blob: cf1243a04b10d89987992b59eab1e68b9328c681 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000315 function definition. Furthermore the inliner doesn't consider such function
316 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000317"``cc 10``" - GHC convention
318 This calling convention has been implemented specifically for use by
319 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
320 It passes everything in registers, going to extremes to achieve this
321 by disabling callee save registers. This calling convention should
322 not be used lightly but only for specific situations such as an
323 alternative to the *register pinning* performance technique often
324 used when implementing functional programming languages. At the
325 moment only X86 supports this convention and it has the following
326 limitations:
327
328 - On *X86-32* only supports up to 4 bit type parameters. No
329 floating point types are supported.
330 - On *X86-64* only supports up to 10 bit type parameters and 6
331 floating point parameters.
332
333 This calling convention supports `tail call
334 optimization <CodeGenerator.html#id80>`_ but requires both the
335 caller and callee are using it.
336"``cc 11``" - The HiPE calling convention
337 This calling convention has been implemented specifically for use by
338 the `High-Performance Erlang
339 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
340 native code compiler of the `Ericsson's Open Source Erlang/OTP
341 system <http://www.erlang.org/download.shtml>`_. It uses more
342 registers for argument passing than the ordinary C calling
343 convention and defines no callee-saved registers. The calling
344 convention properly supports `tail call
345 optimization <CodeGenerator.html#id80>`_ but requires that both the
346 caller and the callee use it. It uses a *register pinning*
347 mechanism, similar to GHC's convention, for keeping frequently
348 accessed runtime components pinned to specific hardware registers.
349 At the moment only X86 supports this convention (both 32 and 64
350 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000351"``webkit_jscc``" - WebKit's JavaScript calling convention
352 This calling convention has been implemented for `WebKit FTL JIT
353 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
354 stack right to left (as cdecl does), and returns a value in the
355 platform's customary return register.
356"``anyregcc``" - Dynamic calling convention for code patching
357 This is a special convention that supports patching an arbitrary code
358 sequence in place of a call site. This convention forces the call
359 arguments into registers but allows them to be dynamcially
360 allocated. This can currently only be used with calls to
361 llvm.experimental.patchpoint because only this intrinsic records
362 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363"``preserve_mostcc``" - The `PreserveMost` calling convention
364 This calling convention attempts to make the code in the caller as little
365 intrusive as possible. This calling convention behaves identical to the `C`
366 calling convention on how arguments and return values are passed, but it
367 uses a different set of caller/callee-saved registers. This alleviates the
368 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000369 call in the caller. If the arguments are passed in callee-saved registers,
370 then they will be preserved by the callee across the call. This doesn't
371 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372
373 - On X86-64 the callee preserves all general purpose registers, except for
374 R11. R11 can be used as a scratch register. Floating-point registers
375 (XMMs/YMMs) are not preserved and need to be saved by the caller.
376
377 The idea behind this convention is to support calls to runtime functions
378 that have a hot path and a cold path. The hot path is usually a small piece
379 of code that doesn't many registers. The cold path might need to call out to
380 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000381 registers, which haven't already been saved by the caller. The
382 `PreserveMost` calling convention is very similar to the `cold` calling
383 convention in terms of caller/callee-saved registers, but they are used for
384 different types of function calls. `coldcc` is for function calls that are
385 rarely executed, whereas `preserve_mostcc` function calls are intended to be
386 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
387 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000388
389 This calling convention will be used by a future version of the ObjectiveC
390 runtime and should therefore still be considered experimental at this time.
391 Although this convention was created to optimize certain runtime calls to
392 the ObjectiveC runtime, it is not limited to this runtime and might be used
393 by other runtimes in the future too. The current implementation only
394 supports X86-64, but the intention is to support more architectures in the
395 future.
396"``preserve_allcc``" - The `PreserveAll` calling convention
397 This calling convention attempts to make the code in the caller even less
398 intrusive than the `PreserveMost` calling convention. This calling
399 convention also behaves identical to the `C` calling convention on how
400 arguments and return values are passed, but it uses a different set of
401 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000402 recovering a large register set before and after the call in the caller. If
403 the arguments are passed in callee-saved registers, then they will be
404 preserved by the callee across the call. This doesn't apply for values
405 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000406
407 - On X86-64 the callee preserves all general purpose registers, except for
408 R11. R11 can be used as a scratch register. Furthermore it also preserves
409 all floating-point registers (XMMs/YMMs).
410
411 The idea behind this convention is to support calls to runtime functions
412 that don't need to call out to any other functions.
413
414 This calling convention, like the `PreserveMost` calling convention, will be
415 used by a future version of the ObjectiveC runtime and should be considered
416 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000417"``cc <n>``" - Numbered convention
418 Any calling convention may be specified by number, allowing
419 target-specific calling conventions to be used. Target specific
420 calling conventions start at 64.
421
422More calling conventions can be added/defined on an as-needed basis, to
423support Pascal conventions or any other well-known target-independent
424convention.
425
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000426.. _visibilitystyles:
427
Sean Silvab084af42012-12-07 10:36:55 +0000428Visibility Styles
429-----------------
430
431All Global Variables and Functions have one of the following visibility
432styles:
433
434"``default``" - Default style
435 On targets that use the ELF object file format, default visibility
436 means that the declaration is visible to other modules and, in
437 shared libraries, means that the declared entity may be overridden.
438 On Darwin, default visibility means that the declaration is visible
439 to other modules. Default visibility corresponds to "external
440 linkage" in the language.
441"``hidden``" - Hidden style
442 Two declarations of an object with hidden visibility refer to the
443 same object if they are in the same shared object. Usually, hidden
444 visibility indicates that the symbol will not be placed into the
445 dynamic symbol table, so no other module (executable or shared
446 library) can reference it directly.
447"``protected``" - Protected style
448 On ELF, protected visibility indicates that the symbol will be
449 placed in the dynamic symbol table, but that references within the
450 defining module will bind to the local symbol. That is, the symbol
451 cannot be overridden by another module.
452
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000453.. _namedtypes:
454
Nico Rieck7157bb72014-01-14 15:22:47 +0000455DLL Storage Classes
456-------------------
457
458All Global Variables, Functions and Aliases can have one of the following
459DLL storage class:
460
461``dllimport``
462 "``dllimport``" causes the compiler to reference a function or variable via
463 a global pointer to a pointer that is set up by the DLL exporting the
464 symbol. On Microsoft Windows targets, the pointer name is formed by
465 combining ``__imp_`` and the function or variable name.
466``dllexport``
467 "``dllexport``" causes the compiler to provide a global pointer to a pointer
468 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
469 Microsoft Windows targets, the pointer name is formed by combining
470 ``__imp_`` and the function or variable name. Since this storage class
471 exists for defining a dll interface, the compiler, assembler and linker know
472 it is externally referenced and must refrain from deleting the symbol.
473
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000474Structure Types
475---------------
Sean Silvab084af42012-12-07 10:36:55 +0000476
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000477LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
478types <t_struct>`. Literal types are uniqued structurally, but identified types
479are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
480to forward declare a type which is not yet available.
481
482An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000483
484.. code-block:: llvm
485
486 %mytype = type { %mytype*, i32 }
487
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000488Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
489literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000490
491.. _globalvars:
492
493Global Variables
494----------------
495
496Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000497instead of run-time.
498
499Global variables definitions must be initialized, may have an explicit section
500to be placed in, and may have an optional explicit alignment specified.
501
502Global variables in other translation units can also be declared, in which
503case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000504
505A variable may be defined as ``thread_local``, which means that it will
506not be shared by threads (each thread will have a separated copy of the
507variable). Not all targets support thread-local variables. Optionally, a
508TLS model may be specified:
509
510``localdynamic``
511 For variables that are only used within the current shared library.
512``initialexec``
513 For variables in modules that will not be loaded dynamically.
514``localexec``
515 For variables defined in the executable and only used within it.
516
517The models correspond to the ELF TLS models; see `ELF Handling For
518Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
519more information on under which circumstances the different models may
520be used. The target may choose a different TLS model if the specified
521model is not supported, or if a better choice of model can be made.
522
Michael Gottesman006039c2013-01-31 05:48:48 +0000523A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000524the contents of the variable will **never** be modified (enabling better
525optimization, allowing the global data to be placed in the read-only
526section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000527initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000528variable.
529
530LLVM explicitly allows *declarations* of global variables to be marked
531constant, even if the final definition of the global is not. This
532capability can be used to enable slightly better optimization of the
533program, but requires the language definition to guarantee that
534optimizations based on the 'constantness' are valid for the translation
535units that do not include the definition.
536
537As SSA values, global variables define pointer values that are in scope
538(i.e. they dominate) all basic blocks in the program. Global variables
539always define a pointer to their "content" type because they describe a
540region of memory, and all memory objects in LLVM are accessed through
541pointers.
542
543Global variables can be marked with ``unnamed_addr`` which indicates
544that the address is not significant, only the content. Constants marked
545like this can be merged with other constants if they have the same
546initializer. Note that a constant with significant address *can* be
547merged with a ``unnamed_addr`` constant, the result being a constant
548whose address is significant.
549
550A global variable may be declared to reside in a target-specific
551numbered address space. For targets that support them, address spaces
552may affect how optimizations are performed and/or what target
553instructions are used to access the variable. The default address space
554is zero. The address space qualifier must precede any other attributes.
555
556LLVM allows an explicit section to be specified for globals. If the
557target supports it, it will emit globals to the section specified.
558
Michael Gottesmane743a302013-02-04 03:22:00 +0000559By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000560variables defined within the module are not modified from their
561initial values before the start of the global initializer. This is
562true even for variables potentially accessible from outside the
563module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000564``@llvm.used`` or dllexported variables. This assumption may be suppressed
565by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000566
Sean Silvab084af42012-12-07 10:36:55 +0000567An explicit alignment may be specified for a global, which must be a
568power of 2. If not present, or if the alignment is set to zero, the
569alignment of the global is set by the target to whatever it feels
570convenient. If an explicit alignment is specified, the global is forced
571to have exactly that alignment. Targets and optimizers are not allowed
572to over-align the global if the global has an assigned section. In this
573case, the extra alignment could be observable: for example, code could
574assume that the globals are densely packed in their section and try to
575iterate over them as an array, alignment padding would break this
576iteration.
577
Nico Rieck7157bb72014-01-14 15:22:47 +0000578Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
579
580Syntax::
581
582 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
583 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
584 <global | constant> <Type>
585 [, section "name"] [, align <Alignment>]
586
Sean Silvab084af42012-12-07 10:36:55 +0000587For example, the following defines a global in a numbered address space
588with an initializer, section, and alignment:
589
590.. code-block:: llvm
591
592 @G = addrspace(5) constant float 1.0, section "foo", align 4
593
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000594The following example just declares a global variable
595
596.. code-block:: llvm
597
598 @G = external global i32
599
Sean Silvab084af42012-12-07 10:36:55 +0000600The following example defines a thread-local global with the
601``initialexec`` TLS model:
602
603.. code-block:: llvm
604
605 @G = thread_local(initialexec) global i32 0, align 4
606
607.. _functionstructure:
608
609Functions
610---------
611
612LLVM function definitions consist of the "``define``" keyword, an
613optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000614style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
615an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000616an optional ``unnamed_addr`` attribute, a return type, an optional
617:ref:`parameter attribute <paramattrs>` for the return type, a function
618name, a (possibly empty) argument list (each with optional :ref:`parameter
619attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
620an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000621collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
622curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000623
624LLVM function declarations consist of the "``declare``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000630name, a possibly empty list of arguments, an optional alignment, an optional
631:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000632
Bill Wendling6822ecb2013-10-27 05:09:12 +0000633A function definition contains a list of basic blocks, forming the CFG (Control
634Flow Graph) for the function. Each basic block may optionally start with a label
635(giving the basic block a symbol table entry), contains a list of instructions,
636and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
637function return). If an explicit label is not provided, a block is assigned an
638implicit numbered label, using the next value from the same counter as used for
639unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
640entry block does not have an explicit label, it will be assigned label "%0",
641then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000642
643The first basic block in a function is special in two ways: it is
644immediately executed on entrance to the function, and it is not allowed
645to have predecessor basic blocks (i.e. there can not be any branches to
646the entry block of a function). Because the block can have no
647predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
648
649LLVM allows an explicit section to be specified for functions. If the
650target supports it, it will emit functions to the section specified.
651
652An explicit alignment may be specified for a function. If not present,
653or if the alignment is set to zero, the alignment of the function is set
654by the target to whatever it feels convenient. If an explicit alignment
655is specified, the function is forced to have at least that much
656alignment. All alignments must be a power of 2.
657
658If the ``unnamed_addr`` attribute is given, the address is know to not
659be significant and two identical functions can be merged.
660
661Syntax::
662
Nico Rieck7157bb72014-01-14 15:22:47 +0000663 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000664 [cconv] [ret attrs]
665 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000666 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000667 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000668
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000669.. _langref_aliases:
670
Sean Silvab084af42012-12-07 10:36:55 +0000671Aliases
672-------
673
674Aliases act as "second name" for the aliasee value (which can be either
675function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000676Aliases may have an optional :ref:`linkage type <linkage>`, an optional
677:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
678<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000683
Rafael Espindola65785492013-10-07 13:57:59 +0000684The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000685``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000686``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000687might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000688alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000689
Sean Silvab084af42012-12-07 10:36:55 +0000690.. _namedmetadatastructure:
691
692Named Metadata
693--------------
694
695Named metadata is a collection of metadata. :ref:`Metadata
696nodes <metadata>` (but not metadata strings) are the only valid
697operands for a named metadata.
698
699Syntax::
700
701 ; Some unnamed metadata nodes, which are referenced by the named metadata.
702 !0 = metadata !{metadata !"zero"}
703 !1 = metadata !{metadata !"one"}
704 !2 = metadata !{metadata !"two"}
705 ; A named metadata.
706 !name = !{!0, !1, !2}
707
708.. _paramattrs:
709
710Parameter Attributes
711--------------------
712
713The return type and each parameter of a function type may have a set of
714*parameter attributes* associated with them. Parameter attributes are
715used to communicate additional information about the result or
716parameters of a function. Parameter attributes are considered to be part
717of the function, not of the function type, so functions with different
718parameter attributes can have the same function type.
719
720Parameter attributes are simple keywords that follow the type specified.
721If multiple parameter attributes are needed, they are space separated.
722For example:
723
724.. code-block:: llvm
725
726 declare i32 @printf(i8* noalias nocapture, ...)
727 declare i32 @atoi(i8 zeroext)
728 declare signext i8 @returns_signed_char()
729
730Note that any attributes for the function result (``nounwind``,
731``readonly``) come immediately after the argument list.
732
733Currently, only the following parameter attributes are defined:
734
735``zeroext``
736 This indicates to the code generator that the parameter or return
737 value should be zero-extended to the extent required by the target's
738 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
739 the caller (for a parameter) or the callee (for a return value).
740``signext``
741 This indicates to the code generator that the parameter or return
742 value should be sign-extended to the extent required by the target's
743 ABI (which is usually 32-bits) by the caller (for a parameter) or
744 the callee (for a return value).
745``inreg``
746 This indicates that this parameter or return value should be treated
747 in a special target-dependent fashion during while emitting code for
748 a function call or return (usually, by putting it in a register as
749 opposed to memory, though some targets use it to distinguish between
750 two different kinds of registers). Use of this attribute is
751 target-specific.
752``byval``
753 This indicates that the pointer parameter should really be passed by
754 value to the function. The attribute implies that a hidden copy of
755 the pointee is made between the caller and the callee, so the callee
756 is unable to modify the value in the caller. This attribute is only
757 valid on LLVM pointer arguments. It is generally used to pass
758 structs and arrays by value, but is also valid on pointers to
759 scalars. The copy is considered to belong to the caller not the
760 callee (for example, ``readonly`` functions should not write to
761 ``byval`` parameters). This is not a valid attribute for return
762 values.
763
764 The byval attribute also supports specifying an alignment with the
765 align attribute. It indicates the alignment of the stack slot to
766 form and the known alignment of the pointer specified to the call
767 site. If the alignment is not specified, then the code generator
768 makes a target-specific assumption.
769
Reid Klecknera534a382013-12-19 02:14:12 +0000770.. _attr_inalloca:
771
772``inalloca``
773
774.. Warning:: This feature is unstable and not fully implemented.
775
Reid Kleckner60d3a832014-01-16 22:59:24 +0000776 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000777 address of outgoing stack arguments. An ``inalloca`` argument must
778 be a pointer to stack memory produced by an ``alloca`` instruction.
779 The alloca, or argument allocation, must also be tagged with the
780 inalloca keyword. Only the past argument may have the ``inalloca``
781 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000782
Reid Kleckner436c42e2014-01-17 23:58:17 +0000783 An argument allocation may be used by a call at most once because
784 the call may deallocate it. The ``inalloca`` attribute cannot be
785 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000786 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
787 ``inalloca`` attribute also disables LLVM's implicit lowering of
788 large aggregate return values, which means that frontend authors
789 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000790
Reid Kleckner60d3a832014-01-16 22:59:24 +0000791 When the call site is reached, the argument allocation must have
792 been the most recent stack allocation that is still live, or the
793 results are undefined. It is possible to allocate additional stack
794 space after an argument allocation and before its call site, but it
795 must be cleared off with :ref:`llvm.stackrestore
796 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000797
798 See :doc:`InAlloca` for more information on how to use this
799 attribute.
800
Sean Silvab084af42012-12-07 10:36:55 +0000801``sret``
802 This indicates that the pointer parameter specifies the address of a
803 structure that is the return value of the function in the source
804 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000805 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000806 not to trap and to be properly aligned. This may only be applied to
807 the first parameter. This is not a valid attribute for return
808 values.
809``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000810 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000811 the argument or return value do not alias pointer values which are
812 not *based* on it, ignoring certain "irrelevant" dependencies. For a
813 call to the parent function, dependencies between memory references
814 from before or after the call and from those during the call are
815 "irrelevant" to the ``noalias`` keyword for the arguments and return
816 value used in that call. The caller shares the responsibility with
817 the callee for ensuring that these requirements are met. For further
818 details, please see the discussion of the NoAlias response in `alias
819 analysis <AliasAnalysis.html#MustMayNo>`_.
820
821 Note that this definition of ``noalias`` is intentionally similar
822 to the definition of ``restrict`` in C99 for function arguments,
823 though it is slightly weaker.
824
825 For function return values, C99's ``restrict`` is not meaningful,
826 while LLVM's ``noalias`` is.
827``nocapture``
828 This indicates that the callee does not make any copies of the
829 pointer that outlive the callee itself. This is not a valid
830 attribute for return values.
831
832.. _nest:
833
834``nest``
835 This indicates that the pointer parameter can be excised using the
836 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000837 attribute for return values and can only be applied to one parameter.
838
839``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000840 This indicates that the function always returns the argument as its return
841 value. This is an optimization hint to the code generator when generating
842 the caller, allowing tail call optimization and omission of register saves
843 and restores in some cases; it is not checked or enforced when generating
844 the callee. The parameter and the function return type must be valid
845 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
846 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000847
848.. _gc:
849
850Garbage Collector Names
851-----------------------
852
853Each function may specify a garbage collector name, which is simply a
854string:
855
856.. code-block:: llvm
857
858 define void @f() gc "name" { ... }
859
860The compiler declares the supported values of *name*. Specifying a
861collector which will cause the compiler to alter its output in order to
862support the named garbage collection algorithm.
863
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000864.. _prefixdata:
865
866Prefix Data
867-----------
868
869Prefix data is data associated with a function which the code generator
870will emit immediately before the function body. The purpose of this feature
871is to allow frontends to associate language-specific runtime metadata with
872specific functions and make it available through the function pointer while
873still allowing the function pointer to be called. To access the data for a
874given function, a program may bitcast the function pointer to a pointer to
875the constant's type. This implies that the IR symbol points to the start
876of the prefix data.
877
878To maintain the semantics of ordinary function calls, the prefix data must
879have a particular format. Specifically, it must begin with a sequence of
880bytes which decode to a sequence of machine instructions, valid for the
881module's target, which transfer control to the point immediately succeeding
882the prefix data, without performing any other visible action. This allows
883the inliner and other passes to reason about the semantics of the function
884definition without needing to reason about the prefix data. Obviously this
885makes the format of the prefix data highly target dependent.
886
Peter Collingbourne213358a2013-09-23 20:14:21 +0000887Prefix data is laid out as if it were an initializer for a global variable
888of the prefix data's type. No padding is automatically placed between the
889prefix data and the function body. If padding is required, it must be part
890of the prefix data.
891
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000892A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
893which encodes the ``nop`` instruction:
894
895.. code-block:: llvm
896
897 define void @f() prefix i8 144 { ... }
898
899Generally prefix data can be formed by encoding a relative branch instruction
900which skips the metadata, as in this example of valid prefix data for the
901x86_64 architecture, where the first two bytes encode ``jmp .+10``:
902
903.. code-block:: llvm
904
905 %0 = type <{ i8, i8, i8* }>
906
907 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
908
909A function may have prefix data but no body. This has similar semantics
910to the ``available_externally`` linkage in that the data may be used by the
911optimizers but will not be emitted in the object file.
912
Bill Wendling63b88192013-02-06 06:52:58 +0000913.. _attrgrp:
914
915Attribute Groups
916----------------
917
918Attribute groups are groups of attributes that are referenced by objects within
919the IR. They are important for keeping ``.ll`` files readable, because a lot of
920functions will use the same set of attributes. In the degenerative case of a
921``.ll`` file that corresponds to a single ``.c`` file, the single attribute
922group will capture the important command line flags used to build that file.
923
924An attribute group is a module-level object. To use an attribute group, an
925object references the attribute group's ID (e.g. ``#37``). An object may refer
926to more than one attribute group. In that situation, the attributes from the
927different groups are merged.
928
929Here is an example of attribute groups for a function that should always be
930inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
931
932.. code-block:: llvm
933
934 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000935 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000936
937 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000938 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000939
940 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
941 define void @f() #0 #1 { ... }
942
Sean Silvab084af42012-12-07 10:36:55 +0000943.. _fnattrs:
944
945Function Attributes
946-------------------
947
948Function attributes are set to communicate additional information about
949a function. Function attributes are considered to be part of the
950function, not of the function type, so functions with different function
951attributes can have the same function type.
952
953Function attributes are simple keywords that follow the type specified.
954If multiple attributes are needed, they are space separated. For
955example:
956
957.. code-block:: llvm
958
959 define void @f() noinline { ... }
960 define void @f() alwaysinline { ... }
961 define void @f() alwaysinline optsize { ... }
962 define void @f() optsize { ... }
963
Sean Silvab084af42012-12-07 10:36:55 +0000964``alignstack(<n>)``
965 This attribute indicates that, when emitting the prologue and
966 epilogue, the backend should forcibly align the stack pointer.
967 Specify the desired alignment, which must be a power of two, in
968 parentheses.
969``alwaysinline``
970 This attribute indicates that the inliner should attempt to inline
971 this function into callers whenever possible, ignoring any active
972 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000973``builtin``
974 This indicates that the callee function at a call site should be
975 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000976 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000977 direct calls to functions which are declared with the ``nobuiltin``
978 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000979``cold``
980 This attribute indicates that this function is rarely called. When
981 computing edge weights, basic blocks post-dominated by a cold
982 function call are also considered to be cold; and, thus, given low
983 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000984``inlinehint``
985 This attribute indicates that the source code contained a hint that
986 inlining this function is desirable (such as the "inline" keyword in
987 C/C++). It is just a hint; it imposes no requirements on the
988 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000989``minsize``
990 This attribute suggests that optimization passes and code generator
991 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000992 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000993 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000994``naked``
995 This attribute disables prologue / epilogue emission for the
996 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000997``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000998 This indicates that the callee function at a call site is not recognized as
999 a built-in function. LLVM will retain the original call and not replace it
1000 with equivalent code based on the semantics of the built-in function, unless
1001 the call site uses the ``builtin`` attribute. This is valid at call sites
1002 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001003``noduplicate``
1004 This attribute indicates that calls to the function cannot be
1005 duplicated. A call to a ``noduplicate`` function may be moved
1006 within its parent function, but may not be duplicated within
1007 its parent function.
1008
1009 A function containing a ``noduplicate`` call may still
1010 be an inlining candidate, provided that the call is not
1011 duplicated by inlining. That implies that the function has
1012 internal linkage and only has one call site, so the original
1013 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001014``noimplicitfloat``
1015 This attributes disables implicit floating point instructions.
1016``noinline``
1017 This attribute indicates that the inliner should never inline this
1018 function in any situation. This attribute may not be used together
1019 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001020``nonlazybind``
1021 This attribute suppresses lazy symbol binding for the function. This
1022 may make calls to the function faster, at the cost of extra program
1023 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001024``noredzone``
1025 This attribute indicates that the code generator should not use a
1026 red zone, even if the target-specific ABI normally permits it.
1027``noreturn``
1028 This function attribute indicates that the function never returns
1029 normally. This produces undefined behavior at runtime if the
1030 function ever does dynamically return.
1031``nounwind``
1032 This function attribute indicates that the function never returns
1033 with an unwind or exceptional control flow. If the function does
1034 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001035``optnone``
1036 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001037 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001038 exception of interprocedural optimization passes.
1039 This attribute cannot be used together with the ``alwaysinline``
1040 attribute; this attribute is also incompatible
1041 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001042
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001043 This attribute requires the ``noinline`` attribute to be specified on
1044 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001045 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001046 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001047``optsize``
1048 This attribute suggests that optimization passes and code generator
1049 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001050 and otherwise do optimizations specifically to reduce code size as
1051 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001052``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001053 On a function, this attribute indicates that the function computes its
1054 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001055 without dereferencing any pointer arguments or otherwise accessing
1056 any mutable state (e.g. memory, control registers, etc) visible to
1057 caller functions. It does not write through any pointer arguments
1058 (including ``byval`` arguments) and never changes any state visible
1059 to callers. This means that it cannot unwind exceptions by calling
1060 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001061
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001062 On an argument, this attribute indicates that the function does not
1063 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001064 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001065``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001066 On a function, this attribute indicates that the function does not write
1067 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001068 modify any state (e.g. memory, control registers, etc) visible to
1069 caller functions. It may dereference pointer arguments and read
1070 state that may be set in the caller. A readonly function always
1071 returns the same value (or unwinds an exception identically) when
1072 called with the same set of arguments and global state. It cannot
1073 unwind an exception by calling the ``C++`` exception throwing
1074 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001075
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001076 On an argument, this attribute indicates that the function does not write
1077 through this pointer argument, even though it may write to the memory that
1078 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001079``returns_twice``
1080 This attribute indicates that this function can return twice. The C
1081 ``setjmp`` is an example of such a function. The compiler disables
1082 some optimizations (like tail calls) in the caller of these
1083 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001084``sanitize_address``
1085 This attribute indicates that AddressSanitizer checks
1086 (dynamic address safety analysis) are enabled for this function.
1087``sanitize_memory``
1088 This attribute indicates that MemorySanitizer checks (dynamic detection
1089 of accesses to uninitialized memory) are enabled for this function.
1090``sanitize_thread``
1091 This attribute indicates that ThreadSanitizer checks
1092 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001093``ssp``
1094 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001095 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001096 placed on the stack before the local variables that's checked upon
1097 return from the function to see if it has been overwritten. A
1098 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001099 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001100
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001101 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1102 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1103 - Calls to alloca() with variable sizes or constant sizes greater than
1104 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001105
Josh Magee24c7f062014-02-01 01:36:16 +00001106 Variables that are identified as requiring a protector will be arranged
1107 on the stack such that they are adjacent to the stack protector guard.
1108
Sean Silvab084af42012-12-07 10:36:55 +00001109 If a function that has an ``ssp`` attribute is inlined into a
1110 function that doesn't have an ``ssp`` attribute, then the resulting
1111 function will have an ``ssp`` attribute.
1112``sspreq``
1113 This attribute indicates that the function should *always* emit a
1114 stack smashing protector. This overrides the ``ssp`` function
1115 attribute.
1116
Josh Magee24c7f062014-02-01 01:36:16 +00001117 Variables that are identified as requiring a protector will be arranged
1118 on the stack such that they are adjacent to the stack protector guard.
1119 The specific layout rules are:
1120
1121 #. Large arrays and structures containing large arrays
1122 (``>= ssp-buffer-size``) are closest to the stack protector.
1123 #. Small arrays and structures containing small arrays
1124 (``< ssp-buffer-size``) are 2nd closest to the protector.
1125 #. Variables that have had their address taken are 3rd closest to the
1126 protector.
1127
Sean Silvab084af42012-12-07 10:36:55 +00001128 If a function that has an ``sspreq`` attribute is inlined into a
1129 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001130 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1131 an ``sspreq`` attribute.
1132``sspstrong``
1133 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001134 protector. This attribute causes a strong heuristic to be used when
1135 determining if a function needs stack protectors. The strong heuristic
1136 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001137
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001138 - Arrays of any size and type
1139 - Aggregates containing an array of any size and type.
1140 - Calls to alloca().
1141 - Local variables that have had their address taken.
1142
Josh Magee24c7f062014-02-01 01:36:16 +00001143 Variables that are identified as requiring a protector will be arranged
1144 on the stack such that they are adjacent to the stack protector guard.
1145 The specific layout rules are:
1146
1147 #. Large arrays and structures containing large arrays
1148 (``>= ssp-buffer-size``) are closest to the stack protector.
1149 #. Small arrays and structures containing small arrays
1150 (``< ssp-buffer-size``) are 2nd closest to the protector.
1151 #. Variables that have had their address taken are 3rd closest to the
1152 protector.
1153
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001154 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001155
1156 If a function that has an ``sspstrong`` attribute is inlined into a
1157 function that doesn't have an ``sspstrong`` attribute, then the
1158 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001159``uwtable``
1160 This attribute indicates that the ABI being targeted requires that
1161 an unwind table entry be produce for this function even if we can
1162 show that no exceptions passes by it. This is normally the case for
1163 the ELF x86-64 abi, but it can be disabled for some compilation
1164 units.
Sean Silvab084af42012-12-07 10:36:55 +00001165
1166.. _moduleasm:
1167
1168Module-Level Inline Assembly
1169----------------------------
1170
1171Modules may contain "module-level inline asm" blocks, which corresponds
1172to the GCC "file scope inline asm" blocks. These blocks are internally
1173concatenated by LLVM and treated as a single unit, but may be separated
1174in the ``.ll`` file if desired. The syntax is very simple:
1175
1176.. code-block:: llvm
1177
1178 module asm "inline asm code goes here"
1179 module asm "more can go here"
1180
1181The strings can contain any character by escaping non-printable
1182characters. The escape sequence used is simply "\\xx" where "xx" is the
1183two digit hex code for the number.
1184
1185The inline asm code is simply printed to the machine code .s file when
1186assembly code is generated.
1187
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001188.. _langref_datalayout:
1189
Sean Silvab084af42012-12-07 10:36:55 +00001190Data Layout
1191-----------
1192
1193A module may specify a target specific data layout string that specifies
1194how data is to be laid out in memory. The syntax for the data layout is
1195simply:
1196
1197.. code-block:: llvm
1198
1199 target datalayout = "layout specification"
1200
1201The *layout specification* consists of a list of specifications
1202separated by the minus sign character ('-'). Each specification starts
1203with a letter and may include other information after the letter to
1204define some aspect of the data layout. The specifications accepted are
1205as follows:
1206
1207``E``
1208 Specifies that the target lays out data in big-endian form. That is,
1209 the bits with the most significance have the lowest address
1210 location.
1211``e``
1212 Specifies that the target lays out data in little-endian form. That
1213 is, the bits with the least significance have the lowest address
1214 location.
1215``S<size>``
1216 Specifies the natural alignment of the stack in bits. Alignment
1217 promotion of stack variables is limited to the natural stack
1218 alignment to avoid dynamic stack realignment. The stack alignment
1219 must be a multiple of 8-bits. If omitted, the natural stack
1220 alignment defaults to "unspecified", which does not prevent any
1221 alignment promotions.
1222``p[n]:<size>:<abi>:<pref>``
1223 This specifies the *size* of a pointer and its ``<abi>`` and
1224 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001225 bits. The address space, ``n`` is optional, and if not specified,
1226 denotes the default address space 0. The value of ``n`` must be
1227 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001228``i<size>:<abi>:<pref>``
1229 This specifies the alignment for an integer type of a given bit
1230 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1231``v<size>:<abi>:<pref>``
1232 This specifies the alignment for a vector type of a given bit
1233 ``<size>``.
1234``f<size>:<abi>:<pref>``
1235 This specifies the alignment for a floating point type of a given bit
1236 ``<size>``. Only values of ``<size>`` that are supported by the target
1237 will work. 32 (float) and 64 (double) are supported on all targets; 80
1238 or 128 (different flavors of long double) are also supported on some
1239 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001240``a:<abi>:<pref>``
1241 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001242``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001243 If present, specifies that llvm names are mangled in the output. The
1244 options are
1245
1246 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1247 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1248 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1249 symbols get a ``_`` prefix.
1250 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1251 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001252``n<size1>:<size2>:<size3>...``
1253 This specifies a set of native integer widths for the target CPU in
1254 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1255 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1256 this set are considered to support most general arithmetic operations
1257 efficiently.
1258
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001259On every specification that takes a ``<abi>:<pref>``, specifying the
1260``<pref>`` alignment is optional. If omitted, the preceding ``:``
1261should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1262
Sean Silvab084af42012-12-07 10:36:55 +00001263When constructing the data layout for a given target, LLVM starts with a
1264default set of specifications which are then (possibly) overridden by
1265the specifications in the ``datalayout`` keyword. The default
1266specifications are given in this list:
1267
1268- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001269- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1270- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1271 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001272- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001273- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1274- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1275- ``i16:16:16`` - i16 is 16-bit aligned
1276- ``i32:32:32`` - i32 is 32-bit aligned
1277- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1278 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001279- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001280- ``f32:32:32`` - float is 32-bit aligned
1281- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001282- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001283- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1284- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001285- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001286
1287When LLVM is determining the alignment for a given type, it uses the
1288following rules:
1289
1290#. If the type sought is an exact match for one of the specifications,
1291 that specification is used.
1292#. If no match is found, and the type sought is an integer type, then
1293 the smallest integer type that is larger than the bitwidth of the
1294 sought type is used. If none of the specifications are larger than
1295 the bitwidth then the largest integer type is used. For example,
1296 given the default specifications above, the i7 type will use the
1297 alignment of i8 (next largest) while both i65 and i256 will use the
1298 alignment of i64 (largest specified).
1299#. If no match is found, and the type sought is a vector type, then the
1300 largest vector type that is smaller than the sought vector type will
1301 be used as a fall back. This happens because <128 x double> can be
1302 implemented in terms of 64 <2 x double>, for example.
1303
1304The function of the data layout string may not be what you expect.
1305Notably, this is not a specification from the frontend of what alignment
1306the code generator should use.
1307
1308Instead, if specified, the target data layout is required to match what
1309the ultimate *code generator* expects. This string is used by the
1310mid-level optimizers to improve code, and this only works if it matches
1311what the ultimate code generator uses. If you would like to generate IR
1312that does not embed this target-specific detail into the IR, then you
1313don't have to specify the string. This will disable some optimizations
1314that require precise layout information, but this also prevents those
1315optimizations from introducing target specificity into the IR.
1316
Bill Wendling5cc90842013-10-18 23:41:25 +00001317.. _langref_triple:
1318
1319Target Triple
1320-------------
1321
1322A module may specify a target triple string that describes the target
1323host. The syntax for the target triple is simply:
1324
1325.. code-block:: llvm
1326
1327 target triple = "x86_64-apple-macosx10.7.0"
1328
1329The *target triple* string consists of a series of identifiers delimited
1330by the minus sign character ('-'). The canonical forms are:
1331
1332::
1333
1334 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1335 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1336
1337This information is passed along to the backend so that it generates
1338code for the proper architecture. It's possible to override this on the
1339command line with the ``-mtriple`` command line option.
1340
Sean Silvab084af42012-12-07 10:36:55 +00001341.. _pointeraliasing:
1342
1343Pointer Aliasing Rules
1344----------------------
1345
1346Any memory access must be done through a pointer value associated with
1347an address range of the memory access, otherwise the behavior is
1348undefined. Pointer values are associated with address ranges according
1349to the following rules:
1350
1351- A pointer value is associated with the addresses associated with any
1352 value it is *based* on.
1353- An address of a global variable is associated with the address range
1354 of the variable's storage.
1355- The result value of an allocation instruction is associated with the
1356 address range of the allocated storage.
1357- A null pointer in the default address-space is associated with no
1358 address.
1359- An integer constant other than zero or a pointer value returned from
1360 a function not defined within LLVM may be associated with address
1361 ranges allocated through mechanisms other than those provided by
1362 LLVM. Such ranges shall not overlap with any ranges of addresses
1363 allocated by mechanisms provided by LLVM.
1364
1365A pointer value is *based* on another pointer value according to the
1366following rules:
1367
1368- A pointer value formed from a ``getelementptr`` operation is *based*
1369 on the first operand of the ``getelementptr``.
1370- The result value of a ``bitcast`` is *based* on the operand of the
1371 ``bitcast``.
1372- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1373 values that contribute (directly or indirectly) to the computation of
1374 the pointer's value.
1375- The "*based* on" relationship is transitive.
1376
1377Note that this definition of *"based"* is intentionally similar to the
1378definition of *"based"* in C99, though it is slightly weaker.
1379
1380LLVM IR does not associate types with memory. The result type of a
1381``load`` merely indicates the size and alignment of the memory from
1382which to load, as well as the interpretation of the value. The first
1383operand type of a ``store`` similarly only indicates the size and
1384alignment of the store.
1385
1386Consequently, type-based alias analysis, aka TBAA, aka
1387``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1388:ref:`Metadata <metadata>` may be used to encode additional information
1389which specialized optimization passes may use to implement type-based
1390alias analysis.
1391
1392.. _volatile:
1393
1394Volatile Memory Accesses
1395------------------------
1396
1397Certain memory accesses, such as :ref:`load <i_load>`'s,
1398:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1399marked ``volatile``. The optimizers must not change the number of
1400volatile operations or change their order of execution relative to other
1401volatile operations. The optimizers *may* change the order of volatile
1402operations relative to non-volatile operations. This is not Java's
1403"volatile" and has no cross-thread synchronization behavior.
1404
Andrew Trick89fc5a62013-01-30 21:19:35 +00001405IR-level volatile loads and stores cannot safely be optimized into
1406llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1407flagged volatile. Likewise, the backend should never split or merge
1408target-legal volatile load/store instructions.
1409
Andrew Trick7e6f9282013-01-31 00:49:39 +00001410.. admonition:: Rationale
1411
1412 Platforms may rely on volatile loads and stores of natively supported
1413 data width to be executed as single instruction. For example, in C
1414 this holds for an l-value of volatile primitive type with native
1415 hardware support, but not necessarily for aggregate types. The
1416 frontend upholds these expectations, which are intentionally
1417 unspecified in the IR. The rules above ensure that IR transformation
1418 do not violate the frontend's contract with the language.
1419
Sean Silvab084af42012-12-07 10:36:55 +00001420.. _memmodel:
1421
1422Memory Model for Concurrent Operations
1423--------------------------------------
1424
1425The LLVM IR does not define any way to start parallel threads of
1426execution or to register signal handlers. Nonetheless, there are
1427platform-specific ways to create them, and we define LLVM IR's behavior
1428in their presence. This model is inspired by the C++0x memory model.
1429
1430For a more informal introduction to this model, see the :doc:`Atomics`.
1431
1432We define a *happens-before* partial order as the least partial order
1433that
1434
1435- Is a superset of single-thread program order, and
1436- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1437 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1438 techniques, like pthread locks, thread creation, thread joining,
1439 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1440 Constraints <ordering>`).
1441
1442Note that program order does not introduce *happens-before* edges
1443between a thread and signals executing inside that thread.
1444
1445Every (defined) read operation (load instructions, memcpy, atomic
1446loads/read-modify-writes, etc.) R reads a series of bytes written by
1447(defined) write operations (store instructions, atomic
1448stores/read-modify-writes, memcpy, etc.). For the purposes of this
1449section, initialized globals are considered to have a write of the
1450initializer which is atomic and happens before any other read or write
1451of the memory in question. For each byte of a read R, R\ :sub:`byte`
1452may see any write to the same byte, except:
1453
1454- If write\ :sub:`1` happens before write\ :sub:`2`, and
1455 write\ :sub:`2` happens before R\ :sub:`byte`, then
1456 R\ :sub:`byte` does not see write\ :sub:`1`.
1457- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1458 R\ :sub:`byte` does not see write\ :sub:`3`.
1459
1460Given that definition, R\ :sub:`byte` is defined as follows:
1461
1462- If R is volatile, the result is target-dependent. (Volatile is
1463 supposed to give guarantees which can support ``sig_atomic_t`` in
1464 C/C++, and may be used for accesses to addresses which do not behave
1465 like normal memory. It does not generally provide cross-thread
1466 synchronization.)
1467- Otherwise, if there is no write to the same byte that happens before
1468 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1469- Otherwise, if R\ :sub:`byte` may see exactly one write,
1470 R\ :sub:`byte` returns the value written by that write.
1471- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1472 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1473 Memory Ordering Constraints <ordering>` section for additional
1474 constraints on how the choice is made.
1475- Otherwise R\ :sub:`byte` returns ``undef``.
1476
1477R returns the value composed of the series of bytes it read. This
1478implies that some bytes within the value may be ``undef`` **without**
1479the entire value being ``undef``. Note that this only defines the
1480semantics of the operation; it doesn't mean that targets will emit more
1481than one instruction to read the series of bytes.
1482
1483Note that in cases where none of the atomic intrinsics are used, this
1484model places only one restriction on IR transformations on top of what
1485is required for single-threaded execution: introducing a store to a byte
1486which might not otherwise be stored is not allowed in general.
1487(Specifically, in the case where another thread might write to and read
1488from an address, introducing a store can change a load that may see
1489exactly one write into a load that may see multiple writes.)
1490
1491.. _ordering:
1492
1493Atomic Memory Ordering Constraints
1494----------------------------------
1495
1496Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1497:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1498:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001499ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001500the same address they *synchronize with*. These semantics are borrowed
1501from Java and C++0x, but are somewhat more colloquial. If these
1502descriptions aren't precise enough, check those specs (see spec
1503references in the :doc:`atomics guide <Atomics>`).
1504:ref:`fence <i_fence>` instructions treat these orderings somewhat
1505differently since they don't take an address. See that instruction's
1506documentation for details.
1507
1508For a simpler introduction to the ordering constraints, see the
1509:doc:`Atomics`.
1510
1511``unordered``
1512 The set of values that can be read is governed by the happens-before
1513 partial order. A value cannot be read unless some operation wrote
1514 it. This is intended to provide a guarantee strong enough to model
1515 Java's non-volatile shared variables. This ordering cannot be
1516 specified for read-modify-write operations; it is not strong enough
1517 to make them atomic in any interesting way.
1518``monotonic``
1519 In addition to the guarantees of ``unordered``, there is a single
1520 total order for modifications by ``monotonic`` operations on each
1521 address. All modification orders must be compatible with the
1522 happens-before order. There is no guarantee that the modification
1523 orders can be combined to a global total order for the whole program
1524 (and this often will not be possible). The read in an atomic
1525 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1526 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1527 order immediately before the value it writes. If one atomic read
1528 happens before another atomic read of the same address, the later
1529 read must see the same value or a later value in the address's
1530 modification order. This disallows reordering of ``monotonic`` (or
1531 stronger) operations on the same address. If an address is written
1532 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1533 read that address repeatedly, the other threads must eventually see
1534 the write. This corresponds to the C++0x/C1x
1535 ``memory_order_relaxed``.
1536``acquire``
1537 In addition to the guarantees of ``monotonic``, a
1538 *synchronizes-with* edge may be formed with a ``release`` operation.
1539 This is intended to model C++'s ``memory_order_acquire``.
1540``release``
1541 In addition to the guarantees of ``monotonic``, if this operation
1542 writes a value which is subsequently read by an ``acquire``
1543 operation, it *synchronizes-with* that operation. (This isn't a
1544 complete description; see the C++0x definition of a release
1545 sequence.) This corresponds to the C++0x/C1x
1546 ``memory_order_release``.
1547``acq_rel`` (acquire+release)
1548 Acts as both an ``acquire`` and ``release`` operation on its
1549 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1550``seq_cst`` (sequentially consistent)
1551 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1552 operation which only reads, ``release`` for an operation which only
1553 writes), there is a global total order on all
1554 sequentially-consistent operations on all addresses, which is
1555 consistent with the *happens-before* partial order and with the
1556 modification orders of all the affected addresses. Each
1557 sequentially-consistent read sees the last preceding write to the
1558 same address in this global order. This corresponds to the C++0x/C1x
1559 ``memory_order_seq_cst`` and Java volatile.
1560
1561.. _singlethread:
1562
1563If an atomic operation is marked ``singlethread``, it only *synchronizes
1564with* or participates in modification and seq\_cst total orderings with
1565other operations running in the same thread (for example, in signal
1566handlers).
1567
1568.. _fastmath:
1569
1570Fast-Math Flags
1571---------------
1572
1573LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1574:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1575:ref:`frem <i_frem>`) have the following flags that can set to enable
1576otherwise unsafe floating point operations
1577
1578``nnan``
1579 No NaNs - Allow optimizations to assume the arguments and result are not
1580 NaN. Such optimizations are required to retain defined behavior over
1581 NaNs, but the value of the result is undefined.
1582
1583``ninf``
1584 No Infs - Allow optimizations to assume the arguments and result are not
1585 +/-Inf. Such optimizations are required to retain defined behavior over
1586 +/-Inf, but the value of the result is undefined.
1587
1588``nsz``
1589 No Signed Zeros - Allow optimizations to treat the sign of a zero
1590 argument or result as insignificant.
1591
1592``arcp``
1593 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1594 argument rather than perform division.
1595
1596``fast``
1597 Fast - Allow algebraically equivalent transformations that may
1598 dramatically change results in floating point (e.g. reassociate). This
1599 flag implies all the others.
1600
1601.. _typesystem:
1602
1603Type System
1604===========
1605
1606The LLVM type system is one of the most important features of the
1607intermediate representation. Being typed enables a number of
1608optimizations to be performed on the intermediate representation
1609directly, without having to do extra analyses on the side before the
1610transformation. A strong type system makes it easier to read the
1611generated code and enables novel analyses and transformations that are
1612not feasible to perform on normal three address code representations.
1613
Rafael Espindola08013342013-12-07 19:34:20 +00001614.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001615
Rafael Espindola08013342013-12-07 19:34:20 +00001616Void Type
1617---------
Sean Silvab084af42012-12-07 10:36:55 +00001618
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001619:Overview:
1620
Rafael Espindola08013342013-12-07 19:34:20 +00001621
1622The void type does not represent any value and has no size.
1623
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001624:Syntax:
1625
Rafael Espindola08013342013-12-07 19:34:20 +00001626
1627::
1628
1629 void
Sean Silvab084af42012-12-07 10:36:55 +00001630
1631
Rafael Espindola08013342013-12-07 19:34:20 +00001632.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001633
Rafael Espindola08013342013-12-07 19:34:20 +00001634Function Type
1635-------------
Sean Silvab084af42012-12-07 10:36:55 +00001636
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001637:Overview:
1638
Sean Silvab084af42012-12-07 10:36:55 +00001639
Rafael Espindola08013342013-12-07 19:34:20 +00001640The function type can be thought of as a function signature. It consists of a
1641return type and a list of formal parameter types. The return type of a function
1642type is a void type or first class type --- except for :ref:`label <t_label>`
1643and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001644
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001645:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001646
Rafael Espindola08013342013-12-07 19:34:20 +00001647::
Sean Silvab084af42012-12-07 10:36:55 +00001648
Rafael Espindola08013342013-12-07 19:34:20 +00001649 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001650
Rafael Espindola08013342013-12-07 19:34:20 +00001651...where '``<parameter list>``' is a comma-separated list of type
1652specifiers. Optionally, the parameter list may include a type ``...``, which
1653indicates that the function takes a variable number of arguments. Variable
1654argument functions can access their arguments with the :ref:`variable argument
1655handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1656except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001657
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001658:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001659
Rafael Espindola08013342013-12-07 19:34:20 +00001660+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1661| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1662+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1663| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1664+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1665| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1666+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1667| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1668+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1669
1670.. _t_firstclass:
1671
1672First Class Types
1673-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001674
1675The :ref:`first class <t_firstclass>` types are perhaps the most important.
1676Values of these types are the only ones which can be produced by
1677instructions.
1678
Rafael Espindola08013342013-12-07 19:34:20 +00001679.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001680
Rafael Espindola08013342013-12-07 19:34:20 +00001681Single Value Types
1682^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001683
Rafael Espindola08013342013-12-07 19:34:20 +00001684These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001685
1686.. _t_integer:
1687
1688Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001689""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001690
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001691:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001692
1693The integer type is a very simple type that simply specifies an
1694arbitrary bit width for the integer type desired. Any bit width from 1
1695bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1696
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001697:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001698
1699::
1700
1701 iN
1702
1703The number of bits the integer will occupy is specified by the ``N``
1704value.
1705
1706Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001707*********
Sean Silvab084af42012-12-07 10:36:55 +00001708
1709+----------------+------------------------------------------------+
1710| ``i1`` | a single-bit integer. |
1711+----------------+------------------------------------------------+
1712| ``i32`` | a 32-bit integer. |
1713+----------------+------------------------------------------------+
1714| ``i1942652`` | a really big integer of over 1 million bits. |
1715+----------------+------------------------------------------------+
1716
1717.. _t_floating:
1718
1719Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001720""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001721
1722.. list-table::
1723 :header-rows: 1
1724
1725 * - Type
1726 - Description
1727
1728 * - ``half``
1729 - 16-bit floating point value
1730
1731 * - ``float``
1732 - 32-bit floating point value
1733
1734 * - ``double``
1735 - 64-bit floating point value
1736
1737 * - ``fp128``
1738 - 128-bit floating point value (112-bit mantissa)
1739
1740 * - ``x86_fp80``
1741 - 80-bit floating point value (X87)
1742
1743 * - ``ppc_fp128``
1744 - 128-bit floating point value (two 64-bits)
1745
Reid Kleckner9a16d082014-03-05 02:41:37 +00001746X86_mmx Type
1747""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001748
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001749:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001750
Reid Kleckner9a16d082014-03-05 02:41:37 +00001751The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001752machine. The operations allowed on it are quite limited: parameters and
1753return values, load and store, and bitcast. User-specified MMX
1754instructions are represented as intrinsic or asm calls with arguments
1755and/or results of this type. There are no arrays, vectors or constants
1756of this type.
1757
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001758:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001759
1760::
1761
Reid Kleckner9a16d082014-03-05 02:41:37 +00001762 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001763
Sean Silvab084af42012-12-07 10:36:55 +00001764
Rafael Espindola08013342013-12-07 19:34:20 +00001765.. _t_pointer:
1766
1767Pointer Type
1768""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001769
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001770:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001771
Rafael Espindola08013342013-12-07 19:34:20 +00001772The pointer type is used to specify memory locations. Pointers are
1773commonly used to reference objects in memory.
1774
1775Pointer types may have an optional address space attribute defining the
1776numbered address space where the pointed-to object resides. The default
1777address space is number zero. The semantics of non-zero address spaces
1778are target-specific.
1779
1780Note that LLVM does not permit pointers to void (``void*``) nor does it
1781permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001782
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001783:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001784
1785::
1786
Rafael Espindola08013342013-12-07 19:34:20 +00001787 <type> *
1788
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001789:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001790
1791+-------------------------+--------------------------------------------------------------------------------------------------------------+
1792| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1793+-------------------------+--------------------------------------------------------------------------------------------------------------+
1794| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1795+-------------------------+--------------------------------------------------------------------------------------------------------------+
1796| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1797+-------------------------+--------------------------------------------------------------------------------------------------------------+
1798
1799.. _t_vector:
1800
1801Vector Type
1802"""""""""""
1803
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001804:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001805
1806A vector type is a simple derived type that represents a vector of
1807elements. Vector types are used when multiple primitive data are
1808operated in parallel using a single instruction (SIMD). A vector type
1809requires a size (number of elements) and an underlying primitive data
1810type. Vector types are considered :ref:`first class <t_firstclass>`.
1811
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001812:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001813
1814::
1815
1816 < <# elements> x <elementtype> >
1817
1818The number of elements is a constant integer value larger than 0;
1819elementtype may be any integer or floating point type, or a pointer to
1820these types. Vectors of size zero are not allowed.
1821
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001822:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001823
1824+-------------------+--------------------------------------------------+
1825| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1826+-------------------+--------------------------------------------------+
1827| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1828+-------------------+--------------------------------------------------+
1829| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1830+-------------------+--------------------------------------------------+
1831| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1832+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001833
1834.. _t_label:
1835
1836Label Type
1837^^^^^^^^^^
1838
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001839:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001840
1841The label type represents code labels.
1842
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001843:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001844
1845::
1846
1847 label
1848
1849.. _t_metadata:
1850
1851Metadata Type
1852^^^^^^^^^^^^^
1853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001854:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001855
1856The metadata type represents embedded metadata. No derived types may be
1857created from metadata except for :ref:`function <t_function>` arguments.
1858
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001859:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001860
1861::
1862
1863 metadata
1864
Sean Silvab084af42012-12-07 10:36:55 +00001865.. _t_aggregate:
1866
1867Aggregate Types
1868^^^^^^^^^^^^^^^
1869
1870Aggregate Types are a subset of derived types that can contain multiple
1871member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1872aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1873aggregate types.
1874
1875.. _t_array:
1876
1877Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001878""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001879
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001880:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001881
1882The array type is a very simple derived type that arranges elements
1883sequentially in memory. The array type requires a size (number of
1884elements) and an underlying data type.
1885
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001886:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001887
1888::
1889
1890 [<# elements> x <elementtype>]
1891
1892The number of elements is a constant integer value; ``elementtype`` may
1893be any type with a size.
1894
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001895:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001896
1897+------------------+--------------------------------------+
1898| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1899+------------------+--------------------------------------+
1900| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1901+------------------+--------------------------------------+
1902| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1903+------------------+--------------------------------------+
1904
1905Here are some examples of multidimensional arrays:
1906
1907+-----------------------------+----------------------------------------------------------+
1908| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1909+-----------------------------+----------------------------------------------------------+
1910| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1911+-----------------------------+----------------------------------------------------------+
1912| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1913+-----------------------------+----------------------------------------------------------+
1914
1915There is no restriction on indexing beyond the end of the array implied
1916by a static type (though there are restrictions on indexing beyond the
1917bounds of an allocated object in some cases). This means that
1918single-dimension 'variable sized array' addressing can be implemented in
1919LLVM with a zero length array type. An implementation of 'pascal style
1920arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1921example.
1922
Sean Silvab084af42012-12-07 10:36:55 +00001923.. _t_struct:
1924
1925Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001926""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001927
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001928:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001929
1930The structure type is used to represent a collection of data members
1931together in memory. The elements of a structure may be any type that has
1932a size.
1933
1934Structures in memory are accessed using '``load``' and '``store``' by
1935getting a pointer to a field with the '``getelementptr``' instruction.
1936Structures in registers are accessed using the '``extractvalue``' and
1937'``insertvalue``' instructions.
1938
1939Structures may optionally be "packed" structures, which indicate that
1940the alignment of the struct is one byte, and that there is no padding
1941between the elements. In non-packed structs, padding between field types
1942is inserted as defined by the DataLayout string in the module, which is
1943required to match what the underlying code generator expects.
1944
1945Structures can either be "literal" or "identified". A literal structure
1946is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1947identified types are always defined at the top level with a name.
1948Literal types are uniqued by their contents and can never be recursive
1949or opaque since there is no way to write one. Identified types can be
1950recursive, can be opaqued, and are never uniqued.
1951
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001952:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001953
1954::
1955
1956 %T1 = type { <type list> } ; Identified normal struct type
1957 %T2 = type <{ <type list> }> ; Identified packed struct type
1958
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001959:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001960
1961+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1962| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1963+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001964| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001965+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1966| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1967+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1968
1969.. _t_opaque:
1970
1971Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001972""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001973
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001974:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001975
1976Opaque structure types are used to represent named structure types that
1977do not have a body specified. This corresponds (for example) to the C
1978notion of a forward declared structure.
1979
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001980:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001981
1982::
1983
1984 %X = type opaque
1985 %52 = type opaque
1986
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001987:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001988
1989+--------------+-------------------+
1990| ``opaque`` | An opaque type. |
1991+--------------+-------------------+
1992
Sean Silvab084af42012-12-07 10:36:55 +00001993Constants
1994=========
1995
1996LLVM has several different basic types of constants. This section
1997describes them all and their syntax.
1998
1999Simple Constants
2000----------------
2001
2002**Boolean constants**
2003 The two strings '``true``' and '``false``' are both valid constants
2004 of the ``i1`` type.
2005**Integer constants**
2006 Standard integers (such as '4') are constants of the
2007 :ref:`integer <t_integer>` type. Negative numbers may be used with
2008 integer types.
2009**Floating point constants**
2010 Floating point constants use standard decimal notation (e.g.
2011 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2012 hexadecimal notation (see below). The assembler requires the exact
2013 decimal value of a floating-point constant. For example, the
2014 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2015 decimal in binary. Floating point constants must have a :ref:`floating
2016 point <t_floating>` type.
2017**Null pointer constants**
2018 The identifier '``null``' is recognized as a null pointer constant
2019 and must be of :ref:`pointer type <t_pointer>`.
2020
2021The one non-intuitive notation for constants is the hexadecimal form of
2022floating point constants. For example, the form
2023'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2024than) '``double 4.5e+15``'. The only time hexadecimal floating point
2025constants are required (and the only time that they are generated by the
2026disassembler) is when a floating point constant must be emitted but it
2027cannot be represented as a decimal floating point number in a reasonable
2028number of digits. For example, NaN's, infinities, and other special
2029values are represented in their IEEE hexadecimal format so that assembly
2030and disassembly do not cause any bits to change in the constants.
2031
2032When using the hexadecimal form, constants of types half, float, and
2033double are represented using the 16-digit form shown above (which
2034matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002035must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002036precision, respectively. Hexadecimal format is always used for long
2037double, and there are three forms of long double. The 80-bit format used
2038by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2039128-bit format used by PowerPC (two adjacent doubles) is represented by
2040``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002041represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2042will only work if they match the long double format on your target.
2043The IEEE 16-bit format (half precision) is represented by ``0xH``
2044followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2045(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002046
Reid Kleckner9a16d082014-03-05 02:41:37 +00002047There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002048
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002049.. _complexconstants:
2050
Sean Silvab084af42012-12-07 10:36:55 +00002051Complex Constants
2052-----------------
2053
2054Complex constants are a (potentially recursive) combination of simple
2055constants and smaller complex constants.
2056
2057**Structure constants**
2058 Structure constants are represented with notation similar to
2059 structure type definitions (a comma separated list of elements,
2060 surrounded by braces (``{}``)). For example:
2061 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2062 "``@G = external global i32``". Structure constants must have
2063 :ref:`structure type <t_struct>`, and the number and types of elements
2064 must match those specified by the type.
2065**Array constants**
2066 Array constants are represented with notation similar to array type
2067 definitions (a comma separated list of elements, surrounded by
2068 square brackets (``[]``)). For example:
2069 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2070 :ref:`array type <t_array>`, and the number and types of elements must
2071 match those specified by the type.
2072**Vector constants**
2073 Vector constants are represented with notation similar to vector
2074 type definitions (a comma separated list of elements, surrounded by
2075 less-than/greater-than's (``<>``)). For example:
2076 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2077 must have :ref:`vector type <t_vector>`, and the number and types of
2078 elements must match those specified by the type.
2079**Zero initialization**
2080 The string '``zeroinitializer``' can be used to zero initialize a
2081 value to zero of *any* type, including scalar and
2082 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2083 having to print large zero initializers (e.g. for large arrays) and
2084 is always exactly equivalent to using explicit zero initializers.
2085**Metadata node**
2086 A metadata node is a structure-like constant with :ref:`metadata
2087 type <t_metadata>`. For example:
2088 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2089 constants that are meant to be interpreted as part of the
2090 instruction stream, metadata is a place to attach additional
2091 information such as debug info.
2092
2093Global Variable and Function Addresses
2094--------------------------------------
2095
2096The addresses of :ref:`global variables <globalvars>` and
2097:ref:`functions <functionstructure>` are always implicitly valid
2098(link-time) constants. These constants are explicitly referenced when
2099the :ref:`identifier for the global <identifiers>` is used and always have
2100:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2101file:
2102
2103.. code-block:: llvm
2104
2105 @X = global i32 17
2106 @Y = global i32 42
2107 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2108
2109.. _undefvalues:
2110
2111Undefined Values
2112----------------
2113
2114The string '``undef``' can be used anywhere a constant is expected, and
2115indicates that the user of the value may receive an unspecified
2116bit-pattern. Undefined values may be of any type (other than '``label``'
2117or '``void``') and be used anywhere a constant is permitted.
2118
2119Undefined values are useful because they indicate to the compiler that
2120the program is well defined no matter what value is used. This gives the
2121compiler more freedom to optimize. Here are some examples of
2122(potentially surprising) transformations that are valid (in pseudo IR):
2123
2124.. code-block:: llvm
2125
2126 %A = add %X, undef
2127 %B = sub %X, undef
2128 %C = xor %X, undef
2129 Safe:
2130 %A = undef
2131 %B = undef
2132 %C = undef
2133
2134This is safe because all of the output bits are affected by the undef
2135bits. Any output bit can have a zero or one depending on the input bits.
2136
2137.. code-block:: llvm
2138
2139 %A = or %X, undef
2140 %B = and %X, undef
2141 Safe:
2142 %A = -1
2143 %B = 0
2144 Unsafe:
2145 %A = undef
2146 %B = undef
2147
2148These logical operations have bits that are not always affected by the
2149input. For example, if ``%X`` has a zero bit, then the output of the
2150'``and``' operation will always be a zero for that bit, no matter what
2151the corresponding bit from the '``undef``' is. As such, it is unsafe to
2152optimize or assume that the result of the '``and``' is '``undef``'.
2153However, it is safe to assume that all bits of the '``undef``' could be
21540, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2155all the bits of the '``undef``' operand to the '``or``' could be set,
2156allowing the '``or``' to be folded to -1.
2157
2158.. code-block:: llvm
2159
2160 %A = select undef, %X, %Y
2161 %B = select undef, 42, %Y
2162 %C = select %X, %Y, undef
2163 Safe:
2164 %A = %X (or %Y)
2165 %B = 42 (or %Y)
2166 %C = %Y
2167 Unsafe:
2168 %A = undef
2169 %B = undef
2170 %C = undef
2171
2172This set of examples shows that undefined '``select``' (and conditional
2173branch) conditions can go *either way*, but they have to come from one
2174of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2175both known to have a clear low bit, then ``%A`` would have to have a
2176cleared low bit. However, in the ``%C`` example, the optimizer is
2177allowed to assume that the '``undef``' operand could be the same as
2178``%Y``, allowing the whole '``select``' to be eliminated.
2179
2180.. code-block:: llvm
2181
2182 %A = xor undef, undef
2183
2184 %B = undef
2185 %C = xor %B, %B
2186
2187 %D = undef
2188 %E = icmp lt %D, 4
2189 %F = icmp gte %D, 4
2190
2191 Safe:
2192 %A = undef
2193 %B = undef
2194 %C = undef
2195 %D = undef
2196 %E = undef
2197 %F = undef
2198
2199This example points out that two '``undef``' operands are not
2200necessarily the same. This can be surprising to people (and also matches
2201C semantics) where they assume that "``X^X``" is always zero, even if
2202``X`` is undefined. This isn't true for a number of reasons, but the
2203short answer is that an '``undef``' "variable" can arbitrarily change
2204its value over its "live range". This is true because the variable
2205doesn't actually *have a live range*. Instead, the value is logically
2206read from arbitrary registers that happen to be around when needed, so
2207the value is not necessarily consistent over time. In fact, ``%A`` and
2208``%C`` need to have the same semantics or the core LLVM "replace all
2209uses with" concept would not hold.
2210
2211.. code-block:: llvm
2212
2213 %A = fdiv undef, %X
2214 %B = fdiv %X, undef
2215 Safe:
2216 %A = undef
2217 b: unreachable
2218
2219These examples show the crucial difference between an *undefined value*
2220and *undefined behavior*. An undefined value (like '``undef``') is
2221allowed to have an arbitrary bit-pattern. This means that the ``%A``
2222operation can be constant folded to '``undef``', because the '``undef``'
2223could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2224However, in the second example, we can make a more aggressive
2225assumption: because the ``undef`` is allowed to be an arbitrary value,
2226we are allowed to assume that it could be zero. Since a divide by zero
2227has *undefined behavior*, we are allowed to assume that the operation
2228does not execute at all. This allows us to delete the divide and all
2229code after it. Because the undefined operation "can't happen", the
2230optimizer can assume that it occurs in dead code.
2231
2232.. code-block:: llvm
2233
2234 a: store undef -> %X
2235 b: store %X -> undef
2236 Safe:
2237 a: <deleted>
2238 b: unreachable
2239
2240These examples reiterate the ``fdiv`` example: a store *of* an undefined
2241value can be assumed to not have any effect; we can assume that the
2242value is overwritten with bits that happen to match what was already
2243there. However, a store *to* an undefined location could clobber
2244arbitrary memory, therefore, it has undefined behavior.
2245
2246.. _poisonvalues:
2247
2248Poison Values
2249-------------
2250
2251Poison values are similar to :ref:`undef values <undefvalues>`, however
2252they also represent the fact that an instruction or constant expression
2253which cannot evoke side effects has nevertheless detected a condition
2254which results in undefined behavior.
2255
2256There is currently no way of representing a poison value in the IR; they
2257only exist when produced by operations such as :ref:`add <i_add>` with
2258the ``nsw`` flag.
2259
2260Poison value behavior is defined in terms of value *dependence*:
2261
2262- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2263- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2264 their dynamic predecessor basic block.
2265- Function arguments depend on the corresponding actual argument values
2266 in the dynamic callers of their functions.
2267- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2268 instructions that dynamically transfer control back to them.
2269- :ref:`Invoke <i_invoke>` instructions depend on the
2270 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2271 call instructions that dynamically transfer control back to them.
2272- Non-volatile loads and stores depend on the most recent stores to all
2273 of the referenced memory addresses, following the order in the IR
2274 (including loads and stores implied by intrinsics such as
2275 :ref:`@llvm.memcpy <int_memcpy>`.)
2276- An instruction with externally visible side effects depends on the
2277 most recent preceding instruction with externally visible side
2278 effects, following the order in the IR. (This includes :ref:`volatile
2279 operations <volatile>`.)
2280- An instruction *control-depends* on a :ref:`terminator
2281 instruction <terminators>` if the terminator instruction has
2282 multiple successors and the instruction is always executed when
2283 control transfers to one of the successors, and may not be executed
2284 when control is transferred to another.
2285- Additionally, an instruction also *control-depends* on a terminator
2286 instruction if the set of instructions it otherwise depends on would
2287 be different if the terminator had transferred control to a different
2288 successor.
2289- Dependence is transitive.
2290
2291Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2292with the additional affect that any instruction which has a *dependence*
2293on a poison value has undefined behavior.
2294
2295Here are some examples:
2296
2297.. code-block:: llvm
2298
2299 entry:
2300 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2301 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2302 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2303 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2304
2305 store i32 %poison, i32* @g ; Poison value stored to memory.
2306 %poison2 = load i32* @g ; Poison value loaded back from memory.
2307
2308 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2309
2310 %narrowaddr = bitcast i32* @g to i16*
2311 %wideaddr = bitcast i32* @g to i64*
2312 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2313 %poison4 = load i64* %wideaddr ; Returns a poison value.
2314
2315 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2316 br i1 %cmp, label %true, label %end ; Branch to either destination.
2317
2318 true:
2319 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2320 ; it has undefined behavior.
2321 br label %end
2322
2323 end:
2324 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2325 ; Both edges into this PHI are
2326 ; control-dependent on %cmp, so this
2327 ; always results in a poison value.
2328
2329 store volatile i32 0, i32* @g ; This would depend on the store in %true
2330 ; if %cmp is true, or the store in %entry
2331 ; otherwise, so this is undefined behavior.
2332
2333 br i1 %cmp, label %second_true, label %second_end
2334 ; The same branch again, but this time the
2335 ; true block doesn't have side effects.
2336
2337 second_true:
2338 ; No side effects!
2339 ret void
2340
2341 second_end:
2342 store volatile i32 0, i32* @g ; This time, the instruction always depends
2343 ; on the store in %end. Also, it is
2344 ; control-equivalent to %end, so this is
2345 ; well-defined (ignoring earlier undefined
2346 ; behavior in this example).
2347
2348.. _blockaddress:
2349
2350Addresses of Basic Blocks
2351-------------------------
2352
2353``blockaddress(@function, %block)``
2354
2355The '``blockaddress``' constant computes the address of the specified
2356basic block in the specified function, and always has an ``i8*`` type.
2357Taking the address of the entry block is illegal.
2358
2359This value only has defined behavior when used as an operand to the
2360':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2361against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002362undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002363no label is equal to the null pointer. This may be passed around as an
2364opaque pointer sized value as long as the bits are not inspected. This
2365allows ``ptrtoint`` and arithmetic to be performed on these values so
2366long as the original value is reconstituted before the ``indirectbr``
2367instruction.
2368
2369Finally, some targets may provide defined semantics when using the value
2370as the operand to an inline assembly, but that is target specific.
2371
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002372.. _constantexprs:
2373
Sean Silvab084af42012-12-07 10:36:55 +00002374Constant Expressions
2375--------------------
2376
2377Constant expressions are used to allow expressions involving other
2378constants to be used as constants. Constant expressions may be of any
2379:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2380that does not have side effects (e.g. load and call are not supported).
2381The following is the syntax for constant expressions:
2382
2383``trunc (CST to TYPE)``
2384 Truncate a constant to another type. The bit size of CST must be
2385 larger than the bit size of TYPE. Both types must be integers.
2386``zext (CST to TYPE)``
2387 Zero extend a constant to another type. The bit size of CST must be
2388 smaller than the bit size of TYPE. Both types must be integers.
2389``sext (CST to TYPE)``
2390 Sign extend a constant to another type. The bit size of CST must be
2391 smaller than the bit size of TYPE. Both types must be integers.
2392``fptrunc (CST to TYPE)``
2393 Truncate a floating point constant to another floating point type.
2394 The size of CST must be larger than the size of TYPE. Both types
2395 must be floating point.
2396``fpext (CST to TYPE)``
2397 Floating point extend a constant to another type. The size of CST
2398 must be smaller or equal to the size of TYPE. Both types must be
2399 floating point.
2400``fptoui (CST to TYPE)``
2401 Convert a floating point constant to the corresponding unsigned
2402 integer constant. TYPE must be a scalar or vector integer type. CST
2403 must be of scalar or vector floating point type. Both CST and TYPE
2404 must be scalars, or vectors of the same number of elements. If the
2405 value won't fit in the integer type, the results are undefined.
2406``fptosi (CST to TYPE)``
2407 Convert a floating point constant to the corresponding signed
2408 integer constant. TYPE must be a scalar or vector integer type. CST
2409 must be of scalar or vector floating point type. Both CST and TYPE
2410 must be scalars, or vectors of the same number of elements. If the
2411 value won't fit in the integer type, the results are undefined.
2412``uitofp (CST to TYPE)``
2413 Convert an unsigned integer constant to the corresponding floating
2414 point constant. TYPE must be a scalar or vector floating point type.
2415 CST must be of scalar or vector integer type. Both CST and TYPE must
2416 be scalars, or vectors of the same number of elements. If the value
2417 won't fit in the floating point type, the results are undefined.
2418``sitofp (CST to TYPE)``
2419 Convert a signed integer constant to the corresponding floating
2420 point constant. TYPE must be a scalar or vector floating point type.
2421 CST must be of scalar or vector integer type. Both CST and TYPE must
2422 be scalars, or vectors of the same number of elements. If the value
2423 won't fit in the floating point type, the results are undefined.
2424``ptrtoint (CST to TYPE)``
2425 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002426 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002427 pointer type. The ``CST`` value is zero extended, truncated, or
2428 unchanged to make it fit in ``TYPE``.
2429``inttoptr (CST to TYPE)``
2430 Convert an integer constant to a pointer constant. TYPE must be a
2431 pointer type. CST must be of integer type. The CST value is zero
2432 extended, truncated, or unchanged to make it fit in a pointer size.
2433 This one is *really* dangerous!
2434``bitcast (CST to TYPE)``
2435 Convert a constant, CST, to another TYPE. The constraints of the
2436 operands are the same as those for the :ref:`bitcast
2437 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002438``addrspacecast (CST to TYPE)``
2439 Convert a constant pointer or constant vector of pointer, CST, to another
2440 TYPE in a different address space. The constraints of the operands are the
2441 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002442``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2443 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2444 constants. As with the :ref:`getelementptr <i_getelementptr>`
2445 instruction, the index list may have zero or more indexes, which are
2446 required to make sense for the type of "CSTPTR".
2447``select (COND, VAL1, VAL2)``
2448 Perform the :ref:`select operation <i_select>` on constants.
2449``icmp COND (VAL1, VAL2)``
2450 Performs the :ref:`icmp operation <i_icmp>` on constants.
2451``fcmp COND (VAL1, VAL2)``
2452 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2453``extractelement (VAL, IDX)``
2454 Perform the :ref:`extractelement operation <i_extractelement>` on
2455 constants.
2456``insertelement (VAL, ELT, IDX)``
2457 Perform the :ref:`insertelement operation <i_insertelement>` on
2458 constants.
2459``shufflevector (VEC1, VEC2, IDXMASK)``
2460 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2461 constants.
2462``extractvalue (VAL, IDX0, IDX1, ...)``
2463 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2464 constants. The index list is interpreted in a similar manner as
2465 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2466 least one index value must be specified.
2467``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2468 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2469 The index list is interpreted in a similar manner as indices in a
2470 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2471 value must be specified.
2472``OPCODE (LHS, RHS)``
2473 Perform the specified operation of the LHS and RHS constants. OPCODE
2474 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2475 binary <bitwiseops>` operations. The constraints on operands are
2476 the same as those for the corresponding instruction (e.g. no bitwise
2477 operations on floating point values are allowed).
2478
2479Other Values
2480============
2481
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002482.. _inlineasmexprs:
2483
Sean Silvab084af42012-12-07 10:36:55 +00002484Inline Assembler Expressions
2485----------------------------
2486
2487LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2488Inline Assembly <moduleasm>`) through the use of a special value. This
2489value represents the inline assembler as a string (containing the
2490instructions to emit), a list of operand constraints (stored as a
2491string), a flag that indicates whether or not the inline asm expression
2492has side effects, and a flag indicating whether the function containing
2493the asm needs to align its stack conservatively. An example inline
2494assembler expression is:
2495
2496.. code-block:: llvm
2497
2498 i32 (i32) asm "bswap $0", "=r,r"
2499
2500Inline assembler expressions may **only** be used as the callee operand
2501of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2502Thus, typically we have:
2503
2504.. code-block:: llvm
2505
2506 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2507
2508Inline asms with side effects not visible in the constraint list must be
2509marked as having side effects. This is done through the use of the
2510'``sideeffect``' keyword, like so:
2511
2512.. code-block:: llvm
2513
2514 call void asm sideeffect "eieio", ""()
2515
2516In some cases inline asms will contain code that will not work unless
2517the stack is aligned in some way, such as calls or SSE instructions on
2518x86, yet will not contain code that does that alignment within the asm.
2519The compiler should make conservative assumptions about what the asm
2520might contain and should generate its usual stack alignment code in the
2521prologue if the '``alignstack``' keyword is present:
2522
2523.. code-block:: llvm
2524
2525 call void asm alignstack "eieio", ""()
2526
2527Inline asms also support using non-standard assembly dialects. The
2528assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2529the inline asm is using the Intel dialect. Currently, ATT and Intel are
2530the only supported dialects. An example is:
2531
2532.. code-block:: llvm
2533
2534 call void asm inteldialect "eieio", ""()
2535
2536If multiple keywords appear the '``sideeffect``' keyword must come
2537first, the '``alignstack``' keyword second and the '``inteldialect``'
2538keyword last.
2539
2540Inline Asm Metadata
2541^^^^^^^^^^^^^^^^^^^
2542
2543The call instructions that wrap inline asm nodes may have a
2544"``!srcloc``" MDNode attached to it that contains a list of constant
2545integers. If present, the code generator will use the integer as the
2546location cookie value when report errors through the ``LLVMContext``
2547error reporting mechanisms. This allows a front-end to correlate backend
2548errors that occur with inline asm back to the source code that produced
2549it. For example:
2550
2551.. code-block:: llvm
2552
2553 call void asm sideeffect "something bad", ""(), !srcloc !42
2554 ...
2555 !42 = !{ i32 1234567 }
2556
2557It is up to the front-end to make sense of the magic numbers it places
2558in the IR. If the MDNode contains multiple constants, the code generator
2559will use the one that corresponds to the line of the asm that the error
2560occurs on.
2561
2562.. _metadata:
2563
2564Metadata Nodes and Metadata Strings
2565-----------------------------------
2566
2567LLVM IR allows metadata to be attached to instructions in the program
2568that can convey extra information about the code to the optimizers and
2569code generator. One example application of metadata is source-level
2570debug information. There are two metadata primitives: strings and nodes.
2571All metadata has the ``metadata`` type and is identified in syntax by a
2572preceding exclamation point ('``!``').
2573
2574A metadata string is a string surrounded by double quotes. It can
2575contain any character by escaping non-printable characters with
2576"``\xx``" where "``xx``" is the two digit hex code. For example:
2577"``!"test\00"``".
2578
2579Metadata nodes are represented with notation similar to structure
2580constants (a comma separated list of elements, surrounded by braces and
2581preceded by an exclamation point). Metadata nodes can have any values as
2582their operand. For example:
2583
2584.. code-block:: llvm
2585
2586 !{ metadata !"test\00", i32 10}
2587
2588A :ref:`named metadata <namedmetadatastructure>` is a collection of
2589metadata nodes, which can be looked up in the module symbol table. For
2590example:
2591
2592.. code-block:: llvm
2593
2594 !foo = metadata !{!4, !3}
2595
2596Metadata can be used as function arguments. Here ``llvm.dbg.value``
2597function is using two metadata arguments:
2598
2599.. code-block:: llvm
2600
2601 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2602
2603Metadata can be attached with an instruction. Here metadata ``!21`` is
2604attached to the ``add`` instruction using the ``!dbg`` identifier:
2605
2606.. code-block:: llvm
2607
2608 %indvar.next = add i64 %indvar, 1, !dbg !21
2609
2610More information about specific metadata nodes recognized by the
2611optimizers and code generator is found below.
2612
2613'``tbaa``' Metadata
2614^^^^^^^^^^^^^^^^^^^
2615
2616In LLVM IR, memory does not have types, so LLVM's own type system is not
2617suitable for doing TBAA. Instead, metadata is added to the IR to
2618describe a type system of a higher level language. This can be used to
2619implement typical C/C++ TBAA, but it can also be used to implement
2620custom alias analysis behavior for other languages.
2621
2622The current metadata format is very simple. TBAA metadata nodes have up
2623to three fields, e.g.:
2624
2625.. code-block:: llvm
2626
2627 !0 = metadata !{ metadata !"an example type tree" }
2628 !1 = metadata !{ metadata !"int", metadata !0 }
2629 !2 = metadata !{ metadata !"float", metadata !0 }
2630 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2631
2632The first field is an identity field. It can be any value, usually a
2633metadata string, which uniquely identifies the type. The most important
2634name in the tree is the name of the root node. Two trees with different
2635root node names are entirely disjoint, even if they have leaves with
2636common names.
2637
2638The second field identifies the type's parent node in the tree, or is
2639null or omitted for a root node. A type is considered to alias all of
2640its descendants and all of its ancestors in the tree. Also, a type is
2641considered to alias all types in other trees, so that bitcode produced
2642from multiple front-ends is handled conservatively.
2643
2644If the third field is present, it's an integer which if equal to 1
2645indicates that the type is "constant" (meaning
2646``pointsToConstantMemory`` should return true; see `other useful
2647AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2648
2649'``tbaa.struct``' Metadata
2650^^^^^^^^^^^^^^^^^^^^^^^^^^
2651
2652The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2653aggregate assignment operations in C and similar languages, however it
2654is defined to copy a contiguous region of memory, which is more than
2655strictly necessary for aggregate types which contain holes due to
2656padding. Also, it doesn't contain any TBAA information about the fields
2657of the aggregate.
2658
2659``!tbaa.struct`` metadata can describe which memory subregions in a
2660memcpy are padding and what the TBAA tags of the struct are.
2661
2662The current metadata format is very simple. ``!tbaa.struct`` metadata
2663nodes are a list of operands which are in conceptual groups of three.
2664For each group of three, the first operand gives the byte offset of a
2665field in bytes, the second gives its size in bytes, and the third gives
2666its tbaa tag. e.g.:
2667
2668.. code-block:: llvm
2669
2670 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2671
2672This describes a struct with two fields. The first is at offset 0 bytes
2673with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2674and has size 4 bytes and has tbaa tag !2.
2675
2676Note that the fields need not be contiguous. In this example, there is a
26774 byte gap between the two fields. This gap represents padding which
2678does not carry useful data and need not be preserved.
2679
2680'``fpmath``' Metadata
2681^^^^^^^^^^^^^^^^^^^^^
2682
2683``fpmath`` metadata may be attached to any instruction of floating point
2684type. It can be used to express the maximum acceptable error in the
2685result of that instruction, in ULPs, thus potentially allowing the
2686compiler to use a more efficient but less accurate method of computing
2687it. ULP is defined as follows:
2688
2689 If ``x`` is a real number that lies between two finite consecutive
2690 floating-point numbers ``a`` and ``b``, without being equal to one
2691 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2692 distance between the two non-equal finite floating-point numbers
2693 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2694
2695The metadata node shall consist of a single positive floating point
2696number representing the maximum relative error, for example:
2697
2698.. code-block:: llvm
2699
2700 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2701
2702'``range``' Metadata
2703^^^^^^^^^^^^^^^^^^^^
2704
2705``range`` metadata may be attached only to loads of integer types. It
2706expresses the possible ranges the loaded value is in. The ranges are
2707represented with a flattened list of integers. The loaded value is known
2708to be in the union of the ranges defined by each consecutive pair. Each
2709pair has the following properties:
2710
2711- The type must match the type loaded by the instruction.
2712- The pair ``a,b`` represents the range ``[a,b)``.
2713- Both ``a`` and ``b`` are constants.
2714- The range is allowed to wrap.
2715- The range should not represent the full or empty set. That is,
2716 ``a!=b``.
2717
2718In addition, the pairs must be in signed order of the lower bound and
2719they must be non-contiguous.
2720
2721Examples:
2722
2723.. code-block:: llvm
2724
2725 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2726 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2727 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2728 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2729 ...
2730 !0 = metadata !{ i8 0, i8 2 }
2731 !1 = metadata !{ i8 255, i8 2 }
2732 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2733 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2734
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002735'``llvm.loop``'
2736^^^^^^^^^^^^^^^
2737
2738It is sometimes useful to attach information to loop constructs. Currently,
2739loop metadata is implemented as metadata attached to the branch instruction
2740in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002741guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002742specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002743
2744The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002745itself to avoid merging it with any other identifier metadata, e.g.,
2746during module linkage or function inlining. That is, each loop should refer
2747to their own identification metadata even if they reside in separate functions.
2748The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002749constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002750
2751.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002752
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002753 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002754 !1 = metadata !{ metadata !1 }
2755
Paul Redmond5fdf8362013-05-28 20:00:34 +00002756The loop identifier metadata can be used to specify additional per-loop
2757metadata. Any operands after the first operand can be treated as user-defined
2758metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2759by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002760
Paul Redmond5fdf8362013-05-28 20:00:34 +00002761.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002762
Paul Redmond5fdf8362013-05-28 20:00:34 +00002763 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2764 ...
2765 !0 = metadata !{ metadata !0, metadata !1 }
2766 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002767
2768'``llvm.mem``'
2769^^^^^^^^^^^^^^^
2770
2771Metadata types used to annotate memory accesses with information helpful
2772for optimizations are prefixed with ``llvm.mem``.
2773
2774'``llvm.mem.parallel_loop_access``' Metadata
2775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2776
2777For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002778the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002779also all of the memory accessing instructions in the loop body need to be
2780marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2781is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002782the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002783converted to sequential loops due to optimization passes that are unaware of
2784the parallel semantics and that insert new memory instructions to the loop
2785body.
2786
2787Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002788both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002789metadata types that refer to the same loop identifier metadata.
2790
2791.. code-block:: llvm
2792
2793 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002794 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002795 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002796 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002797 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002798 ...
2799 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002800
2801 for.end:
2802 ...
2803 !0 = metadata !{ metadata !0 }
2804
2805It is also possible to have nested parallel loops. In that case the
2806memory accesses refer to a list of loop identifier metadata nodes instead of
2807the loop identifier metadata node directly:
2808
2809.. code-block:: llvm
2810
2811 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002812 ...
2813 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2814 ...
2815 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002816
2817 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002818 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002819 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002820 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002821 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002822 ...
2823 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002824
2825 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002826 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002827 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002828 ...
2829 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002830
2831 outer.for.end: ; preds = %for.body
2832 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002833 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2834 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2835 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002836
Paul Redmond5fdf8362013-05-28 20:00:34 +00002837'``llvm.vectorizer``'
2838^^^^^^^^^^^^^^^^^^^^^
2839
2840Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2841vectorization parameters such as vectorization factor and unroll factor.
2842
2843``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2844loop identification metadata.
2845
2846'``llvm.vectorizer.unroll``' Metadata
2847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2848
2849This metadata instructs the loop vectorizer to unroll the specified
2850loop exactly ``N`` times.
2851
2852The first operand is the string ``llvm.vectorizer.unroll`` and the second
2853operand is an integer specifying the unroll factor. For example:
2854
2855.. code-block:: llvm
2856
2857 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2858
2859Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2860loop.
2861
2862If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2863determined automatically.
2864
2865'``llvm.vectorizer.width``' Metadata
2866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2867
Paul Redmondeccbb322013-05-30 17:22:46 +00002868This metadata sets the target width of the vectorizer to ``N``. Without
2869this metadata, the vectorizer will choose a width automatically.
2870Regardless of this metadata, the vectorizer will only vectorize loops if
2871it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002872
2873The first operand is the string ``llvm.vectorizer.width`` and the second
2874operand is an integer specifying the width. For example:
2875
2876.. code-block:: llvm
2877
2878 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2879
2880Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2881loop.
2882
2883If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2884automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002885
Sean Silvab084af42012-12-07 10:36:55 +00002886Module Flags Metadata
2887=====================
2888
2889Information about the module as a whole is difficult to convey to LLVM's
2890subsystems. The LLVM IR isn't sufficient to transmit this information.
2891The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002892this. These flags are in the form of key / value pairs --- much like a
2893dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002894look it up.
2895
2896The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2897Each triplet has the following form:
2898
2899- The first element is a *behavior* flag, which specifies the behavior
2900 when two (or more) modules are merged together, and it encounters two
2901 (or more) metadata with the same ID. The supported behaviors are
2902 described below.
2903- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002904 metadata. Each module may only have one flag entry for each unique ID (not
2905 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002906- The third element is the value of the flag.
2907
2908When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002909``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2910each unique metadata ID string, there will be exactly one entry in the merged
2911modules ``llvm.module.flags`` metadata table, and the value for that entry will
2912be determined by the merge behavior flag, as described below. The only exception
2913is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002914
2915The following behaviors are supported:
2916
2917.. list-table::
2918 :header-rows: 1
2919 :widths: 10 90
2920
2921 * - Value
2922 - Behavior
2923
2924 * - 1
2925 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002926 Emits an error if two values disagree, otherwise the resulting value
2927 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002928
2929 * - 2
2930 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002931 Emits a warning if two values disagree. The result value will be the
2932 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002933
2934 * - 3
2935 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002936 Adds a requirement that another module flag be present and have a
2937 specified value after linking is performed. The value must be a
2938 metadata pair, where the first element of the pair is the ID of the
2939 module flag to be restricted, and the second element of the pair is
2940 the value the module flag should be restricted to. This behavior can
2941 be used to restrict the allowable results (via triggering of an
2942 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002943
2944 * - 4
2945 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002946 Uses the specified value, regardless of the behavior or value of the
2947 other module. If both modules specify **Override**, but the values
2948 differ, an error will be emitted.
2949
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002950 * - 5
2951 - **Append**
2952 Appends the two values, which are required to be metadata nodes.
2953
2954 * - 6
2955 - **AppendUnique**
2956 Appends the two values, which are required to be metadata
2957 nodes. However, duplicate entries in the second list are dropped
2958 during the append operation.
2959
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002960It is an error for a particular unique flag ID to have multiple behaviors,
2961except in the case of **Require** (which adds restrictions on another metadata
2962value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002963
2964An example of module flags:
2965
2966.. code-block:: llvm
2967
2968 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2969 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2970 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2971 !3 = metadata !{ i32 3, metadata !"qux",
2972 metadata !{
2973 metadata !"foo", i32 1
2974 }
2975 }
2976 !llvm.module.flags = !{ !0, !1, !2, !3 }
2977
2978- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2979 if two or more ``!"foo"`` flags are seen is to emit an error if their
2980 values are not equal.
2981
2982- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2983 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002984 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002985
2986- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2987 behavior if two or more ``!"qux"`` flags are seen is to emit a
2988 warning if their values are not equal.
2989
2990- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2991
2992 ::
2993
2994 metadata !{ metadata !"foo", i32 1 }
2995
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002996 The behavior is to emit an error if the ``llvm.module.flags`` does not
2997 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2998 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002999
3000Objective-C Garbage Collection Module Flags Metadata
3001----------------------------------------------------
3002
3003On the Mach-O platform, Objective-C stores metadata about garbage
3004collection in a special section called "image info". The metadata
3005consists of a version number and a bitmask specifying what types of
3006garbage collection are supported (if any) by the file. If two or more
3007modules are linked together their garbage collection metadata needs to
3008be merged rather than appended together.
3009
3010The Objective-C garbage collection module flags metadata consists of the
3011following key-value pairs:
3012
3013.. list-table::
3014 :header-rows: 1
3015 :widths: 30 70
3016
3017 * - Key
3018 - Value
3019
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003020 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003021 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003022
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003023 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003024 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003025 always 0.
3026
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003027 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003028 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003029 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3030 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3031 Objective-C ABI version 2.
3032
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003033 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003034 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003035 not. Valid values are 0, for no garbage collection, and 2, for garbage
3036 collection supported.
3037
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003038 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003039 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003040 If present, its value must be 6. This flag requires that the
3041 ``Objective-C Garbage Collection`` flag have the value 2.
3042
3043Some important flag interactions:
3044
3045- If a module with ``Objective-C Garbage Collection`` set to 0 is
3046 merged with a module with ``Objective-C Garbage Collection`` set to
3047 2, then the resulting module has the
3048 ``Objective-C Garbage Collection`` flag set to 0.
3049- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3050 merged with a module with ``Objective-C GC Only`` set to 6.
3051
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003052Automatic Linker Flags Module Flags Metadata
3053--------------------------------------------
3054
3055Some targets support embedding flags to the linker inside individual object
3056files. Typically this is used in conjunction with language extensions which
3057allow source files to explicitly declare the libraries they depend on, and have
3058these automatically be transmitted to the linker via object files.
3059
3060These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003061using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003062to be ``AppendUnique``, and the value for the key is expected to be a metadata
3063node which should be a list of other metadata nodes, each of which should be a
3064list of metadata strings defining linker options.
3065
3066For example, the following metadata section specifies two separate sets of
3067linker options, presumably to link against ``libz`` and the ``Cocoa``
3068framework::
3069
Michael Liaoa7699082013-03-06 18:24:34 +00003070 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003071 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003072 metadata !{ metadata !"-lz" },
3073 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003074 !llvm.module.flags = !{ !0 }
3075
3076The metadata encoding as lists of lists of options, as opposed to a collapsed
3077list of options, is chosen so that the IR encoding can use multiple option
3078strings to specify e.g., a single library, while still having that specifier be
3079preserved as an atomic element that can be recognized by a target specific
3080assembly writer or object file emitter.
3081
3082Each individual option is required to be either a valid option for the target's
3083linker, or an option that is reserved by the target specific assembly writer or
3084object file emitter. No other aspect of these options is defined by the IR.
3085
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003086.. _intrinsicglobalvariables:
3087
Sean Silvab084af42012-12-07 10:36:55 +00003088Intrinsic Global Variables
3089==========================
3090
3091LLVM has a number of "magic" global variables that contain data that
3092affect code generation or other IR semantics. These are documented here.
3093All globals of this sort should have a section specified as
3094"``llvm.metadata``". This section and all globals that start with
3095"``llvm.``" are reserved for use by LLVM.
3096
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003097.. _gv_llvmused:
3098
Sean Silvab084af42012-12-07 10:36:55 +00003099The '``llvm.used``' Global Variable
3100-----------------------------------
3101
Rafael Espindola74f2e462013-04-22 14:58:02 +00003102The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003103:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003104pointers to named global variables, functions and aliases which may optionally
3105have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003106use of it is:
3107
3108.. code-block:: llvm
3109
3110 @X = global i8 4
3111 @Y = global i32 123
3112
3113 @llvm.used = appending global [2 x i8*] [
3114 i8* @X,
3115 i8* bitcast (i32* @Y to i8*)
3116 ], section "llvm.metadata"
3117
Rafael Espindola74f2e462013-04-22 14:58:02 +00003118If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3119and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003120symbol that it cannot see (which is why they have to be named). For example, if
3121a variable has internal linkage and no references other than that from the
3122``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3123references from inline asms and other things the compiler cannot "see", and
3124corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003125
3126On some targets, the code generator must emit a directive to the
3127assembler or object file to prevent the assembler and linker from
3128molesting the symbol.
3129
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003130.. _gv_llvmcompilerused:
3131
Sean Silvab084af42012-12-07 10:36:55 +00003132The '``llvm.compiler.used``' Global Variable
3133--------------------------------------------
3134
3135The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3136directive, except that it only prevents the compiler from touching the
3137symbol. On targets that support it, this allows an intelligent linker to
3138optimize references to the symbol without being impeded as it would be
3139by ``@llvm.used``.
3140
3141This is a rare construct that should only be used in rare circumstances,
3142and should not be exposed to source languages.
3143
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003144.. _gv_llvmglobalctors:
3145
Sean Silvab084af42012-12-07 10:36:55 +00003146The '``llvm.global_ctors``' Global Variable
3147-------------------------------------------
3148
3149.. code-block:: llvm
3150
3151 %0 = type { i32, void ()* }
3152 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3153
3154The ``@llvm.global_ctors`` array contains a list of constructor
3155functions and associated priorities. The functions referenced by this
3156array will be called in ascending order of priority (i.e. lowest first)
3157when the module is loaded. The order of functions with the same priority
3158is not defined.
3159
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003160.. _llvmglobaldtors:
3161
Sean Silvab084af42012-12-07 10:36:55 +00003162The '``llvm.global_dtors``' Global Variable
3163-------------------------------------------
3164
3165.. code-block:: llvm
3166
3167 %0 = type { i32, void ()* }
3168 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3169
3170The ``@llvm.global_dtors`` array contains a list of destructor functions
3171and associated priorities. The functions referenced by this array will
3172be called in descending order of priority (i.e. highest first) when the
3173module is loaded. The order of functions with the same priority is not
3174defined.
3175
3176Instruction Reference
3177=====================
3178
3179The LLVM instruction set consists of several different classifications
3180of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3181instructions <binaryops>`, :ref:`bitwise binary
3182instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3183:ref:`other instructions <otherops>`.
3184
3185.. _terminators:
3186
3187Terminator Instructions
3188-----------------------
3189
3190As mentioned :ref:`previously <functionstructure>`, every basic block in a
3191program ends with a "Terminator" instruction, which indicates which
3192block should be executed after the current block is finished. These
3193terminator instructions typically yield a '``void``' value: they produce
3194control flow, not values (the one exception being the
3195':ref:`invoke <i_invoke>`' instruction).
3196
3197The terminator instructions are: ':ref:`ret <i_ret>`',
3198':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3199':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3200':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3201
3202.. _i_ret:
3203
3204'``ret``' Instruction
3205^^^^^^^^^^^^^^^^^^^^^
3206
3207Syntax:
3208"""""""
3209
3210::
3211
3212 ret <type> <value> ; Return a value from a non-void function
3213 ret void ; Return from void function
3214
3215Overview:
3216"""""""""
3217
3218The '``ret``' instruction is used to return control flow (and optionally
3219a value) from a function back to the caller.
3220
3221There are two forms of the '``ret``' instruction: one that returns a
3222value and then causes control flow, and one that just causes control
3223flow to occur.
3224
3225Arguments:
3226""""""""""
3227
3228The '``ret``' instruction optionally accepts a single argument, the
3229return value. The type of the return value must be a ':ref:`first
3230class <t_firstclass>`' type.
3231
3232A function is not :ref:`well formed <wellformed>` if it it has a non-void
3233return type and contains a '``ret``' instruction with no return value or
3234a return value with a type that does not match its type, or if it has a
3235void return type and contains a '``ret``' instruction with a return
3236value.
3237
3238Semantics:
3239""""""""""
3240
3241When the '``ret``' instruction is executed, control flow returns back to
3242the calling function's context. If the caller is a
3243":ref:`call <i_call>`" instruction, execution continues at the
3244instruction after the call. If the caller was an
3245":ref:`invoke <i_invoke>`" instruction, execution continues at the
3246beginning of the "normal" destination block. If the instruction returns
3247a value, that value shall set the call or invoke instruction's return
3248value.
3249
3250Example:
3251""""""""
3252
3253.. code-block:: llvm
3254
3255 ret i32 5 ; Return an integer value of 5
3256 ret void ; Return from a void function
3257 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3258
3259.. _i_br:
3260
3261'``br``' Instruction
3262^^^^^^^^^^^^^^^^^^^^
3263
3264Syntax:
3265"""""""
3266
3267::
3268
3269 br i1 <cond>, label <iftrue>, label <iffalse>
3270 br label <dest> ; Unconditional branch
3271
3272Overview:
3273"""""""""
3274
3275The '``br``' instruction is used to cause control flow to transfer to a
3276different basic block in the current function. There are two forms of
3277this instruction, corresponding to a conditional branch and an
3278unconditional branch.
3279
3280Arguments:
3281""""""""""
3282
3283The conditional branch form of the '``br``' instruction takes a single
3284'``i1``' value and two '``label``' values. The unconditional form of the
3285'``br``' instruction takes a single '``label``' value as a target.
3286
3287Semantics:
3288""""""""""
3289
3290Upon execution of a conditional '``br``' instruction, the '``i1``'
3291argument is evaluated. If the value is ``true``, control flows to the
3292'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3293to the '``iffalse``' ``label`` argument.
3294
3295Example:
3296""""""""
3297
3298.. code-block:: llvm
3299
3300 Test:
3301 %cond = icmp eq i32 %a, %b
3302 br i1 %cond, label %IfEqual, label %IfUnequal
3303 IfEqual:
3304 ret i32 1
3305 IfUnequal:
3306 ret i32 0
3307
3308.. _i_switch:
3309
3310'``switch``' Instruction
3311^^^^^^^^^^^^^^^^^^^^^^^^
3312
3313Syntax:
3314"""""""
3315
3316::
3317
3318 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3319
3320Overview:
3321"""""""""
3322
3323The '``switch``' instruction is used to transfer control flow to one of
3324several different places. It is a generalization of the '``br``'
3325instruction, allowing a branch to occur to one of many possible
3326destinations.
3327
3328Arguments:
3329""""""""""
3330
3331The '``switch``' instruction uses three parameters: an integer
3332comparison value '``value``', a default '``label``' destination, and an
3333array of pairs of comparison value constants and '``label``'s. The table
3334is not allowed to contain duplicate constant entries.
3335
3336Semantics:
3337""""""""""
3338
3339The ``switch`` instruction specifies a table of values and destinations.
3340When the '``switch``' instruction is executed, this table is searched
3341for the given value. If the value is found, control flow is transferred
3342to the corresponding destination; otherwise, control flow is transferred
3343to the default destination.
3344
3345Implementation:
3346"""""""""""""""
3347
3348Depending on properties of the target machine and the particular
3349``switch`` instruction, this instruction may be code generated in
3350different ways. For example, it could be generated as a series of
3351chained conditional branches or with a lookup table.
3352
3353Example:
3354""""""""
3355
3356.. code-block:: llvm
3357
3358 ; Emulate a conditional br instruction
3359 %Val = zext i1 %value to i32
3360 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3361
3362 ; Emulate an unconditional br instruction
3363 switch i32 0, label %dest [ ]
3364
3365 ; Implement a jump table:
3366 switch i32 %val, label %otherwise [ i32 0, label %onzero
3367 i32 1, label %onone
3368 i32 2, label %ontwo ]
3369
3370.. _i_indirectbr:
3371
3372'``indirectbr``' Instruction
3373^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3374
3375Syntax:
3376"""""""
3377
3378::
3379
3380 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3381
3382Overview:
3383"""""""""
3384
3385The '``indirectbr``' instruction implements an indirect branch to a
3386label within the current function, whose address is specified by
3387"``address``". Address must be derived from a
3388:ref:`blockaddress <blockaddress>` constant.
3389
3390Arguments:
3391""""""""""
3392
3393The '``address``' argument is the address of the label to jump to. The
3394rest of the arguments indicate the full set of possible destinations
3395that the address may point to. Blocks are allowed to occur multiple
3396times in the destination list, though this isn't particularly useful.
3397
3398This destination list is required so that dataflow analysis has an
3399accurate understanding of the CFG.
3400
3401Semantics:
3402""""""""""
3403
3404Control transfers to the block specified in the address argument. All
3405possible destination blocks must be listed in the label list, otherwise
3406this instruction has undefined behavior. This implies that jumps to
3407labels defined in other functions have undefined behavior as well.
3408
3409Implementation:
3410"""""""""""""""
3411
3412This is typically implemented with a jump through a register.
3413
3414Example:
3415""""""""
3416
3417.. code-block:: llvm
3418
3419 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3420
3421.. _i_invoke:
3422
3423'``invoke``' Instruction
3424^^^^^^^^^^^^^^^^^^^^^^^^
3425
3426Syntax:
3427"""""""
3428
3429::
3430
3431 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3432 to label <normal label> unwind label <exception label>
3433
3434Overview:
3435"""""""""
3436
3437The '``invoke``' instruction causes control to transfer to a specified
3438function, with the possibility of control flow transfer to either the
3439'``normal``' label or the '``exception``' label. If the callee function
3440returns with the "``ret``" instruction, control flow will return to the
3441"normal" label. If the callee (or any indirect callees) returns via the
3442":ref:`resume <i_resume>`" instruction or other exception handling
3443mechanism, control is interrupted and continued at the dynamically
3444nearest "exception" label.
3445
3446The '``exception``' label is a `landing
3447pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3448'``exception``' label is required to have the
3449":ref:`landingpad <i_landingpad>`" instruction, which contains the
3450information about the behavior of the program after unwinding happens,
3451as its first non-PHI instruction. The restrictions on the
3452"``landingpad``" instruction's tightly couples it to the "``invoke``"
3453instruction, so that the important information contained within the
3454"``landingpad``" instruction can't be lost through normal code motion.
3455
3456Arguments:
3457""""""""""
3458
3459This instruction requires several arguments:
3460
3461#. The optional "cconv" marker indicates which :ref:`calling
3462 convention <callingconv>` the call should use. If none is
3463 specified, the call defaults to using C calling conventions.
3464#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3465 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3466 are valid here.
3467#. '``ptr to function ty``': shall be the signature of the pointer to
3468 function value being invoked. In most cases, this is a direct
3469 function invocation, but indirect ``invoke``'s are just as possible,
3470 branching off an arbitrary pointer to function value.
3471#. '``function ptr val``': An LLVM value containing a pointer to a
3472 function to be invoked.
3473#. '``function args``': argument list whose types match the function
3474 signature argument types and parameter attributes. All arguments must
3475 be of :ref:`first class <t_firstclass>` type. If the function signature
3476 indicates the function accepts a variable number of arguments, the
3477 extra arguments can be specified.
3478#. '``normal label``': the label reached when the called function
3479 executes a '``ret``' instruction.
3480#. '``exception label``': the label reached when a callee returns via
3481 the :ref:`resume <i_resume>` instruction or other exception handling
3482 mechanism.
3483#. The optional :ref:`function attributes <fnattrs>` list. Only
3484 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3485 attributes are valid here.
3486
3487Semantics:
3488""""""""""
3489
3490This instruction is designed to operate as a standard '``call``'
3491instruction in most regards. The primary difference is that it
3492establishes an association with a label, which is used by the runtime
3493library to unwind the stack.
3494
3495This instruction is used in languages with destructors to ensure that
3496proper cleanup is performed in the case of either a ``longjmp`` or a
3497thrown exception. Additionally, this is important for implementation of
3498'``catch``' clauses in high-level languages that support them.
3499
3500For the purposes of the SSA form, the definition of the value returned
3501by the '``invoke``' instruction is deemed to occur on the edge from the
3502current block to the "normal" label. If the callee unwinds then no
3503return value is available.
3504
3505Example:
3506""""""""
3507
3508.. code-block:: llvm
3509
3510 %retval = invoke i32 @Test(i32 15) to label %Continue
3511 unwind label %TestCleanup ; {i32}:retval set
3512 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3513 unwind label %TestCleanup ; {i32}:retval set
3514
3515.. _i_resume:
3516
3517'``resume``' Instruction
3518^^^^^^^^^^^^^^^^^^^^^^^^
3519
3520Syntax:
3521"""""""
3522
3523::
3524
3525 resume <type> <value>
3526
3527Overview:
3528"""""""""
3529
3530The '``resume``' instruction is a terminator instruction that has no
3531successors.
3532
3533Arguments:
3534""""""""""
3535
3536The '``resume``' instruction requires one argument, which must have the
3537same type as the result of any '``landingpad``' instruction in the same
3538function.
3539
3540Semantics:
3541""""""""""
3542
3543The '``resume``' instruction resumes propagation of an existing
3544(in-flight) exception whose unwinding was interrupted with a
3545:ref:`landingpad <i_landingpad>` instruction.
3546
3547Example:
3548""""""""
3549
3550.. code-block:: llvm
3551
3552 resume { i8*, i32 } %exn
3553
3554.. _i_unreachable:
3555
3556'``unreachable``' Instruction
3557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3558
3559Syntax:
3560"""""""
3561
3562::
3563
3564 unreachable
3565
3566Overview:
3567"""""""""
3568
3569The '``unreachable``' instruction has no defined semantics. This
3570instruction is used to inform the optimizer that a particular portion of
3571the code is not reachable. This can be used to indicate that the code
3572after a no-return function cannot be reached, and other facts.
3573
3574Semantics:
3575""""""""""
3576
3577The '``unreachable``' instruction has no defined semantics.
3578
3579.. _binaryops:
3580
3581Binary Operations
3582-----------------
3583
3584Binary operators are used to do most of the computation in a program.
3585They require two operands of the same type, execute an operation on
3586them, and produce a single value. The operands might represent multiple
3587data, as is the case with the :ref:`vector <t_vector>` data type. The
3588result value has the same type as its operands.
3589
3590There are several different binary operators:
3591
3592.. _i_add:
3593
3594'``add``' Instruction
3595^^^^^^^^^^^^^^^^^^^^^
3596
3597Syntax:
3598"""""""
3599
3600::
3601
3602 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3603 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3604 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3605 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3606
3607Overview:
3608"""""""""
3609
3610The '``add``' instruction returns the sum of its two operands.
3611
3612Arguments:
3613""""""""""
3614
3615The two arguments to the '``add``' instruction must be
3616:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3617arguments must have identical types.
3618
3619Semantics:
3620""""""""""
3621
3622The value produced is the integer sum of the two operands.
3623
3624If the sum has unsigned overflow, the result returned is the
3625mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3626the result.
3627
3628Because LLVM integers use a two's complement representation, this
3629instruction is appropriate for both signed and unsigned integers.
3630
3631``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3632respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3633result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3634unsigned and/or signed overflow, respectively, occurs.
3635
3636Example:
3637""""""""
3638
3639.. code-block:: llvm
3640
3641 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3642
3643.. _i_fadd:
3644
3645'``fadd``' Instruction
3646^^^^^^^^^^^^^^^^^^^^^^
3647
3648Syntax:
3649"""""""
3650
3651::
3652
3653 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3654
3655Overview:
3656"""""""""
3657
3658The '``fadd``' instruction returns the sum of its two operands.
3659
3660Arguments:
3661""""""""""
3662
3663The two arguments to the '``fadd``' instruction must be :ref:`floating
3664point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3665Both arguments must have identical types.
3666
3667Semantics:
3668""""""""""
3669
3670The value produced is the floating point sum of the two operands. This
3671instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3672which are optimization hints to enable otherwise unsafe floating point
3673optimizations:
3674
3675Example:
3676""""""""
3677
3678.. code-block:: llvm
3679
3680 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3681
3682'``sub``' Instruction
3683^^^^^^^^^^^^^^^^^^^^^
3684
3685Syntax:
3686"""""""
3687
3688::
3689
3690 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3691 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3692 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3693 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3694
3695Overview:
3696"""""""""
3697
3698The '``sub``' instruction returns the difference of its two operands.
3699
3700Note that the '``sub``' instruction is used to represent the '``neg``'
3701instruction present in most other intermediate representations.
3702
3703Arguments:
3704""""""""""
3705
3706The two arguments to the '``sub``' instruction must be
3707:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3708arguments must have identical types.
3709
3710Semantics:
3711""""""""""
3712
3713The value produced is the integer difference of the two operands.
3714
3715If the difference has unsigned overflow, the result returned is the
3716mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3717the result.
3718
3719Because LLVM integers use a two's complement representation, this
3720instruction is appropriate for both signed and unsigned integers.
3721
3722``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3723respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3724result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3725unsigned and/or signed overflow, respectively, occurs.
3726
3727Example:
3728""""""""
3729
3730.. code-block:: llvm
3731
3732 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3733 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3734
3735.. _i_fsub:
3736
3737'``fsub``' Instruction
3738^^^^^^^^^^^^^^^^^^^^^^
3739
3740Syntax:
3741"""""""
3742
3743::
3744
3745 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3746
3747Overview:
3748"""""""""
3749
3750The '``fsub``' instruction returns the difference of its two operands.
3751
3752Note that the '``fsub``' instruction is used to represent the '``fneg``'
3753instruction present in most other intermediate representations.
3754
3755Arguments:
3756""""""""""
3757
3758The two arguments to the '``fsub``' instruction must be :ref:`floating
3759point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3760Both arguments must have identical types.
3761
3762Semantics:
3763""""""""""
3764
3765The value produced is the floating point difference of the two operands.
3766This instruction can also take any number of :ref:`fast-math
3767flags <fastmath>`, which are optimization hints to enable otherwise
3768unsafe floating point optimizations:
3769
3770Example:
3771""""""""
3772
3773.. code-block:: llvm
3774
3775 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3776 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3777
3778'``mul``' Instruction
3779^^^^^^^^^^^^^^^^^^^^^
3780
3781Syntax:
3782"""""""
3783
3784::
3785
3786 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3787 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3788 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3789 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3790
3791Overview:
3792"""""""""
3793
3794The '``mul``' instruction returns the product of its two operands.
3795
3796Arguments:
3797""""""""""
3798
3799The two arguments to the '``mul``' instruction must be
3800:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3801arguments must have identical types.
3802
3803Semantics:
3804""""""""""
3805
3806The value produced is the integer product of the two operands.
3807
3808If the result of the multiplication has unsigned overflow, the result
3809returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3810bit width of the result.
3811
3812Because LLVM integers use a two's complement representation, and the
3813result is the same width as the operands, this instruction returns the
3814correct result for both signed and unsigned integers. If a full product
3815(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3816sign-extended or zero-extended as appropriate to the width of the full
3817product.
3818
3819``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3820respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3821result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3822unsigned and/or signed overflow, respectively, occurs.
3823
3824Example:
3825""""""""
3826
3827.. code-block:: llvm
3828
3829 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3830
3831.. _i_fmul:
3832
3833'``fmul``' Instruction
3834^^^^^^^^^^^^^^^^^^^^^^
3835
3836Syntax:
3837"""""""
3838
3839::
3840
3841 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3842
3843Overview:
3844"""""""""
3845
3846The '``fmul``' instruction returns the product of its two operands.
3847
3848Arguments:
3849""""""""""
3850
3851The two arguments to the '``fmul``' instruction must be :ref:`floating
3852point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3853Both arguments must have identical types.
3854
3855Semantics:
3856""""""""""
3857
3858The value produced is the floating point product of the two operands.
3859This instruction can also take any number of :ref:`fast-math
3860flags <fastmath>`, which are optimization hints to enable otherwise
3861unsafe floating point optimizations:
3862
3863Example:
3864""""""""
3865
3866.. code-block:: llvm
3867
3868 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3869
3870'``udiv``' Instruction
3871^^^^^^^^^^^^^^^^^^^^^^
3872
3873Syntax:
3874"""""""
3875
3876::
3877
3878 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3879 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3880
3881Overview:
3882"""""""""
3883
3884The '``udiv``' instruction returns the quotient of its two operands.
3885
3886Arguments:
3887""""""""""
3888
3889The two arguments to the '``udiv``' instruction must be
3890:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3891arguments must have identical types.
3892
3893Semantics:
3894""""""""""
3895
3896The value produced is the unsigned integer quotient of the two operands.
3897
3898Note that unsigned integer division and signed integer division are
3899distinct operations; for signed integer division, use '``sdiv``'.
3900
3901Division by zero leads to undefined behavior.
3902
3903If the ``exact`` keyword is present, the result value of the ``udiv`` is
3904a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3905such, "((a udiv exact b) mul b) == a").
3906
3907Example:
3908""""""""
3909
3910.. code-block:: llvm
3911
3912 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3913
3914'``sdiv``' Instruction
3915^^^^^^^^^^^^^^^^^^^^^^
3916
3917Syntax:
3918"""""""
3919
3920::
3921
3922 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3923 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3924
3925Overview:
3926"""""""""
3927
3928The '``sdiv``' instruction returns the quotient of its two operands.
3929
3930Arguments:
3931""""""""""
3932
3933The two arguments to the '``sdiv``' instruction must be
3934:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3935arguments must have identical types.
3936
3937Semantics:
3938""""""""""
3939
3940The value produced is the signed integer quotient of the two operands
3941rounded towards zero.
3942
3943Note that signed integer division and unsigned integer division are
3944distinct operations; for unsigned integer division, use '``udiv``'.
3945
3946Division by zero leads to undefined behavior. Overflow also leads to
3947undefined behavior; this is a rare case, but can occur, for example, by
3948doing a 32-bit division of -2147483648 by -1.
3949
3950If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3951a :ref:`poison value <poisonvalues>` if the result would be rounded.
3952
3953Example:
3954""""""""
3955
3956.. code-block:: llvm
3957
3958 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3959
3960.. _i_fdiv:
3961
3962'``fdiv``' Instruction
3963^^^^^^^^^^^^^^^^^^^^^^
3964
3965Syntax:
3966"""""""
3967
3968::
3969
3970 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3971
3972Overview:
3973"""""""""
3974
3975The '``fdiv``' instruction returns the quotient of its two operands.
3976
3977Arguments:
3978""""""""""
3979
3980The two arguments to the '``fdiv``' instruction must be :ref:`floating
3981point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3982Both arguments must have identical types.
3983
3984Semantics:
3985""""""""""
3986
3987The value produced is the floating point quotient of the two operands.
3988This instruction can also take any number of :ref:`fast-math
3989flags <fastmath>`, which are optimization hints to enable otherwise
3990unsafe floating point optimizations:
3991
3992Example:
3993""""""""
3994
3995.. code-block:: llvm
3996
3997 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3998
3999'``urem``' Instruction
4000^^^^^^^^^^^^^^^^^^^^^^
4001
4002Syntax:
4003"""""""
4004
4005::
4006
4007 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4008
4009Overview:
4010"""""""""
4011
4012The '``urem``' instruction returns the remainder from the unsigned
4013division of its two arguments.
4014
4015Arguments:
4016""""""""""
4017
4018The two arguments to the '``urem``' instruction must be
4019:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4020arguments must have identical types.
4021
4022Semantics:
4023""""""""""
4024
4025This instruction returns the unsigned integer *remainder* of a division.
4026This instruction always performs an unsigned division to get the
4027remainder.
4028
4029Note that unsigned integer remainder and signed integer remainder are
4030distinct operations; for signed integer remainder, use '``srem``'.
4031
4032Taking the remainder of a division by zero leads to undefined behavior.
4033
4034Example:
4035""""""""
4036
4037.. code-block:: llvm
4038
4039 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4040
4041'``srem``' Instruction
4042^^^^^^^^^^^^^^^^^^^^^^
4043
4044Syntax:
4045"""""""
4046
4047::
4048
4049 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4050
4051Overview:
4052"""""""""
4053
4054The '``srem``' instruction returns the remainder from the signed
4055division of its two operands. This instruction can also take
4056:ref:`vector <t_vector>` versions of the values in which case the elements
4057must be integers.
4058
4059Arguments:
4060""""""""""
4061
4062The two arguments to the '``srem``' instruction must be
4063:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4064arguments must have identical types.
4065
4066Semantics:
4067""""""""""
4068
4069This instruction returns the *remainder* of a division (where the result
4070is either zero or has the same sign as the dividend, ``op1``), not the
4071*modulo* operator (where the result is either zero or has the same sign
4072as the divisor, ``op2``) of a value. For more information about the
4073difference, see `The Math
4074Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4075table of how this is implemented in various languages, please see
4076`Wikipedia: modulo
4077operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4078
4079Note that signed integer remainder and unsigned integer remainder are
4080distinct operations; for unsigned integer remainder, use '``urem``'.
4081
4082Taking the remainder of a division by zero leads to undefined behavior.
4083Overflow also leads to undefined behavior; this is a rare case, but can
4084occur, for example, by taking the remainder of a 32-bit division of
4085-2147483648 by -1. (The remainder doesn't actually overflow, but this
4086rule lets srem be implemented using instructions that return both the
4087result of the division and the remainder.)
4088
4089Example:
4090""""""""
4091
4092.. code-block:: llvm
4093
4094 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4095
4096.. _i_frem:
4097
4098'``frem``' Instruction
4099^^^^^^^^^^^^^^^^^^^^^^
4100
4101Syntax:
4102"""""""
4103
4104::
4105
4106 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4107
4108Overview:
4109"""""""""
4110
4111The '``frem``' instruction returns the remainder from the division of
4112its two operands.
4113
4114Arguments:
4115""""""""""
4116
4117The two arguments to the '``frem``' instruction must be :ref:`floating
4118point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4119Both arguments must have identical types.
4120
4121Semantics:
4122""""""""""
4123
4124This instruction returns the *remainder* of a division. The remainder
4125has the same sign as the dividend. This instruction can also take any
4126number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4127to enable otherwise unsafe floating point optimizations:
4128
4129Example:
4130""""""""
4131
4132.. code-block:: llvm
4133
4134 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4135
4136.. _bitwiseops:
4137
4138Bitwise Binary Operations
4139-------------------------
4140
4141Bitwise binary operators are used to do various forms of bit-twiddling
4142in a program. They are generally very efficient instructions and can
4143commonly be strength reduced from other instructions. They require two
4144operands of the same type, execute an operation on them, and produce a
4145single value. The resulting value is the same type as its operands.
4146
4147'``shl``' Instruction
4148^^^^^^^^^^^^^^^^^^^^^
4149
4150Syntax:
4151"""""""
4152
4153::
4154
4155 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4156 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4157 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4158 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4159
4160Overview:
4161"""""""""
4162
4163The '``shl``' instruction returns the first operand shifted to the left
4164a specified number of bits.
4165
4166Arguments:
4167""""""""""
4168
4169Both arguments to the '``shl``' instruction must be the same
4170:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4171'``op2``' is treated as an unsigned value.
4172
4173Semantics:
4174""""""""""
4175
4176The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4177where ``n`` is the width of the result. If ``op2`` is (statically or
4178dynamically) negative or equal to or larger than the number of bits in
4179``op1``, the result is undefined. If the arguments are vectors, each
4180vector element of ``op1`` is shifted by the corresponding shift amount
4181in ``op2``.
4182
4183If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4184value <poisonvalues>` if it shifts out any non-zero bits. If the
4185``nsw`` keyword is present, then the shift produces a :ref:`poison
4186value <poisonvalues>` if it shifts out any bits that disagree with the
4187resultant sign bit. As such, NUW/NSW have the same semantics as they
4188would if the shift were expressed as a mul instruction with the same
4189nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4190
4191Example:
4192""""""""
4193
4194.. code-block:: llvm
4195
4196 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4197 <result> = shl i32 4, 2 ; yields {i32}: 16
4198 <result> = shl i32 1, 10 ; yields {i32}: 1024
4199 <result> = shl i32 1, 32 ; undefined
4200 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4201
4202'``lshr``' Instruction
4203^^^^^^^^^^^^^^^^^^^^^^
4204
4205Syntax:
4206"""""""
4207
4208::
4209
4210 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4211 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4212
4213Overview:
4214"""""""""
4215
4216The '``lshr``' instruction (logical shift right) returns the first
4217operand shifted to the right a specified number of bits with zero fill.
4218
4219Arguments:
4220""""""""""
4221
4222Both arguments to the '``lshr``' instruction must be the same
4223:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4224'``op2``' is treated as an unsigned value.
4225
4226Semantics:
4227""""""""""
4228
4229This instruction always performs a logical shift right operation. The
4230most significant bits of the result will be filled with zero bits after
4231the shift. If ``op2`` is (statically or dynamically) equal to or larger
4232than the number of bits in ``op1``, the result is undefined. If the
4233arguments are vectors, each vector element of ``op1`` is shifted by the
4234corresponding shift amount in ``op2``.
4235
4236If the ``exact`` keyword is present, the result value of the ``lshr`` is
4237a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4238non-zero.
4239
4240Example:
4241""""""""
4242
4243.. code-block:: llvm
4244
4245 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4246 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4247 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004248 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004249 <result> = lshr i32 1, 32 ; undefined
4250 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4251
4252'``ashr``' Instruction
4253^^^^^^^^^^^^^^^^^^^^^^
4254
4255Syntax:
4256"""""""
4257
4258::
4259
4260 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4261 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4262
4263Overview:
4264"""""""""
4265
4266The '``ashr``' instruction (arithmetic shift right) returns the first
4267operand shifted to the right a specified number of bits with sign
4268extension.
4269
4270Arguments:
4271""""""""""
4272
4273Both arguments to the '``ashr``' instruction must be the same
4274:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4275'``op2``' is treated as an unsigned value.
4276
4277Semantics:
4278""""""""""
4279
4280This instruction always performs an arithmetic shift right operation,
4281The most significant bits of the result will be filled with the sign bit
4282of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4283than the number of bits in ``op1``, the result is undefined. If the
4284arguments are vectors, each vector element of ``op1`` is shifted by the
4285corresponding shift amount in ``op2``.
4286
4287If the ``exact`` keyword is present, the result value of the ``ashr`` is
4288a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4289non-zero.
4290
4291Example:
4292""""""""
4293
4294.. code-block:: llvm
4295
4296 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4297 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4298 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4299 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4300 <result> = ashr i32 1, 32 ; undefined
4301 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4302
4303'``and``' Instruction
4304^^^^^^^^^^^^^^^^^^^^^
4305
4306Syntax:
4307"""""""
4308
4309::
4310
4311 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4312
4313Overview:
4314"""""""""
4315
4316The '``and``' instruction returns the bitwise logical and of its two
4317operands.
4318
4319Arguments:
4320""""""""""
4321
4322The two arguments to the '``and``' instruction must be
4323:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4324arguments must have identical types.
4325
4326Semantics:
4327""""""""""
4328
4329The truth table used for the '``and``' instruction is:
4330
4331+-----+-----+-----+
4332| In0 | In1 | Out |
4333+-----+-----+-----+
4334| 0 | 0 | 0 |
4335+-----+-----+-----+
4336| 0 | 1 | 0 |
4337+-----+-----+-----+
4338| 1 | 0 | 0 |
4339+-----+-----+-----+
4340| 1 | 1 | 1 |
4341+-----+-----+-----+
4342
4343Example:
4344""""""""
4345
4346.. code-block:: llvm
4347
4348 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4349 <result> = and i32 15, 40 ; yields {i32}:result = 8
4350 <result> = and i32 4, 8 ; yields {i32}:result = 0
4351
4352'``or``' Instruction
4353^^^^^^^^^^^^^^^^^^^^
4354
4355Syntax:
4356"""""""
4357
4358::
4359
4360 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4361
4362Overview:
4363"""""""""
4364
4365The '``or``' instruction returns the bitwise logical inclusive or of its
4366two operands.
4367
4368Arguments:
4369""""""""""
4370
4371The two arguments to the '``or``' instruction must be
4372:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4373arguments must have identical types.
4374
4375Semantics:
4376""""""""""
4377
4378The truth table used for the '``or``' instruction is:
4379
4380+-----+-----+-----+
4381| In0 | In1 | Out |
4382+-----+-----+-----+
4383| 0 | 0 | 0 |
4384+-----+-----+-----+
4385| 0 | 1 | 1 |
4386+-----+-----+-----+
4387| 1 | 0 | 1 |
4388+-----+-----+-----+
4389| 1 | 1 | 1 |
4390+-----+-----+-----+
4391
4392Example:
4393""""""""
4394
4395::
4396
4397 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4398 <result> = or i32 15, 40 ; yields {i32}:result = 47
4399 <result> = or i32 4, 8 ; yields {i32}:result = 12
4400
4401'``xor``' Instruction
4402^^^^^^^^^^^^^^^^^^^^^
4403
4404Syntax:
4405"""""""
4406
4407::
4408
4409 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4410
4411Overview:
4412"""""""""
4413
4414The '``xor``' instruction returns the bitwise logical exclusive or of
4415its two operands. The ``xor`` is used to implement the "one's
4416complement" operation, which is the "~" operator in C.
4417
4418Arguments:
4419""""""""""
4420
4421The two arguments to the '``xor``' instruction must be
4422:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4423arguments must have identical types.
4424
4425Semantics:
4426""""""""""
4427
4428The truth table used for the '``xor``' instruction is:
4429
4430+-----+-----+-----+
4431| In0 | In1 | Out |
4432+-----+-----+-----+
4433| 0 | 0 | 0 |
4434+-----+-----+-----+
4435| 0 | 1 | 1 |
4436+-----+-----+-----+
4437| 1 | 0 | 1 |
4438+-----+-----+-----+
4439| 1 | 1 | 0 |
4440+-----+-----+-----+
4441
4442Example:
4443""""""""
4444
4445.. code-block:: llvm
4446
4447 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4448 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4449 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4450 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4451
4452Vector Operations
4453-----------------
4454
4455LLVM supports several instructions to represent vector operations in a
4456target-independent manner. These instructions cover the element-access
4457and vector-specific operations needed to process vectors effectively.
4458While LLVM does directly support these vector operations, many
4459sophisticated algorithms will want to use target-specific intrinsics to
4460take full advantage of a specific target.
4461
4462.. _i_extractelement:
4463
4464'``extractelement``' Instruction
4465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4466
4467Syntax:
4468"""""""
4469
4470::
4471
4472 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4473
4474Overview:
4475"""""""""
4476
4477The '``extractelement``' instruction extracts a single scalar element
4478from a vector at a specified index.
4479
4480Arguments:
4481""""""""""
4482
4483The first operand of an '``extractelement``' instruction is a value of
4484:ref:`vector <t_vector>` type. The second operand is an index indicating
4485the position from which to extract the element. The index may be a
4486variable.
4487
4488Semantics:
4489""""""""""
4490
4491The result is a scalar of the same type as the element type of ``val``.
4492Its value is the value at position ``idx`` of ``val``. If ``idx``
4493exceeds the length of ``val``, the results are undefined.
4494
4495Example:
4496""""""""
4497
4498.. code-block:: llvm
4499
4500 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4501
4502.. _i_insertelement:
4503
4504'``insertelement``' Instruction
4505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4506
4507Syntax:
4508"""""""
4509
4510::
4511
4512 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4513
4514Overview:
4515"""""""""
4516
4517The '``insertelement``' instruction inserts a scalar element into a
4518vector at a specified index.
4519
4520Arguments:
4521""""""""""
4522
4523The first operand of an '``insertelement``' instruction is a value of
4524:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4525type must equal the element type of the first operand. The third operand
4526is an index indicating the position at which to insert the value. The
4527index may be a variable.
4528
4529Semantics:
4530""""""""""
4531
4532The result is a vector of the same type as ``val``. Its element values
4533are those of ``val`` except at position ``idx``, where it gets the value
4534``elt``. If ``idx`` exceeds the length of ``val``, the results are
4535undefined.
4536
4537Example:
4538""""""""
4539
4540.. code-block:: llvm
4541
4542 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4543
4544.. _i_shufflevector:
4545
4546'``shufflevector``' Instruction
4547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4548
4549Syntax:
4550"""""""
4551
4552::
4553
4554 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4555
4556Overview:
4557"""""""""
4558
4559The '``shufflevector``' instruction constructs a permutation of elements
4560from two input vectors, returning a vector with the same element type as
4561the input and length that is the same as the shuffle mask.
4562
4563Arguments:
4564""""""""""
4565
4566The first two operands of a '``shufflevector``' instruction are vectors
4567with the same type. The third argument is a shuffle mask whose element
4568type is always 'i32'. The result of the instruction is a vector whose
4569length is the same as the shuffle mask and whose element type is the
4570same as the element type of the first two operands.
4571
4572The shuffle mask operand is required to be a constant vector with either
4573constant integer or undef values.
4574
4575Semantics:
4576""""""""""
4577
4578The elements of the two input vectors are numbered from left to right
4579across both of the vectors. The shuffle mask operand specifies, for each
4580element of the result vector, which element of the two input vectors the
4581result element gets. The element selector may be undef (meaning "don't
4582care") and the second operand may be undef if performing a shuffle from
4583only one vector.
4584
4585Example:
4586""""""""
4587
4588.. code-block:: llvm
4589
4590 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4591 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4592 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4593 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4594 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4595 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4596 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4597 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4598
4599Aggregate Operations
4600--------------------
4601
4602LLVM supports several instructions for working with
4603:ref:`aggregate <t_aggregate>` values.
4604
4605.. _i_extractvalue:
4606
4607'``extractvalue``' Instruction
4608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4609
4610Syntax:
4611"""""""
4612
4613::
4614
4615 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4616
4617Overview:
4618"""""""""
4619
4620The '``extractvalue``' instruction extracts the value of a member field
4621from an :ref:`aggregate <t_aggregate>` value.
4622
4623Arguments:
4624""""""""""
4625
4626The first operand of an '``extractvalue``' instruction is a value of
4627:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4628constant indices to specify which value to extract in a similar manner
4629as indices in a '``getelementptr``' instruction.
4630
4631The major differences to ``getelementptr`` indexing are:
4632
4633- Since the value being indexed is not a pointer, the first index is
4634 omitted and assumed to be zero.
4635- At least one index must be specified.
4636- Not only struct indices but also array indices must be in bounds.
4637
4638Semantics:
4639""""""""""
4640
4641The result is the value at the position in the aggregate specified by
4642the index operands.
4643
4644Example:
4645""""""""
4646
4647.. code-block:: llvm
4648
4649 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4650
4651.. _i_insertvalue:
4652
4653'``insertvalue``' Instruction
4654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4655
4656Syntax:
4657"""""""
4658
4659::
4660
4661 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4662
4663Overview:
4664"""""""""
4665
4666The '``insertvalue``' instruction inserts a value into a member field in
4667an :ref:`aggregate <t_aggregate>` value.
4668
4669Arguments:
4670""""""""""
4671
4672The first operand of an '``insertvalue``' instruction is a value of
4673:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4674a first-class value to insert. The following operands are constant
4675indices indicating the position at which to insert the value in a
4676similar manner as indices in a '``extractvalue``' instruction. The value
4677to insert must have the same type as the value identified by the
4678indices.
4679
4680Semantics:
4681""""""""""
4682
4683The result is an aggregate of the same type as ``val``. Its value is
4684that of ``val`` except that the value at the position specified by the
4685indices is that of ``elt``.
4686
4687Example:
4688""""""""
4689
4690.. code-block:: llvm
4691
4692 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4693 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4694 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4695
4696.. _memoryops:
4697
4698Memory Access and Addressing Operations
4699---------------------------------------
4700
4701A key design point of an SSA-based representation is how it represents
4702memory. In LLVM, no memory locations are in SSA form, which makes things
4703very simple. This section describes how to read, write, and allocate
4704memory in LLVM.
4705
4706.. _i_alloca:
4707
4708'``alloca``' Instruction
4709^^^^^^^^^^^^^^^^^^^^^^^^
4710
4711Syntax:
4712"""""""
4713
4714::
4715
David Majnemerc4ab61c2014-03-09 06:41:58 +00004716 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004717
4718Overview:
4719"""""""""
4720
4721The '``alloca``' instruction allocates memory on the stack frame of the
4722currently executing function, to be automatically released when this
4723function returns to its caller. The object is always allocated in the
4724generic address space (address space zero).
4725
4726Arguments:
4727""""""""""
4728
4729The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4730bytes of memory on the runtime stack, returning a pointer of the
4731appropriate type to the program. If "NumElements" is specified, it is
4732the number of elements allocated, otherwise "NumElements" is defaulted
4733to be one. If a constant alignment is specified, the value result of the
4734allocation is guaranteed to be aligned to at least that boundary. If not
4735specified, or if zero, the target can choose to align the allocation on
4736any convenient boundary compatible with the type.
4737
4738'``type``' may be any sized type.
4739
4740Semantics:
4741""""""""""
4742
4743Memory is allocated; a pointer is returned. The operation is undefined
4744if there is insufficient stack space for the allocation. '``alloca``'d
4745memory is automatically released when the function returns. The
4746'``alloca``' instruction is commonly used to represent automatic
4747variables that must have an address available. When the function returns
4748(either with the ``ret`` or ``resume`` instructions), the memory is
4749reclaimed. Allocating zero bytes is legal, but the result is undefined.
4750The order in which memory is allocated (ie., which way the stack grows)
4751is not specified.
4752
4753Example:
4754""""""""
4755
4756.. code-block:: llvm
4757
4758 %ptr = alloca i32 ; yields {i32*}:ptr
4759 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4760 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4761 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4762
4763.. _i_load:
4764
4765'``load``' Instruction
4766^^^^^^^^^^^^^^^^^^^^^^
4767
4768Syntax:
4769"""""""
4770
4771::
4772
4773 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4774 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4775 !<index> = !{ i32 1 }
4776
4777Overview:
4778"""""""""
4779
4780The '``load``' instruction is used to read from memory.
4781
4782Arguments:
4783""""""""""
4784
Eli Bendersky239a78b2013-04-17 20:17:08 +00004785The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004786from which to load. The pointer must point to a :ref:`first
4787class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4788then the optimizer is not allowed to modify the number or order of
4789execution of this ``load`` with other :ref:`volatile
4790operations <volatile>`.
4791
4792If the ``load`` is marked as ``atomic``, it takes an extra
4793:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4794``release`` and ``acq_rel`` orderings are not valid on ``load``
4795instructions. Atomic loads produce :ref:`defined <memmodel>` results
4796when they may see multiple atomic stores. The type of the pointee must
4797be an integer type whose bit width is a power of two greater than or
4798equal to eight and less than or equal to a target-specific size limit.
4799``align`` must be explicitly specified on atomic loads, and the load has
4800undefined behavior if the alignment is not set to a value which is at
4801least the size in bytes of the pointee. ``!nontemporal`` does not have
4802any defined semantics for atomic loads.
4803
4804The optional constant ``align`` argument specifies the alignment of the
4805operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004806or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004807alignment for the target. It is the responsibility of the code emitter
4808to ensure that the alignment information is correct. Overestimating the
4809alignment results in undefined behavior. Underestimating the alignment
4810may produce less efficient code. An alignment of 1 is always safe.
4811
4812The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004813metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004814``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004815metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004816that this load is not expected to be reused in the cache. The code
4817generator may select special instructions to save cache bandwidth, such
4818as the ``MOVNT`` instruction on x86.
4819
4820The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004821metadata name ``<index>`` corresponding to a metadata node with no
4822entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004823instruction tells the optimizer and code generator that this load
4824address points to memory which does not change value during program
4825execution. The optimizer may then move this load around, for example, by
4826hoisting it out of loops using loop invariant code motion.
4827
4828Semantics:
4829""""""""""
4830
4831The location of memory pointed to is loaded. If the value being loaded
4832is of scalar type then the number of bytes read does not exceed the
4833minimum number of bytes needed to hold all bits of the type. For
4834example, loading an ``i24`` reads at most three bytes. When loading a
4835value of a type like ``i20`` with a size that is not an integral number
4836of bytes, the result is undefined if the value was not originally
4837written using a store of the same type.
4838
4839Examples:
4840"""""""""
4841
4842.. code-block:: llvm
4843
4844 %ptr = alloca i32 ; yields {i32*}:ptr
4845 store i32 3, i32* %ptr ; yields {void}
4846 %val = load i32* %ptr ; yields {i32}:val = i32 3
4847
4848.. _i_store:
4849
4850'``store``' Instruction
4851^^^^^^^^^^^^^^^^^^^^^^^
4852
4853Syntax:
4854"""""""
4855
4856::
4857
4858 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4859 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4860
4861Overview:
4862"""""""""
4863
4864The '``store``' instruction is used to write to memory.
4865
4866Arguments:
4867""""""""""
4868
Eli Benderskyca380842013-04-17 17:17:20 +00004869There are two arguments to the ``store`` instruction: a value to store
4870and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004871operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004872the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004873then the optimizer is not allowed to modify the number or order of
4874execution of this ``store`` with other :ref:`volatile
4875operations <volatile>`.
4876
4877If the ``store`` is marked as ``atomic``, it takes an extra
4878:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4879``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4880instructions. Atomic loads produce :ref:`defined <memmodel>` results
4881when they may see multiple atomic stores. The type of the pointee must
4882be an integer type whose bit width is a power of two greater than or
4883equal to eight and less than or equal to a target-specific size limit.
4884``align`` must be explicitly specified on atomic stores, and the store
4885has undefined behavior if the alignment is not set to a value which is
4886at least the size in bytes of the pointee. ``!nontemporal`` does not
4887have any defined semantics for atomic stores.
4888
Eli Benderskyca380842013-04-17 17:17:20 +00004889The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004890operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004891or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004892alignment for the target. It is the responsibility of the code emitter
4893to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004894alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004895alignment may produce less efficient code. An alignment of 1 is always
4896safe.
4897
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004898The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004899name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004900value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004901tells the optimizer and code generator that this load is not expected to
4902be reused in the cache. The code generator may select special
4903instructions to save cache bandwidth, such as the MOVNT instruction on
4904x86.
4905
4906Semantics:
4907""""""""""
4908
Eli Benderskyca380842013-04-17 17:17:20 +00004909The contents of memory are updated to contain ``<value>`` at the
4910location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004911of scalar type then the number of bytes written does not exceed the
4912minimum number of bytes needed to hold all bits of the type. For
4913example, storing an ``i24`` writes at most three bytes. When writing a
4914value of a type like ``i20`` with a size that is not an integral number
4915of bytes, it is unspecified what happens to the extra bits that do not
4916belong to the type, but they will typically be overwritten.
4917
4918Example:
4919""""""""
4920
4921.. code-block:: llvm
4922
4923 %ptr = alloca i32 ; yields {i32*}:ptr
4924 store i32 3, i32* %ptr ; yields {void}
4925 %val = load i32* %ptr ; yields {i32}:val = i32 3
4926
4927.. _i_fence:
4928
4929'``fence``' Instruction
4930^^^^^^^^^^^^^^^^^^^^^^^
4931
4932Syntax:
4933"""""""
4934
4935::
4936
4937 fence [singlethread] <ordering> ; yields {void}
4938
4939Overview:
4940"""""""""
4941
4942The '``fence``' instruction is used to introduce happens-before edges
4943between operations.
4944
4945Arguments:
4946""""""""""
4947
4948'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4949defines what *synchronizes-with* edges they add. They can only be given
4950``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4951
4952Semantics:
4953""""""""""
4954
4955A fence A which has (at least) ``release`` ordering semantics
4956*synchronizes with* a fence B with (at least) ``acquire`` ordering
4957semantics if and only if there exist atomic operations X and Y, both
4958operating on some atomic object M, such that A is sequenced before X, X
4959modifies M (either directly or through some side effect of a sequence
4960headed by X), Y is sequenced before B, and Y observes M. This provides a
4961*happens-before* dependency between A and B. Rather than an explicit
4962``fence``, one (but not both) of the atomic operations X or Y might
4963provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4964still *synchronize-with* the explicit ``fence`` and establish the
4965*happens-before* edge.
4966
4967A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4968``acquire`` and ``release`` semantics specified above, participates in
4969the global program order of other ``seq_cst`` operations and/or fences.
4970
4971The optional ":ref:`singlethread <singlethread>`" argument specifies
4972that the fence only synchronizes with other fences in the same thread.
4973(This is useful for interacting with signal handlers.)
4974
4975Example:
4976""""""""
4977
4978.. code-block:: llvm
4979
4980 fence acquire ; yields {void}
4981 fence singlethread seq_cst ; yields {void}
4982
4983.. _i_cmpxchg:
4984
4985'``cmpxchg``' Instruction
4986^^^^^^^^^^^^^^^^^^^^^^^^^
4987
4988Syntax:
4989"""""""
4990
4991::
4992
Tim Northovere94a5182014-03-11 10:48:52 +00004993 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00004994
4995Overview:
4996"""""""""
4997
4998The '``cmpxchg``' instruction is used to atomically modify memory. It
4999loads a value in memory and compares it to a given value. If they are
5000equal, it stores a new value into the memory.
5001
5002Arguments:
5003""""""""""
5004
5005There are three arguments to the '``cmpxchg``' instruction: an address
5006to operate on, a value to compare to the value currently be at that
5007address, and a new value to place at that address if the compared values
5008are equal. The type of '<cmp>' must be an integer type whose bit width
5009is a power of two greater than or equal to eight and less than or equal
5010to a target-specific size limit. '<cmp>' and '<new>' must have the same
5011type, and the type of '<pointer>' must be a pointer to that type. If the
5012``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5013to modify the number or order of execution of this ``cmpxchg`` with
5014other :ref:`volatile operations <volatile>`.
5015
Tim Northovere94a5182014-03-11 10:48:52 +00005016The success and failure :ref:`ordering <ordering>` arguments specify how this
5017``cmpxchg`` synchronizes with other atomic operations. The both ordering
5018parameters must be at least ``monotonic``, the ordering constraint on failure
5019must be no stronger than that on success, and the failure ordering cannot be
5020either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005021
5022The optional "``singlethread``" argument declares that the ``cmpxchg``
5023is only atomic with respect to code (usually signal handlers) running in
5024the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5025respect to all other code in the system.
5026
5027The pointer passed into cmpxchg must have alignment greater than or
5028equal to the size in memory of the operand.
5029
5030Semantics:
5031""""""""""
5032
5033The contents of memory at the location specified by the '``<pointer>``'
5034operand is read and compared to '``<cmp>``'; if the read value is the
5035equal, '``<new>``' is written. The original value at the location is
5036returned.
5037
Tim Northovere94a5182014-03-11 10:48:52 +00005038A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5039identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5040load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005041
5042Example:
5043""""""""
5044
5045.. code-block:: llvm
5046
5047 entry:
5048 %orig = atomic load i32* %ptr unordered ; yields {i32}
5049 br label %loop
5050
5051 loop:
5052 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5053 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005054 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005055 %success = icmp eq i32 %cmp, %old
5056 br i1 %success, label %done, label %loop
5057
5058 done:
5059 ...
5060
5061.. _i_atomicrmw:
5062
5063'``atomicrmw``' Instruction
5064^^^^^^^^^^^^^^^^^^^^^^^^^^^
5065
5066Syntax:
5067"""""""
5068
5069::
5070
5071 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5072
5073Overview:
5074"""""""""
5075
5076The '``atomicrmw``' instruction is used to atomically modify memory.
5077
5078Arguments:
5079""""""""""
5080
5081There are three arguments to the '``atomicrmw``' instruction: an
5082operation to apply, an address whose value to modify, an argument to the
5083operation. The operation must be one of the following keywords:
5084
5085- xchg
5086- add
5087- sub
5088- and
5089- nand
5090- or
5091- xor
5092- max
5093- min
5094- umax
5095- umin
5096
5097The type of '<value>' must be an integer type whose bit width is a power
5098of two greater than or equal to eight and less than or equal to a
5099target-specific size limit. The type of the '``<pointer>``' operand must
5100be a pointer to that type. If the ``atomicrmw`` is marked as
5101``volatile``, then the optimizer is not allowed to modify the number or
5102order of execution of this ``atomicrmw`` with other :ref:`volatile
5103operations <volatile>`.
5104
5105Semantics:
5106""""""""""
5107
5108The contents of memory at the location specified by the '``<pointer>``'
5109operand are atomically read, modified, and written back. The original
5110value at the location is returned. The modification is specified by the
5111operation argument:
5112
5113- xchg: ``*ptr = val``
5114- add: ``*ptr = *ptr + val``
5115- sub: ``*ptr = *ptr - val``
5116- and: ``*ptr = *ptr & val``
5117- nand: ``*ptr = ~(*ptr & val)``
5118- or: ``*ptr = *ptr | val``
5119- xor: ``*ptr = *ptr ^ val``
5120- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5121- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5122- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5123 comparison)
5124- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5125 comparison)
5126
5127Example:
5128""""""""
5129
5130.. code-block:: llvm
5131
5132 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5133
5134.. _i_getelementptr:
5135
5136'``getelementptr``' Instruction
5137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5138
5139Syntax:
5140"""""""
5141
5142::
5143
5144 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5145 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5146 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5147
5148Overview:
5149"""""""""
5150
5151The '``getelementptr``' instruction is used to get the address of a
5152subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5153address calculation only and does not access memory.
5154
5155Arguments:
5156""""""""""
5157
5158The first argument is always a pointer or a vector of pointers, and
5159forms the basis of the calculation. The remaining arguments are indices
5160that indicate which of the elements of the aggregate object are indexed.
5161The interpretation of each index is dependent on the type being indexed
5162into. The first index always indexes the pointer value given as the
5163first argument, the second index indexes a value of the type pointed to
5164(not necessarily the value directly pointed to, since the first index
5165can be non-zero), etc. The first type indexed into must be a pointer
5166value, subsequent types can be arrays, vectors, and structs. Note that
5167subsequent types being indexed into can never be pointers, since that
5168would require loading the pointer before continuing calculation.
5169
5170The type of each index argument depends on the type it is indexing into.
5171When indexing into a (optionally packed) structure, only ``i32`` integer
5172**constants** are allowed (when using a vector of indices they must all
5173be the **same** ``i32`` integer constant). When indexing into an array,
5174pointer or vector, integers of any width are allowed, and they are not
5175required to be constant. These integers are treated as signed values
5176where relevant.
5177
5178For example, let's consider a C code fragment and how it gets compiled
5179to LLVM:
5180
5181.. code-block:: c
5182
5183 struct RT {
5184 char A;
5185 int B[10][20];
5186 char C;
5187 };
5188 struct ST {
5189 int X;
5190 double Y;
5191 struct RT Z;
5192 };
5193
5194 int *foo(struct ST *s) {
5195 return &s[1].Z.B[5][13];
5196 }
5197
5198The LLVM code generated by Clang is:
5199
5200.. code-block:: llvm
5201
5202 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5203 %struct.ST = type { i32, double, %struct.RT }
5204
5205 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5206 entry:
5207 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5208 ret i32* %arrayidx
5209 }
5210
5211Semantics:
5212""""""""""
5213
5214In the example above, the first index is indexing into the
5215'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5216= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5217indexes into the third element of the structure, yielding a
5218'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5219structure. The third index indexes into the second element of the
5220structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5221dimensions of the array are subscripted into, yielding an '``i32``'
5222type. The '``getelementptr``' instruction returns a pointer to this
5223element, thus computing a value of '``i32*``' type.
5224
5225Note that it is perfectly legal to index partially through a structure,
5226returning a pointer to an inner element. Because of this, the LLVM code
5227for the given testcase is equivalent to:
5228
5229.. code-block:: llvm
5230
5231 define i32* @foo(%struct.ST* %s) {
5232 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5233 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5234 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5235 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5236 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5237 ret i32* %t5
5238 }
5239
5240If the ``inbounds`` keyword is present, the result value of the
5241``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5242pointer is not an *in bounds* address of an allocated object, or if any
5243of the addresses that would be formed by successive addition of the
5244offsets implied by the indices to the base address with infinitely
5245precise signed arithmetic are not an *in bounds* address of that
5246allocated object. The *in bounds* addresses for an allocated object are
5247all the addresses that point into the object, plus the address one byte
5248past the end. In cases where the base is a vector of pointers the
5249``inbounds`` keyword applies to each of the computations element-wise.
5250
5251If the ``inbounds`` keyword is not present, the offsets are added to the
5252base address with silently-wrapping two's complement arithmetic. If the
5253offsets have a different width from the pointer, they are sign-extended
5254or truncated to the width of the pointer. The result value of the
5255``getelementptr`` may be outside the object pointed to by the base
5256pointer. The result value may not necessarily be used to access memory
5257though, even if it happens to point into allocated storage. See the
5258:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5259information.
5260
5261The getelementptr instruction is often confusing. For some more insight
5262into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5263
5264Example:
5265""""""""
5266
5267.. code-block:: llvm
5268
5269 ; yields [12 x i8]*:aptr
5270 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5271 ; yields i8*:vptr
5272 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5273 ; yields i8*:eptr
5274 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5275 ; yields i32*:iptr
5276 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5277
5278In cases where the pointer argument is a vector of pointers, each index
5279must be a vector with the same number of elements. For example:
5280
5281.. code-block:: llvm
5282
5283 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5284
5285Conversion Operations
5286---------------------
5287
5288The instructions in this category are the conversion instructions
5289(casting) which all take a single operand and a type. They perform
5290various bit conversions on the operand.
5291
5292'``trunc .. to``' Instruction
5293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5294
5295Syntax:
5296"""""""
5297
5298::
5299
5300 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5301
5302Overview:
5303"""""""""
5304
5305The '``trunc``' instruction truncates its operand to the type ``ty2``.
5306
5307Arguments:
5308""""""""""
5309
5310The '``trunc``' instruction takes a value to trunc, and a type to trunc
5311it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5312of the same number of integers. The bit size of the ``value`` must be
5313larger than the bit size of the destination type, ``ty2``. Equal sized
5314types are not allowed.
5315
5316Semantics:
5317""""""""""
5318
5319The '``trunc``' instruction truncates the high order bits in ``value``
5320and converts the remaining bits to ``ty2``. Since the source size must
5321be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5322It will always truncate bits.
5323
5324Example:
5325""""""""
5326
5327.. code-block:: llvm
5328
5329 %X = trunc i32 257 to i8 ; yields i8:1
5330 %Y = trunc i32 123 to i1 ; yields i1:true
5331 %Z = trunc i32 122 to i1 ; yields i1:false
5332 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5333
5334'``zext .. to``' Instruction
5335^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5336
5337Syntax:
5338"""""""
5339
5340::
5341
5342 <result> = zext <ty> <value> to <ty2> ; yields ty2
5343
5344Overview:
5345"""""""""
5346
5347The '``zext``' instruction zero extends its operand to type ``ty2``.
5348
5349Arguments:
5350""""""""""
5351
5352The '``zext``' instruction takes a value to cast, and a type to cast it
5353to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5354the same number of integers. The bit size of the ``value`` must be
5355smaller than the bit size of the destination type, ``ty2``.
5356
5357Semantics:
5358""""""""""
5359
5360The ``zext`` fills the high order bits of the ``value`` with zero bits
5361until it reaches the size of the destination type, ``ty2``.
5362
5363When zero extending from i1, the result will always be either 0 or 1.
5364
5365Example:
5366""""""""
5367
5368.. code-block:: llvm
5369
5370 %X = zext i32 257 to i64 ; yields i64:257
5371 %Y = zext i1 true to i32 ; yields i32:1
5372 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5373
5374'``sext .. to``' Instruction
5375^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5376
5377Syntax:
5378"""""""
5379
5380::
5381
5382 <result> = sext <ty> <value> to <ty2> ; yields ty2
5383
5384Overview:
5385"""""""""
5386
5387The '``sext``' sign extends ``value`` to the type ``ty2``.
5388
5389Arguments:
5390""""""""""
5391
5392The '``sext``' instruction takes a value to cast, and a type to cast it
5393to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5394the same number of integers. The bit size of the ``value`` must be
5395smaller than the bit size of the destination type, ``ty2``.
5396
5397Semantics:
5398""""""""""
5399
5400The '``sext``' instruction performs a sign extension by copying the sign
5401bit (highest order bit) of the ``value`` until it reaches the bit size
5402of the type ``ty2``.
5403
5404When sign extending from i1, the extension always results in -1 or 0.
5405
5406Example:
5407""""""""
5408
5409.. code-block:: llvm
5410
5411 %X = sext i8 -1 to i16 ; yields i16 :65535
5412 %Y = sext i1 true to i32 ; yields i32:-1
5413 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5414
5415'``fptrunc .. to``' Instruction
5416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5417
5418Syntax:
5419"""""""
5420
5421::
5422
5423 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5424
5425Overview:
5426"""""""""
5427
5428The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5429
5430Arguments:
5431""""""""""
5432
5433The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5434value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5435The size of ``value`` must be larger than the size of ``ty2``. This
5436implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5437
5438Semantics:
5439""""""""""
5440
5441The '``fptrunc``' instruction truncates a ``value`` from a larger
5442:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5443point <t_floating>` type. If the value cannot fit within the
5444destination type, ``ty2``, then the results are undefined.
5445
5446Example:
5447""""""""
5448
5449.. code-block:: llvm
5450
5451 %X = fptrunc double 123.0 to float ; yields float:123.0
5452 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5453
5454'``fpext .. to``' Instruction
5455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5456
5457Syntax:
5458"""""""
5459
5460::
5461
5462 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5463
5464Overview:
5465"""""""""
5466
5467The '``fpext``' extends a floating point ``value`` to a larger floating
5468point value.
5469
5470Arguments:
5471""""""""""
5472
5473The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5474``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5475to. The source type must be smaller than the destination type.
5476
5477Semantics:
5478""""""""""
5479
5480The '``fpext``' instruction extends the ``value`` from a smaller
5481:ref:`floating point <t_floating>` type to a larger :ref:`floating
5482point <t_floating>` type. The ``fpext`` cannot be used to make a
5483*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5484*no-op cast* for a floating point cast.
5485
5486Example:
5487""""""""
5488
5489.. code-block:: llvm
5490
5491 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5492 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5493
5494'``fptoui .. to``' Instruction
5495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5496
5497Syntax:
5498"""""""
5499
5500::
5501
5502 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5503
5504Overview:
5505"""""""""
5506
5507The '``fptoui``' converts a floating point ``value`` to its unsigned
5508integer equivalent of type ``ty2``.
5509
5510Arguments:
5511""""""""""
5512
5513The '``fptoui``' instruction takes a value to cast, which must be a
5514scalar or vector :ref:`floating point <t_floating>` value, and a type to
5515cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5516``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5517type with the same number of elements as ``ty``
5518
5519Semantics:
5520""""""""""
5521
5522The '``fptoui``' instruction converts its :ref:`floating
5523point <t_floating>` operand into the nearest (rounding towards zero)
5524unsigned integer value. If the value cannot fit in ``ty2``, the results
5525are undefined.
5526
5527Example:
5528""""""""
5529
5530.. code-block:: llvm
5531
5532 %X = fptoui double 123.0 to i32 ; yields i32:123
5533 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5534 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5535
5536'``fptosi .. to``' Instruction
5537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5538
5539Syntax:
5540"""""""
5541
5542::
5543
5544 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5545
5546Overview:
5547"""""""""
5548
5549The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5550``value`` to type ``ty2``.
5551
5552Arguments:
5553""""""""""
5554
5555The '``fptosi``' instruction takes a value to cast, which must be a
5556scalar or vector :ref:`floating point <t_floating>` value, and a type to
5557cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5558``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5559type with the same number of elements as ``ty``
5560
5561Semantics:
5562""""""""""
5563
5564The '``fptosi``' instruction converts its :ref:`floating
5565point <t_floating>` operand into the nearest (rounding towards zero)
5566signed integer value. If the value cannot fit in ``ty2``, the results
5567are undefined.
5568
5569Example:
5570""""""""
5571
5572.. code-block:: llvm
5573
5574 %X = fptosi double -123.0 to i32 ; yields i32:-123
5575 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5576 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5577
5578'``uitofp .. to``' Instruction
5579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5580
5581Syntax:
5582"""""""
5583
5584::
5585
5586 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5587
5588Overview:
5589"""""""""
5590
5591The '``uitofp``' instruction regards ``value`` as an unsigned integer
5592and converts that value to the ``ty2`` type.
5593
5594Arguments:
5595""""""""""
5596
5597The '``uitofp``' instruction takes a value to cast, which must be a
5598scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5599``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5600``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5601type with the same number of elements as ``ty``
5602
5603Semantics:
5604""""""""""
5605
5606The '``uitofp``' instruction interprets its operand as an unsigned
5607integer quantity and converts it to the corresponding floating point
5608value. If the value cannot fit in the floating point value, the results
5609are undefined.
5610
5611Example:
5612""""""""
5613
5614.. code-block:: llvm
5615
5616 %X = uitofp i32 257 to float ; yields float:257.0
5617 %Y = uitofp i8 -1 to double ; yields double:255.0
5618
5619'``sitofp .. to``' Instruction
5620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5621
5622Syntax:
5623"""""""
5624
5625::
5626
5627 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5628
5629Overview:
5630"""""""""
5631
5632The '``sitofp``' instruction regards ``value`` as a signed integer and
5633converts that value to the ``ty2`` type.
5634
5635Arguments:
5636""""""""""
5637
5638The '``sitofp``' instruction takes a value to cast, which must be a
5639scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5640``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5641``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5642type with the same number of elements as ``ty``
5643
5644Semantics:
5645""""""""""
5646
5647The '``sitofp``' instruction interprets its operand as a signed integer
5648quantity and converts it to the corresponding floating point value. If
5649the value cannot fit in the floating point value, the results are
5650undefined.
5651
5652Example:
5653""""""""
5654
5655.. code-block:: llvm
5656
5657 %X = sitofp i32 257 to float ; yields float:257.0
5658 %Y = sitofp i8 -1 to double ; yields double:-1.0
5659
5660.. _i_ptrtoint:
5661
5662'``ptrtoint .. to``' Instruction
5663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5664
5665Syntax:
5666"""""""
5667
5668::
5669
5670 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5671
5672Overview:
5673"""""""""
5674
5675The '``ptrtoint``' instruction converts the pointer or a vector of
5676pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5677
5678Arguments:
5679""""""""""
5680
5681The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5682a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5683type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5684a vector of integers type.
5685
5686Semantics:
5687""""""""""
5688
5689The '``ptrtoint``' instruction converts ``value`` to integer type
5690``ty2`` by interpreting the pointer value as an integer and either
5691truncating or zero extending that value to the size of the integer type.
5692If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5693``value`` is larger than ``ty2`` then a truncation is done. If they are
5694the same size, then nothing is done (*no-op cast*) other than a type
5695change.
5696
5697Example:
5698""""""""
5699
5700.. code-block:: llvm
5701
5702 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5703 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5704 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5705
5706.. _i_inttoptr:
5707
5708'``inttoptr .. to``' Instruction
5709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5710
5711Syntax:
5712"""""""
5713
5714::
5715
5716 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5717
5718Overview:
5719"""""""""
5720
5721The '``inttoptr``' instruction converts an integer ``value`` to a
5722pointer type, ``ty2``.
5723
5724Arguments:
5725""""""""""
5726
5727The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5728cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5729type.
5730
5731Semantics:
5732""""""""""
5733
5734The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5735applying either a zero extension or a truncation depending on the size
5736of the integer ``value``. If ``value`` is larger than the size of a
5737pointer then a truncation is done. If ``value`` is smaller than the size
5738of a pointer then a zero extension is done. If they are the same size,
5739nothing is done (*no-op cast*).
5740
5741Example:
5742""""""""
5743
5744.. code-block:: llvm
5745
5746 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5747 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5748 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5749 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5750
5751.. _i_bitcast:
5752
5753'``bitcast .. to``' Instruction
5754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5755
5756Syntax:
5757"""""""
5758
5759::
5760
5761 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5762
5763Overview:
5764"""""""""
5765
5766The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5767changing any bits.
5768
5769Arguments:
5770""""""""""
5771
5772The '``bitcast``' instruction takes a value to cast, which must be a
5773non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005774also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5775bit sizes of ``value`` and the destination type, ``ty2``, must be
5776identical. If the source type is a pointer, the destination type must
5777also be a pointer of the same size. This instruction supports bitwise
5778conversion of vectors to integers and to vectors of other types (as
5779long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005780
5781Semantics:
5782""""""""""
5783
Matt Arsenault24b49c42013-07-31 17:49:08 +00005784The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5785is always a *no-op cast* because no bits change with this
5786conversion. The conversion is done as if the ``value`` had been stored
5787to memory and read back as type ``ty2``. Pointer (or vector of
5788pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005789pointers) types with the same address space through this instruction.
5790To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5791or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005792
5793Example:
5794""""""""
5795
5796.. code-block:: llvm
5797
5798 %X = bitcast i8 255 to i8 ; yields i8 :-1
5799 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5800 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5801 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5802
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005803.. _i_addrspacecast:
5804
5805'``addrspacecast .. to``' Instruction
5806^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5807
5808Syntax:
5809"""""""
5810
5811::
5812
5813 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5814
5815Overview:
5816"""""""""
5817
5818The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5819address space ``n`` to type ``pty2`` in address space ``m``.
5820
5821Arguments:
5822""""""""""
5823
5824The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5825to cast and a pointer type to cast it to, which must have a different
5826address space.
5827
5828Semantics:
5829""""""""""
5830
5831The '``addrspacecast``' instruction converts the pointer value
5832``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005833value modification, depending on the target and the address space
5834pair. Pointer conversions within the same address space must be
5835performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005836conversion is legal then both result and operand refer to the same memory
5837location.
5838
5839Example:
5840""""""""
5841
5842.. code-block:: llvm
5843
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005844 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5845 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5846 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005847
Sean Silvab084af42012-12-07 10:36:55 +00005848.. _otherops:
5849
5850Other Operations
5851----------------
5852
5853The instructions in this category are the "miscellaneous" instructions,
5854which defy better classification.
5855
5856.. _i_icmp:
5857
5858'``icmp``' Instruction
5859^^^^^^^^^^^^^^^^^^^^^^
5860
5861Syntax:
5862"""""""
5863
5864::
5865
5866 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5867
5868Overview:
5869"""""""""
5870
5871The '``icmp``' instruction returns a boolean value or a vector of
5872boolean values based on comparison of its two integer, integer vector,
5873pointer, or pointer vector operands.
5874
5875Arguments:
5876""""""""""
5877
5878The '``icmp``' instruction takes three operands. The first operand is
5879the condition code indicating the kind of comparison to perform. It is
5880not a value, just a keyword. The possible condition code are:
5881
5882#. ``eq``: equal
5883#. ``ne``: not equal
5884#. ``ugt``: unsigned greater than
5885#. ``uge``: unsigned greater or equal
5886#. ``ult``: unsigned less than
5887#. ``ule``: unsigned less or equal
5888#. ``sgt``: signed greater than
5889#. ``sge``: signed greater or equal
5890#. ``slt``: signed less than
5891#. ``sle``: signed less or equal
5892
5893The remaining two arguments must be :ref:`integer <t_integer>` or
5894:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5895must also be identical types.
5896
5897Semantics:
5898""""""""""
5899
5900The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5901code given as ``cond``. The comparison performed always yields either an
5902:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5903
5904#. ``eq``: yields ``true`` if the operands are equal, ``false``
5905 otherwise. No sign interpretation is necessary or performed.
5906#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5907 otherwise. No sign interpretation is necessary or performed.
5908#. ``ugt``: interprets the operands as unsigned values and yields
5909 ``true`` if ``op1`` is greater than ``op2``.
5910#. ``uge``: interprets the operands as unsigned values and yields
5911 ``true`` if ``op1`` is greater than or equal to ``op2``.
5912#. ``ult``: interprets the operands as unsigned values and yields
5913 ``true`` if ``op1`` is less than ``op2``.
5914#. ``ule``: interprets the operands as unsigned values and yields
5915 ``true`` if ``op1`` is less than or equal to ``op2``.
5916#. ``sgt``: interprets the operands as signed values and yields ``true``
5917 if ``op1`` is greater than ``op2``.
5918#. ``sge``: interprets the operands as signed values and yields ``true``
5919 if ``op1`` is greater than or equal to ``op2``.
5920#. ``slt``: interprets the operands as signed values and yields ``true``
5921 if ``op1`` is less than ``op2``.
5922#. ``sle``: interprets the operands as signed values and yields ``true``
5923 if ``op1`` is less than or equal to ``op2``.
5924
5925If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5926are compared as if they were integers.
5927
5928If the operands are integer vectors, then they are compared element by
5929element. The result is an ``i1`` vector with the same number of elements
5930as the values being compared. Otherwise, the result is an ``i1``.
5931
5932Example:
5933""""""""
5934
5935.. code-block:: llvm
5936
5937 <result> = icmp eq i32 4, 5 ; yields: result=false
5938 <result> = icmp ne float* %X, %X ; yields: result=false
5939 <result> = icmp ult i16 4, 5 ; yields: result=true
5940 <result> = icmp sgt i16 4, 5 ; yields: result=false
5941 <result> = icmp ule i16 -4, 5 ; yields: result=false
5942 <result> = icmp sge i16 4, 5 ; yields: result=false
5943
5944Note that the code generator does not yet support vector types with the
5945``icmp`` instruction.
5946
5947.. _i_fcmp:
5948
5949'``fcmp``' Instruction
5950^^^^^^^^^^^^^^^^^^^^^^
5951
5952Syntax:
5953"""""""
5954
5955::
5956
5957 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5958
5959Overview:
5960"""""""""
5961
5962The '``fcmp``' instruction returns a boolean value or vector of boolean
5963values based on comparison of its operands.
5964
5965If the operands are floating point scalars, then the result type is a
5966boolean (:ref:`i1 <t_integer>`).
5967
5968If the operands are floating point vectors, then the result type is a
5969vector of boolean with the same number of elements as the operands being
5970compared.
5971
5972Arguments:
5973""""""""""
5974
5975The '``fcmp``' instruction takes three operands. The first operand is
5976the condition code indicating the kind of comparison to perform. It is
5977not a value, just a keyword. The possible condition code are:
5978
5979#. ``false``: no comparison, always returns false
5980#. ``oeq``: ordered and equal
5981#. ``ogt``: ordered and greater than
5982#. ``oge``: ordered and greater than or equal
5983#. ``olt``: ordered and less than
5984#. ``ole``: ordered and less than or equal
5985#. ``one``: ordered and not equal
5986#. ``ord``: ordered (no nans)
5987#. ``ueq``: unordered or equal
5988#. ``ugt``: unordered or greater than
5989#. ``uge``: unordered or greater than or equal
5990#. ``ult``: unordered or less than
5991#. ``ule``: unordered or less than or equal
5992#. ``une``: unordered or not equal
5993#. ``uno``: unordered (either nans)
5994#. ``true``: no comparison, always returns true
5995
5996*Ordered* means that neither operand is a QNAN while *unordered* means
5997that either operand may be a QNAN.
5998
5999Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6000point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6001type. They must have identical types.
6002
6003Semantics:
6004""""""""""
6005
6006The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6007condition code given as ``cond``. If the operands are vectors, then the
6008vectors are compared element by element. Each comparison performed
6009always yields an :ref:`i1 <t_integer>` result, as follows:
6010
6011#. ``false``: always yields ``false``, regardless of operands.
6012#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6013 is equal to ``op2``.
6014#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6015 is greater than ``op2``.
6016#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6017 is greater than or equal to ``op2``.
6018#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6019 is less than ``op2``.
6020#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6021 is less than or equal to ``op2``.
6022#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6023 is not equal to ``op2``.
6024#. ``ord``: yields ``true`` if both operands are not a QNAN.
6025#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6026 equal to ``op2``.
6027#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6028 greater than ``op2``.
6029#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6030 greater than or equal to ``op2``.
6031#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6032 less than ``op2``.
6033#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6034 less than or equal to ``op2``.
6035#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6036 not equal to ``op2``.
6037#. ``uno``: yields ``true`` if either operand is a QNAN.
6038#. ``true``: always yields ``true``, regardless of operands.
6039
6040Example:
6041""""""""
6042
6043.. code-block:: llvm
6044
6045 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6046 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6047 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6048 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6049
6050Note that the code generator does not yet support vector types with the
6051``fcmp`` instruction.
6052
6053.. _i_phi:
6054
6055'``phi``' Instruction
6056^^^^^^^^^^^^^^^^^^^^^
6057
6058Syntax:
6059"""""""
6060
6061::
6062
6063 <result> = phi <ty> [ <val0>, <label0>], ...
6064
6065Overview:
6066"""""""""
6067
6068The '``phi``' instruction is used to implement the φ node in the SSA
6069graph representing the function.
6070
6071Arguments:
6072""""""""""
6073
6074The type of the incoming values is specified with the first type field.
6075After this, the '``phi``' instruction takes a list of pairs as
6076arguments, with one pair for each predecessor basic block of the current
6077block. Only values of :ref:`first class <t_firstclass>` type may be used as
6078the value arguments to the PHI node. Only labels may be used as the
6079label arguments.
6080
6081There must be no non-phi instructions between the start of a basic block
6082and the PHI instructions: i.e. PHI instructions must be first in a basic
6083block.
6084
6085For the purposes of the SSA form, the use of each incoming value is
6086deemed to occur on the edge from the corresponding predecessor block to
6087the current block (but after any definition of an '``invoke``'
6088instruction's return value on the same edge).
6089
6090Semantics:
6091""""""""""
6092
6093At runtime, the '``phi``' instruction logically takes on the value
6094specified by the pair corresponding to the predecessor basic block that
6095executed just prior to the current block.
6096
6097Example:
6098""""""""
6099
6100.. code-block:: llvm
6101
6102 Loop: ; Infinite loop that counts from 0 on up...
6103 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6104 %nextindvar = add i32 %indvar, 1
6105 br label %Loop
6106
6107.. _i_select:
6108
6109'``select``' Instruction
6110^^^^^^^^^^^^^^^^^^^^^^^^
6111
6112Syntax:
6113"""""""
6114
6115::
6116
6117 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6118
6119 selty is either i1 or {<N x i1>}
6120
6121Overview:
6122"""""""""
6123
6124The '``select``' instruction is used to choose one value based on a
6125condition, without branching.
6126
6127Arguments:
6128""""""""""
6129
6130The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6131values indicating the condition, and two values of the same :ref:`first
6132class <t_firstclass>` type. If the val1/val2 are vectors and the
6133condition is a scalar, then entire vectors are selected, not individual
6134elements.
6135
6136Semantics:
6137""""""""""
6138
6139If the condition is an i1 and it evaluates to 1, the instruction returns
6140the first value argument; otherwise, it returns the second value
6141argument.
6142
6143If the condition is a vector of i1, then the value arguments must be
6144vectors of the same size, and the selection is done element by element.
6145
6146Example:
6147""""""""
6148
6149.. code-block:: llvm
6150
6151 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6152
6153.. _i_call:
6154
6155'``call``' Instruction
6156^^^^^^^^^^^^^^^^^^^^^^
6157
6158Syntax:
6159"""""""
6160
6161::
6162
6163 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6164
6165Overview:
6166"""""""""
6167
6168The '``call``' instruction represents a simple function call.
6169
6170Arguments:
6171""""""""""
6172
6173This instruction requires several arguments:
6174
6175#. The optional "tail" marker indicates that the callee function does
6176 not access any allocas or varargs in the caller. Note that calls may
6177 be marked "tail" even if they do not occur before a
6178 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6179 function call is eligible for tail call optimization, but `might not
6180 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6181 The code generator may optimize calls marked "tail" with either 1)
6182 automatic `sibling call
6183 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6184 callee have matching signatures, or 2) forced tail call optimization
6185 when the following extra requirements are met:
6186
6187 - Caller and callee both have the calling convention ``fastcc``.
6188 - The call is in tail position (ret immediately follows call and ret
6189 uses value of call or is void).
6190 - Option ``-tailcallopt`` is enabled, or
6191 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6192 - `Platform specific constraints are
6193 met. <CodeGenerator.html#tailcallopt>`_
6194
6195#. The optional "cconv" marker indicates which :ref:`calling
6196 convention <callingconv>` the call should use. If none is
6197 specified, the call defaults to using C calling conventions. The
6198 calling convention of the call must match the calling convention of
6199 the target function, or else the behavior is undefined.
6200#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6201 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6202 are valid here.
6203#. '``ty``': the type of the call instruction itself which is also the
6204 type of the return value. Functions that return no value are marked
6205 ``void``.
6206#. '``fnty``': shall be the signature of the pointer to function value
6207 being invoked. The argument types must match the types implied by
6208 this signature. This type can be omitted if the function is not
6209 varargs and if the function type does not return a pointer to a
6210 function.
6211#. '``fnptrval``': An LLVM value containing a pointer to a function to
6212 be invoked. In most cases, this is a direct function invocation, but
6213 indirect ``call``'s are just as possible, calling an arbitrary pointer
6214 to function value.
6215#. '``function args``': argument list whose types match the function
6216 signature argument types and parameter attributes. All arguments must
6217 be of :ref:`first class <t_firstclass>` type. If the function signature
6218 indicates the function accepts a variable number of arguments, the
6219 extra arguments can be specified.
6220#. The optional :ref:`function attributes <fnattrs>` list. Only
6221 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6222 attributes are valid here.
6223
6224Semantics:
6225""""""""""
6226
6227The '``call``' instruction is used to cause control flow to transfer to
6228a specified function, with its incoming arguments bound to the specified
6229values. Upon a '``ret``' instruction in the called function, control
6230flow continues with the instruction after the function call, and the
6231return value of the function is bound to the result argument.
6232
6233Example:
6234""""""""
6235
6236.. code-block:: llvm
6237
6238 %retval = call i32 @test(i32 %argc)
6239 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6240 %X = tail call i32 @foo() ; yields i32
6241 %Y = tail call fastcc i32 @foo() ; yields i32
6242 call void %foo(i8 97 signext)
6243
6244 %struct.A = type { i32, i8 }
6245 %r = call %struct.A @foo() ; yields { 32, i8 }
6246 %gr = extractvalue %struct.A %r, 0 ; yields i32
6247 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6248 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6249 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6250
6251llvm treats calls to some functions with names and arguments that match
6252the standard C99 library as being the C99 library functions, and may
6253perform optimizations or generate code for them under that assumption.
6254This is something we'd like to change in the future to provide better
6255support for freestanding environments and non-C-based languages.
6256
6257.. _i_va_arg:
6258
6259'``va_arg``' Instruction
6260^^^^^^^^^^^^^^^^^^^^^^^^
6261
6262Syntax:
6263"""""""
6264
6265::
6266
6267 <resultval> = va_arg <va_list*> <arglist>, <argty>
6268
6269Overview:
6270"""""""""
6271
6272The '``va_arg``' instruction is used to access arguments passed through
6273the "variable argument" area of a function call. It is used to implement
6274the ``va_arg`` macro in C.
6275
6276Arguments:
6277""""""""""
6278
6279This instruction takes a ``va_list*`` value and the type of the
6280argument. It returns a value of the specified argument type and
6281increments the ``va_list`` to point to the next argument. The actual
6282type of ``va_list`` is target specific.
6283
6284Semantics:
6285""""""""""
6286
6287The '``va_arg``' instruction loads an argument of the specified type
6288from the specified ``va_list`` and causes the ``va_list`` to point to
6289the next argument. For more information, see the variable argument
6290handling :ref:`Intrinsic Functions <int_varargs>`.
6291
6292It is legal for this instruction to be called in a function which does
6293not take a variable number of arguments, for example, the ``vfprintf``
6294function.
6295
6296``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6297function <intrinsics>` because it takes a type as an argument.
6298
6299Example:
6300""""""""
6301
6302See the :ref:`variable argument processing <int_varargs>` section.
6303
6304Note that the code generator does not yet fully support va\_arg on many
6305targets. Also, it does not currently support va\_arg with aggregate
6306types on any target.
6307
6308.. _i_landingpad:
6309
6310'``landingpad``' Instruction
6311^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6312
6313Syntax:
6314"""""""
6315
6316::
6317
6318 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6319 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6320
6321 <clause> := catch <type> <value>
6322 <clause> := filter <array constant type> <array constant>
6323
6324Overview:
6325"""""""""
6326
6327The '``landingpad``' instruction is used by `LLVM's exception handling
6328system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006329is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006330code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6331defines values supplied by the personality function (``pers_fn``) upon
6332re-entry to the function. The ``resultval`` has the type ``resultty``.
6333
6334Arguments:
6335""""""""""
6336
6337This instruction takes a ``pers_fn`` value. This is the personality
6338function associated with the unwinding mechanism. The optional
6339``cleanup`` flag indicates that the landing pad block is a cleanup.
6340
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006341A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006342contains the global variable representing the "type" that may be caught
6343or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6344clause takes an array constant as its argument. Use
6345"``[0 x i8**] undef``" for a filter which cannot throw. The
6346'``landingpad``' instruction must contain *at least* one ``clause`` or
6347the ``cleanup`` flag.
6348
6349Semantics:
6350""""""""""
6351
6352The '``landingpad``' instruction defines the values which are set by the
6353personality function (``pers_fn``) upon re-entry to the function, and
6354therefore the "result type" of the ``landingpad`` instruction. As with
6355calling conventions, how the personality function results are
6356represented in LLVM IR is target specific.
6357
6358The clauses are applied in order from top to bottom. If two
6359``landingpad`` instructions are merged together through inlining, the
6360clauses from the calling function are appended to the list of clauses.
6361When the call stack is being unwound due to an exception being thrown,
6362the exception is compared against each ``clause`` in turn. If it doesn't
6363match any of the clauses, and the ``cleanup`` flag is not set, then
6364unwinding continues further up the call stack.
6365
6366The ``landingpad`` instruction has several restrictions:
6367
6368- A landing pad block is a basic block which is the unwind destination
6369 of an '``invoke``' instruction.
6370- A landing pad block must have a '``landingpad``' instruction as its
6371 first non-PHI instruction.
6372- There can be only one '``landingpad``' instruction within the landing
6373 pad block.
6374- A basic block that is not a landing pad block may not include a
6375 '``landingpad``' instruction.
6376- All '``landingpad``' instructions in a function must have the same
6377 personality function.
6378
6379Example:
6380""""""""
6381
6382.. code-block:: llvm
6383
6384 ;; A landing pad which can catch an integer.
6385 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6386 catch i8** @_ZTIi
6387 ;; A landing pad that is a cleanup.
6388 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6389 cleanup
6390 ;; A landing pad which can catch an integer and can only throw a double.
6391 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6392 catch i8** @_ZTIi
6393 filter [1 x i8**] [@_ZTId]
6394
6395.. _intrinsics:
6396
6397Intrinsic Functions
6398===================
6399
6400LLVM supports the notion of an "intrinsic function". These functions
6401have well known names and semantics and are required to follow certain
6402restrictions. Overall, these intrinsics represent an extension mechanism
6403for the LLVM language that does not require changing all of the
6404transformations in LLVM when adding to the language (or the bitcode
6405reader/writer, the parser, etc...).
6406
6407Intrinsic function names must all start with an "``llvm.``" prefix. This
6408prefix is reserved in LLVM for intrinsic names; thus, function names may
6409not begin with this prefix. Intrinsic functions must always be external
6410functions: you cannot define the body of intrinsic functions. Intrinsic
6411functions may only be used in call or invoke instructions: it is illegal
6412to take the address of an intrinsic function. Additionally, because
6413intrinsic functions are part of the LLVM language, it is required if any
6414are added that they be documented here.
6415
6416Some intrinsic functions can be overloaded, i.e., the intrinsic
6417represents a family of functions that perform the same operation but on
6418different data types. Because LLVM can represent over 8 million
6419different integer types, overloading is used commonly to allow an
6420intrinsic function to operate on any integer type. One or more of the
6421argument types or the result type can be overloaded to accept any
6422integer type. Argument types may also be defined as exactly matching a
6423previous argument's type or the result type. This allows an intrinsic
6424function which accepts multiple arguments, but needs all of them to be
6425of the same type, to only be overloaded with respect to a single
6426argument or the result.
6427
6428Overloaded intrinsics will have the names of its overloaded argument
6429types encoded into its function name, each preceded by a period. Only
6430those types which are overloaded result in a name suffix. Arguments
6431whose type is matched against another type do not. For example, the
6432``llvm.ctpop`` function can take an integer of any width and returns an
6433integer of exactly the same integer width. This leads to a family of
6434functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6435``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6436overloaded, and only one type suffix is required. Because the argument's
6437type is matched against the return type, it does not require its own
6438name suffix.
6439
6440To learn how to add an intrinsic function, please see the `Extending
6441LLVM Guide <ExtendingLLVM.html>`_.
6442
6443.. _int_varargs:
6444
6445Variable Argument Handling Intrinsics
6446-------------------------------------
6447
6448Variable argument support is defined in LLVM with the
6449:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6450functions. These functions are related to the similarly named macros
6451defined in the ``<stdarg.h>`` header file.
6452
6453All of these functions operate on arguments that use a target-specific
6454value type "``va_list``". The LLVM assembly language reference manual
6455does not define what this type is, so all transformations should be
6456prepared to handle these functions regardless of the type used.
6457
6458This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6459variable argument handling intrinsic functions are used.
6460
6461.. code-block:: llvm
6462
6463 define i32 @test(i32 %X, ...) {
6464 ; Initialize variable argument processing
6465 %ap = alloca i8*
6466 %ap2 = bitcast i8** %ap to i8*
6467 call void @llvm.va_start(i8* %ap2)
6468
6469 ; Read a single integer argument
6470 %tmp = va_arg i8** %ap, i32
6471
6472 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6473 %aq = alloca i8*
6474 %aq2 = bitcast i8** %aq to i8*
6475 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6476 call void @llvm.va_end(i8* %aq2)
6477
6478 ; Stop processing of arguments.
6479 call void @llvm.va_end(i8* %ap2)
6480 ret i32 %tmp
6481 }
6482
6483 declare void @llvm.va_start(i8*)
6484 declare void @llvm.va_copy(i8*, i8*)
6485 declare void @llvm.va_end(i8*)
6486
6487.. _int_va_start:
6488
6489'``llvm.va_start``' Intrinsic
6490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6491
6492Syntax:
6493"""""""
6494
6495::
6496
Nick Lewycky04f6de02013-09-11 22:04:52 +00006497 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006498
6499Overview:
6500"""""""""
6501
6502The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6503subsequent use by ``va_arg``.
6504
6505Arguments:
6506""""""""""
6507
6508The argument is a pointer to a ``va_list`` element to initialize.
6509
6510Semantics:
6511""""""""""
6512
6513The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6514available in C. In a target-dependent way, it initializes the
6515``va_list`` element to which the argument points, so that the next call
6516to ``va_arg`` will produce the first variable argument passed to the
6517function. Unlike the C ``va_start`` macro, this intrinsic does not need
6518to know the last argument of the function as the compiler can figure
6519that out.
6520
6521'``llvm.va_end``' Intrinsic
6522^^^^^^^^^^^^^^^^^^^^^^^^^^^
6523
6524Syntax:
6525"""""""
6526
6527::
6528
6529 declare void @llvm.va_end(i8* <arglist>)
6530
6531Overview:
6532"""""""""
6533
6534The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6535initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6536
6537Arguments:
6538""""""""""
6539
6540The argument is a pointer to a ``va_list`` to destroy.
6541
6542Semantics:
6543""""""""""
6544
6545The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6546available in C. In a target-dependent way, it destroys the ``va_list``
6547element to which the argument points. Calls to
6548:ref:`llvm.va_start <int_va_start>` and
6549:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6550``llvm.va_end``.
6551
6552.. _int_va_copy:
6553
6554'``llvm.va_copy``' Intrinsic
6555^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6556
6557Syntax:
6558"""""""
6559
6560::
6561
6562 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6563
6564Overview:
6565"""""""""
6566
6567The '``llvm.va_copy``' intrinsic copies the current argument position
6568from the source argument list to the destination argument list.
6569
6570Arguments:
6571""""""""""
6572
6573The first argument is a pointer to a ``va_list`` element to initialize.
6574The second argument is a pointer to a ``va_list`` element to copy from.
6575
6576Semantics:
6577""""""""""
6578
6579The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6580available in C. In a target-dependent way, it copies the source
6581``va_list`` element into the destination ``va_list`` element. This
6582intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6583arbitrarily complex and require, for example, memory allocation.
6584
6585Accurate Garbage Collection Intrinsics
6586--------------------------------------
6587
6588LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6589(GC) requires the implementation and generation of these intrinsics.
6590These intrinsics allow identification of :ref:`GC roots on the
6591stack <int_gcroot>`, as well as garbage collector implementations that
6592require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6593Front-ends for type-safe garbage collected languages should generate
6594these intrinsics to make use of the LLVM garbage collectors. For more
6595details, see `Accurate Garbage Collection with
6596LLVM <GarbageCollection.html>`_.
6597
6598The garbage collection intrinsics only operate on objects in the generic
6599address space (address space zero).
6600
6601.. _int_gcroot:
6602
6603'``llvm.gcroot``' Intrinsic
6604^^^^^^^^^^^^^^^^^^^^^^^^^^^
6605
6606Syntax:
6607"""""""
6608
6609::
6610
6611 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6612
6613Overview:
6614"""""""""
6615
6616The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6617the code generator, and allows some metadata to be associated with it.
6618
6619Arguments:
6620""""""""""
6621
6622The first argument specifies the address of a stack object that contains
6623the root pointer. The second pointer (which must be either a constant or
6624a global value address) contains the meta-data to be associated with the
6625root.
6626
6627Semantics:
6628""""""""""
6629
6630At runtime, a call to this intrinsic stores a null pointer into the
6631"ptrloc" location. At compile-time, the code generator generates
6632information to allow the runtime to find the pointer at GC safe points.
6633The '``llvm.gcroot``' intrinsic may only be used in a function which
6634:ref:`specifies a GC algorithm <gc>`.
6635
6636.. _int_gcread:
6637
6638'``llvm.gcread``' Intrinsic
6639^^^^^^^^^^^^^^^^^^^^^^^^^^^
6640
6641Syntax:
6642"""""""
6643
6644::
6645
6646 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6647
6648Overview:
6649"""""""""
6650
6651The '``llvm.gcread``' intrinsic identifies reads of references from heap
6652locations, allowing garbage collector implementations that require read
6653barriers.
6654
6655Arguments:
6656""""""""""
6657
6658The second argument is the address to read from, which should be an
6659address allocated from the garbage collector. The first object is a
6660pointer to the start of the referenced object, if needed by the language
6661runtime (otherwise null).
6662
6663Semantics:
6664""""""""""
6665
6666The '``llvm.gcread``' intrinsic has the same semantics as a load
6667instruction, but may be replaced with substantially more complex code by
6668the garbage collector runtime, as needed. The '``llvm.gcread``'
6669intrinsic may only be used in a function which :ref:`specifies a GC
6670algorithm <gc>`.
6671
6672.. _int_gcwrite:
6673
6674'``llvm.gcwrite``' Intrinsic
6675^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6676
6677Syntax:
6678"""""""
6679
6680::
6681
6682 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6683
6684Overview:
6685"""""""""
6686
6687The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6688locations, allowing garbage collector implementations that require write
6689barriers (such as generational or reference counting collectors).
6690
6691Arguments:
6692""""""""""
6693
6694The first argument is the reference to store, the second is the start of
6695the object to store it to, and the third is the address of the field of
6696Obj to store to. If the runtime does not require a pointer to the
6697object, Obj may be null.
6698
6699Semantics:
6700""""""""""
6701
6702The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6703instruction, but may be replaced with substantially more complex code by
6704the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6705intrinsic may only be used in a function which :ref:`specifies a GC
6706algorithm <gc>`.
6707
6708Code Generator Intrinsics
6709-------------------------
6710
6711These intrinsics are provided by LLVM to expose special features that
6712may only be implemented with code generator support.
6713
6714'``llvm.returnaddress``' Intrinsic
6715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6716
6717Syntax:
6718"""""""
6719
6720::
6721
6722 declare i8 *@llvm.returnaddress(i32 <level>)
6723
6724Overview:
6725"""""""""
6726
6727The '``llvm.returnaddress``' intrinsic attempts to compute a
6728target-specific value indicating the return address of the current
6729function or one of its callers.
6730
6731Arguments:
6732""""""""""
6733
6734The argument to this intrinsic indicates which function to return the
6735address for. Zero indicates the calling function, one indicates its
6736caller, etc. The argument is **required** to be a constant integer
6737value.
6738
6739Semantics:
6740""""""""""
6741
6742The '``llvm.returnaddress``' intrinsic either returns a pointer
6743indicating the return address of the specified call frame, or zero if it
6744cannot be identified. The value returned by this intrinsic is likely to
6745be incorrect or 0 for arguments other than zero, so it should only be
6746used for debugging purposes.
6747
6748Note that calling this intrinsic does not prevent function inlining or
6749other aggressive transformations, so the value returned may not be that
6750of the obvious source-language caller.
6751
6752'``llvm.frameaddress``' Intrinsic
6753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6754
6755Syntax:
6756"""""""
6757
6758::
6759
6760 declare i8* @llvm.frameaddress(i32 <level>)
6761
6762Overview:
6763"""""""""
6764
6765The '``llvm.frameaddress``' intrinsic attempts to return the
6766target-specific frame pointer value for the specified stack frame.
6767
6768Arguments:
6769""""""""""
6770
6771The argument to this intrinsic indicates which function to return the
6772frame pointer for. Zero indicates the calling function, one indicates
6773its caller, etc. The argument is **required** to be a constant integer
6774value.
6775
6776Semantics:
6777""""""""""
6778
6779The '``llvm.frameaddress``' intrinsic either returns a pointer
6780indicating the frame address of the specified call frame, or zero if it
6781cannot be identified. The value returned by this intrinsic is likely to
6782be incorrect or 0 for arguments other than zero, so it should only be
6783used for debugging purposes.
6784
6785Note that calling this intrinsic does not prevent function inlining or
6786other aggressive transformations, so the value returned may not be that
6787of the obvious source-language caller.
6788
6789.. _int_stacksave:
6790
6791'``llvm.stacksave``' Intrinsic
6792^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6793
6794Syntax:
6795"""""""
6796
6797::
6798
6799 declare i8* @llvm.stacksave()
6800
6801Overview:
6802"""""""""
6803
6804The '``llvm.stacksave``' intrinsic is used to remember the current state
6805of the function stack, for use with
6806:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6807implementing language features like scoped automatic variable sized
6808arrays in C99.
6809
6810Semantics:
6811""""""""""
6812
6813This intrinsic returns a opaque pointer value that can be passed to
6814:ref:`llvm.stackrestore <int_stackrestore>`. When an
6815``llvm.stackrestore`` intrinsic is executed with a value saved from
6816``llvm.stacksave``, it effectively restores the state of the stack to
6817the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6818practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6819were allocated after the ``llvm.stacksave`` was executed.
6820
6821.. _int_stackrestore:
6822
6823'``llvm.stackrestore``' Intrinsic
6824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6825
6826Syntax:
6827"""""""
6828
6829::
6830
6831 declare void @llvm.stackrestore(i8* %ptr)
6832
6833Overview:
6834"""""""""
6835
6836The '``llvm.stackrestore``' intrinsic is used to restore the state of
6837the function stack to the state it was in when the corresponding
6838:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6839useful for implementing language features like scoped automatic variable
6840sized arrays in C99.
6841
6842Semantics:
6843""""""""""
6844
6845See the description for :ref:`llvm.stacksave <int_stacksave>`.
6846
6847'``llvm.prefetch``' Intrinsic
6848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6849
6850Syntax:
6851"""""""
6852
6853::
6854
6855 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6856
6857Overview:
6858"""""""""
6859
6860The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6861insert a prefetch instruction if supported; otherwise, it is a noop.
6862Prefetches have no effect on the behavior of the program but can change
6863its performance characteristics.
6864
6865Arguments:
6866""""""""""
6867
6868``address`` is the address to be prefetched, ``rw`` is the specifier
6869determining if the fetch should be for a read (0) or write (1), and
6870``locality`` is a temporal locality specifier ranging from (0) - no
6871locality, to (3) - extremely local keep in cache. The ``cache type``
6872specifies whether the prefetch is performed on the data (1) or
6873instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6874arguments must be constant integers.
6875
6876Semantics:
6877""""""""""
6878
6879This intrinsic does not modify the behavior of the program. In
6880particular, prefetches cannot trap and do not produce a value. On
6881targets that support this intrinsic, the prefetch can provide hints to
6882the processor cache for better performance.
6883
6884'``llvm.pcmarker``' Intrinsic
6885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6886
6887Syntax:
6888"""""""
6889
6890::
6891
6892 declare void @llvm.pcmarker(i32 <id>)
6893
6894Overview:
6895"""""""""
6896
6897The '``llvm.pcmarker``' intrinsic is a method to export a Program
6898Counter (PC) in a region of code to simulators and other tools. The
6899method is target specific, but it is expected that the marker will use
6900exported symbols to transmit the PC of the marker. The marker makes no
6901guarantees that it will remain with any specific instruction after
6902optimizations. It is possible that the presence of a marker will inhibit
6903optimizations. The intended use is to be inserted after optimizations to
6904allow correlations of simulation runs.
6905
6906Arguments:
6907""""""""""
6908
6909``id`` is a numerical id identifying the marker.
6910
6911Semantics:
6912""""""""""
6913
6914This intrinsic does not modify the behavior of the program. Backends
6915that do not support this intrinsic may ignore it.
6916
6917'``llvm.readcyclecounter``' Intrinsic
6918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6919
6920Syntax:
6921"""""""
6922
6923::
6924
6925 declare i64 @llvm.readcyclecounter()
6926
6927Overview:
6928"""""""""
6929
6930The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6931counter register (or similar low latency, high accuracy clocks) on those
6932targets that support it. On X86, it should map to RDTSC. On Alpha, it
6933should map to RPCC. As the backing counters overflow quickly (on the
6934order of 9 seconds on alpha), this should only be used for small
6935timings.
6936
6937Semantics:
6938""""""""""
6939
6940When directly supported, reading the cycle counter should not modify any
6941memory. Implementations are allowed to either return a application
6942specific value or a system wide value. On backends without support, this
6943is lowered to a constant 0.
6944
Tim Northoverbc933082013-05-23 19:11:20 +00006945Note that runtime support may be conditional on the privilege-level code is
6946running at and the host platform.
6947
Sean Silvab084af42012-12-07 10:36:55 +00006948Standard C Library Intrinsics
6949-----------------------------
6950
6951LLVM provides intrinsics for a few important standard C library
6952functions. These intrinsics allow source-language front-ends to pass
6953information about the alignment of the pointer arguments to the code
6954generator, providing opportunity for more efficient code generation.
6955
6956.. _int_memcpy:
6957
6958'``llvm.memcpy``' Intrinsic
6959^^^^^^^^^^^^^^^^^^^^^^^^^^^
6960
6961Syntax:
6962"""""""
6963
6964This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6965integer bit width and for different address spaces. Not all targets
6966support all bit widths however.
6967
6968::
6969
6970 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6971 i32 <len>, i32 <align>, i1 <isvolatile>)
6972 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6973 i64 <len>, i32 <align>, i1 <isvolatile>)
6974
6975Overview:
6976"""""""""
6977
6978The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6979source location to the destination location.
6980
6981Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6982intrinsics do not return a value, takes extra alignment/isvolatile
6983arguments and the pointers can be in specified address spaces.
6984
6985Arguments:
6986""""""""""
6987
6988The first argument is a pointer to the destination, the second is a
6989pointer to the source. The third argument is an integer argument
6990specifying the number of bytes to copy, the fourth argument is the
6991alignment of the source and destination locations, and the fifth is a
6992boolean indicating a volatile access.
6993
6994If the call to this intrinsic has an alignment value that is not 0 or 1,
6995then the caller guarantees that both the source and destination pointers
6996are aligned to that boundary.
6997
6998If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6999a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7000very cleanly specified and it is unwise to depend on it.
7001
7002Semantics:
7003""""""""""
7004
7005The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7006source location to the destination location, which are not allowed to
7007overlap. It copies "len" bytes of memory over. If the argument is known
7008to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007009argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007010
7011'``llvm.memmove``' Intrinsic
7012^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7013
7014Syntax:
7015"""""""
7016
7017This is an overloaded intrinsic. You can use llvm.memmove on any integer
7018bit width and for different address space. Not all targets support all
7019bit widths however.
7020
7021::
7022
7023 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7024 i32 <len>, i32 <align>, i1 <isvolatile>)
7025 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7026 i64 <len>, i32 <align>, i1 <isvolatile>)
7027
7028Overview:
7029"""""""""
7030
7031The '``llvm.memmove.*``' intrinsics move a block of memory from the
7032source location to the destination location. It is similar to the
7033'``llvm.memcpy``' intrinsic but allows the two memory locations to
7034overlap.
7035
7036Note that, unlike the standard libc function, the ``llvm.memmove.*``
7037intrinsics do not return a value, takes extra alignment/isvolatile
7038arguments and the pointers can be in specified address spaces.
7039
7040Arguments:
7041""""""""""
7042
7043The first argument is a pointer to the destination, the second is a
7044pointer to the source. The third argument is an integer argument
7045specifying the number of bytes to copy, the fourth argument is the
7046alignment of the source and destination locations, and the fifth is a
7047boolean indicating a volatile access.
7048
7049If the call to this intrinsic has an alignment value that is not 0 or 1,
7050then the caller guarantees that the source and destination pointers are
7051aligned to that boundary.
7052
7053If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7054is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7055not very cleanly specified and it is unwise to depend on it.
7056
7057Semantics:
7058""""""""""
7059
7060The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7061source location to the destination location, which may overlap. It
7062copies "len" bytes of memory over. If the argument is known to be
7063aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007064otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007065
7066'``llvm.memset.*``' Intrinsics
7067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7068
7069Syntax:
7070"""""""
7071
7072This is an overloaded intrinsic. You can use llvm.memset on any integer
7073bit width and for different address spaces. However, not all targets
7074support all bit widths.
7075
7076::
7077
7078 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7079 i32 <len>, i32 <align>, i1 <isvolatile>)
7080 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7081 i64 <len>, i32 <align>, i1 <isvolatile>)
7082
7083Overview:
7084"""""""""
7085
7086The '``llvm.memset.*``' intrinsics fill a block of memory with a
7087particular byte value.
7088
7089Note that, unlike the standard libc function, the ``llvm.memset``
7090intrinsic does not return a value and takes extra alignment/volatile
7091arguments. Also, the destination can be in an arbitrary address space.
7092
7093Arguments:
7094""""""""""
7095
7096The first argument is a pointer to the destination to fill, the second
7097is the byte value with which to fill it, the third argument is an
7098integer argument specifying the number of bytes to fill, and the fourth
7099argument is the known alignment of the destination location.
7100
7101If the call to this intrinsic has an alignment value that is not 0 or 1,
7102then the caller guarantees that the destination pointer is aligned to
7103that boundary.
7104
7105If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7106a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7107very cleanly specified and it is unwise to depend on it.
7108
7109Semantics:
7110""""""""""
7111
7112The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7113at the destination location. If the argument is known to be aligned to
7114some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007115it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007116
7117'``llvm.sqrt.*``' Intrinsic
7118^^^^^^^^^^^^^^^^^^^^^^^^^^^
7119
7120Syntax:
7121"""""""
7122
7123This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7124floating point or vector of floating point type. Not all targets support
7125all types however.
7126
7127::
7128
7129 declare float @llvm.sqrt.f32(float %Val)
7130 declare double @llvm.sqrt.f64(double %Val)
7131 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7132 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7133 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7134
7135Overview:
7136"""""""""
7137
7138The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7139returning the same value as the libm '``sqrt``' functions would. Unlike
7140``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7141negative numbers other than -0.0 (which allows for better optimization,
7142because there is no need to worry about errno being set).
7143``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7144
7145Arguments:
7146""""""""""
7147
7148The argument and return value are floating point numbers of the same
7149type.
7150
7151Semantics:
7152""""""""""
7153
7154This function returns the sqrt of the specified operand if it is a
7155nonnegative floating point number.
7156
7157'``llvm.powi.*``' Intrinsic
7158^^^^^^^^^^^^^^^^^^^^^^^^^^^
7159
7160Syntax:
7161"""""""
7162
7163This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7164floating point or vector of floating point type. Not all targets support
7165all types however.
7166
7167::
7168
7169 declare float @llvm.powi.f32(float %Val, i32 %power)
7170 declare double @llvm.powi.f64(double %Val, i32 %power)
7171 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7172 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7173 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7174
7175Overview:
7176"""""""""
7177
7178The '``llvm.powi.*``' intrinsics return the first operand raised to the
7179specified (positive or negative) power. The order of evaluation of
7180multiplications is not defined. When a vector of floating point type is
7181used, the second argument remains a scalar integer value.
7182
7183Arguments:
7184""""""""""
7185
7186The second argument is an integer power, and the first is a value to
7187raise to that power.
7188
7189Semantics:
7190""""""""""
7191
7192This function returns the first value raised to the second power with an
7193unspecified sequence of rounding operations.
7194
7195'``llvm.sin.*``' Intrinsic
7196^^^^^^^^^^^^^^^^^^^^^^^^^^
7197
7198Syntax:
7199"""""""
7200
7201This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7202floating point or vector of floating point type. Not all targets support
7203all types however.
7204
7205::
7206
7207 declare float @llvm.sin.f32(float %Val)
7208 declare double @llvm.sin.f64(double %Val)
7209 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7210 declare fp128 @llvm.sin.f128(fp128 %Val)
7211 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7212
7213Overview:
7214"""""""""
7215
7216The '``llvm.sin.*``' intrinsics return the sine of the operand.
7217
7218Arguments:
7219""""""""""
7220
7221The argument and return value are floating point numbers of the same
7222type.
7223
7224Semantics:
7225""""""""""
7226
7227This function returns the sine of the specified operand, returning the
7228same values as the libm ``sin`` functions would, and handles error
7229conditions in the same way.
7230
7231'``llvm.cos.*``' Intrinsic
7232^^^^^^^^^^^^^^^^^^^^^^^^^^
7233
7234Syntax:
7235"""""""
7236
7237This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7238floating point or vector of floating point type. Not all targets support
7239all types however.
7240
7241::
7242
7243 declare float @llvm.cos.f32(float %Val)
7244 declare double @llvm.cos.f64(double %Val)
7245 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7246 declare fp128 @llvm.cos.f128(fp128 %Val)
7247 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7248
7249Overview:
7250"""""""""
7251
7252The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7253
7254Arguments:
7255""""""""""
7256
7257The argument and return value are floating point numbers of the same
7258type.
7259
7260Semantics:
7261""""""""""
7262
7263This function returns the cosine of the specified operand, returning the
7264same values as the libm ``cos`` functions would, and handles error
7265conditions in the same way.
7266
7267'``llvm.pow.*``' Intrinsic
7268^^^^^^^^^^^^^^^^^^^^^^^^^^
7269
7270Syntax:
7271"""""""
7272
7273This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7274floating point or vector of floating point type. Not all targets support
7275all types however.
7276
7277::
7278
7279 declare float @llvm.pow.f32(float %Val, float %Power)
7280 declare double @llvm.pow.f64(double %Val, double %Power)
7281 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7282 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7283 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7284
7285Overview:
7286"""""""""
7287
7288The '``llvm.pow.*``' intrinsics return the first operand raised to the
7289specified (positive or negative) power.
7290
7291Arguments:
7292""""""""""
7293
7294The second argument is a floating point power, and the first is a value
7295to raise to that power.
7296
7297Semantics:
7298""""""""""
7299
7300This function returns the first value raised to the second power,
7301returning the same values as the libm ``pow`` functions would, and
7302handles error conditions in the same way.
7303
7304'``llvm.exp.*``' Intrinsic
7305^^^^^^^^^^^^^^^^^^^^^^^^^^
7306
7307Syntax:
7308"""""""
7309
7310This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7311floating point or vector of floating point type. Not all targets support
7312all types however.
7313
7314::
7315
7316 declare float @llvm.exp.f32(float %Val)
7317 declare double @llvm.exp.f64(double %Val)
7318 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7319 declare fp128 @llvm.exp.f128(fp128 %Val)
7320 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7321
7322Overview:
7323"""""""""
7324
7325The '``llvm.exp.*``' intrinsics perform the exp function.
7326
7327Arguments:
7328""""""""""
7329
7330The argument and return value are floating point numbers of the same
7331type.
7332
7333Semantics:
7334""""""""""
7335
7336This function returns the same values as the libm ``exp`` functions
7337would, and handles error conditions in the same way.
7338
7339'``llvm.exp2.*``' Intrinsic
7340^^^^^^^^^^^^^^^^^^^^^^^^^^^
7341
7342Syntax:
7343"""""""
7344
7345This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7346floating point or vector of floating point type. Not all targets support
7347all types however.
7348
7349::
7350
7351 declare float @llvm.exp2.f32(float %Val)
7352 declare double @llvm.exp2.f64(double %Val)
7353 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7354 declare fp128 @llvm.exp2.f128(fp128 %Val)
7355 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7356
7357Overview:
7358"""""""""
7359
7360The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7361
7362Arguments:
7363""""""""""
7364
7365The argument and return value are floating point numbers of the same
7366type.
7367
7368Semantics:
7369""""""""""
7370
7371This function returns the same values as the libm ``exp2`` functions
7372would, and handles error conditions in the same way.
7373
7374'``llvm.log.*``' Intrinsic
7375^^^^^^^^^^^^^^^^^^^^^^^^^^
7376
7377Syntax:
7378"""""""
7379
7380This is an overloaded intrinsic. You can use ``llvm.log`` on any
7381floating point or vector of floating point type. Not all targets support
7382all types however.
7383
7384::
7385
7386 declare float @llvm.log.f32(float %Val)
7387 declare double @llvm.log.f64(double %Val)
7388 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7389 declare fp128 @llvm.log.f128(fp128 %Val)
7390 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7391
7392Overview:
7393"""""""""
7394
7395The '``llvm.log.*``' intrinsics perform the log function.
7396
7397Arguments:
7398""""""""""
7399
7400The argument and return value are floating point numbers of the same
7401type.
7402
7403Semantics:
7404""""""""""
7405
7406This function returns the same values as the libm ``log`` functions
7407would, and handles error conditions in the same way.
7408
7409'``llvm.log10.*``' Intrinsic
7410^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7411
7412Syntax:
7413"""""""
7414
7415This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7416floating point or vector of floating point type. Not all targets support
7417all types however.
7418
7419::
7420
7421 declare float @llvm.log10.f32(float %Val)
7422 declare double @llvm.log10.f64(double %Val)
7423 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7424 declare fp128 @llvm.log10.f128(fp128 %Val)
7425 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7426
7427Overview:
7428"""""""""
7429
7430The '``llvm.log10.*``' intrinsics perform the log10 function.
7431
7432Arguments:
7433""""""""""
7434
7435The argument and return value are floating point numbers of the same
7436type.
7437
7438Semantics:
7439""""""""""
7440
7441This function returns the same values as the libm ``log10`` functions
7442would, and handles error conditions in the same way.
7443
7444'``llvm.log2.*``' Intrinsic
7445^^^^^^^^^^^^^^^^^^^^^^^^^^^
7446
7447Syntax:
7448"""""""
7449
7450This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7451floating point or vector of floating point type. Not all targets support
7452all types however.
7453
7454::
7455
7456 declare float @llvm.log2.f32(float %Val)
7457 declare double @llvm.log2.f64(double %Val)
7458 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7459 declare fp128 @llvm.log2.f128(fp128 %Val)
7460 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7461
7462Overview:
7463"""""""""
7464
7465The '``llvm.log2.*``' intrinsics perform the log2 function.
7466
7467Arguments:
7468""""""""""
7469
7470The argument and return value are floating point numbers of the same
7471type.
7472
7473Semantics:
7474""""""""""
7475
7476This function returns the same values as the libm ``log2`` functions
7477would, and handles error conditions in the same way.
7478
7479'``llvm.fma.*``' Intrinsic
7480^^^^^^^^^^^^^^^^^^^^^^^^^^
7481
7482Syntax:
7483"""""""
7484
7485This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7486floating point or vector of floating point type. Not all targets support
7487all types however.
7488
7489::
7490
7491 declare float @llvm.fma.f32(float %a, float %b, float %c)
7492 declare double @llvm.fma.f64(double %a, double %b, double %c)
7493 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7494 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7495 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7496
7497Overview:
7498"""""""""
7499
7500The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7501operation.
7502
7503Arguments:
7504""""""""""
7505
7506The argument and return value are floating point numbers of the same
7507type.
7508
7509Semantics:
7510""""""""""
7511
7512This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007513would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007514
7515'``llvm.fabs.*``' Intrinsic
7516^^^^^^^^^^^^^^^^^^^^^^^^^^^
7517
7518Syntax:
7519"""""""
7520
7521This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7522floating point or vector of floating point type. Not all targets support
7523all types however.
7524
7525::
7526
7527 declare float @llvm.fabs.f32(float %Val)
7528 declare double @llvm.fabs.f64(double %Val)
7529 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7530 declare fp128 @llvm.fabs.f128(fp128 %Val)
7531 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7532
7533Overview:
7534"""""""""
7535
7536The '``llvm.fabs.*``' intrinsics return the absolute value of the
7537operand.
7538
7539Arguments:
7540""""""""""
7541
7542The argument and return value are floating point numbers of the same
7543type.
7544
7545Semantics:
7546""""""""""
7547
7548This function returns the same values as the libm ``fabs`` functions
7549would, and handles error conditions in the same way.
7550
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007551'``llvm.copysign.*``' Intrinsic
7552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7553
7554Syntax:
7555"""""""
7556
7557This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7558floating point or vector of floating point type. Not all targets support
7559all types however.
7560
7561::
7562
7563 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7564 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7565 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7566 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7567 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7568
7569Overview:
7570"""""""""
7571
7572The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7573first operand and the sign of the second operand.
7574
7575Arguments:
7576""""""""""
7577
7578The arguments and return value are floating point numbers of the same
7579type.
7580
7581Semantics:
7582""""""""""
7583
7584This function returns the same values as the libm ``copysign``
7585functions would, and handles error conditions in the same way.
7586
Sean Silvab084af42012-12-07 10:36:55 +00007587'``llvm.floor.*``' Intrinsic
7588^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7589
7590Syntax:
7591"""""""
7592
7593This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7594floating point or vector of floating point type. Not all targets support
7595all types however.
7596
7597::
7598
7599 declare float @llvm.floor.f32(float %Val)
7600 declare double @llvm.floor.f64(double %Val)
7601 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7602 declare fp128 @llvm.floor.f128(fp128 %Val)
7603 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7604
7605Overview:
7606"""""""""
7607
7608The '``llvm.floor.*``' intrinsics return the floor of the operand.
7609
7610Arguments:
7611""""""""""
7612
7613The argument and return value are floating point numbers of the same
7614type.
7615
7616Semantics:
7617""""""""""
7618
7619This function returns the same values as the libm ``floor`` functions
7620would, and handles error conditions in the same way.
7621
7622'``llvm.ceil.*``' Intrinsic
7623^^^^^^^^^^^^^^^^^^^^^^^^^^^
7624
7625Syntax:
7626"""""""
7627
7628This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7629floating point or vector of floating point type. Not all targets support
7630all types however.
7631
7632::
7633
7634 declare float @llvm.ceil.f32(float %Val)
7635 declare double @llvm.ceil.f64(double %Val)
7636 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7637 declare fp128 @llvm.ceil.f128(fp128 %Val)
7638 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7639
7640Overview:
7641"""""""""
7642
7643The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7644
7645Arguments:
7646""""""""""
7647
7648The argument and return value are floating point numbers of the same
7649type.
7650
7651Semantics:
7652""""""""""
7653
7654This function returns the same values as the libm ``ceil`` functions
7655would, and handles error conditions in the same way.
7656
7657'``llvm.trunc.*``' Intrinsic
7658^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7659
7660Syntax:
7661"""""""
7662
7663This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7664floating point or vector of floating point type. Not all targets support
7665all types however.
7666
7667::
7668
7669 declare float @llvm.trunc.f32(float %Val)
7670 declare double @llvm.trunc.f64(double %Val)
7671 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7672 declare fp128 @llvm.trunc.f128(fp128 %Val)
7673 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7674
7675Overview:
7676"""""""""
7677
7678The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7679nearest integer not larger in magnitude than the operand.
7680
7681Arguments:
7682""""""""""
7683
7684The argument and return value are floating point numbers of the same
7685type.
7686
7687Semantics:
7688""""""""""
7689
7690This function returns the same values as the libm ``trunc`` functions
7691would, and handles error conditions in the same way.
7692
7693'``llvm.rint.*``' Intrinsic
7694^^^^^^^^^^^^^^^^^^^^^^^^^^^
7695
7696Syntax:
7697"""""""
7698
7699This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7700floating point or vector of floating point type. Not all targets support
7701all types however.
7702
7703::
7704
7705 declare float @llvm.rint.f32(float %Val)
7706 declare double @llvm.rint.f64(double %Val)
7707 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7708 declare fp128 @llvm.rint.f128(fp128 %Val)
7709 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7710
7711Overview:
7712"""""""""
7713
7714The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7715nearest integer. It may raise an inexact floating-point exception if the
7716operand isn't an integer.
7717
7718Arguments:
7719""""""""""
7720
7721The argument and return value are floating point numbers of the same
7722type.
7723
7724Semantics:
7725""""""""""
7726
7727This function returns the same values as the libm ``rint`` functions
7728would, and handles error conditions in the same way.
7729
7730'``llvm.nearbyint.*``' Intrinsic
7731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7732
7733Syntax:
7734"""""""
7735
7736This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7737floating point or vector of floating point type. Not all targets support
7738all types however.
7739
7740::
7741
7742 declare float @llvm.nearbyint.f32(float %Val)
7743 declare double @llvm.nearbyint.f64(double %Val)
7744 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7745 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7746 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7747
7748Overview:
7749"""""""""
7750
7751The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7752nearest integer.
7753
7754Arguments:
7755""""""""""
7756
7757The argument and return value are floating point numbers of the same
7758type.
7759
7760Semantics:
7761""""""""""
7762
7763This function returns the same values as the libm ``nearbyint``
7764functions would, and handles error conditions in the same way.
7765
Hal Finkel171817e2013-08-07 22:49:12 +00007766'``llvm.round.*``' Intrinsic
7767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7768
7769Syntax:
7770"""""""
7771
7772This is an overloaded intrinsic. You can use ``llvm.round`` on any
7773floating point or vector of floating point type. Not all targets support
7774all types however.
7775
7776::
7777
7778 declare float @llvm.round.f32(float %Val)
7779 declare double @llvm.round.f64(double %Val)
7780 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7781 declare fp128 @llvm.round.f128(fp128 %Val)
7782 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7783
7784Overview:
7785"""""""""
7786
7787The '``llvm.round.*``' intrinsics returns the operand rounded to the
7788nearest integer.
7789
7790Arguments:
7791""""""""""
7792
7793The argument and return value are floating point numbers of the same
7794type.
7795
7796Semantics:
7797""""""""""
7798
7799This function returns the same values as the libm ``round``
7800functions would, and handles error conditions in the same way.
7801
Sean Silvab084af42012-12-07 10:36:55 +00007802Bit Manipulation Intrinsics
7803---------------------------
7804
7805LLVM provides intrinsics for a few important bit manipulation
7806operations. These allow efficient code generation for some algorithms.
7807
7808'``llvm.bswap.*``' Intrinsics
7809^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7810
7811Syntax:
7812"""""""
7813
7814This is an overloaded intrinsic function. You can use bswap on any
7815integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7816
7817::
7818
7819 declare i16 @llvm.bswap.i16(i16 <id>)
7820 declare i32 @llvm.bswap.i32(i32 <id>)
7821 declare i64 @llvm.bswap.i64(i64 <id>)
7822
7823Overview:
7824"""""""""
7825
7826The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7827values with an even number of bytes (positive multiple of 16 bits).
7828These are useful for performing operations on data that is not in the
7829target's native byte order.
7830
7831Semantics:
7832""""""""""
7833
7834The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7835and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7836intrinsic returns an i32 value that has the four bytes of the input i32
7837swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7838returned i32 will have its bytes in 3, 2, 1, 0 order. The
7839``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7840concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7841respectively).
7842
7843'``llvm.ctpop.*``' Intrinsic
7844^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7845
7846Syntax:
7847"""""""
7848
7849This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7850bit width, or on any vector with integer elements. Not all targets
7851support all bit widths or vector types, however.
7852
7853::
7854
7855 declare i8 @llvm.ctpop.i8(i8 <src>)
7856 declare i16 @llvm.ctpop.i16(i16 <src>)
7857 declare i32 @llvm.ctpop.i32(i32 <src>)
7858 declare i64 @llvm.ctpop.i64(i64 <src>)
7859 declare i256 @llvm.ctpop.i256(i256 <src>)
7860 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7861
7862Overview:
7863"""""""""
7864
7865The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7866in a value.
7867
7868Arguments:
7869""""""""""
7870
7871The only argument is the value to be counted. The argument may be of any
7872integer type, or a vector with integer elements. The return type must
7873match the argument type.
7874
7875Semantics:
7876""""""""""
7877
7878The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7879each element of a vector.
7880
7881'``llvm.ctlz.*``' Intrinsic
7882^^^^^^^^^^^^^^^^^^^^^^^^^^^
7883
7884Syntax:
7885"""""""
7886
7887This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7888integer bit width, or any vector whose elements are integers. Not all
7889targets support all bit widths or vector types, however.
7890
7891::
7892
7893 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7894 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7895 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7896 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7897 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7898 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7899
7900Overview:
7901"""""""""
7902
7903The '``llvm.ctlz``' family of intrinsic functions counts the number of
7904leading zeros in a variable.
7905
7906Arguments:
7907""""""""""
7908
7909The first argument is the value to be counted. This argument may be of
7910any integer type, or a vectory with integer element type. The return
7911type must match the first argument type.
7912
7913The second argument must be a constant and is a flag to indicate whether
7914the intrinsic should ensure that a zero as the first argument produces a
7915defined result. Historically some architectures did not provide a
7916defined result for zero values as efficiently, and many algorithms are
7917now predicated on avoiding zero-value inputs.
7918
7919Semantics:
7920""""""""""
7921
7922The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7923zeros in a variable, or within each element of the vector. If
7924``src == 0`` then the result is the size in bits of the type of ``src``
7925if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7926``llvm.ctlz(i32 2) = 30``.
7927
7928'``llvm.cttz.*``' Intrinsic
7929^^^^^^^^^^^^^^^^^^^^^^^^^^^
7930
7931Syntax:
7932"""""""
7933
7934This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7935integer bit width, or any vector of integer elements. Not all targets
7936support all bit widths or vector types, however.
7937
7938::
7939
7940 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7941 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7942 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7943 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7944 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7945 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7946
7947Overview:
7948"""""""""
7949
7950The '``llvm.cttz``' family of intrinsic functions counts the number of
7951trailing zeros.
7952
7953Arguments:
7954""""""""""
7955
7956The first argument is the value to be counted. This argument may be of
7957any integer type, or a vectory with integer element type. The return
7958type must match the first argument type.
7959
7960The second argument must be a constant and is a flag to indicate whether
7961the intrinsic should ensure that a zero as the first argument produces a
7962defined result. Historically some architectures did not provide a
7963defined result for zero values as efficiently, and many algorithms are
7964now predicated on avoiding zero-value inputs.
7965
7966Semantics:
7967""""""""""
7968
7969The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7970zeros in a variable, or within each element of a vector. If ``src == 0``
7971then the result is the size in bits of the type of ``src`` if
7972``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7973``llvm.cttz(2) = 1``.
7974
7975Arithmetic with Overflow Intrinsics
7976-----------------------------------
7977
7978LLVM provides intrinsics for some arithmetic with overflow operations.
7979
7980'``llvm.sadd.with.overflow.*``' Intrinsics
7981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7982
7983Syntax:
7984"""""""
7985
7986This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7987on any integer bit width.
7988
7989::
7990
7991 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7992 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7993 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7994
7995Overview:
7996"""""""""
7997
7998The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7999a signed addition of the two arguments, and indicate whether an overflow
8000occurred during the signed summation.
8001
8002Arguments:
8003""""""""""
8004
8005The arguments (%a and %b) and the first element of the result structure
8006may be of integer types of any bit width, but they must have the same
8007bit width. The second element of the result structure must be of type
8008``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8009addition.
8010
8011Semantics:
8012""""""""""
8013
8014The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008015a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008016first element of which is the signed summation, and the second element
8017of which is a bit specifying if the signed summation resulted in an
8018overflow.
8019
8020Examples:
8021"""""""""
8022
8023.. code-block:: llvm
8024
8025 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8026 %sum = extractvalue {i32, i1} %res, 0
8027 %obit = extractvalue {i32, i1} %res, 1
8028 br i1 %obit, label %overflow, label %normal
8029
8030'``llvm.uadd.with.overflow.*``' Intrinsics
8031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8032
8033Syntax:
8034"""""""
8035
8036This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8037on any integer bit width.
8038
8039::
8040
8041 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8042 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8043 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8044
8045Overview:
8046"""""""""
8047
8048The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8049an unsigned addition of the two arguments, and indicate whether a carry
8050occurred during the unsigned summation.
8051
8052Arguments:
8053""""""""""
8054
8055The arguments (%a and %b) and the first element of the result structure
8056may be of integer types of any bit width, but they must have the same
8057bit width. The second element of the result structure must be of type
8058``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8059addition.
8060
8061Semantics:
8062""""""""""
8063
8064The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008065an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008066first element of which is the sum, and the second element of which is a
8067bit specifying if the unsigned summation resulted in a carry.
8068
8069Examples:
8070"""""""""
8071
8072.. code-block:: llvm
8073
8074 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8075 %sum = extractvalue {i32, i1} %res, 0
8076 %obit = extractvalue {i32, i1} %res, 1
8077 br i1 %obit, label %carry, label %normal
8078
8079'``llvm.ssub.with.overflow.*``' Intrinsics
8080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8081
8082Syntax:
8083"""""""
8084
8085This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8086on any integer bit width.
8087
8088::
8089
8090 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8091 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8092 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8093
8094Overview:
8095"""""""""
8096
8097The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8098a signed subtraction of the two arguments, and indicate whether an
8099overflow occurred during the signed subtraction.
8100
8101Arguments:
8102""""""""""
8103
8104The arguments (%a and %b) and the first element of the result structure
8105may be of integer types of any bit width, but they must have the same
8106bit width. The second element of the result structure must be of type
8107``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8108subtraction.
8109
8110Semantics:
8111""""""""""
8112
8113The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008114a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008115first element of which is the subtraction, and the second element of
8116which is a bit specifying if the signed subtraction resulted in an
8117overflow.
8118
8119Examples:
8120"""""""""
8121
8122.. code-block:: llvm
8123
8124 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8125 %sum = extractvalue {i32, i1} %res, 0
8126 %obit = extractvalue {i32, i1} %res, 1
8127 br i1 %obit, label %overflow, label %normal
8128
8129'``llvm.usub.with.overflow.*``' Intrinsics
8130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8131
8132Syntax:
8133"""""""
8134
8135This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8136on any integer bit width.
8137
8138::
8139
8140 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8141 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8142 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8143
8144Overview:
8145"""""""""
8146
8147The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8148an unsigned subtraction of the two arguments, and indicate whether an
8149overflow occurred during the unsigned subtraction.
8150
8151Arguments:
8152""""""""""
8153
8154The arguments (%a and %b) and the first element of the result structure
8155may be of integer types of any bit width, but they must have the same
8156bit width. The second element of the result structure must be of type
8157``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8158subtraction.
8159
8160Semantics:
8161""""""""""
8162
8163The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008164an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008165the first element of which is the subtraction, and the second element of
8166which is a bit specifying if the unsigned subtraction resulted in an
8167overflow.
8168
8169Examples:
8170"""""""""
8171
8172.. code-block:: llvm
8173
8174 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8175 %sum = extractvalue {i32, i1} %res, 0
8176 %obit = extractvalue {i32, i1} %res, 1
8177 br i1 %obit, label %overflow, label %normal
8178
8179'``llvm.smul.with.overflow.*``' Intrinsics
8180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8181
8182Syntax:
8183"""""""
8184
8185This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8186on any integer bit width.
8187
8188::
8189
8190 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8191 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8192 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8193
8194Overview:
8195"""""""""
8196
8197The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8198a signed multiplication of the two arguments, and indicate whether an
8199overflow occurred during the signed multiplication.
8200
8201Arguments:
8202""""""""""
8203
8204The arguments (%a and %b) and the first element of the result structure
8205may be of integer types of any bit width, but they must have the same
8206bit width. The second element of the result structure must be of type
8207``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8208multiplication.
8209
8210Semantics:
8211""""""""""
8212
8213The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008214a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008215the first element of which is the multiplication, and the second element
8216of which is a bit specifying if the signed multiplication resulted in an
8217overflow.
8218
8219Examples:
8220"""""""""
8221
8222.. code-block:: llvm
8223
8224 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8225 %sum = extractvalue {i32, i1} %res, 0
8226 %obit = extractvalue {i32, i1} %res, 1
8227 br i1 %obit, label %overflow, label %normal
8228
8229'``llvm.umul.with.overflow.*``' Intrinsics
8230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8231
8232Syntax:
8233"""""""
8234
8235This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8236on any integer bit width.
8237
8238::
8239
8240 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8241 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8242 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8243
8244Overview:
8245"""""""""
8246
8247The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8248a unsigned multiplication of the two arguments, and indicate whether an
8249overflow occurred during the unsigned multiplication.
8250
8251Arguments:
8252""""""""""
8253
8254The arguments (%a and %b) and the first element of the result structure
8255may be of integer types of any bit width, but they must have the same
8256bit width. The second element of the result structure must be of type
8257``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8258multiplication.
8259
8260Semantics:
8261""""""""""
8262
8263The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008264an unsigned multiplication of the two arguments. They return a structure ---
8265the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008266element of which is a bit specifying if the unsigned multiplication
8267resulted in an overflow.
8268
8269Examples:
8270"""""""""
8271
8272.. code-block:: llvm
8273
8274 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8275 %sum = extractvalue {i32, i1} %res, 0
8276 %obit = extractvalue {i32, i1} %res, 1
8277 br i1 %obit, label %overflow, label %normal
8278
8279Specialised Arithmetic Intrinsics
8280---------------------------------
8281
8282'``llvm.fmuladd.*``' Intrinsic
8283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8284
8285Syntax:
8286"""""""
8287
8288::
8289
8290 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8291 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8292
8293Overview:
8294"""""""""
8295
8296The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008297expressions that can be fused if the code generator determines that (a) the
8298target instruction set has support for a fused operation, and (b) that the
8299fused operation is more efficient than the equivalent, separate pair of mul
8300and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008301
8302Arguments:
8303""""""""""
8304
8305The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8306multiplicands, a and b, and an addend c.
8307
8308Semantics:
8309""""""""""
8310
8311The expression:
8312
8313::
8314
8315 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8316
8317is equivalent to the expression a \* b + c, except that rounding will
8318not be performed between the multiplication and addition steps if the
8319code generator fuses the operations. Fusion is not guaranteed, even if
8320the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008321corresponding llvm.fma.\* intrinsic function should be used
8322instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008323
8324Examples:
8325"""""""""
8326
8327.. code-block:: llvm
8328
8329 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8330
8331Half Precision Floating Point Intrinsics
8332----------------------------------------
8333
8334For most target platforms, half precision floating point is a
8335storage-only format. This means that it is a dense encoding (in memory)
8336but does not support computation in the format.
8337
8338This means that code must first load the half-precision floating point
8339value as an i16, then convert it to float with
8340:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8341then be performed on the float value (including extending to double
8342etc). To store the value back to memory, it is first converted to float
8343if needed, then converted to i16 with
8344:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8345i16 value.
8346
8347.. _int_convert_to_fp16:
8348
8349'``llvm.convert.to.fp16``' Intrinsic
8350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8351
8352Syntax:
8353"""""""
8354
8355::
8356
8357 declare i16 @llvm.convert.to.fp16(f32 %a)
8358
8359Overview:
8360"""""""""
8361
8362The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8363from single precision floating point format to half precision floating
8364point format.
8365
8366Arguments:
8367""""""""""
8368
8369The intrinsic function contains single argument - the value to be
8370converted.
8371
8372Semantics:
8373""""""""""
8374
8375The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8376from single precision floating point format to half precision floating
8377point format. The return value is an ``i16`` which contains the
8378converted number.
8379
8380Examples:
8381"""""""""
8382
8383.. code-block:: llvm
8384
8385 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8386 store i16 %res, i16* @x, align 2
8387
8388.. _int_convert_from_fp16:
8389
8390'``llvm.convert.from.fp16``' Intrinsic
8391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8392
8393Syntax:
8394"""""""
8395
8396::
8397
8398 declare f32 @llvm.convert.from.fp16(i16 %a)
8399
8400Overview:
8401"""""""""
8402
8403The '``llvm.convert.from.fp16``' intrinsic function performs a
8404conversion from half precision floating point format to single precision
8405floating point format.
8406
8407Arguments:
8408""""""""""
8409
8410The intrinsic function contains single argument - the value to be
8411converted.
8412
8413Semantics:
8414""""""""""
8415
8416The '``llvm.convert.from.fp16``' intrinsic function performs a
8417conversion from half single precision floating point format to single
8418precision floating point format. The input half-float value is
8419represented by an ``i16`` value.
8420
8421Examples:
8422"""""""""
8423
8424.. code-block:: llvm
8425
8426 %a = load i16* @x, align 2
8427 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8428
8429Debugger Intrinsics
8430-------------------
8431
8432The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8433prefix), are described in the `LLVM Source Level
8434Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8435document.
8436
8437Exception Handling Intrinsics
8438-----------------------------
8439
8440The LLVM exception handling intrinsics (which all start with
8441``llvm.eh.`` prefix), are described in the `LLVM Exception
8442Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8443
8444.. _int_trampoline:
8445
8446Trampoline Intrinsics
8447---------------------
8448
8449These intrinsics make it possible to excise one parameter, marked with
8450the :ref:`nest <nest>` attribute, from a function. The result is a
8451callable function pointer lacking the nest parameter - the caller does
8452not need to provide a value for it. Instead, the value to use is stored
8453in advance in a "trampoline", a block of memory usually allocated on the
8454stack, which also contains code to splice the nest value into the
8455argument list. This is used to implement the GCC nested function address
8456extension.
8457
8458For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8459then the resulting function pointer has signature ``i32 (i32, i32)*``.
8460It can be created as follows:
8461
8462.. code-block:: llvm
8463
8464 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8465 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8466 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8467 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8468 %fp = bitcast i8* %p to i32 (i32, i32)*
8469
8470The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8471``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8472
8473.. _int_it:
8474
8475'``llvm.init.trampoline``' Intrinsic
8476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8477
8478Syntax:
8479"""""""
8480
8481::
8482
8483 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8484
8485Overview:
8486"""""""""
8487
8488This fills the memory pointed to by ``tramp`` with executable code,
8489turning it into a trampoline.
8490
8491Arguments:
8492""""""""""
8493
8494The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8495pointers. The ``tramp`` argument must point to a sufficiently large and
8496sufficiently aligned block of memory; this memory is written to by the
8497intrinsic. Note that the size and the alignment are target-specific -
8498LLVM currently provides no portable way of determining them, so a
8499front-end that generates this intrinsic needs to have some
8500target-specific knowledge. The ``func`` argument must hold a function
8501bitcast to an ``i8*``.
8502
8503Semantics:
8504""""""""""
8505
8506The block of memory pointed to by ``tramp`` is filled with target
8507dependent code, turning it into a function. Then ``tramp`` needs to be
8508passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8509be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8510function's signature is the same as that of ``func`` with any arguments
8511marked with the ``nest`` attribute removed. At most one such ``nest``
8512argument is allowed, and it must be of pointer type. Calling the new
8513function is equivalent to calling ``func`` with the same argument list,
8514but with ``nval`` used for the missing ``nest`` argument. If, after
8515calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8516modified, then the effect of any later call to the returned function
8517pointer is undefined.
8518
8519.. _int_at:
8520
8521'``llvm.adjust.trampoline``' Intrinsic
8522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8523
8524Syntax:
8525"""""""
8526
8527::
8528
8529 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8530
8531Overview:
8532"""""""""
8533
8534This performs any required machine-specific adjustment to the address of
8535a trampoline (passed as ``tramp``).
8536
8537Arguments:
8538""""""""""
8539
8540``tramp`` must point to a block of memory which already has trampoline
8541code filled in by a previous call to
8542:ref:`llvm.init.trampoline <int_it>`.
8543
8544Semantics:
8545""""""""""
8546
8547On some architectures the address of the code to be executed needs to be
8548different to the address where the trampoline is actually stored. This
8549intrinsic returns the executable address corresponding to ``tramp``
8550after performing the required machine specific adjustments. The pointer
8551returned can then be :ref:`bitcast and executed <int_trampoline>`.
8552
8553Memory Use Markers
8554------------------
8555
8556This class of intrinsics exists to information about the lifetime of
8557memory objects and ranges where variables are immutable.
8558
Reid Klecknera534a382013-12-19 02:14:12 +00008559.. _int_lifestart:
8560
Sean Silvab084af42012-12-07 10:36:55 +00008561'``llvm.lifetime.start``' Intrinsic
8562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8563
8564Syntax:
8565"""""""
8566
8567::
8568
8569 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8570
8571Overview:
8572"""""""""
8573
8574The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8575object's lifetime.
8576
8577Arguments:
8578""""""""""
8579
8580The first argument is a constant integer representing the size of the
8581object, or -1 if it is variable sized. The second argument is a pointer
8582to the object.
8583
8584Semantics:
8585""""""""""
8586
8587This intrinsic indicates that before this point in the code, the value
8588of the memory pointed to by ``ptr`` is dead. This means that it is known
8589to never be used and has an undefined value. A load from the pointer
8590that precedes this intrinsic can be replaced with ``'undef'``.
8591
Reid Klecknera534a382013-12-19 02:14:12 +00008592.. _int_lifeend:
8593
Sean Silvab084af42012-12-07 10:36:55 +00008594'``llvm.lifetime.end``' Intrinsic
8595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8596
8597Syntax:
8598"""""""
8599
8600::
8601
8602 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8603
8604Overview:
8605"""""""""
8606
8607The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8608object's lifetime.
8609
8610Arguments:
8611""""""""""
8612
8613The first argument is a constant integer representing the size of the
8614object, or -1 if it is variable sized. The second argument is a pointer
8615to the object.
8616
8617Semantics:
8618""""""""""
8619
8620This intrinsic indicates that after this point in the code, the value of
8621the memory pointed to by ``ptr`` is dead. This means that it is known to
8622never be used and has an undefined value. Any stores into the memory
8623object following this intrinsic may be removed as dead.
8624
8625'``llvm.invariant.start``' Intrinsic
8626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8627
8628Syntax:
8629"""""""
8630
8631::
8632
8633 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8634
8635Overview:
8636"""""""""
8637
8638The '``llvm.invariant.start``' intrinsic specifies that the contents of
8639a memory object will not change.
8640
8641Arguments:
8642""""""""""
8643
8644The first argument is a constant integer representing the size of the
8645object, or -1 if it is variable sized. The second argument is a pointer
8646to the object.
8647
8648Semantics:
8649""""""""""
8650
8651This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8652the return value, the referenced memory location is constant and
8653unchanging.
8654
8655'``llvm.invariant.end``' Intrinsic
8656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8657
8658Syntax:
8659"""""""
8660
8661::
8662
8663 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8664
8665Overview:
8666"""""""""
8667
8668The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8669memory object are mutable.
8670
8671Arguments:
8672""""""""""
8673
8674The first argument is the matching ``llvm.invariant.start`` intrinsic.
8675The second argument is a constant integer representing the size of the
8676object, or -1 if it is variable sized and the third argument is a
8677pointer to the object.
8678
8679Semantics:
8680""""""""""
8681
8682This intrinsic indicates that the memory is mutable again.
8683
8684General Intrinsics
8685------------------
8686
8687This class of intrinsics is designed to be generic and has no specific
8688purpose.
8689
8690'``llvm.var.annotation``' Intrinsic
8691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8692
8693Syntax:
8694"""""""
8695
8696::
8697
8698 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8699
8700Overview:
8701"""""""""
8702
8703The '``llvm.var.annotation``' intrinsic.
8704
8705Arguments:
8706""""""""""
8707
8708The first argument is a pointer to a value, the second is a pointer to a
8709global string, the third is a pointer to a global string which is the
8710source file name, and the last argument is the line number.
8711
8712Semantics:
8713""""""""""
8714
8715This intrinsic allows annotation of local variables with arbitrary
8716strings. This can be useful for special purpose optimizations that want
8717to look for these annotations. These have no other defined use; they are
8718ignored by code generation and optimization.
8719
Michael Gottesman88d18832013-03-26 00:34:27 +00008720'``llvm.ptr.annotation.*``' Intrinsic
8721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8722
8723Syntax:
8724"""""""
8725
8726This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8727pointer to an integer of any width. *NOTE* you must specify an address space for
8728the pointer. The identifier for the default address space is the integer
8729'``0``'.
8730
8731::
8732
8733 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8734 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8735 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8736 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8737 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8738
8739Overview:
8740"""""""""
8741
8742The '``llvm.ptr.annotation``' intrinsic.
8743
8744Arguments:
8745""""""""""
8746
8747The first argument is a pointer to an integer value of arbitrary bitwidth
8748(result of some expression), the second is a pointer to a global string, the
8749third is a pointer to a global string which is the source file name, and the
8750last argument is the line number. It returns the value of the first argument.
8751
8752Semantics:
8753""""""""""
8754
8755This intrinsic allows annotation of a pointer to an integer with arbitrary
8756strings. This can be useful for special purpose optimizations that want to look
8757for these annotations. These have no other defined use; they are ignored by code
8758generation and optimization.
8759
Sean Silvab084af42012-12-07 10:36:55 +00008760'``llvm.annotation.*``' Intrinsic
8761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8762
8763Syntax:
8764"""""""
8765
8766This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8767any integer bit width.
8768
8769::
8770
8771 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8772 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8773 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8774 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8775 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8776
8777Overview:
8778"""""""""
8779
8780The '``llvm.annotation``' intrinsic.
8781
8782Arguments:
8783""""""""""
8784
8785The first argument is an integer value (result of some expression), the
8786second is a pointer to a global string, the third is a pointer to a
8787global string which is the source file name, and the last argument is
8788the line number. It returns the value of the first argument.
8789
8790Semantics:
8791""""""""""
8792
8793This intrinsic allows annotations to be put on arbitrary expressions
8794with arbitrary strings. This can be useful for special purpose
8795optimizations that want to look for these annotations. These have no
8796other defined use; they are ignored by code generation and optimization.
8797
8798'``llvm.trap``' Intrinsic
8799^^^^^^^^^^^^^^^^^^^^^^^^^
8800
8801Syntax:
8802"""""""
8803
8804::
8805
8806 declare void @llvm.trap() noreturn nounwind
8807
8808Overview:
8809"""""""""
8810
8811The '``llvm.trap``' intrinsic.
8812
8813Arguments:
8814""""""""""
8815
8816None.
8817
8818Semantics:
8819""""""""""
8820
8821This intrinsic is lowered to the target dependent trap instruction. If
8822the target does not have a trap instruction, this intrinsic will be
8823lowered to a call of the ``abort()`` function.
8824
8825'``llvm.debugtrap``' Intrinsic
8826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8827
8828Syntax:
8829"""""""
8830
8831::
8832
8833 declare void @llvm.debugtrap() nounwind
8834
8835Overview:
8836"""""""""
8837
8838The '``llvm.debugtrap``' intrinsic.
8839
8840Arguments:
8841""""""""""
8842
8843None.
8844
8845Semantics:
8846""""""""""
8847
8848This intrinsic is lowered to code which is intended to cause an
8849execution trap with the intention of requesting the attention of a
8850debugger.
8851
8852'``llvm.stackprotector``' Intrinsic
8853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8854
8855Syntax:
8856"""""""
8857
8858::
8859
8860 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8861
8862Overview:
8863"""""""""
8864
8865The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8866onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8867is placed on the stack before local variables.
8868
8869Arguments:
8870""""""""""
8871
8872The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8873The first argument is the value loaded from the stack guard
8874``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8875enough space to hold the value of the guard.
8876
8877Semantics:
8878""""""""""
8879
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008880This intrinsic causes the prologue/epilogue inserter to force the position of
8881the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8882to ensure that if a local variable on the stack is overwritten, it will destroy
8883the value of the guard. When the function exits, the guard on the stack is
8884checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8885different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8886calling the ``__stack_chk_fail()`` function.
8887
8888'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008890
8891Syntax:
8892"""""""
8893
8894::
8895
8896 declare void @llvm.stackprotectorcheck(i8** <guard>)
8897
8898Overview:
8899"""""""""
8900
8901The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008902created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008903``__stack_chk_fail()`` function.
8904
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008905Arguments:
8906""""""""""
8907
8908The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8909the variable ``@__stack_chk_guard``.
8910
8911Semantics:
8912""""""""""
8913
8914This intrinsic is provided to perform the stack protector check by comparing
8915``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8916values do not match call the ``__stack_chk_fail()`` function.
8917
8918The reason to provide this as an IR level intrinsic instead of implementing it
8919via other IR operations is that in order to perform this operation at the IR
8920level without an intrinsic, one would need to create additional basic blocks to
8921handle the success/failure cases. This makes it difficult to stop the stack
8922protector check from disrupting sibling tail calls in Codegen. With this
8923intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008924codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008925
Sean Silvab084af42012-12-07 10:36:55 +00008926'``llvm.objectsize``' Intrinsic
8927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8928
8929Syntax:
8930"""""""
8931
8932::
8933
8934 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8935 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8936
8937Overview:
8938"""""""""
8939
8940The ``llvm.objectsize`` intrinsic is designed to provide information to
8941the optimizers to determine at compile time whether a) an operation
8942(like memcpy) will overflow a buffer that corresponds to an object, or
8943b) that a runtime check for overflow isn't necessary. An object in this
8944context means an allocation of a specific class, structure, array, or
8945other object.
8946
8947Arguments:
8948""""""""""
8949
8950The ``llvm.objectsize`` intrinsic takes two arguments. The first
8951argument is a pointer to or into the ``object``. The second argument is
8952a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8953or -1 (if false) when the object size is unknown. The second argument
8954only accepts constants.
8955
8956Semantics:
8957""""""""""
8958
8959The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8960the size of the object concerned. If the size cannot be determined at
8961compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8962on the ``min`` argument).
8963
8964'``llvm.expect``' Intrinsic
8965^^^^^^^^^^^^^^^^^^^^^^^^^^^
8966
8967Syntax:
8968"""""""
8969
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00008970This is an overloaded intrinsic. You can use ``llvm.expect`` on any
8971integer bit width.
8972
Sean Silvab084af42012-12-07 10:36:55 +00008973::
8974
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00008975 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00008976 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8977 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8978
8979Overview:
8980"""""""""
8981
8982The ``llvm.expect`` intrinsic provides information about expected (the
8983most probable) value of ``val``, which can be used by optimizers.
8984
8985Arguments:
8986""""""""""
8987
8988The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8989a value. The second argument is an expected value, this needs to be a
8990constant value, variables are not allowed.
8991
8992Semantics:
8993""""""""""
8994
8995This intrinsic is lowered to the ``val``.
8996
8997'``llvm.donothing``' Intrinsic
8998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8999
9000Syntax:
9001"""""""
9002
9003::
9004
9005 declare void @llvm.donothing() nounwind readnone
9006
9007Overview:
9008"""""""""
9009
9010The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9011only intrinsic that can be called with an invoke instruction.
9012
9013Arguments:
9014""""""""""
9015
9016None.
9017
9018Semantics:
9019""""""""""
9020
9021This intrinsic does nothing, and it's removed by optimizers and ignored
9022by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009023
9024Stack Map Intrinsics
9025--------------------
9026
9027LLVM provides experimental intrinsics to support runtime patching
9028mechanisms commonly desired in dynamic language JITs. These intrinsics
9029are described in :doc:`StackMaps`.