blob: 1029fc669b9abf577d65b5ee7415bdf9da6cf6c7 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000021#include "llvm/Intrinsics.h"
Chris Lattner44827152003-12-28 09:47:19 +000022#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000023#include "llvm/Pass.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000026#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000028#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000029#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000030#include "llvm/Target/TargetMachine.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000031#include "llvm/Support/InstVisitor.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner333b2fa2002-12-13 10:09:43 +000034/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000035/// instruction at as well as a basic block. This is the version for when you
36/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000037inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000038 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000039 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000040 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000041 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000042 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000043 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000044 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
45}
46
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000047/// BMI - A special BuildMI variant that takes an iterator to insert the
48/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000049inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000050 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000051 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000052 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000054 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000055 return MachineInstrBuilder(MI);
56}
57
Chris Lattner333b2fa2002-12-13 10:09:43 +000058
Chris Lattner72614082002-10-25 22:55:53 +000059namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000060 struct ISel : public FunctionPass, InstVisitor<ISel> {
61 TargetMachine &TM;
Chris Lattner44827152003-12-28 09:47:19 +000062 IntrinsicLowering &IL;
Chris Lattnereca195e2003-05-08 19:44:13 +000063 MachineFunction *F; // The function we are compiling into
64 MachineBasicBlock *BB; // The current MBB we are compiling
65 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000066
Chris Lattner72614082002-10-25 22:55:53 +000067 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
68
Chris Lattner333b2fa2002-12-13 10:09:43 +000069 // MBBMap - Mapping between LLVM BB -> Machine BB
70 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
71
Chris Lattner44827152003-12-28 09:47:19 +000072 ISel(TargetMachine &tm, IntrinsicLowering &il)
73 : TM(tm), IL(il), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000074
75 /// runOnFunction - Top level implementation of instruction selection for
76 /// the entire function.
77 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000079 // First pass over the function, lower any unknown intrinsic functions
80 // with the IntrinsicLowering class.
81 LowerUnknownIntrinsicFunctionCalls(Fn);
82
Chris Lattner36b36032002-10-29 23:40:58 +000083 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000084
Chris Lattner065faeb2002-12-28 20:24:02 +000085 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
87 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
88
Chris Lattner14aa7fe2002-12-16 22:54:46 +000089 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000090
Chris Lattnerdbd73722003-05-06 21:32:22 +000091 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000092 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000093
Chris Lattner333b2fa2002-12-13 10:09:43 +000094 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000095 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000096
97 // Select the PHI nodes
98 SelectPHINodes();
99
Chris Lattner72614082002-10-25 22:55:53 +0000100 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000101 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000102 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000103 // We always build a machine code representation for the function
104 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000105 }
106
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000107 virtual const char *getPassName() const {
108 return "X86 Simple Instruction Selection";
109 }
110
Chris Lattner72614082002-10-25 22:55:53 +0000111 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000112 /// block. This simply creates a new MachineBasicBlock to emit code into
113 /// and adds it to the current MachineFunction. Subsequent visit* for
114 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000115 ///
116 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000117 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000118 }
119
Chris Lattner44827152003-12-28 09:47:19 +0000120 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
121 /// function, lowering any calls to unknown intrinsic functions into the
122 /// equivalent LLVM code.
123 void LowerUnknownIntrinsicFunctionCalls(Function &F);
124
Chris Lattner065faeb2002-12-28 20:24:02 +0000125 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
126 /// from the stack into virtual registers.
127 ///
128 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000129
130 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
131 /// because we have to generate our sources into the source basic blocks,
132 /// not the current one.
133 ///
134 void SelectPHINodes();
135
Chris Lattner72614082002-10-25 22:55:53 +0000136 // Visitation methods for various instructions. These methods simply emit
137 // fixed X86 code for each instruction.
138 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000139
140 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000141 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000142 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000143
144 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000145 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000146 unsigned Reg;
147 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000148 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
149 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000150 };
151 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000152 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000153 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000154 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000155
156 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000157 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000158 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
159 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000160 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000161 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000162 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000163 void doMultiplyConst(MachineBasicBlock *MBB,
164 MachineBasicBlock::iterator &MBBI,
165 unsigned DestReg, const Type *DestTy,
166 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000167 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000168
Chris Lattnerf01729e2002-11-02 20:54:46 +0000169 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
170 void visitRem(BinaryOperator &B) { visitDivRem(B); }
171 void visitDivRem(BinaryOperator &B);
172
Chris Lattnere2954c82002-11-02 20:04:26 +0000173 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000174 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
175 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
176 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000177
Chris Lattner6d40c192003-01-16 16:43:00 +0000178 // Comparison operators...
179 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000180 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
181 MachineBasicBlock *MBB,
182 MachineBasicBlock::iterator &MBBI);
183
Chris Lattner6fc3c522002-11-17 21:11:55 +0000184 // Memory Instructions
185 void visitLoadInst(LoadInst &I);
186 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000187 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000188 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000189 void visitMallocInst(MallocInst &I);
190 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000191
Chris Lattnere2954c82002-11-02 20:04:26 +0000192 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000193 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000194 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000195 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000196 void visitVANextInst(VANextInst &I);
197 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000198
199 void visitInstruction(Instruction &I) {
200 std::cerr << "Cannot instruction select: " << I;
201 abort();
202 }
203
Brian Gaeke95780cc2002-12-13 07:56:18 +0000204 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000205 ///
206 void promote32(unsigned targetReg, const ValueRecord &VR);
207
Chris Lattner3e130a22003-01-13 00:32:26 +0000208 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
209 /// constant expression GEP support.
210 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000211 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000212 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000213 User::op_iterator IdxEnd, unsigned TargetReg);
214
Chris Lattner548f61d2003-04-23 17:22:12 +0000215 /// emitCastOperation - Common code shared between visitCastInst and
216 /// constant expression cast support.
217 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
218 Value *Src, const Type *DestTy, unsigned TargetReg);
219
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000220 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
221 /// and constant expression support.
222 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
223 MachineBasicBlock::iterator &IP,
224 Value *Op0, Value *Op1,
225 unsigned OperatorClass, unsigned TargetReg);
226
Chris Lattnercadff442003-10-23 17:21:43 +0000227 void emitDivRemOperation(MachineBasicBlock *BB,
228 MachineBasicBlock::iterator &IP,
229 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
230 const Type *Ty, unsigned TargetReg);
231
Chris Lattner58c41fe2003-08-24 19:19:47 +0000232 /// emitSetCCOperation - Common code shared between visitSetCondInst and
233 /// constant expression support.
234 void emitSetCCOperation(MachineBasicBlock *BB,
235 MachineBasicBlock::iterator &IP,
236 Value *Op0, Value *Op1, unsigned Opcode,
237 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000238
239 /// emitShiftOperation - Common code shared between visitShiftInst and
240 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000241 void emitShiftOperation(MachineBasicBlock *MBB,
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000242 MachineBasicBlock::iterator &IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000243 Value *Op, Value *ShiftAmount, bool isLeftShift,
244 const Type *ResultTy, unsigned DestReg);
245
Chris Lattner58c41fe2003-08-24 19:19:47 +0000246
Chris Lattnerc5291f52002-10-27 21:16:59 +0000247 /// copyConstantToRegister - Output the instructions required to put the
248 /// specified constant into the specified register.
249 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000250 void copyConstantToRegister(MachineBasicBlock *MBB,
251 MachineBasicBlock::iterator &MBBI,
252 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000253
Chris Lattner3e130a22003-01-13 00:32:26 +0000254 /// makeAnotherReg - This method returns the next register number we haven't
255 /// yet used.
256 ///
257 /// Long values are handled somewhat specially. They are always allocated
258 /// as pairs of 32 bit integer values. The register number returned is the
259 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
260 /// of the long value.
261 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000262 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000263 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
264 "Current target doesn't have X86 reg info??");
265 const X86RegisterInfo *MRI =
266 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000267 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000268 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
269 // Create the lower part
270 F->getSSARegMap()->createVirtualRegister(RC);
271 // Create the upper part.
272 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000273 }
274
Chris Lattnerc0812d82002-12-13 06:56:29 +0000275 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000276 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000277 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000278 }
279
Chris Lattner72614082002-10-25 22:55:53 +0000280 /// getReg - This method turns an LLVM value into a register number. This
281 /// is guaranteed to produce the same register number for a particular value
282 /// every time it is queried.
283 ///
284 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000285 unsigned getReg(Value *V) {
286 // Just append to the end of the current bb.
287 MachineBasicBlock::iterator It = BB->end();
288 return getReg(V, BB, It);
289 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000290 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000291 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000292 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000293 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000294 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000295 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000296 }
Chris Lattner72614082002-10-25 22:55:53 +0000297
Chris Lattner6f8fd252002-10-27 21:23:43 +0000298 // If this operand is a constant, emit the code to copy the constant into
299 // the register here...
300 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000301 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000302 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000303 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000304 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
305 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000306 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000307 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000308 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000309
Chris Lattner72614082002-10-25 22:55:53 +0000310 return Reg;
311 }
Chris Lattner72614082002-10-25 22:55:53 +0000312 };
313}
314
Chris Lattner43189d12002-11-17 20:07:45 +0000315/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
316/// Representation.
317///
318enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000319 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000320};
321
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000322/// getClass - Turn a primitive type into a "class" number which is based on the
323/// size of the type, and whether or not it is floating point.
324///
Chris Lattner43189d12002-11-17 20:07:45 +0000325static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000326 switch (Ty->getPrimitiveID()) {
327 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000328 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000329 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000330 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000331 case Type::IntTyID:
332 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000333 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000334
Chris Lattner94af4142002-12-25 05:13:53 +0000335 case Type::FloatTyID:
336 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000337
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000338 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000339 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000340 default:
341 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000342 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000343 }
344}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000345
Chris Lattner6b993cc2002-12-15 08:02:15 +0000346// getClassB - Just like getClass, but treat boolean values as bytes.
347static inline TypeClass getClassB(const Type *Ty) {
348 if (Ty == Type::BoolTy) return cByte;
349 return getClass(Ty);
350}
351
Chris Lattner06925362002-11-17 21:56:38 +0000352
Chris Lattnerc5291f52002-10-27 21:16:59 +0000353/// copyConstantToRegister - Output the instructions required to put the
354/// specified constant into the specified register.
355///
Chris Lattner8a307e82002-12-16 19:32:50 +0000356void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
357 MachineBasicBlock::iterator &IP,
358 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000359 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000360 unsigned Class = 0;
361 switch (CE->getOpcode()) {
362 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000363 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000364 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000365 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000366 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000367 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000368 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000369
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000370 case Instruction::Xor: ++Class; // FALL THROUGH
371 case Instruction::Or: ++Class; // FALL THROUGH
372 case Instruction::And: ++Class; // FALL THROUGH
373 case Instruction::Sub: ++Class; // FALL THROUGH
374 case Instruction::Add:
375 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
376 Class, R);
377 return;
378
Chris Lattnercadff442003-10-23 17:21:43 +0000379 case Instruction::Mul: {
380 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
381 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
382 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
383 return;
384 }
385 case Instruction::Div:
386 case Instruction::Rem: {
387 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
388 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
389 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
390 CE->getOpcode() == Instruction::Div,
391 CE->getType(), R);
392 return;
393 }
394
Chris Lattner58c41fe2003-08-24 19:19:47 +0000395 case Instruction::SetNE:
396 case Instruction::SetEQ:
397 case Instruction::SetLT:
398 case Instruction::SetGT:
399 case Instruction::SetLE:
400 case Instruction::SetGE:
401 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
402 CE->getOpcode(), R);
403 return;
404
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000405 case Instruction::Shl:
406 case Instruction::Shr:
407 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000408 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
409 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000410
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000411 default:
412 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000413 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000414 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000415 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000416
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000417 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000418 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000419
420 if (Class == cLong) {
421 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000422 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000423 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
424 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
425 return;
426 }
427
Chris Lattner94af4142002-12-25 05:13:53 +0000428 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000429
430 static const unsigned IntegralOpcodeTab[] = {
431 X86::MOVir8, X86::MOVir16, X86::MOVir32
432 };
433
Chris Lattner6b993cc2002-12-15 08:02:15 +0000434 if (C->getType() == Type::BoolTy) {
435 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000436 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000437 ConstantInt *CI = cast<ConstantInt>(C);
438 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000439 }
Chris Lattner94af4142002-12-25 05:13:53 +0000440 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
441 double Value = CFP->getValue();
442 if (Value == +0.0)
443 BMI(MBB, IP, X86::FLD0, 0, R);
444 else if (Value == +1.0)
445 BMI(MBB, IP, X86::FLD1, 0, R);
446 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000447 // Otherwise we need to spill the constant to memory...
448 MachineConstantPool *CP = F->getConstantPool();
449 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000450 const Type *Ty = CFP->getType();
451
452 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
453 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
454 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000455 }
456
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000457 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000458 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000459 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000460 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000461 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000462 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000463 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000464 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000465 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000466 }
467}
468
Chris Lattner065faeb2002-12-28 20:24:02 +0000469/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
470/// the stack into virtual registers.
471///
472void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
473 // Emit instructions to load the arguments... On entry to a function on the
474 // X86, the stack frame looks like this:
475 //
476 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000477 // [ESP + 4] -- first argument (leftmost lexically)
478 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000479 // ...
480 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000481 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000482 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000483
484 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
485 unsigned Reg = getReg(*I);
486
Chris Lattner065faeb2002-12-28 20:24:02 +0000487 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000488 switch (getClassB(I->getType())) {
489 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000490 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000491 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
492 break;
493 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000494 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000495 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
496 break;
497 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000498 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000499 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
500 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000501 case cLong:
502 FI = MFI->CreateFixedObject(8, ArgOffset);
503 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
504 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
505 ArgOffset += 4; // longs require 4 additional bytes
506 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000507 case cFP:
508 unsigned Opcode;
509 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000510 Opcode = X86::FLDr32;
511 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000512 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000513 Opcode = X86::FLDr64;
514 FI = MFI->CreateFixedObject(8, ArgOffset);
515 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000516 }
517 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
518 break;
519 default:
520 assert(0 && "Unhandled argument type!");
521 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000522 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000523 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000524
525 // If the function takes variable number of arguments, add a frame offset for
526 // the start of the first vararg value... this is used to expand
527 // llvm.va_start.
528 if (Fn.getFunctionType()->isVarArg())
529 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000530}
531
532
Chris Lattner333b2fa2002-12-13 10:09:43 +0000533/// SelectPHINodes - Insert machine code to generate phis. This is tricky
534/// because we have to generate our sources into the source basic blocks, not
535/// the current one.
536///
537void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000538 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000539 const Function &LF = *F->getFunction(); // The LLVM function...
540 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
541 const BasicBlock *BB = I;
542 MachineBasicBlock *MBB = MBBMap[I];
543
544 // Loop over all of the PHI nodes in the LLVM basic block...
545 unsigned NumPHIs = 0;
546 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000547 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000548
Chris Lattner333b2fa2002-12-13 10:09:43 +0000549 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000550 unsigned PHIReg = getReg(*PN);
551 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
552 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
553
554 MachineInstr *LongPhiMI = 0;
555 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000556 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
557 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000558 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000559
Chris Lattnera6e73f12003-05-12 14:22:21 +0000560 // PHIValues - Map of blocks to incoming virtual registers. We use this
561 // so that we only initialize one incoming value for a particular block,
562 // even if the block has multiple entries in the PHI node.
563 //
564 std::map<MachineBasicBlock*, unsigned> PHIValues;
565
Chris Lattner333b2fa2002-12-13 10:09:43 +0000566 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
567 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000568 unsigned ValReg;
569 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
570 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000571
Chris Lattnera6e73f12003-05-12 14:22:21 +0000572 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
573 // We already inserted an initialization of the register for this
574 // predecessor. Recycle it.
575 ValReg = EntryIt->second;
576
577 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000578 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000579 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000580 Value *Val = PN->getIncomingValue(i);
581
582 // If this is a constant or GlobalValue, we may have to insert code
583 // into the basic block to compute it into a virtual register.
584 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
585 // Because we don't want to clobber any values which might be in
586 // physical registers with the computation of this constant (which
587 // might be arbitrarily complex if it is a constant expression),
588 // just insert the computation at the top of the basic block.
589 MachineBasicBlock::iterator PI = PredMBB->begin();
590
591 // Skip over any PHI nodes though!
592 while (PI != PredMBB->end() && (*PI)->getOpcode() == X86::PHI)
593 ++PI;
594
595 ValReg = getReg(Val, PredMBB, PI);
596 } else {
597 ValReg = getReg(Val);
598 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000599
600 // Remember that we inserted a value for this PHI for this predecessor
601 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
602 }
603
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000604 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000605 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000606 if (LongPhiMI) {
607 LongPhiMI->addRegOperand(ValReg+1);
608 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
609 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000610 }
611 }
612 }
613}
614
Chris Lattner6d40c192003-01-16 16:43:00 +0000615// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
616// the conditional branch instruction which is the only user of the cc
617// instruction. This is the case if the conditional branch is the only user of
618// the setcc, and if the setcc is in the same basic block as the conditional
619// branch. We also don't handle long arguments below, so we reject them here as
620// well.
621//
622static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
623 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000624 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000625 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
626 const Type *Ty = SCI->getOperand(0)->getType();
627 if (Ty != Type::LongTy && Ty != Type::ULongTy)
628 return SCI;
629 }
630 return 0;
631}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000632
Chris Lattner6d40c192003-01-16 16:43:00 +0000633// Return a fixed numbering for setcc instructions which does not depend on the
634// order of the opcodes.
635//
636static unsigned getSetCCNumber(unsigned Opcode) {
637 switch(Opcode) {
638 default: assert(0 && "Unknown setcc instruction!");
639 case Instruction::SetEQ: return 0;
640 case Instruction::SetNE: return 1;
641 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000642 case Instruction::SetGE: return 3;
643 case Instruction::SetGT: return 4;
644 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000645 }
646}
Chris Lattner06925362002-11-17 21:56:38 +0000647
Chris Lattner6d40c192003-01-16 16:43:00 +0000648// LLVM -> X86 signed X86 unsigned
649// ----- ---------- ------------
650// seteq -> sete sete
651// setne -> setne setne
652// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000653// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000654// setgt -> setg seta
655// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000656// ----
657// sets // Used by comparison with 0 optimization
658// setns
659static const unsigned SetCCOpcodeTab[2][8] = {
660 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
661 0, 0 },
662 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
663 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000664};
665
Chris Lattnerb2acc512003-10-19 21:09:10 +0000666// EmitComparison - This function emits a comparison of the two operands,
667// returning the extended setcc code to use.
668unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
669 MachineBasicBlock *MBB,
670 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000671 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000672 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000673 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000674 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000675
676 // Special case handling of: cmp R, i
677 if (Class == cByte || Class == cShort || Class == cInt)
678 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000679 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
680
Chris Lattner333864d2003-06-05 19:30:30 +0000681 // Mask off any upper bits of the constant, if there are any...
682 Op1v &= (1ULL << (8 << Class)) - 1;
683
Chris Lattnerb2acc512003-10-19 21:09:10 +0000684 // If this is a comparison against zero, emit more efficient code. We
685 // can't handle unsigned comparisons against zero unless they are == or
686 // !=. These should have been strength reduced already anyway.
687 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
688 static const unsigned TESTTab[] = {
689 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
690 };
691 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
692
693 if (OpNum == 2) return 6; // Map jl -> js
694 if (OpNum == 3) return 7; // Map jg -> jns
695 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000696 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000697
698 static const unsigned CMPTab[] = {
699 X86::CMPri8, X86::CMPri16, X86::CMPri32
700 };
701
702 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
703 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000704 }
705
Chris Lattner58c41fe2003-08-24 19:19:47 +0000706 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000707 switch (Class) {
708 default: assert(0 && "Unknown type class!");
709 // Emit: cmp <var1>, <var2> (do the comparison). We can
710 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
711 // 32-bit.
712 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000713 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000714 break;
715 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000716 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000717 break;
718 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000719 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000720 break;
721 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000722 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
723 BMI(MBB, IP, X86::FNSTSWr8, 0);
724 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000725 break;
726
727 case cLong:
728 if (OpNum < 2) { // seteq, setne
729 unsigned LoTmp = makeAnotherReg(Type::IntTy);
730 unsigned HiTmp = makeAnotherReg(Type::IntTy);
731 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000732 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
733 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
734 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000735 break; // Allow the sete or setne to be generated from flags set by OR
736 } else {
737 // Emit a sequence of code which compares the high and low parts once
738 // each, then uses a conditional move to handle the overflow case. For
739 // example, a setlt for long would generate code like this:
740 //
741 // AL = lo(op1) < lo(op2) // Signedness depends on operands
742 // BL = hi(op1) < hi(op2) // Always unsigned comparison
743 // dest = hi(op1) == hi(op2) ? AL : BL;
744 //
745
Chris Lattner6d40c192003-01-16 16:43:00 +0000746 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000747 // classes! Until then, hardcode registers so that we can deal with their
748 // aliases (because we don't have conditional byte moves).
749 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000750 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
751 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
752 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000753 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000754 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
755 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
756 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000757 // NOTE: visitSetCondInst knows that the value is dumped into the BL
758 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000759 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000760 }
761 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000762 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000763}
Chris Lattner3e130a22003-01-13 00:32:26 +0000764
Chris Lattner6d40c192003-01-16 16:43:00 +0000765
766/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
767/// register, then move it to wherever the result should be.
768///
769void ISel::visitSetCondInst(SetCondInst &I) {
770 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
771
Chris Lattner6d40c192003-01-16 16:43:00 +0000772 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000773 MachineBasicBlock::iterator MII = BB->end();
774 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
775 DestReg);
776}
Chris Lattner6d40c192003-01-16 16:43:00 +0000777
Chris Lattner58c41fe2003-08-24 19:19:47 +0000778/// emitSetCCOperation - Common code shared between visitSetCondInst and
779/// constant expression support.
780void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
781 MachineBasicBlock::iterator &IP,
782 Value *Op0, Value *Op1, unsigned Opcode,
783 unsigned TargetReg) {
784 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000785 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000786
Chris Lattnerb2acc512003-10-19 21:09:10 +0000787 const Type *CompTy = Op0->getType();
788 unsigned CompClass = getClassB(CompTy);
789 bool isSigned = CompTy->isSigned() && CompClass != cFP;
790
791 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000792 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000793 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000794 } else {
795 // Handle long comparisons by copying the value which is already in BL into
796 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000797 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000798 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000799}
Chris Lattner51b49a92002-11-02 19:45:49 +0000800
Chris Lattner58c41fe2003-08-24 19:19:47 +0000801
802
803
Brian Gaekec2505982002-11-30 11:57:28 +0000804/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
805/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000806void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
807 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000808
809 // Make sure we have the register number for this value...
810 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
811
Chris Lattner3e130a22003-01-13 00:32:26 +0000812 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000813 case cByte:
814 // Extend value into target register (8->32)
815 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000816 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000817 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000818 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000819 break;
820 case cShort:
821 // Extend value into target register (16->32)
822 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000823 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000824 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000825 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000826 break;
827 case cInt:
828 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000829 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000830 break;
831 default:
832 assert(0 && "Unpromotable operand class in promote32");
833 }
Brian Gaekec2505982002-11-30 11:57:28 +0000834}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000835
Chris Lattner72614082002-10-25 22:55:53 +0000836/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
837/// we have the following possibilities:
838///
839/// ret void: No return value, simply emit a 'ret' instruction
840/// ret sbyte, ubyte : Extend value into EAX and return
841/// ret short, ushort: Extend value into EAX and return
842/// ret int, uint : Move value into EAX and return
843/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000844/// ret long, ulong : Move value into EAX/EDX and return
845/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000846///
Chris Lattner3e130a22003-01-13 00:32:26 +0000847void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000848 if (I.getNumOperands() == 0) {
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000849 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner94af4142002-12-25 05:13:53 +0000850 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
851 return;
852 }
853
854 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000855 unsigned RetReg = getReg(RetVal);
856 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000857 case cByte: // integral return values: extend or move into EAX and return
858 case cShort:
859 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000860 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000861 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000862 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000863 break;
864 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000865 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000866 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000867 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000868 break;
869 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000870 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
871 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000872 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000873 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
874 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000875 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000876 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000877 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000878 }
Chris Lattner43189d12002-11-17 20:07:45 +0000879 // Emit a 'ret' instruction
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000880 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner94af4142002-12-25 05:13:53 +0000881 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000882}
883
Chris Lattner55f6fab2003-01-16 18:07:23 +0000884// getBlockAfter - Return the basic block which occurs lexically after the
885// specified one.
886static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
887 Function::iterator I = BB; ++I; // Get iterator to next block
888 return I != BB->getParent()->end() ? &*I : 0;
889}
890
Chris Lattner51b49a92002-11-02 19:45:49 +0000891/// visitBranchInst - Handle conditional and unconditional branches here. Note
892/// that since code layout is frozen at this point, that if we are trying to
893/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000894/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000895///
Chris Lattner94af4142002-12-25 05:13:53 +0000896void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000897 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
898
899 if (!BI.isConditional()) { // Unconditional branch?
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000900 if (BI.getSuccessor(0) != NextBB) {
901 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000902 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000903 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000904 return;
905 }
906
907 // See if we can fold the setcc into the branch itself...
908 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
909 if (SCI == 0) {
910 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
911 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000912 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000913 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000914 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000915 if (BI.getSuccessor(1) == NextBB) {
916 if (BI.getSuccessor(0) != NextBB)
917 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
918 } else {
919 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
920
921 if (BI.getSuccessor(0) != NextBB)
922 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
923 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000924 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000925 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000926
927 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000928 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000929 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000930
931 const Type *CompTy = SCI->getOperand(0)->getType();
932 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000933
Chris Lattnerb2acc512003-10-19 21:09:10 +0000934
Chris Lattner6d40c192003-01-16 16:43:00 +0000935 // LLVM -> X86 signed X86 unsigned
936 // ----- ---------- ------------
937 // seteq -> je je
938 // setne -> jne jne
939 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000940 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000941 // setgt -> jg ja
942 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000943 // ----
944 // js // Used by comparison with 0 optimization
945 // jns
946
947 static const unsigned OpcodeTab[2][8] = {
948 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
949 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
950 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +0000951 };
952
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000953 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000954 if (BI.getSuccessor(0) != NextBB) {
955 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
956 if (BI.getSuccessor(1) != NextBB)
957 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
958 } else {
959 // Change to the inverse condition...
960 if (BI.getSuccessor(1) != NextBB) {
961 OpNum ^= 1;
962 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
963 }
964 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000965}
966
Chris Lattner3e130a22003-01-13 00:32:26 +0000967
968/// doCall - This emits an abstract call instruction, setting up the arguments
969/// and the return value as appropriate. For the actual function call itself,
970/// it inserts the specified CallMI instruction into the stream.
971///
972void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000973 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000974
Chris Lattner065faeb2002-12-28 20:24:02 +0000975 // Count how many bytes are to be pushed on the stack...
976 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000977
Chris Lattner3e130a22003-01-13 00:32:26 +0000978 if (!Args.empty()) {
979 for (unsigned i = 0, e = Args.size(); i != e; ++i)
980 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000981 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000982 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000983 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000984 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000985 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000986 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
987 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000988 default: assert(0 && "Unknown class!");
989 }
990
991 // Adjust the stack pointer for the new arguments...
992 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
993
994 // Arguments go on the stack in reverse order, as specified by the ABI.
995 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000996 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000997 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +0000998 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000999 case cByte:
1000 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001001 // Promote arg to 32 bits wide into a temporary register...
1002 unsigned R = makeAnotherReg(Type::UIntTy);
1003 promote32(R, Args[i]);
1004 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1005 X86::ESP, ArgOffset).addReg(R);
1006 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001007 }
1008 case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001009 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1010 X86::ESP, ArgOffset).addReg(ArgReg);
1011 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001012 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001013 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1014 X86::ESP, ArgOffset).addReg(ArgReg);
1015 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1016 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1017 ArgOffset += 4; // 8 byte entry, not 4.
1018 break;
1019
Chris Lattner065faeb2002-12-28 20:24:02 +00001020 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001021 if (Args[i].Ty == Type::FloatTy) {
1022 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1023 X86::ESP, ArgOffset).addReg(ArgReg);
1024 } else {
1025 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1026 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1027 X86::ESP, ArgOffset).addReg(ArgReg);
1028 ArgOffset += 4; // 8 byte entry, not 4.
1029 }
1030 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001031
Chris Lattner3e130a22003-01-13 00:32:26 +00001032 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001033 }
1034 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001035 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001036 } else {
1037 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001038 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001039
Chris Lattner3e130a22003-01-13 00:32:26 +00001040 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001041
Chris Lattner065faeb2002-12-28 20:24:02 +00001042 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001043
1044 // If there is a return value, scavenge the result from the location the call
1045 // leaves it in...
1046 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001047 if (Ret.Ty != Type::VoidTy) {
1048 unsigned DestClass = getClassB(Ret.Ty);
1049 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001050 case cByte:
1051 case cShort:
1052 case cInt: {
1053 // Integral results are in %eax, or the appropriate portion
1054 // thereof.
1055 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001056 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001057 };
1058 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001059 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001060 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001061 }
Chris Lattner94af4142002-12-25 05:13:53 +00001062 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001063 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001064 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001065 case cLong: // Long values are left in EDX:EAX
1066 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1067 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1068 break;
1069 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001070 }
Chris Lattnera3243642002-12-04 23:45:28 +00001071 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001072}
Chris Lattner2df035b2002-11-02 19:27:56 +00001073
Chris Lattner3e130a22003-01-13 00:32:26 +00001074
1075/// visitCallInst - Push args on stack and do a procedure call instruction.
1076void ISel::visitCallInst(CallInst &CI) {
1077 MachineInstr *TheCall;
1078 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001079 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001080 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001081 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1082 return;
1083 }
1084
Chris Lattner3e130a22003-01-13 00:32:26 +00001085 // Emit a CALL instruction with PC-relative displacement.
1086 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1087 } else { // Emit an indirect call...
1088 unsigned Reg = getReg(CI.getCalledValue());
1089 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1090 }
1091
1092 std::vector<ValueRecord> Args;
1093 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001094 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001095
1096 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1097 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001098}
Chris Lattner3e130a22003-01-13 00:32:26 +00001099
Chris Lattneraeb54b82003-08-28 21:23:43 +00001100
Chris Lattner44827152003-12-28 09:47:19 +00001101/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1102/// function, lowering any calls to unknown intrinsic functions into the
1103/// equivalent LLVM code.
1104void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1105 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1106 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1107 if (CallInst *CI = dyn_cast<CallInst>(I++))
1108 if (Function *F = CI->getCalledFunction())
1109 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001110 case Intrinsic::not_intrinsic:
Chris Lattner44827152003-12-28 09:47:19 +00001111 case Intrinsic::va_start:
1112 case Intrinsic::va_copy:
1113 case Intrinsic::va_end:
1114 // We directly implement these intrinsics
1115 break;
1116 default:
1117 // All other intrinsic calls we must lower.
1118 Instruction *Before = CI->getPrev();
1119 IL.LowerIntrinsicCall(CI);
1120 if (Before) { // Move iterator to instruction after call
1121 I = Before; ++I;
1122 } else {
1123 I = BB->begin();
1124 }
1125 }
1126
1127}
1128
Brian Gaeked0fde302003-11-11 22:41:34 +00001129void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001130 unsigned TmpReg1, TmpReg2;
1131 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001132 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001133 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001134 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001135 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001136 return;
1137
Brian Gaeked0fde302003-11-11 22:41:34 +00001138 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001139 TmpReg1 = getReg(CI);
1140 TmpReg2 = getReg(CI.getOperand(1));
1141 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001142 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001143 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001144
Chris Lattner44827152003-12-28 09:47:19 +00001145 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001146 }
1147}
1148
1149
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001150/// visitSimpleBinary - Implement simple binary operators for integral types...
1151/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1152/// Xor.
1153void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1154 unsigned DestReg = getReg(B);
1155 MachineBasicBlock::iterator MI = BB->end();
1156 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1157 OperatorClass, DestReg);
1158}
Chris Lattner3e130a22003-01-13 00:32:26 +00001159
Chris Lattnerb2acc512003-10-19 21:09:10 +00001160/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1161/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1162/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001163///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001164/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1165/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001166///
1167void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001168 MachineBasicBlock::iterator &IP,
1169 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001170 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001171 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001172
1173 // sub 0, X -> neg X
1174 if (OperatorClass == 1 && Class != cLong)
1175 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1176 if (CI->isNullValue()) {
1177 unsigned op1Reg = getReg(Op1, MBB, IP);
1178 switch (Class) {
1179 default: assert(0 && "Unknown class for this function!");
1180 case cByte:
1181 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1182 return;
1183 case cShort:
1184 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1185 return;
1186 case cInt:
1187 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1188 return;
1189 }
1190 }
1191
Chris Lattner35333e12003-06-05 18:28:55 +00001192 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1193 static const unsigned OpcodeTab[][4] = {
1194 // Arithmetic operators
1195 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1196 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1197
1198 // Bitwise operators
1199 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1200 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1201 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001202 };
Chris Lattner35333e12003-06-05 18:28:55 +00001203
1204 bool isLong = false;
1205 if (Class == cLong) {
1206 isLong = true;
1207 Class = cInt; // Bottom 32 bits are handled just like ints
1208 }
1209
1210 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1211 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001212 unsigned Op0r = getReg(Op0, MBB, IP);
1213 unsigned Op1r = getReg(Op1, MBB, IP);
1214 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001215
1216 if (isLong) { // Handle the upper 32 bits of long values...
1217 static const unsigned TopTab[] = {
1218 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1219 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001220 BMI(MBB, IP, TopTab[OperatorClass], 2,
1221 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001222 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001223 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001224 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001225
1226 // Special case: op Reg, <const>
1227 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1228 unsigned Op0r = getReg(Op0, MBB, IP);
1229
1230 // xor X, -1 -> not X
1231 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1232 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1233 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1234 return;
1235 }
1236
1237 // add X, -1 -> dec X
1238 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1239 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1240 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1241 return;
1242 }
1243
1244 // add X, 1 -> inc X
1245 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1246 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1247 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1248 return;
1249 }
1250
1251 static const unsigned OpcodeTab[][3] = {
1252 // Arithmetic operators
1253 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1254 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1255
1256 // Bitwise operators
1257 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1258 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1259 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1260 };
1261
1262 assert(Class < 3 && "General code handles 64-bit integer types!");
1263 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1264 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1265
1266 // Mask off any upper bits of the constant, if there are any...
1267 Op1v &= (1ULL << (8 << Class)) - 1;
1268 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001269}
1270
Chris Lattner3e130a22003-01-13 00:32:26 +00001271/// doMultiply - Emit appropriate instructions to multiply together the
1272/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1273/// result should be given as DestTy.
1274///
Chris Lattner8a307e82002-12-16 19:32:50 +00001275void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001276 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001277 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001278 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001279 switch (Class) {
1280 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001281 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001282 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001283 case cInt:
1284 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001285 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001286 .addReg(op0Reg).addReg(op1Reg);
1287 return;
1288 case cByte:
1289 // Must use the MUL instruction, which forces use of AL...
1290 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1291 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1292 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1293 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001294 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001295 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001296 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001297}
1298
Chris Lattnerb2acc512003-10-19 21:09:10 +00001299// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1300// returns zero when the input is not exactly a power of two.
1301static unsigned ExactLog2(unsigned Val) {
1302 if (Val == 0) return 0;
1303 unsigned Count = 0;
1304 while (Val != 1) {
1305 if (Val & 1) return 0;
1306 Val >>= 1;
1307 ++Count;
1308 }
1309 return Count+1;
1310}
1311
1312void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1313 MachineBasicBlock::iterator &IP,
1314 unsigned DestReg, const Type *DestTy,
1315 unsigned op0Reg, unsigned ConstRHS) {
1316 unsigned Class = getClass(DestTy);
1317
1318 // If the element size is exactly a power of 2, use a shift to get it.
1319 if (unsigned Shift = ExactLog2(ConstRHS)) {
1320 switch (Class) {
1321 default: assert(0 && "Unknown class for this function!");
1322 case cByte:
1323 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1324 return;
1325 case cShort:
1326 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1327 return;
1328 case cInt:
1329 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1330 return;
1331 }
1332 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001333
1334 if (Class == cShort) {
1335 BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1336 return;
1337 } else if (Class == cInt) {
1338 BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1339 return;
1340 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001341
1342 // Most general case, emit a normal multiply...
1343 static const unsigned MOVirTab[] = {
1344 X86::MOVir8, X86::MOVir16, X86::MOVir32
1345 };
1346
1347 unsigned TmpReg = makeAnotherReg(DestTy);
1348 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1349
1350 // Emit a MUL to multiply the register holding the index by
1351 // elementSize, putting the result in OffsetReg.
1352 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1353}
1354
Chris Lattnerca9671d2002-11-02 20:28:58 +00001355/// visitMul - Multiplies are not simple binary operators because they must deal
1356/// with the EAX register explicitly.
1357///
1358void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001359 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001360 unsigned DestReg = getReg(I);
1361
1362 // Simple scalar multiply?
1363 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001364 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1365 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1366 MachineBasicBlock::iterator MBBI = BB->end();
1367 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1368 } else {
1369 unsigned Op1Reg = getReg(I.getOperand(1));
1370 MachineBasicBlock::iterator MBBI = BB->end();
1371 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1372 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001373 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001374 unsigned Op1Reg = getReg(I.getOperand(1));
1375
Chris Lattner3e130a22003-01-13 00:32:26 +00001376 // Long value. We have to do things the hard way...
1377 // Multiply the two low parts... capturing carry into EDX
1378 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1379 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1380
1381 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1382 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1383 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1384
1385 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001386 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001387 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001388
1389 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1390 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001391 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001392
1393 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001394 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001395 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001396
1397 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001398 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001399 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001400}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001401
Chris Lattner06925362002-11-17 21:56:38 +00001402
Chris Lattnerf01729e2002-11-02 20:54:46 +00001403/// visitDivRem - Handle division and remainder instructions... these
1404/// instruction both require the same instructions to be generated, they just
1405/// select the result from a different register. Note that both of these
1406/// instructions work differently for signed and unsigned operands.
1407///
1408void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001409 unsigned Op0Reg = getReg(I.getOperand(0));
1410 unsigned Op1Reg = getReg(I.getOperand(1));
1411 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001412
Chris Lattnercadff442003-10-23 17:21:43 +00001413 MachineBasicBlock::iterator IP = BB->end();
1414 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1415 I.getType(), ResultReg);
1416}
1417
1418void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1419 MachineBasicBlock::iterator &IP,
1420 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1421 const Type *Ty, unsigned ResultReg) {
1422 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001423 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001424 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001425 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001426 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001427 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001428 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001429 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001430 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001431 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1432 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001433 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1434 }
Chris Lattner94af4142002-12-25 05:13:53 +00001435 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001436 case cLong: {
1437 static const char *FnName[] =
1438 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1439
Chris Lattnercadff442003-10-23 17:21:43 +00001440 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001441 MachineInstr *TheCall =
1442 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1443
1444 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001445 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1446 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001447 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1448 return;
1449 }
1450 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001451 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001452 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001453 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001454
1455 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1456 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001457 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001458 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1459 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1460
1461 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001462 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1463 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001464 };
1465
Chris Lattnercadff442003-10-23 17:21:43 +00001466 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001467 unsigned Reg = Regs[Class];
1468 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001469
1470 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001471 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001472
1473 if (isSigned) {
1474 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001475 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001476 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1477 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001478 } else {
1479 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
Chris Lattner62b767b2003-11-18 17:47:05 +00001480 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001481 }
1482
Chris Lattner06925362002-11-17 21:56:38 +00001483 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001484 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001485
Chris Lattnerf01729e2002-11-02 20:54:46 +00001486 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001487 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001488
Chris Lattnerf01729e2002-11-02 20:54:46 +00001489 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001490 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001491}
Chris Lattnere2954c82002-11-02 20:04:26 +00001492
Chris Lattner06925362002-11-17 21:56:38 +00001493
Brian Gaekea1719c92002-10-31 23:03:59 +00001494/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1495/// for constant immediate shift values, and for constant immediate
1496/// shift values equal to 1. Even the general case is sort of special,
1497/// because the shift amount has to be in CL, not just any old register.
1498///
Chris Lattner3e130a22003-01-13 00:32:26 +00001499void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001500 MachineBasicBlock::iterator IP = BB->end ();
1501 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1502 I.getOpcode () == Instruction::Shl, I.getType (),
1503 getReg (I));
1504}
1505
1506/// emitShiftOperation - Common code shared between visitShiftInst and
1507/// constant expression support.
1508void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1509 MachineBasicBlock::iterator &IP,
1510 Value *Op, Value *ShiftAmount, bool isLeftShift,
1511 const Type *ResultTy, unsigned DestReg) {
1512 unsigned SrcReg = getReg (Op, MBB, IP);
1513 bool isSigned = ResultTy->isSigned ();
1514 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001515
1516 static const unsigned ConstantOperand[][4] = {
1517 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1518 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1519 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1520 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1521 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001522
Chris Lattner3e130a22003-01-13 00:32:26 +00001523 static const unsigned NonConstantOperand[][4] = {
1524 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1525 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1526 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1527 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1528 };
Chris Lattner796df732002-11-02 00:44:25 +00001529
Chris Lattner3e130a22003-01-13 00:32:26 +00001530 // Longs, as usual, are handled specially...
1531 if (Class == cLong) {
1532 // If we have a constant shift, we can generate much more efficient code
1533 // than otherwise...
1534 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001535 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001536 unsigned Amount = CUI->getValue();
1537 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001538 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1539 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001540 BMI(MBB, IP, Opc[3], 3,
1541 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1542 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001543 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001544 BMI(MBB, IP, Opc[3], 3,
1545 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1546 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001547 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001548 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001549 Amount -= 32;
1550 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001551 BMI(MBB, IP, X86::SHLir32, 2,
1552 DestReg + 1).addReg(SrcReg).addZImm(Amount);
1553 BMI(MBB, IP, X86::MOVir32, 1,
1554 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001555 } else {
1556 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001557 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1558 BMI(MBB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001559 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001560 }
1561 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001562 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1563
1564 if (!isLeftShift && isSigned) {
1565 // If this is a SHR of a Long, then we need to do funny sign extension
1566 // stuff. TmpReg gets the value to use as the high-part if we are
1567 // shifting more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001568 BMI(MBB, IP, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001569 } else {
1570 // Other shifts use a fixed zero value if the shift is more than 32
1571 // bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001572 BMI(MBB, IP, X86::MOVir32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001573 }
1574
1575 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001576 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1577 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001578
1579 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1580 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1581 if (isLeftShift) {
1582 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001583 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001584 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001585 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001586
1587 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001588 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001589
1590 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001591 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001592 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1593 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001594 BMI(MBB, IP, X86::CMOVNErr32, 2,
1595 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001596 } else {
1597 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001598 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001599 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001600 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001601 .addReg(SrcReg+1);
1602
1603 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001604 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001605
1606 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001607 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001608 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1609
1610 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001611 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001612 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1613 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001614 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001615 return;
1616 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001617
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001618 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001619 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1620 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001621
Chris Lattner3e130a22003-01-13 00:32:26 +00001622 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001623 BMI(MBB, IP, Opc[Class], 2,
1624 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001625 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001626 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1627 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001628
Chris Lattner3e130a22003-01-13 00:32:26 +00001629 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001630 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001631 }
1632}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001633
Chris Lattner3e130a22003-01-13 00:32:26 +00001634
Chris Lattner6fc3c522002-11-17 21:11:55 +00001635/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001636/// instruction. The load and store instructions are the only place where we
1637/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001638///
1639void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001640 unsigned SrcAddrReg = getReg(I.getOperand(0));
1641 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001642
Brian Gaekebfedb912003-07-17 21:30:06 +00001643 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001644
1645 if (Class == cLong) {
1646 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
1647 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001648 return;
1649 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001650
Chris Lattner6ac1d712003-10-20 04:48:06 +00001651 static const unsigned Opcodes[] = {
1652 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001653 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001654 unsigned Opcode = Opcodes[Class];
1655 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1656 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001657}
1658
Chris Lattner6fc3c522002-11-17 21:11:55 +00001659/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1660/// instruction.
1661///
1662void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001663 unsigned ValReg = getReg(I.getOperand(0));
1664 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001665
1666 const Type *ValTy = I.getOperand(0)->getType();
1667 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001668
1669 if (Class == cLong) {
Chris Lattner6c09db22003-10-20 04:11:23 +00001670 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1671 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001672 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001673 }
1674
Chris Lattner6ac1d712003-10-20 04:48:06 +00001675 static const unsigned Opcodes[] = {
1676 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
1677 };
1678 unsigned Opcode = Opcodes[Class];
1679 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1680 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001681}
1682
1683
Brian Gaekec11232a2002-11-26 10:43:30 +00001684/// visitCastInst - Here we have various kinds of copying with or without
1685/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001686void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001687 Value *Op = CI.getOperand(0);
1688 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1689 // of the case are GEP instructions, then the cast does not need to be
1690 // generated explicitly, it will be folded into the GEP.
1691 if (CI.getType() == Type::LongTy &&
1692 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1693 bool AllUsesAreGEPs = true;
1694 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1695 if (!isa<GetElementPtrInst>(*I)) {
1696 AllUsesAreGEPs = false;
1697 break;
1698 }
1699
1700 // No need to codegen this cast if all users are getelementptr instrs...
1701 if (AllUsesAreGEPs) return;
1702 }
1703
Chris Lattner548f61d2003-04-23 17:22:12 +00001704 unsigned DestReg = getReg(CI);
1705 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001706 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001707}
1708
1709/// emitCastOperation - Common code shared between visitCastInst and
1710/// constant expression cast support.
1711void ISel::emitCastOperation(MachineBasicBlock *BB,
1712 MachineBasicBlock::iterator &IP,
1713 Value *Src, const Type *DestTy,
1714 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001715 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001716 const Type *SrcTy = Src->getType();
1717 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001718 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001719
Chris Lattner3e130a22003-01-13 00:32:26 +00001720 // Implement casts to bool by using compare on the operand followed by set if
1721 // not zero on the result.
1722 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001723 switch (SrcClass) {
1724 case cByte:
1725 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1726 break;
1727 case cShort:
1728 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1729 break;
1730 case cInt:
1731 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1732 break;
1733 case cLong: {
1734 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1735 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1736 break;
1737 }
1738 case cFP:
1739 assert(0 && "FIXME: implement cast FP to bool");
1740 abort();
1741 }
1742
1743 // If the zero flag is not set, then the value is true, set the byte to
1744 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001745 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001746 return;
1747 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001748
1749 static const unsigned RegRegMove[] = {
1750 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1751 };
1752
1753 // Implement casts between values of the same type class (as determined by
1754 // getClass) by using a register-to-register move.
1755 if (SrcClass == DestClass) {
1756 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001757 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001758 } else if (SrcClass == cFP) {
1759 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001760 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1761 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001762 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001763 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1764 "Unknown cFP member!");
1765 // Truncate from double to float by storing to memory as short, then
1766 // reading it back.
1767 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001768 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001769 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1770 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001771 }
1772 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001773 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1774 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001775 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001776 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001777 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001778 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001779 return;
1780 }
1781
1782 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1783 // or zero extension, depending on whether the source type was signed.
1784 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1785 SrcClass < DestClass) {
1786 bool isLong = DestClass == cLong;
1787 if (isLong) DestClass = cInt;
1788
1789 static const unsigned Opc[][4] = {
1790 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1791 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1792 };
1793
1794 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001795 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1796 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001797
1798 if (isLong) { // Handle upper 32 bits as appropriate...
1799 if (isUnsigned) // Zero out top bits...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001800 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001801 else // Sign extend bottom half...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001802 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001803 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001804 return;
1805 }
1806
1807 // Special case long -> int ...
1808 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001809 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001810 return;
1811 }
1812
1813 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1814 // move out of AX or AL.
1815 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1816 && SrcClass > DestClass) {
1817 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001818 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1819 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001820 return;
1821 }
1822
1823 // Handle casts from integer to floating point now...
1824 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001825 // Promote the integer to a type supported by FLD. We do this because there
1826 // are no unsigned FLD instructions, so we must promote an unsigned value to
1827 // a larger signed value, then use FLD on the larger value.
1828 //
1829 const Type *PromoteType = 0;
1830 unsigned PromoteOpcode;
1831 switch (SrcTy->getPrimitiveID()) {
1832 case Type::BoolTyID:
1833 case Type::SByteTyID:
1834 // We don't have the facilities for directly loading byte sized data from
1835 // memory (even signed). Promote it to 16 bits.
1836 PromoteType = Type::ShortTy;
1837 PromoteOpcode = X86::MOVSXr16r8;
1838 break;
1839 case Type::UByteTyID:
1840 PromoteType = Type::ShortTy;
1841 PromoteOpcode = X86::MOVZXr16r8;
1842 break;
1843 case Type::UShortTyID:
1844 PromoteType = Type::IntTy;
1845 PromoteOpcode = X86::MOVZXr32r16;
1846 break;
1847 case Type::UIntTyID: {
1848 // Make a 64 bit temporary... and zero out the top of it...
1849 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1850 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1851 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1852 SrcTy = Type::LongTy;
1853 SrcClass = cLong;
1854 SrcReg = TmpReg;
1855 break;
1856 }
1857 case Type::ULongTyID:
1858 assert("FIXME: not implemented: cast ulong X to fp type!");
1859 default: // No promotion needed...
1860 break;
1861 }
1862
1863 if (PromoteType) {
1864 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001865 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1866 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001867 SrcTy = PromoteType;
1868 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001869 SrcReg = TmpReg;
1870 }
1871
1872 // Spill the integer to memory and reload it from there...
1873 int FrameIdx =
1874 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1875
1876 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001877 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1878 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001879 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001880 } else {
1881 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001882 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001883 }
1884
1885 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001886 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001887 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001888 return;
1889 }
1890
1891 // Handle casts from floating point to integer now...
1892 if (SrcClass == cFP) {
1893 // Change the floating point control register to use "round towards zero"
1894 // mode when truncating to an integer value.
1895 //
1896 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001897 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001898
1899 // Load the old value of the high byte of the control word...
1900 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001901 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001902
1903 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001904 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001905
1906 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001907 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001908
1909 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001910 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001911 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00001912
1913 // We don't have the facilities for directly storing byte sized data to
1914 // memory. Promote it to 16 bits. We also must promote unsigned values to
1915 // larger classes because we only have signed FP stores.
1916 unsigned StoreClass = DestClass;
1917 const Type *StoreTy = DestTy;
1918 if (StoreClass == cByte || DestTy->isUnsigned())
1919 switch (StoreClass) {
1920 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1921 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1922 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001923 // The following treatment of cLong may not be perfectly right,
1924 // but it survives chains of casts of the form
1925 // double->ulong->double.
1926 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001927 default: assert(0 && "Unknown store class!");
1928 }
1929
1930 // Spill the integer to memory and reload it from there...
1931 int FrameIdx =
1932 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1933
1934 static const unsigned Op1[] =
1935 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001936 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001937
1938 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001939 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1940 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001941 } else {
1942 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001943 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001944 }
1945
1946 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001947 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001948 return;
1949 }
1950
Brian Gaeked474e9c2002-12-06 10:49:33 +00001951 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001952 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001953 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001954}
Brian Gaekea1719c92002-10-31 23:03:59 +00001955
Chris Lattner73815062003-10-18 05:56:40 +00001956/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00001957///
Chris Lattner73815062003-10-18 05:56:40 +00001958void ISel::visitVANextInst(VANextInst &I) {
1959 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00001960 unsigned DestReg = getReg(I);
1961
Chris Lattnereca195e2003-05-08 19:44:13 +00001962 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00001963 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001964 default:
1965 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00001966 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001967 return;
1968 case Type::PointerTyID:
1969 case Type::UIntTyID:
1970 case Type::IntTyID:
1971 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00001972 break;
1973 case Type::ULongTyID:
1974 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00001975 case Type::DoubleTyID:
1976 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00001977 break;
1978 }
1979
1980 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00001981 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
1982}
Chris Lattnereca195e2003-05-08 19:44:13 +00001983
Chris Lattner73815062003-10-18 05:56:40 +00001984void ISel::visitVAArgInst(VAArgInst &I) {
1985 unsigned VAList = getReg(I.getOperand(0));
1986 unsigned DestReg = getReg(I);
1987
1988 switch (I.getType()->getPrimitiveID()) {
1989 default:
1990 std::cerr << I;
1991 assert(0 && "Error: bad type for va_next instruction!");
1992 return;
1993 case Type::PointerTyID:
1994 case Type::UIntTyID:
1995 case Type::IntTyID:
1996 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1997 break;
1998 case Type::ULongTyID:
1999 case Type::LongTyID:
2000 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2001 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
2002 break;
2003 case Type::DoubleTyID:
2004 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2005 break;
2006 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002007}
2008
2009
Chris Lattner3e130a22003-01-13 00:32:26 +00002010void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2011 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002012 MachineBasicBlock::iterator MI = BB->end();
2013 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002014 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002015}
2016
Brian Gaeke71794c02002-12-13 11:22:48 +00002017void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002018 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00002019 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00002020 User::op_iterator IdxEnd, unsigned TargetReg) {
2021 const TargetData &TD = TM.getTargetData();
2022 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00002023 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002024
Brian Gaeke20244b72002-12-12 15:33:40 +00002025 // GEPs have zero or more indices; we must perform a struct access
2026 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00002027 for (GetElementPtrInst::op_iterator oi = IdxBegin,
2028 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002029 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00002030 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00002031 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002032 // It's a struct access. idx is the index into the structure,
2033 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00002034 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2035 assert(CUI->getType() == Type::UByteTy
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002036 && "Funny-looking structure index in GEP");
Brian Gaeke20244b72002-12-12 15:33:40 +00002037 // Use the TargetData structure to pick out what the layout of
2038 // the structure is in memory. Since the structure index must
2039 // be constant, we can get its value and use it to find the
2040 // right byte offset from the StructLayout class's list of
2041 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002042 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002043 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2044 if (FieldOff) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002045 NextReg = makeAnotherReg(Type::UIntTy);
2046 // Emit an ADD to add FieldOff to the basePtr.
2047 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
Chris Lattner3e130a22003-01-13 00:32:26 +00002048 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002049 // The next type is the member of the structure selected by the
2050 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00002051 Ty = StTy->getElementTypes()[idxValue];
2052 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002053 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002054
Brian Gaeke20244b72002-12-12 15:33:40 +00002055 // idx is the index into the array. Unlike with structure
2056 // indices, we may not know its actual value at code-generation
2057 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002058 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2059
Chris Lattnerf5854472003-06-21 16:01:24 +00002060 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2061 // operand on X86. Handle this case directly now...
2062 if (CastInst *CI = dyn_cast<CastInst>(idx))
2063 if (CI->getOperand(0)->getType() == Type::IntTy ||
2064 CI->getOperand(0)->getType() == Type::UIntTy)
2065 idx = CI->getOperand(0);
2066
Chris Lattner3e130a22003-01-13 00:32:26 +00002067 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002068 // must find the size of the pointed-to type (Not coincidentally, the next
2069 // type is the type of the elements in the array).
2070 Ty = SqTy->getElementType();
2071 unsigned elementSize = TD.getTypeSize(Ty);
2072
2073 // If idxReg is a constant, we don't need to perform the multiply!
2074 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002075 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002076 unsigned Offset = elementSize*CSI->getValue();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002077 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002078 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002079 }
2080 } else if (elementSize == 1) {
2081 // If the element size is 1, we don't have to multiply, just add
2082 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002083 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002084 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002085 } else {
2086 unsigned idxReg = getReg(idx, MBB, IP);
2087 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002088
2089 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2090
Chris Lattner8a307e82002-12-16 19:32:50 +00002091 // Emit an ADD to add OffsetReg to the basePtr.
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002092 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002093 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002094 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002095 }
2096 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002097 // one, so we don't need to worry about BaseReg itself, anymore.
2098 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002099 }
2100 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002101 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002102 // put the answer. A 32-bit move should do it, because we are in
2103 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002104 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002105}
2106
2107
Chris Lattner065faeb2002-12-28 20:24:02 +00002108/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2109/// frame manager, otherwise do it the hard way.
2110///
2111void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002112 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002113 const Type *Ty = I.getAllocatedType();
2114 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2115
2116 // If this is a fixed size alloca in the entry block for the function,
2117 // statically stack allocate the space.
2118 //
2119 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2120 if (I.getParent() == I.getParent()->getParent()->begin()) {
2121 TySize *= CUI->getValue(); // Get total allocated size...
2122 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2123
2124 // Create a new stack object using the frame manager...
2125 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2126 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2127 return;
2128 }
2129 }
2130
2131 // Create a register to hold the temporary result of multiplying the type size
2132 // constant by the variable amount.
2133 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2134 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002135
2136 // TotalSizeReg = mul <numelements>, <TypeSize>
2137 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002138 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002139
2140 // AddedSize = add <TotalSizeReg>, 15
2141 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2142 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2143
2144 // AlignedSize = and <AddedSize>, ~15
2145 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2146 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2147
Brian Gaekee48ec012002-12-13 06:46:31 +00002148 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002149 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002150
Brian Gaekee48ec012002-12-13 06:46:31 +00002151 // Put a pointer to the space into the result register, by copying
2152 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002153 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2154
Misha Brukman48196b32003-05-03 02:18:17 +00002155 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002156 // object.
2157 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002158}
Chris Lattner3e130a22003-01-13 00:32:26 +00002159
2160/// visitMallocInst - Malloc instructions are code generated into direct calls
2161/// to the library malloc.
2162///
2163void ISel::visitMallocInst(MallocInst &I) {
2164 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2165 unsigned Arg;
2166
2167 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2168 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2169 } else {
2170 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002171 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002172 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002173 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002174 }
2175
2176 std::vector<ValueRecord> Args;
2177 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2178 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002179 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002180 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2181}
2182
2183
2184/// visitFreeInst - Free instructions are code gen'd to call the free libc
2185/// function.
2186///
2187void ISel::visitFreeInst(FreeInst &I) {
2188 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002189 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002190 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002191 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002192 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2193}
2194
Chris Lattnerd281de22003-07-26 23:49:58 +00002195/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002196/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002197/// generated code sucks but the implementation is nice and simple.
2198///
Chris Lattner44827152003-12-28 09:47:19 +00002199FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM,
2200 IntrinsicLowering &IL) {
2201 return new ISel(TM, IL);
Chris Lattner72614082002-10-25 22:55:53 +00002202}