blob: e9cfc56714e330df561c9d9b680d290aca521749 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Owen Anderson2ab36d32010-10-12 19:48:12 +0000106INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true)
108INITIALIZE_PASS_DEPENDENCY(LoopInfo)
109INITIALIZE_PASS_DEPENDENCY(DominatorTree)
110INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000111 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000112char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000113
114//===----------------------------------------------------------------------===//
115// SCEV class definitions
116//===----------------------------------------------------------------------===//
117
118//===----------------------------------------------------------------------===//
119// Implementation of the SCEV class.
120//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000121
Chris Lattner53e677a2004-04-02 20:23:17 +0000122SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000123
Chris Lattner53e677a2004-04-02 20:23:17 +0000124void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000125 print(dbgs());
126 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000127}
128
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000129bool SCEV::isZero() const {
130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131 return SC->getValue()->isZero();
132 return false;
133}
134
Dan Gohman70a1fe72009-05-18 15:22:39 +0000135bool SCEV::isOne() const {
136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137 return SC->getValue()->isOne();
138 return false;
139}
Chris Lattner53e677a2004-04-02 20:23:17 +0000140
Dan Gohman4d289bf2009-06-24 00:30:26 +0000141bool SCEV::isAllOnesValue() const {
142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
143 return SC->getValue()->isAllOnesValue();
144 return false;
145}
146
Owen Anderson753ad612009-06-22 21:57:23 +0000147SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000148 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000149
Chris Lattner53e677a2004-04-02 20:23:17 +0000150bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000151 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000152 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000153}
154
155const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000156 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000157 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000158}
159
160bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000161 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000162 return false;
163}
164
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000165bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
166 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
167 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000168}
169
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000170void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000171 OS << "***COULDNOTCOMPUTE***";
172}
173
174bool SCEVCouldNotCompute::classof(const SCEV *S) {
175 return S->getSCEVType() == scCouldNotCompute;
176}
177
Dan Gohman0bba49c2009-07-07 17:06:11 +0000178const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000179 FoldingSetNodeID ID;
180 ID.AddInteger(scConstant);
181 ID.AddPointer(V);
182 void *IP = 0;
183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000184 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000185 UniqueSCEVs.InsertNode(S, IP);
186 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000187}
Chris Lattner53e677a2004-04-02 20:23:17 +0000188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000190 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000191}
192
Dan Gohman0bba49c2009-07-07 17:06:11 +0000193const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000194ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000195 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
196 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000197}
198
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000199const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000201void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000202 WriteAsOperand(OS, V, false);
203}
Chris Lattner53e677a2004-04-02 20:23:17 +0000204
Dan Gohman3bf63762010-06-18 19:54:20 +0000205SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000206 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000207 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000208
Dan Gohman84923602009-04-21 01:25:57 +0000209bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->dominates(BB, DT);
211}
212
Dan Gohman6e70e312009-09-27 15:26:03 +0000213bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
214 return Op->properlyDominates(BB, DT);
215}
216
Dan Gohman3bf63762010-06-18 19:54:20 +0000217SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000218 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000219 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000220 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
221 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000222 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
Chris Lattner53e677a2004-04-02 20:23:17 +0000224
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000225void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000226 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000227}
228
Dan Gohman3bf63762010-06-18 19:54:20 +0000229SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000230 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000231 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000232 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
233 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000234 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000237void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000238 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000239}
240
Dan Gohman3bf63762010-06-18 19:54:20 +0000241SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000242 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000243 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000244 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
245 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000246 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000250 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000251}
252
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000253void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000254 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000255 OS << "(";
256 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
257 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000258 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000259 OS << OpStr;
260 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000261 OS << ")";
262}
263
Dan Gohmanecb403a2009-05-07 14:00:19 +0000264bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000265 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
266 if (!(*I)->dominates(BB, DT))
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000267 return false;
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000268 return true;
269}
270
Dan Gohman6e70e312009-09-27 15:26:03 +0000271bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000272 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
273 if (!(*I)->properlyDominates(BB, DT))
Dan Gohman6e70e312009-09-27 15:26:03 +0000274 return false;
Dan Gohman6e70e312009-09-27 15:26:03 +0000275 return true;
276}
277
Dan Gohman2f199f92010-08-16 16:21:27 +0000278bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
279 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
280 if (!(*I)->isLoopInvariant(L))
281 return false;
282 return true;
283}
284
285// hasComputableLoopEvolution - N-ary expressions have computable loop
286// evolutions iff they have at least one operand that varies with the loop,
287// but that all varying operands are computable.
288bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
289 bool HasVarying = false;
290 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
291 const SCEV *S = *I;
292 if (!S->isLoopInvariant(L)) {
293 if (S->hasComputableLoopEvolution(L))
294 HasVarying = true;
295 else
296 return false;
297 }
298 }
299 return HasVarying;
300}
301
302bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
303 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
304 const SCEV *S = *I;
305 if (O == S || S->hasOperand(O))
306 return true;
307 }
308 return false;
309}
310
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000311bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
312 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
313}
314
Dan Gohman6e70e312009-09-27 15:26:03 +0000315bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
316 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
317}
318
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000319void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000320 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000321}
322
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000323const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000324 // In most cases the types of LHS and RHS will be the same, but in some
325 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
326 // depend on the type for correctness, but handling types carefully can
327 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
328 // a pointer type than the RHS, so use the RHS' type here.
329 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000330}
331
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000333 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000334 if (!QueryLoop)
335 return false;
336
337 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000338 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000339 return false;
340
Dan Gohman71c41442010-08-13 20:11:39 +0000341 // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
342 if (L->contains(QueryLoop))
343 return true;
344
Dan Gohmane890eea2009-06-26 22:17:21 +0000345 // This recurrence is variant w.r.t. QueryLoop if any of its operands
346 // are variant.
Dan Gohman7e1fee72010-08-29 14:52:02 +0000347 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
348 if (!(*I)->isLoopInvariant(QueryLoop))
Dan Gohmane890eea2009-06-26 22:17:21 +0000349 return false;
350
351 // Otherwise it's loop-invariant.
352 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000353}
354
Dan Gohman39125d82010-02-13 00:19:39 +0000355bool
356SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
357 return DT->dominates(L->getHeader(), BB) &&
358 SCEVNAryExpr::dominates(BB, DT);
359}
360
361bool
362SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
363 // This uses a "dominates" query instead of "properly dominates" query because
364 // the instruction which produces the addrec's value is a PHI, and a PHI
365 // effectively properly dominates its entire containing block.
366 return DT->dominates(L->getHeader(), BB) &&
367 SCEVNAryExpr::properlyDominates(BB, DT);
368}
369
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000370void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000371 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000372 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000373 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000374 OS << "}<";
375 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
376 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000377}
Chris Lattner53e677a2004-04-02 20:23:17 +0000378
Dan Gohmanab37f502010-08-02 23:49:30 +0000379void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000380 // Clear this SCEVUnknown from various maps.
Dan Gohmanab37f502010-08-02 23:49:30 +0000381 SE->ValuesAtScopes.erase(this);
Dan Gohman6678e7b2010-11-17 02:44:44 +0000382 SE->UnsignedRanges.erase(this);
383 SE->SignedRanges.erase(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000384
385 // Remove this SCEVUnknown from the uniquing map.
386 SE->UniqueSCEVs.RemoveNode(this);
387
388 // Release the value.
389 setValPtr(0);
390}
391
392void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000393 // Clear this SCEVUnknown from various maps.
Dan Gohmanab37f502010-08-02 23:49:30 +0000394 SE->ValuesAtScopes.erase(this);
Dan Gohman6678e7b2010-11-17 02:44:44 +0000395 SE->UnsignedRanges.erase(this);
396 SE->SignedRanges.erase(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000397
398 // Remove this SCEVUnknown from the uniquing map.
399 SE->UniqueSCEVs.RemoveNode(this);
400
401 // Update this SCEVUnknown to point to the new value. This is needed
402 // because there may still be outstanding SCEVs which still point to
403 // this SCEVUnknown.
404 setValPtr(New);
405}
406
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000407bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
408 // All non-instruction values are loop invariant. All instructions are loop
409 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000410 // Instructions are never considered invariant in the function body
411 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000412 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000413 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000414 return true;
415}
Chris Lattner53e677a2004-04-02 20:23:17 +0000416
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000417bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
418 if (Instruction *I = dyn_cast<Instruction>(getValue()))
419 return DT->dominates(I->getParent(), BB);
420 return true;
421}
422
Dan Gohman6e70e312009-09-27 15:26:03 +0000423bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
424 if (Instruction *I = dyn_cast<Instruction>(getValue()))
425 return DT->properlyDominates(I->getParent(), BB);
426 return true;
427}
428
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000429const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000430 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000431}
Chris Lattner53e677a2004-04-02 20:23:17 +0000432
Dan Gohman0f5efe52010-01-28 02:15:55 +0000433bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000434 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000435 if (VCE->getOpcode() == Instruction::PtrToInt)
436 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000437 if (CE->getOpcode() == Instruction::GetElementPtr &&
438 CE->getOperand(0)->isNullValue() &&
439 CE->getNumOperands() == 2)
440 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
441 if (CI->isOne()) {
442 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
443 ->getElementType();
444 return true;
445 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000446
447 return false;
448}
449
450bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000451 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000452 if (VCE->getOpcode() == Instruction::PtrToInt)
453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000454 if (CE->getOpcode() == Instruction::GetElementPtr &&
455 CE->getOperand(0)->isNullValue()) {
456 const Type *Ty =
457 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
458 if (const StructType *STy = dyn_cast<StructType>(Ty))
459 if (!STy->isPacked() &&
460 CE->getNumOperands() == 3 &&
461 CE->getOperand(1)->isNullValue()) {
462 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
463 if (CI->isOne() &&
464 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000465 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000466 AllocTy = STy->getElementType(1);
467 return true;
468 }
469 }
470 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000471
472 return false;
473}
474
Dan Gohman4f8eea82010-02-01 18:27:38 +0000475bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000476 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000477 if (VCE->getOpcode() == Instruction::PtrToInt)
478 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
479 if (CE->getOpcode() == Instruction::GetElementPtr &&
480 CE->getNumOperands() == 3 &&
481 CE->getOperand(0)->isNullValue() &&
482 CE->getOperand(1)->isNullValue()) {
483 const Type *Ty =
484 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
485 // Ignore vector types here so that ScalarEvolutionExpander doesn't
486 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000487 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000488 CTy = Ty;
489 FieldNo = CE->getOperand(2);
490 return true;
491 }
492 }
493
494 return false;
495}
496
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000497void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000498 const Type *AllocTy;
499 if (isSizeOf(AllocTy)) {
500 OS << "sizeof(" << *AllocTy << ")";
501 return;
502 }
503 if (isAlignOf(AllocTy)) {
504 OS << "alignof(" << *AllocTy << ")";
505 return;
506 }
507
Dan Gohman4f8eea82010-02-01 18:27:38 +0000508 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000509 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000510 if (isOffsetOf(CTy, FieldNo)) {
511 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000512 WriteAsOperand(OS, FieldNo, false);
513 OS << ")";
514 return;
515 }
516
517 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000518 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000519}
520
Chris Lattner8d741b82004-06-20 06:23:15 +0000521//===----------------------------------------------------------------------===//
522// SCEV Utilities
523//===----------------------------------------------------------------------===//
524
525namespace {
526 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
527 /// than the complexity of the RHS. This comparator is used to canonicalize
528 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000529 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000530 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000531 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000532 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000533
Dan Gohman67ef74e2010-08-27 15:26:01 +0000534 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000535 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000536 return compare(LHS, RHS) < 0;
537 }
538
539 // Return negative, zero, or positive, if LHS is less than, equal to, or
540 // greater than RHS, respectively. A three-way result allows recursive
541 // comparisons to be more efficient.
542 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000543 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
544 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000545 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000546
Dan Gohman72861302009-05-07 14:39:04 +0000547 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000548 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
549 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000550 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000551
Dan Gohman3bf63762010-06-18 19:54:20 +0000552 // Aside from the getSCEVType() ordering, the particular ordering
553 // isn't very important except that it's beneficial to be consistent,
554 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555 switch (LType) {
556 case scUnknown: {
557 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000558 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000559
560 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
561 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000562 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000563
564 // Order pointer values after integer values. This helps SCEVExpander
565 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000566 bool LIsPointer = LV->getType()->isPointerTy(),
567 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000568 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000569 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000570
571 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000572 unsigned LID = LV->getValueID(),
573 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000574 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000575 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000576
577 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000578 if (const Argument *LA = dyn_cast<Argument>(LV)) {
579 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000580 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
581 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000582 }
583
Dan Gohman67ef74e2010-08-27 15:26:01 +0000584 // For instructions, compare their loop depth, and their operand
585 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000586 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
587 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000588
589 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000590 const BasicBlock *LParent = LInst->getParent(),
591 *RParent = RInst->getParent();
592 if (LParent != RParent) {
593 unsigned LDepth = LI->getLoopDepth(LParent),
594 RDepth = LI->getLoopDepth(RParent);
595 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000596 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000597 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000598
599 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000600 unsigned LNumOps = LInst->getNumOperands(),
601 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000602 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000603 }
604
Dan Gohman67ef74e2010-08-27 15:26:01 +0000605 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000606 }
607
Dan Gohman67ef74e2010-08-27 15:26:01 +0000608 case scConstant: {
609 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000610 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000611
612 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000613 const APInt &LA = LC->getValue()->getValue();
614 const APInt &RA = RC->getValue()->getValue();
615 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000616 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000617 return (int)LBitWidth - (int)RBitWidth;
618 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000619 }
620
Dan Gohman67ef74e2010-08-27 15:26:01 +0000621 case scAddRecExpr: {
622 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000623 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000624
625 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000626 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
627 if (LLoop != RLoop) {
628 unsigned LDepth = LLoop->getLoopDepth(),
629 RDepth = RLoop->getLoopDepth();
630 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000631 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000632 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000633
634 // Addrec complexity grows with operand count.
635 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
636 if (LNumOps != RNumOps)
637 return (int)LNumOps - (int)RNumOps;
638
639 // Lexicographically compare.
640 for (unsigned i = 0; i != LNumOps; ++i) {
641 long X = compare(LA->getOperand(i), RA->getOperand(i));
642 if (X != 0)
643 return X;
644 }
645
646 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000647 }
648
Dan Gohman67ef74e2010-08-27 15:26:01 +0000649 case scAddExpr:
650 case scMulExpr:
651 case scSMaxExpr:
652 case scUMaxExpr: {
653 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000654 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000655
656 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000657 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
658 for (unsigned i = 0; i != LNumOps; ++i) {
659 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000660 return 1;
661 long X = compare(LC->getOperand(i), RC->getOperand(i));
662 if (X != 0)
663 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000664 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000665 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000666 }
667
Dan Gohman67ef74e2010-08-27 15:26:01 +0000668 case scUDivExpr: {
669 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000670 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000671
672 // Lexicographically compare udiv expressions.
673 long X = compare(LC->getLHS(), RC->getLHS());
674 if (X != 0)
675 return X;
676 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000677 }
678
Dan Gohman67ef74e2010-08-27 15:26:01 +0000679 case scTruncate:
680 case scZeroExtend:
681 case scSignExtend: {
682 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000683 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000684
685 // Compare cast expressions by operand.
686 return compare(LC->getOperand(), RC->getOperand());
687 }
688
689 default:
690 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000691 }
692
693 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000694 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000695 }
696 };
697}
698
699/// GroupByComplexity - Given a list of SCEV objects, order them by their
700/// complexity, and group objects of the same complexity together by value.
701/// When this routine is finished, we know that any duplicates in the vector are
702/// consecutive and that complexity is monotonically increasing.
703///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000704/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000705/// results from this routine. In other words, we don't want the results of
706/// this to depend on where the addresses of various SCEV objects happened to
707/// land in memory.
708///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000709static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000710 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000711 if (Ops.size() < 2) return; // Noop
712 if (Ops.size() == 2) {
713 // This is the common case, which also happens to be trivially simple.
714 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000715 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
716 if (SCEVComplexityCompare(LI)(RHS, LHS))
717 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000718 return;
719 }
720
Dan Gohman3bf63762010-06-18 19:54:20 +0000721 // Do the rough sort by complexity.
722 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
723
724 // Now that we are sorted by complexity, group elements of the same
725 // complexity. Note that this is, at worst, N^2, but the vector is likely to
726 // be extremely short in practice. Note that we take this approach because we
727 // do not want to depend on the addresses of the objects we are grouping.
728 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
729 const SCEV *S = Ops[i];
730 unsigned Complexity = S->getSCEVType();
731
732 // If there are any objects of the same complexity and same value as this
733 // one, group them.
734 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
735 if (Ops[j] == S) { // Found a duplicate.
736 // Move it to immediately after i'th element.
737 std::swap(Ops[i+1], Ops[j]);
738 ++i; // no need to rescan it.
739 if (i == e-2) return; // Done!
740 }
741 }
742 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000743}
744
Chris Lattner53e677a2004-04-02 20:23:17 +0000745
Chris Lattner53e677a2004-04-02 20:23:17 +0000746
747//===----------------------------------------------------------------------===//
748// Simple SCEV method implementations
749//===----------------------------------------------------------------------===//
750
Eli Friedmanb42a6262008-08-04 23:49:06 +0000751/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000752/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000753static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000754 ScalarEvolution &SE,
755 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000756 // Handle the simplest case efficiently.
757 if (K == 1)
758 return SE.getTruncateOrZeroExtend(It, ResultTy);
759
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000760 // We are using the following formula for BC(It, K):
761 //
762 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
763 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000764 // Suppose, W is the bitwidth of the return value. We must be prepared for
765 // overflow. Hence, we must assure that the result of our computation is
766 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
767 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000768 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000769 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000770 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
772 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000774 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000775 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000776 // This formula is trivially equivalent to the previous formula. However,
777 // this formula can be implemented much more efficiently. The trick is that
778 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
779 // arithmetic. To do exact division in modular arithmetic, all we have
780 // to do is multiply by the inverse. Therefore, this step can be done at
781 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000782 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000783 // The next issue is how to safely do the division by 2^T. The way this
784 // is done is by doing the multiplication step at a width of at least W + T
785 // bits. This way, the bottom W+T bits of the product are accurate. Then,
786 // when we perform the division by 2^T (which is equivalent to a right shift
787 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
788 // truncated out after the division by 2^T.
789 //
790 // In comparison to just directly using the first formula, this technique
791 // is much more efficient; using the first formula requires W * K bits,
792 // but this formula less than W + K bits. Also, the first formula requires
793 // a division step, whereas this formula only requires multiplies and shifts.
794 //
795 // It doesn't matter whether the subtraction step is done in the calculation
796 // width or the input iteration count's width; if the subtraction overflows,
797 // the result must be zero anyway. We prefer here to do it in the width of
798 // the induction variable because it helps a lot for certain cases; CodeGen
799 // isn't smart enough to ignore the overflow, which leads to much less
800 // efficient code if the width of the subtraction is wider than the native
801 // register width.
802 //
803 // (It's possible to not widen at all by pulling out factors of 2 before
804 // the multiplication; for example, K=2 can be calculated as
805 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
806 // extra arithmetic, so it's not an obvious win, and it gets
807 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000808
Eli Friedmanb42a6262008-08-04 23:49:06 +0000809 // Protection from insane SCEVs; this bound is conservative,
810 // but it probably doesn't matter.
811 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000812 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000813
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000814 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000815
Eli Friedmanb42a6262008-08-04 23:49:06 +0000816 // Calculate K! / 2^T and T; we divide out the factors of two before
817 // multiplying for calculating K! / 2^T to avoid overflow.
818 // Other overflow doesn't matter because we only care about the bottom
819 // W bits of the result.
820 APInt OddFactorial(W, 1);
821 unsigned T = 1;
822 for (unsigned i = 3; i <= K; ++i) {
823 APInt Mult(W, i);
824 unsigned TwoFactors = Mult.countTrailingZeros();
825 T += TwoFactors;
826 Mult = Mult.lshr(TwoFactors);
827 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000828 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000829
Eli Friedmanb42a6262008-08-04 23:49:06 +0000830 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000831 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000832
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000833 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000834 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
835
836 // Calculate the multiplicative inverse of K! / 2^T;
837 // this multiplication factor will perform the exact division by
838 // K! / 2^T.
839 APInt Mod = APInt::getSignedMinValue(W+1);
840 APInt MultiplyFactor = OddFactorial.zext(W+1);
841 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
842 MultiplyFactor = MultiplyFactor.trunc(W);
843
844 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000845 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
846 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000847 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000848 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000849 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000850 Dividend = SE.getMulExpr(Dividend,
851 SE.getTruncateOrZeroExtend(S, CalculationTy));
852 }
853
854 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000855 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000856
857 // Truncate the result, and divide by K! / 2^T.
858
859 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
860 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000861}
862
Chris Lattner53e677a2004-04-02 20:23:17 +0000863/// evaluateAtIteration - Return the value of this chain of recurrences at
864/// the specified iteration number. We can evaluate this recurrence by
865/// multiplying each element in the chain by the binomial coefficient
866/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
867///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000868/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000869///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000870/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000871///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000872const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000873 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000874 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000875 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000876 // The computation is correct in the face of overflow provided that the
877 // multiplication is performed _after_ the evaluation of the binomial
878 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000879 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000880 if (isa<SCEVCouldNotCompute>(Coeff))
881 return Coeff;
882
883 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000884 }
885 return Result;
886}
887
Chris Lattner53e677a2004-04-02 20:23:17 +0000888//===----------------------------------------------------------------------===//
889// SCEV Expression folder implementations
890//===----------------------------------------------------------------------===//
891
Dan Gohman0bba49c2009-07-07 17:06:11 +0000892const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000893 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000894 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000895 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000896 assert(isSCEVable(Ty) &&
897 "This is not a conversion to a SCEVable type!");
898 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000899
Dan Gohmanc050fd92009-07-13 20:50:19 +0000900 FoldingSetNodeID ID;
901 ID.AddInteger(scTruncate);
902 ID.AddPointer(Op);
903 ID.AddPointer(Ty);
904 void *IP = 0;
905 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
906
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000907 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000908 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000909 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000910 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
911 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000912
Dan Gohman20900ca2009-04-22 16:20:48 +0000913 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000914 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000915 return getTruncateExpr(ST->getOperand(), Ty);
916
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000917 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000918 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000919 return getTruncateOrSignExtend(SS->getOperand(), Ty);
920
921 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000922 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000923 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
924
Dan Gohman6864db62009-06-18 16:24:47 +0000925 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000926 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000927 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000928 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000929 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
930 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000931 }
932
Dan Gohmanf53462d2010-07-15 20:02:11 +0000933 // As a special case, fold trunc(undef) to undef. We don't want to
934 // know too much about SCEVUnknowns, but this special case is handy
935 // and harmless.
936 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
937 if (isa<UndefValue>(U->getValue()))
938 return getSCEV(UndefValue::get(Ty));
939
Dan Gohman420ab912010-06-25 18:47:08 +0000940 // The cast wasn't folded; create an explicit cast node. We can reuse
941 // the existing insert position since if we get here, we won't have
942 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000943 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
944 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000945 UniqueSCEVs.InsertNode(S, IP);
946 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000947}
948
Dan Gohman0bba49c2009-07-07 17:06:11 +0000949const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000950 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000951 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000952 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000953 assert(isSCEVable(Ty) &&
954 "This is not a conversion to a SCEVable type!");
955 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000956
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000957 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000958 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
959 return getConstant(
960 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
961 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000962
Dan Gohman20900ca2009-04-22 16:20:48 +0000963 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000964 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000965 return getZeroExtendExpr(SZ->getOperand(), Ty);
966
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000967 // Before doing any expensive analysis, check to see if we've already
968 // computed a SCEV for this Op and Ty.
969 FoldingSetNodeID ID;
970 ID.AddInteger(scZeroExtend);
971 ID.AddPointer(Op);
972 ID.AddPointer(Ty);
973 void *IP = 0;
974 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
975
Dan Gohman01ecca22009-04-27 20:16:15 +0000976 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000977 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000978 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000979 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000980 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000981 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000982 const SCEV *Start = AR->getStart();
983 const SCEV *Step = AR->getStepRecurrence(*this);
984 unsigned BitWidth = getTypeSizeInBits(AR->getType());
985 const Loop *L = AR->getLoop();
986
Dan Gohmaneb490a72009-07-25 01:22:26 +0000987 // If we have special knowledge that this addrec won't overflow,
988 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000989 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000990 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
991 getZeroExtendExpr(Step, Ty),
992 L);
993
Dan Gohman01ecca22009-04-27 20:16:15 +0000994 // Check whether the backedge-taken count is SCEVCouldNotCompute.
995 // Note that this serves two purposes: It filters out loops that are
996 // simply not analyzable, and it covers the case where this code is
997 // being called from within backedge-taken count analysis, such that
998 // attempting to ask for the backedge-taken count would likely result
999 // in infinite recursion. In the later case, the analysis code will
1000 // cope with a conservative value, and it will take care to purge
1001 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001002 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001003 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001004 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001005 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001006
1007 // Check whether the backedge-taken count can be losslessly casted to
1008 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001009 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001010 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001011 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001012 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1013 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001014 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001015 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001016 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001017 const SCEV *Add = getAddExpr(Start, ZMul);
1018 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001019 getAddExpr(getZeroExtendExpr(Start, WideTy),
1020 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1021 getZeroExtendExpr(Step, WideTy)));
1022 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001023 // Return the expression with the addrec on the outside.
1024 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1025 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001026 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001027
1028 // Similar to above, only this time treat the step value as signed.
1029 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +00001030 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +00001031 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +00001032 OperandExtendedAdd =
1033 getAddExpr(getZeroExtendExpr(Start, WideTy),
1034 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1035 getSignExtendExpr(Step, WideTy)));
1036 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001037 // Return the expression with the addrec on the outside.
1038 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1039 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001040 L);
1041 }
1042
1043 // If the backedge is guarded by a comparison with the pre-inc value
1044 // the addrec is safe. Also, if the entry is guarded by a comparison
1045 // with the start value and the backedge is guarded by a comparison
1046 // with the post-inc value, the addrec is safe.
1047 if (isKnownPositive(Step)) {
1048 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1049 getUnsignedRange(Step).getUnsignedMax());
1050 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001051 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001052 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1053 AR->getPostIncExpr(*this), N)))
1054 // Return the expression with the addrec on the outside.
1055 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1056 getZeroExtendExpr(Step, Ty),
1057 L);
1058 } else if (isKnownNegative(Step)) {
1059 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1060 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001061 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1062 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001063 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1064 AR->getPostIncExpr(*this), N)))
1065 // Return the expression with the addrec on the outside.
1066 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1067 getSignExtendExpr(Step, Ty),
1068 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001069 }
1070 }
1071 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001072
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001073 // The cast wasn't folded; create an explicit cast node.
1074 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001075 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001076 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1077 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001078 UniqueSCEVs.InsertNode(S, IP);
1079 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001080}
1081
Dan Gohman0bba49c2009-07-07 17:06:11 +00001082const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001083 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001084 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001085 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001086 assert(isSCEVable(Ty) &&
1087 "This is not a conversion to a SCEVable type!");
1088 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001089
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001090 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001091 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1092 return getConstant(
1093 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1094 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001095
Dan Gohman20900ca2009-04-22 16:20:48 +00001096 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001098 return getSignExtendExpr(SS->getOperand(), Ty);
1099
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001100 // Before doing any expensive analysis, check to see if we've already
1101 // computed a SCEV for this Op and Ty.
1102 FoldingSetNodeID ID;
1103 ID.AddInteger(scSignExtend);
1104 ID.AddPointer(Op);
1105 ID.AddPointer(Ty);
1106 void *IP = 0;
1107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1108
Dan Gohman01ecca22009-04-27 20:16:15 +00001109 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001110 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001111 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001112 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001113 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001114 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001115 const SCEV *Start = AR->getStart();
1116 const SCEV *Step = AR->getStepRecurrence(*this);
1117 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1118 const Loop *L = AR->getLoop();
1119
Dan Gohmaneb490a72009-07-25 01:22:26 +00001120 // If we have special knowledge that this addrec won't overflow,
1121 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001122 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001123 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1124 getSignExtendExpr(Step, Ty),
1125 L);
1126
Dan Gohman01ecca22009-04-27 20:16:15 +00001127 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1128 // Note that this serves two purposes: It filters out loops that are
1129 // simply not analyzable, and it covers the case where this code is
1130 // being called from within backedge-taken count analysis, such that
1131 // attempting to ask for the backedge-taken count would likely result
1132 // in infinite recursion. In the later case, the analysis code will
1133 // cope with a conservative value, and it will take care to purge
1134 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001135 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001136 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001137 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001138 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001139
1140 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001141 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001142 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001143 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001144 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001145 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1146 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001147 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001148 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001149 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001150 const SCEV *Add = getAddExpr(Start, SMul);
1151 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001152 getAddExpr(getSignExtendExpr(Start, WideTy),
1153 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1154 getSignExtendExpr(Step, WideTy)));
1155 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001156 // Return the expression with the addrec on the outside.
1157 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1158 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001159 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001160
1161 // Similar to above, only this time treat the step value as unsigned.
1162 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001163 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001164 Add = getAddExpr(Start, UMul);
1165 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001166 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001167 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1168 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001169 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001170 // Return the expression with the addrec on the outside.
1171 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1172 getZeroExtendExpr(Step, Ty),
1173 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001174 }
1175
1176 // If the backedge is guarded by a comparison with the pre-inc value
1177 // the addrec is safe. Also, if the entry is guarded by a comparison
1178 // with the start value and the backedge is guarded by a comparison
1179 // with the post-inc value, the addrec is safe.
1180 if (isKnownPositive(Step)) {
1181 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1182 getSignedRange(Step).getSignedMax());
1183 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001184 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001185 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1186 AR->getPostIncExpr(*this), N)))
1187 // Return the expression with the addrec on the outside.
1188 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1189 getSignExtendExpr(Step, Ty),
1190 L);
1191 } else if (isKnownNegative(Step)) {
1192 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1193 getSignedRange(Step).getSignedMin());
1194 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001195 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001196 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1197 AR->getPostIncExpr(*this), N)))
1198 // Return the expression with the addrec on the outside.
1199 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1200 getSignExtendExpr(Step, Ty),
1201 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001202 }
1203 }
1204 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001205
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001206 // The cast wasn't folded; create an explicit cast node.
1207 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001208 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001209 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1210 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001211 UniqueSCEVs.InsertNode(S, IP);
1212 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001213}
1214
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001215/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1216/// unspecified bits out to the given type.
1217///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001218const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001219 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001220 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1221 "This is not an extending conversion!");
1222 assert(isSCEVable(Ty) &&
1223 "This is not a conversion to a SCEVable type!");
1224 Ty = getEffectiveSCEVType(Ty);
1225
1226 // Sign-extend negative constants.
1227 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1228 if (SC->getValue()->getValue().isNegative())
1229 return getSignExtendExpr(Op, Ty);
1230
1231 // Peel off a truncate cast.
1232 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001233 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001234 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1235 return getAnyExtendExpr(NewOp, Ty);
1236 return getTruncateOrNoop(NewOp, Ty);
1237 }
1238
1239 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001240 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001241 if (!isa<SCEVZeroExtendExpr>(ZExt))
1242 return ZExt;
1243
1244 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001245 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001246 if (!isa<SCEVSignExtendExpr>(SExt))
1247 return SExt;
1248
Dan Gohmana10756e2010-01-21 02:09:26 +00001249 // Force the cast to be folded into the operands of an addrec.
1250 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1251 SmallVector<const SCEV *, 4> Ops;
1252 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1253 I != E; ++I)
1254 Ops.push_back(getAnyExtendExpr(*I, Ty));
1255 return getAddRecExpr(Ops, AR->getLoop());
1256 }
1257
Dan Gohmanf53462d2010-07-15 20:02:11 +00001258 // As a special case, fold anyext(undef) to undef. We don't want to
1259 // know too much about SCEVUnknowns, but this special case is handy
1260 // and harmless.
1261 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1262 if (isa<UndefValue>(U->getValue()))
1263 return getSCEV(UndefValue::get(Ty));
1264
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001265 // If the expression is obviously signed, use the sext cast value.
1266 if (isa<SCEVSMaxExpr>(Op))
1267 return SExt;
1268
1269 // Absent any other information, use the zext cast value.
1270 return ZExt;
1271}
1272
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001273/// CollectAddOperandsWithScales - Process the given Ops list, which is
1274/// a list of operands to be added under the given scale, update the given
1275/// map. This is a helper function for getAddRecExpr. As an example of
1276/// what it does, given a sequence of operands that would form an add
1277/// expression like this:
1278///
1279/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1280///
1281/// where A and B are constants, update the map with these values:
1282///
1283/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1284///
1285/// and add 13 + A*B*29 to AccumulatedConstant.
1286/// This will allow getAddRecExpr to produce this:
1287///
1288/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1289///
1290/// This form often exposes folding opportunities that are hidden in
1291/// the original operand list.
1292///
1293/// Return true iff it appears that any interesting folding opportunities
1294/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1295/// the common case where no interesting opportunities are present, and
1296/// is also used as a check to avoid infinite recursion.
1297///
1298static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001299CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1300 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001301 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001302 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001303 const APInt &Scale,
1304 ScalarEvolution &SE) {
1305 bool Interesting = false;
1306
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001307 // Iterate over the add operands. They are sorted, with constants first.
1308 unsigned i = 0;
1309 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1310 ++i;
1311 // Pull a buried constant out to the outside.
1312 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1313 Interesting = true;
1314 AccumulatedConstant += Scale * C->getValue()->getValue();
1315 }
1316
1317 // Next comes everything else. We're especially interested in multiplies
1318 // here, but they're in the middle, so just visit the rest with one loop.
1319 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001320 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1321 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1322 APInt NewScale =
1323 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1324 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1325 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001326 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001327 Interesting |=
1328 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001329 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001330 NewScale, SE);
1331 } else {
1332 // A multiplication of a constant with some other value. Update
1333 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001334 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1335 const SCEV *Key = SE.getMulExpr(MulOps);
1336 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001337 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001338 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001339 NewOps.push_back(Pair.first->first);
1340 } else {
1341 Pair.first->second += NewScale;
1342 // The map already had an entry for this value, which may indicate
1343 // a folding opportunity.
1344 Interesting = true;
1345 }
1346 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001347 } else {
1348 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001349 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001350 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001351 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001352 NewOps.push_back(Pair.first->first);
1353 } else {
1354 Pair.first->second += Scale;
1355 // The map already had an entry for this value, which may indicate
1356 // a folding opportunity.
1357 Interesting = true;
1358 }
1359 }
1360 }
1361
1362 return Interesting;
1363}
1364
1365namespace {
1366 struct APIntCompare {
1367 bool operator()(const APInt &LHS, const APInt &RHS) const {
1368 return LHS.ult(RHS);
1369 }
1370 };
1371}
1372
Dan Gohman6c0866c2009-05-24 23:45:28 +00001373/// getAddExpr - Get a canonical add expression, or something simpler if
1374/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001375const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1376 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001377 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001378 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001379#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001380 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001381 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001382 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001383 "SCEVAddExpr operand types don't match!");
1384#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001385
Dan Gohmana10756e2010-01-21 02:09:26 +00001386 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1387 if (!HasNUW && HasNSW) {
1388 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001389 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1390 E = Ops.end(); I != E; ++I)
1391 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001392 All = false;
1393 break;
1394 }
1395 if (All) HasNUW = true;
1396 }
1397
Chris Lattner53e677a2004-04-02 20:23:17 +00001398 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001399 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001400
1401 // If there are any constants, fold them together.
1402 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001403 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001405 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001406 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001407 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001408 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1409 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001410 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001411 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001412 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001413 }
1414
1415 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001416 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001417 Ops.erase(Ops.begin());
1418 --Idx;
1419 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001420
Dan Gohmanbca091d2010-04-12 23:08:18 +00001421 if (Ops.size() == 1) return Ops[0];
1422 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001423
Dan Gohman68ff7762010-08-27 21:39:59 +00001424 // Okay, check to see if the same value occurs in the operand list more than
1425 // once. If so, merge them together into an multiply expression. Since we
1426 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001427 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001428 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001429 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001430 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001431 // Scan ahead to count how many equal operands there are.
1432 unsigned Count = 2;
1433 while (i+Count != e && Ops[i+Count] == Ops[i])
1434 ++Count;
1435 // Merge the values into a multiply.
1436 const SCEV *Scale = getConstant(Ty, Count);
1437 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1438 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001439 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001440 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001441 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001442 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001443 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001444 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001445 if (FoundMatch)
1446 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001447
Dan Gohman728c7f32009-05-08 21:03:19 +00001448 // Check for truncates. If all the operands are truncated from the same
1449 // type, see if factoring out the truncate would permit the result to be
1450 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1451 // if the contents of the resulting outer trunc fold to something simple.
1452 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1453 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1454 const Type *DstType = Trunc->getType();
1455 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001456 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001457 bool Ok = true;
1458 // Check all the operands to see if they can be represented in the
1459 // source type of the truncate.
1460 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1461 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1462 if (T->getOperand()->getType() != SrcType) {
1463 Ok = false;
1464 break;
1465 }
1466 LargeOps.push_back(T->getOperand());
1467 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001468 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001469 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001470 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001471 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1472 if (const SCEVTruncateExpr *T =
1473 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1474 if (T->getOperand()->getType() != SrcType) {
1475 Ok = false;
1476 break;
1477 }
1478 LargeMulOps.push_back(T->getOperand());
1479 } else if (const SCEVConstant *C =
1480 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001481 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001482 } else {
1483 Ok = false;
1484 break;
1485 }
1486 }
1487 if (Ok)
1488 LargeOps.push_back(getMulExpr(LargeMulOps));
1489 } else {
1490 Ok = false;
1491 break;
1492 }
1493 }
1494 if (Ok) {
1495 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001496 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001497 // If it folds to something simple, use it. Otherwise, don't.
1498 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1499 return getTruncateExpr(Fold, DstType);
1500 }
1501 }
1502
1503 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001504 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1505 ++Idx;
1506
1507 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 if (Idx < Ops.size()) {
1509 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001510 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 // If we have an add, expand the add operands onto the end of the operands
1512 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001514 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 DeletedAdd = true;
1516 }
1517
1518 // If we deleted at least one add, we added operands to the end of the list,
1519 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001520 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001522 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001523 }
1524
1525 // Skip over the add expression until we get to a multiply.
1526 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1527 ++Idx;
1528
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001529 // Check to see if there are any folding opportunities present with
1530 // operands multiplied by constant values.
1531 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1532 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001533 DenseMap<const SCEV *, APInt> M;
1534 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001535 APInt AccumulatedConstant(BitWidth, 0);
1536 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001537 Ops.data(), Ops.size(),
1538 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001539 // Some interesting folding opportunity is present, so its worthwhile to
1540 // re-generate the operands list. Group the operands by constant scale,
1541 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001542 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001543 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001544 E = NewOps.end(); I != E; ++I)
1545 MulOpLists[M.find(*I)->second].push_back(*I);
1546 // Re-generate the operands list.
1547 Ops.clear();
1548 if (AccumulatedConstant != 0)
1549 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001550 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1551 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001552 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001553 Ops.push_back(getMulExpr(getConstant(I->first),
1554 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001555 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001556 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001557 if (Ops.size() == 1)
1558 return Ops[0];
1559 return getAddExpr(Ops);
1560 }
1561 }
1562
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 // If we are adding something to a multiply expression, make sure the
1564 // something is not already an operand of the multiply. If so, merge it into
1565 // the multiply.
1566 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001567 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001568 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001569 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001570 if (isa<SCEVConstant>(MulOpSCEV))
1571 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001573 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001574 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001575 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001576 if (Mul->getNumOperands() != 2) {
1577 // If the multiply has more than two operands, we must get the
1578 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001579 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1580 Mul->op_begin()+MulOp);
1581 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001582 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001583 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001584 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001585 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001586 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 if (Ops.size() == 2) return OuterMul;
1588 if (AddOp < Idx) {
1589 Ops.erase(Ops.begin()+AddOp);
1590 Ops.erase(Ops.begin()+Idx-1);
1591 } else {
1592 Ops.erase(Ops.begin()+Idx);
1593 Ops.erase(Ops.begin()+AddOp-1);
1594 }
1595 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001596 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001597 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001598
Chris Lattner53e677a2004-04-02 20:23:17 +00001599 // Check this multiply against other multiplies being added together.
1600 for (unsigned OtherMulIdx = Idx+1;
1601 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1602 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001603 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001604 // If MulOp occurs in OtherMul, we can fold the two multiplies
1605 // together.
1606 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1607 OMulOp != e; ++OMulOp)
1608 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1609 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001610 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001611 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001612 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001613 Mul->op_begin()+MulOp);
1614 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001615 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001616 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001617 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001618 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001619 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001620 OtherMul->op_begin()+OMulOp);
1621 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001622 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001623 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001624 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1625 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001626 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001627 Ops.erase(Ops.begin()+Idx);
1628 Ops.erase(Ops.begin()+OtherMulIdx-1);
1629 Ops.push_back(OuterMul);
1630 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001631 }
1632 }
1633 }
1634 }
1635
1636 // If there are any add recurrences in the operands list, see if any other
1637 // added values are loop invariant. If so, we can fold them into the
1638 // recurrence.
1639 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1640 ++Idx;
1641
1642 // Scan over all recurrences, trying to fold loop invariants into them.
1643 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1644 // Scan all of the other operands to this add and add them to the vector if
1645 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001646 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001647 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001648 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001649 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001650 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 LIOps.push_back(Ops[i]);
1652 Ops.erase(Ops.begin()+i);
1653 --i; --e;
1654 }
1655
1656 // If we found some loop invariants, fold them into the recurrence.
1657 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001658 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001659 LIOps.push_back(AddRec->getStart());
1660
Dan Gohman0bba49c2009-07-07 17:06:11 +00001661 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001662 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001663 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001664
Dan Gohmanb9f96512010-06-30 07:16:37 +00001665 // Build the new addrec. Propagate the NUW and NSW flags if both the
1666 // outer add and the inner addrec are guaranteed to have no overflow.
1667 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1668 HasNUW && AddRec->hasNoUnsignedWrap(),
1669 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001670
Chris Lattner53e677a2004-04-02 20:23:17 +00001671 // If all of the other operands were loop invariant, we are done.
1672 if (Ops.size() == 1) return NewRec;
1673
1674 // Otherwise, add the folded AddRec by the non-liv parts.
1675 for (unsigned i = 0;; ++i)
1676 if (Ops[i] == AddRec) {
1677 Ops[i] = NewRec;
1678 break;
1679 }
Dan Gohman246b2562007-10-22 18:31:58 +00001680 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001681 }
1682
1683 // Okay, if there weren't any loop invariants to be folded, check to see if
1684 // there are multiple AddRec's with the same loop induction variable being
1685 // added together. If so, we can fold them.
1686 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001687 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1688 ++OtherIdx)
1689 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1690 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1691 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1692 AddRec->op_end());
1693 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1694 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001695 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001696 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001697 if (OtherAddRec->getLoop() == AddRecLoop) {
1698 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1699 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001700 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001701 AddRecOps.append(OtherAddRec->op_begin()+i,
1702 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001703 break;
1704 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001705 AddRecOps[i] = getAddExpr(AddRecOps[i],
1706 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001707 }
1708 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001709 }
Dan Gohman32527152010-08-27 20:45:56 +00001710 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1711 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001712 }
1713
1714 // Otherwise couldn't fold anything into this recurrence. Move onto the
1715 // next one.
1716 }
1717
1718 // Okay, it looks like we really DO need an add expr. Check to see if we
1719 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001720 FoldingSetNodeID ID;
1721 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001722 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1723 ID.AddPointer(Ops[i]);
1724 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001725 SCEVAddExpr *S =
1726 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1727 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001728 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1729 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001730 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1731 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001732 UniqueSCEVs.InsertNode(S, IP);
1733 }
Dan Gohman3645b012009-10-09 00:10:36 +00001734 if (HasNUW) S->setHasNoUnsignedWrap(true);
1735 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001736 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001737}
1738
Dan Gohman6c0866c2009-05-24 23:45:28 +00001739/// getMulExpr - Get a canonical multiply expression, or something simpler if
1740/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001741const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1742 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001744 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001745#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001746 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001747 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001748 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001749 "SCEVMulExpr operand types don't match!");
1750#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001751
Dan Gohmana10756e2010-01-21 02:09:26 +00001752 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1753 if (!HasNUW && HasNSW) {
1754 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001755 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1756 E = Ops.end(); I != E; ++I)
1757 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001758 All = false;
1759 break;
1760 }
1761 if (All) HasNUW = true;
1762 }
1763
Chris Lattner53e677a2004-04-02 20:23:17 +00001764 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001765 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001766
1767 // If there are any constants, fold them together.
1768 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001769 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001770
1771 // C1*(C2+V) -> C1*C2 + C1*V
1772 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001773 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001774 if (Add->getNumOperands() == 2 &&
1775 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001776 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1777 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001778
Chris Lattner53e677a2004-04-02 20:23:17 +00001779 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001780 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001781 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001782 ConstantInt *Fold = ConstantInt::get(getContext(),
1783 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001784 RHSC->getValue()->getValue());
1785 Ops[0] = getConstant(Fold);
1786 Ops.erase(Ops.begin()+1); // Erase the folded element
1787 if (Ops.size() == 1) return Ops[0];
1788 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 }
1790
1791 // If we are left with a constant one being multiplied, strip it off.
1792 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1793 Ops.erase(Ops.begin());
1794 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001795 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001796 // If we have a multiply of zero, it will always be zero.
1797 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001798 } else if (Ops[0]->isAllOnesValue()) {
1799 // If we have a mul by -1 of an add, try distributing the -1 among the
1800 // add operands.
1801 if (Ops.size() == 2)
1802 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1803 SmallVector<const SCEV *, 4> NewOps;
1804 bool AnyFolded = false;
1805 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1806 I != E; ++I) {
1807 const SCEV *Mul = getMulExpr(Ops[0], *I);
1808 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1809 NewOps.push_back(Mul);
1810 }
1811 if (AnyFolded)
1812 return getAddExpr(NewOps);
1813 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001814 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001815
1816 if (Ops.size() == 1)
1817 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001818 }
1819
1820 // Skip over the add expression until we get to a multiply.
1821 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1822 ++Idx;
1823
Chris Lattner53e677a2004-04-02 20:23:17 +00001824 // If there are mul operands inline them all into this expression.
1825 if (Idx < Ops.size()) {
1826 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001827 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001828 // If we have an mul, expand the mul operands onto the end of the operands
1829 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001830 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001831 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001832 DeletedMul = true;
1833 }
1834
1835 // If we deleted at least one mul, we added operands to the end of the list,
1836 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001837 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001838 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001839 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001840 }
1841
1842 // If there are any add recurrences in the operands list, see if any other
1843 // added values are loop invariant. If so, we can fold them into the
1844 // recurrence.
1845 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1846 ++Idx;
1847
1848 // Scan over all recurrences, trying to fold loop invariants into them.
1849 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1850 // Scan all of the other operands to this mul and add them to the vector if
1851 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001852 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001853 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001854 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001855 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman0f32ae32010-08-29 14:55:19 +00001856 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001857 LIOps.push_back(Ops[i]);
1858 Ops.erase(Ops.begin()+i);
1859 --i; --e;
1860 }
1861
1862 // If we found some loop invariants, fold them into the recurrence.
1863 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001864 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001865 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001866 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001867 const SCEV *Scale = getMulExpr(LIOps);
1868 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1869 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001870
Dan Gohmanb9f96512010-06-30 07:16:37 +00001871 // Build the new addrec. Propagate the NUW and NSW flags if both the
1872 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001873 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001874 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001875 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001876
1877 // If all of the other operands were loop invariant, we are done.
1878 if (Ops.size() == 1) return NewRec;
1879
1880 // Otherwise, multiply the folded AddRec by the non-liv parts.
1881 for (unsigned i = 0;; ++i)
1882 if (Ops[i] == AddRec) {
1883 Ops[i] = NewRec;
1884 break;
1885 }
Dan Gohman246b2562007-10-22 18:31:58 +00001886 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001887 }
1888
1889 // Okay, if there weren't any loop invariants to be folded, check to see if
1890 // there are multiple AddRec's with the same loop induction variable being
1891 // multiplied together. If so, we can fold them.
1892 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001893 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1894 ++OtherIdx)
1895 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1896 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1897 // {A*C,+,F*D + G*B + B*D}<L>
1898 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1899 ++OtherIdx)
1900 if (const SCEVAddRecExpr *OtherAddRec =
1901 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1902 if (OtherAddRec->getLoop() == AddRecLoop) {
1903 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1904 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1905 const SCEV *B = F->getStepRecurrence(*this);
1906 const SCEV *D = G->getStepRecurrence(*this);
1907 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1908 getMulExpr(G, B),
1909 getMulExpr(B, D));
1910 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1911 F->getLoop());
1912 if (Ops.size() == 2) return NewAddRec;
1913 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1914 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1915 }
1916 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 }
1918
1919 // Otherwise couldn't fold anything into this recurrence. Move onto the
1920 // next one.
1921 }
1922
1923 // Okay, it looks like we really DO need an mul expr. Check to see if we
1924 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001925 FoldingSetNodeID ID;
1926 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001927 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1928 ID.AddPointer(Ops[i]);
1929 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001930 SCEVMulExpr *S =
1931 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1932 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001933 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1934 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001935 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1936 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001937 UniqueSCEVs.InsertNode(S, IP);
1938 }
Dan Gohman3645b012009-10-09 00:10:36 +00001939 if (HasNUW) S->setHasNoUnsignedWrap(true);
1940 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001941 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001942}
1943
Andreas Bolka8a11c982009-08-07 22:55:26 +00001944/// getUDivExpr - Get a canonical unsigned division expression, or something
1945/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001946const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1947 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001948 assert(getEffectiveSCEVType(LHS->getType()) ==
1949 getEffectiveSCEVType(RHS->getType()) &&
1950 "SCEVUDivExpr operand types don't match!");
1951
Dan Gohman622ed672009-05-04 22:02:23 +00001952 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001953 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001954 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001955 // If the denominator is zero, the result of the udiv is undefined. Don't
1956 // try to analyze it, because the resolution chosen here may differ from
1957 // the resolution chosen in other parts of the compiler.
1958 if (!RHSC->getValue()->isZero()) {
1959 // Determine if the division can be folded into the operands of
1960 // its operands.
1961 // TODO: Generalize this to non-constants by using known-bits information.
1962 const Type *Ty = LHS->getType();
1963 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001964 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001965 // For non-power-of-two values, effectively round the value up to the
1966 // nearest power of two.
1967 if (!RHSC->getValue()->getValue().isPowerOf2())
1968 ++MaxShiftAmt;
1969 const IntegerType *ExtTy =
1970 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1971 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1972 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1973 if (const SCEVConstant *Step =
1974 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1975 if (!Step->getValue()->getValue()
1976 .urem(RHSC->getValue()->getValue()) &&
1977 getZeroExtendExpr(AR, ExtTy) ==
1978 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1979 getZeroExtendExpr(Step, ExtTy),
1980 AR->getLoop())) {
1981 SmallVector<const SCEV *, 4> Operands;
1982 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1983 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1984 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001985 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001986 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1987 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1988 SmallVector<const SCEV *, 4> Operands;
1989 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1990 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1991 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1992 // Find an operand that's safely divisible.
1993 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1994 const SCEV *Op = M->getOperand(i);
1995 const SCEV *Div = getUDivExpr(Op, RHSC);
1996 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1997 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1998 M->op_end());
1999 Operands[i] = Div;
2000 return getMulExpr(Operands);
2001 }
2002 }
Dan Gohman185cf032009-05-08 20:18:49 +00002003 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002004 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2005 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2006 SmallVector<const SCEV *, 4> Operands;
2007 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2008 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2009 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2010 Operands.clear();
2011 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2012 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2013 if (isa<SCEVUDivExpr>(Op) ||
2014 getMulExpr(Op, RHS) != A->getOperand(i))
2015 break;
2016 Operands.push_back(Op);
2017 }
2018 if (Operands.size() == A->getNumOperands())
2019 return getAddExpr(Operands);
2020 }
2021 }
Dan Gohman185cf032009-05-08 20:18:49 +00002022
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00002023 // Fold if both operands are constant.
2024 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2025 Constant *LHSCV = LHSC->getValue();
2026 Constant *RHSCV = RHSC->getValue();
2027 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2028 RHSCV)));
2029 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002030 }
2031 }
2032
Dan Gohman1c343752009-06-27 21:21:31 +00002033 FoldingSetNodeID ID;
2034 ID.AddInteger(scUDivExpr);
2035 ID.AddPointer(LHS);
2036 ID.AddPointer(RHS);
2037 void *IP = 0;
2038 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00002039 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2040 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00002041 UniqueSCEVs.InsertNode(S, IP);
2042 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002043}
2044
2045
Dan Gohman6c0866c2009-05-24 23:45:28 +00002046/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2047/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002048const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00002049 const SCEV *Step, const Loop *L,
2050 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002051 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00002052 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00002053 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00002054 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00002055 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00002056 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00002057 }
2058
2059 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00002060 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002061}
2062
Dan Gohman6c0866c2009-05-24 23:45:28 +00002063/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2064/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002065const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002066ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002067 const Loop *L,
2068 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002069 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002070#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002071 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002072 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002073 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002074 "SCEVAddRecExpr operand types don't match!");
2075#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002076
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002077 if (Operands.back()->isZero()) {
2078 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002079 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002080 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002081
Dan Gohmanbc028532010-02-19 18:49:22 +00002082 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2083 // use that information to infer NUW and NSW flags. However, computing a
2084 // BE count requires calling getAddRecExpr, so we may not yet have a
2085 // meaningful BE count at this point (and if we don't, we'd be stuck
2086 // with a SCEVCouldNotCompute as the cached BE count).
2087
Dan Gohmana10756e2010-01-21 02:09:26 +00002088 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2089 if (!HasNUW && HasNSW) {
2090 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002091 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2092 E = Operands.end(); I != E; ++I)
2093 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002094 All = false;
2095 break;
2096 }
2097 if (All) HasNUW = true;
2098 }
2099
Dan Gohmand9cc7492008-08-08 18:33:12 +00002100 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002101 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002102 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002103 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002104 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002105 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002106 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002107 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002108 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002109 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002110 // AddRecs require their operands be loop-invariant with respect to their
2111 // loops. Don't perform this transformation if it would break this
2112 // requirement.
2113 bool AllInvariant = true;
2114 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2115 if (!Operands[i]->isLoopInvariant(L)) {
2116 AllInvariant = false;
2117 break;
2118 }
2119 if (AllInvariant) {
2120 NestedOperands[0] = getAddRecExpr(Operands, L);
2121 AllInvariant = true;
2122 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2123 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2124 AllInvariant = false;
2125 break;
2126 }
2127 if (AllInvariant)
2128 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002129 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002130 }
2131 // Reset Operands to its original state.
2132 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002133 }
2134 }
2135
Dan Gohman67847532010-01-19 22:27:22 +00002136 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2137 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002138 FoldingSetNodeID ID;
2139 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002140 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2141 ID.AddPointer(Operands[i]);
2142 ID.AddPointer(L);
2143 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002144 SCEVAddRecExpr *S =
2145 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2146 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002147 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2148 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002149 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2150 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002151 UniqueSCEVs.InsertNode(S, IP);
2152 }
Dan Gohman3645b012009-10-09 00:10:36 +00002153 if (HasNUW) S->setHasNoUnsignedWrap(true);
2154 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002155 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002156}
2157
Dan Gohman9311ef62009-06-24 14:49:00 +00002158const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2159 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002160 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002161 Ops.push_back(LHS);
2162 Ops.push_back(RHS);
2163 return getSMaxExpr(Ops);
2164}
2165
Dan Gohman0bba49c2009-07-07 17:06:11 +00002166const SCEV *
2167ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002168 assert(!Ops.empty() && "Cannot get empty smax!");
2169 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002170#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002171 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002172 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002173 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002174 "SCEVSMaxExpr operand types don't match!");
2175#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002176
2177 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002178 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002179
2180 // If there are any constants, fold them together.
2181 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002182 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002183 ++Idx;
2184 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002185 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002186 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002187 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002188 APIntOps::smax(LHSC->getValue()->getValue(),
2189 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002190 Ops[0] = getConstant(Fold);
2191 Ops.erase(Ops.begin()+1); // Erase the folded element
2192 if (Ops.size() == 1) return Ops[0];
2193 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002194 }
2195
Dan Gohmane5aceed2009-06-24 14:46:22 +00002196 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002197 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2198 Ops.erase(Ops.begin());
2199 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002200 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2201 // If we have an smax with a constant maximum-int, it will always be
2202 // maximum-int.
2203 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002204 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002205
Dan Gohman3ab13122010-04-13 16:49:23 +00002206 if (Ops.size() == 1) return Ops[0];
2207 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002208
2209 // Find the first SMax
2210 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2211 ++Idx;
2212
2213 // Check to see if one of the operands is an SMax. If so, expand its operands
2214 // onto our operand list, and recurse to simplify.
2215 if (Idx < Ops.size()) {
2216 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002217 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002218 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002219 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002220 DeletedSMax = true;
2221 }
2222
2223 if (DeletedSMax)
2224 return getSMaxExpr(Ops);
2225 }
2226
2227 // Okay, check to see if the same value occurs in the operand list twice. If
2228 // so, delete one. Since we sorted the list, these values are required to
2229 // be adjacent.
2230 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002231 // X smax Y smax Y --> X smax Y
2232 // X smax Y --> X, if X is always greater than Y
2233 if (Ops[i] == Ops[i+1] ||
2234 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2235 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2236 --i; --e;
2237 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002238 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2239 --i; --e;
2240 }
2241
2242 if (Ops.size() == 1) return Ops[0];
2243
2244 assert(!Ops.empty() && "Reduced smax down to nothing!");
2245
Nick Lewycky3e630762008-02-20 06:48:22 +00002246 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002247 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002248 FoldingSetNodeID ID;
2249 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002250 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2251 ID.AddPointer(Ops[i]);
2252 void *IP = 0;
2253 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002254 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2255 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002256 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2257 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002258 UniqueSCEVs.InsertNode(S, IP);
2259 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002260}
2261
Dan Gohman9311ef62009-06-24 14:49:00 +00002262const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2263 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002264 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002265 Ops.push_back(LHS);
2266 Ops.push_back(RHS);
2267 return getUMaxExpr(Ops);
2268}
2269
Dan Gohman0bba49c2009-07-07 17:06:11 +00002270const SCEV *
2271ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002272 assert(!Ops.empty() && "Cannot get empty umax!");
2273 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002274#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002275 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002276 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002277 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002278 "SCEVUMaxExpr operand types don't match!");
2279#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002280
2281 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002282 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002283
2284 // If there are any constants, fold them together.
2285 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002286 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002287 ++Idx;
2288 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002289 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002290 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002291 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002292 APIntOps::umax(LHSC->getValue()->getValue(),
2293 RHSC->getValue()->getValue()));
2294 Ops[0] = getConstant(Fold);
2295 Ops.erase(Ops.begin()+1); // Erase the folded element
2296 if (Ops.size() == 1) return Ops[0];
2297 LHSC = cast<SCEVConstant>(Ops[0]);
2298 }
2299
Dan Gohmane5aceed2009-06-24 14:46:22 +00002300 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002301 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2302 Ops.erase(Ops.begin());
2303 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002304 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2305 // If we have an umax with a constant maximum-int, it will always be
2306 // maximum-int.
2307 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002308 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002309
Dan Gohman3ab13122010-04-13 16:49:23 +00002310 if (Ops.size() == 1) return Ops[0];
2311 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002312
2313 // Find the first UMax
2314 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2315 ++Idx;
2316
2317 // Check to see if one of the operands is a UMax. If so, expand its operands
2318 // onto our operand list, and recurse to simplify.
2319 if (Idx < Ops.size()) {
2320 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002321 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002322 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002323 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002324 DeletedUMax = true;
2325 }
2326
2327 if (DeletedUMax)
2328 return getUMaxExpr(Ops);
2329 }
2330
2331 // Okay, check to see if the same value occurs in the operand list twice. If
2332 // so, delete one. Since we sorted the list, these values are required to
2333 // be adjacent.
2334 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002335 // X umax Y umax Y --> X umax Y
2336 // X umax Y --> X, if X is always greater than Y
2337 if (Ops[i] == Ops[i+1] ||
2338 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2339 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2340 --i; --e;
2341 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002342 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2343 --i; --e;
2344 }
2345
2346 if (Ops.size() == 1) return Ops[0];
2347
2348 assert(!Ops.empty() && "Reduced umax down to nothing!");
2349
2350 // Okay, it looks like we really DO need a umax expr. Check to see if we
2351 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002352 FoldingSetNodeID ID;
2353 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002354 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2355 ID.AddPointer(Ops[i]);
2356 void *IP = 0;
2357 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002358 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2359 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002360 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2361 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002362 UniqueSCEVs.InsertNode(S, IP);
2363 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002364}
2365
Dan Gohman9311ef62009-06-24 14:49:00 +00002366const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2367 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002368 // ~smax(~x, ~y) == smin(x, y).
2369 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2370}
2371
Dan Gohman9311ef62009-06-24 14:49:00 +00002372const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2373 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002374 // ~umax(~x, ~y) == umin(x, y)
2375 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2376}
2377
Dan Gohman4f8eea82010-02-01 18:27:38 +00002378const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002379 // If we have TargetData, we can bypass creating a target-independent
2380 // constant expression and then folding it back into a ConstantInt.
2381 // This is just a compile-time optimization.
2382 if (TD)
2383 return getConstant(TD->getIntPtrType(getContext()),
2384 TD->getTypeAllocSize(AllocTy));
2385
Dan Gohman4f8eea82010-02-01 18:27:38 +00002386 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002388 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2389 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002390 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2391 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2392}
2393
2394const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2395 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2396 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002397 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2398 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002399 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2400 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2401}
2402
2403const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2404 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002405 // If we have TargetData, we can bypass creating a target-independent
2406 // constant expression and then folding it back into a ConstantInt.
2407 // This is just a compile-time optimization.
2408 if (TD)
2409 return getConstant(TD->getIntPtrType(getContext()),
2410 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2411
Dan Gohman0f5efe52010-01-28 02:15:55 +00002412 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2413 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002414 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2415 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002416 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002417 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002418}
2419
Dan Gohman4f8eea82010-02-01 18:27:38 +00002420const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2421 Constant *FieldNo) {
2422 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002423 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002424 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2425 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002426 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002427 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002428}
2429
Dan Gohman0bba49c2009-07-07 17:06:11 +00002430const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002431 // Don't attempt to do anything other than create a SCEVUnknown object
2432 // here. createSCEV only calls getUnknown after checking for all other
2433 // interesting possibilities, and any other code that calls getUnknown
2434 // is doing so in order to hide a value from SCEV canonicalization.
2435
Dan Gohman1c343752009-06-27 21:21:31 +00002436 FoldingSetNodeID ID;
2437 ID.AddInteger(scUnknown);
2438 ID.AddPointer(V);
2439 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002440 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2441 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2442 "Stale SCEVUnknown in uniquing map!");
2443 return S;
2444 }
2445 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2446 FirstUnknown);
2447 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002448 UniqueSCEVs.InsertNode(S, IP);
2449 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002450}
2451
Chris Lattner53e677a2004-04-02 20:23:17 +00002452//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002453// Basic SCEV Analysis and PHI Idiom Recognition Code
2454//
2455
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002456/// isSCEVable - Test if values of the given type are analyzable within
2457/// the SCEV framework. This primarily includes integer types, and it
2458/// can optionally include pointer types if the ScalarEvolution class
2459/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002460bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002461 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002462 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002463}
2464
2465/// getTypeSizeInBits - Return the size in bits of the specified type,
2466/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002467uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002468 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2469
2470 // If we have a TargetData, use it!
2471 if (TD)
2472 return TD->getTypeSizeInBits(Ty);
2473
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002474 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002475 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002476 return Ty->getPrimitiveSizeInBits();
2477
2478 // The only other support type is pointer. Without TargetData, conservatively
2479 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002480 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002481 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002482}
2483
2484/// getEffectiveSCEVType - Return a type with the same bitwidth as
2485/// the given type and which represents how SCEV will treat the given
2486/// type, for which isSCEVable must return true. For pointer types,
2487/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002488const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002489 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2490
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002491 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002492 return Ty;
2493
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002494 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002495 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002496 if (TD) return TD->getIntPtrType(getContext());
2497
2498 // Without TargetData, conservatively assume pointers are 64-bit.
2499 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002500}
Chris Lattner53e677a2004-04-02 20:23:17 +00002501
Dan Gohman0bba49c2009-07-07 17:06:11 +00002502const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002503 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002504}
2505
Chris Lattner53e677a2004-04-02 20:23:17 +00002506/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2507/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002508const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002509 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002510
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002511 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2512 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002513 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002514
2515 // The process of creating a SCEV for V may have caused other SCEVs
2516 // to have been created, so it's necessary to insert the new entry
2517 // from scratch, rather than trying to remember the insert position
2518 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002519 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002520 return S;
2521}
2522
Dan Gohman2d1be872009-04-16 03:18:22 +00002523/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2524///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002525const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002526 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002527 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002528 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002529
2530 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002531 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002532 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002533 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002534}
2535
2536/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002537const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002538 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002539 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002540 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002541
2542 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002543 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002544 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002545 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002546 return getMinusSCEV(AllOnes, V);
2547}
2548
2549/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2550///
Dan Gohman9311ef62009-06-24 14:49:00 +00002551const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2552 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002553 // Fast path: X - X --> 0.
2554 if (LHS == RHS)
2555 return getConstant(LHS->getType(), 0);
2556
Dan Gohman2d1be872009-04-16 03:18:22 +00002557 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002558 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002559}
2560
2561/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2562/// input value to the specified type. If the type must be extended, it is zero
2563/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002564const SCEV *
2565ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002566 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002567 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002568 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2569 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002570 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002571 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002572 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002573 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002574 return getTruncateExpr(V, Ty);
2575 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002576}
2577
2578/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2579/// input value to the specified type. If the type must be extended, it is sign
2580/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002581const SCEV *
2582ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002583 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002584 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002585 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2586 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002587 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002588 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002589 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002590 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002591 return getTruncateExpr(V, Ty);
2592 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002593}
2594
Dan Gohman467c4302009-05-13 03:46:30 +00002595/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2596/// input value to the specified type. If the type must be extended, it is zero
2597/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002598const SCEV *
2599ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002600 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002601 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2602 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002603 "Cannot noop or zero extend with non-integer arguments!");
2604 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2605 "getNoopOrZeroExtend cannot truncate!");
2606 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2607 return V; // No conversion
2608 return getZeroExtendExpr(V, Ty);
2609}
2610
2611/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2612/// input value to the specified type. If the type must be extended, it is sign
2613/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002614const SCEV *
2615ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002616 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002617 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2618 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002619 "Cannot noop or sign extend with non-integer arguments!");
2620 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2621 "getNoopOrSignExtend cannot truncate!");
2622 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2623 return V; // No conversion
2624 return getSignExtendExpr(V, Ty);
2625}
2626
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002627/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2628/// the input value to the specified type. If the type must be extended,
2629/// it is extended with unspecified bits. The conversion must not be
2630/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002631const SCEV *
2632ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002633 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002634 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2635 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002636 "Cannot noop or any extend with non-integer arguments!");
2637 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2638 "getNoopOrAnyExtend cannot truncate!");
2639 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2640 return V; // No conversion
2641 return getAnyExtendExpr(V, Ty);
2642}
2643
Dan Gohman467c4302009-05-13 03:46:30 +00002644/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2645/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002646const SCEV *
2647ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002648 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002649 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2650 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002651 "Cannot truncate or noop with non-integer arguments!");
2652 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2653 "getTruncateOrNoop cannot extend!");
2654 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2655 return V; // No conversion
2656 return getTruncateExpr(V, Ty);
2657}
2658
Dan Gohmana334aa72009-06-22 00:31:57 +00002659/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2660/// the types using zero-extension, and then perform a umax operation
2661/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002662const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2663 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002664 const SCEV *PromotedLHS = LHS;
2665 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002666
2667 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2668 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2669 else
2670 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2671
2672 return getUMaxExpr(PromotedLHS, PromotedRHS);
2673}
2674
Dan Gohmanc9759e82009-06-22 15:03:27 +00002675/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2676/// the types using zero-extension, and then perform a umin operation
2677/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002678const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2679 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002680 const SCEV *PromotedLHS = LHS;
2681 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002682
2683 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2684 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2685 else
2686 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2687
2688 return getUMinExpr(PromotedLHS, PromotedRHS);
2689}
2690
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002691/// PushDefUseChildren - Push users of the given Instruction
2692/// onto the given Worklist.
2693static void
2694PushDefUseChildren(Instruction *I,
2695 SmallVectorImpl<Instruction *> &Worklist) {
2696 // Push the def-use children onto the Worklist stack.
2697 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2698 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002699 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002700}
2701
2702/// ForgetSymbolicValue - This looks up computed SCEV values for all
2703/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002704/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002705/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002706void
Dan Gohman85669632010-02-25 06:57:05 +00002707ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002708 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002709 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002710
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002711 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002712 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002713 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002714 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002715 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002716
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002717 ValueExprMapType::iterator It =
2718 ValueExprMap.find(static_cast<Value *>(I));
2719 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002720 const SCEV *Old = It->second;
2721
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002722 // Short-circuit the def-use traversal if the symbolic name
2723 // ceases to appear in expressions.
Dan Gohman6678e7b2010-11-17 02:44:44 +00002724 if (Old != SymName && !Old->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002725 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002726
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002727 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002728 // structure, it's a PHI that's in the progress of being computed
2729 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2730 // additional loop trip count information isn't going to change anything.
2731 // In the second case, createNodeForPHI will perform the necessary
2732 // updates on its own when it gets to that point. In the third, we do
2733 // want to forget the SCEVUnknown.
2734 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002735 !isa<SCEVUnknown>(Old) ||
2736 (I != PN && Old == SymName)) {
2737 ValuesAtScopes.erase(Old);
2738 UnsignedRanges.erase(Old);
2739 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002740 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002741 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002742 }
2743
2744 PushDefUseChildren(I, Worklist);
2745 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002746}
Chris Lattner53e677a2004-04-02 20:23:17 +00002747
2748/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2749/// a loop header, making it a potential recurrence, or it doesn't.
2750///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002751const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002752 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2753 if (L->getHeader() == PN->getParent()) {
2754 // The loop may have multiple entrances or multiple exits; we can analyze
2755 // this phi as an addrec if it has a unique entry value and a unique
2756 // backedge value.
2757 Value *BEValueV = 0, *StartValueV = 0;
2758 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2759 Value *V = PN->getIncomingValue(i);
2760 if (L->contains(PN->getIncomingBlock(i))) {
2761 if (!BEValueV) {
2762 BEValueV = V;
2763 } else if (BEValueV != V) {
2764 BEValueV = 0;
2765 break;
2766 }
2767 } else if (!StartValueV) {
2768 StartValueV = V;
2769 } else if (StartValueV != V) {
2770 StartValueV = 0;
2771 break;
2772 }
2773 }
2774 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002775 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002776 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002777 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002778 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002779 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002780
2781 // Using this symbolic name for the PHI, analyze the value coming around
2782 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002783 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002784
2785 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2786 // has a special value for the first iteration of the loop.
2787
2788 // If the value coming around the backedge is an add with the symbolic
2789 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002790 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002791 // If there is a single occurrence of the symbolic value, replace it
2792 // with a recurrence.
2793 unsigned FoundIndex = Add->getNumOperands();
2794 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2795 if (Add->getOperand(i) == SymbolicName)
2796 if (FoundIndex == e) {
2797 FoundIndex = i;
2798 break;
2799 }
2800
2801 if (FoundIndex != Add->getNumOperands()) {
2802 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002803 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002804 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2805 if (i != FoundIndex)
2806 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002807 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002808
2809 // This is not a valid addrec if the step amount is varying each
2810 // loop iteration, but is not itself an addrec in this loop.
2811 if (Accum->isLoopInvariant(L) ||
2812 (isa<SCEVAddRecExpr>(Accum) &&
2813 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002814 bool HasNUW = false;
2815 bool HasNSW = false;
2816
2817 // If the increment doesn't overflow, then neither the addrec nor
2818 // the post-increment will overflow.
2819 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2820 if (OBO->hasNoUnsignedWrap())
2821 HasNUW = true;
2822 if (OBO->hasNoSignedWrap())
2823 HasNSW = true;
2824 }
2825
Dan Gohman27dead42010-04-12 07:49:36 +00002826 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002827 const SCEV *PHISCEV =
2828 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002829
Dan Gohmana10756e2010-01-21 02:09:26 +00002830 // Since the no-wrap flags are on the increment, they apply to the
2831 // post-incremented value as well.
2832 if (Accum->isLoopInvariant(L))
2833 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2834 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002835
2836 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002837 // to be symbolic. We now need to go back and purge all of the
2838 // entries for the scalars that use the symbolic expression.
2839 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002840 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002841 return PHISCEV;
2842 }
2843 }
Dan Gohman622ed672009-05-04 22:02:23 +00002844 } else if (const SCEVAddRecExpr *AddRec =
2845 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002846 // Otherwise, this could be a loop like this:
2847 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2848 // In this case, j = {1,+,1} and BEValue is j.
2849 // Because the other in-value of i (0) fits the evolution of BEValue
2850 // i really is an addrec evolution.
2851 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002852 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002853
2854 // If StartVal = j.start - j.stride, we can use StartVal as the
2855 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002856 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002857 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002858 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002859 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002860
2861 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002862 // to be symbolic. We now need to go back and purge all of the
2863 // entries for the scalars that use the symbolic expression.
2864 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002865 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002866 return PHISCEV;
2867 }
2868 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002869 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002870 }
Dan Gohman27dead42010-04-12 07:49:36 +00002871 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002872
Dan Gohman85669632010-02-25 06:57:05 +00002873 // If the PHI has a single incoming value, follow that value, unless the
2874 // PHI's incoming blocks are in a different loop, in which case doing so
2875 // risks breaking LCSSA form. Instcombine would normally zap these, but
2876 // it doesn't have DominatorTree information, so it may miss cases.
2877 if (Value *V = PN->hasConstantValue(DT)) {
2878 bool AllSameLoop = true;
2879 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2880 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2881 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2882 AllSameLoop = false;
2883 break;
2884 }
2885 if (AllSameLoop)
2886 return getSCEV(V);
2887 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002888
Chris Lattner53e677a2004-04-02 20:23:17 +00002889 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002890 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002891}
2892
Dan Gohman26466c02009-05-08 20:26:55 +00002893/// createNodeForGEP - Expand GEP instructions into add and multiply
2894/// operations. This allows them to be analyzed by regular SCEV code.
2895///
Dan Gohmand281ed22009-12-18 02:09:29 +00002896const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002897
Dan Gohmanb9f96512010-06-30 07:16:37 +00002898 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2899 // Add expression, because the Instruction may be guarded by control flow
2900 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002901 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002902
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002903 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002904 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002905 // Don't attempt to analyze GEPs over unsized objects.
2906 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2907 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002908 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002909 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002910 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002911 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002912 I != E; ++I) {
2913 Value *Index = *I;
2914 // Compute the (potentially symbolic) offset in bytes for this index.
2915 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2916 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002917 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002918 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2919
Dan Gohmanb9f96512010-06-30 07:16:37 +00002920 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002921 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002922 } else {
2923 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002924 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2925 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002926 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002927 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2928
Dan Gohmanb9f96512010-06-30 07:16:37 +00002929 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002930 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002931
2932 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002933 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002934 }
2935 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002936
2937 // Get the SCEV for the GEP base.
2938 const SCEV *BaseS = getSCEV(Base);
2939
Dan Gohmanb9f96512010-06-30 07:16:37 +00002940 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002941 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002942}
2943
Nick Lewycky83bb0052007-11-22 07:59:40 +00002944/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2945/// guaranteed to end in (at every loop iteration). It is, at the same time,
2946/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2947/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002948uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002949ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002950 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002951 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002952
Dan Gohman622ed672009-05-04 22:02:23 +00002953 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002954 return std::min(GetMinTrailingZeros(T->getOperand()),
2955 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002956
Dan Gohman622ed672009-05-04 22:02:23 +00002957 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002958 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2959 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2960 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002961 }
2962
Dan Gohman622ed672009-05-04 22:02:23 +00002963 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002964 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2965 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2966 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002967 }
2968
Dan Gohman622ed672009-05-04 22:02:23 +00002969 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002970 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002971 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002972 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002973 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002974 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002975 }
2976
Dan Gohman622ed672009-05-04 22:02:23 +00002977 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002978 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002979 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2980 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002981 for (unsigned i = 1, e = M->getNumOperands();
2982 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002983 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002984 BitWidth);
2985 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002986 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002987
Dan Gohman622ed672009-05-04 22:02:23 +00002988 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002989 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002990 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002991 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002992 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002993 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002994 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002995
Dan Gohman622ed672009-05-04 22:02:23 +00002996 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002997 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002998 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002999 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003000 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00003001 return MinOpRes;
3002 }
3003
Dan Gohman622ed672009-05-04 22:02:23 +00003004 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00003005 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003006 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00003007 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00003008 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00003009 return MinOpRes;
3010 }
3011
Dan Gohman2c364ad2009-06-19 23:29:04 +00003012 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3013 // For a SCEVUnknown, ask ValueTracking.
3014 unsigned BitWidth = getTypeSizeInBits(U->getType());
3015 APInt Mask = APInt::getAllOnesValue(BitWidth);
3016 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3017 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3018 return Zeros.countTrailingOnes();
3019 }
3020
3021 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00003022 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00003023}
Chris Lattner53e677a2004-04-02 20:23:17 +00003024
Dan Gohman85b05a22009-07-13 21:35:55 +00003025/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3026///
3027ConstantRange
3028ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003029 // See if we've computed this range already.
3030 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3031 if (I != UnsignedRanges.end())
3032 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003033
3034 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman6678e7b2010-11-17 02:44:44 +00003035 return UnsignedRanges[C] = ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00003036
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003037 unsigned BitWidth = getTypeSizeInBits(S->getType());
3038 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3039
3040 // If the value has known zeros, the maximum unsigned value will have those
3041 // known zeros as well.
3042 uint32_t TZ = GetMinTrailingZeros(S);
3043 if (TZ != 0)
3044 ConservativeResult =
3045 ConstantRange(APInt::getMinValue(BitWidth),
3046 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3047
Dan Gohman85b05a22009-07-13 21:35:55 +00003048 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3049 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3050 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3051 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman6678e7b2010-11-17 02:44:44 +00003052 return UnsignedRanges[Add] = ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003053 }
3054
3055 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3056 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3057 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3058 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman6678e7b2010-11-17 02:44:44 +00003059 return UnsignedRanges[Mul] = ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003060 }
3061
3062 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3063 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3064 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3065 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman6678e7b2010-11-17 02:44:44 +00003066 return UnsignedRanges[SMax] = ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003067 }
3068
3069 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3070 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3071 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3072 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman6678e7b2010-11-17 02:44:44 +00003073 return UnsignedRanges[UMax] = ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003074 }
3075
3076 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3077 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3078 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman6678e7b2010-11-17 02:44:44 +00003079 return UnsignedRanges[UDiv] = ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003080 }
3081
3082 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3083 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman6678e7b2010-11-17 02:44:44 +00003084 return UnsignedRanges[ZExt] =
3085 ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003086 }
3087
3088 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3089 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman6678e7b2010-11-17 02:44:44 +00003090 return UnsignedRanges[SExt] =
3091 ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003092 }
3093
3094 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3095 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman6678e7b2010-11-17 02:44:44 +00003096 return UnsignedRanges[Trunc] =
3097 ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003098 }
3099
Dan Gohman85b05a22009-07-13 21:35:55 +00003100 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003101 // If there's no unsigned wrap, the value will never be less than its
3102 // initial value.
3103 if (AddRec->hasNoUnsignedWrap())
3104 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003105 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003106 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003107 ConservativeResult.intersectWith(
3108 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003109
3110 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003111 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003112 const Type *Ty = AddRec->getType();
3113 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003114 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3115 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003116 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3117
3118 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003119 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003120
3121 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003122 ConstantRange StepRange = getSignedRange(Step);
3123 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3124 ConstantRange EndRange =
3125 StartRange.add(MaxBECountRange.multiply(StepRange));
3126
3127 // Check for overflow. This must be done with ConstantRange arithmetic
3128 // because we could be called from within the ScalarEvolution overflow
3129 // checking code.
3130 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3131 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3132 ConstantRange ExtMaxBECountRange =
3133 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3134 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3135 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3136 ExtEndRange)
Dan Gohman6678e7b2010-11-17 02:44:44 +00003137 return UnsignedRanges[AddRec] = ConservativeResult;
Dan Gohman646e0472010-04-12 07:39:33 +00003138
Dan Gohman85b05a22009-07-13 21:35:55 +00003139 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3140 EndRange.getUnsignedMin());
3141 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3142 EndRange.getUnsignedMax());
3143 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman6678e7b2010-11-17 02:44:44 +00003144 return UnsignedRanges[AddRec] = ConservativeResult;
3145 return UnsignedRanges[AddRec] =
3146 ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003147 }
3148 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003149
Dan Gohman6678e7b2010-11-17 02:44:44 +00003150 return UnsignedRanges[AddRec] = ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003151 }
3152
3153 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3154 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003155 APInt Mask = APInt::getAllOnesValue(BitWidth);
3156 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3157 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003158 if (Ones == ~Zeros + 1)
Dan Gohman6678e7b2010-11-17 02:44:44 +00003159 return UnsignedRanges[U] = ConservativeResult;
3160 return UnsignedRanges[U] =
3161 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003162 }
3163
Dan Gohman6678e7b2010-11-17 02:44:44 +00003164 return UnsignedRanges[S] = ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003165}
3166
Dan Gohman85b05a22009-07-13 21:35:55 +00003167/// getSignedRange - Determine the signed range for a particular SCEV.
3168///
3169ConstantRange
3170ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003171 // See if we've computed this range already.
3172 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3173 if (I != SignedRanges.end())
3174 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003175
Dan Gohman85b05a22009-07-13 21:35:55 +00003176 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman6678e7b2010-11-17 02:44:44 +00003177 return SignedRanges[C] = ConstantRange(C->getValue()->getValue());
Dan Gohman85b05a22009-07-13 21:35:55 +00003178
Dan Gohman52fddd32010-01-26 04:40:18 +00003179 unsigned BitWidth = getTypeSizeInBits(S->getType());
3180 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3181
3182 // If the value has known zeros, the maximum signed value will have those
3183 // known zeros as well.
3184 uint32_t TZ = GetMinTrailingZeros(S);
3185 if (TZ != 0)
3186 ConservativeResult =
3187 ConstantRange(APInt::getSignedMinValue(BitWidth),
3188 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3189
Dan Gohman85b05a22009-07-13 21:35:55 +00003190 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3191 ConstantRange X = getSignedRange(Add->getOperand(0));
3192 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3193 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman6678e7b2010-11-17 02:44:44 +00003194 return SignedRanges[Add] = ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003195 }
3196
Dan Gohman85b05a22009-07-13 21:35:55 +00003197 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3198 ConstantRange X = getSignedRange(Mul->getOperand(0));
3199 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3200 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman6678e7b2010-11-17 02:44:44 +00003201 return SignedRanges[Mul] = ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003202 }
3203
Dan Gohman85b05a22009-07-13 21:35:55 +00003204 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3205 ConstantRange X = getSignedRange(SMax->getOperand(0));
3206 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3207 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman6678e7b2010-11-17 02:44:44 +00003208 return SignedRanges[SMax] = ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003209 }
Dan Gohman62849c02009-06-24 01:05:09 +00003210
Dan Gohman85b05a22009-07-13 21:35:55 +00003211 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3212 ConstantRange X = getSignedRange(UMax->getOperand(0));
3213 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3214 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman6678e7b2010-11-17 02:44:44 +00003215 return SignedRanges[UMax] = ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003216 }
Dan Gohman62849c02009-06-24 01:05:09 +00003217
Dan Gohman85b05a22009-07-13 21:35:55 +00003218 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3219 ConstantRange X = getSignedRange(UDiv->getLHS());
3220 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman6678e7b2010-11-17 02:44:44 +00003221 return SignedRanges[UDiv] = ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003222 }
Dan Gohman62849c02009-06-24 01:05:09 +00003223
Dan Gohman85b05a22009-07-13 21:35:55 +00003224 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3225 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman6678e7b2010-11-17 02:44:44 +00003226 return SignedRanges[ZExt] =
3227 ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003228 }
3229
3230 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3231 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman6678e7b2010-11-17 02:44:44 +00003232 return SignedRanges[SExt] =
3233 ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003234 }
3235
3236 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3237 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman6678e7b2010-11-17 02:44:44 +00003238 return SignedRanges[Trunc] =
3239 ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003240 }
3241
Dan Gohman85b05a22009-07-13 21:35:55 +00003242 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003243 // If there's no signed wrap, and all the operands have the same sign or
3244 // zero, the value won't ever change sign.
3245 if (AddRec->hasNoSignedWrap()) {
3246 bool AllNonNeg = true;
3247 bool AllNonPos = true;
3248 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3249 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3250 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3251 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003252 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003253 ConservativeResult = ConservativeResult.intersectWith(
3254 ConstantRange(APInt(BitWidth, 0),
3255 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003256 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003257 ConservativeResult = ConservativeResult.intersectWith(
3258 ConstantRange(APInt::getSignedMinValue(BitWidth),
3259 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003260 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003261
3262 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003263 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003264 const Type *Ty = AddRec->getType();
3265 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003266 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3267 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003268 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3269
3270 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003271 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003272
3273 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003274 ConstantRange StepRange = getSignedRange(Step);
3275 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3276 ConstantRange EndRange =
3277 StartRange.add(MaxBECountRange.multiply(StepRange));
3278
3279 // Check for overflow. This must be done with ConstantRange arithmetic
3280 // because we could be called from within the ScalarEvolution overflow
3281 // checking code.
3282 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3283 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3284 ConstantRange ExtMaxBECountRange =
3285 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3286 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3287 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3288 ExtEndRange)
Dan Gohman6678e7b2010-11-17 02:44:44 +00003289 return SignedRanges[AddRec] = ConservativeResult;
Dan Gohman646e0472010-04-12 07:39:33 +00003290
Dan Gohman85b05a22009-07-13 21:35:55 +00003291 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3292 EndRange.getSignedMin());
3293 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3294 EndRange.getSignedMax());
3295 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman6678e7b2010-11-17 02:44:44 +00003296 return SignedRanges[AddRec] = ConservativeResult;
3297 return SignedRanges[AddRec] =
3298 ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003299 }
Dan Gohman62849c02009-06-24 01:05:09 +00003300 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003301
Dan Gohman6678e7b2010-11-17 02:44:44 +00003302 return SignedRanges[AddRec] = ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003303 }
3304
Dan Gohman2c364ad2009-06-19 23:29:04 +00003305 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3306 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003307 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman6678e7b2010-11-17 02:44:44 +00003308 return SignedRanges[U] = ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003309 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3310 if (NS == 1)
Dan Gohman6678e7b2010-11-17 02:44:44 +00003311 return SignedRanges[U] = ConservativeResult;
3312 return SignedRanges[U] = ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003313 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003314 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003315 }
3316
Dan Gohman6678e7b2010-11-17 02:44:44 +00003317 return SignedRanges[S] = ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003318}
3319
Chris Lattner53e677a2004-04-02 20:23:17 +00003320/// createSCEV - We know that there is no SCEV for the specified value.
3321/// Analyze the expression.
3322///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003323const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003324 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003325 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003326
Dan Gohman6c459a22008-06-22 19:56:46 +00003327 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003328 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003329 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003330
3331 // Don't attempt to analyze instructions in blocks that aren't
3332 // reachable. Such instructions don't matter, and they aren't required
3333 // to obey basic rules for definitions dominating uses which this
3334 // analysis depends on.
3335 if (!DT->isReachableFromEntry(I->getParent()))
3336 return getUnknown(V);
3337 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003338 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003339 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3340 return getConstant(CI);
3341 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003342 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003343 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3344 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003345 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003346 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003347
Dan Gohmanca178902009-07-17 20:47:02 +00003348 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003349 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003350 case Instruction::Add: {
3351 // The simple thing to do would be to just call getSCEV on both operands
3352 // and call getAddExpr with the result. However if we're looking at a
3353 // bunch of things all added together, this can be quite inefficient,
3354 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3355 // Instead, gather up all the operands and make a single getAddExpr call.
3356 // LLVM IR canonical form means we need only traverse the left operands.
3357 SmallVector<const SCEV *, 4> AddOps;
3358 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003359 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3360 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3361 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3362 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003363 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003364 const SCEV *Op1 = getSCEV(U->getOperand(1));
3365 if (Opcode == Instruction::Sub)
3366 AddOps.push_back(getNegativeSCEV(Op1));
3367 else
3368 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003369 }
3370 AddOps.push_back(getSCEV(U->getOperand(0)));
3371 return getAddExpr(AddOps);
3372 }
3373 case Instruction::Mul: {
3374 // See the Add code above.
3375 SmallVector<const SCEV *, 4> MulOps;
3376 MulOps.push_back(getSCEV(U->getOperand(1)));
3377 for (Value *Op = U->getOperand(0);
3378 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3379 Op = U->getOperand(0)) {
3380 U = cast<Operator>(Op);
3381 MulOps.push_back(getSCEV(U->getOperand(1)));
3382 }
3383 MulOps.push_back(getSCEV(U->getOperand(0)));
3384 return getMulExpr(MulOps);
3385 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003386 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003387 return getUDivExpr(getSCEV(U->getOperand(0)),
3388 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003389 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003390 return getMinusSCEV(getSCEV(U->getOperand(0)),
3391 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003392 case Instruction::And:
3393 // For an expression like x&255 that merely masks off the high bits,
3394 // use zext(trunc(x)) as the SCEV expression.
3395 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003396 if (CI->isNullValue())
3397 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003398 if (CI->isAllOnesValue())
3399 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003400 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003401
3402 // Instcombine's ShrinkDemandedConstant may strip bits out of
3403 // constants, obscuring what would otherwise be a low-bits mask.
3404 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3405 // knew about to reconstruct a low-bits mask value.
3406 unsigned LZ = A.countLeadingZeros();
3407 unsigned BitWidth = A.getBitWidth();
3408 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3409 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3410 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3411
3412 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3413
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003414 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003415 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003416 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003417 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003418 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003419 }
3420 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003421
Dan Gohman6c459a22008-06-22 19:56:46 +00003422 case Instruction::Or:
3423 // If the RHS of the Or is a constant, we may have something like:
3424 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3425 // optimizations will transparently handle this case.
3426 //
3427 // In order for this transformation to be safe, the LHS must be of the
3428 // form X*(2^n) and the Or constant must be less than 2^n.
3429 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003430 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003431 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003432 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003433 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3434 // Build a plain add SCEV.
3435 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3436 // If the LHS of the add was an addrec and it has no-wrap flags,
3437 // transfer the no-wrap flags, since an or won't introduce a wrap.
3438 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3439 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3440 if (OldAR->hasNoUnsignedWrap())
3441 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3442 if (OldAR->hasNoSignedWrap())
3443 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3444 }
3445 return S;
3446 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003447 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003448 break;
3449 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003450 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003451 // If the RHS of the xor is a signbit, then this is just an add.
3452 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003453 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003454 return getAddExpr(getSCEV(U->getOperand(0)),
3455 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003456
3457 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003458 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003459 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003460
3461 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3462 // This is a variant of the check for xor with -1, and it handles
3463 // the case where instcombine has trimmed non-demanded bits out
3464 // of an xor with -1.
3465 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3466 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3467 if (BO->getOpcode() == Instruction::And &&
3468 LCI->getValue() == CI->getValue())
3469 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003470 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003471 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003472 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003473 const Type *Z0Ty = Z0->getType();
3474 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3475
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003476 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003477 // mask off the high bits. Complement the operand and
3478 // re-apply the zext.
3479 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3480 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3481
3482 // If C is a single bit, it may be in the sign-bit position
3483 // before the zero-extend. In this case, represent the xor
3484 // using an add, which is equivalent, and re-apply the zext.
3485 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3486 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3487 Trunc.isSignBit())
3488 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3489 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003490 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003491 }
3492 break;
3493
3494 case Instruction::Shl:
3495 // Turn shift left of a constant amount into a multiply.
3496 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003497 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003498
3499 // If the shift count is not less than the bitwidth, the result of
3500 // the shift is undefined. Don't try to analyze it, because the
3501 // resolution chosen here may differ from the resolution chosen in
3502 // other parts of the compiler.
3503 if (SA->getValue().uge(BitWidth))
3504 break;
3505
Owen Andersoneed707b2009-07-24 23:12:02 +00003506 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003507 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003508 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003509 }
3510 break;
3511
Nick Lewycky01eaf802008-07-07 06:15:49 +00003512 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003513 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003514 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003515 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003516
3517 // If the shift count is not less than the bitwidth, the result of
3518 // the shift is undefined. Don't try to analyze it, because the
3519 // resolution chosen here may differ from the resolution chosen in
3520 // other parts of the compiler.
3521 if (SA->getValue().uge(BitWidth))
3522 break;
3523
Owen Andersoneed707b2009-07-24 23:12:02 +00003524 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003525 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003526 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003527 }
3528 break;
3529
Dan Gohman4ee29af2009-04-21 02:26:00 +00003530 case Instruction::AShr:
3531 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3532 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003533 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003534 if (L->getOpcode() == Instruction::Shl &&
3535 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003536 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3537
3538 // If the shift count is not less than the bitwidth, the result of
3539 // the shift is undefined. Don't try to analyze it, because the
3540 // resolution chosen here may differ from the resolution chosen in
3541 // other parts of the compiler.
3542 if (CI->getValue().uge(BitWidth))
3543 break;
3544
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003545 uint64_t Amt = BitWidth - CI->getZExtValue();
3546 if (Amt == BitWidth)
3547 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003548 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003549 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003550 IntegerType::get(getContext(),
3551 Amt)),
3552 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003553 }
3554 break;
3555
Dan Gohman6c459a22008-06-22 19:56:46 +00003556 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003557 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003558
3559 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003560 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003561
3562 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003563 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003564
3565 case Instruction::BitCast:
3566 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003567 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003568 return getSCEV(U->getOperand(0));
3569 break;
3570
Dan Gohman4f8eea82010-02-01 18:27:38 +00003571 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3572 // lead to pointer expressions which cannot safely be expanded to GEPs,
3573 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3574 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003575
Dan Gohman26466c02009-05-08 20:26:55 +00003576 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003577 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003578
Dan Gohman6c459a22008-06-22 19:56:46 +00003579 case Instruction::PHI:
3580 return createNodeForPHI(cast<PHINode>(U));
3581
3582 case Instruction::Select:
3583 // This could be a smax or umax that was lowered earlier.
3584 // Try to recover it.
3585 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3586 Value *LHS = ICI->getOperand(0);
3587 Value *RHS = ICI->getOperand(1);
3588 switch (ICI->getPredicate()) {
3589 case ICmpInst::ICMP_SLT:
3590 case ICmpInst::ICMP_SLE:
3591 std::swap(LHS, RHS);
3592 // fall through
3593 case ICmpInst::ICMP_SGT:
3594 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003595 // a >s b ? a+x : b+x -> smax(a, b)+x
3596 // a >s b ? b+x : a+x -> smin(a, b)+x
3597 if (LHS->getType() == U->getType()) {
3598 const SCEV *LS = getSCEV(LHS);
3599 const SCEV *RS = getSCEV(RHS);
3600 const SCEV *LA = getSCEV(U->getOperand(1));
3601 const SCEV *RA = getSCEV(U->getOperand(2));
3602 const SCEV *LDiff = getMinusSCEV(LA, LS);
3603 const SCEV *RDiff = getMinusSCEV(RA, RS);
3604 if (LDiff == RDiff)
3605 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3606 LDiff = getMinusSCEV(LA, RS);
3607 RDiff = getMinusSCEV(RA, LS);
3608 if (LDiff == RDiff)
3609 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3610 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003611 break;
3612 case ICmpInst::ICMP_ULT:
3613 case ICmpInst::ICMP_ULE:
3614 std::swap(LHS, RHS);
3615 // fall through
3616 case ICmpInst::ICMP_UGT:
3617 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003618 // a >u b ? a+x : b+x -> umax(a, b)+x
3619 // a >u b ? b+x : a+x -> umin(a, b)+x
3620 if (LHS->getType() == U->getType()) {
3621 const SCEV *LS = getSCEV(LHS);
3622 const SCEV *RS = getSCEV(RHS);
3623 const SCEV *LA = getSCEV(U->getOperand(1));
3624 const SCEV *RA = getSCEV(U->getOperand(2));
3625 const SCEV *LDiff = getMinusSCEV(LA, LS);
3626 const SCEV *RDiff = getMinusSCEV(RA, RS);
3627 if (LDiff == RDiff)
3628 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3629 LDiff = getMinusSCEV(LA, RS);
3630 RDiff = getMinusSCEV(RA, LS);
3631 if (LDiff == RDiff)
3632 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3633 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003634 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003635 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003636 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3637 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003638 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003639 cast<ConstantInt>(RHS)->isZero()) {
3640 const SCEV *One = getConstant(LHS->getType(), 1);
3641 const SCEV *LS = getSCEV(LHS);
3642 const SCEV *LA = getSCEV(U->getOperand(1));
3643 const SCEV *RA = getSCEV(U->getOperand(2));
3644 const SCEV *LDiff = getMinusSCEV(LA, LS);
3645 const SCEV *RDiff = getMinusSCEV(RA, One);
3646 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003647 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003648 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003649 break;
3650 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003651 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3652 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003653 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003654 cast<ConstantInt>(RHS)->isZero()) {
3655 const SCEV *One = getConstant(LHS->getType(), 1);
3656 const SCEV *LS = getSCEV(LHS);
3657 const SCEV *LA = getSCEV(U->getOperand(1));
3658 const SCEV *RA = getSCEV(U->getOperand(2));
3659 const SCEV *LDiff = getMinusSCEV(LA, One);
3660 const SCEV *RDiff = getMinusSCEV(RA, LS);
3661 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003662 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003663 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003664 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003665 default:
3666 break;
3667 }
3668 }
3669
3670 default: // We cannot analyze this expression.
3671 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003672 }
3673
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003674 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003675}
3676
3677
3678
3679//===----------------------------------------------------------------------===//
3680// Iteration Count Computation Code
3681//
3682
Dan Gohman46bdfb02009-02-24 18:55:53 +00003683/// getBackedgeTakenCount - If the specified loop has a predictable
3684/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3685/// object. The backedge-taken count is the number of times the loop header
3686/// will be branched to from within the loop. This is one less than the
3687/// trip count of the loop, since it doesn't count the first iteration,
3688/// when the header is branched to from outside the loop.
3689///
3690/// Note that it is not valid to call this method on a loop without a
3691/// loop-invariant backedge-taken count (see
3692/// hasLoopInvariantBackedgeTakenCount).
3693///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003694const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003695 return getBackedgeTakenInfo(L).Exact;
3696}
3697
3698/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3699/// return the least SCEV value that is known never to be less than the
3700/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003701const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003702 return getBackedgeTakenInfo(L).Max;
3703}
3704
Dan Gohman59ae6b92009-07-08 19:23:34 +00003705/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3706/// onto the given Worklist.
3707static void
3708PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3709 BasicBlock *Header = L->getHeader();
3710
3711 // Push all Loop-header PHIs onto the Worklist stack.
3712 for (BasicBlock::iterator I = Header->begin();
3713 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3714 Worklist.push_back(PN);
3715}
3716
Dan Gohmana1af7572009-04-30 20:47:05 +00003717const ScalarEvolution::BackedgeTakenInfo &
3718ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003719 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003720 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003721 // update the value. The temporary CouldNotCompute value tells SCEV
3722 // code elsewhere that it shouldn't attempt to request a new
3723 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003724 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003725 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3726 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003727 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3728 if (BECount.Exact != getCouldNotCompute()) {
3729 assert(BECount.Exact->isLoopInvariant(L) &&
3730 BECount.Max->isLoopInvariant(L) &&
3731 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003732 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003733
Dan Gohman01ecca22009-04-27 20:16:15 +00003734 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003735 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003736 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003737 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003738 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003739 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003740 if (isa<PHINode>(L->getHeader()->begin()))
3741 // Only count loops that have phi nodes as not being computable.
3742 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003743 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003744
3745 // Now that we know more about the trip count for this loop, forget any
3746 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003747 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003748 // information. This is similar to the code in forgetLoop, except that
3749 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003750 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003751 SmallVector<Instruction *, 16> Worklist;
3752 PushLoopPHIs(L, Worklist);
3753
3754 SmallPtrSet<Instruction *, 8> Visited;
3755 while (!Worklist.empty()) {
3756 Instruction *I = Worklist.pop_back_val();
3757 if (!Visited.insert(I)) continue;
3758
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003759 ValueExprMapType::iterator It =
3760 ValueExprMap.find(static_cast<Value *>(I));
3761 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003762 const SCEV *Old = It->second;
3763
Dan Gohman59ae6b92009-07-08 19:23:34 +00003764 // SCEVUnknown for a PHI either means that it has an unrecognized
3765 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003766 // by createNodeForPHI. In the former case, additional loop trip
3767 // count information isn't going to change anything. In the later
3768 // case, createNodeForPHI will perform the necessary updates on its
3769 // own when it gets to that point.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003770 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3771 ValuesAtScopes.erase(Old);
3772 UnsignedRanges.erase(Old);
3773 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003774 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003775 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003776 if (PHINode *PN = dyn_cast<PHINode>(I))
3777 ConstantEvolutionLoopExitValue.erase(PN);
3778 }
3779
3780 PushDefUseChildren(I, Worklist);
3781 }
3782 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003783 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003784 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003785}
3786
Dan Gohman4c7279a2009-10-31 15:04:55 +00003787/// forgetLoop - This method should be called by the client when it has
3788/// changed a loop in a way that may effect ScalarEvolution's ability to
3789/// compute a trip count, or if the loop is deleted.
3790void ScalarEvolution::forgetLoop(const Loop *L) {
3791 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003792 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003793
Dan Gohman4c7279a2009-10-31 15:04:55 +00003794 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003795 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003796 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003797
Dan Gohman59ae6b92009-07-08 19:23:34 +00003798 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003799 while (!Worklist.empty()) {
3800 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003801 if (!Visited.insert(I)) continue;
3802
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003803 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3804 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003805 const SCEV *Old = It->second;
3806 ValuesAtScopes.erase(Old);
3807 UnsignedRanges.erase(Old);
3808 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003809 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003810 if (PHINode *PN = dyn_cast<PHINode>(I))
3811 ConstantEvolutionLoopExitValue.erase(PN);
3812 }
3813
3814 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003815 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003816
3817 // Forget all contained loops too, to avoid dangling entries in the
3818 // ValuesAtScopes map.
3819 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3820 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003821}
3822
Eric Christophere6cbfa62010-07-29 01:25:38 +00003823/// forgetValue - This method should be called by the client when it has
3824/// changed a value in a way that may effect its value, or which may
3825/// disconnect it from a def-use chain linking it to a loop.
3826void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003827 Instruction *I = dyn_cast<Instruction>(V);
3828 if (!I) return;
3829
3830 // Drop information about expressions based on loop-header PHIs.
3831 SmallVector<Instruction *, 16> Worklist;
3832 Worklist.push_back(I);
3833
3834 SmallPtrSet<Instruction *, 8> Visited;
3835 while (!Worklist.empty()) {
3836 I = Worklist.pop_back_val();
3837 if (!Visited.insert(I)) continue;
3838
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003839 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3840 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003841 const SCEV *Old = It->second;
3842 ValuesAtScopes.erase(Old);
3843 UnsignedRanges.erase(Old);
3844 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003845 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003846 if (PHINode *PN = dyn_cast<PHINode>(I))
3847 ConstantEvolutionLoopExitValue.erase(PN);
3848 }
3849
3850 PushDefUseChildren(I, Worklist);
3851 }
3852}
3853
Dan Gohman46bdfb02009-02-24 18:55:53 +00003854/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3855/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003856ScalarEvolution::BackedgeTakenInfo
3857ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003858 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003859 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003860
Dan Gohmana334aa72009-06-22 00:31:57 +00003861 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003862 const SCEV *BECount = getCouldNotCompute();
3863 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003864 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003865 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3866 BackedgeTakenInfo NewBTI =
3867 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003868
Dan Gohman1c343752009-06-27 21:21:31 +00003869 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003870 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003871 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003872 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003873 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003874 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003875 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003876 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003877 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003878 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003879 }
Dan Gohman1c343752009-06-27 21:21:31 +00003880 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003881 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003882 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003883 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003884 }
3885
3886 return BackedgeTakenInfo(BECount, MaxBECount);
3887}
3888
3889/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3890/// of the specified loop will execute if it exits via the specified block.
3891ScalarEvolution::BackedgeTakenInfo
3892ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3893 BasicBlock *ExitingBlock) {
3894
3895 // Okay, we've chosen an exiting block. See what condition causes us to
3896 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003897 //
3898 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003899 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003900 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003901 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003902
Chris Lattner8b0e3602007-01-07 02:24:26 +00003903 // At this point, we know we have a conditional branch that determines whether
3904 // the loop is exited. However, we don't know if the branch is executed each
3905 // time through the loop. If not, then the execution count of the branch will
3906 // not be equal to the trip count of the loop.
3907 //
3908 // Currently we check for this by checking to see if the Exit branch goes to
3909 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003910 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003911 // loop header. This is common for un-rotated loops.
3912 //
3913 // If both of those tests fail, walk up the unique predecessor chain to the
3914 // header, stopping if there is an edge that doesn't exit the loop. If the
3915 // header is reached, the execution count of the branch will be equal to the
3916 // trip count of the loop.
3917 //
3918 // More extensive analysis could be done to handle more cases here.
3919 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003920 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003921 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003922 ExitBr->getParent() != L->getHeader()) {
3923 // The simple checks failed, try climbing the unique predecessor chain
3924 // up to the header.
3925 bool Ok = false;
3926 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3927 BasicBlock *Pred = BB->getUniquePredecessor();
3928 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003929 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003930 TerminatorInst *PredTerm = Pred->getTerminator();
3931 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3932 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3933 if (PredSucc == BB)
3934 continue;
3935 // If the predecessor has a successor that isn't BB and isn't
3936 // outside the loop, assume the worst.
3937 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003938 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003939 }
3940 if (Pred == L->getHeader()) {
3941 Ok = true;
3942 break;
3943 }
3944 BB = Pred;
3945 }
3946 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003947 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003948 }
3949
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003950 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003951 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3952 ExitBr->getSuccessor(0),
3953 ExitBr->getSuccessor(1));
3954}
3955
3956/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3957/// backedge of the specified loop will execute if its exit condition
3958/// were a conditional branch of ExitCond, TBB, and FBB.
3959ScalarEvolution::BackedgeTakenInfo
3960ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3961 Value *ExitCond,
3962 BasicBlock *TBB,
3963 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003964 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003965 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3966 if (BO->getOpcode() == Instruction::And) {
3967 // Recurse on the operands of the and.
3968 BackedgeTakenInfo BTI0 =
3969 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3970 BackedgeTakenInfo BTI1 =
3971 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003972 const SCEV *BECount = getCouldNotCompute();
3973 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003974 if (L->contains(TBB)) {
3975 // Both conditions must be true for the loop to continue executing.
3976 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003977 if (BTI0.Exact == getCouldNotCompute() ||
3978 BTI1.Exact == getCouldNotCompute())
3979 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003980 else
3981 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003982 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003983 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003984 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003985 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003986 else
3987 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003988 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003989 // Both conditions must be true at the same time for the loop to exit.
3990 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003991 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003992 if (BTI0.Max == BTI1.Max)
3993 MaxBECount = BTI0.Max;
3994 if (BTI0.Exact == BTI1.Exact)
3995 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003996 }
3997
3998 return BackedgeTakenInfo(BECount, MaxBECount);
3999 }
4000 if (BO->getOpcode() == Instruction::Or) {
4001 // Recurse on the operands of the or.
4002 BackedgeTakenInfo BTI0 =
4003 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
4004 BackedgeTakenInfo BTI1 =
4005 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00004006 const SCEV *BECount = getCouldNotCompute();
4007 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00004008 if (L->contains(FBB)) {
4009 // Both conditions must be false for the loop to continue executing.
4010 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00004011 if (BTI0.Exact == getCouldNotCompute() ||
4012 BTI1.Exact == getCouldNotCompute())
4013 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00004014 else
4015 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00004016 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004017 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00004018 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00004019 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00004020 else
4021 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00004022 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00004023 // Both conditions must be false at the same time for the loop to exit.
4024 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00004025 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00004026 if (BTI0.Max == BTI1.Max)
4027 MaxBECount = BTI0.Max;
4028 if (BTI0.Exact == BTI1.Exact)
4029 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00004030 }
4031
4032 return BackedgeTakenInfo(BECount, MaxBECount);
4033 }
4034 }
4035
4036 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00004037 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00004038 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4039 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004040
Dan Gohman00cb5b72010-02-19 18:12:07 +00004041 // Check for a constant condition. These are normally stripped out by
4042 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4043 // preserve the CFG and is temporarily leaving constant conditions
4044 // in place.
4045 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4046 if (L->contains(FBB) == !CI->getZExtValue())
4047 // The backedge is always taken.
4048 return getCouldNotCompute();
4049 else
4050 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00004051 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00004052 }
4053
Eli Friedman361e54d2009-05-09 12:32:42 +00004054 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00004055 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4056}
4057
4058/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4059/// backedge of the specified loop will execute if its exit condition
4060/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4061ScalarEvolution::BackedgeTakenInfo
4062ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4063 ICmpInst *ExitCond,
4064 BasicBlock *TBB,
4065 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004066
Reid Spencere4d87aa2006-12-23 06:05:41 +00004067 // If the condition was exit on true, convert the condition to exit on false
4068 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004069 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004070 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004071 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004072 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004073
4074 // Handle common loops like: for (X = "string"; *X; ++X)
4075 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4076 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004077 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004078 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004079 if (ItCnt.hasAnyInfo())
4080 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004081 }
4082
Dan Gohman0bba49c2009-07-07 17:06:11 +00004083 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4084 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004085
4086 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004087 LHS = getSCEVAtScope(LHS, L);
4088 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004089
Dan Gohman64a845e2009-06-24 04:48:43 +00004090 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004091 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004092 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4093 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004094 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004095 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004096 }
4097
Dan Gohman03557dc2010-05-03 16:35:17 +00004098 // Simplify the operands before analyzing them.
4099 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4100
Chris Lattner53e677a2004-04-02 20:23:17 +00004101 // If we have a comparison of a chrec against a constant, try to use value
4102 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004103 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4104 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004105 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004106 // Form the constant range.
4107 ConstantRange CompRange(
4108 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004109
Dan Gohman0bba49c2009-07-07 17:06:11 +00004110 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004111 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004112 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004113
Chris Lattner53e677a2004-04-02 20:23:17 +00004114 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004115 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004116 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004117 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4118 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004119 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004120 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004121 case ICmpInst::ICMP_EQ: { // while (X == Y)
4122 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004123 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4124 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004125 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004126 }
4127 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004128 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4129 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004130 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004131 }
4132 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004133 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4134 getNotSCEV(RHS), L, true);
4135 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004136 break;
4137 }
4138 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004139 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4140 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004141 break;
4142 }
4143 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004144 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4145 getNotSCEV(RHS), L, false);
4146 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004147 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004148 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004149 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004150#if 0
David Greene25e0e872009-12-23 22:18:14 +00004151 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004152 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004153 dbgs() << "[unsigned] ";
4154 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004155 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004156 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004157#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004158 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004159 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004160 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004161 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004162}
4163
Chris Lattner673e02b2004-10-12 01:49:27 +00004164static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004165EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4166 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004167 const SCEV *InVal = SE.getConstant(C);
4168 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004169 assert(isa<SCEVConstant>(Val) &&
4170 "Evaluation of SCEV at constant didn't fold correctly?");
4171 return cast<SCEVConstant>(Val)->getValue();
4172}
4173
4174/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4175/// and a GEP expression (missing the pointer index) indexing into it, return
4176/// the addressed element of the initializer or null if the index expression is
4177/// invalid.
4178static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004179GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004180 const std::vector<ConstantInt*> &Indices) {
4181 Constant *Init = GV->getInitializer();
4182 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004183 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004184 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4185 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4186 Init = cast<Constant>(CS->getOperand(Idx));
4187 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4188 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4189 Init = cast<Constant>(CA->getOperand(Idx));
4190 } else if (isa<ConstantAggregateZero>(Init)) {
4191 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4192 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004193 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004194 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4195 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004196 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004197 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004198 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004199 }
4200 return 0;
4201 } else {
4202 return 0; // Unknown initializer type
4203 }
4204 }
4205 return Init;
4206}
4207
Dan Gohman46bdfb02009-02-24 18:55:53 +00004208/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4209/// 'icmp op load X, cst', try to see if we can compute the backedge
4210/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004211ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004212ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4213 LoadInst *LI,
4214 Constant *RHS,
4215 const Loop *L,
4216 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004217 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004218
4219 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004220 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004221 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004222 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004223
4224 // Make sure that it is really a constant global we are gepping, with an
4225 // initializer, and make sure the first IDX is really 0.
4226 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004227 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004228 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4229 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004230 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004231
4232 // Okay, we allow one non-constant index into the GEP instruction.
4233 Value *VarIdx = 0;
4234 std::vector<ConstantInt*> Indexes;
4235 unsigned VarIdxNum = 0;
4236 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4237 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4238 Indexes.push_back(CI);
4239 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004240 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004241 VarIdx = GEP->getOperand(i);
4242 VarIdxNum = i-2;
4243 Indexes.push_back(0);
4244 }
4245
4246 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4247 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004248 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004249 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004250
4251 // We can only recognize very limited forms of loop index expressions, in
4252 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004253 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004254 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4255 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4256 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004257 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004258
4259 unsigned MaxSteps = MaxBruteForceIterations;
4260 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004261 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004262 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004263 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004264
4265 // Form the GEP offset.
4266 Indexes[VarIdxNum] = Val;
4267
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004268 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004269 if (Result == 0) break; // Cannot compute!
4270
4271 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004272 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004273 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004274 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004275#if 0
David Greene25e0e872009-12-23 22:18:14 +00004276 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004277 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4278 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004279#endif
4280 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004281 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004282 }
4283 }
Dan Gohman1c343752009-06-27 21:21:31 +00004284 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004285}
4286
4287
Chris Lattner3221ad02004-04-17 22:58:41 +00004288/// CanConstantFold - Return true if we can constant fold an instruction of the
4289/// specified type, assuming that all operands were constants.
4290static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004291 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004292 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4293 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004294
Chris Lattner3221ad02004-04-17 22:58:41 +00004295 if (const CallInst *CI = dyn_cast<CallInst>(I))
4296 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004297 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004298 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004299}
4300
Chris Lattner3221ad02004-04-17 22:58:41 +00004301/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4302/// in the loop that V is derived from. We allow arbitrary operations along the
4303/// way, but the operands of an operation must either be constants or a value
4304/// derived from a constant PHI. If this expression does not fit with these
4305/// constraints, return null.
4306static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4307 // If this is not an instruction, or if this is an instruction outside of the
4308 // loop, it can't be derived from a loop PHI.
4309 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004310 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004311
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004312 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004313 if (L->getHeader() == I->getParent())
4314 return PN;
4315 else
4316 // We don't currently keep track of the control flow needed to evaluate
4317 // PHIs, so we cannot handle PHIs inside of loops.
4318 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004319 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004320
4321 // If we won't be able to constant fold this expression even if the operands
4322 // are constants, return early.
4323 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004324
Chris Lattner3221ad02004-04-17 22:58:41 +00004325 // Otherwise, we can evaluate this instruction if all of its operands are
4326 // constant or derived from a PHI node themselves.
4327 PHINode *PHI = 0;
4328 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004329 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004330 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4331 if (P == 0) return 0; // Not evolving from PHI
4332 if (PHI == 0)
4333 PHI = P;
4334 else if (PHI != P)
4335 return 0; // Evolving from multiple different PHIs.
4336 }
4337
4338 // This is a expression evolving from a constant PHI!
4339 return PHI;
4340}
4341
4342/// EvaluateExpression - Given an expression that passes the
4343/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4344/// in the loop has the value PHIVal. If we can't fold this expression for some
4345/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004346static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4347 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004348 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004349 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004350 Instruction *I = cast<Instruction>(V);
4351
Dan Gohman9d4588f2010-06-22 13:15:46 +00004352 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004353
4354 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004355 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004356 if (Operands[i] == 0) return 0;
4357 }
4358
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004359 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004360 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004361 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004362 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004363 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004364}
4365
4366/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4367/// in the header of its containing loop, we know the loop executes a
4368/// constant number of times, and the PHI node is just a recurrence
4369/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004370Constant *
4371ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004372 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004373 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004374 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004375 ConstantEvolutionLoopExitValue.find(PN);
4376 if (I != ConstantEvolutionLoopExitValue.end())
4377 return I->second;
4378
Dan Gohmane0567812010-04-08 23:03:40 +00004379 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004380 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4381
4382 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4383
4384 // Since the loop is canonicalized, the PHI node must have two entries. One
4385 // entry must be a constant (coming in from outside of the loop), and the
4386 // second must be derived from the same PHI.
4387 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4388 Constant *StartCST =
4389 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4390 if (StartCST == 0)
4391 return RetVal = 0; // Must be a constant.
4392
4393 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004394 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4395 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004396 return RetVal = 0; // Not derived from same PHI.
4397
4398 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004399 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004400 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004401
Dan Gohman46bdfb02009-02-24 18:55:53 +00004402 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004403 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004404 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4405 if (IterationNum == NumIterations)
4406 return RetVal = PHIVal; // Got exit value!
4407
4408 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004409 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004410 if (NextPHI == PHIVal)
4411 return RetVal = NextPHI; // Stopped evolving!
4412 if (NextPHI == 0)
4413 return 0; // Couldn't evaluate!
4414 PHIVal = NextPHI;
4415 }
4416}
4417
Dan Gohman07ad19b2009-07-27 16:09:48 +00004418/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004419/// constant number of times (the condition evolves only from constants),
4420/// try to evaluate a few iterations of the loop until we get the exit
4421/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004422/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004423const SCEV *
4424ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4425 Value *Cond,
4426 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004427 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004428 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004429
Dan Gohmanb92654d2010-06-19 14:17:24 +00004430 // If the loop is canonicalized, the PHI will have exactly two entries.
4431 // That's the only form we support here.
4432 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4433
4434 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004435 // second must be derived from the same PHI.
4436 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4437 Constant *StartCST =
4438 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004439 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004440
4441 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004442 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4443 !isa<Constant>(BEValue))
4444 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004445
4446 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4447 // the loop symbolically to determine when the condition gets a value of
4448 // "ExitWhen".
4449 unsigned IterationNum = 0;
4450 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4451 for (Constant *PHIVal = StartCST;
4452 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004453 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004454 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004455
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004456 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004457 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004458
Reid Spencere8019bb2007-03-01 07:25:48 +00004459 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004460 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004461 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004462 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004463
Chris Lattner3221ad02004-04-17 22:58:41 +00004464 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004465 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004466 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004467 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004468 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004469 }
4470
4471 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004472 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004473}
4474
Dan Gohmane7125f42009-09-03 15:00:26 +00004475/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004476/// at the specified scope in the program. The L value specifies a loop
4477/// nest to evaluate the expression at, where null is the top-level or a
4478/// specified loop is immediately inside of the loop.
4479///
4480/// This method can be used to compute the exit value for a variable defined
4481/// in a loop by querying what the value will hold in the parent loop.
4482///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004483/// In the case that a relevant loop exit value cannot be computed, the
4484/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004485const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004486 // Check to see if we've folded this expression at this loop before.
4487 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4488 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4489 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4490 if (!Pair.second)
4491 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004492
Dan Gohman42214892009-08-31 21:15:23 +00004493 // Otherwise compute it.
4494 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004495 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004496 return C;
4497}
4498
4499const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004500 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004501
Nick Lewycky3e630762008-02-20 06:48:22 +00004502 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004503 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004504 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004505 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004506 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004507 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4508 if (PHINode *PN = dyn_cast<PHINode>(I))
4509 if (PN->getParent() == LI->getHeader()) {
4510 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004511 // to see if the loop that contains it has a known backedge-taken
4512 // count. If so, we may be able to force computation of the exit
4513 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004514 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004515 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004516 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004517 // Okay, we know how many times the containing loop executes. If
4518 // this is a constant evolving PHI node, get the final value at
4519 // the specified iteration number.
4520 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004521 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004522 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004523 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004524 }
4525 }
4526
Reid Spencer09906f32006-12-04 21:33:23 +00004527 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004528 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004529 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004530 // result. This is particularly useful for computing loop exit values.
4531 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004532 SmallVector<Constant *, 4> Operands;
4533 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004534 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4535 Value *Op = I->getOperand(i);
4536 if (Constant *C = dyn_cast<Constant>(Op)) {
4537 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004538 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004539 }
Dan Gohman11046452010-06-29 23:43:06 +00004540
4541 // If any of the operands is non-constant and if they are
4542 // non-integer and non-pointer, don't even try to analyze them
4543 // with scev techniques.
4544 if (!isSCEVable(Op->getType()))
4545 return V;
4546
4547 const SCEV *OrigV = getSCEV(Op);
4548 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4549 MadeImprovement |= OrigV != OpV;
4550
4551 Constant *C = 0;
4552 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4553 C = SC->getValue();
4554 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4555 C = dyn_cast<Constant>(SU->getValue());
4556 if (!C) return V;
4557 if (C->getType() != Op->getType())
4558 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4559 Op->getType(),
4560 false),
4561 C, Op->getType());
4562 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004563 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004564
Dan Gohman11046452010-06-29 23:43:06 +00004565 // Check to see if getSCEVAtScope actually made an improvement.
4566 if (MadeImprovement) {
4567 Constant *C = 0;
4568 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4569 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4570 Operands[0], Operands[1], TD);
4571 else
4572 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4573 &Operands[0], Operands.size(), TD);
4574 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004575 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004576 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004577 }
4578 }
4579
4580 // This is some other type of SCEVUnknown, just return it.
4581 return V;
4582 }
4583
Dan Gohman622ed672009-05-04 22:02:23 +00004584 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004585 // Avoid performing the look-up in the common case where the specified
4586 // expression has no loop-variant portions.
4587 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004588 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004589 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004590 // Okay, at least one of these operands is loop variant but might be
4591 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004592 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4593 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004594 NewOps.push_back(OpAtScope);
4595
4596 for (++i; i != e; ++i) {
4597 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004598 NewOps.push_back(OpAtScope);
4599 }
4600 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004601 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004602 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004603 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004604 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004605 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004606 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004607 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004608 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004609 }
4610 }
4611 // If we got here, all operands are loop invariant.
4612 return Comm;
4613 }
4614
Dan Gohman622ed672009-05-04 22:02:23 +00004615 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004616 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4617 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004618 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4619 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004620 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004621 }
4622
4623 // If this is a loop recurrence for a loop that does not contain L, then we
4624 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004625 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004626 // First, attempt to evaluate each operand.
4627 // Avoid performing the look-up in the common case where the specified
4628 // expression has no loop-variant portions.
4629 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4630 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4631 if (OpAtScope == AddRec->getOperand(i))
4632 continue;
4633
4634 // Okay, at least one of these operands is loop variant but might be
4635 // foldable. Build a new instance of the folded commutative expression.
4636 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4637 AddRec->op_begin()+i);
4638 NewOps.push_back(OpAtScope);
4639 for (++i; i != e; ++i)
4640 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4641
4642 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4643 break;
4644 }
4645
4646 // If the scope is outside the addrec's loop, evaluate it by using the
4647 // loop exit value of the addrec.
4648 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004649 // To evaluate this recurrence, we need to know how many times the AddRec
4650 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004651 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004652 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004653
Eli Friedmanb42a6262008-08-04 23:49:06 +00004654 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004655 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004656 }
Dan Gohman11046452010-06-29 23:43:06 +00004657
Dan Gohmand594e6f2009-05-24 23:25:42 +00004658 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004659 }
4660
Dan Gohman622ed672009-05-04 22:02:23 +00004661 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004662 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004663 if (Op == Cast->getOperand())
4664 return Cast; // must be loop invariant
4665 return getZeroExtendExpr(Op, Cast->getType());
4666 }
4667
Dan Gohman622ed672009-05-04 22:02:23 +00004668 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004669 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004670 if (Op == Cast->getOperand())
4671 return Cast; // must be loop invariant
4672 return getSignExtendExpr(Op, Cast->getType());
4673 }
4674
Dan Gohman622ed672009-05-04 22:02:23 +00004675 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004676 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004677 if (Op == Cast->getOperand())
4678 return Cast; // must be loop invariant
4679 return getTruncateExpr(Op, Cast->getType());
4680 }
4681
Torok Edwinc23197a2009-07-14 16:55:14 +00004682 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004683 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004684}
4685
Dan Gohman66a7e852009-05-08 20:38:54 +00004686/// getSCEVAtScope - This is a convenience function which does
4687/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004688const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004689 return getSCEVAtScope(getSCEV(V), L);
4690}
4691
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004692/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4693/// following equation:
4694///
4695/// A * X = B (mod N)
4696///
4697/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4698/// A and B isn't important.
4699///
4700/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004701static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004702 ScalarEvolution &SE) {
4703 uint32_t BW = A.getBitWidth();
4704 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4705 assert(A != 0 && "A must be non-zero.");
4706
4707 // 1. D = gcd(A, N)
4708 //
4709 // The gcd of A and N may have only one prime factor: 2. The number of
4710 // trailing zeros in A is its multiplicity
4711 uint32_t Mult2 = A.countTrailingZeros();
4712 // D = 2^Mult2
4713
4714 // 2. Check if B is divisible by D.
4715 //
4716 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4717 // is not less than multiplicity of this prime factor for D.
4718 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004719 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004720
4721 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4722 // modulo (N / D).
4723 //
4724 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4725 // bit width during computations.
4726 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4727 APInt Mod(BW + 1, 0);
4728 Mod.set(BW - Mult2); // Mod = N / D
4729 APInt I = AD.multiplicativeInverse(Mod);
4730
4731 // 4. Compute the minimum unsigned root of the equation:
4732 // I * (B / D) mod (N / D)
4733 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4734
4735 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4736 // bits.
4737 return SE.getConstant(Result.trunc(BW));
4738}
Chris Lattner53e677a2004-04-02 20:23:17 +00004739
4740/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4741/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4742/// might be the same) or two SCEVCouldNotCompute objects.
4743///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004744static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004745SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004746 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004747 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4748 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4749 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004750
Chris Lattner53e677a2004-04-02 20:23:17 +00004751 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004752 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004753 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004754 return std::make_pair(CNC, CNC);
4755 }
4756
Reid Spencere8019bb2007-03-01 07:25:48 +00004757 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004758 const APInt &L = LC->getValue()->getValue();
4759 const APInt &M = MC->getValue()->getValue();
4760 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004761 APInt Two(BitWidth, 2);
4762 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004763
Dan Gohman64a845e2009-06-24 04:48:43 +00004764 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004765 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004766 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004767 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4768 // The B coefficient is M-N/2
4769 APInt B(M);
4770 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004771
Reid Spencere8019bb2007-03-01 07:25:48 +00004772 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004773 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004774
Reid Spencere8019bb2007-03-01 07:25:48 +00004775 // Compute the B^2-4ac term.
4776 APInt SqrtTerm(B);
4777 SqrtTerm *= B;
4778 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004779
Reid Spencere8019bb2007-03-01 07:25:48 +00004780 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4781 // integer value or else APInt::sqrt() will assert.
4782 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004783
Dan Gohman64a845e2009-06-24 04:48:43 +00004784 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004785 // The divisions must be performed as signed divisions.
4786 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004787 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004788 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004789 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004790 return std::make_pair(CNC, CNC);
4791 }
4792
Owen Andersone922c022009-07-22 00:24:57 +00004793 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004794
4795 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004796 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004797 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004798 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004799
Dan Gohman64a845e2009-06-24 04:48:43 +00004800 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004801 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004802 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004803}
4804
4805/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004806/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004807ScalarEvolution::BackedgeTakenInfo
4808ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004809 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004810 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004811 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004812 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004813 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004814 }
4815
Dan Gohman35738ac2009-05-04 22:30:44 +00004816 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004817 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004818 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004819
4820 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004821 // If this is an affine expression, the execution count of this branch is
4822 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004823 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004824 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004825 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004826 // equivalent to:
4827 //
4828 // Step*N = -Start (mod 2^BW)
4829 //
4830 // where BW is the common bit width of Start and Step.
4831
Chris Lattner53e677a2004-04-02 20:23:17 +00004832 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004833 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4834 L->getParentLoop());
4835 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4836 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004837
Dan Gohman622ed672009-05-04 22:02:23 +00004838 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004839 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004840
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004841 // First, handle unitary steps.
4842 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004843 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004844 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4845 return Start; // N = Start (as unsigned)
4846
4847 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004848 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004849 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004850 -StartC->getValue()->getValue(),
4851 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004852 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004853 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004854 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4855 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004856 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004857 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004858 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4859 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004860 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004861#if 0
David Greene25e0e872009-12-23 22:18:14 +00004862 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004863 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004864#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004865 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004866 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004867 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004868 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004869 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004870 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004871
Chris Lattner53e677a2004-04-02 20:23:17 +00004872 // We can only use this value if the chrec ends up with an exact zero
4873 // value at this index. When solving for "X*X != 5", for example, we
4874 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004875 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004876 if (Val->isZero())
4877 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004878 }
4879 }
4880 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004881
Dan Gohman1c343752009-06-27 21:21:31 +00004882 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004883}
4884
4885/// HowFarToNonZero - Return the number of times a backedge checking the
4886/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004887/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004888ScalarEvolution::BackedgeTakenInfo
4889ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004890 // Loops that look like: while (X == 0) are very strange indeed. We don't
4891 // handle them yet except for the trivial case. This could be expanded in the
4892 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004893
Chris Lattner53e677a2004-04-02 20:23:17 +00004894 // If the value is a constant, check to see if it is known to be non-zero
4895 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004896 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004897 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004898 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004899 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004900 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004901
Chris Lattner53e677a2004-04-02 20:23:17 +00004902 // We could implement others, but I really doubt anyone writes loops like
4903 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004904 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004905}
4906
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004907/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4908/// (which may not be an immediate predecessor) which has exactly one
4909/// successor from which BB is reachable, or null if no such block is
4910/// found.
4911///
Dan Gohman005752b2010-04-15 16:19:08 +00004912std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004913ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004914 // If the block has a unique predecessor, then there is no path from the
4915 // predecessor to the block that does not go through the direct edge
4916 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004917 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004918 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004919
4920 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004921 // If the header has a unique predecessor outside the loop, it must be
4922 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004923 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004924 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004925
Dan Gohman005752b2010-04-15 16:19:08 +00004926 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004927}
4928
Dan Gohman763bad12009-06-20 00:35:32 +00004929/// HasSameValue - SCEV structural equivalence is usually sufficient for
4930/// testing whether two expressions are equal, however for the purposes of
4931/// looking for a condition guarding a loop, it can be useful to be a little
4932/// more general, since a front-end may have replicated the controlling
4933/// expression.
4934///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004935static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004936 // Quick check to see if they are the same SCEV.
4937 if (A == B) return true;
4938
4939 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4940 // two different instructions with the same value. Check for this case.
4941 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4942 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4943 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4944 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004945 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004946 return true;
4947
4948 // Otherwise assume they may have a different value.
4949 return false;
4950}
4951
Dan Gohmane9796502010-04-24 01:28:42 +00004952/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4953/// predicate Pred. Return true iff any changes were made.
4954///
4955bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4956 const SCEV *&LHS, const SCEV *&RHS) {
4957 bool Changed = false;
4958
4959 // Canonicalize a constant to the right side.
4960 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4961 // Check for both operands constant.
4962 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4963 if (ConstantExpr::getICmp(Pred,
4964 LHSC->getValue(),
4965 RHSC->getValue())->isNullValue())
4966 goto trivially_false;
4967 else
4968 goto trivially_true;
4969 }
4970 // Otherwise swap the operands to put the constant on the right.
4971 std::swap(LHS, RHS);
4972 Pred = ICmpInst::getSwappedPredicate(Pred);
4973 Changed = true;
4974 }
4975
4976 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004977 // addrec's loop, put the addrec on the left. Also make a dominance check,
4978 // as both operands could be addrecs loop-invariant in each other's loop.
4979 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4980 const Loop *L = AR->getLoop();
4981 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004982 std::swap(LHS, RHS);
4983 Pred = ICmpInst::getSwappedPredicate(Pred);
4984 Changed = true;
4985 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004986 }
Dan Gohmane9796502010-04-24 01:28:42 +00004987
4988 // If there's a constant operand, canonicalize comparisons with boundary
4989 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4990 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4991 const APInt &RA = RC->getValue()->getValue();
4992 switch (Pred) {
4993 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4994 case ICmpInst::ICMP_EQ:
4995 case ICmpInst::ICMP_NE:
4996 break;
4997 case ICmpInst::ICMP_UGE:
4998 if ((RA - 1).isMinValue()) {
4999 Pred = ICmpInst::ICMP_NE;
5000 RHS = getConstant(RA - 1);
5001 Changed = true;
5002 break;
5003 }
5004 if (RA.isMaxValue()) {
5005 Pred = ICmpInst::ICMP_EQ;
5006 Changed = true;
5007 break;
5008 }
5009 if (RA.isMinValue()) goto trivially_true;
5010
5011 Pred = ICmpInst::ICMP_UGT;
5012 RHS = getConstant(RA - 1);
5013 Changed = true;
5014 break;
5015 case ICmpInst::ICMP_ULE:
5016 if ((RA + 1).isMaxValue()) {
5017 Pred = ICmpInst::ICMP_NE;
5018 RHS = getConstant(RA + 1);
5019 Changed = true;
5020 break;
5021 }
5022 if (RA.isMinValue()) {
5023 Pred = ICmpInst::ICMP_EQ;
5024 Changed = true;
5025 break;
5026 }
5027 if (RA.isMaxValue()) goto trivially_true;
5028
5029 Pred = ICmpInst::ICMP_ULT;
5030 RHS = getConstant(RA + 1);
5031 Changed = true;
5032 break;
5033 case ICmpInst::ICMP_SGE:
5034 if ((RA - 1).isMinSignedValue()) {
5035 Pred = ICmpInst::ICMP_NE;
5036 RHS = getConstant(RA - 1);
5037 Changed = true;
5038 break;
5039 }
5040 if (RA.isMaxSignedValue()) {
5041 Pred = ICmpInst::ICMP_EQ;
5042 Changed = true;
5043 break;
5044 }
5045 if (RA.isMinSignedValue()) goto trivially_true;
5046
5047 Pred = ICmpInst::ICMP_SGT;
5048 RHS = getConstant(RA - 1);
5049 Changed = true;
5050 break;
5051 case ICmpInst::ICMP_SLE:
5052 if ((RA + 1).isMaxSignedValue()) {
5053 Pred = ICmpInst::ICMP_NE;
5054 RHS = getConstant(RA + 1);
5055 Changed = true;
5056 break;
5057 }
5058 if (RA.isMinSignedValue()) {
5059 Pred = ICmpInst::ICMP_EQ;
5060 Changed = true;
5061 break;
5062 }
5063 if (RA.isMaxSignedValue()) goto trivially_true;
5064
5065 Pred = ICmpInst::ICMP_SLT;
5066 RHS = getConstant(RA + 1);
5067 Changed = true;
5068 break;
5069 case ICmpInst::ICMP_UGT:
5070 if (RA.isMinValue()) {
5071 Pred = ICmpInst::ICMP_NE;
5072 Changed = true;
5073 break;
5074 }
5075 if ((RA + 1).isMaxValue()) {
5076 Pred = ICmpInst::ICMP_EQ;
5077 RHS = getConstant(RA + 1);
5078 Changed = true;
5079 break;
5080 }
5081 if (RA.isMaxValue()) goto trivially_false;
5082 break;
5083 case ICmpInst::ICMP_ULT:
5084 if (RA.isMaxValue()) {
5085 Pred = ICmpInst::ICMP_NE;
5086 Changed = true;
5087 break;
5088 }
5089 if ((RA - 1).isMinValue()) {
5090 Pred = ICmpInst::ICMP_EQ;
5091 RHS = getConstant(RA - 1);
5092 Changed = true;
5093 break;
5094 }
5095 if (RA.isMinValue()) goto trivially_false;
5096 break;
5097 case ICmpInst::ICMP_SGT:
5098 if (RA.isMinSignedValue()) {
5099 Pred = ICmpInst::ICMP_NE;
5100 Changed = true;
5101 break;
5102 }
5103 if ((RA + 1).isMaxSignedValue()) {
5104 Pred = ICmpInst::ICMP_EQ;
5105 RHS = getConstant(RA + 1);
5106 Changed = true;
5107 break;
5108 }
5109 if (RA.isMaxSignedValue()) goto trivially_false;
5110 break;
5111 case ICmpInst::ICMP_SLT:
5112 if (RA.isMaxSignedValue()) {
5113 Pred = ICmpInst::ICMP_NE;
5114 Changed = true;
5115 break;
5116 }
5117 if ((RA - 1).isMinSignedValue()) {
5118 Pred = ICmpInst::ICMP_EQ;
5119 RHS = getConstant(RA - 1);
5120 Changed = true;
5121 break;
5122 }
5123 if (RA.isMinSignedValue()) goto trivially_false;
5124 break;
5125 }
5126 }
5127
5128 // Check for obvious equality.
5129 if (HasSameValue(LHS, RHS)) {
5130 if (ICmpInst::isTrueWhenEqual(Pred))
5131 goto trivially_true;
5132 if (ICmpInst::isFalseWhenEqual(Pred))
5133 goto trivially_false;
5134 }
5135
Dan Gohman03557dc2010-05-03 16:35:17 +00005136 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5137 // adding or subtracting 1 from one of the operands.
5138 switch (Pred) {
5139 case ICmpInst::ICMP_SLE:
5140 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5141 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5142 /*HasNUW=*/false, /*HasNSW=*/true);
5143 Pred = ICmpInst::ICMP_SLT;
5144 Changed = true;
5145 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005146 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005147 /*HasNUW=*/false, /*HasNSW=*/true);
5148 Pred = ICmpInst::ICMP_SLT;
5149 Changed = true;
5150 }
5151 break;
5152 case ICmpInst::ICMP_SGE:
5153 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005154 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005155 /*HasNUW=*/false, /*HasNSW=*/true);
5156 Pred = ICmpInst::ICMP_SGT;
5157 Changed = true;
5158 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5159 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5160 /*HasNUW=*/false, /*HasNSW=*/true);
5161 Pred = ICmpInst::ICMP_SGT;
5162 Changed = true;
5163 }
5164 break;
5165 case ICmpInst::ICMP_ULE:
5166 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005167 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005168 /*HasNUW=*/true, /*HasNSW=*/false);
5169 Pred = ICmpInst::ICMP_ULT;
5170 Changed = true;
5171 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005172 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005173 /*HasNUW=*/true, /*HasNSW=*/false);
5174 Pred = ICmpInst::ICMP_ULT;
5175 Changed = true;
5176 }
5177 break;
5178 case ICmpInst::ICMP_UGE:
5179 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005180 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005181 /*HasNUW=*/true, /*HasNSW=*/false);
5182 Pred = ICmpInst::ICMP_UGT;
5183 Changed = true;
5184 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005185 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005186 /*HasNUW=*/true, /*HasNSW=*/false);
5187 Pred = ICmpInst::ICMP_UGT;
5188 Changed = true;
5189 }
5190 break;
5191 default:
5192 break;
5193 }
5194
Dan Gohmane9796502010-04-24 01:28:42 +00005195 // TODO: More simplifications are possible here.
5196
5197 return Changed;
5198
5199trivially_true:
5200 // Return 0 == 0.
5201 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5202 Pred = ICmpInst::ICMP_EQ;
5203 return true;
5204
5205trivially_false:
5206 // Return 0 != 0.
5207 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5208 Pred = ICmpInst::ICMP_NE;
5209 return true;
5210}
5211
Dan Gohman85b05a22009-07-13 21:35:55 +00005212bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5213 return getSignedRange(S).getSignedMax().isNegative();
5214}
5215
5216bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5217 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5218}
5219
5220bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5221 return !getSignedRange(S).getSignedMin().isNegative();
5222}
5223
5224bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5225 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5226}
5227
5228bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5229 return isKnownNegative(S) || isKnownPositive(S);
5230}
5231
5232bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5233 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005234 // Canonicalize the inputs first.
5235 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5236
Dan Gohman53c66ea2010-04-11 22:16:48 +00005237 // If LHS or RHS is an addrec, check to see if the condition is true in
5238 // every iteration of the loop.
5239 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5240 if (isLoopEntryGuardedByCond(
5241 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5242 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005243 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005244 return true;
5245 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5246 if (isLoopEntryGuardedByCond(
5247 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5248 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005249 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005250 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005251
Dan Gohman53c66ea2010-04-11 22:16:48 +00005252 // Otherwise see what can be done with known constant ranges.
5253 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5254}
5255
5256bool
5257ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5258 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005259 if (HasSameValue(LHS, RHS))
5260 return ICmpInst::isTrueWhenEqual(Pred);
5261
Dan Gohman53c66ea2010-04-11 22:16:48 +00005262 // This code is split out from isKnownPredicate because it is called from
5263 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005264 switch (Pred) {
5265 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005266 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005267 break;
5268 case ICmpInst::ICMP_SGT:
5269 Pred = ICmpInst::ICMP_SLT;
5270 std::swap(LHS, RHS);
5271 case ICmpInst::ICMP_SLT: {
5272 ConstantRange LHSRange = getSignedRange(LHS);
5273 ConstantRange RHSRange = getSignedRange(RHS);
5274 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5275 return true;
5276 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5277 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005278 break;
5279 }
5280 case ICmpInst::ICMP_SGE:
5281 Pred = ICmpInst::ICMP_SLE;
5282 std::swap(LHS, RHS);
5283 case ICmpInst::ICMP_SLE: {
5284 ConstantRange LHSRange = getSignedRange(LHS);
5285 ConstantRange RHSRange = getSignedRange(RHS);
5286 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5287 return true;
5288 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5289 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005290 break;
5291 }
5292 case ICmpInst::ICMP_UGT:
5293 Pred = ICmpInst::ICMP_ULT;
5294 std::swap(LHS, RHS);
5295 case ICmpInst::ICMP_ULT: {
5296 ConstantRange LHSRange = getUnsignedRange(LHS);
5297 ConstantRange RHSRange = getUnsignedRange(RHS);
5298 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5299 return true;
5300 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5301 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005302 break;
5303 }
5304 case ICmpInst::ICMP_UGE:
5305 Pred = ICmpInst::ICMP_ULE;
5306 std::swap(LHS, RHS);
5307 case ICmpInst::ICMP_ULE: {
5308 ConstantRange LHSRange = getUnsignedRange(LHS);
5309 ConstantRange RHSRange = getUnsignedRange(RHS);
5310 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5311 return true;
5312 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5313 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005314 break;
5315 }
5316 case ICmpInst::ICMP_NE: {
5317 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5318 return true;
5319 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5320 return true;
5321
5322 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5323 if (isKnownNonZero(Diff))
5324 return true;
5325 break;
5326 }
5327 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005328 // The check at the top of the function catches the case where
5329 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005330 break;
5331 }
5332 return false;
5333}
5334
5335/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5336/// protected by a conditional between LHS and RHS. This is used to
5337/// to eliminate casts.
5338bool
5339ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5340 ICmpInst::Predicate Pred,
5341 const SCEV *LHS, const SCEV *RHS) {
5342 // Interpret a null as meaning no loop, where there is obviously no guard
5343 // (interprocedural conditions notwithstanding).
5344 if (!L) return true;
5345
5346 BasicBlock *Latch = L->getLoopLatch();
5347 if (!Latch)
5348 return false;
5349
5350 BranchInst *LoopContinuePredicate =
5351 dyn_cast<BranchInst>(Latch->getTerminator());
5352 if (!LoopContinuePredicate ||
5353 LoopContinuePredicate->isUnconditional())
5354 return false;
5355
Dan Gohmanaf08a362010-08-10 23:46:30 +00005356 return isImpliedCond(Pred, LHS, RHS,
5357 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005358 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005359}
5360
Dan Gohman3948d0b2010-04-11 19:27:13 +00005361/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005362/// by a conditional between LHS and RHS. This is used to help avoid max
5363/// expressions in loop trip counts, and to eliminate casts.
5364bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005365ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5366 ICmpInst::Predicate Pred,
5367 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005368 // Interpret a null as meaning no loop, where there is obviously no guard
5369 // (interprocedural conditions notwithstanding).
5370 if (!L) return false;
5371
Dan Gohman859b4822009-05-18 15:36:09 +00005372 // Starting at the loop predecessor, climb up the predecessor chain, as long
5373 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005374 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005375 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005376 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005377 Pair.first;
5378 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005379
5380 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005381 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005382 if (!LoopEntryPredicate ||
5383 LoopEntryPredicate->isUnconditional())
5384 continue;
5385
Dan Gohmanaf08a362010-08-10 23:46:30 +00005386 if (isImpliedCond(Pred, LHS, RHS,
5387 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005388 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005389 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005390 }
5391
Dan Gohman38372182008-08-12 20:17:31 +00005392 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005393}
5394
Dan Gohman0f4b2852009-07-21 23:03:19 +00005395/// isImpliedCond - Test whether the condition described by Pred, LHS,
5396/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005397bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005398 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005399 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005400 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005401 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005402 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005403 if (BO->getOpcode() == Instruction::And) {
5404 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005405 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5406 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005407 } else if (BO->getOpcode() == Instruction::Or) {
5408 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005409 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5410 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005411 }
5412 }
5413
Dan Gohmanaf08a362010-08-10 23:46:30 +00005414 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005415 if (!ICI) return false;
5416
Dan Gohman85b05a22009-07-13 21:35:55 +00005417 // Bail if the ICmp's operands' types are wider than the needed type
5418 // before attempting to call getSCEV on them. This avoids infinite
5419 // recursion, since the analysis of widening casts can require loop
5420 // exit condition information for overflow checking, which would
5421 // lead back here.
5422 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005423 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005424 return false;
5425
Dan Gohman0f4b2852009-07-21 23:03:19 +00005426 // Now that we found a conditional branch that dominates the loop, check to
5427 // see if it is the comparison we are looking for.
5428 ICmpInst::Predicate FoundPred;
5429 if (Inverse)
5430 FoundPred = ICI->getInversePredicate();
5431 else
5432 FoundPred = ICI->getPredicate();
5433
5434 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5435 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005436
5437 // Balance the types. The case where FoundLHS' type is wider than
5438 // LHS' type is checked for above.
5439 if (getTypeSizeInBits(LHS->getType()) >
5440 getTypeSizeInBits(FoundLHS->getType())) {
5441 if (CmpInst::isSigned(Pred)) {
5442 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5443 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5444 } else {
5445 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5446 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5447 }
5448 }
5449
Dan Gohman0f4b2852009-07-21 23:03:19 +00005450 // Canonicalize the query to match the way instcombine will have
5451 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005452 if (SimplifyICmpOperands(Pred, LHS, RHS))
5453 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005454 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005455 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5456 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005457 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005458
5459 // Check to see if we can make the LHS or RHS match.
5460 if (LHS == FoundRHS || RHS == FoundLHS) {
5461 if (isa<SCEVConstant>(RHS)) {
5462 std::swap(FoundLHS, FoundRHS);
5463 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5464 } else {
5465 std::swap(LHS, RHS);
5466 Pred = ICmpInst::getSwappedPredicate(Pred);
5467 }
5468 }
5469
5470 // Check whether the found predicate is the same as the desired predicate.
5471 if (FoundPred == Pred)
5472 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5473
5474 // Check whether swapping the found predicate makes it the same as the
5475 // desired predicate.
5476 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5477 if (isa<SCEVConstant>(RHS))
5478 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5479 else
5480 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5481 RHS, LHS, FoundLHS, FoundRHS);
5482 }
5483
5484 // Check whether the actual condition is beyond sufficient.
5485 if (FoundPred == ICmpInst::ICMP_EQ)
5486 if (ICmpInst::isTrueWhenEqual(Pred))
5487 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5488 return true;
5489 if (Pred == ICmpInst::ICMP_NE)
5490 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5491 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5492 return true;
5493
5494 // Otherwise assume the worst.
5495 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005496}
5497
Dan Gohman0f4b2852009-07-21 23:03:19 +00005498/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005499/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005500/// and FoundRHS is true.
5501bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5502 const SCEV *LHS, const SCEV *RHS,
5503 const SCEV *FoundLHS,
5504 const SCEV *FoundRHS) {
5505 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5506 FoundLHS, FoundRHS) ||
5507 // ~x < ~y --> x > y
5508 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5509 getNotSCEV(FoundRHS),
5510 getNotSCEV(FoundLHS));
5511}
5512
5513/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005514/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005515/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005516bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005517ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5518 const SCEV *LHS, const SCEV *RHS,
5519 const SCEV *FoundLHS,
5520 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005521 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005522 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5523 case ICmpInst::ICMP_EQ:
5524 case ICmpInst::ICMP_NE:
5525 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5526 return true;
5527 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005528 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005529 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005530 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5531 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005532 return true;
5533 break;
5534 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005535 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005536 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5537 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005538 return true;
5539 break;
5540 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005541 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005542 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5543 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005544 return true;
5545 break;
5546 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005547 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005548 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5549 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005550 return true;
5551 break;
5552 }
5553
5554 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005555}
5556
Dan Gohman51f53b72009-06-21 23:46:38 +00005557/// getBECount - Subtract the end and start values and divide by the step,
5558/// rounding up, to get the number of times the backedge is executed. Return
5559/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005560const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005561 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005562 const SCEV *Step,
5563 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005564 assert(!isKnownNegative(Step) &&
5565 "This code doesn't handle negative strides yet!");
5566
Dan Gohman51f53b72009-06-21 23:46:38 +00005567 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005568 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005569 const SCEV *Diff = getMinusSCEV(End, Start);
5570 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005571
5572 // Add an adjustment to the difference between End and Start so that
5573 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005574 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005575
Dan Gohman1f96e672009-09-17 18:05:20 +00005576 if (!NoWrap) {
5577 // Check Add for unsigned overflow.
5578 // TODO: More sophisticated things could be done here.
5579 const Type *WideTy = IntegerType::get(getContext(),
5580 getTypeSizeInBits(Ty) + 1);
5581 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5582 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5583 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5584 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5585 return getCouldNotCompute();
5586 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005587
5588 return getUDivExpr(Add, Step);
5589}
5590
Chris Lattnerdb25de42005-08-15 23:33:51 +00005591/// HowManyLessThans - Return the number of times a backedge containing the
5592/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005593/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005594ScalarEvolution::BackedgeTakenInfo
5595ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5596 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005597 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005598 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005599
Dan Gohman35738ac2009-05-04 22:30:44 +00005600 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005601 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005602 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005603
Dan Gohman1f96e672009-09-17 18:05:20 +00005604 // Check to see if we have a flag which makes analysis easy.
5605 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5606 AddRec->hasNoUnsignedWrap();
5607
Chris Lattnerdb25de42005-08-15 23:33:51 +00005608 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005609 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005610 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005611
Dan Gohman52fddd32010-01-26 04:40:18 +00005612 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005613 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005614 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005615 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005616 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005617 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005618 // value and past the maximum value for its type in a single step.
5619 // Note that it's not sufficient to check NoWrap here, because even
5620 // though the value after a wrap is undefined, it's not undefined
5621 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005622 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005623 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005624 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005625 if (isSigned) {
5626 APInt Max = APInt::getSignedMaxValue(BitWidth);
5627 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5628 .slt(getSignedRange(RHS).getSignedMax()))
5629 return getCouldNotCompute();
5630 } else {
5631 APInt Max = APInt::getMaxValue(BitWidth);
5632 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5633 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5634 return getCouldNotCompute();
5635 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005636 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005637 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005638 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005639
Dan Gohmana1af7572009-04-30 20:47:05 +00005640 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5641 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5642 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005643 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005644
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005645 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005646 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005647
Dan Gohmana1af7572009-04-30 20:47:05 +00005648 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005649 const SCEV *MinStart = getConstant(isSigned ?
5650 getSignedRange(Start).getSignedMin() :
5651 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005652
Dan Gohmana1af7572009-04-30 20:47:05 +00005653 // If we know that the condition is true in order to enter the loop,
5654 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005655 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5656 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005657 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005658 if (!isLoopEntryGuardedByCond(L,
5659 isSigned ? ICmpInst::ICMP_SLT :
5660 ICmpInst::ICMP_ULT,
5661 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005662 End = isSigned ? getSMaxExpr(RHS, Start)
5663 : getUMaxExpr(RHS, Start);
5664
5665 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005666 const SCEV *MaxEnd = getConstant(isSigned ?
5667 getSignedRange(End).getSignedMax() :
5668 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005669
Dan Gohman52fddd32010-01-26 04:40:18 +00005670 // If MaxEnd is within a step of the maximum integer value in its type,
5671 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005672 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005673 // compute the correct value.
5674 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005675 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005676 MaxEnd = isSigned ?
5677 getSMinExpr(MaxEnd,
5678 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5679 StepMinusOne)) :
5680 getUMinExpr(MaxEnd,
5681 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5682 StepMinusOne));
5683
Dan Gohmana1af7572009-04-30 20:47:05 +00005684 // Finally, we subtract these two values and divide, rounding up, to get
5685 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005686 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005687
5688 // The maximum backedge count is similar, except using the minimum start
5689 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005690 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005691
5692 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005693 }
5694
Dan Gohman1c343752009-06-27 21:21:31 +00005695 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005696}
5697
Chris Lattner53e677a2004-04-02 20:23:17 +00005698/// getNumIterationsInRange - Return the number of iterations of this loop that
5699/// produce values in the specified constant range. Another way of looking at
5700/// this is that it returns the first iteration number where the value is not in
5701/// the condition, thus computing the exit count. If the iteration count can't
5702/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005703const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005704 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005705 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005706 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005707
5708 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005709 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005710 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005711 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005712 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005713 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005714 if (const SCEVAddRecExpr *ShiftedAddRec =
5715 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005716 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005717 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005718 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005719 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005720 }
5721
5722 // The only time we can solve this is when we have all constant indices.
5723 // Otherwise, we cannot determine the overflow conditions.
5724 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5725 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005726 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005727
5728
5729 // Okay at this point we know that all elements of the chrec are constants and
5730 // that the start element is zero.
5731
5732 // First check to see if the range contains zero. If not, the first
5733 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005734 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005735 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005736 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005737
Chris Lattner53e677a2004-04-02 20:23:17 +00005738 if (isAffine()) {
5739 // If this is an affine expression then we have this situation:
5740 // Solve {0,+,A} in Range === Ax in Range
5741
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005742 // We know that zero is in the range. If A is positive then we know that
5743 // the upper value of the range must be the first possible exit value.
5744 // If A is negative then the lower of the range is the last possible loop
5745 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005746 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005747 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5748 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005749
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005750 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005751 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005752 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005753
5754 // Evaluate at the exit value. If we really did fall out of the valid
5755 // range, then we computed our trip count, otherwise wrap around or other
5756 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005757 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005758 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005759 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005760
5761 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005762 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005763 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005764 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005765 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005766 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005767 } else if (isQuadratic()) {
5768 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5769 // quadratic equation to solve it. To do this, we must frame our problem in
5770 // terms of figuring out when zero is crossed, instead of when
5771 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005772 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005773 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005774 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005775
5776 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005777 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005778 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005779 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5780 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005781 if (R1) {
5782 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005783 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005784 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005785 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005786 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005787 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005788
Chris Lattner53e677a2004-04-02 20:23:17 +00005789 // Make sure the root is not off by one. The returned iteration should
5790 // not be in the range, but the previous one should be. When solving
5791 // for "X*X < 5", for example, we should not return a root of 2.
5792 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005793 R1->getValue(),
5794 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005795 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005796 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005797 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005798 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005799
Dan Gohman246b2562007-10-22 18:31:58 +00005800 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005801 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005802 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005803 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005804 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005805
Chris Lattner53e677a2004-04-02 20:23:17 +00005806 // If R1 was not in the range, then it is a good return value. Make
5807 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005808 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005809 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005810 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005811 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005812 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005813 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005814 }
5815 }
5816 }
5817
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005818 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005819}
5820
5821
5822
5823//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005824// SCEVCallbackVH Class Implementation
5825//===----------------------------------------------------------------------===//
5826
Dan Gohman1959b752009-05-19 19:22:47 +00005827void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005828 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005829 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5830 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005831 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005832 // this now dangles!
5833}
5834
Dan Gohman81f91212010-07-28 01:09:07 +00005835void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005836 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005837
Dan Gohman35738ac2009-05-04 22:30:44 +00005838 // Forget all the expressions associated with users of the old value,
5839 // so that future queries will recompute the expressions using the new
5840 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005841 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005842 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005843 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005844 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5845 UI != UE; ++UI)
5846 Worklist.push_back(*UI);
5847 while (!Worklist.empty()) {
5848 User *U = Worklist.pop_back_val();
5849 // Deleting the Old value will cause this to dangle. Postpone
5850 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005851 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005852 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005853 if (!Visited.insert(U))
5854 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005855 if (PHINode *PN = dyn_cast<PHINode>(U))
5856 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005857 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005858 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5859 UI != UE; ++UI)
5860 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005861 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005862 // Delete the Old value.
5863 if (PHINode *PN = dyn_cast<PHINode>(Old))
5864 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005865 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005866 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005867}
5868
Dan Gohman1959b752009-05-19 19:22:47 +00005869ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005870 : CallbackVH(V), SE(se) {}
5871
5872//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005873// ScalarEvolution Class Implementation
5874//===----------------------------------------------------------------------===//
5875
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005876ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005877 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005878 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005879}
5880
Chris Lattner53e677a2004-04-02 20:23:17 +00005881bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005882 this->F = &F;
5883 LI = &getAnalysis<LoopInfo>();
5884 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005885 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005886 return false;
5887}
5888
5889void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005890 // Iterate through all the SCEVUnknown instances and call their
5891 // destructors, so that they release their references to their values.
5892 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5893 U->~SCEVUnknown();
5894 FirstUnknown = 0;
5895
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005896 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005897 BackedgeTakenCounts.clear();
5898 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005899 ValuesAtScopes.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005900 UnsignedRanges.clear();
5901 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005902 UniqueSCEVs.clear();
5903 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005904}
5905
5906void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5907 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005908 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005909 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005910}
5911
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005912bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005913 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005914}
5915
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005916static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005917 const Loop *L) {
5918 // Print all inner loops first
5919 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5920 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005921
Dan Gohman30733292010-01-09 18:17:45 +00005922 OS << "Loop ";
5923 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5924 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005925
Dan Gohman5d984912009-12-18 01:14:11 +00005926 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005927 L->getExitBlocks(ExitBlocks);
5928 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005929 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005930
Dan Gohman46bdfb02009-02-24 18:55:53 +00005931 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5932 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005933 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005934 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005935 }
5936
Dan Gohman30733292010-01-09 18:17:45 +00005937 OS << "\n"
5938 "Loop ";
5939 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5940 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005941
5942 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5943 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5944 } else {
5945 OS << "Unpredictable max backedge-taken count. ";
5946 }
5947
5948 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005949}
5950
Dan Gohman5d984912009-12-18 01:14:11 +00005951void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005952 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005953 // out SCEV values of all instructions that are interesting. Doing
5954 // this potentially causes it to create new SCEV objects though,
5955 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005956 // observable from outside the class though, so casting away the
5957 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005958 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005959
Dan Gohman30733292010-01-09 18:17:45 +00005960 OS << "Classifying expressions for: ";
5961 WriteAsOperand(OS, F, /*PrintType=*/false);
5962 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005963 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005964 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005965 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005966 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005967 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005968 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005969
Dan Gohman0c689c52009-06-19 17:49:54 +00005970 const Loop *L = LI->getLoopFor((*I).getParent());
5971
Dan Gohman0bba49c2009-07-07 17:06:11 +00005972 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005973 if (AtUse != SV) {
5974 OS << " --> ";
5975 AtUse->print(OS);
5976 }
5977
5978 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005979 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005980 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005981 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005982 OS << "<<Unknown>>";
5983 } else {
5984 OS << *ExitValue;
5985 }
5986 }
5987
Chris Lattner53e677a2004-04-02 20:23:17 +00005988 OS << "\n";
5989 }
5990
Dan Gohman30733292010-01-09 18:17:45 +00005991 OS << "Determining loop execution counts for: ";
5992 WriteAsOperand(OS, F, /*PrintType=*/false);
5993 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005994 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5995 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005996}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005997