blob: d8d94c422d25445781e516637cb42ae43d603ff1 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Chris Lattnerd934c702004-04-02 20:23:17 +0000117//===----------------------------------------------------------------------===//
118// SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
Dan Gohman3423e722009-06-30 20:13:32 +0000124
Manman Ren49d684e2012-09-12 05:06:18 +0000125#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000126void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000127 print(dbgs());
128 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000129}
Manman Renc3366cc2012-09-06 19:55:56 +0000130#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000131
Dan Gohman534749b2010-11-17 22:27:42 +0000132void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000133 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000134 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000135 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000136 return;
137 case scTruncate: {
138 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
139 const SCEV *Op = Trunc->getOperand();
140 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
141 << *Trunc->getType() << ")";
142 return;
143 }
144 case scZeroExtend: {
145 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
146 const SCEV *Op = ZExt->getOperand();
147 OS << "(zext " << *Op->getType() << " " << *Op << " to "
148 << *ZExt->getType() << ")";
149 return;
150 }
151 case scSignExtend: {
152 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
153 const SCEV *Op = SExt->getOperand();
154 OS << "(sext " << *Op->getType() << " " << *Op << " to "
155 << *SExt->getType() << ")";
156 return;
157 }
158 case scAddRecExpr: {
159 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
160 OS << "{" << *AR->getOperand(0);
161 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
162 OS << ",+," << *AR->getOperand(i);
163 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000165 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000167 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000168 if (AR->getNoWrapFlags(FlagNW) &&
169 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
170 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000171 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000172 OS << ">";
173 return;
174 }
175 case scAddExpr:
176 case scMulExpr:
177 case scUMaxExpr:
178 case scSMaxExpr: {
179 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000180 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000181 switch (NAry->getSCEVType()) {
182 case scAddExpr: OpStr = " + "; break;
183 case scMulExpr: OpStr = " * "; break;
184 case scUMaxExpr: OpStr = " umax "; break;
185 case scSMaxExpr: OpStr = " smax "; break;
186 }
187 OS << "(";
188 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
189 I != E; ++I) {
190 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000191 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000192 OS << OpStr;
193 }
194 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000195 switch (NAry->getSCEVType()) {
196 case scAddExpr:
197 case scMulExpr:
198 if (NAry->getNoWrapFlags(FlagNUW))
199 OS << "<nuw>";
200 if (NAry->getNoWrapFlags(FlagNSW))
201 OS << "<nsw>";
202 }
Dan Gohman534749b2010-11-17 22:27:42 +0000203 return;
204 }
205 case scUDivExpr: {
206 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
207 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
208 return;
209 }
210 case scUnknown: {
211 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000212 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000213 if (U->isSizeOf(AllocTy)) {
214 OS << "sizeof(" << *AllocTy << ")";
215 return;
216 }
217 if (U->isAlignOf(AllocTy)) {
218 OS << "alignof(" << *AllocTy << ")";
219 return;
220 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000221
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 Constant *FieldNo;
224 if (U->isOffsetOf(CTy, FieldNo)) {
225 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000226 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000227 OS << ")";
228 return;
229 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000230
Dan Gohman534749b2010-11-17 22:27:42 +0000231 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000232 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000233 return;
234 }
235 case scCouldNotCompute:
236 OS << "***COULDNOTCOMPUTE***";
237 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000238 }
239 llvm_unreachable("Unknown SCEV kind!");
240}
241
Chris Lattner229907c2011-07-18 04:54:35 +0000242Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000243 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000244 case scConstant:
245 return cast<SCEVConstant>(this)->getType();
246 case scTruncate:
247 case scZeroExtend:
248 case scSignExtend:
249 return cast<SCEVCastExpr>(this)->getType();
250 case scAddRecExpr:
251 case scMulExpr:
252 case scUMaxExpr:
253 case scSMaxExpr:
254 return cast<SCEVNAryExpr>(this)->getType();
255 case scAddExpr:
256 return cast<SCEVAddExpr>(this)->getType();
257 case scUDivExpr:
258 return cast<SCEVUDivExpr>(this)->getType();
259 case scUnknown:
260 return cast<SCEVUnknown>(this)->getType();
261 case scCouldNotCompute:
262 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000263 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000264 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000265}
266
Dan Gohmanbe928e32008-06-18 16:23:07 +0000267bool SCEV::isZero() const {
268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269 return SC->getValue()->isZero();
270 return false;
271}
272
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000273bool SCEV::isOne() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isOne();
276 return false;
277}
Chris Lattnerd934c702004-04-02 20:23:17 +0000278
Dan Gohman18a96bb2009-06-24 00:30:26 +0000279bool SCEV::isAllOnesValue() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isAllOnesValue();
282 return false;
283}
284
Andrew Trick881a7762012-01-07 00:27:31 +0000285/// isNonConstantNegative - Return true if the specified scev is negated, but
286/// not a constant.
287bool SCEV::isNonConstantNegative() const {
288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
289 if (!Mul) return false;
290
291 // If there is a constant factor, it will be first.
292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
293 if (!SC) return false;
294
295 // Return true if the value is negative, this matches things like (-42 * V).
296 return SC->getValue()->getValue().isNegative();
297}
298
Owen Anderson04052ec2009-06-22 21:57:23 +0000299SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000301
Chris Lattnerd934c702004-04-02 20:23:17 +0000302bool SCEVCouldNotCompute::classof(const SCEV *S) {
303 return S->getSCEVType() == scCouldNotCompute;
304}
305
Dan Gohmanaf752342009-07-07 17:06:11 +0000306const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000307 FoldingSetNodeID ID;
308 ID.AddInteger(scConstant);
309 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000310 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000313 UniqueSCEVs.InsertNode(S, IP);
314 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000315}
Chris Lattnerd934c702004-04-02 20:23:17 +0000316
Nick Lewycky31eaca52014-01-27 10:04:03 +0000317const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000318 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000319}
320
Dan Gohmanaf752342009-07-07 17:06:11 +0000321const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000322ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000324 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000325}
326
Dan Gohman24ceda82010-06-18 19:54:20 +0000327SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000328 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000330
Dan Gohman24ceda82010-06-18 19:54:20 +0000331SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000332 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000333 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
335 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000336 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337}
Chris Lattnerd934c702004-04-02 20:23:17 +0000338
Dan Gohman24ceda82010-06-18 19:54:20 +0000339SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000344 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345}
346
Dan Gohman24ceda82010-06-18 19:54:20 +0000347SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000352 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353}
354
Dan Gohman7cac9572010-08-02 23:49:30 +0000355void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000356 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000357 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000358
359 // Remove this SCEVUnknown from the uniquing map.
360 SE->UniqueSCEVs.RemoveNode(this);
361
362 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000363 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000364}
365
366void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000367 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000368 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000369
370 // Remove this SCEVUnknown from the uniquing map.
371 SE->UniqueSCEVs.RemoveNode(this);
372
373 // Update this SCEVUnknown to point to the new value. This is needed
374 // because there may still be outstanding SCEVs which still point to
375 // this SCEVUnknown.
376 setValPtr(New);
377}
378
Chris Lattner229907c2011-07-18 04:54:35 +0000379bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000381 if (VCE->getOpcode() == Instruction::PtrToInt)
382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000383 if (CE->getOpcode() == Instruction::GetElementPtr &&
384 CE->getOperand(0)->isNullValue() &&
385 CE->getNumOperands() == 2)
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
387 if (CI->isOne()) {
388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
389 ->getElementType();
390 return true;
391 }
Dan Gohmancf913832010-01-28 02:15:55 +0000392
393 return false;
394}
395
Chris Lattner229907c2011-07-18 04:54:35 +0000396bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000402 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000404 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000405 if (!STy->isPacked() &&
406 CE->getNumOperands() == 3 &&
407 CE->getOperand(1)->isNullValue()) {
408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
409 if (CI->isOne() &&
410 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000411 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000412 AllocTy = STy->getElementType(1);
413 return true;
414 }
415 }
416 }
Dan Gohmancf913832010-01-28 02:15:55 +0000417
418 return false;
419}
420
Chris Lattner229907c2011-07-18 04:54:35 +0000421bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000423 if (VCE->getOpcode() == Instruction::PtrToInt)
424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
425 if (CE->getOpcode() == Instruction::GetElementPtr &&
426 CE->getNumOperands() == 3 &&
427 CE->getOperand(0)->isNullValue() &&
428 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000429 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
431 // Ignore vector types here so that ScalarEvolutionExpander doesn't
432 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000433 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000434 CTy = Ty;
435 FieldNo = CE->getOperand(2);
436 return true;
437 }
438 }
439
440 return false;
441}
442
Chris Lattnereb3e8402004-06-20 06:23:15 +0000443//===----------------------------------------------------------------------===//
444// SCEV Utilities
445//===----------------------------------------------------------------------===//
446
447namespace {
448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
449 /// than the complexity of the RHS. This comparator is used to canonicalize
450 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000451 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000452 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000453 public:
Dan Gohman992db002010-07-23 21:18:55 +0000454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000455
Dan Gohman27065672010-08-27 15:26:01 +0000456 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000457 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000458 return compare(LHS, RHS) < 0;
459 }
460
461 // Return negative, zero, or positive, if LHS is less than, equal to, or
462 // greater than RHS, respectively. A three-way result allows recursive
463 // comparisons to be more efficient.
464 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000465 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
466 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000467 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000468
Dan Gohman9ba542c2009-05-07 14:39:04 +0000469 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
471 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000472 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000473
Dan Gohman24ceda82010-06-18 19:54:20 +0000474 // Aside from the getSCEVType() ordering, the particular ordering
475 // isn't very important except that it's beneficial to be consistent,
476 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000477 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000478 case scUnknown: {
479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000481
482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
483 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000484 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000485
486 // Order pointer values after integer values. This helps SCEVExpander
487 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000488 bool LIsPointer = LV->getType()->isPointerTy(),
489 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000490 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000491 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000492
493 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 unsigned LID = LV->getValueID(),
495 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000496 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000497 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000498
499 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000500 if (const Argument *LA = dyn_cast<Argument>(LV)) {
501 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
503 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000504 }
505
Dan Gohman27065672010-08-27 15:26:01 +0000506 // For instructions, compare their loop depth, and their operand
507 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
509 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000510
511 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000512 const BasicBlock *LParent = LInst->getParent(),
513 *RParent = RInst->getParent();
514 if (LParent != RParent) {
515 unsigned LDepth = LI->getLoopDepth(LParent),
516 RDepth = LI->getLoopDepth(RParent);
517 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000518 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000519 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 unsigned LNumOps = LInst->getNumOperands(),
523 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000524 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000525 }
526
Dan Gohman27065672010-08-27 15:26:01 +0000527 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000528 }
529
Dan Gohman27065672010-08-27 15:26:01 +0000530 case scConstant: {
531 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000532 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000533
534 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000535 const APInt &LA = LC->getValue()->getValue();
536 const APInt &RA = RC->getValue()->getValue();
537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000538 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000539 return (int)LBitWidth - (int)RBitWidth;
540 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000541 }
542
Dan Gohman27065672010-08-27 15:26:01 +0000543 case scAddRecExpr: {
544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000546
547 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
549 if (LLoop != RLoop) {
550 unsigned LDepth = LLoop->getLoopDepth(),
551 RDepth = RLoop->getLoopDepth();
552 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000553 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000554 }
Dan Gohman27065672010-08-27 15:26:01 +0000555
556 // Addrec complexity grows with operand count.
557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
558 if (LNumOps != RNumOps)
559 return (int)LNumOps - (int)RNumOps;
560
561 // Lexicographically compare.
562 for (unsigned i = 0; i != LNumOps; ++i) {
563 long X = compare(LA->getOperand(i), RA->getOperand(i));
564 if (X != 0)
565 return X;
566 }
567
568 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000569 }
570
Dan Gohman27065672010-08-27 15:26:01 +0000571 case scAddExpr:
572 case scMulExpr:
573 case scSMaxExpr:
574 case scUMaxExpr: {
575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000577
578 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000580 if (LNumOps != RNumOps)
581 return (int)LNumOps - (int)RNumOps;
582
Dan Gohman5ae31022010-07-23 21:20:52 +0000583 for (unsigned i = 0; i != LNumOps; ++i) {
584 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000585 return 1;
586 long X = compare(LC->getOperand(i), RC->getOperand(i));
587 if (X != 0)
588 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000589 }
Dan Gohman27065672010-08-27 15:26:01 +0000590 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000591 }
592
Dan Gohman27065672010-08-27 15:26:01 +0000593 case scUDivExpr: {
594 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000595 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000596
597 // Lexicographically compare udiv expressions.
598 long X = compare(LC->getLHS(), RC->getLHS());
599 if (X != 0)
600 return X;
601 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000602 }
603
Dan Gohman27065672010-08-27 15:26:01 +0000604 case scTruncate:
605 case scZeroExtend:
606 case scSignExtend: {
607 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000608 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000609
610 // Compare cast expressions by operand.
611 return compare(LC->getOperand(), RC->getOperand());
612 }
613
Benjamin Kramer987b8502014-02-11 19:02:55 +0000614 case scCouldNotCompute:
615 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000616 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000617 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000618 }
619 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000620}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000621
622/// GroupByComplexity - Given a list of SCEV objects, order them by their
623/// complexity, and group objects of the same complexity together by value.
624/// When this routine is finished, we know that any duplicates in the vector are
625/// consecutive and that complexity is monotonically increasing.
626///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000627/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628/// results from this routine. In other words, we don't want the results of
629/// this to depend on where the addresses of various SCEV objects happened to
630/// land in memory.
631///
Dan Gohmanaf752342009-07-07 17:06:11 +0000632static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000633 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000634 if (Ops.size() < 2) return; // Noop
635 if (Ops.size() == 2) {
636 // This is the common case, which also happens to be trivially simple.
637 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000638 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
639 if (SCEVComplexityCompare(LI)(RHS, LHS))
640 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000641 return;
642 }
643
Dan Gohman24ceda82010-06-18 19:54:20 +0000644 // Do the rough sort by complexity.
645 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
646
647 // Now that we are sorted by complexity, group elements of the same
648 // complexity. Note that this is, at worst, N^2, but the vector is likely to
649 // be extremely short in practice. Note that we take this approach because we
650 // do not want to depend on the addresses of the objects we are grouping.
651 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
652 const SCEV *S = Ops[i];
653 unsigned Complexity = S->getSCEVType();
654
655 // If there are any objects of the same complexity and same value as this
656 // one, group them.
657 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
658 if (Ops[j] == S) { // Found a duplicate.
659 // Move it to immediately after i'th element.
660 std::swap(Ops[i+1], Ops[j]);
661 ++i; // no need to rescan it.
662 if (i == e-2) return; // Done!
663 }
664 }
665 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000666}
667
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000668namespace {
669struct FindSCEVSize {
670 int Size;
671 FindSCEVSize() : Size(0) {}
672
673 bool follow(const SCEV *S) {
674 ++Size;
675 // Keep looking at all operands of S.
676 return true;
677 }
678 bool isDone() const {
679 return false;
680 }
681};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000682}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000683
684// Returns the size of the SCEV S.
685static inline int sizeOfSCEV(const SCEV *S) {
686 FindSCEVSize F;
687 SCEVTraversal<FindSCEVSize> ST(F);
688 ST.visitAll(S);
689 return F.Size;
690}
691
692namespace {
693
David Majnemer4e879362014-12-14 09:12:33 +0000694struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000695public:
696 // Computes the Quotient and Remainder of the division of Numerator by
697 // Denominator.
698 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
699 const SCEV *Denominator, const SCEV **Quotient,
700 const SCEV **Remainder) {
701 assert(Numerator && Denominator && "Uninitialized SCEV");
702
David Majnemer4e879362014-12-14 09:12:33 +0000703 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000704
705 // Check for the trivial case here to avoid having to check for it in the
706 // rest of the code.
707 if (Numerator == Denominator) {
708 *Quotient = D.One;
709 *Remainder = D.Zero;
710 return;
711 }
712
713 if (Numerator->isZero()) {
714 *Quotient = D.Zero;
715 *Remainder = D.Zero;
716 return;
717 }
718
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000719 // A simple case when N/1. The quotient is N.
720 if (Denominator->isOne()) {
721 *Quotient = Numerator;
722 *Remainder = D.Zero;
723 return;
724 }
725
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000726 // Split the Denominator when it is a product.
727 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
728 const SCEV *Q, *R;
729 *Quotient = Numerator;
730 for (const SCEV *Op : T->operands()) {
731 divide(SE, *Quotient, Op, &Q, &R);
732 *Quotient = Q;
733
734 // Bail out when the Numerator is not divisible by one of the terms of
735 // the Denominator.
736 if (!R->isZero()) {
737 *Quotient = D.Zero;
738 *Remainder = Numerator;
739 return;
740 }
741 }
742 *Remainder = D.Zero;
743 return;
744 }
745
746 D.visit(Numerator);
747 *Quotient = D.Quotient;
748 *Remainder = D.Remainder;
749 }
750
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000751 // Except in the trivial case described above, we do not know how to divide
752 // Expr by Denominator for the following functions with empty implementation.
753 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
754 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
755 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
756 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
757 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
758 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
759 void visitUnknown(const SCEVUnknown *Numerator) {}
760 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
761
David Majnemer4e879362014-12-14 09:12:33 +0000762 void visitConstant(const SCEVConstant *Numerator) {
763 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
764 APInt NumeratorVal = Numerator->getValue()->getValue();
765 APInt DenominatorVal = D->getValue()->getValue();
766 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
767 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
768
769 if (NumeratorBW > DenominatorBW)
770 DenominatorVal = DenominatorVal.sext(NumeratorBW);
771 else if (NumeratorBW < DenominatorBW)
772 NumeratorVal = NumeratorVal.sext(DenominatorBW);
773
774 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
775 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
776 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
777 Quotient = SE.getConstant(QuotientVal);
778 Remainder = SE.getConstant(RemainderVal);
779 return;
780 }
781 }
782
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000783 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
784 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000785 if (!Numerator->isAffine())
786 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000787 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
788 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000789 // Bail out if the types do not match.
790 Type *Ty = Denominator->getType();
791 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000792 Ty != StepQ->getType() || Ty != StepR->getType())
793 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000794 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
795 Numerator->getNoWrapFlags());
796 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
797 Numerator->getNoWrapFlags());
798 }
799
800 void visitAddExpr(const SCEVAddExpr *Numerator) {
801 SmallVector<const SCEV *, 2> Qs, Rs;
802 Type *Ty = Denominator->getType();
803
804 for (const SCEV *Op : Numerator->operands()) {
805 const SCEV *Q, *R;
806 divide(SE, Op, Denominator, &Q, &R);
807
808 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000809 if (Ty != Q->getType() || Ty != R->getType())
810 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000833 if (Ty != Op->getType())
834 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000835
836 if (FoundDenominatorTerm) {
837 Qs.push_back(Op);
838 continue;
839 }
840
841 // Check whether Denominator divides one of the product operands.
842 const SCEV *Q, *R;
843 divide(SE, Op, Denominator, &Q, &R);
844 if (!R->isZero()) {
845 Qs.push_back(Op);
846 continue;
847 }
848
849 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000850 if (Ty != Q->getType())
851 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000852
853 FoundDenominatorTerm = true;
854 Qs.push_back(Q);
855 }
856
857 if (FoundDenominatorTerm) {
858 Remainder = Zero;
859 if (Qs.size() == 1)
860 Quotient = Qs[0];
861 else
862 Quotient = SE.getMulExpr(Qs);
863 return;
864 }
865
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000866 if (!isa<SCEVUnknown>(Denominator))
867 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000868
869 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
870 ValueToValueMap RewriteMap;
871 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
872 cast<SCEVConstant>(Zero)->getValue();
873 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
874
875 if (Remainder->isZero()) {
876 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
877 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
878 cast<SCEVConstant>(One)->getValue();
879 Quotient =
880 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
881 return;
882 }
883
884 // Quotient is (Numerator - Remainder) divided by Denominator.
885 const SCEV *Q, *R;
886 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000887 // This SCEV does not seem to simplify: fail the division here.
888 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
889 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000890 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000891 if (R != Zero)
892 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000893 Quotient = Q;
894 }
895
896private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000897 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
898 const SCEV *Denominator)
899 : SE(S), Denominator(Denominator) {
900 Zero = SE.getConstant(Denominator->getType(), 0);
901 One = SE.getConstant(Denominator->getType(), 1);
902
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000903 // We generally do not know how to divide Expr by Denominator. We
904 // initialize the division to a "cannot divide" state to simplify the rest
905 // of the code.
906 cannotDivide(Numerator);
907 }
908
909 // Convenience function for giving up on the division. We set the quotient to
910 // be equal to zero and the remainder to be equal to the numerator.
911 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000912 Quotient = Zero;
913 Remainder = Numerator;
914 }
915
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000916 ScalarEvolution &SE;
917 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000918};
919
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000920}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000921
Chris Lattnerd934c702004-04-02 20:23:17 +0000922//===----------------------------------------------------------------------===//
923// Simple SCEV method implementations
924//===----------------------------------------------------------------------===//
925
Eli Friedman61f67622008-08-04 23:49:06 +0000926/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000927/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000928static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000929 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000930 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000931 // Handle the simplest case efficiently.
932 if (K == 1)
933 return SE.getTruncateOrZeroExtend(It, ResultTy);
934
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000935 // We are using the following formula for BC(It, K):
936 //
937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
938 //
Eli Friedman61f67622008-08-04 23:49:06 +0000939 // Suppose, W is the bitwidth of the return value. We must be prepared for
940 // overflow. Hence, we must assure that the result of our computation is
941 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
942 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000945 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000946 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
947 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000950 //
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // This formula is trivially equivalent to the previous formula. However,
952 // this formula can be implemented much more efficiently. The trick is that
953 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
954 // arithmetic. To do exact division in modular arithmetic, all we have
955 // to do is multiply by the inverse. Therefore, this step can be done at
956 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000957 //
Eli Friedman61f67622008-08-04 23:49:06 +0000958 // The next issue is how to safely do the division by 2^T. The way this
959 // is done is by doing the multiplication step at a width of at least W + T
960 // bits. This way, the bottom W+T bits of the product are accurate. Then,
961 // when we perform the division by 2^T (which is equivalent to a right shift
962 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
963 // truncated out after the division by 2^T.
964 //
965 // In comparison to just directly using the first formula, this technique
966 // is much more efficient; using the first formula requires W * K bits,
967 // but this formula less than W + K bits. Also, the first formula requires
968 // a division step, whereas this formula only requires multiplies and shifts.
969 //
970 // It doesn't matter whether the subtraction step is done in the calculation
971 // width or the input iteration count's width; if the subtraction overflows,
972 // the result must be zero anyway. We prefer here to do it in the width of
973 // the induction variable because it helps a lot for certain cases; CodeGen
974 // isn't smart enough to ignore the overflow, which leads to much less
975 // efficient code if the width of the subtraction is wider than the native
976 // register width.
977 //
978 // (It's possible to not widen at all by pulling out factors of 2 before
979 // the multiplication; for example, K=2 can be calculated as
980 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
981 // extra arithmetic, so it's not an obvious win, and it gets
982 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000983
Eli Friedman61f67622008-08-04 23:49:06 +0000984 // Protection from insane SCEVs; this bound is conservative,
985 // but it probably doesn't matter.
986 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000987 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000989 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000990
Eli Friedman61f67622008-08-04 23:49:06 +0000991 // Calculate K! / 2^T and T; we divide out the factors of two before
992 // multiplying for calculating K! / 2^T to avoid overflow.
993 // Other overflow doesn't matter because we only care about the bottom
994 // W bits of the result.
995 APInt OddFactorial(W, 1);
996 unsigned T = 1;
997 for (unsigned i = 3; i <= K; ++i) {
998 APInt Mult(W, i);
999 unsigned TwoFactors = Mult.countTrailingZeros();
1000 T += TwoFactors;
1001 Mult = Mult.lshr(TwoFactors);
1002 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001003 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001004
Eli Friedman61f67622008-08-04 23:49:06 +00001005 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001006 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001007
Dan Gohman8b0a4192010-03-01 17:49:51 +00001008 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001009 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001010
1011 // Calculate the multiplicative inverse of K! / 2^T;
1012 // this multiplication factor will perform the exact division by
1013 // K! / 2^T.
1014 APInt Mod = APInt::getSignedMinValue(W+1);
1015 APInt MultiplyFactor = OddFactorial.zext(W+1);
1016 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1017 MultiplyFactor = MultiplyFactor.trunc(W);
1018
1019 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001020 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001021 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001022 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001023 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001024 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001025 Dividend = SE.getMulExpr(Dividend,
1026 SE.getTruncateOrZeroExtend(S, CalculationTy));
1027 }
1028
1029 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001030 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001031
1032 // Truncate the result, and divide by K! / 2^T.
1033
1034 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1035 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001036}
1037
Chris Lattnerd934c702004-04-02 20:23:17 +00001038/// evaluateAtIteration - Return the value of this chain of recurrences at
1039/// the specified iteration number. We can evaluate this recurrence by
1040/// multiplying each element in the chain by the binomial coefficient
1041/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1042///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001043/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001044///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001045/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001046///
Dan Gohmanaf752342009-07-07 17:06:11 +00001047const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001048 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001049 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001050 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001051 // The computation is correct in the face of overflow provided that the
1052 // multiplication is performed _after_ the evaluation of the binomial
1053 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001055 if (isa<SCEVCouldNotCompute>(Coeff))
1056 return Coeff;
1057
1058 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001059 }
1060 return Result;
1061}
1062
Chris Lattnerd934c702004-04-02 20:23:17 +00001063//===----------------------------------------------------------------------===//
1064// SCEV Expression folder implementations
1065//===----------------------------------------------------------------------===//
1066
Dan Gohmanaf752342009-07-07 17:06:11 +00001067const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001068 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001069 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001070 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001071 assert(isSCEVable(Ty) &&
1072 "This is not a conversion to a SCEVable type!");
1073 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001074
Dan Gohman3a302cb2009-07-13 20:50:19 +00001075 FoldingSetNodeID ID;
1076 ID.AddInteger(scTruncate);
1077 ID.AddPointer(Op);
1078 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001079 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1081
Dan Gohman3423e722009-06-30 20:13:32 +00001082 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001084 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001085 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001086
Dan Gohman79af8542009-04-22 16:20:48 +00001087 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001089 return getTruncateExpr(ST->getOperand(), Ty);
1090
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001091 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001092 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001093 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1094
1095 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001096 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001097 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1098
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001099 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001100 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001101 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1102 SmallVector<const SCEV *, 4> Operands;
1103 bool hasTrunc = false;
1104 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1105 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001106 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1107 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001108 Operands.push_back(S);
1109 }
1110 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001111 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001112 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001113 }
1114
Nick Lewycky5c901f32011-01-19 18:56:00 +00001115 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001116 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001117 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1118 SmallVector<const SCEV *, 4> Operands;
1119 bool hasTrunc = false;
1120 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1121 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001122 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1123 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001124 Operands.push_back(S);
1125 }
1126 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001127 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001128 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001129 }
1130
Dan Gohman5a728c92009-06-18 16:24:47 +00001131 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001132 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001133 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001134 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001135 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001136 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001137 }
1138
Dan Gohman89dd42a2010-06-25 18:47:08 +00001139 // The cast wasn't folded; create an explicit cast node. We can reuse
1140 // the existing insert position since if we get here, we won't have
1141 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001142 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1143 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001144 UniqueSCEVs.InsertNode(S, IP);
1145 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001146}
1147
Sanjoy Das4153f472015-02-18 01:47:07 +00001148// Get the limit of a recurrence such that incrementing by Step cannot cause
1149// signed overflow as long as the value of the recurrence within the
1150// loop does not exceed this limit before incrementing.
1151static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1152 ICmpInst::Predicate *Pred,
1153 ScalarEvolution *SE) {
1154 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1155 if (SE->isKnownPositive(Step)) {
1156 *Pred = ICmpInst::ICMP_SLT;
1157 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1158 SE->getSignedRange(Step).getSignedMax());
1159 }
1160 if (SE->isKnownNegative(Step)) {
1161 *Pred = ICmpInst::ICMP_SGT;
1162 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1163 SE->getSignedRange(Step).getSignedMin());
1164 }
1165 return nullptr;
1166}
1167
1168// Get the limit of a recurrence such that incrementing by Step cannot cause
1169// unsigned overflow as long as the value of the recurrence within the loop does
1170// not exceed this limit before incrementing.
1171static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1172 ICmpInst::Predicate *Pred,
1173 ScalarEvolution *SE) {
1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1175 *Pred = ICmpInst::ICMP_ULT;
1176
1177 return SE->getConstant(APInt::getMinValue(BitWidth) -
1178 SE->getUnsignedRange(Step).getUnsignedMax());
1179}
1180
1181namespace {
1182
1183struct ExtendOpTraitsBase {
1184 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1185};
1186
1187// Used to make code generic over signed and unsigned overflow.
1188template <typename ExtendOp> struct ExtendOpTraits {
1189 // Members present:
1190 //
1191 // static const SCEV::NoWrapFlags WrapType;
1192 //
1193 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1194 //
1195 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1196 // ICmpInst::Predicate *Pred,
1197 // ScalarEvolution *SE);
1198};
1199
1200template <>
1201struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1202 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1203
1204 static const GetExtendExprTy GetExtendExpr;
1205
1206 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1207 ICmpInst::Predicate *Pred,
1208 ScalarEvolution *SE) {
1209 return getSignedOverflowLimitForStep(Step, Pred, SE);
1210 }
1211};
1212
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001213const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001214 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1215
1216template <>
1217struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1218 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1219
1220 static const GetExtendExprTy GetExtendExpr;
1221
1222 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1223 ICmpInst::Predicate *Pred,
1224 ScalarEvolution *SE) {
1225 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1226 }
1227};
1228
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001229const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001230 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001231}
Sanjoy Das4153f472015-02-18 01:47:07 +00001232
1233// The recurrence AR has been shown to have no signed/unsigned wrap or something
1234// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1235// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1236// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1237// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1238// expression "Step + sext/zext(PreIncAR)" is congruent with
1239// "sext/zext(PostIncAR)"
1240template <typename ExtendOpTy>
1241static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1242 ScalarEvolution *SE) {
1243 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1244 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1245
1246 const Loop *L = AR->getLoop();
1247 const SCEV *Start = AR->getStart();
1248 const SCEV *Step = AR->getStepRecurrence(*SE);
1249
1250 // Check for a simple looking step prior to loop entry.
1251 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1252 if (!SA)
1253 return nullptr;
1254
1255 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1256 // subtraction is expensive. For this purpose, perform a quick and dirty
1257 // difference, by checking for Step in the operand list.
1258 SmallVector<const SCEV *, 4> DiffOps;
1259 for (const SCEV *Op : SA->operands())
1260 if (Op != Step)
1261 DiffOps.push_back(Op);
1262
1263 if (DiffOps.size() == SA->getNumOperands())
1264 return nullptr;
1265
1266 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1267 // `Step`:
1268
1269 // 1. NSW/NUW flags on the step increment.
1270 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1271 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1272 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1273
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001274 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1275 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001276 //
1277
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001278 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1279 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1280 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001281 return PreStart;
1282
1283 // 2. Direct overflow check on the step operation's expression.
1284 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1285 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1286 const SCEV *OperandExtendedStart =
1287 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1288 (SE->*GetExtendExpr)(Step, WideTy));
1289 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1290 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1291 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1292 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1293 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1294 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1295 }
1296 return PreStart;
1297 }
1298
1299 // 3. Loop precondition.
1300 ICmpInst::Predicate Pred;
1301 const SCEV *OverflowLimit =
1302 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1303
1304 if (OverflowLimit &&
1305 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1306 return PreStart;
1307 }
1308 return nullptr;
1309}
1310
1311// Get the normalized zero or sign extended expression for this AddRec's Start.
1312template <typename ExtendOpTy>
1313static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1314 ScalarEvolution *SE) {
1315 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1316
1317 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1318 if (!PreStart)
1319 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1320
1321 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1322 (SE->*GetExtendExpr)(PreStart, Ty));
1323}
1324
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001325// Try to prove away overflow by looking at "nearby" add recurrences. A
1326// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1327// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1328//
1329// Formally:
1330//
1331// {S,+,X} == {S-T,+,X} + T
1332// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1333//
1334// If ({S-T,+,X} + T) does not overflow ... (1)
1335//
1336// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1337//
1338// If {S-T,+,X} does not overflow ... (2)
1339//
1340// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1341// == {Ext(S-T)+Ext(T),+,Ext(X)}
1342//
1343// If (S-T)+T does not overflow ... (3)
1344//
1345// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1346// == {Ext(S),+,Ext(X)} == LHS
1347//
1348// Thus, if (1), (2) and (3) are true for some T, then
1349// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1350//
1351// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1352// does not overflow" restricted to the 0th iteration. Therefore we only need
1353// to check for (1) and (2).
1354//
1355// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1356// is `Delta` (defined below).
1357//
1358template <typename ExtendOpTy>
1359bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1360 const SCEV *Step,
1361 const Loop *L) {
1362 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1363
1364 // We restrict `Start` to a constant to prevent SCEV from spending too much
1365 // time here. It is correct (but more expensive) to continue with a
1366 // non-constant `Start` and do a general SCEV subtraction to compute
1367 // `PreStart` below.
1368 //
1369 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1370 if (!StartC)
1371 return false;
1372
1373 APInt StartAI = StartC->getValue()->getValue();
1374
1375 for (unsigned Delta : {-2, -1, 1, 2}) {
1376 const SCEV *PreStart = getConstant(StartAI - Delta);
1377
1378 // Give up if we don't already have the add recurrence we need because
1379 // actually constructing an add recurrence is relatively expensive.
1380 const SCEVAddRecExpr *PreAR = [&]() {
1381 FoldingSetNodeID ID;
1382 ID.AddInteger(scAddRecExpr);
1383 ID.AddPointer(PreStart);
1384 ID.AddPointer(Step);
1385 ID.AddPointer(L);
1386 void *IP = nullptr;
1387 return static_cast<SCEVAddRecExpr *>(
NAKAMURA Takumi8f49dd32015-03-05 01:02:45 +00001388 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001389 }();
1390
1391 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1392 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1393 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1394 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1395 DeltaS, &Pred, this);
1396 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1397 return true;
1398 }
1399 }
1400
1401 return false;
1402}
1403
Dan Gohmanaf752342009-07-07 17:06:11 +00001404const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001405 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001406 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001407 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001408 assert(isSCEVable(Ty) &&
1409 "This is not a conversion to a SCEVable type!");
1410 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001411
Dan Gohman3423e722009-06-30 20:13:32 +00001412 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1414 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001415 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001416
Dan Gohman79af8542009-04-22 16:20:48 +00001417 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001418 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001419 return getZeroExtendExpr(SZ->getOperand(), Ty);
1420
Dan Gohman74a0ba12009-07-13 20:55:53 +00001421 // Before doing any expensive analysis, check to see if we've already
1422 // computed a SCEV for this Op and Ty.
1423 FoldingSetNodeID ID;
1424 ID.AddInteger(scZeroExtend);
1425 ID.AddPointer(Op);
1426 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001427 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1429
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001430 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1431 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1432 // It's possible the bits taken off by the truncate were all zero bits. If
1433 // so, we should be able to simplify this further.
1434 const SCEV *X = ST->getOperand();
1435 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001436 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1437 unsigned NewBits = getTypeSizeInBits(Ty);
1438 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001439 CR.zextOrTrunc(NewBits)))
1440 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001441 }
1442
Dan Gohman76466372009-04-27 20:16:15 +00001443 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001444 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001445 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001446 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001448 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001449 const SCEV *Start = AR->getStart();
1450 const SCEV *Step = AR->getStepRecurrence(*this);
1451 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1452 const Loop *L = AR->getLoop();
1453
Dan Gohman62ef6a72009-07-25 01:22:26 +00001454 // If we have special knowledge that this addrec won't overflow,
1455 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001456 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001457 return getAddRecExpr(
1458 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1459 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001460
Dan Gohman76466372009-04-27 20:16:15 +00001461 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1462 // Note that this serves two purposes: It filters out loops that are
1463 // simply not analyzable, and it covers the case where this code is
1464 // being called from within backedge-taken count analysis, such that
1465 // attempting to ask for the backedge-taken count would likely result
1466 // in infinite recursion. In the later case, the analysis code will
1467 // cope with a conservative value, and it will take care to purge
1468 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001469 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001470 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001471 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001472 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001473
1474 // Check whether the backedge-taken count can be losslessly casted to
1475 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001476 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001477 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001478 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001479 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1480 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001481 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001482 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001483 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001484 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1485 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1486 const SCEV *WideMaxBECount =
1487 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001488 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001489 getAddExpr(WideStart,
1490 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001491 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001492 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001493 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1494 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001495 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001496 return getAddRecExpr(
1497 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1498 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001499 }
Dan Gohman76466372009-04-27 20:16:15 +00001500 // Similar to above, only this time treat the step value as signed.
1501 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001502 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001503 getAddExpr(WideStart,
1504 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001505 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001506 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001507 // Cache knowledge of AR NW, which is propagated to this AddRec.
1508 // Negative step causes unsigned wrap, but it still can't self-wrap.
1509 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001510 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001511 return getAddRecExpr(
1512 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1513 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001514 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001515 }
1516
1517 // If the backedge is guarded by a comparison with the pre-inc value
1518 // the addrec is safe. Also, if the entry is guarded by a comparison
1519 // with the start value and the backedge is guarded by a comparison
1520 // with the post-inc value, the addrec is safe.
1521 if (isKnownPositive(Step)) {
1522 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1523 getUnsignedRange(Step).getUnsignedMax());
1524 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001525 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001526 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001527 AR->getPostIncExpr(*this), N))) {
1528 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1529 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001530 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001531 return getAddRecExpr(
1532 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1533 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001534 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001535 } else if (isKnownNegative(Step)) {
1536 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1537 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001538 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1539 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001540 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001541 AR->getPostIncExpr(*this), N))) {
1542 // Cache knowledge of AR NW, which is propagated to this AddRec.
1543 // Negative step causes unsigned wrap, but it still can't self-wrap.
1544 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1545 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001546 return getAddRecExpr(
1547 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1548 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001549 }
Dan Gohman76466372009-04-27 20:16:15 +00001550 }
1551 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001552
1553 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1554 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1555 return getAddRecExpr(
1556 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1557 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1558 }
Dan Gohman76466372009-04-27 20:16:15 +00001559 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001560
Dan Gohman74a0ba12009-07-13 20:55:53 +00001561 // The cast wasn't folded; create an explicit cast node.
1562 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001563 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001564 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1565 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001566 UniqueSCEVs.InsertNode(S, IP);
1567 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001568}
1569
Dan Gohmanaf752342009-07-07 17:06:11 +00001570const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001571 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001572 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001573 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001574 assert(isSCEVable(Ty) &&
1575 "This is not a conversion to a SCEVable type!");
1576 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001577
Dan Gohman3423e722009-06-30 20:13:32 +00001578 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001579 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1580 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001581 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001582
Dan Gohman79af8542009-04-22 16:20:48 +00001583 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001584 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001585 return getSignExtendExpr(SS->getOperand(), Ty);
1586
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001587 // sext(zext(x)) --> zext(x)
1588 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1589 return getZeroExtendExpr(SZ->getOperand(), Ty);
1590
Dan Gohman74a0ba12009-07-13 20:55:53 +00001591 // Before doing any expensive analysis, check to see if we've already
1592 // computed a SCEV for this Op and Ty.
1593 FoldingSetNodeID ID;
1594 ID.AddInteger(scSignExtend);
1595 ID.AddPointer(Op);
1596 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001597 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001598 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1599
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001600 // If the input value is provably positive, build a zext instead.
1601 if (isKnownNonNegative(Op))
1602 return getZeroExtendExpr(Op, Ty);
1603
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001604 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1605 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1606 // It's possible the bits taken off by the truncate were all sign bits. If
1607 // so, we should be able to simplify this further.
1608 const SCEV *X = ST->getOperand();
1609 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001610 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1611 unsigned NewBits = getTypeSizeInBits(Ty);
1612 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001613 CR.sextOrTrunc(NewBits)))
1614 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001615 }
1616
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001617 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1618 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1619 if (SA->getNumOperands() == 2) {
1620 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1621 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1622 if (SMul && SC1) {
1623 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001624 const APInt &C1 = SC1->getValue()->getValue();
1625 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001626 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001627 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001628 return getAddExpr(getSignExtendExpr(SC1, Ty),
1629 getSignExtendExpr(SMul, Ty));
1630 }
1631 }
1632 }
1633 }
Dan Gohman76466372009-04-27 20:16:15 +00001634 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001635 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001636 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001637 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001638 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001639 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001640 const SCEV *Start = AR->getStart();
1641 const SCEV *Step = AR->getStepRecurrence(*this);
1642 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1643 const Loop *L = AR->getLoop();
1644
Dan Gohman62ef6a72009-07-25 01:22:26 +00001645 // If we have special knowledge that this addrec won't overflow,
1646 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001647 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001648 return getAddRecExpr(
1649 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1650 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001651
Dan Gohman76466372009-04-27 20:16:15 +00001652 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1653 // Note that this serves two purposes: It filters out loops that are
1654 // simply not analyzable, and it covers the case where this code is
1655 // being called from within backedge-taken count analysis, such that
1656 // attempting to ask for the backedge-taken count would likely result
1657 // in infinite recursion. In the later case, the analysis code will
1658 // cope with a conservative value, and it will take care to purge
1659 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001660 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001661 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001662 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001663 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001664
1665 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001666 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001667 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001668 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001669 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001670 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1671 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001672 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001673 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001674 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001675 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1676 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1677 const SCEV *WideMaxBECount =
1678 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001679 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001680 getAddExpr(WideStart,
1681 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001682 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001683 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001684 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1685 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001686 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001687 return getAddRecExpr(
1688 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1689 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001690 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001691 // Similar to above, only this time treat the step value as unsigned.
1692 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001693 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001694 getAddExpr(WideStart,
1695 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001696 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001697 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001698 // If AR wraps around then
1699 //
1700 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1701 // => SAdd != OperandExtendedAdd
1702 //
1703 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1704 // (SAdd == OperandExtendedAdd => AR is NW)
1705
1706 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1707
Dan Gohman8c129d72009-07-16 17:34:36 +00001708 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001709 return getAddRecExpr(
1710 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1711 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001712 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001713 }
1714
1715 // If the backedge is guarded by a comparison with the pre-inc value
1716 // the addrec is safe. Also, if the entry is guarded by a comparison
1717 // with the start value and the backedge is guarded by a comparison
1718 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001719 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001720 const SCEV *OverflowLimit =
1721 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001722 if (OverflowLimit &&
1723 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1724 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1725 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1726 OverflowLimit)))) {
1727 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1728 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001729 return getAddRecExpr(
1730 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1731 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001732 }
1733 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001734 // If Start and Step are constants, check if we can apply this
1735 // transformation:
1736 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1737 auto SC1 = dyn_cast<SCEVConstant>(Start);
1738 auto SC2 = dyn_cast<SCEVConstant>(Step);
1739 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001740 const APInt &C1 = SC1->getValue()->getValue();
1741 const APInt &C2 = SC2->getValue()->getValue();
1742 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1743 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001744 Start = getSignExtendExpr(Start, Ty);
1745 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1746 L, AR->getNoWrapFlags());
1747 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1748 }
1749 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001750
1751 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1752 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1753 return getAddRecExpr(
1754 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1755 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1756 }
Dan Gohman76466372009-04-27 20:16:15 +00001757 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001758
Dan Gohman74a0ba12009-07-13 20:55:53 +00001759 // The cast wasn't folded; create an explicit cast node.
1760 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001761 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001762 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1763 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001764 UniqueSCEVs.InsertNode(S, IP);
1765 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001766}
1767
Dan Gohman8db2edc2009-06-13 15:56:47 +00001768/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1769/// unspecified bits out to the given type.
1770///
Dan Gohmanaf752342009-07-07 17:06:11 +00001771const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001772 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001773 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1774 "This is not an extending conversion!");
1775 assert(isSCEVable(Ty) &&
1776 "This is not a conversion to a SCEVable type!");
1777 Ty = getEffectiveSCEVType(Ty);
1778
1779 // Sign-extend negative constants.
1780 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1781 if (SC->getValue()->getValue().isNegative())
1782 return getSignExtendExpr(Op, Ty);
1783
1784 // Peel off a truncate cast.
1785 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001786 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001787 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1788 return getAnyExtendExpr(NewOp, Ty);
1789 return getTruncateOrNoop(NewOp, Ty);
1790 }
1791
1792 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001793 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001794 if (!isa<SCEVZeroExtendExpr>(ZExt))
1795 return ZExt;
1796
1797 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001798 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001799 if (!isa<SCEVSignExtendExpr>(SExt))
1800 return SExt;
1801
Dan Gohman51ad99d2010-01-21 02:09:26 +00001802 // Force the cast to be folded into the operands of an addrec.
1803 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1804 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001805 for (const SCEV *Op : AR->operands())
1806 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001807 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001808 }
1809
Dan Gohman8db2edc2009-06-13 15:56:47 +00001810 // If the expression is obviously signed, use the sext cast value.
1811 if (isa<SCEVSMaxExpr>(Op))
1812 return SExt;
1813
1814 // Absent any other information, use the zext cast value.
1815 return ZExt;
1816}
1817
Dan Gohman038d02e2009-06-14 22:58:51 +00001818/// CollectAddOperandsWithScales - Process the given Ops list, which is
1819/// a list of operands to be added under the given scale, update the given
1820/// map. This is a helper function for getAddRecExpr. As an example of
1821/// what it does, given a sequence of operands that would form an add
1822/// expression like this:
1823///
Tobias Grosserba49e422014-03-05 10:37:17 +00001824/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001825///
1826/// where A and B are constants, update the map with these values:
1827///
1828/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1829///
1830/// and add 13 + A*B*29 to AccumulatedConstant.
1831/// This will allow getAddRecExpr to produce this:
1832///
1833/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1834///
1835/// This form often exposes folding opportunities that are hidden in
1836/// the original operand list.
1837///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001838/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001839/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1840/// the common case where no interesting opportunities are present, and
1841/// is also used as a check to avoid infinite recursion.
1842///
1843static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001844CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001845 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001846 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001847 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001848 const APInt &Scale,
1849 ScalarEvolution &SE) {
1850 bool Interesting = false;
1851
Dan Gohman45073042010-06-18 19:12:32 +00001852 // Iterate over the add operands. They are sorted, with constants first.
1853 unsigned i = 0;
1854 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1855 ++i;
1856 // Pull a buried constant out to the outside.
1857 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1858 Interesting = true;
1859 AccumulatedConstant += Scale * C->getValue()->getValue();
1860 }
1861
1862 // Next comes everything else. We're especially interested in multiplies
1863 // here, but they're in the middle, so just visit the rest with one loop.
1864 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001865 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1866 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1867 APInt NewScale =
1868 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1869 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1870 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001871 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001872 Interesting |=
1873 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001874 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001875 NewScale, SE);
1876 } else {
1877 // A multiplication of a constant with some other value. Update
1878 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001879 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1880 const SCEV *Key = SE.getMulExpr(MulOps);
1881 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001882 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001883 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001884 NewOps.push_back(Pair.first->first);
1885 } else {
1886 Pair.first->second += NewScale;
1887 // The map already had an entry for this value, which may indicate
1888 // a folding opportunity.
1889 Interesting = true;
1890 }
1891 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001892 } else {
1893 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001894 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001895 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001896 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001897 NewOps.push_back(Pair.first->first);
1898 } else {
1899 Pair.first->second += Scale;
1900 // The map already had an entry for this value, which may indicate
1901 // a folding opportunity.
1902 Interesting = true;
1903 }
1904 }
1905 }
1906
1907 return Interesting;
1908}
1909
1910namespace {
1911 struct APIntCompare {
1912 bool operator()(const APInt &LHS, const APInt &RHS) const {
1913 return LHS.ult(RHS);
1914 }
1915 };
1916}
1917
Sanjoy Das81401d42015-01-10 23:41:24 +00001918// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1919// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1920// can't-overflow flags for the operation if possible.
1921static SCEV::NoWrapFlags
1922StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1923 const SmallVectorImpl<const SCEV *> &Ops,
1924 SCEV::NoWrapFlags OldFlags) {
1925 using namespace std::placeholders;
1926
1927 bool CanAnalyze =
1928 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1929 (void)CanAnalyze;
1930 assert(CanAnalyze && "don't call from other places!");
1931
1932 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1933 SCEV::NoWrapFlags SignOrUnsignWrap =
1934 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1935
1936 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1937 auto IsKnownNonNegative =
1938 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1939
1940 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1941 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1942 return ScalarEvolution::setFlags(OldFlags,
1943 (SCEV::NoWrapFlags)SignOrUnsignMask);
1944
1945 return OldFlags;
1946}
1947
Dan Gohman4d5435d2009-05-24 23:45:28 +00001948/// getAddExpr - Get a canonical add expression, or something simpler if
1949/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001950const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001951 SCEV::NoWrapFlags Flags) {
1952 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1953 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001954 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001955 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001956#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001957 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001958 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001959 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001960 "SCEVAddExpr operand types don't match!");
1961#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001962
Sanjoy Das81401d42015-01-10 23:41:24 +00001963 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001964
Chris Lattnerd934c702004-04-02 20:23:17 +00001965 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001966 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001967
1968 // If there are any constants, fold them together.
1969 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001970 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001971 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001972 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001973 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001974 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001975 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1976 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001977 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001978 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001979 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001980 }
1981
1982 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001983 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001984 Ops.erase(Ops.begin());
1985 --Idx;
1986 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001987
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001988 if (Ops.size() == 1) return Ops[0];
1989 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001990
Dan Gohman15871f22010-08-27 21:39:59 +00001991 // Okay, check to see if the same value occurs in the operand list more than
1992 // once. If so, merge them together into an multiply expression. Since we
1993 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001994 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001995 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001996 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001997 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001998 // Scan ahead to count how many equal operands there are.
1999 unsigned Count = 2;
2000 while (i+Count != e && Ops[i+Count] == Ops[i])
2001 ++Count;
2002 // Merge the values into a multiply.
2003 const SCEV *Scale = getConstant(Ty, Count);
2004 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2005 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002006 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002007 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002008 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002009 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002010 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002012 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002013 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002014
Dan Gohman2e55cc52009-05-08 21:03:19 +00002015 // Check for truncates. If all the operands are truncated from the same
2016 // type, see if factoring out the truncate would permit the result to be
2017 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2018 // if the contents of the resulting outer trunc fold to something simple.
2019 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2020 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002021 Type *DstType = Trunc->getType();
2022 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002023 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002024 bool Ok = true;
2025 // Check all the operands to see if they can be represented in the
2026 // source type of the truncate.
2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2028 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2029 if (T->getOperand()->getType() != SrcType) {
2030 Ok = false;
2031 break;
2032 }
2033 LargeOps.push_back(T->getOperand());
2034 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002035 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002036 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002037 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002038 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2039 if (const SCEVTruncateExpr *T =
2040 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2041 if (T->getOperand()->getType() != SrcType) {
2042 Ok = false;
2043 break;
2044 }
2045 LargeMulOps.push_back(T->getOperand());
2046 } else if (const SCEVConstant *C =
2047 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002048 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002049 } else {
2050 Ok = false;
2051 break;
2052 }
2053 }
2054 if (Ok)
2055 LargeOps.push_back(getMulExpr(LargeMulOps));
2056 } else {
2057 Ok = false;
2058 break;
2059 }
2060 }
2061 if (Ok) {
2062 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002063 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002064 // If it folds to something simple, use it. Otherwise, don't.
2065 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2066 return getTruncateExpr(Fold, DstType);
2067 }
2068 }
2069
2070 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002071 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2072 ++Idx;
2073
2074 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002075 if (Idx < Ops.size()) {
2076 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002077 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002078 // If we have an add, expand the add operands onto the end of the operands
2079 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002080 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002081 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002082 DeletedAdd = true;
2083 }
2084
2085 // If we deleted at least one add, we added operands to the end of the list,
2086 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002087 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002088 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002089 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002090 }
2091
2092 // Skip over the add expression until we get to a multiply.
2093 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2094 ++Idx;
2095
Dan Gohman038d02e2009-06-14 22:58:51 +00002096 // Check to see if there are any folding opportunities present with
2097 // operands multiplied by constant values.
2098 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2099 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002100 DenseMap<const SCEV *, APInt> M;
2101 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002102 APInt AccumulatedConstant(BitWidth, 0);
2103 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002104 Ops.data(), Ops.size(),
2105 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002106 // Some interesting folding opportunity is present, so its worthwhile to
2107 // re-generate the operands list. Group the operands by constant scale,
2108 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002109 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002110 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002111 E = NewOps.end(); I != E; ++I)
2112 MulOpLists[M.find(*I)->second].push_back(*I);
2113 // Re-generate the operands list.
2114 Ops.clear();
2115 if (AccumulatedConstant != 0)
2116 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002117 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2118 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002119 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002120 Ops.push_back(getMulExpr(getConstant(I->first),
2121 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002122 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00002123 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00002124 if (Ops.size() == 1)
2125 return Ops[0];
2126 return getAddExpr(Ops);
2127 }
2128 }
2129
Chris Lattnerd934c702004-04-02 20:23:17 +00002130 // If we are adding something to a multiply expression, make sure the
2131 // something is not already an operand of the multiply. If so, merge it into
2132 // the multiply.
2133 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002134 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002135 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002136 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002137 if (isa<SCEVConstant>(MulOpSCEV))
2138 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002139 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002140 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002141 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002142 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002143 if (Mul->getNumOperands() != 2) {
2144 // If the multiply has more than two operands, we must get the
2145 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002146 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2147 Mul->op_begin()+MulOp);
2148 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002149 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002150 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00002151 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002152 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002153 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002154 if (Ops.size() == 2) return OuterMul;
2155 if (AddOp < Idx) {
2156 Ops.erase(Ops.begin()+AddOp);
2157 Ops.erase(Ops.begin()+Idx-1);
2158 } else {
2159 Ops.erase(Ops.begin()+Idx);
2160 Ops.erase(Ops.begin()+AddOp-1);
2161 }
2162 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002163 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002164 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002165
Chris Lattnerd934c702004-04-02 20:23:17 +00002166 // Check this multiply against other multiplies being added together.
2167 for (unsigned OtherMulIdx = Idx+1;
2168 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2169 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002170 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002171 // If MulOp occurs in OtherMul, we can fold the two multiplies
2172 // together.
2173 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2174 OMulOp != e; ++OMulOp)
2175 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2176 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002177 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002178 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002179 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002180 Mul->op_begin()+MulOp);
2181 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002182 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002183 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002184 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002185 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002186 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002187 OtherMul->op_begin()+OMulOp);
2188 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002189 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002190 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002191 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2192 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002193 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002194 Ops.erase(Ops.begin()+Idx);
2195 Ops.erase(Ops.begin()+OtherMulIdx-1);
2196 Ops.push_back(OuterMul);
2197 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002198 }
2199 }
2200 }
2201 }
2202
2203 // If there are any add recurrences in the operands list, see if any other
2204 // added values are loop invariant. If so, we can fold them into the
2205 // recurrence.
2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2207 ++Idx;
2208
2209 // Scan over all recurrences, trying to fold loop invariants into them.
2210 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2211 // Scan all of the other operands to this add and add them to the vector if
2212 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002213 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002214 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002215 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002216 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002217 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002218 LIOps.push_back(Ops[i]);
2219 Ops.erase(Ops.begin()+i);
2220 --i; --e;
2221 }
2222
2223 // If we found some loop invariants, fold them into the recurrence.
2224 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002225 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002226 LIOps.push_back(AddRec->getStart());
2227
Dan Gohmanaf752342009-07-07 17:06:11 +00002228 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002229 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002230 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002231
Dan Gohman16206132010-06-30 07:16:37 +00002232 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002233 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002234 // Always propagate NW.
2235 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002236 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002237
Chris Lattnerd934c702004-04-02 20:23:17 +00002238 // If all of the other operands were loop invariant, we are done.
2239 if (Ops.size() == 1) return NewRec;
2240
Nick Lewyckydb66b822011-09-06 05:08:09 +00002241 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002242 for (unsigned i = 0;; ++i)
2243 if (Ops[i] == AddRec) {
2244 Ops[i] = NewRec;
2245 break;
2246 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002247 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002248 }
2249
2250 // Okay, if there weren't any loop invariants to be folded, check to see if
2251 // there are multiple AddRec's with the same loop induction variable being
2252 // added together. If so, we can fold them.
2253 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002254 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2255 ++OtherIdx)
2256 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2257 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2258 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2259 AddRec->op_end());
2260 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2261 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002262 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002263 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002264 if (OtherAddRec->getLoop() == AddRecLoop) {
2265 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2266 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002267 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002268 AddRecOps.append(OtherAddRec->op_begin()+i,
2269 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002270 break;
2271 }
Dan Gohman028c1812010-08-29 14:53:34 +00002272 AddRecOps[i] = getAddExpr(AddRecOps[i],
2273 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002274 }
2275 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002276 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002277 // Step size has changed, so we cannot guarantee no self-wraparound.
2278 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002279 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002280 }
2281
2282 // Otherwise couldn't fold anything into this recurrence. Move onto the
2283 // next one.
2284 }
2285
2286 // Okay, it looks like we really DO need an add expr. Check to see if we
2287 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002288 FoldingSetNodeID ID;
2289 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002290 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2291 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002292 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002293 SCEVAddExpr *S =
2294 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2295 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002296 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2297 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002298 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2299 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002300 UniqueSCEVs.InsertNode(S, IP);
2301 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002302 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002303 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002304}
2305
Nick Lewycky287682e2011-10-04 06:51:26 +00002306static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2307 uint64_t k = i*j;
2308 if (j > 1 && k / j != i) Overflow = true;
2309 return k;
2310}
2311
2312/// Compute the result of "n choose k", the binomial coefficient. If an
2313/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002314/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002315static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2316 // We use the multiplicative formula:
2317 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2318 // At each iteration, we take the n-th term of the numeral and divide by the
2319 // (k-n)th term of the denominator. This division will always produce an
2320 // integral result, and helps reduce the chance of overflow in the
2321 // intermediate computations. However, we can still overflow even when the
2322 // final result would fit.
2323
2324 if (n == 0 || n == k) return 1;
2325 if (k > n) return 0;
2326
2327 if (k > n/2)
2328 k = n-k;
2329
2330 uint64_t r = 1;
2331 for (uint64_t i = 1; i <= k; ++i) {
2332 r = umul_ov(r, n-(i-1), Overflow);
2333 r /= i;
2334 }
2335 return r;
2336}
2337
Nick Lewycky05044c22014-12-06 00:45:50 +00002338/// Determine if any of the operands in this SCEV are a constant or if
2339/// any of the add or multiply expressions in this SCEV contain a constant.
2340static bool containsConstantSomewhere(const SCEV *StartExpr) {
2341 SmallVector<const SCEV *, 4> Ops;
2342 Ops.push_back(StartExpr);
2343 while (!Ops.empty()) {
2344 const SCEV *CurrentExpr = Ops.pop_back_val();
2345 if (isa<SCEVConstant>(*CurrentExpr))
2346 return true;
2347
2348 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2349 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002350 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002351 }
2352 }
2353 return false;
2354}
2355
Dan Gohman4d5435d2009-05-24 23:45:28 +00002356/// getMulExpr - Get a canonical multiply expression, or something simpler if
2357/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002358const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002359 SCEV::NoWrapFlags Flags) {
2360 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2361 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002362 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002363 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002364#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002365 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002366 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002367 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002368 "SCEVMulExpr operand types don't match!");
2369#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002370
Sanjoy Das81401d42015-01-10 23:41:24 +00002371 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002372
Chris Lattnerd934c702004-04-02 20:23:17 +00002373 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002374 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002375
2376 // If there are any constants, fold them together.
2377 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002378 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002379
2380 // C1*(C2+V) -> C1*C2 + C1*V
2381 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002382 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2383 // If any of Add's ops are Adds or Muls with a constant,
2384 // apply this transformation as well.
2385 if (Add->getNumOperands() == 2)
2386 if (containsConstantSomewhere(Add))
2387 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2388 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002389
Chris Lattnerd934c702004-04-02 20:23:17 +00002390 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002392 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002393 ConstantInt *Fold = ConstantInt::get(getContext(),
2394 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002395 RHSC->getValue()->getValue());
2396 Ops[0] = getConstant(Fold);
2397 Ops.erase(Ops.begin()+1); // Erase the folded element
2398 if (Ops.size() == 1) return Ops[0];
2399 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002400 }
2401
2402 // If we are left with a constant one being multiplied, strip it off.
2403 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2404 Ops.erase(Ops.begin());
2405 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002407 // If we have a multiply of zero, it will always be zero.
2408 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002409 } else if (Ops[0]->isAllOnesValue()) {
2410 // If we have a mul by -1 of an add, try distributing the -1 among the
2411 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002412 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002413 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2414 SmallVector<const SCEV *, 4> NewOps;
2415 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002416 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2417 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002418 const SCEV *Mul = getMulExpr(Ops[0], *I);
2419 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2420 NewOps.push_back(Mul);
2421 }
2422 if (AnyFolded)
2423 return getAddExpr(NewOps);
2424 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002425 else if (const SCEVAddRecExpr *
2426 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2427 // Negation preserves a recurrence's no self-wrap property.
2428 SmallVector<const SCEV *, 4> Operands;
2429 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2430 E = AddRec->op_end(); I != E; ++I) {
2431 Operands.push_back(getMulExpr(Ops[0], *I));
2432 }
2433 return getAddRecExpr(Operands, AddRec->getLoop(),
2434 AddRec->getNoWrapFlags(SCEV::FlagNW));
2435 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002436 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002437 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002438
2439 if (Ops.size() == 1)
2440 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002441 }
2442
2443 // Skip over the add expression until we get to a multiply.
2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2445 ++Idx;
2446
Chris Lattnerd934c702004-04-02 20:23:17 +00002447 // If there are mul operands inline them all into this expression.
2448 if (Idx < Ops.size()) {
2449 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002450 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002451 // If we have an mul, expand the mul operands onto the end of the operands
2452 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002453 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002454 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002455 DeletedMul = true;
2456 }
2457
2458 // If we deleted at least one mul, we added operands to the end of the list,
2459 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002460 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002461 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002462 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002463 }
2464
2465 // If there are any add recurrences in the operands list, see if any other
2466 // added values are loop invariant. If so, we can fold them into the
2467 // recurrence.
2468 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2469 ++Idx;
2470
2471 // Scan over all recurrences, trying to fold loop invariants into them.
2472 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2473 // Scan all of the other operands to this mul and add them to the vector if
2474 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002475 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002476 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002477 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002478 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002479 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002480 LIOps.push_back(Ops[i]);
2481 Ops.erase(Ops.begin()+i);
2482 --i; --e;
2483 }
2484
2485 // If we found some loop invariants, fold them into the recurrence.
2486 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002487 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002488 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002489 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002490 const SCEV *Scale = getMulExpr(LIOps);
2491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2492 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002493
Dan Gohman16206132010-06-30 07:16:37 +00002494 // Build the new addrec. Propagate the NUW and NSW flags if both the
2495 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002496 //
2497 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002498 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002499 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2500 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002501
2502 // If all of the other operands were loop invariant, we are done.
2503 if (Ops.size() == 1) return NewRec;
2504
Nick Lewyckydb66b822011-09-06 05:08:09 +00002505 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002506 for (unsigned i = 0;; ++i)
2507 if (Ops[i] == AddRec) {
2508 Ops[i] = NewRec;
2509 break;
2510 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002511 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002512 }
2513
2514 // Okay, if there weren't any loop invariants to be folded, check to see if
2515 // there are multiple AddRec's with the same loop induction variable being
2516 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002517
2518 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2519 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2520 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2521 // ]]],+,...up to x=2n}.
2522 // Note that the arguments to choose() are always integers with values
2523 // known at compile time, never SCEV objects.
2524 //
2525 // The implementation avoids pointless extra computations when the two
2526 // addrec's are of different length (mathematically, it's equivalent to
2527 // an infinite stream of zeros on the right).
2528 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002529 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002530 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002531 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002532 const SCEVAddRecExpr *OtherAddRec =
2533 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2534 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002535 continue;
2536
Nick Lewycky97756402014-09-01 05:17:15 +00002537 bool Overflow = false;
2538 Type *Ty = AddRec->getType();
2539 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2540 SmallVector<const SCEV*, 7> AddRecOps;
2541 for (int x = 0, xe = AddRec->getNumOperands() +
2542 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2543 const SCEV *Term = getConstant(Ty, 0);
2544 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2545 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2546 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2547 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2548 z < ze && !Overflow; ++z) {
2549 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2550 uint64_t Coeff;
2551 if (LargerThan64Bits)
2552 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2553 else
2554 Coeff = Coeff1*Coeff2;
2555 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2556 const SCEV *Term1 = AddRec->getOperand(y-z);
2557 const SCEV *Term2 = OtherAddRec->getOperand(z);
2558 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002559 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002560 }
Nick Lewycky97756402014-09-01 05:17:15 +00002561 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002562 }
Nick Lewycky97756402014-09-01 05:17:15 +00002563 if (!Overflow) {
2564 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2565 SCEV::FlagAnyWrap);
2566 if (Ops.size() == 2) return NewAddRec;
2567 Ops[Idx] = NewAddRec;
2568 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2569 OpsModified = true;
2570 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2571 if (!AddRec)
2572 break;
2573 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002574 }
Nick Lewycky97756402014-09-01 05:17:15 +00002575 if (OpsModified)
2576 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002577
2578 // Otherwise couldn't fold anything into this recurrence. Move onto the
2579 // next one.
2580 }
2581
2582 // Okay, it looks like we really DO need an mul expr. Check to see if we
2583 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002584 FoldingSetNodeID ID;
2585 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002586 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2587 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002588 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002589 SCEVMulExpr *S =
2590 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2591 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002592 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2593 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002594 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2595 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002596 UniqueSCEVs.InsertNode(S, IP);
2597 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002598 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002599 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002600}
2601
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002602/// getUDivExpr - Get a canonical unsigned division expression, or something
2603/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002604const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2605 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002606 assert(getEffectiveSCEVType(LHS->getType()) ==
2607 getEffectiveSCEVType(RHS->getType()) &&
2608 "SCEVUDivExpr operand types don't match!");
2609
Dan Gohmana30370b2009-05-04 22:02:23 +00002610 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002611 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002612 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002613 // If the denominator is zero, the result of the udiv is undefined. Don't
2614 // try to analyze it, because the resolution chosen here may differ from
2615 // the resolution chosen in other parts of the compiler.
2616 if (!RHSC->getValue()->isZero()) {
2617 // Determine if the division can be folded into the operands of
2618 // its operands.
2619 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002620 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002621 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002622 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002623 // For non-power-of-two values, effectively round the value up to the
2624 // nearest power of two.
2625 if (!RHSC->getValue()->getValue().isPowerOf2())
2626 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002627 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002628 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002629 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2630 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002631 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2632 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2633 const APInt &StepInt = Step->getValue()->getValue();
2634 const APInt &DivInt = RHSC->getValue()->getValue();
2635 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002636 getZeroExtendExpr(AR, ExtTy) ==
2637 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2638 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002639 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002640 SmallVector<const SCEV *, 4> Operands;
2641 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2642 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002643 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002644 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002645 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002646 /// Get a canonical UDivExpr for a recurrence.
2647 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2648 // We can currently only fold X%N if X is constant.
2649 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2650 if (StartC && !DivInt.urem(StepInt) &&
2651 getZeroExtendExpr(AR, ExtTy) ==
2652 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2653 getZeroExtendExpr(Step, ExtTy),
2654 AR->getLoop(), SCEV::FlagAnyWrap)) {
2655 const APInt &StartInt = StartC->getValue()->getValue();
2656 const APInt &StartRem = StartInt.urem(StepInt);
2657 if (StartRem != 0)
2658 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2659 AR->getLoop(), SCEV::FlagNW);
2660 }
2661 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002662 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2663 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2664 SmallVector<const SCEV *, 4> Operands;
2665 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2666 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2667 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2668 // Find an operand that's safely divisible.
2669 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2670 const SCEV *Op = M->getOperand(i);
2671 const SCEV *Div = getUDivExpr(Op, RHSC);
2672 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2673 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2674 M->op_end());
2675 Operands[i] = Div;
2676 return getMulExpr(Operands);
2677 }
2678 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002679 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002680 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002681 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002682 SmallVector<const SCEV *, 4> Operands;
2683 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2684 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2685 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2686 Operands.clear();
2687 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2688 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2689 if (isa<SCEVUDivExpr>(Op) ||
2690 getMulExpr(Op, RHS) != A->getOperand(i))
2691 break;
2692 Operands.push_back(Op);
2693 }
2694 if (Operands.size() == A->getNumOperands())
2695 return getAddExpr(Operands);
2696 }
2697 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002698
Dan Gohmanacd700a2010-04-22 01:35:11 +00002699 // Fold if both operands are constant.
2700 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2701 Constant *LHSCV = LHSC->getValue();
2702 Constant *RHSCV = RHSC->getValue();
2703 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2704 RHSCV)));
2705 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002706 }
2707 }
2708
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002709 FoldingSetNodeID ID;
2710 ID.AddInteger(scUDivExpr);
2711 ID.AddPointer(LHS);
2712 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002713 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002714 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002715 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2716 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002717 UniqueSCEVs.InsertNode(S, IP);
2718 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002719}
2720
Nick Lewycky31eaca52014-01-27 10:04:03 +00002721static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2722 APInt A = C1->getValue()->getValue().abs();
2723 APInt B = C2->getValue()->getValue().abs();
2724 uint32_t ABW = A.getBitWidth();
2725 uint32_t BBW = B.getBitWidth();
2726
2727 if (ABW > BBW)
2728 B = B.zext(ABW);
2729 else if (ABW < BBW)
2730 A = A.zext(BBW);
2731
2732 return APIntOps::GreatestCommonDivisor(A, B);
2733}
2734
2735/// getUDivExactExpr - Get a canonical unsigned division expression, or
2736/// something simpler if possible. There is no representation for an exact udiv
2737/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2738/// We can't do this when it's not exact because the udiv may be clearing bits.
2739const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2740 const SCEV *RHS) {
2741 // TODO: we could try to find factors in all sorts of things, but for now we
2742 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2743 // end of this file for inspiration.
2744
2745 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2746 if (!Mul)
2747 return getUDivExpr(LHS, RHS);
2748
2749 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2750 // If the mulexpr multiplies by a constant, then that constant must be the
2751 // first element of the mulexpr.
2752 if (const SCEVConstant *LHSCst =
2753 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2754 if (LHSCst == RHSCst) {
2755 SmallVector<const SCEV *, 2> Operands;
2756 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2757 return getMulExpr(Operands);
2758 }
2759
2760 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2761 // that there's a factor provided by one of the other terms. We need to
2762 // check.
2763 APInt Factor = gcd(LHSCst, RHSCst);
2764 if (!Factor.isIntN(1)) {
2765 LHSCst = cast<SCEVConstant>(
2766 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2767 RHSCst = cast<SCEVConstant>(
2768 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2769 SmallVector<const SCEV *, 2> Operands;
2770 Operands.push_back(LHSCst);
2771 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2772 LHS = getMulExpr(Operands);
2773 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002774 Mul = dyn_cast<SCEVMulExpr>(LHS);
2775 if (!Mul)
2776 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002777 }
2778 }
2779 }
2780
2781 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2782 if (Mul->getOperand(i) == RHS) {
2783 SmallVector<const SCEV *, 2> Operands;
2784 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2785 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2786 return getMulExpr(Operands);
2787 }
2788 }
2789
2790 return getUDivExpr(LHS, RHS);
2791}
Chris Lattnerd934c702004-04-02 20:23:17 +00002792
Dan Gohman4d5435d2009-05-24 23:45:28 +00002793/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2794/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002795const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2796 const Loop *L,
2797 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002798 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002799 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002800 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002801 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002802 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002803 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002804 }
2805
2806 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002807 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002808}
2809
Dan Gohman4d5435d2009-05-24 23:45:28 +00002810/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2811/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002812const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002813ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002814 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002815 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002816#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002817 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002818 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002819 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002820 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002821 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002822 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002823 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002824#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002825
Dan Gohmanbe928e32008-06-18 16:23:07 +00002826 if (Operands.back()->isZero()) {
2827 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002828 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002829 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002830
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002831 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2832 // use that information to infer NUW and NSW flags. However, computing a
2833 // BE count requires calling getAddRecExpr, so we may not yet have a
2834 // meaningful BE count at this point (and if we don't, we'd be stuck
2835 // with a SCEVCouldNotCompute as the cached BE count).
2836
Sanjoy Das81401d42015-01-10 23:41:24 +00002837 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002838
Dan Gohman223a5d22008-08-08 18:33:12 +00002839 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002840 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002841 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002842 if (L->contains(NestedLoop)
2843 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2844 : (!NestedLoop->contains(L) &&
2845 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002846 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002847 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002848 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002849 // AddRecs require their operands be loop-invariant with respect to their
2850 // loops. Don't perform this transformation if it would break this
2851 // requirement.
2852 bool AllInvariant = true;
2853 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002854 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002855 AllInvariant = false;
2856 break;
2857 }
2858 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002859 // Create a recurrence for the outer loop with the same step size.
2860 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002861 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2862 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002863 SCEV::NoWrapFlags OuterFlags =
2864 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002865
2866 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002867 AllInvariant = true;
2868 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002869 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002870 AllInvariant = false;
2871 break;
2872 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002873 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002874 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002875 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002876 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2877 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002878 SCEV::NoWrapFlags InnerFlags =
2879 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002880 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2881 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002882 }
2883 // Reset Operands to its original state.
2884 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002885 }
2886 }
2887
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002888 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2889 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002890 FoldingSetNodeID ID;
2891 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002892 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2893 ID.AddPointer(Operands[i]);
2894 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002895 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002896 SCEVAddRecExpr *S =
2897 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2898 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002899 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2900 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002901 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2902 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002903 UniqueSCEVs.InsertNode(S, IP);
2904 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002905 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002906 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002907}
2908
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002909const SCEV *
2910ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2911 const SmallVectorImpl<const SCEV *> &IndexExprs,
2912 bool InBounds) {
2913 // getSCEV(Base)->getType() has the same address space as Base->getType()
2914 // because SCEV::getType() preserves the address space.
2915 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2916 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2917 // instruction to its SCEV, because the Instruction may be guarded by control
2918 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002919 // context. This can be fixed similarly to how these flags are handled for
2920 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002921 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2922
2923 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2924 // The address space is unimportant. The first thing we do on CurTy is getting
2925 // its element type.
2926 Type *CurTy = PointerType::getUnqual(PointeeType);
2927 for (const SCEV *IndexExpr : IndexExprs) {
2928 // Compute the (potentially symbolic) offset in bytes for this index.
2929 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2930 // For a struct, add the member offset.
2931 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2932 unsigned FieldNo = Index->getZExtValue();
2933 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2934
2935 // Add the field offset to the running total offset.
2936 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2937
2938 // Update CurTy to the type of the field at Index.
2939 CurTy = STy->getTypeAtIndex(Index);
2940 } else {
2941 // Update CurTy to its element type.
2942 CurTy = cast<SequentialType>(CurTy)->getElementType();
2943 // For an array, add the element offset, explicitly scaled.
2944 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2945 // Getelementptr indices are signed.
2946 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2947
2948 // Multiply the index by the element size to compute the element offset.
2949 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2950
2951 // Add the element offset to the running total offset.
2952 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2953 }
2954 }
2955
2956 // Add the total offset from all the GEP indices to the base.
2957 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2958}
2959
Dan Gohmanabd17092009-06-24 14:49:00 +00002960const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2961 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002962 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002963 Ops.push_back(LHS);
2964 Ops.push_back(RHS);
2965 return getSMaxExpr(Ops);
2966}
2967
Dan Gohmanaf752342009-07-07 17:06:11 +00002968const SCEV *
2969ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002970 assert(!Ops.empty() && "Cannot get empty smax!");
2971 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002972#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002973 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002974 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002975 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002976 "SCEVSMaxExpr operand types don't match!");
2977#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002978
2979 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002980 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002981
2982 // If there are any constants, fold them together.
2983 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002984 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002985 ++Idx;
2986 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002987 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002988 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002989 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002990 APIntOps::smax(LHSC->getValue()->getValue(),
2991 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002992 Ops[0] = getConstant(Fold);
2993 Ops.erase(Ops.begin()+1); // Erase the folded element
2994 if (Ops.size() == 1) return Ops[0];
2995 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002996 }
2997
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002998 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002999 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3000 Ops.erase(Ops.begin());
3001 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003002 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3003 // If we have an smax with a constant maximum-int, it will always be
3004 // maximum-int.
3005 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003006 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003007
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003008 if (Ops.size() == 1) return Ops[0];
3009 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003010
3011 // Find the first SMax
3012 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3013 ++Idx;
3014
3015 // Check to see if one of the operands is an SMax. If so, expand its operands
3016 // onto our operand list, and recurse to simplify.
3017 if (Idx < Ops.size()) {
3018 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003019 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003020 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003021 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003022 DeletedSMax = true;
3023 }
3024
3025 if (DeletedSMax)
3026 return getSMaxExpr(Ops);
3027 }
3028
3029 // Okay, check to see if the same value occurs in the operand list twice. If
3030 // so, delete one. Since we sorted the list, these values are required to
3031 // be adjacent.
3032 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003033 // X smax Y smax Y --> X smax Y
3034 // X smax Y --> X, if X is always greater than Y
3035 if (Ops[i] == Ops[i+1] ||
3036 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3037 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3038 --i; --e;
3039 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003040 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3041 --i; --e;
3042 }
3043
3044 if (Ops.size() == 1) return Ops[0];
3045
3046 assert(!Ops.empty() && "Reduced smax down to nothing!");
3047
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003048 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003049 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003050 FoldingSetNodeID ID;
3051 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003052 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3053 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003054 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003055 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003056 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3057 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003058 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3059 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003060 UniqueSCEVs.InsertNode(S, IP);
3061 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003062}
3063
Dan Gohmanabd17092009-06-24 14:49:00 +00003064const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3065 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003066 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003067 Ops.push_back(LHS);
3068 Ops.push_back(RHS);
3069 return getUMaxExpr(Ops);
3070}
3071
Dan Gohmanaf752342009-07-07 17:06:11 +00003072const SCEV *
3073ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003074 assert(!Ops.empty() && "Cannot get empty umax!");
3075 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003076#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003077 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003078 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003079 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003080 "SCEVUMaxExpr operand types don't match!");
3081#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003082
3083 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003084 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003085
3086 // If there are any constants, fold them together.
3087 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003088 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003089 ++Idx;
3090 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003091 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003092 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003093 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003094 APIntOps::umax(LHSC->getValue()->getValue(),
3095 RHSC->getValue()->getValue()));
3096 Ops[0] = getConstant(Fold);
3097 Ops.erase(Ops.begin()+1); // Erase the folded element
3098 if (Ops.size() == 1) return Ops[0];
3099 LHSC = cast<SCEVConstant>(Ops[0]);
3100 }
3101
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003102 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003103 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3104 Ops.erase(Ops.begin());
3105 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003106 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3107 // If we have an umax with a constant maximum-int, it will always be
3108 // maximum-int.
3109 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003110 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003111
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003112 if (Ops.size() == 1) return Ops[0];
3113 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003114
3115 // Find the first UMax
3116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3117 ++Idx;
3118
3119 // Check to see if one of the operands is a UMax. If so, expand its operands
3120 // onto our operand list, and recurse to simplify.
3121 if (Idx < Ops.size()) {
3122 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003123 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003124 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003125 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003126 DeletedUMax = true;
3127 }
3128
3129 if (DeletedUMax)
3130 return getUMaxExpr(Ops);
3131 }
3132
3133 // Okay, check to see if the same value occurs in the operand list twice. If
3134 // so, delete one. Since we sorted the list, these values are required to
3135 // be adjacent.
3136 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003137 // X umax Y umax Y --> X umax Y
3138 // X umax Y --> X, if X is always greater than Y
3139 if (Ops[i] == Ops[i+1] ||
3140 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3141 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3142 --i; --e;
3143 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003144 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3145 --i; --e;
3146 }
3147
3148 if (Ops.size() == 1) return Ops[0];
3149
3150 assert(!Ops.empty() && "Reduced umax down to nothing!");
3151
3152 // Okay, it looks like we really DO need a umax expr. Check to see if we
3153 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003154 FoldingSetNodeID ID;
3155 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003156 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3157 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003158 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003159 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003160 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3161 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003162 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3163 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003164 UniqueSCEVs.InsertNode(S, IP);
3165 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003166}
3167
Dan Gohmanabd17092009-06-24 14:49:00 +00003168const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3169 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003170 // ~smax(~x, ~y) == smin(x, y).
3171 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3172}
3173
Dan Gohmanabd17092009-06-24 14:49:00 +00003174const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3175 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003176 // ~umax(~x, ~y) == umin(x, y)
3177 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3178}
3179
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003180const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003181 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003182 // constant expression and then folding it back into a ConstantInt.
3183 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003184 return getConstant(IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003185 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003186}
3187
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003188const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3189 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003190 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003191 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003192 // constant expression and then folding it back into a ConstantInt.
3193 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003194 return getConstant(
3195 IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003196 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003197 FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003198}
3199
Dan Gohmanaf752342009-07-07 17:06:11 +00003200const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003201 // Don't attempt to do anything other than create a SCEVUnknown object
3202 // here. createSCEV only calls getUnknown after checking for all other
3203 // interesting possibilities, and any other code that calls getUnknown
3204 // is doing so in order to hide a value from SCEV canonicalization.
3205
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003206 FoldingSetNodeID ID;
3207 ID.AddInteger(scUnknown);
3208 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003209 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003210 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3211 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3212 "Stale SCEVUnknown in uniquing map!");
3213 return S;
3214 }
3215 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3216 FirstUnknown);
3217 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003218 UniqueSCEVs.InsertNode(S, IP);
3219 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003220}
3221
Chris Lattnerd934c702004-04-02 20:23:17 +00003222//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003223// Basic SCEV Analysis and PHI Idiom Recognition Code
3224//
3225
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003226/// isSCEVable - Test if values of the given type are analyzable within
3227/// the SCEV framework. This primarily includes integer types, and it
3228/// can optionally include pointer types if the ScalarEvolution class
3229/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003230bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003231 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003232 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003233}
3234
3235/// getTypeSizeInBits - Return the size in bits of the specified type,
3236/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003237uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003238 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003239 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003240}
3241
3242/// getEffectiveSCEVType - Return a type with the same bitwidth as
3243/// the given type and which represents how SCEV will treat the given
3244/// type, for which isSCEVable must return true. For pointer types,
3245/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003246Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003247 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3248
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003249 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003250 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003251 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003252
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003253 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003254 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003255 return F.getParent()->getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003256}
Chris Lattnerd934c702004-04-02 20:23:17 +00003257
Dan Gohmanaf752342009-07-07 17:06:11 +00003258const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003259 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003260}
3261
Shuxin Yangefc4c012013-07-08 17:33:13 +00003262namespace {
3263 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3264 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3265 // is set iff if find such SCEVUnknown.
3266 //
3267 struct FindInvalidSCEVUnknown {
3268 bool FindOne;
3269 FindInvalidSCEVUnknown() { FindOne = false; }
3270 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003271 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003272 case scConstant:
3273 return false;
3274 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003275 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003276 FindOne = true;
3277 return false;
3278 default:
3279 return true;
3280 }
3281 }
3282 bool isDone() const { return FindOne; }
3283 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003284}
Shuxin Yangefc4c012013-07-08 17:33:13 +00003285
3286bool ScalarEvolution::checkValidity(const SCEV *S) const {
3287 FindInvalidSCEVUnknown F;
3288 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3289 ST.visitAll(S);
3290
3291 return !F.FindOne;
3292}
3293
Chris Lattnerd934c702004-04-02 20:23:17 +00003294/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3295/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003296const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003297 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003298
Jingyue Wu42f1d672015-07-28 18:22:40 +00003299 const SCEV *S = getExistingSCEV(V);
3300 if (S == nullptr) {
3301 S = createSCEV(V);
3302 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3303 }
3304 return S;
3305}
3306
3307const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3308 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3309
Shuxin Yangefc4c012013-07-08 17:33:13 +00003310 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3311 if (I != ValueExprMap.end()) {
3312 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003313 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003314 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003315 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003316 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003317 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003318}
3319
Dan Gohman0a40ad92009-04-16 03:18:22 +00003320/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3321///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003322const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3323 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003324 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003325 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003326 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003327
Chris Lattner229907c2011-07-18 04:54:35 +00003328 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003329 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003330 return getMulExpr(
3331 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003332}
3333
3334/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003335const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003336 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003337 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003338 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003339
Chris Lattner229907c2011-07-18 04:54:35 +00003340 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003341 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003342 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003343 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003344 return getMinusSCEV(AllOnes, V);
3345}
3346
Andrew Trick8b55b732011-03-14 16:50:06 +00003347/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003348const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003349 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003350 // Fast path: X - X --> 0.
3351 if (LHS == RHS)
3352 return getConstant(LHS->getType(), 0);
3353
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003354 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3355 // makes it so that we cannot make much use of NUW.
3356 auto AddFlags = SCEV::FlagAnyWrap;
3357 const bool RHSIsNotMinSigned =
3358 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3359 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3360 // Let M be the minimum representable signed value. Then (-1)*RHS
3361 // signed-wraps if and only if RHS is M. That can happen even for
3362 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3363 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3364 // (-1)*RHS, we need to prove that RHS != M.
3365 //
3366 // If LHS is non-negative and we know that LHS - RHS does not
3367 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3368 // either by proving that RHS > M or that LHS >= 0.
3369 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3370 AddFlags = SCEV::FlagNSW;
3371 }
3372 }
3373
3374 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3375 // RHS is NSW and LHS >= 0.
3376 //
3377 // The difficulty here is that the NSW flag may have been proven
3378 // relative to a loop that is to be found in a recurrence in LHS and
3379 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3380 // larger scope than intended.
3381 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3382
3383 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003384}
3385
3386/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3387/// input value to the specified type. If the type must be extended, it is zero
3388/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003389const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003390ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3391 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003392 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3393 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003394 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003395 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003396 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003397 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003398 return getTruncateExpr(V, Ty);
3399 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003400}
3401
3402/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3403/// input value to the specified type. If the type must be extended, it is sign
3404/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003405const SCEV *
3406ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003407 Type *Ty) {
3408 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003409 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3410 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003411 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003412 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003413 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003414 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003415 return getTruncateExpr(V, Ty);
3416 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003417}
3418
Dan Gohmane712a2f2009-05-13 03:46:30 +00003419/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3420/// input value to the specified type. If the type must be extended, it is zero
3421/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003422const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003423ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3424 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003425 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3426 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003427 "Cannot noop or zero extend with non-integer arguments!");
3428 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3429 "getNoopOrZeroExtend cannot truncate!");
3430 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3431 return V; // No conversion
3432 return getZeroExtendExpr(V, Ty);
3433}
3434
3435/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3436/// input value to the specified type. If the type must be extended, it is sign
3437/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003438const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003439ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3440 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003441 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3442 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003443 "Cannot noop or sign extend with non-integer arguments!");
3444 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3445 "getNoopOrSignExtend cannot truncate!");
3446 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3447 return V; // No conversion
3448 return getSignExtendExpr(V, Ty);
3449}
3450
Dan Gohman8db2edc2009-06-13 15:56:47 +00003451/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3452/// the input value to the specified type. If the type must be extended,
3453/// it is extended with unspecified bits. The conversion must not be
3454/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003455const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003456ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3457 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003458 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3459 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003460 "Cannot noop or any extend with non-integer arguments!");
3461 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3462 "getNoopOrAnyExtend cannot truncate!");
3463 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3464 return V; // No conversion
3465 return getAnyExtendExpr(V, Ty);
3466}
3467
Dan Gohmane712a2f2009-05-13 03:46:30 +00003468/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3469/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003470const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003471ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3472 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3474 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003475 "Cannot truncate or noop with non-integer arguments!");
3476 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3477 "getTruncateOrNoop cannot extend!");
3478 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3479 return V; // No conversion
3480 return getTruncateExpr(V, Ty);
3481}
3482
Dan Gohman96212b62009-06-22 00:31:57 +00003483/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3484/// the types using zero-extension, and then perform a umax operation
3485/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003486const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3487 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003488 const SCEV *PromotedLHS = LHS;
3489 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003490
3491 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3492 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3493 else
3494 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3495
3496 return getUMaxExpr(PromotedLHS, PromotedRHS);
3497}
3498
Dan Gohman2bc22302009-06-22 15:03:27 +00003499/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3500/// the types using zero-extension, and then perform a umin operation
3501/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003502const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3503 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003504 const SCEV *PromotedLHS = LHS;
3505 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003506
3507 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3508 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3509 else
3510 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3511
3512 return getUMinExpr(PromotedLHS, PromotedRHS);
3513}
3514
Andrew Trick87716c92011-03-17 23:51:11 +00003515/// getPointerBase - Transitively follow the chain of pointer-type operands
3516/// until reaching a SCEV that does not have a single pointer operand. This
3517/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3518/// but corner cases do exist.
3519const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3520 // A pointer operand may evaluate to a nonpointer expression, such as null.
3521 if (!V->getType()->isPointerTy())
3522 return V;
3523
3524 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3525 return getPointerBase(Cast->getOperand());
3526 }
3527 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003528 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003529 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3530 I != E; ++I) {
3531 if ((*I)->getType()->isPointerTy()) {
3532 // Cannot find the base of an expression with multiple pointer operands.
3533 if (PtrOp)
3534 return V;
3535 PtrOp = *I;
3536 }
3537 }
3538 if (!PtrOp)
3539 return V;
3540 return getPointerBase(PtrOp);
3541 }
3542 return V;
3543}
3544
Dan Gohman0b89dff2009-07-25 01:13:03 +00003545/// PushDefUseChildren - Push users of the given Instruction
3546/// onto the given Worklist.
3547static void
3548PushDefUseChildren(Instruction *I,
3549 SmallVectorImpl<Instruction *> &Worklist) {
3550 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003551 for (User *U : I->users())
3552 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003553}
3554
3555/// ForgetSymbolicValue - This looks up computed SCEV values for all
3556/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003557/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003558/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003559void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003560ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003561 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003562 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003563
Dan Gohman0b89dff2009-07-25 01:13:03 +00003564 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003565 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003566 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003567 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003568 if (!Visited.insert(I).second)
3569 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003570
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003571 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003572 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003573 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003574 const SCEV *Old = It->second;
3575
Dan Gohman0b89dff2009-07-25 01:13:03 +00003576 // Short-circuit the def-use traversal if the symbolic name
3577 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003578 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003579 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003580
Dan Gohman0b89dff2009-07-25 01:13:03 +00003581 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003582 // structure, it's a PHI that's in the progress of being computed
3583 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3584 // additional loop trip count information isn't going to change anything.
3585 // In the second case, createNodeForPHI will perform the necessary
3586 // updates on its own when it gets to that point. In the third, we do
3587 // want to forget the SCEVUnknown.
3588 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003589 !isa<SCEVUnknown>(Old) ||
3590 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003591 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003592 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003593 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003594 }
3595
3596 PushDefUseChildren(I, Worklist);
3597 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003598}
Chris Lattnerd934c702004-04-02 20:23:17 +00003599
3600/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3601/// a loop header, making it a potential recurrence, or it doesn't.
3602///
Dan Gohmanaf752342009-07-07 17:06:11 +00003603const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003604 if (const Loop *L = LI.getLoopFor(PN->getParent()))
Dan Gohman6635bb22010-04-12 07:49:36 +00003605 if (L->getHeader() == PN->getParent()) {
3606 // The loop may have multiple entrances or multiple exits; we can analyze
3607 // this phi as an addrec if it has a unique entry value and a unique
3608 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003609 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3611 Value *V = PN->getIncomingValue(i);
3612 if (L->contains(PN->getIncomingBlock(i))) {
3613 if (!BEValueV) {
3614 BEValueV = V;
3615 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003616 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003617 break;
3618 }
3619 } else if (!StartValueV) {
3620 StartValueV = V;
3621 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003622 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003623 break;
3624 }
3625 }
3626 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003627 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003628 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003629 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003630 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003631 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003632
3633 // Using this symbolic name for the PHI, analyze the value coming around
3634 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003635 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003636
3637 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3638 // has a special value for the first iteration of the loop.
3639
3640 // If the value coming around the backedge is an add with the symbolic
3641 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003642 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003643 // If there is a single occurrence of the symbolic value, replace it
3644 // with a recurrence.
3645 unsigned FoundIndex = Add->getNumOperands();
3646 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3647 if (Add->getOperand(i) == SymbolicName)
3648 if (FoundIndex == e) {
3649 FoundIndex = i;
3650 break;
3651 }
3652
3653 if (FoundIndex != Add->getNumOperands()) {
3654 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003655 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003656 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3657 if (i != FoundIndex)
3658 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003659 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003660
3661 // This is not a valid addrec if the step amount is varying each
3662 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003663 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003664 (isa<SCEVAddRecExpr>(Accum) &&
3665 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003666 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003667
3668 // If the increment doesn't overflow, then neither the addrec nor
3669 // the post-increment will overflow.
3670 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003671 if (OBO->getOperand(0) == PN) {
3672 if (OBO->hasNoUnsignedWrap())
3673 Flags = setFlags(Flags, SCEV::FlagNUW);
3674 if (OBO->hasNoSignedWrap())
3675 Flags = setFlags(Flags, SCEV::FlagNSW);
3676 }
Benjamin Kramer6094f302013-10-28 07:30:06 +00003677 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003678 // If the increment is an inbounds GEP, then we know the address
3679 // space cannot be wrapped around. We cannot make any guarantee
3680 // about signed or unsigned overflow because pointers are
3681 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003682 // pointer. We can guarantee that no unsigned wrap occurs if the
3683 // indices form a positive value.
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003684 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003685 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003686
3687 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3688 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3689 Flags = setFlags(Flags, SCEV::FlagNUW);
3690 }
Sanjoy Dascb473662015-01-22 00:48:47 +00003691
3692 // We cannot transfer nuw and nsw flags from subtraction
3693 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3694 // for instance.
Dan Gohman51ad99d2010-01-21 02:09:26 +00003695 }
3696
Dan Gohman6635bb22010-04-12 07:49:36 +00003697 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003698 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003699
Dan Gohman51ad99d2010-01-21 02:09:26 +00003700 // Since the no-wrap flags are on the increment, they apply to the
3701 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003702 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003703 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003704 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003705
3706 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003707 // to be symbolic. We now need to go back and purge all of the
3708 // entries for the scalars that use the symbolic expression.
3709 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003710 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003711 return PHISCEV;
3712 }
3713 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003714 } else if (const SCEVAddRecExpr *AddRec =
3715 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003716 // Otherwise, this could be a loop like this:
3717 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3718 // In this case, j = {1,+,1} and BEValue is j.
3719 // Because the other in-value of i (0) fits the evolution of BEValue
3720 // i really is an addrec evolution.
3721 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003722 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003723
3724 // If StartVal = j.start - j.stride, we can use StartVal as the
3725 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003726 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003727 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003728 // FIXME: For constant StartVal, we should be able to infer
3729 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003730 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003731 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3732 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003733
3734 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003735 // to be symbolic. We now need to go back and purge all of the
3736 // entries for the scalars that use the symbolic expression.
3737 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003738 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003739 return PHISCEV;
3740 }
3741 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003742 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003743 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003744 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003745
Dan Gohmana9c205c2010-02-25 06:57:05 +00003746 // If the PHI has a single incoming value, follow that value, unless the
3747 // PHI's incoming blocks are in a different loop, in which case doing so
3748 // risks breaking LCSSA form. Instcombine would normally zap these, but
3749 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003750 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI,
3751 &DT, &AC))
3752 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003753 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003754
Chris Lattnerd934c702004-04-02 20:23:17 +00003755 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003756 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003757}
3758
Dan Gohmanee750d12009-05-08 20:26:55 +00003759/// createNodeForGEP - Expand GEP instructions into add and multiply
3760/// operations. This allows them to be analyzed by regular SCEV code.
3761///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003762const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00003763 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003764 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003765 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003766 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003767
Jingyue Wu2982d4d2015-05-18 17:03:25 +00003768 SmallVector<const SCEV *, 4> IndexExprs;
3769 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
3770 IndexExprs.push_back(getSCEV(*Index));
3771 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
3772 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00003773}
3774
Nick Lewycky3783b462007-11-22 07:59:40 +00003775/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3776/// guaranteed to end in (at every loop iteration). It is, at the same time,
3777/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3778/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003779uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003780ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003781 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003782 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003783
Dan Gohmana30370b2009-05-04 22:02:23 +00003784 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003785 return std::min(GetMinTrailingZeros(T->getOperand()),
3786 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003787
Dan Gohmana30370b2009-05-04 22:02:23 +00003788 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003789 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3790 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3791 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003792 }
3793
Dan Gohmana30370b2009-05-04 22:02:23 +00003794 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003795 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3796 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3797 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003798 }
3799
Dan Gohmana30370b2009-05-04 22:02:23 +00003800 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003801 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003802 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003803 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003804 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003805 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003806 }
3807
Dan Gohmana30370b2009-05-04 22:02:23 +00003808 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003809 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003810 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3811 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003812 for (unsigned i = 1, e = M->getNumOperands();
3813 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003814 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003815 BitWidth);
3816 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003817 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003818
Dan Gohmana30370b2009-05-04 22:02:23 +00003819 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003820 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003821 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003822 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003823 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003824 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003825 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003826
Dan Gohmana30370b2009-05-04 22:02:23 +00003827 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003828 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003829 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003830 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003831 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003832 return MinOpRes;
3833 }
3834
Dan Gohmana30370b2009-05-04 22:02:23 +00003835 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003836 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003837 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003838 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003839 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003840 return MinOpRes;
3841 }
3842
Dan Gohmanc702fc02009-06-19 23:29:04 +00003843 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3844 // For a SCEVUnknown, ask ValueTracking.
3845 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003846 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003847 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(),
3848 0, &AC, nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003849 return Zeros.countTrailingOnes();
3850 }
3851
3852 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003853 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003854}
Chris Lattnerd934c702004-04-02 20:23:17 +00003855
Sanjoy Das1f05c512014-10-10 21:22:34 +00003856/// GetRangeFromMetadata - Helper method to assign a range to V from
3857/// metadata present in the IR.
3858static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3859 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003860 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003861 ConstantRange TotalRange(
3862 cast<IntegerType>(I->getType())->getBitWidth(), false);
3863
3864 unsigned NumRanges = MD->getNumOperands() / 2;
3865 assert(NumRanges >= 1);
3866
3867 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003868 ConstantInt *Lower =
3869 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3870 ConstantInt *Upper =
3871 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003872 ConstantRange Range(Lower->getValue(), Upper->getValue());
3873 TotalRange = TotalRange.unionWith(Range);
3874 }
3875
3876 return TotalRange;
3877 }
3878 }
3879
3880 return None;
3881}
3882
Sanjoy Das91b54772015-03-09 21:43:43 +00003883/// getRange - Determine the range for a particular SCEV. If SignHint is
3884/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
3885/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00003886///
3887ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00003888ScalarEvolution::getRange(const SCEV *S,
3889 ScalarEvolution::RangeSignHint SignHint) {
3890 DenseMap<const SCEV *, ConstantRange> &Cache =
3891 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
3892 : SignedRanges;
3893
Dan Gohman761065e2010-11-17 02:44:44 +00003894 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00003895 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
3896 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00003897 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003898
3899 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00003900 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003901
Dan Gohman85be4332010-01-26 19:19:05 +00003902 unsigned BitWidth = getTypeSizeInBits(S->getType());
3903 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3904
Sanjoy Das91b54772015-03-09 21:43:43 +00003905 // If the value has known zeros, the maximum value will have those known zeros
3906 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00003907 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00003908 if (TZ != 0) {
3909 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
3910 ConservativeResult =
3911 ConstantRange(APInt::getMinValue(BitWidth),
3912 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3913 else
3914 ConservativeResult = ConstantRange(
3915 APInt::getSignedMinValue(BitWidth),
3916 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3917 }
Dan Gohman85be4332010-01-26 19:19:05 +00003918
Dan Gohmane65c9172009-07-13 21:35:55 +00003919 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003920 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003921 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003922 X = X.add(getRange(Add->getOperand(i), SignHint));
3923 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003924 }
3925
3926 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003927 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003928 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003929 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
3930 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003931 }
3932
3933 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003934 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003935 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003936 X = X.smax(getRange(SMax->getOperand(i), SignHint));
3937 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003938 }
3939
3940 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003941 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003942 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003943 X = X.umax(getRange(UMax->getOperand(i), SignHint));
3944 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003945 }
3946
3947 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003948 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
3949 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
3950 return setRange(UDiv, SignHint,
3951 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003952 }
3953
3954 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003955 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
3956 return setRange(ZExt, SignHint,
3957 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003958 }
3959
3960 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003961 ConstantRange X = getRange(SExt->getOperand(), SignHint);
3962 return setRange(SExt, SignHint,
3963 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003964 }
3965
3966 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003967 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
3968 return setRange(Trunc, SignHint,
3969 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003970 }
3971
Dan Gohmane65c9172009-07-13 21:35:55 +00003972 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003973 // If there's no unsigned wrap, the value will never be less than its
3974 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003975 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003976 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003977 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003978 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003979 ConservativeResult.intersectWith(
3980 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003981
Dan Gohman51ad99d2010-01-21 02:09:26 +00003982 // If there's no signed wrap, and all the operands have the same sign or
3983 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003984 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003985 bool AllNonNeg = true;
3986 bool AllNonPos = true;
3987 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3988 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3989 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3990 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003991 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003992 ConservativeResult = ConservativeResult.intersectWith(
3993 ConstantRange(APInt(BitWidth, 0),
3994 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003995 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003996 ConservativeResult = ConservativeResult.intersectWith(
3997 ConstantRange(APInt::getSignedMinValue(BitWidth),
3998 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003999 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004000
4001 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004002 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004003 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004004 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004005 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4006 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004007
4008 // Check for overflow. This must be done with ConstantRange arithmetic
4009 // because we could be called from within the ScalarEvolution overflow
4010 // checking code.
4011
Dan Gohmane65c9172009-07-13 21:35:55 +00004012 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004013 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4014 ConstantRange ZExtMaxBECountRange =
4015 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004016
4017 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004018 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004019 ConstantRange StepSRange = getSignedRange(Step);
4020 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004021
Sanjoy Das91b54772015-03-09 21:43:43 +00004022 ConstantRange StartURange = getUnsignedRange(Start);
4023 ConstantRange EndURange =
4024 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004025
Sanjoy Das91b54772015-03-09 21:43:43 +00004026 // Check for unsigned overflow.
4027 ConstantRange ZExtStartURange =
4028 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4029 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4030 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4031 ZExtEndURange) {
4032 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4033 EndURange.getUnsignedMin());
4034 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4035 EndURange.getUnsignedMax());
4036 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4037 if (!IsFullRange)
4038 ConservativeResult =
4039 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4040 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004041
Sanjoy Das91b54772015-03-09 21:43:43 +00004042 ConstantRange StartSRange = getSignedRange(Start);
4043 ConstantRange EndSRange =
4044 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4045
4046 // Check for signed overflow. This must be done with ConstantRange
4047 // arithmetic because we could be called from within the ScalarEvolution
4048 // overflow checking code.
4049 ConstantRange SExtStartSRange =
4050 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4051 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4052 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4053 SExtEndSRange) {
4054 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4055 EndSRange.getSignedMin());
4056 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4057 EndSRange.getSignedMax());
4058 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4059 if (!IsFullRange)
4060 ConservativeResult =
4061 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4062 }
Dan Gohmand261d272009-06-24 01:05:09 +00004063 }
Dan Gohmand261d272009-06-24 01:05:09 +00004064 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004065
Sanjoy Das91b54772015-03-09 21:43:43 +00004066 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004067 }
4068
Dan Gohmanc702fc02009-06-19 23:29:04 +00004069 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004070 // Check if the IR explicitly contains !range metadata.
4071 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4072 if (MDRange.hasValue())
4073 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4074
Sanjoy Das91b54772015-03-09 21:43:43 +00004075 // Split here to avoid paying the compile-time cost of calling both
4076 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4077 // if needed.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004078 const DataLayout &DL = F.getParent()->getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004079 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4080 // For a SCEVUnknown, ask ValueTracking.
4081 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004082 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004083 if (Ones != ~Zeros + 1)
4084 ConservativeResult =
4085 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4086 } else {
4087 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4088 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004089 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004090 if (NS > 1)
4091 ConservativeResult = ConservativeResult.intersectWith(
4092 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4093 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004094 }
4095
4096 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004097 }
4098
Sanjoy Das91b54772015-03-09 21:43:43 +00004099 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004100}
4101
Jingyue Wu42f1d672015-07-28 18:22:40 +00004102SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004103 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004104 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4105
4106 // Return early if there are no flags to propagate to the SCEV.
4107 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4108 if (BinOp->hasNoUnsignedWrap())
4109 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4110 if (BinOp->hasNoSignedWrap())
4111 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4112 if (Flags == SCEV::FlagAnyWrap) {
4113 return SCEV::FlagAnyWrap;
4114 }
4115
4116 // Here we check that BinOp is in the header of the innermost loop
4117 // containing BinOp, since we only deal with instructions in the loop
4118 // header. The actual loop we need to check later will come from an add
4119 // recurrence, but getting that requires computing the SCEV of the operands,
4120 // which can be expensive. This check we can do cheaply to rule out some
4121 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004122 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004123 if (innermostContainingLoop == nullptr ||
4124 innermostContainingLoop->getHeader() != BinOp->getParent())
4125 return SCEV::FlagAnyWrap;
4126
4127 // Only proceed if we can prove that BinOp does not yield poison.
4128 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4129
4130 // At this point we know that if V is executed, then it does not wrap
4131 // according to at least one of NSW or NUW. If V is not executed, then we do
4132 // not know if the calculation that V represents would wrap. Multiple
4133 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4134 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4135 // derived from other instructions that map to the same SCEV. We cannot make
4136 // that guarantee for cases where V is not executed. So we need to find the
4137 // loop that V is considered in relation to and prove that V is executed for
4138 // every iteration of that loop. That implies that the value that V
4139 // calculates does not wrap anywhere in the loop, so then we can apply the
4140 // flags to the SCEV.
4141 //
4142 // We check isLoopInvariant to disambiguate in case we are adding two
4143 // recurrences from different loops, so that we know which loop to prove
4144 // that V is executed in.
4145 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4146 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4147 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4148 const int OtherOpIndex = 1 - OpIndex;
4149 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4150 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4151 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4152 return Flags;
4153 }
4154 }
4155 return SCEV::FlagAnyWrap;
4156}
4157
4158/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4159/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004160///
Dan Gohmanaf752342009-07-07 17:06:11 +00004161const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004162 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004163 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004164
Dan Gohman05e89732008-06-22 19:56:46 +00004165 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004166 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004167 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004168
4169 // Don't attempt to analyze instructions in blocks that aren't
4170 // reachable. Such instructions don't matter, and they aren't required
4171 // to obey basic rules for definitions dominating uses which this
4172 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004173 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004174 return getUnknown(V);
4175 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004176 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004177 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4178 return getConstant(CI);
4179 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004180 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004181 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4182 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004183 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004184 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004185
Dan Gohman80ca01c2009-07-17 20:47:02 +00004186 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004187 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004188 case Instruction::Add: {
4189 // The simple thing to do would be to just call getSCEV on both operands
4190 // and call getAddExpr with the result. However if we're looking at a
4191 // bunch of things all added together, this can be quite inefficient,
4192 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4193 // Instead, gather up all the operands and make a single getAddExpr call.
4194 // LLVM IR canonical form means we need only traverse the left operands.
4195 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004196 for (Value *Op = U;; Op = U->getOperand(0)) {
4197 U = dyn_cast<Operator>(Op);
4198 unsigned Opcode = U ? U->getOpcode() : 0;
4199 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4200 assert(Op != V && "V should be an add");
4201 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004202 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004203 }
4204
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004205 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004206 AddOps.push_back(OpSCEV);
4207 break;
4208 }
4209
4210 // If a NUW or NSW flag can be applied to the SCEV for this
4211 // addition, then compute the SCEV for this addition by itself
4212 // with a separate call to getAddExpr. We need to do that
4213 // instead of pushing the operands of the addition onto AddOps,
4214 // since the flags are only known to apply to this particular
4215 // addition - they may not apply to other additions that can be
4216 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004217 const SCEV *RHS = getSCEV(U->getOperand(1));
4218 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4219 if (Flags != SCEV::FlagAnyWrap) {
4220 const SCEV *LHS = getSCEV(U->getOperand(0));
4221 if (Opcode == Instruction::Sub)
4222 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4223 else
4224 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4225 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004226 }
4227
Dan Gohman47308d52010-08-31 22:53:17 +00004228 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004229 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004230 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004231 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004232 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004233 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004234 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004235
Dan Gohmane5fb1032010-08-16 16:03:49 +00004236 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004237 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004238 for (Value *Op = U;; Op = U->getOperand(0)) {
4239 U = dyn_cast<Operator>(Op);
4240 if (!U || U->getOpcode() != Instruction::Mul) {
4241 assert(Op != V && "V should be a mul");
4242 MulOps.push_back(getSCEV(Op));
4243 break;
4244 }
4245
4246 if (auto *OpSCEV = getExistingSCEV(U)) {
4247 MulOps.push_back(OpSCEV);
4248 break;
4249 }
4250
4251 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4252 if (Flags != SCEV::FlagAnyWrap) {
4253 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4254 getSCEV(U->getOperand(1)), Flags));
4255 break;
4256 }
4257
Dan Gohmane5fb1032010-08-16 16:03:49 +00004258 MulOps.push_back(getSCEV(U->getOperand(1)));
4259 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004260 return getMulExpr(MulOps);
4261 }
Dan Gohman05e89732008-06-22 19:56:46 +00004262 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004263 return getUDivExpr(getSCEV(U->getOperand(0)),
4264 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004265 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004266 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4267 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004268 case Instruction::And:
4269 // For an expression like x&255 that merely masks off the high bits,
4270 // use zext(trunc(x)) as the SCEV expression.
4271 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004272 if (CI->isNullValue())
4273 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004274 if (CI->isAllOnesValue())
4275 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004276 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004277
4278 // Instcombine's ShrinkDemandedConstant may strip bits out of
4279 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004280 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004281 // knew about to reconstruct a low-bits mask value.
4282 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004283 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004284 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004285 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004286 computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004287 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004288
Nick Lewycky31eaca52014-01-27 10:04:03 +00004289 APInt EffectiveMask =
4290 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4291 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4292 const SCEV *MulCount = getConstant(
4293 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4294 return getMulExpr(
4295 getZeroExtendExpr(
4296 getTruncateExpr(
4297 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4298 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4299 U->getType()),
4300 MulCount);
4301 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004302 }
4303 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004304
Dan Gohman05e89732008-06-22 19:56:46 +00004305 case Instruction::Or:
4306 // If the RHS of the Or is a constant, we may have something like:
4307 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4308 // optimizations will transparently handle this case.
4309 //
4310 // In order for this transformation to be safe, the LHS must be of the
4311 // form X*(2^n) and the Or constant must be less than 2^n.
4312 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004313 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004314 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004315 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004316 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4317 // Build a plain add SCEV.
4318 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4319 // If the LHS of the add was an addrec and it has no-wrap flags,
4320 // transfer the no-wrap flags, since an or won't introduce a wrap.
4321 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4322 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004323 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4324 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004325 }
4326 return S;
4327 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004328 }
Dan Gohman05e89732008-06-22 19:56:46 +00004329 break;
4330 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004331 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004332 // If the RHS of the xor is a signbit, then this is just an add.
4333 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004334 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004335 return getAddExpr(getSCEV(U->getOperand(0)),
4336 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004337
4338 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004339 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004340 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004341
4342 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4343 // This is a variant of the check for xor with -1, and it handles
4344 // the case where instcombine has trimmed non-demanded bits out
4345 // of an xor with -1.
4346 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4347 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4348 if (BO->getOpcode() == Instruction::And &&
4349 LCI->getValue() == CI->getValue())
4350 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004351 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004352 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004353 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004354 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004355 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4356
Dan Gohman8b0a4192010-03-01 17:49:51 +00004357 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004358 // mask off the high bits. Complement the operand and
4359 // re-apply the zext.
4360 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4361 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4362
4363 // If C is a single bit, it may be in the sign-bit position
4364 // before the zero-extend. In this case, represent the xor
4365 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004366 APInt Trunc = CI->getValue().trunc(Z0TySize);
4367 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004368 Trunc.isSignBit())
4369 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4370 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004371 }
Dan Gohman05e89732008-06-22 19:56:46 +00004372 }
4373 break;
4374
4375 case Instruction::Shl:
4376 // Turn shift left of a constant amount into a multiply.
4377 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004378 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004379
4380 // If the shift count is not less than the bitwidth, the result of
4381 // the shift is undefined. Don't try to analyze it, because the
4382 // resolution chosen here may differ from the resolution chosen in
4383 // other parts of the compiler.
4384 if (SA->getValue().uge(BitWidth))
4385 break;
4386
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004387 // It is currently not resolved how to interpret NSW for left
4388 // shift by BitWidth - 1, so we avoid applying flags in that
4389 // case. Remove this check (or this comment) once the situation
4390 // is resolved. See
4391 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4392 // and http://reviews.llvm.org/D8890 .
4393 auto Flags = SCEV::FlagAnyWrap;
4394 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4395
Owen Andersonedb4a702009-07-24 23:12:02 +00004396 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004397 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004398 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004399 }
4400 break;
4401
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004402 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004403 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004404 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004405 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004406
4407 // If the shift count is not less than the bitwidth, the result of
4408 // the shift is undefined. Don't try to analyze it, because the
4409 // resolution chosen here may differ from the resolution chosen in
4410 // other parts of the compiler.
4411 if (SA->getValue().uge(BitWidth))
4412 break;
4413
Owen Andersonedb4a702009-07-24 23:12:02 +00004414 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004415 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004416 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004417 }
4418 break;
4419
Dan Gohman0ec05372009-04-21 02:26:00 +00004420 case Instruction::AShr:
4421 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4422 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004423 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004424 if (L->getOpcode() == Instruction::Shl &&
4425 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004426 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4427
4428 // If the shift count is not less than the bitwidth, the result of
4429 // the shift is undefined. Don't try to analyze it, because the
4430 // resolution chosen here may differ from the resolution chosen in
4431 // other parts of the compiler.
4432 if (CI->getValue().uge(BitWidth))
4433 break;
4434
Dan Gohmandf199482009-04-25 17:05:40 +00004435 uint64_t Amt = BitWidth - CI->getZExtValue();
4436 if (Amt == BitWidth)
4437 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004438 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004439 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004440 IntegerType::get(getContext(),
4441 Amt)),
4442 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004443 }
4444 break;
4445
Dan Gohman05e89732008-06-22 19:56:46 +00004446 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004447 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004448
4449 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004450 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004451
4452 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004453 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004454
4455 case Instruction::BitCast:
4456 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004457 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004458 return getSCEV(U->getOperand(0));
4459 break;
4460
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004461 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4462 // lead to pointer expressions which cannot safely be expanded to GEPs,
4463 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4464 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004465
Dan Gohmanee750d12009-05-08 20:26:55 +00004466 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004467 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004468
Dan Gohman05e89732008-06-22 19:56:46 +00004469 case Instruction::PHI:
4470 return createNodeForPHI(cast<PHINode>(U));
4471
4472 case Instruction::Select:
4473 // This could be a smax or umax that was lowered earlier.
4474 // Try to recover it.
4475 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4476 Value *LHS = ICI->getOperand(0);
4477 Value *RHS = ICI->getOperand(1);
4478 switch (ICI->getPredicate()) {
4479 case ICmpInst::ICMP_SLT:
4480 case ICmpInst::ICMP_SLE:
4481 std::swap(LHS, RHS);
4482 // fall through
4483 case ICmpInst::ICMP_SGT:
4484 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004485 // a >s b ? a+x : b+x -> smax(a, b)+x
4486 // a >s b ? b+x : a+x -> smin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004487 if (getTypeSizeInBits(LHS->getType()) <=
4488 getTypeSizeInBits(U->getType())) {
4489 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4490 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004491 const SCEV *LA = getSCEV(U->getOperand(1));
4492 const SCEV *RA = getSCEV(U->getOperand(2));
4493 const SCEV *LDiff = getMinusSCEV(LA, LS);
4494 const SCEV *RDiff = getMinusSCEV(RA, RS);
4495 if (LDiff == RDiff)
4496 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4497 LDiff = getMinusSCEV(LA, RS);
4498 RDiff = getMinusSCEV(RA, LS);
4499 if (LDiff == RDiff)
4500 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4501 }
Dan Gohman05e89732008-06-22 19:56:46 +00004502 break;
4503 case ICmpInst::ICMP_ULT:
4504 case ICmpInst::ICMP_ULE:
4505 std::swap(LHS, RHS);
4506 // fall through
4507 case ICmpInst::ICMP_UGT:
4508 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004509 // a >u b ? a+x : b+x -> umax(a, b)+x
4510 // a >u b ? b+x : a+x -> umin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004511 if (getTypeSizeInBits(LHS->getType()) <=
4512 getTypeSizeInBits(U->getType())) {
4513 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4514 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004515 const SCEV *LA = getSCEV(U->getOperand(1));
4516 const SCEV *RA = getSCEV(U->getOperand(2));
4517 const SCEV *LDiff = getMinusSCEV(LA, LS);
4518 const SCEV *RDiff = getMinusSCEV(RA, RS);
4519 if (LDiff == RDiff)
4520 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4521 LDiff = getMinusSCEV(LA, RS);
4522 RDiff = getMinusSCEV(RA, LS);
4523 if (LDiff == RDiff)
4524 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4525 }
Dan Gohman05e89732008-06-22 19:56:46 +00004526 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004527 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004528 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004529 if (getTypeSizeInBits(LHS->getType()) <=
4530 getTypeSizeInBits(U->getType()) &&
4531 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4532 const SCEV *One = getConstant(U->getType(), 1);
4533 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004534 const SCEV *LA = getSCEV(U->getOperand(1));
4535 const SCEV *RA = getSCEV(U->getOperand(2));
4536 const SCEV *LDiff = getMinusSCEV(LA, LS);
4537 const SCEV *RDiff = getMinusSCEV(RA, One);
4538 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004539 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004540 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004541 break;
4542 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004543 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004544 if (getTypeSizeInBits(LHS->getType()) <=
4545 getTypeSizeInBits(U->getType()) &&
4546 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4547 const SCEV *One = getConstant(U->getType(), 1);
4548 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004549 const SCEV *LA = getSCEV(U->getOperand(1));
4550 const SCEV *RA = getSCEV(U->getOperand(2));
4551 const SCEV *LDiff = getMinusSCEV(LA, One);
4552 const SCEV *RDiff = getMinusSCEV(RA, LS);
4553 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004554 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004555 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004556 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004557 default:
4558 break;
4559 }
4560 }
4561
4562 default: // We cannot analyze this expression.
4563 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004564 }
4565
Dan Gohmanc8e23622009-04-21 23:15:49 +00004566 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004567}
4568
4569
4570
4571//===----------------------------------------------------------------------===//
4572// Iteration Count Computation Code
4573//
4574
Chandler Carruth6666c272014-10-11 00:12:11 +00004575unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4576 if (BasicBlock *ExitingBB = L->getExitingBlock())
4577 return getSmallConstantTripCount(L, ExitingBB);
4578
4579 // No trip count information for multiple exits.
4580 return 0;
4581}
4582
Andrew Trick2b6860f2011-08-11 23:36:16 +00004583/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004584/// normal unsigned value. Returns 0 if the trip count is unknown or not
4585/// constant. Will also return 0 if the maximum trip count is very large (>=
4586/// 2^32).
4587///
4588/// This "trip count" assumes that control exits via ExitingBlock. More
4589/// precisely, it is the number of times that control may reach ExitingBlock
4590/// before taking the branch. For loops with multiple exits, it may not be the
4591/// number times that the loop header executes because the loop may exit
4592/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004593unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4594 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004595 assert(ExitingBlock && "Must pass a non-null exiting block!");
4596 assert(L->isLoopExiting(ExitingBlock) &&
4597 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004598 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004599 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004600 if (!ExitCount)
4601 return 0;
4602
4603 ConstantInt *ExitConst = ExitCount->getValue();
4604
4605 // Guard against huge trip counts.
4606 if (ExitConst->getValue().getActiveBits() > 32)
4607 return 0;
4608
4609 // In case of integer overflow, this returns 0, which is correct.
4610 return ((unsigned)ExitConst->getZExtValue()) + 1;
4611}
4612
Chandler Carruth6666c272014-10-11 00:12:11 +00004613unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4614 if (BasicBlock *ExitingBB = L->getExitingBlock())
4615 return getSmallConstantTripMultiple(L, ExitingBB);
4616
4617 // No trip multiple information for multiple exits.
4618 return 0;
4619}
4620
Andrew Trick2b6860f2011-08-11 23:36:16 +00004621/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4622/// trip count of this loop as a normal unsigned value, if possible. This
4623/// means that the actual trip count is always a multiple of the returned
4624/// value (don't forget the trip count could very well be zero as well!).
4625///
4626/// Returns 1 if the trip count is unknown or not guaranteed to be the
4627/// multiple of a constant (which is also the case if the trip count is simply
4628/// constant, use getSmallConstantTripCount for that case), Will also return 1
4629/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004630///
4631/// As explained in the comments for getSmallConstantTripCount, this assumes
4632/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004633unsigned
4634ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4635 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004636 assert(ExitingBlock && "Must pass a non-null exiting block!");
4637 assert(L->isLoopExiting(ExitingBlock) &&
4638 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004639 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004640 if (ExitCount == getCouldNotCompute())
4641 return 1;
4642
4643 // Get the trip count from the BE count by adding 1.
4644 const SCEV *TCMul = getAddExpr(ExitCount,
4645 getConstant(ExitCount->getType(), 1));
4646 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4647 // to factor simple cases.
4648 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4649 TCMul = Mul->getOperand(0);
4650
4651 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4652 if (!MulC)
4653 return 1;
4654
4655 ConstantInt *Result = MulC->getValue();
4656
Hal Finkel30bd9342012-10-24 19:46:44 +00004657 // Guard against huge trip counts (this requires checking
4658 // for zero to handle the case where the trip count == -1 and the
4659 // addition wraps).
4660 if (!Result || Result->getValue().getActiveBits() > 32 ||
4661 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004662 return 1;
4663
4664 return (unsigned)Result->getZExtValue();
4665}
4666
Andrew Trick3ca3f982011-07-26 17:19:55 +00004667// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004668// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004669// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004670const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4671 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004672}
4673
Dan Gohman0bddac12009-02-24 18:55:53 +00004674/// getBackedgeTakenCount - If the specified loop has a predictable
4675/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4676/// object. The backedge-taken count is the number of times the loop header
4677/// will be branched to from within the loop. This is one less than the
4678/// trip count of the loop, since it doesn't count the first iteration,
4679/// when the header is branched to from outside the loop.
4680///
4681/// Note that it is not valid to call this method on a loop without a
4682/// loop-invariant backedge-taken count (see
4683/// hasLoopInvariantBackedgeTakenCount).
4684///
Dan Gohmanaf752342009-07-07 17:06:11 +00004685const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004686 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004687}
4688
4689/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4690/// return the least SCEV value that is known never to be less than the
4691/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004692const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004693 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004694}
4695
Dan Gohmandc191042009-07-08 19:23:34 +00004696/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4697/// onto the given Worklist.
4698static void
4699PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4700 BasicBlock *Header = L->getHeader();
4701
4702 // Push all Loop-header PHIs onto the Worklist stack.
4703 for (BasicBlock::iterator I = Header->begin();
4704 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4705 Worklist.push_back(PN);
4706}
4707
Dan Gohman2b8da352009-04-30 20:47:05 +00004708const ScalarEvolution::BackedgeTakenInfo &
4709ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004710 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004711 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004712 // update the value. The temporary CouldNotCompute value tells SCEV
4713 // code elsewhere that it shouldn't attempt to request a new
4714 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004715 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004716 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004717 if (!Pair.second)
4718 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004719
Andrew Trick3ca3f982011-07-26 17:19:55 +00004720 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4721 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4722 // must be cleared in this scope.
4723 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4724
4725 if (Result.getExact(this) != getCouldNotCompute()) {
4726 assert(isLoopInvariant(Result.getExact(this), L) &&
4727 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004728 "Computed backedge-taken count isn't loop invariant for loop!");
4729 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004730 }
4731 else if (Result.getMax(this) == getCouldNotCompute() &&
4732 isa<PHINode>(L->getHeader()->begin())) {
4733 // Only count loops that have phi nodes as not being computable.
4734 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004735 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004736
Chris Lattnera337f5e2011-01-09 02:16:18 +00004737 // Now that we know more about the trip count for this loop, forget any
4738 // existing SCEV values for PHI nodes in this loop since they are only
4739 // conservative estimates made without the benefit of trip count
4740 // information. This is similar to the code in forgetLoop, except that
4741 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004742 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004743 SmallVector<Instruction *, 16> Worklist;
4744 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004745
Chris Lattnera337f5e2011-01-09 02:16:18 +00004746 SmallPtrSet<Instruction *, 8> Visited;
4747 while (!Worklist.empty()) {
4748 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004749 if (!Visited.insert(I).second)
4750 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004751
Chris Lattnera337f5e2011-01-09 02:16:18 +00004752 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004753 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004754 if (It != ValueExprMap.end()) {
4755 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004756
Chris Lattnera337f5e2011-01-09 02:16:18 +00004757 // SCEVUnknown for a PHI either means that it has an unrecognized
4758 // structure, or it's a PHI that's in the progress of being computed
4759 // by createNodeForPHI. In the former case, additional loop trip
4760 // count information isn't going to change anything. In the later
4761 // case, createNodeForPHI will perform the necessary updates on its
4762 // own when it gets to that point.
4763 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4764 forgetMemoizedResults(Old);
4765 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004766 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004767 if (PHINode *PN = dyn_cast<PHINode>(I))
4768 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004769 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004770
4771 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004772 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004773 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004774
4775 // Re-lookup the insert position, since the call to
4776 // ComputeBackedgeTakenCount above could result in a
4777 // recusive call to getBackedgeTakenInfo (on a different
4778 // loop), which would invalidate the iterator computed
4779 // earlier.
4780 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004781}
4782
Dan Gohman880c92a2009-10-31 15:04:55 +00004783/// forgetLoop - This method should be called by the client when it has
4784/// changed a loop in a way that may effect ScalarEvolution's ability to
4785/// compute a trip count, or if the loop is deleted.
4786void ScalarEvolution::forgetLoop(const Loop *L) {
4787 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004788 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4789 BackedgeTakenCounts.find(L);
4790 if (BTCPos != BackedgeTakenCounts.end()) {
4791 BTCPos->second.clear();
4792 BackedgeTakenCounts.erase(BTCPos);
4793 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004794
Dan Gohman880c92a2009-10-31 15:04:55 +00004795 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004796 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004797 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004798
Dan Gohmandc191042009-07-08 19:23:34 +00004799 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004800 while (!Worklist.empty()) {
4801 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004802 if (!Visited.insert(I).second)
4803 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004804
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004805 ValueExprMapType::iterator It =
4806 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004807 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004808 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004809 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004810 if (PHINode *PN = dyn_cast<PHINode>(I))
4811 ConstantEvolutionLoopExitValue.erase(PN);
4812 }
4813
4814 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004815 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004816
4817 // Forget all contained loops too, to avoid dangling entries in the
4818 // ValuesAtScopes map.
4819 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4820 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004821}
4822
Eric Christopheref6d5932010-07-29 01:25:38 +00004823/// forgetValue - This method should be called by the client when it has
4824/// changed a value in a way that may effect its value, or which may
4825/// disconnect it from a def-use chain linking it to a loop.
4826void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004827 Instruction *I = dyn_cast<Instruction>(V);
4828 if (!I) return;
4829
4830 // Drop information about expressions based on loop-header PHIs.
4831 SmallVector<Instruction *, 16> Worklist;
4832 Worklist.push_back(I);
4833
4834 SmallPtrSet<Instruction *, 8> Visited;
4835 while (!Worklist.empty()) {
4836 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004837 if (!Visited.insert(I).second)
4838 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004839
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004840 ValueExprMapType::iterator It =
4841 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004842 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004843 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004844 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004845 if (PHINode *PN = dyn_cast<PHINode>(I))
4846 ConstantEvolutionLoopExitValue.erase(PN);
4847 }
4848
4849 PushDefUseChildren(I, Worklist);
4850 }
4851}
4852
Andrew Trick3ca3f982011-07-26 17:19:55 +00004853/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00004854/// exits. A computable result can only be returned for loops with a single
4855/// exit. Returning the minimum taken count among all exits is incorrect
4856/// because one of the loop's exit limit's may have been skipped. HowFarToZero
4857/// assumes that the limit of each loop test is never skipped. This is a valid
4858/// assumption as long as the loop exits via that test. For precise results, it
4859/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00004860/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004861const SCEV *
4862ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4863 // If any exits were not computable, the loop is not computable.
4864 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4865
Andrew Trick90c7a102011-11-16 00:52:40 +00004866 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004867 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004868 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4869
Craig Topper9f008862014-04-15 04:59:12 +00004870 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004871 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004872 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004873
4874 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4875
4876 if (!BECount)
4877 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004878 else if (BECount != ENT->ExactNotTaken)
4879 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004880 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004881 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004882 return BECount;
4883}
4884
4885/// getExact - Get the exact not taken count for this loop exit.
4886const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004887ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004888 ScalarEvolution *SE) const {
4889 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004890 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004891
Andrew Trick77c55422011-08-02 04:23:35 +00004892 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004893 return ENT->ExactNotTaken;
4894 }
4895 return SE->getCouldNotCompute();
4896}
4897
4898/// getMax - Get the max backedge taken count for the loop.
4899const SCEV *
4900ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4901 return Max ? Max : SE->getCouldNotCompute();
4902}
4903
Andrew Trick9093e152013-03-26 03:14:53 +00004904bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4905 ScalarEvolution *SE) const {
4906 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4907 return true;
4908
4909 if (!ExitNotTaken.ExitingBlock)
4910 return false;
4911
4912 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004913 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004914
4915 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4916 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4917 return true;
4918 }
4919 }
4920 return false;
4921}
4922
Andrew Trick3ca3f982011-07-26 17:19:55 +00004923/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4924/// computable exit into a persistent ExitNotTakenInfo array.
4925ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4926 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4927 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4928
4929 if (!Complete)
4930 ExitNotTaken.setIncomplete();
4931
4932 unsigned NumExits = ExitCounts.size();
4933 if (NumExits == 0) return;
4934
Andrew Trick77c55422011-08-02 04:23:35 +00004935 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004936 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4937 if (NumExits == 1) return;
4938
4939 // Handle the rare case of multiple computable exits.
4940 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4941
4942 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4943 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4944 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004945 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004946 ENT->ExactNotTaken = ExitCounts[i].second;
4947 }
4948}
4949
4950/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4951void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004952 ExitNotTaken.ExitingBlock = nullptr;
4953 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004954 delete[] ExitNotTaken.getNextExit();
4955}
4956
Dan Gohman0bddac12009-02-24 18:55:53 +00004957/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4958/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004959ScalarEvolution::BackedgeTakenInfo
4960ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004961 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004962 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004963
Andrew Trick839e30b2014-05-23 19:47:13 +00004964 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004965 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004966 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004967 const SCEV *MustExitMaxBECount = nullptr;
4968 const SCEV *MayExitMaxBECount = nullptr;
4969
4970 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4971 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004972 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004973 BasicBlock *ExitBB = ExitingBlocks[i];
4974 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4975
4976 // 1. For each exit that can be computed, add an entry to ExitCounts.
4977 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004978 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004979 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004980 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004981 CouldComputeBECount = false;
4982 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004983 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004984
Andrew Trick839e30b2014-05-23 19:47:13 +00004985 // 2. Derive the loop's MaxBECount from each exit's max number of
4986 // non-exiting iterations. Partition the loop exits into two kinds:
4987 // LoopMustExits and LoopMayExits.
4988 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004989 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4990 // is a LoopMayExit. If any computable LoopMustExit is found, then
4991 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4992 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4993 // considered greater than any computable EL.Max.
4994 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004995 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004996 if (!MustExitMaxBECount)
4997 MustExitMaxBECount = EL.Max;
4998 else {
4999 MustExitMaxBECount =
5000 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005001 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005002 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5003 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5004 MayExitMaxBECount = EL.Max;
5005 else {
5006 MayExitMaxBECount =
5007 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5008 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005009 }
Dan Gohman96212b62009-06-22 00:31:57 +00005010 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005011 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5012 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005013 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005014}
5015
Andrew Trick3ca3f982011-07-26 17:19:55 +00005016/// ComputeExitLimit - Compute the number of times the backedge of the specified
5017/// loop will execute if it exits via the specified block.
5018ScalarEvolution::ExitLimit
5019ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005020
5021 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00005022 // exit at this block and remember the exit block and whether all other targets
5023 // lead to the loop header.
5024 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005025 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005026 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5027 SI != SE; ++SI)
5028 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005029 if (Exit) // Multiple exit successors.
5030 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005031 Exit = *SI;
5032 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005033 MustExecuteLoopHeader = false;
5034 }
Dan Gohmance973df2009-06-24 04:48:43 +00005035
Chris Lattner18954852007-01-07 02:24:26 +00005036 // At this point, we know we have a conditional branch that determines whether
5037 // the loop is exited. However, we don't know if the branch is executed each
5038 // time through the loop. If not, then the execution count of the branch will
5039 // not be equal to the trip count of the loop.
5040 //
5041 // Currently we check for this by checking to see if the Exit branch goes to
5042 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005043 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005044 // loop header. This is common for un-rotated loops.
5045 //
5046 // If both of those tests fail, walk up the unique predecessor chain to the
5047 // header, stopping if there is an edge that doesn't exit the loop. If the
5048 // header is reached, the execution count of the branch will be equal to the
5049 // trip count of the loop.
5050 //
5051 // More extensive analysis could be done to handle more cases here.
5052 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005053 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005054 // The simple checks failed, try climbing the unique predecessor chain
5055 // up to the header.
5056 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005057 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005058 BasicBlock *Pred = BB->getUniquePredecessor();
5059 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005060 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005061 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005062 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005063 if (PredSucc == BB)
5064 continue;
5065 // If the predecessor has a successor that isn't BB and isn't
5066 // outside the loop, assume the worst.
5067 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005068 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005069 }
5070 if (Pred == L->getHeader()) {
5071 Ok = true;
5072 break;
5073 }
5074 BB = Pred;
5075 }
5076 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005077 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005078 }
5079
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005080 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005081 TerminatorInst *Term = ExitingBlock->getTerminator();
5082 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5083 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5084 // Proceed to the next level to examine the exit condition expression.
5085 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5086 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005087 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005088 }
5089
5090 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5091 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005092 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005093
5094 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005095}
5096
Andrew Trick3ca3f982011-07-26 17:19:55 +00005097/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005098/// backedge of the specified loop will execute if its exit condition
5099/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005100///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005101/// @param ControlsExit is true if ExitCond directly controls the exit
5102/// branch. In this case, we can assume that the loop exits only if the
5103/// condition is true and can infer that failing to meet the condition prior to
5104/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005105ScalarEvolution::ExitLimit
5106ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
5107 Value *ExitCond,
5108 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005109 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005110 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005111 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005112 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5113 if (BO->getOpcode() == Instruction::And) {
5114 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005115 bool EitherMayExit = L->contains(TBB);
5116 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005117 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005118 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005119 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005120 const SCEV *BECount = getCouldNotCompute();
5121 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005122 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005123 // Both conditions must be true for the loop to continue executing.
5124 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005125 if (EL0.Exact == getCouldNotCompute() ||
5126 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005127 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005128 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005129 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5130 if (EL0.Max == getCouldNotCompute())
5131 MaxBECount = EL1.Max;
5132 else if (EL1.Max == getCouldNotCompute())
5133 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005134 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005135 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005136 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005137 // Both conditions must be true at the same time for the loop to exit.
5138 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005139 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005140 if (EL0.Max == EL1.Max)
5141 MaxBECount = EL0.Max;
5142 if (EL0.Exact == EL1.Exact)
5143 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005144 }
5145
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005146 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005147 }
5148 if (BO->getOpcode() == Instruction::Or) {
5149 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005150 bool EitherMayExit = L->contains(FBB);
5151 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005152 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005153 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005154 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005155 const SCEV *BECount = getCouldNotCompute();
5156 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005157 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005158 // Both conditions must be false for the loop to continue executing.
5159 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005160 if (EL0.Exact == getCouldNotCompute() ||
5161 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005162 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005163 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005164 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5165 if (EL0.Max == getCouldNotCompute())
5166 MaxBECount = EL1.Max;
5167 else if (EL1.Max == getCouldNotCompute())
5168 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005169 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005170 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005171 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005172 // Both conditions must be false at the same time for the loop to exit.
5173 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005174 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005175 if (EL0.Max == EL1.Max)
5176 MaxBECount = EL0.Max;
5177 if (EL0.Exact == EL1.Exact)
5178 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005179 }
5180
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005181 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005182 }
5183 }
5184
5185 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005186 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005187 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005188 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005189
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005190 // Check for a constant condition. These are normally stripped out by
5191 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5192 // preserve the CFG and is temporarily leaving constant conditions
5193 // in place.
5194 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5195 if (L->contains(FBB) == !CI->getZExtValue())
5196 // The backedge is always taken.
5197 return getCouldNotCompute();
5198 else
5199 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005200 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005201 }
5202
Eli Friedmanebf98b02009-05-09 12:32:42 +00005203 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005204 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005205}
5206
Andrew Trick3ca3f982011-07-26 17:19:55 +00005207/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005208/// backedge of the specified loop will execute if its exit condition
5209/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005210ScalarEvolution::ExitLimit
5211ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5212 ICmpInst *ExitCond,
5213 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005214 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005215 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005216
Reid Spencer266e42b2006-12-23 06:05:41 +00005217 // If the condition was exit on true, convert the condition to exit on false
5218 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005219 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005220 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005221 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005222 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005223
5224 // Handle common loops like: for (X = "string"; *X; ++X)
5225 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5226 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005227 ExitLimit ItCnt =
5228 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005229 if (ItCnt.hasAnyInfo())
5230 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005231 }
5232
Dan Gohmanaf752342009-07-07 17:06:11 +00005233 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5234 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005235
5236 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005237 LHS = getSCEVAtScope(LHS, L);
5238 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005239
Dan Gohmance973df2009-06-24 04:48:43 +00005240 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005241 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005242 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005243 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005244 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005245 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005246 }
5247
Dan Gohman81585c12010-05-03 16:35:17 +00005248 // Simplify the operands before analyzing them.
5249 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5250
Chris Lattnerd934c702004-04-02 20:23:17 +00005251 // If we have a comparison of a chrec against a constant, try to use value
5252 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005253 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5254 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005255 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005256 // Form the constant range.
5257 ConstantRange CompRange(
5258 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005259
Dan Gohmanaf752342009-07-07 17:06:11 +00005260 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005261 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005262 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005263
Chris Lattnerd934c702004-04-02 20:23:17 +00005264 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005265 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005266 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005267 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005268 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005269 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005270 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005271 case ICmpInst::ICMP_EQ: { // while (X == Y)
5272 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005273 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5274 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005275 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005276 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005277 case ICmpInst::ICMP_SLT:
5278 case ICmpInst::ICMP_ULT: { // while (X < Y)
5279 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005280 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005281 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005282 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005283 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005284 case ICmpInst::ICMP_SGT:
5285 case ICmpInst::ICMP_UGT: { // while (X > Y)
5286 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005287 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005288 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005289 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005290 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005291 default:
Chris Lattner09169212004-04-02 20:26:46 +00005292#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005293 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005294 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005295 dbgs() << "[unsigned] ";
5296 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005297 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005298 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005299#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005300 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005301 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005302 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005303}
5304
Benjamin Kramer5a188542014-02-11 15:44:32 +00005305ScalarEvolution::ExitLimit
5306ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5307 SwitchInst *Switch,
5308 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005309 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005310 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5311
5312 // Give up if the exit is the default dest of a switch.
5313 if (Switch->getDefaultDest() == ExitingBlock)
5314 return getCouldNotCompute();
5315
5316 assert(L->contains(Switch->getDefaultDest()) &&
5317 "Default case must not exit the loop!");
5318 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5319 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5320
5321 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005322 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005323 if (EL.hasAnyInfo())
5324 return EL;
5325
5326 return getCouldNotCompute();
5327}
5328
Chris Lattnerec901cc2004-10-12 01:49:27 +00005329static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005330EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5331 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005332 const SCEV *InVal = SE.getConstant(C);
5333 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005334 assert(isa<SCEVConstant>(Val) &&
5335 "Evaluation of SCEV at constant didn't fold correctly?");
5336 return cast<SCEVConstant>(Val)->getValue();
5337}
5338
Andrew Trick3ca3f982011-07-26 17:19:55 +00005339/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005340/// 'icmp op load X, cst', try to see if we can compute the backedge
5341/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005342ScalarEvolution::ExitLimit
5343ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5344 LoadInst *LI,
5345 Constant *RHS,
5346 const Loop *L,
5347 ICmpInst::Predicate predicate) {
5348
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005349 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005350
5351 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005352 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005353 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005354 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005355
5356 // Make sure that it is really a constant global we are gepping, with an
5357 // initializer, and make sure the first IDX is really 0.
5358 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005359 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005360 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5361 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005362 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005363
5364 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005365 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005366 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005367 unsigned VarIdxNum = 0;
5368 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5369 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5370 Indexes.push_back(CI);
5371 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005372 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005373 VarIdx = GEP->getOperand(i);
5374 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005375 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005376 }
5377
Andrew Trick7004e4b2012-03-26 22:33:59 +00005378 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5379 if (!VarIdx)
5380 return getCouldNotCompute();
5381
Chris Lattnerec901cc2004-10-12 01:49:27 +00005382 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5383 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005384 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005385 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005386
5387 // We can only recognize very limited forms of loop index expressions, in
5388 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005389 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005390 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005391 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5392 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005393 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005394
5395 unsigned MaxSteps = MaxBruteForceIterations;
5396 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005397 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005398 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005399 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005400
5401 // Form the GEP offset.
5402 Indexes[VarIdxNum] = Val;
5403
Chris Lattnere166a852012-01-24 05:49:24 +00005404 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5405 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005406 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005407
5408 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005409 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005410 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005411 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005412#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005413 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005414 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5415 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005416#endif
5417 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005418 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005419 }
5420 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005421 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005422}
5423
5424
Chris Lattnerdd730472004-04-17 22:58:41 +00005425/// CanConstantFold - Return true if we can constant fold an instruction of the
5426/// specified type, assuming that all operands were constants.
5427static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005428 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005429 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5430 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005431 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005432
Chris Lattnerdd730472004-04-17 22:58:41 +00005433 if (const CallInst *CI = dyn_cast<CallInst>(I))
5434 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005435 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005436 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005437}
5438
Andrew Trick3a86ba72011-10-05 03:25:31 +00005439/// Determine whether this instruction can constant evolve within this loop
5440/// assuming its operands can all constant evolve.
5441static bool canConstantEvolve(Instruction *I, const Loop *L) {
5442 // An instruction outside of the loop can't be derived from a loop PHI.
5443 if (!L->contains(I)) return false;
5444
5445 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005446 // We don't currently keep track of the control flow needed to evaluate
5447 // PHIs, so we cannot handle PHIs inside of loops.
5448 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005449 }
5450
5451 // If we won't be able to constant fold this expression even if the operands
5452 // are constants, bail early.
5453 return CanConstantFold(I);
5454}
5455
5456/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5457/// recursing through each instruction operand until reaching a loop header phi.
5458static PHINode *
5459getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005460 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005461
5462 // Otherwise, we can evaluate this instruction if all of its operands are
5463 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005464 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005465 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5466 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5467
5468 if (isa<Constant>(*OpI)) continue;
5469
5470 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005471 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005472
5473 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005474 if (!P)
5475 // If this operand is already visited, reuse the prior result.
5476 // We may have P != PHI if this is the deepest point at which the
5477 // inconsistent paths meet.
5478 P = PHIMap.lookup(OpInst);
5479 if (!P) {
5480 // Recurse and memoize the results, whether a phi is found or not.
5481 // This recursive call invalidates pointers into PHIMap.
5482 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5483 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005484 }
Craig Topper9f008862014-04-15 04:59:12 +00005485 if (!P)
5486 return nullptr; // Not evolving from PHI
5487 if (PHI && PHI != P)
5488 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005489 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005490 }
5491 // This is a expression evolving from a constant PHI!
5492 return PHI;
5493}
5494
Chris Lattnerdd730472004-04-17 22:58:41 +00005495/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5496/// in the loop that V is derived from. We allow arbitrary operations along the
5497/// way, but the operands of an operation must either be constants or a value
5498/// derived from a constant PHI. If this expression does not fit with these
5499/// constraints, return null.
5500static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005501 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005502 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005503
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005504 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005505 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005506 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005507
Andrew Trick3a86ba72011-10-05 03:25:31 +00005508 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005509 DenseMap<Instruction *, PHINode *> PHIMap;
5510 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005511}
5512
5513/// EvaluateExpression - Given an expression that passes the
5514/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5515/// in the loop has the value PHIVal. If we can't fold this expression for some
5516/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005517static Constant *EvaluateExpression(Value *V, const Loop *L,
5518 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005519 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005520 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005521 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005522 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005523 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005524 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005525
Andrew Trick3a86ba72011-10-05 03:25:31 +00005526 if (Constant *C = Vals.lookup(I)) return C;
5527
Nick Lewyckya6674c72011-10-22 19:58:20 +00005528 // An instruction inside the loop depends on a value outside the loop that we
5529 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005530 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005531
5532 // An unmapped PHI can be due to a branch or another loop inside this loop,
5533 // or due to this not being the initial iteration through a loop where we
5534 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005535 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005536
Dan Gohmanf820bd32010-06-22 13:15:46 +00005537 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005538
5539 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005540 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5541 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005542 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005543 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005544 continue;
5545 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005546 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005547 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005548 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005549 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005550 }
5551
Nick Lewyckya6674c72011-10-22 19:58:20 +00005552 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005553 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005554 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005555 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5556 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005557 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005558 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005559 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005560 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005561}
5562
5563/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5564/// in the header of its containing loop, we know the loop executes a
5565/// constant number of times, and the PHI node is just a recurrence
5566/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005567Constant *
5568ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005569 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005570 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005571 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005572 ConstantEvolutionLoopExitValue.find(PN);
5573 if (I != ConstantEvolutionLoopExitValue.end())
5574 return I->second;
5575
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005576 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005577 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005578
5579 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5580
Andrew Trick3a86ba72011-10-05 03:25:31 +00005581 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005582 BasicBlock *Header = L->getHeader();
5583 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005584
Chris Lattnerdd730472004-04-17 22:58:41 +00005585 // Since the loop is canonicalized, the PHI node must have two entries. One
5586 // entry must be a constant (coming in from outside of the loop), and the
5587 // second must be derived from the same PHI.
5588 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005589 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005590 for (BasicBlock::iterator I = Header->begin();
5591 (PHI = dyn_cast<PHINode>(I)); ++I) {
5592 Constant *StartCST =
5593 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005594 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005595 CurrentIterVals[PHI] = StartCST;
5596 }
5597 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005598 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005599
5600 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005601
5602 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005603 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005604 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005605
Dan Gohman0bddac12009-02-24 18:55:53 +00005606 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005607 unsigned IterationNum = 0;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005608 const DataLayout &DL = F.getParent()->getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005609 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005610 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005611 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005612
Nick Lewyckya6674c72011-10-22 19:58:20 +00005613 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005614 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005615 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005616 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005617 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005618 if (!NextPHI)
5619 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005620 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005621
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005622 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5623
Nick Lewyckya6674c72011-10-22 19:58:20 +00005624 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5625 // cease to be able to evaluate one of them or if they stop evolving,
5626 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005627 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005628 for (DenseMap<Instruction *, Constant *>::const_iterator
5629 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5630 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005631 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005632 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5633 }
5634 // We use two distinct loops because EvaluateExpression may invalidate any
5635 // iterators into CurrentIterVals.
5636 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5637 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5638 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005639 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005640 if (!NextPHI) { // Not already computed.
5641 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005642 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005643 }
5644 if (NextPHI != I->second)
5645 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005646 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005647
5648 // If all entries in CurrentIterVals == NextIterVals then we can stop
5649 // iterating, the loop can't continue to change.
5650 if (StoppedEvolving)
5651 return RetVal = CurrentIterVals[PN];
5652
Andrew Trick3a86ba72011-10-05 03:25:31 +00005653 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005654 }
5655}
5656
Andrew Trick3ca3f982011-07-26 17:19:55 +00005657/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005658/// constant number of times (the condition evolves only from constants),
5659/// try to evaluate a few iterations of the loop until we get the exit
5660/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005661/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005662const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5663 Value *Cond,
5664 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005665 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005666 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005667
Dan Gohman866971e2010-06-19 14:17:24 +00005668 // If the loop is canonicalized, the PHI will have exactly two entries.
5669 // That's the only form we support here.
5670 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5671
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005672 DenseMap<Instruction *, Constant *> CurrentIterVals;
5673 BasicBlock *Header = L->getHeader();
5674 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5675
Dan Gohman866971e2010-06-19 14:17:24 +00005676 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005677 // second must be derived from the same PHI.
5678 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005679 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005680 for (BasicBlock::iterator I = Header->begin();
5681 (PHI = dyn_cast<PHINode>(I)); ++I) {
5682 Constant *StartCST =
5683 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005684 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005685 CurrentIterVals[PHI] = StartCST;
5686 }
5687 if (!CurrentIterVals.count(PN))
5688 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005689
5690 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5691 // the loop symbolically to determine when the condition gets a value of
5692 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00005693 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005694 const DataLayout &DL = F.getParent()->getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005695 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005696 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005697 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005698
Zhou Sheng75b871f2007-01-11 12:24:14 +00005699 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005700 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005701
Reid Spencer983e3b32007-03-01 07:25:48 +00005702 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005703 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005704 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005705 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005706
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005707 // Update all the PHI nodes for the next iteration.
5708 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005709
5710 // Create a list of which PHIs we need to compute. We want to do this before
5711 // calling EvaluateExpression on them because that may invalidate iterators
5712 // into CurrentIterVals.
5713 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005714 for (DenseMap<Instruction *, Constant *>::const_iterator
5715 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5716 PHINode *PHI = dyn_cast<PHINode>(I->first);
5717 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005718 PHIsToCompute.push_back(PHI);
5719 }
5720 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5721 E = PHIsToCompute.end(); I != E; ++I) {
5722 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005723 Constant *&NextPHI = NextIterVals[PHI];
5724 if (NextPHI) continue; // Already computed!
5725
5726 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005727 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005728 }
5729 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005730 }
5731
5732 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005733 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005734}
5735
Dan Gohman237d9e52009-09-03 15:00:26 +00005736/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005737/// at the specified scope in the program. The L value specifies a loop
5738/// nest to evaluate the expression at, where null is the top-level or a
5739/// specified loop is immediately inside of the loop.
5740///
5741/// This method can be used to compute the exit value for a variable defined
5742/// in a loop by querying what the value will hold in the parent loop.
5743///
Dan Gohman8ca08852009-05-24 23:25:42 +00005744/// In the case that a relevant loop exit value cannot be computed, the
5745/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005746const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005747 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005748 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5749 for (unsigned u = 0; u < Values.size(); u++) {
5750 if (Values[u].first == L)
5751 return Values[u].second ? Values[u].second : V;
5752 }
Craig Topper9f008862014-04-15 04:59:12 +00005753 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005754 // Otherwise compute it.
5755 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005756 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5757 for (unsigned u = Values2.size(); u > 0; u--) {
5758 if (Values2[u - 1].first == L) {
5759 Values2[u - 1].second = C;
5760 break;
5761 }
5762 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005763 return C;
5764}
5765
Nick Lewyckya6674c72011-10-22 19:58:20 +00005766/// This builds up a Constant using the ConstantExpr interface. That way, we
5767/// will return Constants for objects which aren't represented by a
5768/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5769/// Returns NULL if the SCEV isn't representable as a Constant.
5770static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005771 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005772 case scCouldNotCompute:
5773 case scAddRecExpr:
5774 break;
5775 case scConstant:
5776 return cast<SCEVConstant>(V)->getValue();
5777 case scUnknown:
5778 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5779 case scSignExtend: {
5780 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5781 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5782 return ConstantExpr::getSExt(CastOp, SS->getType());
5783 break;
5784 }
5785 case scZeroExtend: {
5786 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5787 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5788 return ConstantExpr::getZExt(CastOp, SZ->getType());
5789 break;
5790 }
5791 case scTruncate: {
5792 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5793 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5794 return ConstantExpr::getTrunc(CastOp, ST->getType());
5795 break;
5796 }
5797 case scAddExpr: {
5798 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5799 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005800 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5801 unsigned AS = PTy->getAddressSpace();
5802 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5803 C = ConstantExpr::getBitCast(C, DestPtrTy);
5804 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005805 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5806 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005807 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005808
5809 // First pointer!
5810 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005811 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005812 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005813 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005814 // The offsets have been converted to bytes. We can add bytes to an
5815 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005816 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005817 }
5818
5819 // Don't bother trying to sum two pointers. We probably can't
5820 // statically compute a load that results from it anyway.
5821 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005822 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005823
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005824 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5825 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005826 C2 = ConstantExpr::getIntegerCast(
5827 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00005828 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005829 } else
5830 C = ConstantExpr::getAdd(C, C2);
5831 }
5832 return C;
5833 }
5834 break;
5835 }
5836 case scMulExpr: {
5837 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5838 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5839 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005840 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005841 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5842 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005843 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005844 C = ConstantExpr::getMul(C, C2);
5845 }
5846 return C;
5847 }
5848 break;
5849 }
5850 case scUDivExpr: {
5851 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5852 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5853 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5854 if (LHS->getType() == RHS->getType())
5855 return ConstantExpr::getUDiv(LHS, RHS);
5856 break;
5857 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005858 case scSMaxExpr:
5859 case scUMaxExpr:
5860 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005861 }
Craig Topper9f008862014-04-15 04:59:12 +00005862 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005863}
5864
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005865const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005866 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005867
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005868 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005869 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005870 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005871 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005872 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005873 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5874 if (PHINode *PN = dyn_cast<PHINode>(I))
5875 if (PN->getParent() == LI->getHeader()) {
5876 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005877 // to see if the loop that contains it has a known backedge-taken
5878 // count. If so, we may be able to force computation of the exit
5879 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005880 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005881 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005882 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005883 // Okay, we know how many times the containing loop executes. If
5884 // this is a constant evolving PHI node, get the final value at
5885 // the specified iteration number.
5886 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005887 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005888 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005889 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005890 }
5891 }
5892
Reid Spencere6328ca2006-12-04 21:33:23 +00005893 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005894 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005895 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005896 // result. This is particularly useful for computing loop exit values.
5897 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005898 SmallVector<Constant *, 4> Operands;
5899 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005900 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5901 Value *Op = I->getOperand(i);
5902 if (Constant *C = dyn_cast<Constant>(Op)) {
5903 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005904 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005905 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005906
5907 // If any of the operands is non-constant and if they are
5908 // non-integer and non-pointer, don't even try to analyze them
5909 // with scev techniques.
5910 if (!isSCEVable(Op->getType()))
5911 return V;
5912
5913 const SCEV *OrigV = getSCEV(Op);
5914 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5915 MadeImprovement |= OrigV != OpV;
5916
Nick Lewyckya6674c72011-10-22 19:58:20 +00005917 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005918 if (!C) return V;
5919 if (C->getType() != Op->getType())
5920 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5921 Op->getType(),
5922 false),
5923 C, Op->getType());
5924 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005925 }
Dan Gohmance973df2009-06-24 04:48:43 +00005926
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005927 // Check to see if getSCEVAtScope actually made an improvement.
5928 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005929 Constant *C = nullptr;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005930 const DataLayout &DL = F.getParent()->getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005931 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005932 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005933 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005934 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5935 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005936 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005937 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005938 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005939 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005940 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005941 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005942 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005943 }
5944 }
5945
5946 // This is some other type of SCEVUnknown, just return it.
5947 return V;
5948 }
5949
Dan Gohmana30370b2009-05-04 22:02:23 +00005950 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005951 // Avoid performing the look-up in the common case where the specified
5952 // expression has no loop-variant portions.
5953 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005954 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005955 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005956 // Okay, at least one of these operands is loop variant but might be
5957 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005958 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5959 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005960 NewOps.push_back(OpAtScope);
5961
5962 for (++i; i != e; ++i) {
5963 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005964 NewOps.push_back(OpAtScope);
5965 }
5966 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005967 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005968 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005969 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005970 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005971 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005972 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005973 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005974 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005975 }
5976 }
5977 // If we got here, all operands are loop invariant.
5978 return Comm;
5979 }
5980
Dan Gohmana30370b2009-05-04 22:02:23 +00005981 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005982 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5983 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005984 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5985 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005986 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005987 }
5988
5989 // If this is a loop recurrence for a loop that does not contain L, then we
5990 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005991 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005992 // First, attempt to evaluate each operand.
5993 // Avoid performing the look-up in the common case where the specified
5994 // expression has no loop-variant portions.
5995 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5996 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5997 if (OpAtScope == AddRec->getOperand(i))
5998 continue;
5999
6000 // Okay, at least one of these operands is loop variant but might be
6001 // foldable. Build a new instance of the folded commutative expression.
6002 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6003 AddRec->op_begin()+i);
6004 NewOps.push_back(OpAtScope);
6005 for (++i; i != e; ++i)
6006 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6007
Andrew Trick759ba082011-04-27 01:21:25 +00006008 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006009 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006010 AddRec->getNoWrapFlags(SCEV::FlagNW));
6011 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006012 // The addrec may be folded to a nonrecurrence, for example, if the
6013 // induction variable is multiplied by zero after constant folding. Go
6014 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006015 if (!AddRec)
6016 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006017 break;
6018 }
6019
6020 // If the scope is outside the addrec's loop, evaluate it by using the
6021 // loop exit value of the addrec.
6022 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006023 // To evaluate this recurrence, we need to know how many times the AddRec
6024 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006025 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006026 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006027
Eli Friedman61f67622008-08-04 23:49:06 +00006028 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006029 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006030 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006031
Dan Gohman8ca08852009-05-24 23:25:42 +00006032 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006033 }
6034
Dan Gohmana30370b2009-05-04 22:02:23 +00006035 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006036 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006037 if (Op == Cast->getOperand())
6038 return Cast; // must be loop invariant
6039 return getZeroExtendExpr(Op, Cast->getType());
6040 }
6041
Dan Gohmana30370b2009-05-04 22:02:23 +00006042 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006043 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006044 if (Op == Cast->getOperand())
6045 return Cast; // must be loop invariant
6046 return getSignExtendExpr(Op, Cast->getType());
6047 }
6048
Dan Gohmana30370b2009-05-04 22:02:23 +00006049 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006050 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006051 if (Op == Cast->getOperand())
6052 return Cast; // must be loop invariant
6053 return getTruncateExpr(Op, Cast->getType());
6054 }
6055
Torok Edwinfbcc6632009-07-14 16:55:14 +00006056 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006057}
6058
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006059/// getSCEVAtScope - This is a convenience function which does
6060/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006061const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006062 return getSCEVAtScope(getSCEV(V), L);
6063}
6064
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006065/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6066/// following equation:
6067///
6068/// A * X = B (mod N)
6069///
6070/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6071/// A and B isn't important.
6072///
6073/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006074static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006075 ScalarEvolution &SE) {
6076 uint32_t BW = A.getBitWidth();
6077 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6078 assert(A != 0 && "A must be non-zero.");
6079
6080 // 1. D = gcd(A, N)
6081 //
6082 // The gcd of A and N may have only one prime factor: 2. The number of
6083 // trailing zeros in A is its multiplicity
6084 uint32_t Mult2 = A.countTrailingZeros();
6085 // D = 2^Mult2
6086
6087 // 2. Check if B is divisible by D.
6088 //
6089 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6090 // is not less than multiplicity of this prime factor for D.
6091 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006092 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006093
6094 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6095 // modulo (N / D).
6096 //
6097 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6098 // bit width during computations.
6099 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6100 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006101 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006102 APInt I = AD.multiplicativeInverse(Mod);
6103
6104 // 4. Compute the minimum unsigned root of the equation:
6105 // I * (B / D) mod (N / D)
6106 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6107
6108 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6109 // bits.
6110 return SE.getConstant(Result.trunc(BW));
6111}
Chris Lattnerd934c702004-04-02 20:23:17 +00006112
6113/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6114/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6115/// might be the same) or two SCEVCouldNotCompute objects.
6116///
Dan Gohmanaf752342009-07-07 17:06:11 +00006117static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006118SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006119 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006120 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6121 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6122 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006123
Chris Lattnerd934c702004-04-02 20:23:17 +00006124 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006125 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006126 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006127 return std::make_pair(CNC, CNC);
6128 }
6129
Reid Spencer983e3b32007-03-01 07:25:48 +00006130 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006131 const APInt &L = LC->getValue()->getValue();
6132 const APInt &M = MC->getValue()->getValue();
6133 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006134 APInt Two(BitWidth, 2);
6135 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006136
Dan Gohmance973df2009-06-24 04:48:43 +00006137 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006138 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006139 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006140 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6141 // The B coefficient is M-N/2
6142 APInt B(M);
6143 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006144
Reid Spencer983e3b32007-03-01 07:25:48 +00006145 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006146 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006147
Reid Spencer983e3b32007-03-01 07:25:48 +00006148 // Compute the B^2-4ac term.
6149 APInt SqrtTerm(B);
6150 SqrtTerm *= B;
6151 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006152
Nick Lewyckyfb780832012-08-01 09:14:36 +00006153 if (SqrtTerm.isNegative()) {
6154 // The loop is provably infinite.
6155 const SCEV *CNC = SE.getCouldNotCompute();
6156 return std::make_pair(CNC, CNC);
6157 }
6158
Reid Spencer983e3b32007-03-01 07:25:48 +00006159 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6160 // integer value or else APInt::sqrt() will assert.
6161 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006162
Dan Gohmance973df2009-06-24 04:48:43 +00006163 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006164 // The divisions must be performed as signed divisions.
6165 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006166 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006167 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006168 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006169 return std::make_pair(CNC, CNC);
6170 }
6171
Owen Anderson47db9412009-07-22 00:24:57 +00006172 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006173
6174 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006175 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006176 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006177 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006178
Dan Gohmance973df2009-06-24 04:48:43 +00006179 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006180 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006181 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006182}
6183
6184/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006185/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006186///
6187/// This is only used for loops with a "x != y" exit test. The exit condition is
6188/// now expressed as a single expression, V = x-y. So the exit test is
6189/// effectively V != 0. We know and take advantage of the fact that this
6190/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006191ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006192ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006193 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006194 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006195 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006196 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006197 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006198 }
6199
Dan Gohman48f82222009-05-04 22:30:44 +00006200 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006201 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006202 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006203
Chris Lattnerdff679f2011-01-09 22:39:48 +00006204 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6205 // the quadratic equation to solve it.
6206 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6207 std::pair<const SCEV *,const SCEV *> Roots =
6208 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006209 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6210 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006211 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006212#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006213 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006214 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006215#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006216 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006217 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006218 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6219 R1->getValue(),
6220 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006221 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006222 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006223
Chris Lattnerd934c702004-04-02 20:23:17 +00006224 // We can only use this value if the chrec ends up with an exact zero
6225 // value at this index. When solving for "X*X != 5", for example, we
6226 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006227 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006228 if (Val->isZero())
6229 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006230 }
6231 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006232 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006233 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006234
Chris Lattnerdff679f2011-01-09 22:39:48 +00006235 // Otherwise we can only handle this if it is affine.
6236 if (!AddRec->isAffine())
6237 return getCouldNotCompute();
6238
6239 // If this is an affine expression, the execution count of this branch is
6240 // the minimum unsigned root of the following equation:
6241 //
6242 // Start + Step*N = 0 (mod 2^BW)
6243 //
6244 // equivalent to:
6245 //
6246 // Step*N = -Start (mod 2^BW)
6247 //
6248 // where BW is the common bit width of Start and Step.
6249
6250 // Get the initial value for the loop.
6251 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6252 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6253
6254 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006255 //
6256 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6257 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6258 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6259 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006260 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006261 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006262 return getCouldNotCompute();
6263
Andrew Trick8b55b732011-03-14 16:50:06 +00006264 // For positive steps (counting up until unsigned overflow):
6265 // N = -Start/Step (as unsigned)
6266 // For negative steps (counting down to zero):
6267 // N = Start/-Step
6268 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006269 bool CountDown = StepC->getValue()->getValue().isNegative();
6270 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006271
6272 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006273 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6274 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006275 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6276 ConstantRange CR = getUnsignedRange(Start);
6277 const SCEV *MaxBECount;
6278 if (!CountDown && CR.getUnsignedMin().isMinValue())
6279 // When counting up, the worst starting value is 1, not 0.
6280 MaxBECount = CR.getUnsignedMax().isMinValue()
6281 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6282 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6283 else
6284 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6285 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006286 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006287 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006288
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006289 // As a special case, handle the instance where Step is a positive power of
6290 // two. In this case, determining whether Step divides Distance evenly can be
6291 // done by counting and comparing the number of trailing zeros of Step and
6292 // Distance.
6293 if (!CountDown) {
6294 const APInt &StepV = StepC->getValue()->getValue();
6295 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6296 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6297 // case is not handled as this code is guarded by !CountDown.
6298 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006299 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6300 // Here we've constrained the equation to be of the form
6301 //
6302 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6303 //
6304 // where we're operating on a W bit wide integer domain and k is
6305 // non-negative. The smallest unsigned solution for X is the trip count.
6306 //
6307 // (0) is equivalent to:
6308 //
6309 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6310 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6311 // <=> 2^k * Distance' - X = L * 2^(W - N)
6312 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6313 //
6314 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6315 // by 2^(W - N).
6316 //
6317 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6318 //
6319 // E.g. say we're solving
6320 //
6321 // 2 * Val = 2 * X (in i8) ... (3)
6322 //
6323 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6324 //
6325 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6326 // necessarily the smallest unsigned value of X that satisfies (3).
6327 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6328 // is i8 1, not i8 -127
6329
6330 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6331
6332 // Since SCEV does not have a URem node, we construct one using a truncate
6333 // and a zero extend.
6334
6335 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6336 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6337 auto *WideTy = Distance->getType();
6338
6339 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6340 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006341 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006342
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006343 // If the condition controls loop exit (the loop exits only if the expression
6344 // is true) and the addition is no-wrap we can use unsigned divide to
6345 // compute the backedge count. In this case, the step may not divide the
6346 // distance, but we don't care because if the condition is "missed" the loop
6347 // will have undefined behavior due to wrapping.
6348 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6349 const SCEV *Exact =
6350 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6351 return ExitLimit(Exact, Exact);
6352 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006353
Chris Lattnerdff679f2011-01-09 22:39:48 +00006354 // Then, try to solve the above equation provided that Start is constant.
6355 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6356 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6357 -StartC->getValue()->getValue(),
6358 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006359 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006360}
6361
6362/// HowFarToNonZero - Return the number of times a backedge checking the
6363/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006364/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006365ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006366ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006367 // Loops that look like: while (X == 0) are very strange indeed. We don't
6368 // handle them yet except for the trivial case. This could be expanded in the
6369 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006370
Chris Lattnerd934c702004-04-02 20:23:17 +00006371 // If the value is a constant, check to see if it is known to be non-zero
6372 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006373 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006374 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006375 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006376 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006377 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006378
Chris Lattnerd934c702004-04-02 20:23:17 +00006379 // We could implement others, but I really doubt anyone writes loops like
6380 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006381 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006382}
6383
Dan Gohmanf9081a22008-09-15 22:18:04 +00006384/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6385/// (which may not be an immediate predecessor) which has exactly one
6386/// successor from which BB is reachable, or null if no such block is
6387/// found.
6388///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006389std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006390ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006391 // If the block has a unique predecessor, then there is no path from the
6392 // predecessor to the block that does not go through the direct edge
6393 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006394 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006395 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006396
6397 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006398 // If the header has a unique predecessor outside the loop, it must be
6399 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006400 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006401 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006402
Dan Gohman4e3c1132010-04-15 16:19:08 +00006403 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006404}
6405
Dan Gohman450f4e02009-06-20 00:35:32 +00006406/// HasSameValue - SCEV structural equivalence is usually sufficient for
6407/// testing whether two expressions are equal, however for the purposes of
6408/// looking for a condition guarding a loop, it can be useful to be a little
6409/// more general, since a front-end may have replicated the controlling
6410/// expression.
6411///
Dan Gohmanaf752342009-07-07 17:06:11 +00006412static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006413 // Quick check to see if they are the same SCEV.
6414 if (A == B) return true;
6415
6416 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6417 // two different instructions with the same value. Check for this case.
6418 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6419 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6420 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6421 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006422 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006423 return true;
6424
6425 // Otherwise assume they may have a different value.
6426 return false;
6427}
6428
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006429/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006430/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006431///
6432bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006433 const SCEV *&LHS, const SCEV *&RHS,
6434 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006435 bool Changed = false;
6436
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006437 // If we hit the max recursion limit bail out.
6438 if (Depth >= 3)
6439 return false;
6440
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006441 // Canonicalize a constant to the right side.
6442 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6443 // Check for both operands constant.
6444 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6445 if (ConstantExpr::getICmp(Pred,
6446 LHSC->getValue(),
6447 RHSC->getValue())->isNullValue())
6448 goto trivially_false;
6449 else
6450 goto trivially_true;
6451 }
6452 // Otherwise swap the operands to put the constant on the right.
6453 std::swap(LHS, RHS);
6454 Pred = ICmpInst::getSwappedPredicate(Pred);
6455 Changed = true;
6456 }
6457
6458 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006459 // addrec's loop, put the addrec on the left. Also make a dominance check,
6460 // as both operands could be addrecs loop-invariant in each other's loop.
6461 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6462 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006463 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006464 std::swap(LHS, RHS);
6465 Pred = ICmpInst::getSwappedPredicate(Pred);
6466 Changed = true;
6467 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006468 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006469
6470 // If there's a constant operand, canonicalize comparisons with boundary
6471 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6472 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6473 const APInt &RA = RC->getValue()->getValue();
6474 switch (Pred) {
6475 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6476 case ICmpInst::ICMP_EQ:
6477 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006478 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6479 if (!RA)
6480 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6481 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006482 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6483 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006484 RHS = AE->getOperand(1);
6485 LHS = ME->getOperand(1);
6486 Changed = true;
6487 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006488 break;
6489 case ICmpInst::ICMP_UGE:
6490 if ((RA - 1).isMinValue()) {
6491 Pred = ICmpInst::ICMP_NE;
6492 RHS = getConstant(RA - 1);
6493 Changed = true;
6494 break;
6495 }
6496 if (RA.isMaxValue()) {
6497 Pred = ICmpInst::ICMP_EQ;
6498 Changed = true;
6499 break;
6500 }
6501 if (RA.isMinValue()) goto trivially_true;
6502
6503 Pred = ICmpInst::ICMP_UGT;
6504 RHS = getConstant(RA - 1);
6505 Changed = true;
6506 break;
6507 case ICmpInst::ICMP_ULE:
6508 if ((RA + 1).isMaxValue()) {
6509 Pred = ICmpInst::ICMP_NE;
6510 RHS = getConstant(RA + 1);
6511 Changed = true;
6512 break;
6513 }
6514 if (RA.isMinValue()) {
6515 Pred = ICmpInst::ICMP_EQ;
6516 Changed = true;
6517 break;
6518 }
6519 if (RA.isMaxValue()) goto trivially_true;
6520
6521 Pred = ICmpInst::ICMP_ULT;
6522 RHS = getConstant(RA + 1);
6523 Changed = true;
6524 break;
6525 case ICmpInst::ICMP_SGE:
6526 if ((RA - 1).isMinSignedValue()) {
6527 Pred = ICmpInst::ICMP_NE;
6528 RHS = getConstant(RA - 1);
6529 Changed = true;
6530 break;
6531 }
6532 if (RA.isMaxSignedValue()) {
6533 Pred = ICmpInst::ICMP_EQ;
6534 Changed = true;
6535 break;
6536 }
6537 if (RA.isMinSignedValue()) goto trivially_true;
6538
6539 Pred = ICmpInst::ICMP_SGT;
6540 RHS = getConstant(RA - 1);
6541 Changed = true;
6542 break;
6543 case ICmpInst::ICMP_SLE:
6544 if ((RA + 1).isMaxSignedValue()) {
6545 Pred = ICmpInst::ICMP_NE;
6546 RHS = getConstant(RA + 1);
6547 Changed = true;
6548 break;
6549 }
6550 if (RA.isMinSignedValue()) {
6551 Pred = ICmpInst::ICMP_EQ;
6552 Changed = true;
6553 break;
6554 }
6555 if (RA.isMaxSignedValue()) goto trivially_true;
6556
6557 Pred = ICmpInst::ICMP_SLT;
6558 RHS = getConstant(RA + 1);
6559 Changed = true;
6560 break;
6561 case ICmpInst::ICMP_UGT:
6562 if (RA.isMinValue()) {
6563 Pred = ICmpInst::ICMP_NE;
6564 Changed = true;
6565 break;
6566 }
6567 if ((RA + 1).isMaxValue()) {
6568 Pred = ICmpInst::ICMP_EQ;
6569 RHS = getConstant(RA + 1);
6570 Changed = true;
6571 break;
6572 }
6573 if (RA.isMaxValue()) goto trivially_false;
6574 break;
6575 case ICmpInst::ICMP_ULT:
6576 if (RA.isMaxValue()) {
6577 Pred = ICmpInst::ICMP_NE;
6578 Changed = true;
6579 break;
6580 }
6581 if ((RA - 1).isMinValue()) {
6582 Pred = ICmpInst::ICMP_EQ;
6583 RHS = getConstant(RA - 1);
6584 Changed = true;
6585 break;
6586 }
6587 if (RA.isMinValue()) goto trivially_false;
6588 break;
6589 case ICmpInst::ICMP_SGT:
6590 if (RA.isMinSignedValue()) {
6591 Pred = ICmpInst::ICMP_NE;
6592 Changed = true;
6593 break;
6594 }
6595 if ((RA + 1).isMaxSignedValue()) {
6596 Pred = ICmpInst::ICMP_EQ;
6597 RHS = getConstant(RA + 1);
6598 Changed = true;
6599 break;
6600 }
6601 if (RA.isMaxSignedValue()) goto trivially_false;
6602 break;
6603 case ICmpInst::ICMP_SLT:
6604 if (RA.isMaxSignedValue()) {
6605 Pred = ICmpInst::ICMP_NE;
6606 Changed = true;
6607 break;
6608 }
6609 if ((RA - 1).isMinSignedValue()) {
6610 Pred = ICmpInst::ICMP_EQ;
6611 RHS = getConstant(RA - 1);
6612 Changed = true;
6613 break;
6614 }
6615 if (RA.isMinSignedValue()) goto trivially_false;
6616 break;
6617 }
6618 }
6619
6620 // Check for obvious equality.
6621 if (HasSameValue(LHS, RHS)) {
6622 if (ICmpInst::isTrueWhenEqual(Pred))
6623 goto trivially_true;
6624 if (ICmpInst::isFalseWhenEqual(Pred))
6625 goto trivially_false;
6626 }
6627
Dan Gohman81585c12010-05-03 16:35:17 +00006628 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6629 // adding or subtracting 1 from one of the operands.
6630 switch (Pred) {
6631 case ICmpInst::ICMP_SLE:
6632 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6633 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006634 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006635 Pred = ICmpInst::ICMP_SLT;
6636 Changed = true;
6637 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006638 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006639 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006640 Pred = ICmpInst::ICMP_SLT;
6641 Changed = true;
6642 }
6643 break;
6644 case ICmpInst::ICMP_SGE:
6645 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006646 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006647 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006648 Pred = ICmpInst::ICMP_SGT;
6649 Changed = true;
6650 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6651 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006652 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006653 Pred = ICmpInst::ICMP_SGT;
6654 Changed = true;
6655 }
6656 break;
6657 case ICmpInst::ICMP_ULE:
6658 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006659 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006660 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006661 Pred = ICmpInst::ICMP_ULT;
6662 Changed = true;
6663 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006664 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006665 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006666 Pred = ICmpInst::ICMP_ULT;
6667 Changed = true;
6668 }
6669 break;
6670 case ICmpInst::ICMP_UGE:
6671 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006672 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006673 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006674 Pred = ICmpInst::ICMP_UGT;
6675 Changed = true;
6676 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006677 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006678 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006679 Pred = ICmpInst::ICMP_UGT;
6680 Changed = true;
6681 }
6682 break;
6683 default:
6684 break;
6685 }
6686
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006687 // TODO: More simplifications are possible here.
6688
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006689 // Recursively simplify until we either hit a recursion limit or nothing
6690 // changes.
6691 if (Changed)
6692 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6693
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006694 return Changed;
6695
6696trivially_true:
6697 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006698 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006699 Pred = ICmpInst::ICMP_EQ;
6700 return true;
6701
6702trivially_false:
6703 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006704 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006705 Pred = ICmpInst::ICMP_NE;
6706 return true;
6707}
6708
Dan Gohmane65c9172009-07-13 21:35:55 +00006709bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6710 return getSignedRange(S).getSignedMax().isNegative();
6711}
6712
6713bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6714 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6715}
6716
6717bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6718 return !getSignedRange(S).getSignedMin().isNegative();
6719}
6720
6721bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6722 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6723}
6724
6725bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6726 return isKnownNegative(S) || isKnownPositive(S);
6727}
6728
6729bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6730 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006731 // Canonicalize the inputs first.
6732 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6733
Dan Gohman07591692010-04-11 22:16:48 +00006734 // If LHS or RHS is an addrec, check to see if the condition is true in
6735 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006736 // If LHS and RHS are both addrec, both conditions must be true in
6737 // every iteration of the loop.
6738 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6739 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6740 bool LeftGuarded = false;
6741 bool RightGuarded = false;
6742 if (LAR) {
6743 const Loop *L = LAR->getLoop();
6744 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6745 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6746 if (!RAR) return true;
6747 LeftGuarded = true;
6748 }
6749 }
6750 if (RAR) {
6751 const Loop *L = RAR->getLoop();
6752 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6753 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6754 if (!LAR) return true;
6755 RightGuarded = true;
6756 }
6757 }
6758 if (LeftGuarded && RightGuarded)
6759 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006760
Dan Gohman07591692010-04-11 22:16:48 +00006761 // Otherwise see what can be done with known constant ranges.
6762 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6763}
6764
Sanjoy Das5dab2052015-07-27 21:42:49 +00006765bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
6766 ICmpInst::Predicate Pred,
6767 bool &Increasing) {
6768 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
6769
6770#ifndef NDEBUG
6771 // Verify an invariant: inverting the predicate should turn a monotonically
6772 // increasing change to a monotonically decreasing one, and vice versa.
6773 bool IncreasingSwapped;
6774 bool ResultSwapped = isMonotonicPredicateImpl(
6775 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
6776
6777 assert(Result == ResultSwapped && "should be able to analyze both!");
6778 if (ResultSwapped)
6779 assert(Increasing == !IncreasingSwapped &&
6780 "monotonicity should flip as we flip the predicate");
6781#endif
6782
6783 return Result;
6784}
6785
6786bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
6787 ICmpInst::Predicate Pred,
6788 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00006789
6790 // A zero step value for LHS means the induction variable is essentially a
6791 // loop invariant value. We don't really depend on the predicate actually
6792 // flipping from false to true (for increasing predicates, and the other way
6793 // around for decreasing predicates), all we care about is that *if* the
6794 // predicate changes then it only changes from false to true.
6795 //
6796 // A zero step value in itself is not very useful, but there may be places
6797 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
6798 // as general as possible.
6799
Sanjoy Das366acc12015-08-06 20:43:41 +00006800 switch (Pred) {
6801 default:
6802 return false; // Conservative answer
6803
6804 case ICmpInst::ICMP_UGT:
6805 case ICmpInst::ICMP_UGE:
6806 case ICmpInst::ICMP_ULT:
6807 case ICmpInst::ICMP_ULE:
6808 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
6809 return false;
6810
6811 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00006812 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00006813
6814 case ICmpInst::ICMP_SGT:
6815 case ICmpInst::ICMP_SGE:
6816 case ICmpInst::ICMP_SLT:
6817 case ICmpInst::ICMP_SLE: {
6818 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
6819 return false;
6820
6821 const SCEV *Step = LHS->getStepRecurrence(*this);
6822
6823 if (isKnownNonNegative(Step)) {
6824 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
6825 return true;
6826 }
6827
6828 if (isKnownNonPositive(Step)) {
6829 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
6830 return true;
6831 }
6832
6833 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00006834 }
6835
Sanjoy Das5dab2052015-07-27 21:42:49 +00006836 }
6837
Sanjoy Das366acc12015-08-06 20:43:41 +00006838 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00006839}
6840
6841bool ScalarEvolution::isLoopInvariantPredicate(
6842 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
6843 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
6844 const SCEV *&InvariantRHS) {
6845
6846 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
6847 if (!isLoopInvariant(RHS, L)) {
6848 if (!isLoopInvariant(LHS, L))
6849 return false;
6850
6851 std::swap(LHS, RHS);
6852 Pred = ICmpInst::getSwappedPredicate(Pred);
6853 }
6854
6855 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
6856 if (!ArLHS || ArLHS->getLoop() != L)
6857 return false;
6858
6859 bool Increasing;
6860 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
6861 return false;
6862
6863 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
6864 // true as the loop iterates, and the backedge is control dependent on
6865 // "ArLHS `Pred` RHS" == true then we can reason as follows:
6866 //
6867 // * if the predicate was false in the first iteration then the predicate
6868 // is never evaluated again, since the loop exits without taking the
6869 // backedge.
6870 // * if the predicate was true in the first iteration then it will
6871 // continue to be true for all future iterations since it is
6872 // monotonically increasing.
6873 //
6874 // For both the above possibilities, we can replace the loop varying
6875 // predicate with its value on the first iteration of the loop (which is
6876 // loop invariant).
6877 //
6878 // A similar reasoning applies for a monotonically decreasing predicate, by
6879 // replacing true with false and false with true in the above two bullets.
6880
6881 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
6882
6883 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
6884 return false;
6885
6886 InvariantPred = Pred;
6887 InvariantLHS = ArLHS->getStart();
6888 InvariantRHS = RHS;
6889 return true;
6890}
6891
Dan Gohman07591692010-04-11 22:16:48 +00006892bool
6893ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6894 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006895 if (HasSameValue(LHS, RHS))
6896 return ICmpInst::isTrueWhenEqual(Pred);
6897
Dan Gohman07591692010-04-11 22:16:48 +00006898 // This code is split out from isKnownPredicate because it is called from
6899 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006900 switch (Pred) {
6901 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006902 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006903 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006904 std::swap(LHS, RHS);
6905 case ICmpInst::ICMP_SLT: {
6906 ConstantRange LHSRange = getSignedRange(LHS);
6907 ConstantRange RHSRange = getSignedRange(RHS);
6908 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6909 return true;
6910 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6911 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006912 break;
6913 }
6914 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006915 std::swap(LHS, RHS);
6916 case ICmpInst::ICMP_SLE: {
6917 ConstantRange LHSRange = getSignedRange(LHS);
6918 ConstantRange RHSRange = getSignedRange(RHS);
6919 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6920 return true;
6921 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6922 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006923 break;
6924 }
6925 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006926 std::swap(LHS, RHS);
6927 case ICmpInst::ICMP_ULT: {
6928 ConstantRange LHSRange = getUnsignedRange(LHS);
6929 ConstantRange RHSRange = getUnsignedRange(RHS);
6930 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6931 return true;
6932 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6933 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006934 break;
6935 }
6936 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006937 std::swap(LHS, RHS);
6938 case ICmpInst::ICMP_ULE: {
6939 ConstantRange LHSRange = getUnsignedRange(LHS);
6940 ConstantRange RHSRange = getUnsignedRange(RHS);
6941 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6942 return true;
6943 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6944 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006945 break;
6946 }
6947 case ICmpInst::ICMP_NE: {
6948 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6949 return true;
6950 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6951 return true;
6952
6953 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6954 if (isKnownNonZero(Diff))
6955 return true;
6956 break;
6957 }
6958 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006959 // The check at the top of the function catches the case where
6960 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006961 break;
6962 }
6963 return false;
6964}
6965
6966/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6967/// protected by a conditional between LHS and RHS. This is used to
6968/// to eliminate casts.
6969bool
6970ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6971 ICmpInst::Predicate Pred,
6972 const SCEV *LHS, const SCEV *RHS) {
6973 // Interpret a null as meaning no loop, where there is obviously no guard
6974 // (interprocedural conditions notwithstanding).
6975 if (!L) return true;
6976
Sanjoy Das1f05c512014-10-10 21:22:34 +00006977 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6978
Dan Gohmane65c9172009-07-13 21:35:55 +00006979 BasicBlock *Latch = L->getLoopLatch();
6980 if (!Latch)
6981 return false;
6982
6983 BranchInst *LoopContinuePredicate =
6984 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006985 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6986 isImpliedCond(Pred, LHS, RHS,
6987 LoopContinuePredicate->getCondition(),
6988 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6989 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006990
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00006991 struct ClearWalkingBEDominatingCondsOnExit {
6992 ScalarEvolution &SE;
6993
6994 explicit ClearWalkingBEDominatingCondsOnExit(ScalarEvolution &SE)
Hans Wennborg13958b72015-07-22 20:46:11 +00006995 : SE(SE){}
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00006996
6997 ~ClearWalkingBEDominatingCondsOnExit() {
6998 SE.WalkingBEDominatingConds = false;
6999 }
7000 };
7001
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007002 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007003 // -- that can lead to O(n!) time complexity.
7004 if (WalkingBEDominatingConds)
7005 return false;
7006
7007 WalkingBEDominatingConds = true;
7008 ClearWalkingBEDominatingCondsOnExit ClearOnExit(*this);
7009
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007010 // Check conditions due to any @llvm.assume intrinsics.
7011 for (auto &AssumeVH : AC.assumptions()) {
7012 if (!AssumeVH)
7013 continue;
7014 auto *CI = cast<CallInst>(AssumeVH);
7015 if (!DT.dominates(CI, Latch->getTerminator()))
7016 continue;
7017
7018 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7019 return true;
7020 }
7021
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007022 // If the loop is not reachable from the entry block, we risk running into an
7023 // infinite loop as we walk up into the dom tree. These loops do not matter
7024 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007025 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007026 return false;
7027
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007028 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7029 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007030
7031 assert(DTN && "should reach the loop header before reaching the root!");
7032
7033 BasicBlock *BB = DTN->getBlock();
7034 BasicBlock *PBB = BB->getSinglePredecessor();
7035 if (!PBB)
7036 continue;
7037
7038 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7039 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7040 continue;
7041
7042 Value *Condition = ContinuePredicate->getCondition();
7043
7044 // If we have an edge `E` within the loop body that dominates the only
7045 // latch, the condition guarding `E` also guards the backedge. This
7046 // reasoning works only for loops with a single latch.
7047
7048 BasicBlockEdge DominatingEdge(PBB, BB);
7049 if (DominatingEdge.isSingleEdge()) {
7050 // We're constructively (and conservatively) enumerating edges within the
7051 // loop body that dominate the latch. The dominator tree better agree
7052 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007053 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007054
7055 if (isImpliedCond(Pred, LHS, RHS, Condition,
7056 BB != ContinuePredicate->getSuccessor(0)))
7057 return true;
7058 }
7059 }
7060
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007061 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007062}
7063
Dan Gohmanb50349a2010-04-11 19:27:13 +00007064/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007065/// by a conditional between LHS and RHS. This is used to help avoid max
7066/// expressions in loop trip counts, and to eliminate casts.
7067bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007068ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7069 ICmpInst::Predicate Pred,
7070 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007071 // Interpret a null as meaning no loop, where there is obviously no guard
7072 // (interprocedural conditions notwithstanding).
7073 if (!L) return false;
7074
Sanjoy Das1f05c512014-10-10 21:22:34 +00007075 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7076
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007077 // Starting at the loop predecessor, climb up the predecessor chain, as long
7078 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007079 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007080 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007081 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007082 Pair.first;
7083 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007084
7085 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007086 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007087 if (!LoopEntryPredicate ||
7088 LoopEntryPredicate->isUnconditional())
7089 continue;
7090
Dan Gohmane18c2d62010-08-10 23:46:30 +00007091 if (isImpliedCond(Pred, LHS, RHS,
7092 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007093 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007094 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007095 }
7096
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007097 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007098 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007099 if (!AssumeVH)
7100 continue;
7101 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007102 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007103 continue;
7104
7105 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7106 return true;
7107 }
7108
Dan Gohman2a62fd92008-08-12 20:17:31 +00007109 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007110}
7111
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007112/// RAII wrapper to prevent recursive application of isImpliedCond.
7113/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7114/// currently evaluating isImpliedCond.
7115struct MarkPendingLoopPredicate {
7116 Value *Cond;
7117 DenseSet<Value*> &LoopPreds;
7118 bool Pending;
7119
7120 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7121 : Cond(C), LoopPreds(LP) {
7122 Pending = !LoopPreds.insert(Cond).second;
7123 }
7124 ~MarkPendingLoopPredicate() {
7125 if (!Pending)
7126 LoopPreds.erase(Cond);
7127 }
7128};
7129
Dan Gohman430f0cc2009-07-21 23:03:19 +00007130/// isImpliedCond - Test whether the condition described by Pred, LHS,
7131/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007132bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007133 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007134 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007135 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007136 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7137 if (Mark.Pending)
7138 return false;
7139
Dan Gohman8b0a4192010-03-01 17:49:51 +00007140 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007141 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007142 if (BO->getOpcode() == Instruction::And) {
7143 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007144 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7145 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007146 } else if (BO->getOpcode() == Instruction::Or) {
7147 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007148 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7149 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007150 }
7151 }
7152
Dan Gohmane18c2d62010-08-10 23:46:30 +00007153 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007154 if (!ICI) return false;
7155
Andrew Trickfa594032012-11-29 18:35:13 +00007156 // Now that we found a conditional branch that dominates the loop or controls
7157 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007158 ICmpInst::Predicate FoundPred;
7159 if (Inverse)
7160 FoundPred = ICI->getInversePredicate();
7161 else
7162 FoundPred = ICI->getPredicate();
7163
7164 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7165 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007166
Sanjoy Das14598832015-03-26 17:28:26 +00007167 // Balance the types.
7168 if (getTypeSizeInBits(LHS->getType()) <
7169 getTypeSizeInBits(FoundLHS->getType())) {
7170 if (CmpInst::isSigned(Pred)) {
7171 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7172 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7173 } else {
7174 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7175 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7176 }
7177 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007178 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007179 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007180 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7181 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7182 } else {
7183 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7184 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7185 }
7186 }
7187
Dan Gohman430f0cc2009-07-21 23:03:19 +00007188 // Canonicalize the query to match the way instcombine will have
7189 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007190 if (SimplifyICmpOperands(Pred, LHS, RHS))
7191 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007192 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007193 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7194 if (FoundLHS == FoundRHS)
7195 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007196
7197 // Check to see if we can make the LHS or RHS match.
7198 if (LHS == FoundRHS || RHS == FoundLHS) {
7199 if (isa<SCEVConstant>(RHS)) {
7200 std::swap(FoundLHS, FoundRHS);
7201 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7202 } else {
7203 std::swap(LHS, RHS);
7204 Pred = ICmpInst::getSwappedPredicate(Pred);
7205 }
7206 }
7207
7208 // Check whether the found predicate is the same as the desired predicate.
7209 if (FoundPred == Pred)
7210 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7211
7212 // Check whether swapping the found predicate makes it the same as the
7213 // desired predicate.
7214 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7215 if (isa<SCEVConstant>(RHS))
7216 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7217 else
7218 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7219 RHS, LHS, FoundLHS, FoundRHS);
7220 }
7221
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007222 // Check if we can make progress by sharpening ranges.
7223 if (FoundPred == ICmpInst::ICMP_NE &&
7224 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7225
7226 const SCEVConstant *C = nullptr;
7227 const SCEV *V = nullptr;
7228
7229 if (isa<SCEVConstant>(FoundLHS)) {
7230 C = cast<SCEVConstant>(FoundLHS);
7231 V = FoundRHS;
7232 } else {
7233 C = cast<SCEVConstant>(FoundRHS);
7234 V = FoundLHS;
7235 }
7236
7237 // The guarding predicate tells us that C != V. If the known range
7238 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7239 // range we consider has to correspond to same signedness as the
7240 // predicate we're interested in folding.
7241
7242 APInt Min = ICmpInst::isSigned(Pred) ?
7243 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7244
7245 if (Min == C->getValue()->getValue()) {
7246 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7247 // This is true even if (Min + 1) wraps around -- in case of
7248 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7249
7250 APInt SharperMin = Min + 1;
7251
7252 switch (Pred) {
7253 case ICmpInst::ICMP_SGE:
7254 case ICmpInst::ICMP_UGE:
7255 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7256 // RHS, we're done.
7257 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7258 getConstant(SharperMin)))
7259 return true;
7260
7261 case ICmpInst::ICMP_SGT:
7262 case ICmpInst::ICMP_UGT:
7263 // We know from the range information that (V `Pred` Min ||
7264 // V == Min). We know from the guarding condition that !(V
7265 // == Min). This gives us
7266 //
7267 // V `Pred` Min || V == Min && !(V == Min)
7268 // => V `Pred` Min
7269 //
7270 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7271
7272 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7273 return true;
7274
7275 default:
7276 // No change
7277 break;
7278 }
7279 }
7280 }
7281
Dan Gohman430f0cc2009-07-21 23:03:19 +00007282 // Check whether the actual condition is beyond sufficient.
7283 if (FoundPred == ICmpInst::ICMP_EQ)
7284 if (ICmpInst::isTrueWhenEqual(Pred))
7285 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7286 return true;
7287 if (Pred == ICmpInst::ICMP_NE)
7288 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7289 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7290 return true;
7291
7292 // Otherwise assume the worst.
7293 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007294}
7295
Dan Gohman430f0cc2009-07-21 23:03:19 +00007296/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007297/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007298/// and FoundRHS is true.
7299bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7300 const SCEV *LHS, const SCEV *RHS,
7301 const SCEV *FoundLHS,
7302 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007303 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7304 return true;
7305
Dan Gohman430f0cc2009-07-21 23:03:19 +00007306 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7307 FoundLHS, FoundRHS) ||
7308 // ~x < ~y --> x > y
7309 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7310 getNotSCEV(FoundRHS),
7311 getNotSCEV(FoundLHS));
7312}
7313
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007314
7315/// If Expr computes ~A, return A else return nullptr
7316static const SCEV *MatchNotExpr(const SCEV *Expr) {
7317 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7318 if (!Add || Add->getNumOperands() != 2) return nullptr;
7319
7320 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
7321 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
7322 return nullptr;
7323
7324 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7325 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
7326
7327 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
7328 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
7329 return nullptr;
7330
7331 return AddRHS->getOperand(1);
7332}
7333
7334
7335/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7336template<typename MaxExprType>
7337static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7338 const SCEV *Candidate) {
7339 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7340 if (!MaxExpr) return false;
7341
7342 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7343 return It != MaxExpr->op_end();
7344}
7345
7346
7347/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7348template<typename MaxExprType>
7349static bool IsMinConsistingOf(ScalarEvolution &SE,
7350 const SCEV *MaybeMinExpr,
7351 const SCEV *Candidate) {
7352 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7353 if (!MaybeMaxExpr)
7354 return false;
7355
7356 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7357}
7358
Hal Finkela8d205f2015-08-19 01:51:51 +00007359static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7360 ICmpInst::Predicate Pred,
7361 const SCEV *LHS, const SCEV *RHS) {
7362
7363 // If both sides are affine addrecs for the same loop, with equal
7364 // steps, and we know the recurrences don't wrap, then we only
7365 // need to check the predicate on the starting values.
7366
7367 if (!ICmpInst::isRelational(Pred))
7368 return false;
7369
7370 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7371 if (!LAR)
7372 return false;
7373 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7374 if (!RAR)
7375 return false;
7376 if (LAR->getLoop() != RAR->getLoop())
7377 return false;
7378 if (!LAR->isAffine() || !RAR->isAffine())
7379 return false;
7380
7381 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
7382 return false;
7383
Hal Finkelff08a2e2015-08-19 17:26:07 +00007384 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
7385 SCEV::FlagNSW : SCEV::FlagNUW;
7386 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00007387 return false;
7388
7389 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
7390}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007391
7392/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7393/// expression?
7394static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7395 ICmpInst::Predicate Pred,
7396 const SCEV *LHS, const SCEV *RHS) {
7397 switch (Pred) {
7398 default:
7399 return false;
7400
7401 case ICmpInst::ICMP_SGE:
7402 std::swap(LHS, RHS);
7403 // fall through
7404 case ICmpInst::ICMP_SLE:
7405 return
7406 // min(A, ...) <= A
7407 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7408 // A <= max(A, ...)
7409 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7410
7411 case ICmpInst::ICMP_UGE:
7412 std::swap(LHS, RHS);
7413 // fall through
7414 case ICmpInst::ICMP_ULE:
7415 return
7416 // min(A, ...) <= A
7417 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7418 // A <= max(A, ...)
7419 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7420 }
7421
7422 llvm_unreachable("covered switch fell through?!");
7423}
7424
Dan Gohman430f0cc2009-07-21 23:03:19 +00007425/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007426/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007427/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007428bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007429ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7430 const SCEV *LHS, const SCEV *RHS,
7431 const SCEV *FoundLHS,
7432 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007433 auto IsKnownPredicateFull =
7434 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7435 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Hal Finkela8d205f2015-08-19 01:51:51 +00007436 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
7437 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007438 };
7439
Dan Gohmane65c9172009-07-13 21:35:55 +00007440 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007441 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7442 case ICmpInst::ICMP_EQ:
7443 case ICmpInst::ICMP_NE:
7444 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7445 return true;
7446 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007447 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007448 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007449 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7450 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007451 return true;
7452 break;
7453 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007454 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007455 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7456 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007457 return true;
7458 break;
7459 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007460 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007461 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7462 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007463 return true;
7464 break;
7465 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007466 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007467 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7468 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007469 return true;
7470 break;
7471 }
7472
7473 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007474}
7475
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007476/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7477/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7478bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7479 const SCEV *LHS,
7480 const SCEV *RHS,
7481 const SCEV *FoundLHS,
7482 const SCEV *FoundRHS) {
7483 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7484 // The restriction on `FoundRHS` be lifted easily -- it exists only to
7485 // reduce the compile time impact of this optimization.
7486 return false;
7487
7488 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7489 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7490 !isa<SCEVConstant>(AddLHS->getOperand(0)))
7491 return false;
7492
7493 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7494
7495 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7496 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7497 ConstantRange FoundLHSRange =
7498 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7499
7500 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7501 // for `LHS`:
7502 APInt Addend =
7503 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7504 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7505
7506 // We can also compute the range of values for `LHS` that satisfy the
7507 // consequent, "`LHS` `Pred` `RHS`":
7508 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7509 ConstantRange SatisfyingLHSRange =
7510 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7511
7512 // The antecedent implies the consequent if every value of `LHS` that
7513 // satisfies the antecedent also satisfies the consequent.
7514 return SatisfyingLHSRange.contains(LHSRange);
7515}
7516
Johannes Doerfert2683e562015-02-09 12:34:23 +00007517// Verify if an linear IV with positive stride can overflow when in a
7518// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007519// stride and the knowledge of NSW/NUW flags on the recurrence.
7520bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7521 bool IsSigned, bool NoWrap) {
7522 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007523
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007524 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7525 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007526
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007527 if (IsSigned) {
7528 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7529 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7530 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7531 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007532
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007533 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7534 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007535 }
Dan Gohman01048422009-06-21 23:46:38 +00007536
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007537 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7538 APInt MaxValue = APInt::getMaxValue(BitWidth);
7539 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7540 .getUnsignedMax();
7541
7542 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7543 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7544}
7545
Johannes Doerfert2683e562015-02-09 12:34:23 +00007546// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007547// greater-than comparison, knowing the invariant term of the comparison,
7548// the stride and the knowledge of NSW/NUW flags on the recurrence.
7549bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7550 bool IsSigned, bool NoWrap) {
7551 if (NoWrap) return false;
7552
7553 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7554 const SCEV *One = getConstant(Stride->getType(), 1);
7555
7556 if (IsSigned) {
7557 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7558 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7559 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7560 .getSignedMax();
7561
7562 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7563 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7564 }
7565
7566 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7567 APInt MinValue = APInt::getMinValue(BitWidth);
7568 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7569 .getUnsignedMax();
7570
7571 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7572 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7573}
7574
7575// Compute the backedge taken count knowing the interval difference, the
7576// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00007577const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007578 bool Equality) {
7579 const SCEV *One = getConstant(Step->getType(), 1);
7580 Delta = Equality ? getAddExpr(Delta, Step)
7581 : getAddExpr(Delta, getMinusSCEV(Step, One));
7582 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007583}
7584
Chris Lattner587a75b2005-08-15 23:33:51 +00007585/// HowManyLessThans - Return the number of times a backedge containing the
7586/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007587/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007588///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007589/// @param ControlsExit is true when the LHS < RHS condition directly controls
7590/// the branch (loops exits only if condition is true). In this case, we can use
7591/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007592ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007593ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007594 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007595 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007596 // We handle only IV < Invariant
7597 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007598 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007599
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007600 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007601
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007602 // Avoid weird loops
7603 if (!IV || IV->getLoop() != L || !IV->isAffine())
7604 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007605
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007606 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007607 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007608
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007609 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007610
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007611 // Avoid negative or zero stride values
7612 if (!isKnownPositive(Stride))
7613 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007614
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007615 // Avoid proven overflow cases: this will ensure that the backedge taken count
7616 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007617 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007618 // behaviors like the case of C language.
7619 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7620 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007621
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007622 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7623 : ICmpInst::ICMP_ULT;
7624 const SCEV *Start = IV->getStart();
7625 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007626 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7627 const SCEV *Diff = getMinusSCEV(RHS, Start);
7628 // If we have NoWrap set, then we can assume that the increment won't
7629 // overflow, in which case if RHS - Start is a constant, we don't need to
7630 // do a max operation since we can just figure it out statically
7631 if (NoWrap && isa<SCEVConstant>(Diff)) {
7632 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7633 if (D.isNegative())
7634 End = Start;
7635 } else
7636 End = IsSigned ? getSMaxExpr(RHS, Start)
7637 : getUMaxExpr(RHS, Start);
7638 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007639
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007640 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007641
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007642 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7643 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007644
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007645 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7646 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007647
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007648 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7649 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7650 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007651
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007652 // Although End can be a MAX expression we estimate MaxEnd considering only
7653 // the case End = RHS. This is safe because in the other case (End - Start)
7654 // is zero, leading to a zero maximum backedge taken count.
7655 APInt MaxEnd =
7656 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7657 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7658
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007659 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007660 if (isa<SCEVConstant>(BECount))
7661 MaxBECount = BECount;
7662 else
7663 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7664 getConstant(MinStride), false);
7665
7666 if (isa<SCEVCouldNotCompute>(MaxBECount))
7667 MaxBECount = BECount;
7668
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007669 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007670}
7671
7672ScalarEvolution::ExitLimit
7673ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7674 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007675 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007676 // We handle only IV > Invariant
7677 if (!isLoopInvariant(RHS, L))
7678 return getCouldNotCompute();
7679
7680 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7681
7682 // Avoid weird loops
7683 if (!IV || IV->getLoop() != L || !IV->isAffine())
7684 return getCouldNotCompute();
7685
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007686 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007687 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7688
7689 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7690
7691 // Avoid negative or zero stride values
7692 if (!isKnownPositive(Stride))
7693 return getCouldNotCompute();
7694
7695 // Avoid proven overflow cases: this will ensure that the backedge taken count
7696 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007697 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007698 // behaviors like the case of C language.
7699 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7700 return getCouldNotCompute();
7701
7702 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7703 : ICmpInst::ICMP_UGT;
7704
7705 const SCEV *Start = IV->getStart();
7706 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007707 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7708 const SCEV *Diff = getMinusSCEV(RHS, Start);
7709 // If we have NoWrap set, then we can assume that the increment won't
7710 // overflow, in which case if RHS - Start is a constant, we don't need to
7711 // do a max operation since we can just figure it out statically
7712 if (NoWrap && isa<SCEVConstant>(Diff)) {
7713 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7714 if (!D.isNegative())
7715 End = Start;
7716 } else
7717 End = IsSigned ? getSMinExpr(RHS, Start)
7718 : getUMinExpr(RHS, Start);
7719 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007720
7721 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7722
7723 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7724 : getUnsignedRange(Start).getUnsignedMax();
7725
7726 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7727 : getUnsignedRange(Stride).getUnsignedMin();
7728
7729 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7730 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7731 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7732
7733 // Although End can be a MIN expression we estimate MinEnd considering only
7734 // the case End = RHS. This is safe because in the other case (Start - End)
7735 // is zero, leading to a zero maximum backedge taken count.
7736 APInt MinEnd =
7737 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7738 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7739
7740
7741 const SCEV *MaxBECount = getCouldNotCompute();
7742 if (isa<SCEVConstant>(BECount))
7743 MaxBECount = BECount;
7744 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00007745 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007746 getConstant(MinStride), false);
7747
7748 if (isa<SCEVCouldNotCompute>(MaxBECount))
7749 MaxBECount = BECount;
7750
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007751 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007752}
7753
Chris Lattnerd934c702004-04-02 20:23:17 +00007754/// getNumIterationsInRange - Return the number of iterations of this loop that
7755/// produce values in the specified constant range. Another way of looking at
7756/// this is that it returns the first iteration number where the value is not in
7757/// the condition, thus computing the exit count. If the iteration count can't
7758/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007759const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007760 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007761 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007762 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007763
7764 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007765 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007766 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007767 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007768 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007769 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007770 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007771 if (const SCEVAddRecExpr *ShiftedAddRec =
7772 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007773 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007774 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007775 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007776 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007777 }
7778
7779 // The only time we can solve this is when we have all constant indices.
7780 // Otherwise, we cannot determine the overflow conditions.
7781 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7782 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007783 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007784
7785
7786 // Okay at this point we know that all elements of the chrec are constants and
7787 // that the start element is zero.
7788
7789 // First check to see if the range contains zero. If not, the first
7790 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007791 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007792 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007793 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007794
Chris Lattnerd934c702004-04-02 20:23:17 +00007795 if (isAffine()) {
7796 // If this is an affine expression then we have this situation:
7797 // Solve {0,+,A} in Range === Ax in Range
7798
Nick Lewycky52460262007-07-16 02:08:00 +00007799 // We know that zero is in the range. If A is positive then we know that
7800 // the upper value of the range must be the first possible exit value.
7801 // If A is negative then the lower of the range is the last possible loop
7802 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007803 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007804 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7805 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007806
Nick Lewycky52460262007-07-16 02:08:00 +00007807 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007808 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007809 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007810
7811 // Evaluate at the exit value. If we really did fall out of the valid
7812 // range, then we computed our trip count, otherwise wrap around or other
7813 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007814 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007815 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007816 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007817
7818 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007819 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007820 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007821 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007822 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007823 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007824 } else if (isQuadratic()) {
7825 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7826 // quadratic equation to solve it. To do this, we must frame our problem in
7827 // terms of figuring out when zero is crossed, instead of when
7828 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007829 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007830 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007831 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7832 // getNoWrapFlags(FlagNW)
7833 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007834
7835 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007836 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007837 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007838 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7839 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007840 if (R1) {
7841 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007842 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007843 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007844 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00007845 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00007846 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007847
Chris Lattnerd934c702004-04-02 20:23:17 +00007848 // Make sure the root is not off by one. The returned iteration should
7849 // not be in the range, but the previous one should be. When solving
7850 // for "X*X < 5", for example, we should not return a root of 2.
7851 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007852 R1->getValue(),
7853 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007854 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007855 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007856 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007857 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007858
Dan Gohmana37eaf22007-10-22 18:31:58 +00007859 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007860 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007861 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007862 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007863 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007864
Chris Lattnerd934c702004-04-02 20:23:17 +00007865 // If R1 was not in the range, then it is a good return value. Make
7866 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007867 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007868 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007869 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007870 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007871 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007872 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007873 }
7874 }
7875 }
7876
Dan Gohman31efa302009-04-18 17:58:19 +00007877 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007878}
7879
Sebastian Pop448712b2014-05-07 18:01:20 +00007880namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007881struct FindUndefs {
7882 bool Found;
7883 FindUndefs() : Found(false) {}
7884
7885 bool follow(const SCEV *S) {
7886 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7887 if (isa<UndefValue>(C->getValue()))
7888 Found = true;
7889 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7890 if (isa<UndefValue>(C->getValue()))
7891 Found = true;
7892 }
7893
7894 // Keep looking if we haven't found it yet.
7895 return !Found;
7896 }
7897 bool isDone() const {
7898 // Stop recursion if we have found an undef.
7899 return Found;
7900 }
7901};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00007902}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007903
7904// Return true when S contains at least an undef value.
7905static inline bool
7906containsUndefs(const SCEV *S) {
7907 FindUndefs F;
7908 SCEVTraversal<FindUndefs> ST(F);
7909 ST.visitAll(S);
7910
7911 return F.Found;
7912}
7913
7914namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007915// Collect all steps of SCEV expressions.
7916struct SCEVCollectStrides {
7917 ScalarEvolution &SE;
7918 SmallVectorImpl<const SCEV *> &Strides;
7919
7920 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7921 : SE(SE), Strides(S) {}
7922
7923 bool follow(const SCEV *S) {
7924 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7925 Strides.push_back(AR->getStepRecurrence(SE));
7926 return true;
7927 }
7928 bool isDone() const { return false; }
7929};
7930
7931// Collect all SCEVUnknown and SCEVMulExpr expressions.
7932struct SCEVCollectTerms {
7933 SmallVectorImpl<const SCEV *> &Terms;
7934
7935 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7936 : Terms(T) {}
7937
7938 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007939 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007940 if (!containsUndefs(S))
7941 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007942
7943 // Stop recursion: once we collected a term, do not walk its operands.
7944 return false;
7945 }
7946
7947 // Keep looking.
7948 return true;
7949 }
7950 bool isDone() const { return false; }
7951};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00007952}
Sebastian Pop448712b2014-05-07 18:01:20 +00007953
7954/// Find parametric terms in this SCEVAddRecExpr.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00007955void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
7956 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007957 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00007958 SCEVCollectStrides StrideCollector(*this, Strides);
7959 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00007960
7961 DEBUG({
7962 dbgs() << "Strides:\n";
7963 for (const SCEV *S : Strides)
7964 dbgs() << *S << "\n";
7965 });
7966
7967 for (const SCEV *S : Strides) {
7968 SCEVCollectTerms TermCollector(Terms);
7969 visitAll(S, TermCollector);
7970 }
7971
7972 DEBUG({
7973 dbgs() << "Terms:\n";
7974 for (const SCEV *T : Terms)
7975 dbgs() << *T << "\n";
7976 });
7977}
7978
Sebastian Popb1a548f2014-05-12 19:01:53 +00007979static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007980 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007981 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007982 int Last = Terms.size() - 1;
7983 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007984
Sebastian Pop448712b2014-05-07 18:01:20 +00007985 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007986 if (Last == 0) {
7987 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007988 SmallVector<const SCEV *, 2> Qs;
7989 for (const SCEV *Op : M->operands())
7990 if (!isa<SCEVConstant>(Op))
7991 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007992
Sebastian Pope30bd352014-05-27 22:41:56 +00007993 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007994 }
7995
Sebastian Pope30bd352014-05-27 22:41:56 +00007996 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007997 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007998 }
7999
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008000 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008001 // Normalize the terms before the next call to findArrayDimensionsRec.
8002 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008003 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008004
8005 // Bail out when GCD does not evenly divide one of the terms.
8006 if (!R->isZero())
8007 return false;
8008
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008009 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008010 }
8011
Tobias Grosser3080cf12014-05-08 07:55:34 +00008012 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008013 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8014 return isa<SCEVConstant>(E);
8015 }),
8016 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008017
Sebastian Pop448712b2014-05-07 18:01:20 +00008018 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008019 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8020 return false;
8021
Sebastian Pope30bd352014-05-27 22:41:56 +00008022 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008023 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008024}
Sebastian Popc62c6792013-11-12 22:47:20 +00008025
Sebastian Pop448712b2014-05-07 18:01:20 +00008026namespace {
8027struct FindParameter {
8028 bool FoundParameter;
8029 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00008030
Sebastian Pop448712b2014-05-07 18:01:20 +00008031 bool follow(const SCEV *S) {
8032 if (isa<SCEVUnknown>(S)) {
8033 FoundParameter = true;
8034 // Stop recursion: we found a parameter.
8035 return false;
8036 }
8037 // Keep looking.
8038 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008039 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008040 bool isDone() const {
8041 // Stop recursion if we have found a parameter.
8042 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00008043 }
Sebastian Popc62c6792013-11-12 22:47:20 +00008044};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008045}
Sebastian Popc62c6792013-11-12 22:47:20 +00008046
Sebastian Pop448712b2014-05-07 18:01:20 +00008047// Returns true when S contains at least a SCEVUnknown parameter.
8048static inline bool
8049containsParameters(const SCEV *S) {
8050 FindParameter F;
8051 SCEVTraversal<FindParameter> ST(F);
8052 ST.visitAll(S);
8053
8054 return F.FoundParameter;
8055}
8056
8057// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8058static inline bool
8059containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8060 for (const SCEV *T : Terms)
8061 if (containsParameters(T))
8062 return true;
8063 return false;
8064}
8065
8066// Return the number of product terms in S.
8067static inline int numberOfTerms(const SCEV *S) {
8068 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8069 return Expr->getNumOperands();
8070 return 1;
8071}
8072
Sebastian Popa6e58602014-05-27 22:41:45 +00008073static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8074 if (isa<SCEVConstant>(T))
8075 return nullptr;
8076
8077 if (isa<SCEVUnknown>(T))
8078 return T;
8079
8080 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8081 SmallVector<const SCEV *, 2> Factors;
8082 for (const SCEV *Op : M->operands())
8083 if (!isa<SCEVConstant>(Op))
8084 Factors.push_back(Op);
8085
8086 return SE.getMulExpr(Factors);
8087 }
8088
8089 return T;
8090}
8091
8092/// Return the size of an element read or written by Inst.
8093const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8094 Type *Ty;
8095 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8096 Ty = Store->getValueOperand()->getType();
8097 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008098 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008099 else
8100 return nullptr;
8101
8102 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8103 return getSizeOfExpr(ETy, Ty);
8104}
8105
Sebastian Pop448712b2014-05-07 18:01:20 +00008106/// Second step of delinearization: compute the array dimensions Sizes from the
8107/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008108void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8109 SmallVectorImpl<const SCEV *> &Sizes,
8110 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008111
Sebastian Pop53524082014-05-29 19:44:05 +00008112 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008113 return;
8114
8115 // Early return when Terms do not contain parameters: we do not delinearize
8116 // non parametric SCEVs.
8117 if (!containsParameters(Terms))
8118 return;
8119
8120 DEBUG({
8121 dbgs() << "Terms:\n";
8122 for (const SCEV *T : Terms)
8123 dbgs() << *T << "\n";
8124 });
8125
8126 // Remove duplicates.
8127 std::sort(Terms.begin(), Terms.end());
8128 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8129
8130 // Put larger terms first.
8131 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8132 return numberOfTerms(LHS) > numberOfTerms(RHS);
8133 });
8134
Sebastian Popa6e58602014-05-27 22:41:45 +00008135 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8136
8137 // Divide all terms by the element size.
8138 for (const SCEV *&Term : Terms) {
8139 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008140 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00008141 Term = Q;
8142 }
8143
8144 SmallVector<const SCEV *, 4> NewTerms;
8145
8146 // Remove constant factors.
8147 for (const SCEV *T : Terms)
8148 if (const SCEV *NewT = removeConstantFactors(SE, T))
8149 NewTerms.push_back(NewT);
8150
Sebastian Pop448712b2014-05-07 18:01:20 +00008151 DEBUG({
8152 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008153 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008154 dbgs() << *T << "\n";
8155 });
8156
Sebastian Popa6e58602014-05-27 22:41:45 +00008157 if (NewTerms.empty() ||
8158 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008159 Sizes.clear();
8160 return;
8161 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008162
Sebastian Popa6e58602014-05-27 22:41:45 +00008163 // The last element to be pushed into Sizes is the size of an element.
8164 Sizes.push_back(ElementSize);
8165
Sebastian Pop448712b2014-05-07 18:01:20 +00008166 DEBUG({
8167 dbgs() << "Sizes:\n";
8168 for (const SCEV *S : Sizes)
8169 dbgs() << *S << "\n";
8170 });
8171}
8172
8173/// Third step of delinearization: compute the access functions for the
8174/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008175void ScalarEvolution::computeAccessFunctions(
8176 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8177 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008178
Sebastian Popb1a548f2014-05-12 19:01:53 +00008179 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008180 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008181 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008182
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008183 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr))
8184 if (!AR->isAffine())
8185 return;
8186
8187 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008188 int Last = Sizes.size() - 1;
8189 for (int i = Last; i >= 0; i--) {
8190 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008191 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008192
8193 DEBUG({
8194 dbgs() << "Res: " << *Res << "\n";
8195 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8196 dbgs() << "Res divided by Sizes[i]:\n";
8197 dbgs() << "Quotient: " << *Q << "\n";
8198 dbgs() << "Remainder: " << *R << "\n";
8199 });
8200
8201 Res = Q;
8202
Sebastian Popa6e58602014-05-27 22:41:45 +00008203 // Do not record the last subscript corresponding to the size of elements in
8204 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008205 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008206
8207 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008208 if (isa<SCEVAddRecExpr>(R)) {
8209 Subscripts.clear();
8210 Sizes.clear();
8211 return;
8212 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008213
Sebastian Pop448712b2014-05-07 18:01:20 +00008214 continue;
8215 }
8216
8217 // Record the access function for the current subscript.
8218 Subscripts.push_back(R);
8219 }
8220
8221 // Also push in last position the remainder of the last division: it will be
8222 // the access function of the innermost dimension.
8223 Subscripts.push_back(Res);
8224
8225 std::reverse(Subscripts.begin(), Subscripts.end());
8226
8227 DEBUG({
8228 dbgs() << "Subscripts:\n";
8229 for (const SCEV *S : Subscripts)
8230 dbgs() << *S << "\n";
8231 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008232}
8233
Sebastian Popc62c6792013-11-12 22:47:20 +00008234/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8235/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008236/// is the offset start of the array. The SCEV->delinearize algorithm computes
8237/// the multiples of SCEV coefficients: that is a pattern matching of sub
8238/// expressions in the stride and base of a SCEV corresponding to the
8239/// computation of a GCD (greatest common divisor) of base and stride. When
8240/// SCEV->delinearize fails, it returns the SCEV unchanged.
8241///
8242/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8243///
8244/// void foo(long n, long m, long o, double A[n][m][o]) {
8245///
8246/// for (long i = 0; i < n; i++)
8247/// for (long j = 0; j < m; j++)
8248/// for (long k = 0; k < o; k++)
8249/// A[i][j][k] = 1.0;
8250/// }
8251///
8252/// the delinearization input is the following AddRec SCEV:
8253///
8254/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8255///
8256/// From this SCEV, we are able to say that the base offset of the access is %A
8257/// because it appears as an offset that does not divide any of the strides in
8258/// the loops:
8259///
8260/// CHECK: Base offset: %A
8261///
8262/// and then SCEV->delinearize determines the size of some of the dimensions of
8263/// the array as these are the multiples by which the strides are happening:
8264///
8265/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8266///
8267/// Note that the outermost dimension remains of UnknownSize because there are
8268/// no strides that would help identifying the size of the last dimension: when
8269/// the array has been statically allocated, one could compute the size of that
8270/// dimension by dividing the overall size of the array by the size of the known
8271/// dimensions: %m * %o * 8.
8272///
8273/// Finally delinearize provides the access functions for the array reference
8274/// that does correspond to A[i][j][k] of the above C testcase:
8275///
8276/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8277///
8278/// The testcases are checking the output of a function pass:
8279/// DelinearizationPass that walks through all loads and stores of a function
8280/// asking for the SCEV of the memory access with respect to all enclosing
8281/// loops, calling SCEV->delinearize on that and printing the results.
8282
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008283void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008284 SmallVectorImpl<const SCEV *> &Subscripts,
8285 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008286 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008287 // First step: collect parametric terms.
8288 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008289 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008290
Sebastian Popb1a548f2014-05-12 19:01:53 +00008291 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008292 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008293
Sebastian Pop448712b2014-05-07 18:01:20 +00008294 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008295 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008296
Sebastian Popb1a548f2014-05-12 19:01:53 +00008297 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008298 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008299
Sebastian Pop448712b2014-05-07 18:01:20 +00008300 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008301 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00008302
Sebastian Pop28e6b972014-05-27 22:41:51 +00008303 if (Subscripts.empty())
8304 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008305
Sebastian Pop448712b2014-05-07 18:01:20 +00008306 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008307 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00008308 dbgs() << "ArrayDecl[UnknownSize]";
8309 for (const SCEV *S : Sizes)
8310 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00008311
Sebastian Pop444621a2014-05-09 22:45:02 +00008312 dbgs() << "\nArrayRef";
8313 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00008314 dbgs() << "[" << *S << "]";
8315 dbgs() << "\n";
8316 });
Sebastian Popc62c6792013-11-12 22:47:20 +00008317}
Chris Lattnerd934c702004-04-02 20:23:17 +00008318
8319//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00008320// SCEVCallbackVH Class Implementation
8321//===----------------------------------------------------------------------===//
8322
Dan Gohmand33a0902009-05-19 19:22:47 +00008323void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00008324 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00008325 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
8326 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008327 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00008328 // this now dangles!
8329}
8330
Dan Gohman7a066722010-07-28 01:09:07 +00008331void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00008332 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00008333
Dan Gohman48f82222009-05-04 22:30:44 +00008334 // Forget all the expressions associated with users of the old value,
8335 // so that future queries will recompute the expressions using the new
8336 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00008337 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00008338 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00008339 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00008340 while (!Worklist.empty()) {
8341 User *U = Worklist.pop_back_val();
8342 // Deleting the Old value will cause this to dangle. Postpone
8343 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008344 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00008345 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00008346 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00008347 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00008348 if (PHINode *PN = dyn_cast<PHINode>(U))
8349 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008350 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00008351 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00008352 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008353 // Delete the Old value.
8354 if (PHINode *PN = dyn_cast<PHINode>(Old))
8355 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008356 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008357 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00008358}
8359
Dan Gohmand33a0902009-05-19 19:22:47 +00008360ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00008361 : CallbackVH(V), SE(se) {}
8362
8363//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00008364// ScalarEvolution Class Implementation
8365//===----------------------------------------------------------------------===//
8366
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008367ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
8368 AssumptionCache &AC, DominatorTree &DT,
8369 LoopInfo &LI)
8370 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
8371 CouldNotCompute(new SCEVCouldNotCompute()),
8372 WalkingBEDominatingConds(false), ValuesAtScopes(64), LoopDispositions(64),
8373 BlockDispositions(64), FirstUnknown(nullptr) {}
8374
8375ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
8376 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
8377 CouldNotCompute(std::move(Arg.CouldNotCompute)),
8378 ValueExprMap(std::move(Arg.ValueExprMap)),
8379 WalkingBEDominatingConds(false),
8380 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
8381 ConstantEvolutionLoopExitValue(
8382 std::move(Arg.ConstantEvolutionLoopExitValue)),
8383 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
8384 LoopDispositions(std::move(Arg.LoopDispositions)),
8385 BlockDispositions(std::move(Arg.BlockDispositions)),
8386 UnsignedRanges(std::move(Arg.UnsignedRanges)),
8387 SignedRanges(std::move(Arg.SignedRanges)),
8388 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
8389 SCEVAllocator(std::move(Arg.SCEVAllocator)),
8390 FirstUnknown(Arg.FirstUnknown) {
8391 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00008392}
8393
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008394ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00008395 // Iterate through all the SCEVUnknown instances and call their
8396 // destructors, so that they release their references to their values.
8397 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
8398 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00008399 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00008400
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008401 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008402
8403 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
8404 // that a loop had multiple computable exits.
8405 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8406 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
8407 I != E; ++I) {
8408 I->second.clear();
8409 }
8410
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008411 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00008412 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00008413}
8414
Dan Gohmanc8e23622009-04-21 23:15:49 +00008415bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008416 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008417}
8418
Dan Gohmanc8e23622009-04-21 23:15:49 +00008419static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008420 const Loop *L) {
8421 // Print all inner loops first
8422 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8423 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008424
Dan Gohmanbc694912010-01-09 18:17:45 +00008425 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008426 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008427 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008428
Dan Gohmancb0efec2009-12-18 01:14:11 +00008429 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008430 L->getExitBlocks(ExitBlocks);
8431 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008432 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008433
Dan Gohman0bddac12009-02-24 18:55:53 +00008434 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8435 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008436 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008437 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008438 }
8439
Dan Gohmanbc694912010-01-09 18:17:45 +00008440 OS << "\n"
8441 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008442 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008443 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008444
8445 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8446 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8447 } else {
8448 OS << "Unpredictable max backedge-taken count. ";
8449 }
8450
8451 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008452}
8453
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008454void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008455 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008456 // out SCEV values of all instructions that are interesting. Doing
8457 // this potentially causes it to create new SCEV objects though,
8458 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008459 // observable from outside the class though, so casting away the
8460 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008461 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008462
Dan Gohmanbc694912010-01-09 18:17:45 +00008463 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008464 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008465 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008466 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00008467 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00008468 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008469 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008470 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008471 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008472 if (!isa<SCEVCouldNotCompute>(SV)) {
8473 OS << " U: ";
8474 SE.getUnsignedRange(SV).print(OS);
8475 OS << " S: ";
8476 SE.getSignedRange(SV).print(OS);
8477 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008478
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008479 const Loop *L = LI.getLoopFor((*I).getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00008480
Dan Gohmanaf752342009-07-07 17:06:11 +00008481 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008482 if (AtUse != SV) {
8483 OS << " --> ";
8484 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008485 if (!isa<SCEVCouldNotCompute>(AtUse)) {
8486 OS << " U: ";
8487 SE.getUnsignedRange(AtUse).print(OS);
8488 OS << " S: ";
8489 SE.getSignedRange(AtUse).print(OS);
8490 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00008491 }
8492
8493 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00008494 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008495 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00008496 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008497 OS << "<<Unknown>>";
8498 } else {
8499 OS << *ExitValue;
8500 }
8501 }
8502
Chris Lattnerd934c702004-04-02 20:23:17 +00008503 OS << "\n";
8504 }
8505
Dan Gohmanbc694912010-01-09 18:17:45 +00008506 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008507 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008508 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008509 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00008510 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008511}
Dan Gohmane20f8242009-04-21 00:47:46 +00008512
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008513ScalarEvolution::LoopDisposition
8514ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008515 auto &Values = LoopDispositions[S];
8516 for (auto &V : Values) {
8517 if (V.getPointer() == L)
8518 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008519 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008520 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008521 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008522 auto &Values2 = LoopDispositions[S];
8523 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8524 if (V.getPointer() == L) {
8525 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008526 break;
8527 }
8528 }
8529 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008530}
8531
8532ScalarEvolution::LoopDisposition
8533ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008534 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008535 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008536 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008537 case scTruncate:
8538 case scZeroExtend:
8539 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008540 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008541 case scAddRecExpr: {
8542 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8543
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008544 // If L is the addrec's loop, it's computable.
8545 if (AR->getLoop() == L)
8546 return LoopComputable;
8547
Dan Gohmanafd6db92010-11-17 21:23:15 +00008548 // Add recurrences are never invariant in the function-body (null loop).
8549 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008550 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008551
8552 // This recurrence is variant w.r.t. L if L contains AR's loop.
8553 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008554 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008555
8556 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8557 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008558 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008559
8560 // This recurrence is variant w.r.t. L if any of its operands
8561 // are variant.
8562 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8563 I != E; ++I)
8564 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008565 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008566
8567 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008568 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008569 }
8570 case scAddExpr:
8571 case scMulExpr:
8572 case scUMaxExpr:
8573 case scSMaxExpr: {
8574 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008575 bool HasVarying = false;
8576 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8577 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008578 LoopDisposition D = getLoopDisposition(*I, L);
8579 if (D == LoopVariant)
8580 return LoopVariant;
8581 if (D == LoopComputable)
8582 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008583 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008584 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008585 }
8586 case scUDivExpr: {
8587 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008588 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8589 if (LD == LoopVariant)
8590 return LoopVariant;
8591 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8592 if (RD == LoopVariant)
8593 return LoopVariant;
8594 return (LD == LoopInvariant && RD == LoopInvariant) ?
8595 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008596 }
8597 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008598 // All non-instruction values are loop invariant. All instructions are loop
8599 // invariant if they are not contained in the specified loop.
8600 // Instructions are never considered invariant in the function body
8601 // (null loop) because they are defined within the "loop".
8602 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8603 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8604 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008605 case scCouldNotCompute:
8606 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008607 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008608 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008609}
8610
8611bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8612 return getLoopDisposition(S, L) == LoopInvariant;
8613}
8614
8615bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8616 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008617}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008618
Dan Gohman8ea83d82010-11-18 00:34:22 +00008619ScalarEvolution::BlockDisposition
8620ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008621 auto &Values = BlockDispositions[S];
8622 for (auto &V : Values) {
8623 if (V.getPointer() == BB)
8624 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008625 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008626 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008627 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008628 auto &Values2 = BlockDispositions[S];
8629 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8630 if (V.getPointer() == BB) {
8631 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008632 break;
8633 }
8634 }
8635 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008636}
8637
Dan Gohman8ea83d82010-11-18 00:34:22 +00008638ScalarEvolution::BlockDisposition
8639ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008640 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008641 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008642 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008643 case scTruncate:
8644 case scZeroExtend:
8645 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008646 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008647 case scAddRecExpr: {
8648 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008649 // to test for proper dominance too, because the instruction which
8650 // produces the addrec's value is a PHI, and a PHI effectively properly
8651 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008652 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008653 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008654 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008655 }
8656 // FALL THROUGH into SCEVNAryExpr handling.
8657 case scAddExpr:
8658 case scMulExpr:
8659 case scUMaxExpr:
8660 case scSMaxExpr: {
8661 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008662 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008663 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008664 I != E; ++I) {
8665 BlockDisposition D = getBlockDisposition(*I, BB);
8666 if (D == DoesNotDominateBlock)
8667 return DoesNotDominateBlock;
8668 if (D == DominatesBlock)
8669 Proper = false;
8670 }
8671 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008672 }
8673 case scUDivExpr: {
8674 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008675 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8676 BlockDisposition LD = getBlockDisposition(LHS, BB);
8677 if (LD == DoesNotDominateBlock)
8678 return DoesNotDominateBlock;
8679 BlockDisposition RD = getBlockDisposition(RHS, BB);
8680 if (RD == DoesNotDominateBlock)
8681 return DoesNotDominateBlock;
8682 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8683 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008684 }
8685 case scUnknown:
8686 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008687 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8688 if (I->getParent() == BB)
8689 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008690 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008691 return ProperlyDominatesBlock;
8692 return DoesNotDominateBlock;
8693 }
8694 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008695 case scCouldNotCompute:
8696 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008697 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008698 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008699}
8700
8701bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8702 return getBlockDisposition(S, BB) >= DominatesBlock;
8703}
8704
8705bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8706 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008707}
Dan Gohman534749b2010-11-17 22:27:42 +00008708
Andrew Trick365e31c2012-07-13 23:33:03 +00008709namespace {
8710// Search for a SCEV expression node within an expression tree.
8711// Implements SCEVTraversal::Visitor.
8712struct SCEVSearch {
8713 const SCEV *Node;
8714 bool IsFound;
8715
8716 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8717
8718 bool follow(const SCEV *S) {
8719 IsFound |= (S == Node);
8720 return !IsFound;
8721 }
8722 bool isDone() const { return IsFound; }
8723};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008724}
Andrew Trick365e31c2012-07-13 23:33:03 +00008725
Dan Gohman534749b2010-11-17 22:27:42 +00008726bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008727 SCEVSearch Search(Op);
8728 visitAll(S, Search);
8729 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008730}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008731
8732void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8733 ValuesAtScopes.erase(S);
8734 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008735 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008736 UnsignedRanges.erase(S);
8737 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008738
8739 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8740 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8741 BackedgeTakenInfo &BEInfo = I->second;
8742 if (BEInfo.hasOperand(S, this)) {
8743 BEInfo.clear();
8744 BackedgeTakenCounts.erase(I++);
8745 }
8746 else
8747 ++I;
8748 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008749}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008750
8751typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008752
Alp Tokercb402912014-01-24 17:20:08 +00008753/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008754static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8755 size_t Pos = 0;
8756 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8757 Str.replace(Pos, From.size(), To.data(), To.size());
8758 Pos += To.size();
8759 }
8760}
8761
Benjamin Kramer214935e2012-10-26 17:31:32 +00008762/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8763static void
8764getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8765 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8766 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8767
8768 std::string &S = Map[L];
8769 if (S.empty()) {
8770 raw_string_ostream OS(S);
8771 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008772
8773 // false and 0 are semantically equivalent. This can happen in dead loops.
8774 replaceSubString(OS.str(), "false", "0");
8775 // Remove wrap flags, their use in SCEV is highly fragile.
8776 // FIXME: Remove this when SCEV gets smarter about them.
8777 replaceSubString(OS.str(), "<nw>", "");
8778 replaceSubString(OS.str(), "<nsw>", "");
8779 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008780 }
8781 }
8782}
8783
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008784void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00008785 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8786
8787 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8788 // FIXME: It would be much better to store actual values instead of strings,
8789 // but SCEV pointers will change if we drop the caches.
8790 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008791 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00008792 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8793
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008794 // Gather stringified backedge taken counts for all loops using a fresh
8795 // ScalarEvolution object.
8796 ScalarEvolution SE2(F, TLI, AC, DT, LI);
8797 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
8798 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00008799
8800 // Now compare whether they're the same with and without caches. This allows
8801 // verifying that no pass changed the cache.
8802 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8803 "New loops suddenly appeared!");
8804
8805 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8806 OldE = BackedgeDumpsOld.end(),
8807 NewI = BackedgeDumpsNew.begin();
8808 OldI != OldE; ++OldI, ++NewI) {
8809 assert(OldI->first == NewI->first && "Loop order changed!");
8810
8811 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8812 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008813 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008814 // means that a pass is buggy or SCEV has to learn a new pattern but is
8815 // usually not harmful.
8816 if (OldI->second != NewI->second &&
8817 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008818 NewI->second.find("undef") == std::string::npos &&
8819 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008820 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008821 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008822 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008823 << "' changed from '" << OldI->second
8824 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008825 std::abort();
8826 }
8827 }
8828
8829 // TODO: Verify more things.
8830}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008831
8832char ScalarEvolutionAnalysis::PassID;
8833
8834ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
8835 AnalysisManager<Function> *AM) {
8836 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
8837 AM->getResult<AssumptionAnalysis>(F),
8838 AM->getResult<DominatorTreeAnalysis>(F),
8839 AM->getResult<LoopAnalysis>(F));
8840}
8841
8842PreservedAnalyses
8843ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
8844 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
8845 return PreservedAnalyses::all();
8846}
8847
8848INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
8849 "Scalar Evolution Analysis", false, true)
8850INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8851INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
8852INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
8853INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
8854INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
8855 "Scalar Evolution Analysis", false, true)
8856char ScalarEvolutionWrapperPass::ID = 0;
8857
8858ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
8859 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
8860}
8861
8862bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
8863 SE.reset(new ScalarEvolution(
8864 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
8865 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
8866 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
8867 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
8868 return false;
8869}
8870
8871void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
8872
8873void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
8874 SE->print(OS);
8875}
8876
8877void ScalarEvolutionWrapperPass::verifyAnalysis() const {
8878 if (!VerifySCEV)
8879 return;
8880
8881 SE->verify();
8882}
8883
8884void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
8885 AU.setPreservesAll();
8886 AU.addRequiredTransitive<AssumptionCacheTracker>();
8887 AU.addRequiredTransitive<LoopInfoWrapperPass>();
8888 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
8889 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
8890}