144 return false;
3145 // It's safe to hoist if the denominator is not 0 or -1.
3146 if (*Denominator != -1)
3147 return true;
3148 // At this point we know that the denominator is -1. It is safe to hoist as
3149 // long we know that the numerator is not INT_MIN.
3150 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3151 return !Numerator->isMinSignedValue();
3152 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003153 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003154 }
3155 case Instruction::Load: {
3156 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003157 if (!LI->isUnordered() ||
3158 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003159 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003160 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003161 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003162 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003163 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003164 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3165 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003166 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003167 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003168 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3169 switch (II->getIntrinsicID()) {
3170 // These synthetic intrinsics have no side-effects and just mark
3171 // information about their operands.
3172 // FIXME: There are other no-op synthetic instructions that potentially
3173 // should be considered at least *safe* to speculate...
3174 case Intrinsic::dbg_declare:
3175 case Intrinsic::dbg_value:
3176 return true;
3177
3178 case Intrinsic::bswap:
3179 case Intrinsic::ctlz:
3180 case Intrinsic::ctpop:
3181 case Intrinsic::cttz:
3182 case Intrinsic::objectsize:
3183 case Intrinsic::sadd_with_overflow:
3184 case Intrinsic::smul_with_overflow:
3185 case Intrinsic::ssub_with_overflow:
3186 case Intrinsic::uadd_with_overflow:
3187 case Intrinsic::umul_with_overflow:
3188 case Intrinsic::usub_with_overflow:
3189 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003190 // These intrinsics are defined to have the same behavior as libm
3191 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003192 case Intrinsic::sqrt:
3193 case Intrinsic::fma:
3194 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003195 return true;
3196 // These intrinsics are defined to have the same behavior as libm
3197 // functions, and the corresponding libm functions never set errno.
3198 case Intrinsic::trunc:
3199 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003200 case Intrinsic::fabs:
3201 case Intrinsic::minnum:
3202 case Intrinsic::maxnum:
3203 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003204 // These intrinsics are defined to have the same behavior as libm
3205 // functions, which never overflow when operating on the IEEE754 types
3206 // that we support, and never set errno otherwise.
3207 case Intrinsic::ceil:
3208 case Intrinsic::floor:
3209 case Intrinsic::nearbyint:
3210 case Intrinsic::rint:
3211 case Intrinsic::round:
3212 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003213 // TODO: are convert_{from,to}_fp16 safe?
3214 // TODO: can we list target-specific intrinsics here?
3215 default: break;
3216 }
3217 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003218 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003219 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003220 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003221 case Instruction::VAArg:
3222 case Instruction::Alloca:
3223 case Instruction::Invoke:
3224 case Instruction::PHI:
3225 case Instruction::Store:
3226 case Instruction::Ret:
3227 case Instruction::Br:
3228 case Instruction::IndirectBr:
3229 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003230 case Instruction::Unreachable:
3231 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003232 case Instruction::AtomicRMW:
3233 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003234 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003235 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003236 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003237 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003238 case Instruction::CatchRet:
3239 case Instruction::CleanupPad:
3240 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003241 return false; // Misc instructions which have effects
3242 }
3243}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003244
Quentin Colombet6443cce2015-08-06 18:44:34 +00003245bool llvm::mayBeMemoryDependent(const Instruction &I) {
3246 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3247}
3248
Sanjay Patelaee84212014-11-04 16:27:42 +00003249/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003250bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003251 assert(V->getType()->isPointerTy() && "V must be pointer type");
3252
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003253 // Alloca never returns null, malloc might.
3254 if (isa<AllocaInst>(V)) return true;
3255
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003256 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003257 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003258 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003259
Pete Cooper6b716212015-08-27 03:16:29 +00003260 // A global variable in address space 0 is non null unless extern weak.
3261 // Other address spaces may have null as a valid address for a global,
3262 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003263 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003264 return !GV->hasExternalWeakLinkage() &&
3265 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003266
Sanjoy Das5056e192016-05-07 02:08:22 +00003267 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003268 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003269 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003270
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003271 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003272 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003273 return true;
3274
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003275 return false;
3276}
David Majnemer491331a2015-01-02 07:29:43 +00003277
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003278static bool isKnownNonNullFromDominatingCondition(const Value *V,
3279 const Instruction *CtxI,
3280 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003281 assert(V->getType()->isPointerTy() && "V must be pointer type");
3282
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003283 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003284 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003285 // Avoid massive lists
3286 if (NumUsesExplored >= DomConditionsMaxUses)
3287 break;
3288 NumUsesExplored++;
3289 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003290 CmpInst::Predicate Pred;
3291 if (!match(const_cast<User *>(U),
3292 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3293 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003294 continue;
3295
Sanjoy Das987aaa12016-05-07 02:08:24 +00003296 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003297 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3298 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003299
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003300 BasicBlock *NonNullSuccessor =
3301 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3302 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3303 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3304 return true;
3305 } else if (Pred == ICmpInst::ICMP_NE &&
3306 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3307 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003308 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003309 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003310 }
3311 }
3312
3313 return false;
3314}
3315
3316bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003317 const DominatorTree *DT) {
3318 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003319 return true;
3320
3321 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3322}
3323
David Majnemer491331a2015-01-02 07:29:43 +00003324OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003325 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003326 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003327 const Instruction *CxtI,
3328 const DominatorTree *DT) {
3329 // Multiplying n * m significant bits yields a result of n + m significant
3330 // bits. If the total number of significant bits does not exceed the
3331 // result bit width (minus 1), there is no overflow.
3332 // This means if we have enough leading zero bits in the operands
3333 // we can guarantee that the result does not overflow.
3334 // Ref: "Hacker's Delight" by Henry Warren
3335 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3336 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003337 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003338 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003339 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003340 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3341 DT);
3342 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3343 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003344 // Note that underestimating the number of zero bits gives a more
3345 // conservative answer.
3346 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3347 RHSKnownZero.countLeadingOnes();
3348 // First handle the easy case: if we have enough zero bits there's
3349 // definitely no overflow.
3350 if (ZeroBits >= BitWidth)
3351 return OverflowResult::NeverOverflows;
3352
3353 // Get the largest possible values for each operand.
3354 APInt LHSMax = ~LHSKnownZero;
3355 APInt RHSMax = ~RHSKnownZero;
3356
3357 // We know the multiply operation doesn't overflow if the maximum values for
3358 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003359 bool MaxOverflow;
3360 LHSMax.umul_ov(RHSMax, MaxOverflow);
3361 if (!MaxOverflow)
3362 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003363
David Majnemerc8a576b2015-01-02 07:29:47 +00003364 // We know it always overflows if multiplying the smallest possible values for
3365 // the operands also results in overflow.
3366 bool MinOverflow;
3367 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3368 if (MinOverflow)
3369 return OverflowResult::AlwaysOverflows;
3370
3371 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003372}
David Majnemer5310c1e2015-01-07 00:39:50 +00003373
3374OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003375 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003376 AssumptionCache *AC,
3377 const Instruction *CxtI,
3378 const DominatorTree *DT) {
3379 bool LHSKnownNonNegative, LHSKnownNegative;
3380 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3381 AC, CxtI, DT);
3382 if (LHSKnownNonNegative || LHSKnownNegative) {
3383 bool RHSKnownNonNegative, RHSKnownNegative;
3384 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3385 AC, CxtI, DT);
3386
3387 if (LHSKnownNegative && RHSKnownNegative) {
3388 // The sign bit is set in both cases: this MUST overflow.
3389 // Create a simple add instruction, and insert it into the struct.
3390 return OverflowResult::AlwaysOverflows;
3391 }
3392
3393 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3394 // The sign bit is clear in both cases: this CANNOT overflow.
3395 // Create a simple add instruction, and insert it into the struct.
3396 return OverflowResult::NeverOverflows;
3397 }
3398 }
3399
3400 return OverflowResult::MayOverflow;
3401}
James Molloy71b91c22015-05-11 14:42:20 +00003402
Jingyue Wu10fcea52015-08-20 18:27:04 +00003403static OverflowResult computeOverflowForSignedAdd(
3404 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3405 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3406 if (Add && Add->hasNoSignedWrap()) {
3407 return OverflowResult::NeverOverflows;
3408 }
3409
3410 bool LHSKnownNonNegative, LHSKnownNegative;
3411 bool RHSKnownNonNegative, RHSKnownNegative;
3412 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3413 AC, CxtI, DT);
3414 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3415 AC, CxtI, DT);
3416
3417 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3418 (LHSKnownNegative && RHSKnownNonNegative)) {
3419 // The sign bits are opposite: this CANNOT overflow.
3420 return OverflowResult::NeverOverflows;
3421 }
3422
3423 // The remaining code needs Add to be available. Early returns if not so.
3424 if (!Add)
3425 return OverflowResult::MayOverflow;
3426
3427 // If the sign of Add is the same as at least one of the operands, this add
3428 // CANNOT overflow. This is particularly useful when the sum is
3429 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3430 // operands.
3431 bool LHSOrRHSKnownNonNegative =
3432 (LHSKnownNonNegative || RHSKnownNonNegative);
3433 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3434 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3435 bool AddKnownNonNegative, AddKnownNegative;
3436 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3437 /*Depth=*/0, AC, CxtI, DT);
3438 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3439 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3440 return OverflowResult::NeverOverflows;
3441 }
3442 }
3443
3444 return OverflowResult::MayOverflow;
3445}
3446
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003447bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
3448#ifndef NDEBUG
3449 auto IID = II->getIntrinsicID();
3450 assert((IID == Intrinsic::sadd_with_overflow ||
3451 IID == Intrinsic::uadd_with_overflow ||
3452 IID == Intrinsic::ssub_with_overflow ||
3453 IID == Intrinsic::usub_with_overflow ||
3454 IID == Intrinsic::smul_with_overflow ||
3455 IID == Intrinsic::umul_with_overflow) &&
3456 "Not an overflow intrinsic!");
3457#endif
3458
3459 SmallVector<BranchInst *, 2> GuardingBranches;
3460 SmallVector<ExtractValueInst *, 2> Results;
3461
3462 for (User *U : II->users()) {
3463 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3464 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3465
3466 if (EVI->getIndices()[0] == 0)
3467 Results.push_back(EVI);
3468 else {
3469 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3470
3471 for (auto *U : EVI->users())
3472 if (auto *B = dyn_cast<BranchInst>(U)) {
3473 assert(B->isConditional() && "How else is it using an i1?");
3474 GuardingBranches.push_back(B);
3475 }
3476 }
3477 } else {
3478 // We are using the aggregate directly in a way we don't want to analyze
3479 // here (storing it to a global, say).
3480 return false;
3481 }
3482 }
3483
3484 auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
3485 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3486 if (!NoWrapEdge.isSingleEdge())
3487 return false;
3488
3489 // Check if all users of the add are provably no-wrap.
3490 for (auto *Result : Results) {
3491 // If the extractvalue itself is not executed on overflow, the we don't
3492 // need to check each use separately, since domination is transitive.
3493 if (DT.dominates(NoWrapEdge, Result->getParent()))
3494 continue;
3495
3496 for (auto &RU : Result->uses())
3497 if (!DT.dominates(NoWrapEdge, RU))
3498 return false;
3499 }
3500
3501 return true;
3502 };
3503
3504 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3505}
3506
3507
Jingyue Wu10fcea52015-08-20 18:27:04 +00003508OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3509 const DataLayout &DL,
3510 AssumptionCache *AC,
3511 const Instruction *CxtI,
3512 const DominatorTree *DT) {
3513 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3514 Add, DL, AC, CxtI, DT);
3515}
3516
3517OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3518 const DataLayout &DL,
3519 AssumptionCache *AC,
3520 const Instruction *CxtI,
3521 const DominatorTree *DT) {
3522 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3523}
3524
Jingyue Wu42f1d672015-07-28 18:22:40 +00003525bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003526 // A memory operation returns normally if it isn't volatile. A volatile
3527 // operation is allowed to trap.
3528 //
3529 // An atomic operation isn't guaranteed to return in a reasonable amount of
3530 // time because it's possible for another thread to interfere with it for an
3531 // arbitrary length of time, but programs aren't allowed to rely on that.
3532 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3533 return !LI->isVolatile();
3534 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3535 return !SI->isVolatile();
3536 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3537 return !CXI->isVolatile();
3538 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3539 return !RMWI->isVolatile();
3540 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3541 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003542
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003543 // If there is no successor, then execution can't transfer to it.
3544 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3545 return !CRI->unwindsToCaller();
3546 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3547 return !CatchSwitch->unwindsToCaller();
3548 if (isa<ResumeInst>(I))
3549 return false;
3550 if (isa<ReturnInst>(I))
3551 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003552
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003553 // Calls can throw, or contain an infinite loop, or kill the process.
3554 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3555 // Calls which don't write to arbitrary memory are safe.
3556 // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3557 // but it's consistent with other passes. See http://llvm.org/PR965 .
3558 // FIXME: This isn't aggressive enough; a call which only writes to a
3559 // global is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003560 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3561 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003562 }
3563
3564 // Other instructions return normally.
3565 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003566}
3567
3568bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3569 const Loop *L) {
3570 // The loop header is guaranteed to be executed for every iteration.
3571 //
3572 // FIXME: Relax this constraint to cover all basic blocks that are
3573 // guaranteed to be executed at every iteration.
3574 if (I->getParent() != L->getHeader()) return false;
3575
3576 for (const Instruction &LI : *L->getHeader()) {
3577 if (&LI == I) return true;
3578 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3579 }
3580 llvm_unreachable("Instruction not contained in its own parent basic block.");
3581}
3582
3583bool llvm::propagatesFullPoison(const Instruction *I) {
3584 switch (I->getOpcode()) {
3585 case Instruction::Add:
3586 case Instruction::Sub:
3587 case Instruction::Xor:
3588 case Instruction::Trunc:
3589 case Instruction::BitCast:
3590 case Instruction::AddrSpaceCast:
3591 // These operations all propagate poison unconditionally. Note that poison
3592 // is not any particular value, so xor or subtraction of poison with
3593 // itself still yields poison, not zero.
3594 return true;
3595
3596 case Instruction::AShr:
3597 case Instruction::SExt:
3598 // For these operations, one bit of the input is replicated across
3599 // multiple output bits. A replicated poison bit is still poison.
3600 return true;
3601
3602 case Instruction::Shl: {
3603 // Left shift *by* a poison value is poison. The number of
3604 // positions to shift is unsigned, so no negative values are
3605 // possible there. Left shift by zero places preserves poison. So
3606 // it only remains to consider left shift of poison by a positive
3607 // number of places.
3608 //
3609 // A left shift by a positive number of places leaves the lowest order bit
3610 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3611 // make the poison operand violate that flag, yielding a fresh full-poison
3612 // value.
3613 auto *OBO = cast<OverflowingBinaryOperator>(I);
3614 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3615 }
3616
3617 case Instruction::Mul: {
3618 // A multiplication by zero yields a non-poison zero result, so we need to
3619 // rule out zero as an operand. Conservatively, multiplication by a
3620 // non-zero constant is not multiplication by zero.
3621 //
3622 // Multiplication by a non-zero constant can leave some bits
3623 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3624 // order bit unpoisoned. So we need to consider that.
3625 //
3626 // Multiplication by 1 preserves poison. If the multiplication has a
3627 // no-wrap flag, then we can make the poison operand violate that flag
3628 // when multiplied by any integer other than 0 and 1.
3629 auto *OBO = cast<OverflowingBinaryOperator>(I);
3630 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3631 for (Value *V : OBO->operands()) {
3632 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3633 // A ConstantInt cannot yield poison, so we can assume that it is
3634 // the other operand that is poison.
3635 return !CI->isZero();
3636 }
3637 }
3638 }
3639 return false;
3640 }
3641
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003642 case Instruction::ICmp:
3643 // Comparing poison with any value yields poison. This is why, for
3644 // instance, x s< (x +nsw 1) can be folded to true.
3645 return true;
3646
Jingyue Wu42f1d672015-07-28 18:22:40 +00003647 case Instruction::GetElementPtr:
3648 // A GEP implicitly represents a sequence of additions, subtractions,
3649 // truncations, sign extensions and multiplications. The multiplications
3650 // are by the non-zero sizes of some set of types, so we do not have to be
3651 // concerned with multiplication by zero. If the GEP is in-bounds, then
3652 // these operations are implicitly no-signed-wrap so poison is propagated
3653 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3654 return cast<GEPOperator>(I)->isInBounds();
3655
3656 default:
3657 return false;
3658 }
3659}
3660
3661const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3662 switch (I->getOpcode()) {
3663 case Instruction::Store:
3664 return cast<StoreInst>(I)->getPointerOperand();
3665
3666 case Instruction::Load:
3667 return cast<LoadInst>(I)->getPointerOperand();
3668
3669 case Instruction::AtomicCmpXchg:
3670 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3671
3672 case Instruction::AtomicRMW:
3673 return cast<AtomicRMWInst>(I)->getPointerOperand();
3674
3675 case Instruction::UDiv:
3676 case Instruction::SDiv:
3677 case Instruction::URem:
3678 case Instruction::SRem:
3679 return I->getOperand(1);
3680
3681 default:
3682 return nullptr;
3683 }
3684}
3685
3686bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3687 // We currently only look for uses of poison values within the same basic
3688 // block, as that makes it easier to guarantee that the uses will be
3689 // executed given that PoisonI is executed.
3690 //
3691 // FIXME: Expand this to consider uses beyond the same basic block. To do
3692 // this, look out for the distinction between post-dominance and strong
3693 // post-dominance.
3694 const BasicBlock *BB = PoisonI->getParent();
3695
3696 // Set of instructions that we have proved will yield poison if PoisonI
3697 // does.
3698 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003699 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003700 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003701 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003702
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003703 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003704
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003705 unsigned Iter = 0;
3706 while (Iter++ < MaxDepth) {
3707 for (auto &I : make_range(Begin, End)) {
3708 if (&I != PoisonI) {
3709 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3710 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3711 return true;
3712 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3713 return false;
3714 }
3715
3716 // Mark poison that propagates from I through uses of I.
3717 if (YieldsPoison.count(&I)) {
3718 for (const User *User : I.users()) {
3719 const Instruction *UserI = cast<Instruction>(User);
3720 if (propagatesFullPoison(UserI))
3721 YieldsPoison.insert(User);
3722 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003723 }
3724 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003725
3726 if (auto *NextBB = BB->getSingleSuccessor()) {
3727 if (Visited.insert(NextBB).second) {
3728 BB = NextBB;
3729 Begin = BB->getFirstNonPHI()->getIterator();
3730 End = BB->end();
3731 continue;
3732 }
3733 }
3734
3735 break;
3736 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003737 return false;
3738}
3739
James Molloy134bec22015-08-11 09:12:57 +00003740static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3741 if (FMF.noNaNs())
3742 return true;
3743
3744 if (auto *C = dyn_cast<ConstantFP>(V))
3745 return !C->isNaN();
3746 return false;
3747}
3748
3749static bool isKnownNonZero(Value *V) {
3750 if (auto *C = dyn_cast<ConstantFP>(V))
3751 return !C->isZero();
3752 return false;
3753}
3754
3755static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3756 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003757 Value *CmpLHS, Value *CmpRHS,
3758 Value *TrueVal, Value *FalseVal,
3759 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003760 LHS = CmpLHS;
3761 RHS = CmpRHS;
3762
James Molloy134bec22015-08-11 09:12:57 +00003763 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3764 // return inconsistent results between implementations.
3765 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3766 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3767 // Therefore we behave conservatively and only proceed if at least one of the
3768 // operands is known to not be zero, or if we don't care about signed zeroes.
3769 switch (Pred) {
3770 default: break;
3771 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3772 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3773 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3774 !isKnownNonZero(CmpRHS))
3775 return {SPF_UNKNOWN, SPNB_NA, false};
3776 }
3777
3778 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3779 bool Ordered = false;
3780
3781 // When given one NaN and one non-NaN input:
3782 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3783 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3784 // ordered comparison fails), which could be NaN or non-NaN.
3785 // so here we discover exactly what NaN behavior is required/accepted.
3786 if (CmpInst::isFPPredicate(Pred)) {
3787 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3788 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3789
3790 if (LHSSafe && RHSSafe) {
3791 // Both operands are known non-NaN.
3792 NaNBehavior = SPNB_RETURNS_ANY;
3793 } else if (CmpInst::isOrdered(Pred)) {
3794 // An ordered comparison will return false when given a NaN, so it
3795 // returns the RHS.
3796 Ordered = true;
3797 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003798 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003799 NaNBehavior = SPNB_RETURNS_NAN;
3800 else if (RHSSafe)
3801 NaNBehavior = SPNB_RETURNS_OTHER;
3802 else
3803 // Completely unsafe.
3804 return {SPF_UNKNOWN, SPNB_NA, false};
3805 } else {
3806 Ordered = false;
3807 // An unordered comparison will return true when given a NaN, so it
3808 // returns the LHS.
3809 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003810 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003811 NaNBehavior = SPNB_RETURNS_OTHER;
3812 else if (RHSSafe)
3813 NaNBehavior = SPNB_RETURNS_NAN;
3814 else
3815 // Completely unsafe.
3816 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003817 }
3818 }
3819
James Molloy71b91c22015-05-11 14:42:20 +00003820 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003821 std::swap(CmpLHS, CmpRHS);
3822 Pred = CmpInst::getSwappedPredicate(Pred);
3823 if (NaNBehavior == SPNB_RETURNS_NAN)
3824 NaNBehavior = SPNB_RETURNS_OTHER;
3825 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3826 NaNBehavior = SPNB_RETURNS_NAN;
3827 Ordered = !Ordered;
3828 }
3829
3830 // ([if]cmp X, Y) ? X : Y
3831 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003832 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003833 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003834 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003835 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003836 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003837 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003838 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003839 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003840 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003841 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3842 case FCmpInst::FCMP_UGT:
3843 case FCmpInst::FCMP_UGE:
3844 case FCmpInst::FCMP_OGT:
3845 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3846 case FCmpInst::FCMP_ULT:
3847 case FCmpInst::FCMP_ULE:
3848 case FCmpInst::FCMP_OLT:
3849 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003850 }
3851 }
3852
3853 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3854 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3855 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3856
3857 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3858 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3859 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003860 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003861 }
3862
3863 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3864 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3865 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003866 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003867 }
3868 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003869
James Molloy71b91c22015-05-11 14:42:20 +00003870 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3871 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003872 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3873 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003874 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3875 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3876 LHS = TrueVal;
3877 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003878 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003879 }
3880 }
3881 }
3882
3883 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3884
James Molloy134bec22015-08-11 09:12:57 +00003885 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003886}
James Molloy270ef8c2015-05-15 16:04:50 +00003887
James Molloy569cea62015-09-02 17:25:25 +00003888static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3889 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003890 CastInst *CI = dyn_cast<CastInst>(V1);
3891 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003892 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003893 return nullptr;
3894 *CastOp = CI->getOpcode();
3895
David Majnemerd2a074b2016-04-29 18:40:34 +00003896 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00003897 // If V1 and V2 are both the same cast from the same type, we can look
3898 // through V1.
3899 if (CI2->getOpcode() == CI->getOpcode() &&
3900 CI2->getSrcTy() == CI->getSrcTy())
3901 return CI2->getOperand(0);
3902 return nullptr;
3903 } else if (!C) {
3904 return nullptr;
3905 }
3906
David Majnemerd2a074b2016-04-29 18:40:34 +00003907 Constant *CastedTo = nullptr;
3908
David Majnemer826e9832016-04-29 21:22:04 +00003909 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3910 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3911
David Majnemerd2a074b2016-04-29 18:40:34 +00003912 if (isa<SExtInst>(CI) && CmpI->isSigned())
3913 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3914
David Majnemer826e9832016-04-29 21:22:04 +00003915 if (isa<TruncInst>(CI))
3916 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3917
3918 if (isa<FPTruncInst>(CI))
3919 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3920
3921 if (isa<FPExtInst>(CI))
3922 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3923
David Majnemerd2a074b2016-04-29 18:40:34 +00003924 if (isa<FPToUIInst>(CI))
3925 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3926
3927 if (isa<FPToSIInst>(CI))
3928 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3929
3930 if (isa<UIToFPInst>(CI))
3931 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3932
3933 if (isa<SIToFPInst>(CI))
3934 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3935
3936 if (!CastedTo)
3937 return nullptr;
3938
3939 Constant *CastedBack =
3940 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3941 // Make sure the cast doesn't lose any information.
3942 if (CastedBack != C)
3943 return nullptr;
3944
3945 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00003946}
3947
Sanjay Patele8dc0902016-05-23 17:57:54 +00003948SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003949 Instruction::CastOps *CastOp) {
3950 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003951 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003952
James Molloy134bec22015-08-11 09:12:57 +00003953 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3954 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003955
James Molloy134bec22015-08-11 09:12:57 +00003956 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003957 Value *CmpLHS = CmpI->getOperand(0);
3958 Value *CmpRHS = CmpI->getOperand(1);
3959 Value *TrueVal = SI->getTrueValue();
3960 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003961 FastMathFlags FMF;
3962 if (isa<FPMathOperator>(CmpI))
3963 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003964
3965 // Bail out early.
3966 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003967 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003968
3969 // Deal with type mismatches.
3970 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003971 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003972 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003973 cast<CastInst>(TrueVal)->getOperand(0), C,
3974 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003975 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003976 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003977 C, cast<CastInst>(FalseVal)->getOperand(0),
3978 LHS, RHS);
3979 }
James Molloy134bec22015-08-11 09:12:57 +00003980 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003981 LHS, RHS);
3982}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00003983
3984ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3985 const unsigned NumRanges = Ranges.getNumOperands() / 2;
3986 assert(NumRanges >= 1 && "Must have at least one range!");
3987 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3988
3989 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3990 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3991
3992 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3993
3994 for (unsigned i = 1; i < NumRanges; ++i) {
3995 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3996 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3997
3998 // Note: unionWith will potentially create a range that contains values not
3999 // contained in any of the original N ranges.
4000 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4001 }
4002
4003 return CR;
4004}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004005
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004006/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004007static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4008 const DataLayout &DL, unsigned Depth,
4009 AssumptionCache *AC, const Instruction *CxtI,
4010 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004011 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004012 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4013 return true;
4014
4015 switch (Pred) {
4016 default:
4017 return false;
4018
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004019 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004020 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004021
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004022 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004023 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004024 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004025 return false;
4026 }
4027
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004028 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004029 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004030
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004031 // LHS u<= LHS +_{nuw} C for any C
4032 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004033 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004034
4035 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4036 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4037 const APInt *&CA, const APInt *&CB) {
4038 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4039 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4040 return true;
4041
4042 // If X & C == 0 then (X | C) == X +_{nuw} C
4043 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4044 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4045 unsigned BitWidth = CA->getBitWidth();
4046 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4047 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4048
4049 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4050 return true;
4051 }
4052
4053 return false;
4054 };
4055
4056 Value *X;
4057 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004058 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4059 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004060
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004061 return false;
4062 }
4063 }
4064}
4065
4066/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004067/// ALHS ARHS" is true. Otherwise, return None.
4068static Optional<bool>
4069isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
4070 Value *BLHS, Value *BRHS, const DataLayout &DL,
4071 unsigned Depth, AssumptionCache *AC,
4072 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004073 switch (Pred) {
4074 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004075 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004076
4077 case CmpInst::ICMP_SLT:
4078 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004079 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4080 DT) &&
4081 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4082 return true;
4083 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004084
4085 case CmpInst::ICMP_ULT:
4086 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004087 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4088 DT) &&
4089 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4090 return true;
4091 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004092 }
4093}
4094
Chad Rosier226a7342016-05-05 17:41:19 +00004095/// Return true if the operands of the two compares match. IsSwappedOps is true
4096/// when the operands match, but are swapped.
4097static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
4098 bool &IsSwappedOps) {
4099
4100 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4101 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4102 return IsMatchingOps || IsSwappedOps;
4103}
4104
Chad Rosier41dd31f2016-04-20 19:15:26 +00004105/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4106/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4107/// BRHS" is false. Otherwise, return None if we can't infer anything.
4108static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4109 Value *ALHS, Value *ARHS,
4110 CmpInst::Predicate BPred,
Chad Rosier226a7342016-05-05 17:41:19 +00004111 Value *BLHS, Value *BRHS,
4112 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004113 // Canonicalize the operands so they're matching.
4114 if (IsSwappedOps) {
4115 std::swap(BLHS, BRHS);
4116 BPred = ICmpInst::getSwappedPredicate(BPred);
4117 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004118 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004119 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004120 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004121 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004122
Chad Rosier41dd31f2016-04-20 19:15:26 +00004123 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004124}
4125
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004126/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4127/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4128/// C2" is false. Otherwise, return None if we can't infer anything.
4129static Optional<bool>
4130isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
4131 ConstantInt *C1, CmpInst::Predicate BPred,
4132 Value *BLHS, ConstantInt *C2) {
4133 assert(ALHS == BLHS && "LHS operands must match.");
4134 ConstantRange DomCR =
4135 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4136 ConstantRange CR =
4137 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4138 ConstantRange Intersection = DomCR.intersectWith(CR);
4139 ConstantRange Difference = DomCR.difference(CR);
4140 if (Intersection.isEmptySet())
4141 return false;
4142 if (Difference.isEmptySet())
4143 return true;
4144 return None;
4145}
4146
Chad Rosier41dd31f2016-04-20 19:15:26 +00004147Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004148 const DataLayout &DL, bool InvertAPred,
4149 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004150 const Instruction *CxtI,
4151 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004152 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4153 if (LHS->getType() != RHS->getType())
4154 return None;
4155
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004156 Type *OpTy = LHS->getType();
4157 assert(OpTy->getScalarType()->isIntegerTy(1));
4158
4159 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004160 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004161 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004162
4163 if (OpTy->isVectorTy())
4164 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004165 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004166 assert(OpTy->isIntegerTy(1) && "implied by above");
4167
4168 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004169 Value *ALHS, *ARHS;
4170 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004171
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004172 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4173 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004174 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004175
Chad Rosiere2cbd132016-04-25 17:23:36 +00004176 if (InvertAPred)
4177 APred = CmpInst::getInversePredicate(APred);
4178
Chad Rosier226a7342016-05-05 17:41:19 +00004179 // Can we infer anything when the two compares have matching operands?
4180 bool IsSwappedOps;
4181 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4182 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4183 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004184 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004185 // No amount of additional analysis will infer the second condition, so
4186 // early exit.
4187 return None;
4188 }
4189
4190 // Can we infer anything when the LHS operands match and the RHS operands are
4191 // constants (not necessarily matching)?
4192 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4193 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4194 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4195 cast<ConstantInt>(BRHS)))
4196 return Implication;
4197 // No amount of additional analysis will infer the second condition, so
4198 // early exit.
4199 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004200 }
4201
Chad Rosier41dd31f2016-04-20 19:15:26 +00004202 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004203 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4204 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004205
Chad Rosier41dd31f2016-04-20 19:15:26 +00004206 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004207}