blob: dbdc2b5915a6900567ff66fd912da5362631d24e [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner0f53cf22010-03-18 18:10:56 +000041 return 4;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
48 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
49 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000050 };
Chris Lattner8d31de62010-02-11 21:27:18 +000051
52 if (Kind < FirstTargetFixupKind)
53 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000054
Chris Lattner8d31de62010-02-11 21:27:18 +000055 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000056 "Invalid kind!");
57 return Infos[Kind - FirstTargetFixupKind];
58 }
Chris Lattner45762472010-02-03 21:24:49 +000059
Chris Lattner28249d92010-02-05 01:53:19 +000060 static unsigned GetX86RegNum(const MCOperand &MO) {
61 return X86RegisterInfo::getX86RegNum(MO.getReg());
62 }
63
Chris Lattner37ce80e2010-02-10 06:41:02 +000064 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000065 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000066 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000067 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000068
Chris Lattner37ce80e2010-02-10 06:41:02 +000069 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
70 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000071 // Output the constant in little endian byte order.
72 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000073 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000074 Val >>= 8;
75 }
76 }
Chris Lattner0e73c392010-02-05 06:16:07 +000077
Chris Lattnercf653392010-02-12 22:36:47 +000078 void EmitImmediate(const MCOperand &Disp,
79 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000080 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000081 SmallVectorImpl<MCFixup> &Fixups,
82 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +000083
84 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
85 unsigned RM) {
86 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
87 return RM | (RegOpcode << 3) | (Mod << 6);
88 }
89
90 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000091 unsigned &CurByte, raw_ostream &OS) const {
92 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000093 }
94
Chris Lattner0e73c392010-02-05 06:16:07 +000095 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +000096 unsigned &CurByte, raw_ostream &OS) const {
97 // SIB byte is in the same format as the ModRMByte.
98 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +000099 }
100
101
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000102 void EmitSegmentOverridePrefix(const MCOperand &Op, unsigned TSFlags,
103 unsigned &CurByte, raw_ostream &OS) const;
104
Chris Lattner1ac23b12010-02-05 02:18:40 +0000105 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000106 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000107 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000108 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000109
Daniel Dunbar73c55742010-02-09 22:59:55 +0000110 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
111 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000112
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000113 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
114 const MCInst &MI, const TargetInstrDesc &Desc,
115 raw_ostream &OS) const;
116
117 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
118 const MCInst &MI, const TargetInstrDesc &Desc,
119 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000120};
121
122} // end anonymous namespace
123
124
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000125MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000126 TargetMachine &TM,
127 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000128 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000129}
130
131MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000132 TargetMachine &TM,
133 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000134 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000135}
136
137
Chris Lattner1ac23b12010-02-05 02:18:40 +0000138/// isDisp8 - Return true if this signed displacement fits in a 8-bit
139/// sign-extended field.
140static bool isDisp8(int Value) {
141 return Value == (signed char)Value;
142}
143
Chris Lattnercf653392010-02-12 22:36:47 +0000144/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
145/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000146static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000147 unsigned Size = X86II::getSizeOfImm(TSFlags);
148 bool isPCRel = X86II::isImmPCRel(TSFlags);
149
Chris Lattnercf653392010-02-12 22:36:47 +0000150 switch (Size) {
151 default: assert(0 && "Unknown immediate size");
152 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
153 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
154 case 2: assert(!isPCRel); return FK_Data_2;
155 case 8: assert(!isPCRel); return FK_Data_8;
156 }
157}
158
159
Chris Lattner0e73c392010-02-05 06:16:07 +0000160void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000161EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000162 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000163 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000164 // If this is a simple integer displacement that doesn't require a relocation,
165 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000166 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000167 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
168 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000169 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000170 return;
171 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000172
Chris Lattner835acab2010-02-12 23:00:36 +0000173 // If we have an immoffset, add it to the expression.
174 const MCExpr *Expr = DispOp.getExpr();
Chris Lattnera08b5872010-02-16 05:03:17 +0000175
176 // If the fixup is pc-relative, we need to bias the value to be relative to
177 // the start of the field, not the end of the field.
178 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000179 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
180 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000181 ImmOffset -= 4;
182 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
183 ImmOffset -= 1;
184
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000185 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000186 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000187 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000188
Chris Lattner5dccfad2010-02-10 06:52:12 +0000189 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000190 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000191 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000192}
193
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000194void X86MCCodeEmitter::EmitSegmentOverridePrefix(const MCOperand &Op,
195 unsigned TSFlags,
196 unsigned &CurByte,
197 raw_ostream &OS) const {
198 // If no segment register is present, we don't need anything.
199 if (Op.getReg() == 0)
200 return;
201
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000202 // Check if we need an override.
203 switch (Op.getReg()) {
204 case X86::CS: EmitByte(0x2E, CurByte, OS); return;
205 case X86::SS: EmitByte(0x36, CurByte, OS); return;
206 case X86::DS: EmitByte(0x3E, CurByte, OS); return;
207 case X86::ES: EmitByte(0x26, CurByte, OS); return;
208 case X86::FS: EmitByte(0x64, CurByte, OS); return;
209 case X86::GS: EmitByte(0x65, CurByte, OS); return;
210 }
211
212 assert(0 && "Invalid segment register!");
213}
Chris Lattner0e73c392010-02-05 06:16:07 +0000214
Chris Lattner1ac23b12010-02-05 02:18:40 +0000215void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
216 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000217 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000218 raw_ostream &OS,
219 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000220 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000221 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000222 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000223 const MCOperand &IndexReg = MI.getOperand(Op+2);
224 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000225
226 // Handle %rip relative addressing.
227 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000228 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
229 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000230 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000231
Chris Lattner0f53cf22010-03-18 18:10:56 +0000232 unsigned FixupKind = X86::reloc_riprel_4byte;
233
234 // movq loads are handled with a special relocation form which allows the
235 // linker to eliminate some loads for GOT references which end up in the
236 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000237 if (MI.getOpcode() == X86::MOV64rm ||
238 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000239 FixupKind = X86::reloc_riprel_4byte_movq_load;
240
Chris Lattner835acab2010-02-12 23:00:36 +0000241 // rip-relative addressing is actually relative to the *next* instruction.
242 // Since an immediate can follow the mod/rm byte for an instruction, this
243 // means that we need to bias the immediate field of the instruction with
244 // the size of the immediate field. If we have this case, add it into the
245 // expression to emit.
246 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnera08b5872010-02-16 05:03:17 +0000247
Chris Lattner0f53cf22010-03-18 18:10:56 +0000248 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000249 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000250 return;
251 }
252
253 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000254
Chris Lattnera8168ec2010-02-09 21:57:34 +0000255 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000256 // If no BaseReg, issue a RIP relative instruction only if the MCE can
257 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
258 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000259
Chris Lattnera8168ec2010-02-09 21:57:34 +0000260 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000261 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000262 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
263 // encode to an R/M value of 4, which indicates that a SIB byte is
264 // present.
265 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000266 // If there is no base register and we're in 64-bit mode, we need a SIB
267 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
268 (!Is64BitMode || BaseReg != 0)) {
269
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000270 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000271 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000272 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000273 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000274 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000275
Chris Lattnera8168ec2010-02-09 21:57:34 +0000276 // If the base is not EBP/ESP and there is no displacement, use simple
277 // indirect register encoding, this handles addresses like [EAX]. The
278 // encoding for [EBP] with no displacement means [disp32] so we handle it
279 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000280 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000281 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000282 return;
283 }
284
285 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000286 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000287 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000288 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000289 return;
290 }
291
292 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000293 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000294 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000295 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000296 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000297
298 // We need a SIB byte, so start by outputting the ModR/M byte first
299 assert(IndexReg.getReg() != X86::ESP &&
300 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
301
302 bool ForceDisp32 = false;
303 bool ForceDisp8 = false;
304 if (BaseReg == 0) {
305 // If there is no base register, we emit the special case SIB byte with
306 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000307 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000308 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000309 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000310 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000311 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000312 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000313 } else if (Disp.getImm() == 0 &&
314 // Base reg can't be anything that ends up with '5' as the base
315 // reg, it is the magic [*] nomenclature that indicates no base.
316 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000317 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000318 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000319 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000320 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000321 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000322 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
323 } else {
324 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000325 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000326 }
327
328 // Calculate what the SS field value should be...
329 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
330 unsigned SS = SSTable[Scale.getImm()];
331
332 if (BaseReg == 0) {
333 // Handle the SIB byte for the case where there is no base, see Intel
334 // Manual 2A, table 2-7. The displacement has already been output.
335 unsigned IndexRegNo;
336 if (IndexReg.getReg())
337 IndexRegNo = GetX86RegNum(IndexReg);
338 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
339 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000340 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000341 } else {
342 unsigned IndexRegNo;
343 if (IndexReg.getReg())
344 IndexRegNo = GetX86RegNum(IndexReg);
345 else
346 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000347 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000348 }
349
350 // Do we need to output a displacement?
351 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000352 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000353 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000354 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000355}
356
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000357/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
358/// called VEX.
359void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
360 const MCInst &MI, const TargetInstrDesc &Desc,
361 raw_ostream &OS) const {
362
363 // Pseudo instructions never have a VEX prefix.
364 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
365 return;
366
367 // VEX_R: opcode externsion equivalent to REX.R in
368 // 1's complement (inverted) form
369 //
370 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
371 // 0: Same as REX_R=1 (64 bit mode only)
372 //
373 unsigned char VEX_R = 0x1;
374
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000375 // VEX_X: equivalent to REX.X, only used when a
376 // register is used for index in SIB Byte.
377 //
378 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
379 // 0: Same as REX.X=1 (64-bit mode only)
380 unsigned char VEX_X = 0x1;
381
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000382 // VEX_B:
383 //
384 // 1: Same as REX_B=0 (ignored in 32-bit mode)
385 // 0: Same as REX_B=1 (64 bit mode only)
386 //
387 unsigned char VEX_B = 0x1;
388
389 // VEX_W: opcode specific (use like REX.W, or used for
390 // opcode extension, or ignored, depending on the opcode byte)
391 unsigned char VEX_W = 0;
392
393 // VEX_5M (VEX m-mmmmm field):
394 //
395 // 0b00000: Reserved for future use
396 // 0b00001: implied 0F leading opcode
397 // 0b00010: implied 0F 38 leading opcode bytes
398 // 0b00011: implied 0F 3A leading opcode bytes
399 // 0b00100-0b11111: Reserved for future use
400 //
401 unsigned char VEX_5M = 0x1;
402
403 // VEX_4V (VEX vvvv field): a register specifier
404 // (in 1's complement form) or 1111 if unused.
405 unsigned char VEX_4V = 0xf;
406
407 // VEX_L (Vector Length):
408 //
409 // 0: scalar or 128-bit vector
410 // 1: 256-bit vector
411 //
412 unsigned char VEX_L = 0;
413
414 // VEX_PP: opcode extension providing equivalent
415 // functionality of a SIMD prefix
416 //
417 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000418 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000419 // 0b10: F3
420 // 0b11: F2
421 //
422 unsigned char VEX_PP = 0;
423
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000424 // Encode the operand size opcode prefix as needed.
425 if (TSFlags & X86II::OpSize)
426 VEX_PP = 0x01;
427
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000428 switch (TSFlags & X86II::Op0Mask) {
429 default: assert(0 && "Invalid prefix!");
430 case 0: break; // No prefix!
431 case X86II::T8: // 0F 38
432 VEX_5M = 0x2;
433 break;
434 case X86II::TA: // 0F 3A
435 VEX_5M = 0x3;
436 break;
437 case X86II::TF: // F2 0F 38
438 VEX_PP = 0x3;
439 VEX_5M = 0x2;
440 break;
441 case X86II::XS: // F3 0F
442 VEX_PP = 0x2;
443 break;
444 case X86II::XD: // F2 0F
445 VEX_PP = 0x3;
446 break;
447 }
448
449 unsigned NumOps = MI.getNumOperands();
450 unsigned i = 0;
451 unsigned SrcReg = 0, SrcRegNum = 0;
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000452 bool IsSrcMem = false;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000453
454 switch (TSFlags & X86II::FormMask) {
455 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000456 case X86II::MRMSrcMem:
457 IsSrcMem = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000458 case X86II::MRMSrcReg:
459 if (MI.getOperand(0).isReg() &&
460 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
461 VEX_R = 0x0;
462
463 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the
464 // range 0-7 and the difference between the 2 groups is given by the
465 // REX prefix. In the VEX prefix, registers are seen sequencially
466 // from 0-15 and encoded in 1's complement form, example:
467 //
468 // ModRM field => XMM9 => 1
469 // VEX.VVVV => XMM9 => ~9
470 //
471 // See table 4-35 of Intel AVX Programming Reference for details.
472 SrcReg = MI.getOperand(1).getReg();
473 SrcRegNum = GetX86RegNum(MI.getOperand(1));
474 if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
475 SrcRegNum += 8;
476
477 // The registers represented through VEX_VVVV should
478 // be encoded in 1's complement form.
479 if ((TSFlags >> 32) & X86II::VEX_4V)
480 VEX_4V = (~SrcRegNum) & 0xf;
481
482 i = 2; // Skip the VEX.VVVV operand.
483 for (; i != NumOps; ++i) {
484 const MCOperand &MO = MI.getOperand(i);
485 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
486 VEX_B = 0x0;
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000487 if (!VEX_B && MO.isReg() && IsSrcMem &&
488 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
489 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000490 }
491 break;
492 default:
493 assert(0 && "Not implemented!");
494 }
495
496 // VEX opcode prefix can have 2 or 3 bytes
497 //
498 // 3 bytes:
499 // +-----+ +--------------+ +-------------------+
500 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
501 // +-----+ +--------------+ +-------------------+
502 // 2 bytes:
503 // +-----+ +-------------------+
504 // | C5h | | R | vvvv | L | pp |
505 // +-----+ +-------------------+
506 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000507 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
508
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000509 if (VEX_B && VEX_X) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000510 EmitByte(0xC5, CurByte, OS);
511 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
512 return;
513 }
514
515 // 3 byte VEX prefix
516 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000517 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000518 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
519}
520
Chris Lattner39a612e2010-02-05 22:10:22 +0000521/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
522/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
523/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000524static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000525 const TargetInstrDesc &Desc) {
Chris Lattner1cea10a2010-02-13 19:16:53 +0000526 // Pseudo instructions never have a rex byte.
527 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
528 return 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000529
Chris Lattner7e851802010-02-11 22:39:10 +0000530 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000531 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000532 REX |= 1 << 3; // set REX.W
Chris Lattner39a612e2010-02-05 22:10:22 +0000533
534 if (MI.getNumOperands() == 0) return REX;
535
536 unsigned NumOps = MI.getNumOperands();
537 // FIXME: MCInst should explicitize the two-addrness.
538 bool isTwoAddr = NumOps > 1 &&
539 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
540
541 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
542 unsigned i = isTwoAddr ? 1 : 0;
543 for (; i != NumOps; ++i) {
544 const MCOperand &MO = MI.getOperand(i);
545 if (!MO.isReg()) continue;
546 unsigned Reg = MO.getReg();
547 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000548 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
549 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000550 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000551 break;
552 }
553
554 switch (TSFlags & X86II::FormMask) {
555 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
556 case X86II::MRMSrcReg:
557 if (MI.getOperand(0).isReg() &&
558 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000559 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000560 i = isTwoAddr ? 2 : 1;
561 for (; i != NumOps; ++i) {
562 const MCOperand &MO = MI.getOperand(i);
563 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000564 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000565 }
566 break;
567 case X86II::MRMSrcMem: {
568 if (MI.getOperand(0).isReg() &&
569 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000570 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000571 unsigned Bit = 0;
572 i = isTwoAddr ? 2 : 1;
573 for (; i != NumOps; ++i) {
574 const MCOperand &MO = MI.getOperand(i);
575 if (MO.isReg()) {
576 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000577 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000578 Bit++;
579 }
580 }
581 break;
582 }
583 case X86II::MRM0m: case X86II::MRM1m:
584 case X86II::MRM2m: case X86II::MRM3m:
585 case X86II::MRM4m: case X86II::MRM5m:
586 case X86II::MRM6m: case X86II::MRM7m:
587 case X86II::MRMDestMem: {
588 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
589 i = isTwoAddr ? 1 : 0;
590 if (NumOps > e && MI.getOperand(e).isReg() &&
591 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000592 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000593 unsigned Bit = 0;
594 for (; i != e; ++i) {
595 const MCOperand &MO = MI.getOperand(i);
596 if (MO.isReg()) {
597 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000598 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000599 Bit++;
600 }
601 }
602 break;
603 }
604 default:
605 if (MI.getOperand(0).isReg() &&
606 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000607 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000608 i = isTwoAddr ? 2 : 1;
609 for (unsigned e = NumOps; i != e; ++i) {
610 const MCOperand &MO = MI.getOperand(i);
611 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000612 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000613 }
614 break;
615 }
616 return REX;
617}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000618
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000619/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
620void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
621 const MCInst &MI, const TargetInstrDesc &Desc,
622 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000623
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000624 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000625 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000626 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000627
628 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000629 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000630 default: assert(0 && "Invalid segment!");
631 case 0: break; // No segment override!
632 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000633 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000634 break;
635 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000636 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000637 break;
638 }
639
Chris Lattner1e80f402010-02-03 21:57:59 +0000640 // Emit the repeat opcode prefix as needed.
641 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000642 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000643
Chris Lattner1e80f402010-02-03 21:57:59 +0000644 // Emit the operand size opcode prefix as needed.
645 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000646 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000647
648 // Emit the address size opcode prefix as needed.
649 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000650 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000651
652 bool Need0FPrefix = false;
653 switch (TSFlags & X86II::Op0Mask) {
654 default: assert(0 && "Invalid prefix!");
655 case 0: break; // No prefix!
656 case X86II::REP: break; // already handled.
657 case X86II::TB: // Two-byte opcode prefix
658 case X86II::T8: // 0F 38
659 case X86II::TA: // 0F 3A
660 Need0FPrefix = true;
661 break;
662 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000663 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000664 Need0FPrefix = true;
665 break;
666 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000667 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000668 Need0FPrefix = true;
669 break;
670 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000671 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000672 Need0FPrefix = true;
673 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000674 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
675 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
676 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
677 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
678 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
679 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
680 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
681 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000682 }
683
684 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000685 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000686 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000687 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000688 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000689 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000690
691 // 0x0F escape code must be emitted just before the opcode.
692 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000693 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000694
695 // FIXME: Pull this up into previous switch if REX can be moved earlier.
696 switch (TSFlags & X86II::Op0Mask) {
697 case X86II::TF: // F2 0F 38
698 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000699 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000700 break;
701 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000702 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000703 break;
704 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000705}
706
707void X86MCCodeEmitter::
708EncodeInstruction(const MCInst &MI, raw_ostream &OS,
709 SmallVectorImpl<MCFixup> &Fixups) const {
710 unsigned Opcode = MI.getOpcode();
711 const TargetInstrDesc &Desc = TII.get(Opcode);
712 uint64_t TSFlags = Desc.TSFlags;
713
714 // Keep track of the current byte being emitted.
715 unsigned CurByte = 0;
716
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000717 // Is this instruction encoded using the AVX VEX prefix?
718 bool HasVEXPrefix = false;
719
720 // It uses the VEX.VVVV field?
721 bool HasVEX_4V = false;
722
723 if ((TSFlags >> 32) & X86II::VEX)
724 HasVEXPrefix = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000725 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000726 HasVEX_4V = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000727
728 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
729 // in order to provide diffability.
730
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000731 if (!HasVEXPrefix)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000732 EmitOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
733 else
734 EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000735
736 // If this is a two-address instruction, skip one of the register operands.
737 unsigned NumOps = Desc.getNumOperands();
738 unsigned CurOp = 0;
739 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
740 ++CurOp;
741 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
742 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
743 --NumOps;
744
Chris Lattner74a21512010-02-05 19:24:13 +0000745 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000746 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000747 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000748 case X86II::MRMInitReg:
749 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000750 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000751 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1cea10a2010-02-13 19:16:53 +0000752 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000753 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000754 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000755 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000756
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000757 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000758 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000759 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000760
761 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000762 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000763 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000764 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000765 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000766 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000767
768 case X86II::MRMDestMem:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000769 EmitSegmentOverridePrefix(MI.getOperand(CurOp + 4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000770 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000771 EmitMemModRMByte(MI, CurOp,
772 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000773 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000774 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000775 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000776
777 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000778 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000779 SrcRegNum = CurOp + 1;
780
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000781 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000782 SrcRegNum++;
783
784 EmitRegModRMByte(MI.getOperand(SrcRegNum),
785 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
786 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000787 break;
788
789 case X86II::MRMSrcMem: {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000790 int AddrOperands = X86AddrNumOperands;
791 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000792 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000793 ++AddrOperands;
794 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
795 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000796
797 // FIXME: Maybe lea should have its own form? This is a horrible hack.
Chris Lattnerdaa45552010-02-05 19:04:37 +0000798 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
799 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000800 --AddrOperands; // No segment register
Chris Lattnerdaa45552010-02-05 19:04:37 +0000801 else
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000802 EmitSegmentOverridePrefix(MI.getOperand(FirstMemOp+4),
803 TSFlags, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000804
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000805 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000806
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000807
808 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000809 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000810 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000811 break;
812 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000813
814 case X86II::MRM0r: case X86II::MRM1r:
815 case X86II::MRM2r: case X86II::MRM3r:
816 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000817 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000818 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000819 EmitRegModRMByte(MI.getOperand(CurOp++),
820 (TSFlags & X86II::FormMask)-X86II::MRM0r,
821 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000822 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000823 case X86II::MRM0m: case X86II::MRM1m:
824 case X86II::MRM2m: case X86II::MRM3m:
825 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000826 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000827 EmitSegmentOverridePrefix(MI.getOperand(CurOp+4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000828 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000829 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000830 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000831 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000832 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000833 case X86II::MRM_C1:
834 EmitByte(BaseOpcode, CurByte, OS);
835 EmitByte(0xC1, CurByte, OS);
836 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000837 case X86II::MRM_C2:
838 EmitByte(BaseOpcode, CurByte, OS);
839 EmitByte(0xC2, CurByte, OS);
840 break;
841 case X86II::MRM_C3:
842 EmitByte(BaseOpcode, CurByte, OS);
843 EmitByte(0xC3, CurByte, OS);
844 break;
845 case X86II::MRM_C4:
846 EmitByte(BaseOpcode, CurByte, OS);
847 EmitByte(0xC4, CurByte, OS);
848 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000849 case X86II::MRM_C8:
850 EmitByte(BaseOpcode, CurByte, OS);
851 EmitByte(0xC8, CurByte, OS);
852 break;
853 case X86II::MRM_C9:
854 EmitByte(BaseOpcode, CurByte, OS);
855 EmitByte(0xC9, CurByte, OS);
856 break;
857 case X86II::MRM_E8:
858 EmitByte(BaseOpcode, CurByte, OS);
859 EmitByte(0xE8, CurByte, OS);
860 break;
861 case X86II::MRM_F0:
862 EmitByte(BaseOpcode, CurByte, OS);
863 EmitByte(0xF0, CurByte, OS);
864 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000865 case X86II::MRM_F8:
866 EmitByte(BaseOpcode, CurByte, OS);
867 EmitByte(0xF8, CurByte, OS);
868 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000869 case X86II::MRM_F9:
870 EmitByte(BaseOpcode, CurByte, OS);
871 EmitByte(0xF9, CurByte, OS);
872 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000873 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000874
875 // If there is a remaining operand, it must be a trailing immediate. Emit it
876 // according to the right size for the instruction.
877 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000878 EmitImmediate(MI.getOperand(CurOp++),
879 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000880 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000881
882#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000883 // FIXME: Verify.
884 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000885 errs() << "Cannot encode all operands of: ";
886 MI.dump();
887 errs() << '\n';
888 abort();
889 }
890#endif
Chris Lattner45762472010-02-03 21:24:49 +0000891}