blob: 6712d94f32460b9bbbf14daea15f5ad6d73ad72b [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000011#include "llvm/Instructions.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000012#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000013#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000014#include "llvm/Pass.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000015#include "llvm/Intrinsics.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000017#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000018#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000020#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/Target/TargetMachine.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000022#include "llvm/Target/MRegisterInfo.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000023#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000024
Chris Lattner333b2fa2002-12-13 10:09:43 +000025/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000026/// instruction at as well as a basic block. This is the version for when you
27/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000028inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000029 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000030 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000031 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000032 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000033 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000034 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000035 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
36}
37
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000038/// BMI - A special BuildMI variant that takes an iterator to insert the
39/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000040inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000041 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000042 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000046 return MachineInstrBuilder(MI);
47}
48
Chris Lattner333b2fa2002-12-13 10:09:43 +000049
Chris Lattner72614082002-10-25 22:55:53 +000050namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000051 struct ISel : public FunctionPass, InstVisitor<ISel> {
52 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000053 MachineFunction *F; // The function we are compiling into
54 MachineBasicBlock *BB; // The current MBB we are compiling
55 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
58
Chris Lattner333b2fa2002-12-13 10:09:43 +000059 // MBBMap - Mapping between LLVM BB -> Machine BB
60 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
61
Chris Lattner3e130a22003-01-13 00:32:26 +000062 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000063
64 /// runOnFunction - Top level implementation of instruction selection for
65 /// the entire function.
66 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000067 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000068 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000069
Chris Lattner065faeb2002-12-28 20:24:02 +000070 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000071 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
72 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
73
Chris Lattner14aa7fe2002-12-16 22:54:46 +000074 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000075
Chris Lattnerdbd73722003-05-06 21:32:22 +000076 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000077 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000078
Chris Lattner333b2fa2002-12-13 10:09:43 +000079 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000080 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000081
82 // Select the PHI nodes
83 SelectPHINodes();
84
Chris Lattner72614082002-10-25 22:55:53 +000085 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000087 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +000088 // We always build a machine code representation for the function
89 return true;
Chris Lattner72614082002-10-25 22:55:53 +000090 }
91
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000092 virtual const char *getPassName() const {
93 return "X86 Simple Instruction Selection";
94 }
95
Chris Lattner72614082002-10-25 22:55:53 +000096 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000097 /// block. This simply creates a new MachineBasicBlock to emit code into
98 /// and adds it to the current MachineFunction. Subsequent visit* for
99 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000100 ///
101 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000102 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000103 }
104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
106 /// from the stack into virtual registers.
107 ///
108 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000109
110 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
111 /// because we have to generate our sources into the source basic blocks,
112 /// not the current one.
113 ///
114 void SelectPHINodes();
115
Chris Lattner72614082002-10-25 22:55:53 +0000116 // Visitation methods for various instructions. These methods simply emit
117 // fixed X86 code for each instruction.
118 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000119
120 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000121 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000122 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000123
124 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000125 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000126 unsigned Reg;
127 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000128 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
129 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000130 };
131 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
132 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000133 void visitCallInst(CallInst &I);
Chris Lattneraeb54b82003-08-28 21:23:43 +0000134 void visitInvokeInst(InvokeInst &II);
Chris Lattner36143fc2003-09-08 18:54:55 +0000135 void visitUnwindInst(UnwindInst &UI);
Chris Lattnereca195e2003-05-08 19:44:13 +0000136 void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000137
138 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000139 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000140 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
141 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000142 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000143 unsigned DestReg, const Type *DestTy,
144 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000145 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000146
Chris Lattnerf01729e2002-11-02 20:54:46 +0000147 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
148 void visitRem(BinaryOperator &B) { visitDivRem(B); }
149 void visitDivRem(BinaryOperator &B);
150
Chris Lattnere2954c82002-11-02 20:04:26 +0000151 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000152 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
153 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
154 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000155
Chris Lattner6d40c192003-01-16 16:43:00 +0000156 // Comparison operators...
157 void visitSetCondInst(SetCondInst &I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000158 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
159 MachineBasicBlock *MBB,
160 MachineBasicBlock::iterator &MBBI);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000161
162 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000163 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
164 MachineBasicBlock::iterator &MBBI,
165 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000166 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000167 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000168 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000169 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000170 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000171 void visitMallocInst(MallocInst &I);
172 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000173
Chris Lattnere2954c82002-11-02 20:04:26 +0000174 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000175 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000176 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000177 void visitCastInst(CastInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000178 void visitVarArgInst(VarArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000179
180 void visitInstruction(Instruction &I) {
181 std::cerr << "Cannot instruction select: " << I;
182 abort();
183 }
184
Brian Gaeke95780cc2002-12-13 07:56:18 +0000185 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000186 ///
187 void promote32(unsigned targetReg, const ValueRecord &VR);
188
189 /// EmitByteSwap - Byteswap SrcReg into DestReg.
190 ///
191 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000192
Chris Lattner3e130a22003-01-13 00:32:26 +0000193 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
194 /// constant expression GEP support.
195 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000196 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000197 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000198 User::op_iterator IdxEnd, unsigned TargetReg);
199
Chris Lattner548f61d2003-04-23 17:22:12 +0000200 /// emitCastOperation - Common code shared between visitCastInst and
201 /// constant expression cast support.
202 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
203 Value *Src, const Type *DestTy, unsigned TargetReg);
204
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000205 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
206 /// and constant expression support.
207 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
208 MachineBasicBlock::iterator &IP,
209 Value *Op0, Value *Op1,
210 unsigned OperatorClass, unsigned TargetReg);
211
Chris Lattner58c41fe2003-08-24 19:19:47 +0000212 /// emitSetCCOperation - Common code shared between visitSetCondInst and
213 /// constant expression support.
214 void emitSetCCOperation(MachineBasicBlock *BB,
215 MachineBasicBlock::iterator &IP,
216 Value *Op0, Value *Op1, unsigned Opcode,
217 unsigned TargetReg);
218
219
Chris Lattnerc5291f52002-10-27 21:16:59 +0000220 /// copyConstantToRegister - Output the instructions required to put the
221 /// specified constant into the specified register.
222 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000223 void copyConstantToRegister(MachineBasicBlock *MBB,
224 MachineBasicBlock::iterator &MBBI,
225 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000226
Chris Lattner3e130a22003-01-13 00:32:26 +0000227 /// makeAnotherReg - This method returns the next register number we haven't
228 /// yet used.
229 ///
230 /// Long values are handled somewhat specially. They are always allocated
231 /// as pairs of 32 bit integer values. The register number returned is the
232 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
233 /// of the long value.
234 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000235 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000236 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
237 "Current target doesn't have X86 reg info??");
238 const X86RegisterInfo *MRI =
239 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000240 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000241 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000242 // Create the lower part
243 F->getSSARegMap()->createVirtualRegister(RC);
244 // Create the upper part.
245 return F->getSSARegMap()->createVirtualRegister(RC)-1;
246 }
247
Chris Lattnerc0812d82002-12-13 06:56:29 +0000248 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000249 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000250 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000251 }
252
Chris Lattner72614082002-10-25 22:55:53 +0000253 /// getReg - This method turns an LLVM value into a register number. This
254 /// is guaranteed to produce the same register number for a particular value
255 /// every time it is queried.
256 ///
257 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000258 unsigned getReg(Value *V) {
259 // Just append to the end of the current bb.
260 MachineBasicBlock::iterator It = BB->end();
261 return getReg(V, BB, It);
262 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000263 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000264 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000265 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000266 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000267 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000268 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000269 }
Chris Lattner72614082002-10-25 22:55:53 +0000270
Chris Lattner6f8fd252002-10-27 21:23:43 +0000271 // If this operand is a constant, emit the code to copy the constant into
272 // the register here...
273 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000274 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000275 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000276 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000277 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
278 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000279 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000280 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000281 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000282
Chris Lattner72614082002-10-25 22:55:53 +0000283 return Reg;
284 }
Chris Lattner72614082002-10-25 22:55:53 +0000285 };
286}
287
Chris Lattner43189d12002-11-17 20:07:45 +0000288/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
289/// Representation.
290///
291enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000292 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000293};
294
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000295/// getClass - Turn a primitive type into a "class" number which is based on the
296/// size of the type, and whether or not it is floating point.
297///
Chris Lattner43189d12002-11-17 20:07:45 +0000298static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000299 switch (Ty->getPrimitiveID()) {
300 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000301 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000302 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000303 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000304 case Type::IntTyID:
305 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000306 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000307
Chris Lattner94af4142002-12-25 05:13:53 +0000308 case Type::FloatTyID:
309 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000310
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000311 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000312 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000313 default:
314 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000315 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000316 }
317}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000318
Chris Lattner6b993cc2002-12-15 08:02:15 +0000319// getClassB - Just like getClass, but treat boolean values as bytes.
320static inline TypeClass getClassB(const Type *Ty) {
321 if (Ty == Type::BoolTy) return cByte;
322 return getClass(Ty);
323}
324
Chris Lattner06925362002-11-17 21:56:38 +0000325
Chris Lattnerc5291f52002-10-27 21:16:59 +0000326/// copyConstantToRegister - Output the instructions required to put the
327/// specified constant into the specified register.
328///
Chris Lattner8a307e82002-12-16 19:32:50 +0000329void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
330 MachineBasicBlock::iterator &IP,
331 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000332 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000333 unsigned Class = 0;
334 switch (CE->getOpcode()) {
335 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000336 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000337 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000338 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000339 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000340 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000341 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000342
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000343 case Instruction::Xor: ++Class; // FALL THROUGH
344 case Instruction::Or: ++Class; // FALL THROUGH
345 case Instruction::And: ++Class; // FALL THROUGH
346 case Instruction::Sub: ++Class; // FALL THROUGH
347 case Instruction::Add:
348 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
349 Class, R);
350 return;
351
Chris Lattner58c41fe2003-08-24 19:19:47 +0000352 case Instruction::SetNE:
353 case Instruction::SetEQ:
354 case Instruction::SetLT:
355 case Instruction::SetGT:
356 case Instruction::SetLE:
357 case Instruction::SetGE:
358 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
359 CE->getOpcode(), R);
360 return;
361
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000362 default:
363 std::cerr << "Offending expr: " << C << "\n";
364 assert(0 && "Constant expressions not yet handled!\n");
365 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000366 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000367
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000368 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000369 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000370
371 if (Class == cLong) {
372 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000373 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000374 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
375 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
376 return;
377 }
378
Chris Lattner94af4142002-12-25 05:13:53 +0000379 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000380
381 static const unsigned IntegralOpcodeTab[] = {
382 X86::MOVir8, X86::MOVir16, X86::MOVir32
383 };
384
Chris Lattner6b993cc2002-12-15 08:02:15 +0000385 if (C->getType() == Type::BoolTy) {
386 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000387 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000388 ConstantInt *CI = cast<ConstantInt>(C);
389 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000390 }
Chris Lattner94af4142002-12-25 05:13:53 +0000391 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
392 double Value = CFP->getValue();
393 if (Value == +0.0)
394 BMI(MBB, IP, X86::FLD0, 0, R);
395 else if (Value == +1.0)
396 BMI(MBB, IP, X86::FLD1, 0, R);
397 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000398 // Otherwise we need to spill the constant to memory...
399 MachineConstantPool *CP = F->getConstantPool();
400 unsigned CPI = CP->getConstantPoolIndex(CFP);
401 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000402 }
403
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000404 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000405 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000406 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000407 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000408 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000409 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000410 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000411 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000412 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000413 }
414}
415
Chris Lattner065faeb2002-12-28 20:24:02 +0000416/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
417/// the stack into virtual registers.
418///
419void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
420 // Emit instructions to load the arguments... On entry to a function on the
421 // X86, the stack frame looks like this:
422 //
423 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000424 // [ESP + 4] -- first argument (leftmost lexically)
425 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000426 // ...
427 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000428 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000429 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000430
431 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
432 unsigned Reg = getReg(*I);
433
Chris Lattner065faeb2002-12-28 20:24:02 +0000434 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000435 switch (getClassB(I->getType())) {
436 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000437 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000438 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
439 break;
440 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000441 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000442 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
443 break;
444 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000445 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000446 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
447 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000448 case cLong:
449 FI = MFI->CreateFixedObject(8, ArgOffset);
450 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
451 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
452 ArgOffset += 4; // longs require 4 additional bytes
453 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000454 case cFP:
455 unsigned Opcode;
456 if (I->getType() == Type::FloatTy) {
457 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000458 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000459 } else {
460 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000461 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000462 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000463 }
464 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
465 break;
466 default:
467 assert(0 && "Unhandled argument type!");
468 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000469 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000470 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000471
472 // If the function takes variable number of arguments, add a frame offset for
473 // the start of the first vararg value... this is used to expand
474 // llvm.va_start.
475 if (Fn.getFunctionType()->isVarArg())
476 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000477}
478
479
Chris Lattner333b2fa2002-12-13 10:09:43 +0000480/// SelectPHINodes - Insert machine code to generate phis. This is tricky
481/// because we have to generate our sources into the source basic blocks, not
482/// the current one.
483///
484void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000485 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000486 const Function &LF = *F->getFunction(); // The LLVM function...
487 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
488 const BasicBlock *BB = I;
489 MachineBasicBlock *MBB = MBBMap[I];
490
491 // Loop over all of the PHI nodes in the LLVM basic block...
492 unsigned NumPHIs = 0;
493 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattner548f61d2003-04-23 17:22:12 +0000494 PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000495
Chris Lattner333b2fa2002-12-13 10:09:43 +0000496 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000497 unsigned PHIReg = getReg(*PN);
498 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
499 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
500
501 MachineInstr *LongPhiMI = 0;
502 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
503 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
504 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
505 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000506
Chris Lattnera6e73f12003-05-12 14:22:21 +0000507 // PHIValues - Map of blocks to incoming virtual registers. We use this
508 // so that we only initialize one incoming value for a particular block,
509 // even if the block has multiple entries in the PHI node.
510 //
511 std::map<MachineBasicBlock*, unsigned> PHIValues;
512
Chris Lattner333b2fa2002-12-13 10:09:43 +0000513 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
514 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000515 unsigned ValReg;
516 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
517 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000518
Chris Lattnera6e73f12003-05-12 14:22:21 +0000519 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
520 // We already inserted an initialization of the register for this
521 // predecessor. Recycle it.
522 ValReg = EntryIt->second;
523
524 } else {
525 // Get the incoming value into a virtual register. If it is not
526 // already available in a virtual register, insert the computation
527 // code into PredMBB
528 //
529 MachineBasicBlock::iterator PI = PredMBB->end();
530 while (PI != PredMBB->begin() &&
531 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
532 --PI;
533 ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
534
535 // Remember that we inserted a value for this PHI for this predecessor
536 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
537 }
538
Chris Lattner3e130a22003-01-13 00:32:26 +0000539 PhiMI->addRegOperand(ValReg);
540 PhiMI->addMachineBasicBlockOperand(PredMBB);
541 if (LongPhiMI) {
542 LongPhiMI->addRegOperand(ValReg+1);
543 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
544 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000545 }
546 }
547 }
548}
549
Chris Lattner6d40c192003-01-16 16:43:00 +0000550// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
551// the conditional branch instruction which is the only user of the cc
552// instruction. This is the case if the conditional branch is the only user of
553// the setcc, and if the setcc is in the same basic block as the conditional
554// branch. We also don't handle long arguments below, so we reject them here as
555// well.
556//
557static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
558 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
559 if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
560 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
561 const Type *Ty = SCI->getOperand(0)->getType();
562 if (Ty != Type::LongTy && Ty != Type::ULongTy)
563 return SCI;
564 }
565 return 0;
566}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000567
Chris Lattner6d40c192003-01-16 16:43:00 +0000568// Return a fixed numbering for setcc instructions which does not depend on the
569// order of the opcodes.
570//
571static unsigned getSetCCNumber(unsigned Opcode) {
572 switch(Opcode) {
573 default: assert(0 && "Unknown setcc instruction!");
574 case Instruction::SetEQ: return 0;
575 case Instruction::SetNE: return 1;
576 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000577 case Instruction::SetGE: return 3;
578 case Instruction::SetGT: return 4;
579 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000580 }
581}
Chris Lattner06925362002-11-17 21:56:38 +0000582
Chris Lattner6d40c192003-01-16 16:43:00 +0000583// LLVM -> X86 signed X86 unsigned
584// ----- ---------- ------------
585// seteq -> sete sete
586// setne -> setne setne
587// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000588// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000589// setgt -> setg seta
590// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000591static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000592 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
593 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000594};
595
Chris Lattner58c41fe2003-08-24 19:19:47 +0000596bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1,
597 MachineBasicBlock *MBB,
598 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000599 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000600 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000601 bool isSigned = CompTy->isSigned();
Chris Lattner3e130a22003-01-13 00:32:26 +0000602 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000603 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000604
605 // Special case handling of: cmp R, i
606 if (Class == cByte || Class == cShort || Class == cInt)
607 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000608 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
609
Chris Lattner333864d2003-06-05 19:30:30 +0000610 // Mask off any upper bits of the constant, if there are any...
611 Op1v &= (1ULL << (8 << Class)) - 1;
612
613 switch (Class) {
Chris Lattner58c41fe2003-08-24 19:19:47 +0000614 case cByte: BMI(MBB,IP, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
615 case cShort: BMI(MBB,IP, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
616 case cInt: BMI(MBB,IP, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
Chris Lattner333864d2003-06-05 19:30:30 +0000617 default:
618 assert(0 && "Invalid class!");
619 }
620 return isSigned;
621 }
622
Chris Lattner58c41fe2003-08-24 19:19:47 +0000623 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000624 switch (Class) {
625 default: assert(0 && "Unknown type class!");
626 // Emit: cmp <var1>, <var2> (do the comparison). We can
627 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
628 // 32-bit.
629 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000630 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000631 break;
632 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000633 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000634 break;
635 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000636 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000637 break;
638 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000639 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
640 BMI(MBB, IP, X86::FNSTSWr8, 0);
641 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000642 isSigned = false; // Compare with unsigned operators
643 break;
644
645 case cLong:
646 if (OpNum < 2) { // seteq, setne
647 unsigned LoTmp = makeAnotherReg(Type::IntTy);
648 unsigned HiTmp = makeAnotherReg(Type::IntTy);
649 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000650 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
651 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
652 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000653 break; // Allow the sete or setne to be generated from flags set by OR
654 } else {
655 // Emit a sequence of code which compares the high and low parts once
656 // each, then uses a conditional move to handle the overflow case. For
657 // example, a setlt for long would generate code like this:
658 //
659 // AL = lo(op1) < lo(op2) // Signedness depends on operands
660 // BL = hi(op1) < hi(op2) // Always unsigned comparison
661 // dest = hi(op1) == hi(op2) ? AL : BL;
662 //
663
Chris Lattner6d40c192003-01-16 16:43:00 +0000664 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000665 // classes! Until then, hardcode registers so that we can deal with their
666 // aliases (because we don't have conditional byte moves).
667 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000668 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
669 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
670 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
671 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
672 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
673 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
674 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000675 // NOTE: visitSetCondInst knows that the value is dumped into the BL
676 // register at this point for long values...
677 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000678 }
679 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000680 return isSigned;
681}
Chris Lattner3e130a22003-01-13 00:32:26 +0000682
Chris Lattner6d40c192003-01-16 16:43:00 +0000683
684/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
685/// register, then move it to wherever the result should be.
686///
687void ISel::visitSetCondInst(SetCondInst &I) {
688 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
689
Chris Lattner6d40c192003-01-16 16:43:00 +0000690 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000691 MachineBasicBlock::iterator MII = BB->end();
692 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
693 DestReg);
694}
Chris Lattner6d40c192003-01-16 16:43:00 +0000695
Chris Lattner58c41fe2003-08-24 19:19:47 +0000696/// emitSetCCOperation - Common code shared between visitSetCondInst and
697/// constant expression support.
698void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
699 MachineBasicBlock::iterator &IP,
700 Value *Op0, Value *Op1, unsigned Opcode,
701 unsigned TargetReg) {
702 unsigned OpNum = getSetCCNumber(Opcode);
703 bool isSigned = EmitComparisonGetSignedness(OpNum, Op0, Op1, MBB, IP);
704
705 if (getClassB(Op0->getType()) != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000706 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000707 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000708 } else {
709 // Handle long comparisons by copying the value which is already in BL into
710 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000711 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000712 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000713}
Chris Lattner51b49a92002-11-02 19:45:49 +0000714
Chris Lattner58c41fe2003-08-24 19:19:47 +0000715
716
717
Brian Gaekec2505982002-11-30 11:57:28 +0000718/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
719/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000720void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
721 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000722
723 // Make sure we have the register number for this value...
724 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
725
Chris Lattner3e130a22003-01-13 00:32:26 +0000726 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000727 case cByte:
728 // Extend value into target register (8->32)
729 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000730 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000731 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000732 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000733 break;
734 case cShort:
735 // Extend value into target register (16->32)
736 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000737 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000738 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000739 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000740 break;
741 case cInt:
742 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000743 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000744 break;
745 default:
746 assert(0 && "Unpromotable operand class in promote32");
747 }
Brian Gaekec2505982002-11-30 11:57:28 +0000748}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000749
Chris Lattner72614082002-10-25 22:55:53 +0000750/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
751/// we have the following possibilities:
752///
753/// ret void: No return value, simply emit a 'ret' instruction
754/// ret sbyte, ubyte : Extend value into EAX and return
755/// ret short, ushort: Extend value into EAX and return
756/// ret int, uint : Move value into EAX and return
757/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000758/// ret long, ulong : Move value into EAX/EDX and return
759/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000760///
Chris Lattner3e130a22003-01-13 00:32:26 +0000761void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000762 if (I.getNumOperands() == 0) {
763 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
764 return;
765 }
766
767 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000768 unsigned RetReg = getReg(RetVal);
769 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000770 case cByte: // integral return values: extend or move into EAX and return
771 case cShort:
772 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000773 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000774 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000775 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000776 break;
777 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000778 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000779 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000780 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000781 break;
782 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000783 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
784 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000785 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000786 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000787 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000788 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000789 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000790 }
Chris Lattner43189d12002-11-17 20:07:45 +0000791 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000792 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000793}
794
Chris Lattner55f6fab2003-01-16 18:07:23 +0000795// getBlockAfter - Return the basic block which occurs lexically after the
796// specified one.
797static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
798 Function::iterator I = BB; ++I; // Get iterator to next block
799 return I != BB->getParent()->end() ? &*I : 0;
800}
801
Chris Lattner51b49a92002-11-02 19:45:49 +0000802/// visitBranchInst - Handle conditional and unconditional branches here. Note
803/// that since code layout is frozen at this point, that if we are trying to
804/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000805/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000806///
Chris Lattner94af4142002-12-25 05:13:53 +0000807void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000808 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
809
810 if (!BI.isConditional()) { // Unconditional branch?
811 if (BI.getSuccessor(0) != NextBB)
812 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000813 return;
814 }
815
816 // See if we can fold the setcc into the branch itself...
817 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
818 if (SCI == 0) {
819 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
820 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000821 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000822 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000823 if (BI.getSuccessor(1) == NextBB) {
824 if (BI.getSuccessor(0) != NextBB)
825 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
826 } else {
827 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
828
829 if (BI.getSuccessor(0) != NextBB)
830 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
831 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000832 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000833 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000834
835 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000836 MachineBasicBlock::iterator MII = BB->end();
Chris Lattner6d40c192003-01-16 16:43:00 +0000837 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
Chris Lattner58c41fe2003-08-24 19:19:47 +0000838 SCI->getOperand(1), BB, MII);
Chris Lattner6d40c192003-01-16 16:43:00 +0000839
840 // LLVM -> X86 signed X86 unsigned
841 // ----- ---------- ------------
842 // seteq -> je je
843 // setne -> jne jne
844 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000845 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000846 // setgt -> jg ja
847 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000848 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000849 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
850 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000851 };
852
Chris Lattner55f6fab2003-01-16 18:07:23 +0000853 if (BI.getSuccessor(0) != NextBB) {
854 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
855 if (BI.getSuccessor(1) != NextBB)
856 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
857 } else {
858 // Change to the inverse condition...
859 if (BI.getSuccessor(1) != NextBB) {
860 OpNum ^= 1;
861 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
862 }
863 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000864}
865
Chris Lattner3e130a22003-01-13 00:32:26 +0000866
867/// doCall - This emits an abstract call instruction, setting up the arguments
868/// and the return value as appropriate. For the actual function call itself,
869/// it inserts the specified CallMI instruction into the stream.
870///
871void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
872 const std::vector<ValueRecord> &Args) {
873
Chris Lattner065faeb2002-12-28 20:24:02 +0000874 // Count how many bytes are to be pushed on the stack...
875 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000876
Chris Lattner3e130a22003-01-13 00:32:26 +0000877 if (!Args.empty()) {
878 for (unsigned i = 0, e = Args.size(); i != e; ++i)
879 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000880 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000881 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000882 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000883 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000884 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000885 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000886 break;
887 default: assert(0 && "Unknown class!");
888 }
889
890 // Adjust the stack pointer for the new arguments...
891 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
892
893 // Arguments go on the stack in reverse order, as specified by the ABI.
894 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000895 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000896 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +0000897 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000898 case cByte:
899 case cShort: {
900 // Promote arg to 32 bits wide into a temporary register...
901 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000902 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000903 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
904 X86::ESP, ArgOffset).addReg(R);
905 break;
906 }
907 case cInt:
908 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000909 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000910 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000911 case cLong:
912 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
913 X86::ESP, ArgOffset).addReg(ArgReg);
914 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
915 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
916 ArgOffset += 4; // 8 byte entry, not 4.
917 break;
918
Chris Lattner065faeb2002-12-28 20:24:02 +0000919 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000920 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000921 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000922 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000923 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000924 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
925 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
926 X86::ESP, ArgOffset).addReg(ArgReg);
927 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000928 }
929 break;
930
Chris Lattner3e130a22003-01-13 00:32:26 +0000931 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000932 }
933 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000934 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000935 } else {
936 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000937 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000938
Chris Lattner3e130a22003-01-13 00:32:26 +0000939 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000940
Chris Lattner065faeb2002-12-28 20:24:02 +0000941 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000942
943 // If there is a return value, scavenge the result from the location the call
944 // leaves it in...
945 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000946 if (Ret.Ty != Type::VoidTy) {
947 unsigned DestClass = getClassB(Ret.Ty);
948 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000949 case cByte:
950 case cShort:
951 case cInt: {
952 // Integral results are in %eax, or the appropriate portion
953 // thereof.
954 static const unsigned regRegMove[] = {
955 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
956 };
957 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000958 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000959 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000960 }
Chris Lattner94af4142002-12-25 05:13:53 +0000961 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000962 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000963 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000964 case cLong: // Long values are left in EDX:EAX
965 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
966 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
967 break;
968 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000969 }
Chris Lattnera3243642002-12-04 23:45:28 +0000970 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000971}
Chris Lattner2df035b2002-11-02 19:27:56 +0000972
Chris Lattner3e130a22003-01-13 00:32:26 +0000973
974/// visitCallInst - Push args on stack and do a procedure call instruction.
975void ISel::visitCallInst(CallInst &CI) {
976 MachineInstr *TheCall;
977 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +0000978 // Is it an intrinsic function call?
979 if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
980 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
981 return;
982 }
983
Chris Lattner3e130a22003-01-13 00:32:26 +0000984 // Emit a CALL instruction with PC-relative displacement.
985 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
986 } else { // Emit an indirect call...
987 unsigned Reg = getReg(CI.getCalledValue());
988 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
989 }
990
991 std::vector<ValueRecord> Args;
992 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000993 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +0000994
995 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
996 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
997}
998
Chris Lattneraeb54b82003-08-28 21:23:43 +0000999
1000// visitInvokeInst - For now, we don't support the llvm.unwind intrinsic, so
1001// invoke's are just calls with an unconditional branch after them!
1002void ISel::visitInvokeInst(InvokeInst &II) {
1003 MachineInstr *TheCall;
1004 if (Function *F = II.getCalledFunction()) {
1005 // Emit a CALL instruction with PC-relative displacement.
1006 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1007 } else { // Emit an indirect call...
1008 unsigned Reg = getReg(II.getCalledValue());
1009 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1010 }
1011
1012 std::vector<ValueRecord> Args;
1013 for (unsigned i = 3, e = II.getNumOperands(); i != e; ++i)
1014 Args.push_back(ValueRecord(II.getOperand(i)));
1015
1016 unsigned DestReg = II.getType() != Type::VoidTy ? getReg(II) : 0;
1017 doCall(ValueRecord(DestReg, II.getType()), TheCall, Args);
1018
1019 // If the normal destination is not the next basic block, emit a 'jmp'.
1020 if (II.getNormalDest() != getBlockAfter(II.getParent()))
1021 BuildMI(BB, X86::JMP, 1).addPCDisp(II.getNormalDest());
1022}
1023
Chris Lattner36143fc2003-09-08 18:54:55 +00001024void ISel::visitUnwindInst(UnwindInst &UI) {
1025 // unwind is not supported yet! Just abort when the unwind inst is executed!
1026 BuildMI(BB, X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
1027}
Chris Lattneraeb54b82003-08-28 21:23:43 +00001028
Chris Lattnereca195e2003-05-08 19:44:13 +00001029void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
1030 unsigned TmpReg1, TmpReg2;
1031 switch (ID) {
1032 case LLVMIntrinsic::va_start:
1033 // Get the address of the first vararg value...
1034 TmpReg1 = makeAnotherReg(Type::UIntTy);
1035 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
1036 TmpReg2 = getReg(CI.getOperand(1));
1037 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
1038 return;
1039
1040 case LLVMIntrinsic::va_end: return; // Noop on X86
1041 case LLVMIntrinsic::va_copy:
1042 TmpReg1 = getReg(CI.getOperand(2)); // Get existing va_list
1043 TmpReg2 = getReg(CI.getOperand(1)); // Get va_list* to store into
1044 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
1045 return;
1046
Chris Lattneraeb54b82003-08-28 21:23:43 +00001047 case LLVMIntrinsic::unwind: // llvm.unwind is not supported yet!
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001048 case LLVMIntrinsic::longjmp:
Chris Lattner72af6b82003-08-18 16:06:09 +00001049 case LLVMIntrinsic::siglongjmp:
Chris Lattneraeb54b82003-08-28 21:23:43 +00001050 BuildMI(BB, X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
Brian Gaeked4615052003-07-18 20:23:43 +00001051 return;
1052
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001053 case LLVMIntrinsic::setjmp:
Chris Lattner72af6b82003-08-18 16:06:09 +00001054 case LLVMIntrinsic::sigsetjmp:
Chris Lattnereb093fb2003-06-30 19:35:54 +00001055 // Setjmp always returns zero...
1056 BuildMI(BB, X86::MOVir32, 1, getReg(CI)).addZImm(0);
Chris Lattnerc151e4f2003-06-29 16:42:32 +00001057 return;
Chris Lattnereca195e2003-05-08 19:44:13 +00001058 default: assert(0 && "Unknown intrinsic for X86!");
1059 }
1060}
1061
1062
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001063/// visitSimpleBinary - Implement simple binary operators for integral types...
1064/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1065/// Xor.
1066void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1067 unsigned DestReg = getReg(B);
1068 MachineBasicBlock::iterator MI = BB->end();
1069 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1070 OperatorClass, DestReg);
1071}
Chris Lattner3e130a22003-01-13 00:32:26 +00001072
Chris Lattner68aad932002-11-02 20:13:22 +00001073/// visitSimpleBinary - Implement simple binary operators for integral types...
1074/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
1075/// 4 for Xor.
1076///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001077/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1078/// and constant expression support.
1079void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
1080 MachineBasicBlock::iterator &IP,
1081 Value *Op0, Value *Op1,
1082 unsigned OperatorClass,unsigned TargetReg){
1083 unsigned Class = getClassB(Op0->getType());
Chris Lattner35333e12003-06-05 18:28:55 +00001084 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1085 static const unsigned OpcodeTab[][4] = {
1086 // Arithmetic operators
1087 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1088 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1089
1090 // Bitwise operators
1091 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1092 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1093 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001094 };
Chris Lattner35333e12003-06-05 18:28:55 +00001095
1096 bool isLong = false;
1097 if (Class == cLong) {
1098 isLong = true;
1099 Class = cInt; // Bottom 32 bits are handled just like ints
1100 }
1101
1102 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1103 assert(Opcode && "Floating point arguments to logical inst?");
1104 unsigned Op0r = getReg(Op0, BB, IP);
1105 unsigned Op1r = getReg(Op1, BB, IP);
1106 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
1107
1108 if (isLong) { // Handle the upper 32 bits of long values...
1109 static const unsigned TopTab[] = {
1110 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1111 };
1112 BMI(BB, IP, TopTab[OperatorClass], 2,
1113 TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
1114 }
1115 } else {
1116 // Special case: op Reg, <const>
1117 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1118
1119 static const unsigned OpcodeTab[][3] = {
1120 // Arithmetic operators
1121 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1122 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1123
1124 // Bitwise operators
1125 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1126 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1127 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1128 };
1129
1130 assert(Class < 3 && "General code handles 64-bit integer types!");
1131 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1132 unsigned Op0r = getReg(Op0, BB, IP);
Chris Lattnerc07736a2003-07-23 15:22:26 +00001133 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner35333e12003-06-05 18:28:55 +00001134
1135 // Mask off any upper bits of the constant, if there are any...
1136 Op1v &= (1ULL << (8 << Class)) - 1;
1137 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
Chris Lattner3e130a22003-01-13 00:32:26 +00001138 }
Chris Lattnere2954c82002-11-02 20:04:26 +00001139}
1140
Chris Lattner3e130a22003-01-13 00:32:26 +00001141/// doMultiply - Emit appropriate instructions to multiply together the
1142/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1143/// result should be given as DestTy.
1144///
Chris Lattner8a307e82002-12-16 19:32:50 +00001145void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001146 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001147 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001148 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001149 switch (Class) {
1150 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001151 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001152 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001153 case cInt:
1154 case cShort:
1155 BMI(BB, MBBI, Class == cInt ? X86::IMULr32 : X86::IMULr16, 2, DestReg)
1156 .addReg(op0Reg).addReg(op1Reg);
1157 return;
1158 case cByte:
1159 // Must use the MUL instruction, which forces use of AL...
1160 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1161 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1162 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1163 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001164 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001165 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001166 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001167}
1168
Chris Lattnerca9671d2002-11-02 20:28:58 +00001169/// visitMul - Multiplies are not simple binary operators because they must deal
1170/// with the EAX register explicitly.
1171///
1172void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001173 unsigned Op0Reg = getReg(I.getOperand(0));
1174 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +00001175 unsigned DestReg = getReg(I);
1176
1177 // Simple scalar multiply?
1178 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
1179 MachineBasicBlock::iterator MBBI = BB->end();
1180 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1181 } else {
1182 // Long value. We have to do things the hard way...
1183 // Multiply the two low parts... capturing carry into EDX
1184 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1185 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1186
1187 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1188 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1189 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1190
1191 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001192 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1193 BMI(BB, MBBI, X86::IMULr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001194
1195 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1196 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1197 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1198
1199 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001200 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1201 BMI(BB, MBBI, X86::IMULr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001202
1203 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1204 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1205 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001206}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001207
Chris Lattner06925362002-11-17 21:56:38 +00001208
Chris Lattnerf01729e2002-11-02 20:54:46 +00001209/// visitDivRem - Handle division and remainder instructions... these
1210/// instruction both require the same instructions to be generated, they just
1211/// select the result from a different register. Note that both of these
1212/// instructions work differently for signed and unsigned operands.
1213///
1214void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001215 unsigned Class = getClass(I.getType());
1216 unsigned Op0Reg, Op1Reg, ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001217
1218 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001219 case cFP: // Floating point divide
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001220 if (I.getOpcode() == Instruction::Div) {
1221 Op0Reg = getReg(I.getOperand(0));
1222 Op1Reg = getReg(I.getOperand(1));
Chris Lattner94af4142002-12-25 05:13:53 +00001223 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001224 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001225 MachineInstr *TheCall =
1226 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1227 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001228 Args.push_back(ValueRecord(I.getOperand(0)));
1229 Args.push_back(ValueRecord(I.getOperand(1)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001230 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1231 }
Chris Lattner94af4142002-12-25 05:13:53 +00001232 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001233 case cLong: {
1234 static const char *FnName[] =
1235 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1236
1237 unsigned NameIdx = I.getType()->isUnsigned()*2;
1238 NameIdx += I.getOpcode() == Instruction::Div;
1239 MachineInstr *TheCall =
1240 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1241
1242 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001243 Args.push_back(ValueRecord(I.getOperand(0)));
1244 Args.push_back(ValueRecord(I.getOperand(1)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001245 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1246 return;
1247 }
1248 case cByte: case cShort: case cInt:
1249 break; // Small integerals, handled below...
1250 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001251 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001252
1253 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1254 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001255 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001256 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1257 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1258
1259 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001260 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1261 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001262 };
1263
1264 bool isSigned = I.getType()->isSigned();
1265 unsigned Reg = Regs[Class];
1266 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001267
1268 // Put the first operand into one of the A registers...
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001269 Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001270 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1271
1272 if (isSigned) {
1273 // Emit a sign extension instruction...
Chris Lattner7b52c032003-06-22 03:31:18 +00001274 unsigned ShiftResult = makeAnotherReg(I.getType());
1275 BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1276 BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001277 } else {
1278 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1279 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1280 }
1281
Chris Lattner06925362002-11-17 21:56:38 +00001282 // Emit the appropriate divide or remainder instruction...
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001283 Op1Reg = getReg(I.getOperand(1));
Chris Lattner92845e32002-11-21 18:54:29 +00001284 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001285
Chris Lattnerf01729e2002-11-02 20:54:46 +00001286 // Figure out which register we want to pick the result out of...
1287 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1288
Chris Lattnerf01729e2002-11-02 20:54:46 +00001289 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001290 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001291}
Chris Lattnere2954c82002-11-02 20:04:26 +00001292
Chris Lattner06925362002-11-17 21:56:38 +00001293
Brian Gaekea1719c92002-10-31 23:03:59 +00001294/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1295/// for constant immediate shift values, and for constant immediate
1296/// shift values equal to 1. Even the general case is sort of special,
1297/// because the shift amount has to be in CL, not just any old register.
1298///
Chris Lattner3e130a22003-01-13 00:32:26 +00001299void ISel::visitShiftInst(ShiftInst &I) {
1300 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001301 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001302 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001303 bool isSigned = I.getType()->isSigned();
1304 unsigned Class = getClass(I.getType());
1305
1306 static const unsigned ConstantOperand[][4] = {
1307 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1308 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1309 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1310 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1311 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001312
Chris Lattner3e130a22003-01-13 00:32:26 +00001313 static const unsigned NonConstantOperand[][4] = {
1314 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1315 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1316 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1317 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1318 };
Chris Lattner796df732002-11-02 00:44:25 +00001319
Chris Lattner3e130a22003-01-13 00:32:26 +00001320 // Longs, as usual, are handled specially...
1321 if (Class == cLong) {
1322 // If we have a constant shift, we can generate much more efficient code
1323 // than otherwise...
1324 //
1325 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1326 unsigned Amount = CUI->getValue();
1327 if (Amount < 32) {
1328 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1329 if (isLeftShift) {
1330 BuildMI(BB, Opc[3], 3,
1331 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1332 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1333 } else {
1334 BuildMI(BB, Opc[3], 3,
1335 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1336 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1337 }
1338 } else { // Shifting more than 32 bits
1339 Amount -= 32;
1340 if (isLeftShift) {
1341 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1342 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1343 } else {
1344 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1345 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1346 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1347 }
1348 }
1349 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001350 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1351
1352 if (!isLeftShift && isSigned) {
1353 // If this is a SHR of a Long, then we need to do funny sign extension
1354 // stuff. TmpReg gets the value to use as the high-part if we are
1355 // shifting more than 32 bits.
1356 BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
1357 } else {
1358 // Other shifts use a fixed zero value if the shift is more than 32
1359 // bits.
1360 BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
1361 }
1362
1363 // Initialize CL with the shift amount...
1364 unsigned ShiftAmount = getReg(I.getOperand(1));
1365 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
1366
1367 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1368 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1369 if (isLeftShift) {
1370 // TmpReg2 = shld inHi, inLo
1371 BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
1372 // TmpReg3 = shl inLo, CL
1373 BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
1374
1375 // Set the flags to indicate whether the shift was by more than 32 bits.
1376 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1377
1378 // DestHi = (>32) ? TmpReg3 : TmpReg2;
1379 BuildMI(BB, X86::CMOVNErr32, 2,
1380 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1381 // DestLo = (>32) ? TmpReg : TmpReg3;
1382 BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
1383 } else {
1384 // TmpReg2 = shrd inLo, inHi
1385 BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
1386 // TmpReg3 = s[ah]r inHi, CL
1387 BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
1388 .addReg(SrcReg+1);
1389
1390 // Set the flags to indicate whether the shift was by more than 32 bits.
1391 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1392
1393 // DestLo = (>32) ? TmpReg3 : TmpReg2;
1394 BuildMI(BB, X86::CMOVNErr32, 2,
1395 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1396
1397 // DestHi = (>32) ? TmpReg : TmpReg3;
1398 BuildMI(BB, X86::CMOVNErr32, 2,
1399 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1400 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001401 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001402 return;
1403 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001404
Chris Lattner3e130a22003-01-13 00:32:26 +00001405 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1406 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1407 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001408
Chris Lattner3e130a22003-01-13 00:32:26 +00001409 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1410 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1411 } else { // The shift amount is non-constant.
1412 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001413
Chris Lattner3e130a22003-01-13 00:32:26 +00001414 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1415 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1416 }
1417}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001418
Chris Lattner3e130a22003-01-13 00:32:26 +00001419
1420/// doFPLoad - This method is used to load an FP value from memory using the
1421/// current endianness. NOTE: This method returns a partially constructed load
1422/// instruction which needs to have the memory source filled in still.
1423///
1424MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1425 MachineBasicBlock::iterator &MBBI,
1426 const Type *Ty, unsigned DestReg) {
1427 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1428 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1429
1430 if (TM.getTargetData().isLittleEndian()) // fast path...
1431 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1432
1433 // If we are big-endian, start by creating an LEA instruction to represent the
1434 // address of the memory location to load from...
1435 //
1436 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1437 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1438
1439 // Allocate a temporary stack slot to transform the value into...
1440 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1441
1442 // Perform the bswaps 32 bits at a time...
1443 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1444 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1445 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1446 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1447 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1448 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1449 FrameIdx, Offset).addReg(TmpReg2);
1450
1451 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1452 TmpReg1 = makeAnotherReg(Type::UIntTy);
1453 TmpReg2 = makeAnotherReg(Type::UIntTy);
1454
1455 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1456 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1457 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1458 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1459 }
1460
1461 // Now we can reload the final byteswapped result into the final destination.
1462 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1463 return Result;
1464}
1465
1466/// EmitByteSwap - Byteswap SrcReg into DestReg.
1467///
1468void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1469 // Emit the byte swap instruction...
1470 switch (Class) {
1471 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001472 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001473 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1474 break;
1475 case cInt:
1476 // Use the 32 bit bswap instruction to do a 32 bit swap...
1477 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1478 break;
1479
1480 case cShort:
1481 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001482 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001483 // into AX to do the xchg.
1484 //
1485 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1486 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1487 .addReg(X86::AH, MOTy::UseAndDef);
1488 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1489 break;
1490 default: assert(0 && "Cannot byteswap this class!");
1491 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001492}
1493
Chris Lattner06925362002-11-17 21:56:38 +00001494
Chris Lattner6fc3c522002-11-17 21:11:55 +00001495/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001496/// instruction. The load and store instructions are the only place where we
1497/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001498///
1499void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001500 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1501 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001502 unsigned SrcAddrReg = getReg(I.getOperand(0));
1503 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001504
Brian Gaekebfedb912003-07-17 21:30:06 +00001505 unsigned Class = getClassB(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001506 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001507 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001508 MachineBasicBlock::iterator MBBI = BB->end();
1509 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001510 return;
1511 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001512 case cLong: case cInt: case cShort: case cByte:
1513 break; // Integers of various sizes handled below
1514 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001515 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001516
Chris Lattnere8f0d922002-12-24 00:03:11 +00001517 // We need to adjust the input pointer if we are emulating a big-endian
1518 // long-pointer target. On these systems, the pointer that we are interested
1519 // in is in the upper part of the eight byte memory image of the pointer. It
1520 // also happens to be byte-swapped, but this will be handled later.
1521 //
1522 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1523 unsigned R = makeAnotherReg(Type::UIntTy);
1524 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1525 SrcAddrReg = R;
1526 }
Chris Lattner94af4142002-12-25 05:13:53 +00001527
Chris Lattnere8f0d922002-12-24 00:03:11 +00001528 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001529 if (!isLittleEndian) // If big endian we need an intermediate stage
1530 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001531
Chris Lattner3e130a22003-01-13 00:32:26 +00001532 static const unsigned Opcode[] = {
1533 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1534 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001535 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1536
Chris Lattner3e130a22003-01-13 00:32:26 +00001537 // Handle long values now...
1538 if (Class == cLong) {
1539 if (isLittleEndian) {
1540 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1541 } else {
1542 EmitByteSwap(IReg+1, DestReg, cInt);
1543 unsigned TempReg = makeAnotherReg(Type::IntTy);
1544 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1545 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001546 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001547 return;
1548 }
1549
1550 if (!isLittleEndian)
1551 EmitByteSwap(IReg, DestReg, Class);
1552}
1553
1554
1555/// doFPStore - This method is used to store an FP value to memory using the
1556/// current endianness.
1557///
1558void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1559 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1560 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1561
1562 if (TM.getTargetData().isLittleEndian()) { // fast path...
1563 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1564 return;
1565 }
1566
1567 // Allocate a temporary stack slot to transform the value into...
1568 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1569 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1570 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1571
1572 // Store the value into a temporary stack slot...
1573 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1574
1575 // Perform the bswaps 32 bits at a time...
1576 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1577 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1578 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1579 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1580 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1581 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1582 DestAddrReg, Offset).addReg(TmpReg2);
1583
1584 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1585 TmpReg1 = makeAnotherReg(Type::UIntTy);
1586 TmpReg2 = makeAnotherReg(Type::UIntTy);
1587
1588 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1589 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1590 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1591 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001592 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001593}
1594
Chris Lattner06925362002-11-17 21:56:38 +00001595
Chris Lattner6fc3c522002-11-17 21:11:55 +00001596/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1597/// instruction.
1598///
1599void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001600 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1601 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001602 unsigned ValReg = getReg(I.getOperand(0));
1603 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001604
Brian Gaekebfedb912003-07-17 21:30:06 +00001605 unsigned Class = getClassB(I.getOperand(0)->getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001606 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001607 case cLong:
1608 if (isLittleEndian) {
1609 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1610 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1611 AddressReg, 4).addReg(ValReg+1);
1612 } else {
1613 unsigned T1 = makeAnotherReg(Type::IntTy);
1614 unsigned T2 = makeAnotherReg(Type::IntTy);
1615 EmitByteSwap(T1, ValReg , cInt);
1616 EmitByteSwap(T2, ValReg+1, cInt);
1617 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1618 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1619 }
Chris Lattner94af4142002-12-25 05:13:53 +00001620 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001621 case cFP:
1622 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1623 return;
1624 case cInt: case cShort: case cByte:
1625 break; // Integers of various sizes handled below
1626 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001627 }
1628
1629 if (!isLittleEndian && hasLongPointers &&
1630 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001631 unsigned R = makeAnotherReg(Type::UIntTy);
1632 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1633 AddressReg = R;
1634 }
1635
Chris Lattner94af4142002-12-25 05:13:53 +00001636 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001637 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1638 EmitByteSwap(R, ValReg, Class);
1639 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001640 }
1641
Chris Lattner94af4142002-12-25 05:13:53 +00001642 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001643 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1644}
1645
1646
Brian Gaekec11232a2002-11-26 10:43:30 +00001647/// visitCastInst - Here we have various kinds of copying with or without
1648/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001649void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001650 Value *Op = CI.getOperand(0);
1651 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1652 // of the case are GEP instructions, then the cast does not need to be
1653 // generated explicitly, it will be folded into the GEP.
1654 if (CI.getType() == Type::LongTy &&
1655 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1656 bool AllUsesAreGEPs = true;
1657 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1658 if (!isa<GetElementPtrInst>(*I)) {
1659 AllUsesAreGEPs = false;
1660 break;
1661 }
1662
1663 // No need to codegen this cast if all users are getelementptr instrs...
1664 if (AllUsesAreGEPs) return;
1665 }
1666
Chris Lattner548f61d2003-04-23 17:22:12 +00001667 unsigned DestReg = getReg(CI);
1668 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001669 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001670}
1671
1672/// emitCastOperation - Common code shared between visitCastInst and
1673/// constant expression cast support.
1674void ISel::emitCastOperation(MachineBasicBlock *BB,
1675 MachineBasicBlock::iterator &IP,
1676 Value *Src, const Type *DestTy,
1677 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001678 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001679 const Type *SrcTy = Src->getType();
1680 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001681 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001682
Chris Lattner3e130a22003-01-13 00:32:26 +00001683 // Implement casts to bool by using compare on the operand followed by set if
1684 // not zero on the result.
1685 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001686 switch (SrcClass) {
1687 case cByte:
1688 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1689 break;
1690 case cShort:
1691 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1692 break;
1693 case cInt:
1694 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1695 break;
1696 case cLong: {
1697 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1698 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1699 break;
1700 }
1701 case cFP:
1702 assert(0 && "FIXME: implement cast FP to bool");
1703 abort();
1704 }
1705
1706 // If the zero flag is not set, then the value is true, set the byte to
1707 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001708 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001709 return;
1710 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001711
1712 static const unsigned RegRegMove[] = {
1713 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1714 };
1715
1716 // Implement casts between values of the same type class (as determined by
1717 // getClass) by using a register-to-register move.
1718 if (SrcClass == DestClass) {
1719 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001720 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001721 } else if (SrcClass == cFP) {
1722 if (SrcTy == Type::FloatTy) { // double -> float
1723 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001724 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001725 } else { // float -> double
1726 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1727 "Unknown cFP member!");
1728 // Truncate from double to float by storing to memory as short, then
1729 // reading it back.
1730 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1731 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001732 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1733 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001734 }
1735 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001736 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1737 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001738 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001739 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001740 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001741 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001742 return;
1743 }
1744
1745 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1746 // or zero extension, depending on whether the source type was signed.
1747 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1748 SrcClass < DestClass) {
1749 bool isLong = DestClass == cLong;
1750 if (isLong) DestClass = cInt;
1751
1752 static const unsigned Opc[][4] = {
1753 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1754 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1755 };
1756
1757 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001758 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1759 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001760
1761 if (isLong) { // Handle upper 32 bits as appropriate...
1762 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001763 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001764 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001765 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001766 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001767 return;
1768 }
1769
1770 // Special case long -> int ...
1771 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001772 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001773 return;
1774 }
1775
1776 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1777 // move out of AX or AL.
1778 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1779 && SrcClass > DestClass) {
1780 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001781 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1782 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001783 return;
1784 }
1785
1786 // Handle casts from integer to floating point now...
1787 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001788 // Promote the integer to a type supported by FLD. We do this because there
1789 // are no unsigned FLD instructions, so we must promote an unsigned value to
1790 // a larger signed value, then use FLD on the larger value.
1791 //
1792 const Type *PromoteType = 0;
1793 unsigned PromoteOpcode;
1794 switch (SrcTy->getPrimitiveID()) {
1795 case Type::BoolTyID:
1796 case Type::SByteTyID:
1797 // We don't have the facilities for directly loading byte sized data from
1798 // memory (even signed). Promote it to 16 bits.
1799 PromoteType = Type::ShortTy;
1800 PromoteOpcode = X86::MOVSXr16r8;
1801 break;
1802 case Type::UByteTyID:
1803 PromoteType = Type::ShortTy;
1804 PromoteOpcode = X86::MOVZXr16r8;
1805 break;
1806 case Type::UShortTyID:
1807 PromoteType = Type::IntTy;
1808 PromoteOpcode = X86::MOVZXr32r16;
1809 break;
1810 case Type::UIntTyID: {
1811 // Make a 64 bit temporary... and zero out the top of it...
1812 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1813 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1814 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1815 SrcTy = Type::LongTy;
1816 SrcClass = cLong;
1817 SrcReg = TmpReg;
1818 break;
1819 }
1820 case Type::ULongTyID:
1821 assert("FIXME: not implemented: cast ulong X to fp type!");
1822 default: // No promotion needed...
1823 break;
1824 }
1825
1826 if (PromoteType) {
1827 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001828 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1829 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001830 SrcTy = PromoteType;
1831 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001832 SrcReg = TmpReg;
1833 }
1834
1835 // Spill the integer to memory and reload it from there...
1836 int FrameIdx =
1837 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1838
1839 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001840 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1841 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001842 FrameIdx, 4).addReg(SrcReg+1);
1843 } else {
1844 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001845 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001846 }
1847
1848 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001849 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001850 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001851 return;
1852 }
1853
1854 // Handle casts from floating point to integer now...
1855 if (SrcClass == cFP) {
1856 // Change the floating point control register to use "round towards zero"
1857 // mode when truncating to an integer value.
1858 //
1859 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001860 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001861
1862 // Load the old value of the high byte of the control word...
1863 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001864 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001865
1866 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001867 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001868
1869 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001870 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001871
1872 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001873 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001874 CWFrameIdx, 1).addReg(HighPartOfCW);
1875
1876 // We don't have the facilities for directly storing byte sized data to
1877 // memory. Promote it to 16 bits. We also must promote unsigned values to
1878 // larger classes because we only have signed FP stores.
1879 unsigned StoreClass = DestClass;
1880 const Type *StoreTy = DestTy;
1881 if (StoreClass == cByte || DestTy->isUnsigned())
1882 switch (StoreClass) {
1883 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1884 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1885 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001886 // The following treatment of cLong may not be perfectly right,
1887 // but it survives chains of casts of the form
1888 // double->ulong->double.
1889 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001890 default: assert(0 && "Unknown store class!");
1891 }
1892
1893 // Spill the integer to memory and reload it from there...
1894 int FrameIdx =
1895 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1896
1897 static const unsigned Op1[] =
1898 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001899 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001900
1901 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001902 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1903 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001904 } else {
1905 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001906 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001907 }
1908
1909 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001910 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001911 return;
1912 }
1913
Brian Gaeked474e9c2002-12-06 10:49:33 +00001914 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001915 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001916 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001917}
Brian Gaekea1719c92002-10-31 23:03:59 +00001918
Chris Lattnereca195e2003-05-08 19:44:13 +00001919/// visitVarArgInst - Implement the va_arg instruction...
1920///
1921void ISel::visitVarArgInst(VarArgInst &I) {
1922 unsigned SrcReg = getReg(I.getOperand(0));
1923 unsigned DestReg = getReg(I);
1924
1925 // Load the va_list into a register...
1926 unsigned VAList = makeAnotherReg(Type::UIntTy);
1927 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
1928
1929 unsigned Size;
1930 switch (I.getType()->getPrimitiveID()) {
1931 default:
1932 std::cerr << I;
1933 assert(0 && "Error: bad type for va_arg instruction!");
1934 return;
1935 case Type::PointerTyID:
1936 case Type::UIntTyID:
1937 case Type::IntTyID:
1938 Size = 4;
1939 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1940 break;
1941 case Type::ULongTyID:
1942 case Type::LongTyID:
1943 Size = 8;
1944 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1945 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1946 break;
1947 case Type::DoubleTyID:
1948 Size = 8;
1949 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1950 break;
1951 }
1952
1953 // Increment the VAList pointer...
1954 unsigned NextVAList = makeAnotherReg(Type::UIntTy);
1955 BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
1956
1957 // Update the VAList in memory...
1958 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
1959}
1960
1961
Chris Lattner8a307e82002-12-16 19:32:50 +00001962// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1963// returns zero when the input is not exactly a power of two.
1964static unsigned ExactLog2(unsigned Val) {
1965 if (Val == 0) return 0;
1966 unsigned Count = 0;
1967 while (Val != 1) {
1968 if (Val & 1) return 0;
1969 Val >>= 1;
1970 ++Count;
1971 }
1972 return Count+1;
1973}
1974
Chris Lattner3e130a22003-01-13 00:32:26 +00001975void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1976 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001977 MachineBasicBlock::iterator MI = BB->end();
1978 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001979 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001980}
1981
Brian Gaeke71794c02002-12-13 11:22:48 +00001982void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001983 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001984 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001985 User::op_iterator IdxEnd, unsigned TargetReg) {
1986 const TargetData &TD = TM.getTargetData();
1987 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001988 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001989
Brian Gaeke20244b72002-12-12 15:33:40 +00001990 // GEPs have zero or more indices; we must perform a struct access
1991 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001992 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1993 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001994 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001995 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001996 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001997 // It's a struct access. idx is the index into the structure,
1998 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001999 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2000 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00002001 && "Funny-looking structure index in GEP");
2002 // Use the TargetData structure to pick out what the layout of
2003 // the structure is in memory. Since the structure index must
2004 // be constant, we can get its value and use it to find the
2005 // right byte offset from the StructLayout class's list of
2006 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002007 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002008 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2009 if (FieldOff) {
2010 NextReg = makeAnotherReg(Type::UIntTy);
2011 // Emit an ADD to add FieldOff to the basePtr.
2012 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
2013 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002014 // The next type is the member of the structure selected by the
2015 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00002016 Ty = StTy->getElementTypes()[idxValue];
2017 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002018 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002019
Brian Gaeke20244b72002-12-12 15:33:40 +00002020 // idx is the index into the array. Unlike with structure
2021 // indices, we may not know its actual value at code-generation
2022 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002023 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2024
Chris Lattnerf5854472003-06-21 16:01:24 +00002025 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2026 // operand on X86. Handle this case directly now...
2027 if (CastInst *CI = dyn_cast<CastInst>(idx))
2028 if (CI->getOperand(0)->getType() == Type::IntTy ||
2029 CI->getOperand(0)->getType() == Type::UIntTy)
2030 idx = CI->getOperand(0);
2031
Chris Lattner3e130a22003-01-13 00:32:26 +00002032 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002033 // must find the size of the pointed-to type (Not coincidentally, the next
2034 // type is the type of the elements in the array).
2035 Ty = SqTy->getElementType();
2036 unsigned elementSize = TD.getTypeSize(Ty);
2037
2038 // If idxReg is a constant, we don't need to perform the multiply!
2039 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002040 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002041 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002042 NextReg = makeAnotherReg(Type::UIntTy);
2043 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002044 }
2045 } else if (elementSize == 1) {
2046 // If the element size is 1, we don't have to multiply, just add
2047 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002048 NextReg = makeAnotherReg(Type::UIntTy);
2049 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002050 } else {
2051 unsigned idxReg = getReg(idx, MBB, IP);
2052 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
2053 if (unsigned Shift = ExactLog2(elementSize)) {
2054 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00002055 BMI(MBB, IP, X86::SHLir32, 2,
2056 OffsetReg).addReg(idxReg).addZImm(Shift-1);
2057 } else {
2058 // Most general case, emit a multiply...
2059 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
2060 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
2061
2062 // Emit a MUL to multiply the register holding the index by
2063 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00002064 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002065 }
2066 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00002067 NextReg = makeAnotherReg(Type::UIntTy);
2068 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002069 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002070 }
2071 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002072 // one, so we don't need to worry about BaseReg itself, anymore.
2073 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002074 }
2075 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002076 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002077 // put the answer. A 32-bit move should do it, because we are in
2078 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002079 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002080}
2081
2082
Chris Lattner065faeb2002-12-28 20:24:02 +00002083/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2084/// frame manager, otherwise do it the hard way.
2085///
2086void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002087 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002088 const Type *Ty = I.getAllocatedType();
2089 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2090
2091 // If this is a fixed size alloca in the entry block for the function,
2092 // statically stack allocate the space.
2093 //
2094 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2095 if (I.getParent() == I.getParent()->getParent()->begin()) {
2096 TySize *= CUI->getValue(); // Get total allocated size...
2097 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2098
2099 // Create a new stack object using the frame manager...
2100 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2101 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2102 return;
2103 }
2104 }
2105
2106 // Create a register to hold the temporary result of multiplying the type size
2107 // constant by the variable amount.
2108 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2109 unsigned SrcReg1 = getReg(I.getArraySize());
2110 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
2111 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
2112
2113 // TotalSizeReg = mul <numelements>, <TypeSize>
2114 MachineBasicBlock::iterator MBBI = BB->end();
2115 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
2116
2117 // AddedSize = add <TotalSizeReg>, 15
2118 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2119 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2120
2121 // AlignedSize = and <AddedSize>, ~15
2122 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2123 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2124
Brian Gaekee48ec012002-12-13 06:46:31 +00002125 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002126 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002127
Brian Gaekee48ec012002-12-13 06:46:31 +00002128 // Put a pointer to the space into the result register, by copying
2129 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002130 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2131
Misha Brukman48196b32003-05-03 02:18:17 +00002132 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002133 // object.
2134 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002135}
Chris Lattner3e130a22003-01-13 00:32:26 +00002136
2137/// visitMallocInst - Malloc instructions are code generated into direct calls
2138/// to the library malloc.
2139///
2140void ISel::visitMallocInst(MallocInst &I) {
2141 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2142 unsigned Arg;
2143
2144 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2145 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2146 } else {
2147 Arg = makeAnotherReg(Type::UIntTy);
2148 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
2149 unsigned Op1Reg = getReg(I.getOperand(0));
2150 MachineBasicBlock::iterator MBBI = BB->end();
2151 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002152 }
2153
2154 std::vector<ValueRecord> Args;
2155 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2156 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2157 1).addExternalSymbol("malloc", true);
2158 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2159}
2160
2161
2162/// visitFreeInst - Free instructions are code gen'd to call the free libc
2163/// function.
2164///
2165void ISel::visitFreeInst(FreeInst &I) {
2166 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002167 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002168 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2169 1).addExternalSymbol("free", true);
2170 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2171}
2172
Brian Gaeke20244b72002-12-12 15:33:40 +00002173
Chris Lattnerd281de22003-07-26 23:49:58 +00002174/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002175/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002176/// generated code sucks but the implementation is nice and simple.
2177///
Brian Gaeke19df3872003-08-13 18:18:15 +00002178FunctionPass *createX86SimpleInstructionSelector(TargetMachine &TM) {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002179 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002180}