blob: ac7dabec450411fb76971e000dcb3026506c2af6 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
122static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
125void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Jingyue Wuca321902015-05-14 23:53:19 +0000133bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134 AssumptionCache *AC, const Instruction *CxtI,
135 const DominatorTree *DT) {
136 assert(LHS->getType() == RHS->getType() &&
137 "LHS and RHS should have the same type");
138 assert(LHS->getType()->isIntOrIntVectorTy() &&
139 "LHS and RHS should be integers");
140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146}
147
Hal Finkel60db0582014-09-07 18:57:58 +0000148static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000149 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000150
151void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000152 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000153 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000154 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000157}
158
159static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000160 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000161
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const Instruction *CxtI,
165 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168}
169
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171
172bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173 AssumptionCache *AC, const Instruction *CxtI,
174 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Jingyue Wu10fcea52015-08-20 18:27:04 +0000178bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179 AssumptionCache *AC, const Instruction *CxtI,
180 const DominatorTree *DT) {
181 bool NonNegative, Negative;
182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183 return NonNegative;
184}
185
Philip Reames8f12eba2016-03-09 21:31:47 +0000186bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 if (auto *CI = dyn_cast<ConstantInt>(V))
190 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000191
Philip Reames8f12eba2016-03-09 21:31:47 +0000192 // TODO: We'd doing two recursive queries here. We should factor this such
193 // that only a single query is needed.
194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196}
197
Nick Lewycky762f8a82016-04-21 00:53:14 +0000198bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199 AssumptionCache *AC, const Instruction *CxtI,
200 const DominatorTree *DT) {
201 bool NonNegative, Negative;
202 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203 return Negative;
204}
205
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000206static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000207
208bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209 AssumptionCache *AC, const Instruction *CxtI,
210 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000211 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212 safeCxtI(V1, safeCxtI(V2, CxtI)),
213 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000214}
215
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000216static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000218
219bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220 unsigned Depth, AssumptionCache *AC,
221 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000222 return ::MaskedValueIsZero(V, Mask, Depth,
223 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000224}
225
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000226static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000227
228unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229 unsigned Depth, AssumptionCache *AC,
230 const Instruction *CxtI,
231 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000232 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000233}
234
Jay Foada0653a32014-05-14 21:14:37 +0000235static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236 APInt &KnownZero, APInt &KnownOne,
237 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000239 if (!Add) {
240 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241 // We know that the top bits of C-X are clear if X contains less bits
242 // than C (i.e. no wrap-around can happen). For example, 20-X is
243 // positive if we can prove that X is >= 0 and < 16.
244 if (!CLHS->getValue().isNegative()) {
245 unsigned BitWidth = KnownZero.getBitWidth();
246 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247 // NLZ can't be BitWidth with no sign bit
248 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000249 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000250
251 // If all of the MaskV bits are known to be zero, then we know the
252 // output top bits are zero, because we now know that the output is
253 // from [0-C].
254 if ((KnownZero2 & MaskV) == MaskV) {
255 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256 // Top bits known zero.
257 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258 }
259 }
260 }
261 }
262
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000263 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000264
David Majnemer97ddca32014-08-22 00:40:43 +0000265 // If an initial sequence of bits in the result is not needed, the
266 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000267 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000270
David Majnemer97ddca32014-08-22 00:40:43 +0000271 // Carry in a 1 for a subtract, rather than a 0.
272 APInt CarryIn(BitWidth, 0);
273 if (!Add) {
274 // Sum = LHS + ~RHS + 1
275 std::swap(KnownZero2, KnownOne2);
276 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277 }
278
David Majnemer97ddca32014-08-22 00:40:43 +0000279 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281
282 // Compute known bits of the carry.
283 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285
286 // Compute set of known bits (where all three relevant bits are known).
287 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288 APInt RHSKnown = KnownZero2 | KnownOne2;
289 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290 APInt Known = LHSKnown & RHSKnown & CarryKnown;
291
292 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293 "known bits of sum differ");
294
295 // Compute known bits of the result.
296 KnownZero = ~PossibleSumOne & Known;
297 KnownOne = PossibleSumOne & Known;
298
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000299 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000300 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000301 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000302 // Adding two non-negative numbers, or subtracting a negative number from
303 // a non-negative one, can't wrap into negative.
304 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305 KnownZero |= APInt::getSignBit(BitWidth);
306 // Adding two negative numbers, or subtracting a non-negative number from
307 // a negative one, can't wrap into non-negative.
308 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000310 }
311 }
312}
313
Jay Foada0653a32014-05-14 21:14:37 +0000314static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315 APInt &KnownZero, APInt &KnownOne,
316 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000318 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000319 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
330 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332 bool isKnownNegativeOp1 = KnownOne.isNegative();
333 bool isKnownNegativeOp0 = KnownOne2.isNegative();
334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
347 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000348 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 // More trickiness is possible, but this is sufficient for the
350 // interesting case of alignment computation.
351 KnownOne.clearAllBits();
352 unsigned TrailZ = KnownZero.countTrailingOnes() +
353 KnownZero2.countTrailingOnes();
354 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
355 KnownZero2.countLeadingOnes(),
356 BitWidth) - BitWidth;
357
358 TrailZ = std::min(TrailZ, BitWidth);
359 LeadZ = std::min(LeadZ, BitWidth);
360 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362
363 // Only make use of no-wrap flags if we failed to compute the sign bit
364 // directly. This matters if the multiplication always overflows, in
365 // which case we prefer to follow the result of the direct computation,
366 // though as the program is invoking undefined behaviour we can choose
367 // whatever we like here.
368 if (isKnownNonNegative && !KnownOne.isNegative())
369 KnownZero.setBit(BitWidth - 1);
370 else if (isKnownNegative && !KnownZero.isNegative())
371 KnownOne.setBit(BitWidth - 1);
372}
373
Jingyue Wu37fcb592014-06-19 16:50:16 +0000374void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000375 APInt &KnownZero,
376 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000378 unsigned NumRanges = Ranges.getNumOperands() / 2;
379 assert(NumRanges >= 1);
380
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000381 KnownZero.setAllBits();
382 KnownOne.setAllBits();
383
Rafael Espindola53190532012-03-30 15:52:11 +0000384 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000385 ConstantInt *Lower =
386 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387 ConstantInt *Upper =
388 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000389 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000390
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000391 // The first CommonPrefixBits of all values in Range are equal.
392 unsigned CommonPrefixBits =
393 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394
395 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396 KnownOne &= Range.getUnsignedMax() & Mask;
397 KnownZero &= ~Range.getUnsignedMax() & Mask;
398 }
Rafael Espindola53190532012-03-30 15:52:11 +0000399}
Jay Foad5a29c362014-05-15 12:12:55 +0000400
Hal Finkel60db0582014-09-07 18:57:58 +0000401static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402 SmallVector<const Value *, 16> WorkSet(1, I);
403 SmallPtrSet<const Value *, 32> Visited;
404 SmallPtrSet<const Value *, 16> EphValues;
405
Hal Finkelf2199b22015-10-23 20:37:08 +0000406 // The instruction defining an assumption's condition itself is always
407 // considered ephemeral to that assumption (even if it has other
408 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000409 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000410 return true;
411
Hal Finkel60db0582014-09-07 18:57:58 +0000412 while (!WorkSet.empty()) {
413 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000414 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000415 continue;
416
417 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000418 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000419 if (V == E)
420 return true;
421
422 EphValues.insert(V);
423 if (const User *U = dyn_cast<User>(V))
424 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
425 J != JE; ++J) {
426 if (isSafeToSpeculativelyExecute(*J))
427 WorkSet.push_back(*J);
428 }
429 }
430 }
431
432 return false;
433}
434
435// Is this an intrinsic that cannot be speculated but also cannot trap?
436static bool isAssumeLikeIntrinsic(const Instruction *I) {
437 if (const CallInst *CI = dyn_cast<CallInst>(I))
438 if (Function *F = CI->getCalledFunction())
439 switch (F->getIntrinsicID()) {
440 default: break;
441 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
442 case Intrinsic::assume:
443 case Intrinsic::dbg_declare:
444 case Intrinsic::dbg_value:
445 case Intrinsic::invariant_start:
446 case Intrinsic::invariant_end:
447 case Intrinsic::lifetime_start:
448 case Intrinsic::lifetime_end:
449 case Intrinsic::objectsize:
450 case Intrinsic::ptr_annotation:
451 case Intrinsic::var_annotation:
452 return true;
453 }
454
455 return false;
456}
457
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000458static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
459 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000460 Instruction *Inv = cast<Instruction>(V);
461
462 // There are two restrictions on the use of an assume:
463 // 1. The assume must dominate the context (or the control flow must
464 // reach the assume whenever it reaches the context).
465 // 2. The context must not be in the assume's set of ephemeral values
466 // (otherwise we will use the assume to prove that the condition
467 // feeding the assume is trivially true, thus causing the removal of
468 // the assume).
469
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000470 if (DT) {
471 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000472 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000473 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000474 // The context comes first, but they're both in the same block. Make sure
475 // there is nothing in between that might interrupt the control flow.
476 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000477 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000478 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000479 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000480 return false;
481
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000482 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000483 }
484
485 return false;
486 }
487
488 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000489 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000490 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000491 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000492 // Search forward from the assume until we reach the context (or the end
493 // of the block); the common case is that the assume will come first.
494 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
495 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000496 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000497 return true;
498
499 // The context must come first...
500 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000501 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000502 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000503 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000504 return false;
505
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000506 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000507 }
508
509 return false;
510}
511
512bool llvm::isValidAssumeForContext(const Instruction *I,
513 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000514 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000515 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000516}
517
Hal Finkel60db0582014-09-07 18:57:58 +0000518static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000519 APInt &KnownOne, unsigned Depth,
520 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000521 // Use of assumptions is context-sensitive. If we don't have a context, we
522 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000523 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000524 return;
525
526 unsigned BitWidth = KnownZero.getBitWidth();
527
Chandler Carruth66b31302015-01-04 12:03:27 +0000528 for (auto &AssumeVH : Q.AC->assumptions()) {
529 if (!AssumeVH)
530 continue;
531 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000532 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000533 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000534 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000535 continue;
536
Philip Reames00d3b272014-11-24 23:44:28 +0000537 // Warning: This loop can end up being somewhat performance sensetive.
538 // We're running this loop for once for each value queried resulting in a
539 // runtime of ~O(#assumes * #values).
540
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000541 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000542 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000543
Philip Reames00d3b272014-11-24 23:44:28 +0000544 Value *Arg = I->getArgOperand(0);
545
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000546 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000547 assert(BitWidth == 1 && "assume operand is not i1?");
548 KnownZero.clearAllBits();
549 KnownOne.setAllBits();
550 return;
551 }
552
David Majnemer9b609752014-12-12 23:59:29 +0000553 // The remaining tests are all recursive, so bail out if we hit the limit.
554 if (Depth == MaxDepth)
555 continue;
556
Hal Finkel60db0582014-09-07 18:57:58 +0000557 Value *A, *B;
558 auto m_V = m_CombineOr(m_Specific(V),
559 m_CombineOr(m_PtrToInt(m_Specific(V)),
560 m_BitCast(m_Specific(V))));
561
562 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000563 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000564 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000565 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000566 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000567 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000568 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000569 KnownZero |= RHSKnownZero;
570 KnownOne |= RHSKnownOne;
571 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000572 } else if (match(Arg,
573 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000574 Pred == ICmpInst::ICMP_EQ &&
575 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000576 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000577 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000578 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000579 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000580
581 // For those bits in the mask that are known to be one, we can propagate
582 // known bits from the RHS to V.
583 KnownZero |= RHSKnownZero & MaskKnownOne;
584 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000585 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000586 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
587 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000588 Pred == ICmpInst::ICMP_EQ &&
589 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000590 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000591 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000592 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000593 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000594
595 // For those bits in the mask that are known to be one, we can propagate
596 // inverted known bits from the RHS to V.
597 KnownZero |= RHSKnownOne & MaskKnownOne;
598 KnownOne |= RHSKnownZero & MaskKnownOne;
599 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000600 } else if (match(Arg,
601 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000602 Pred == ICmpInst::ICMP_EQ &&
603 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000604 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000605 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000606 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000607 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000608
609 // For those bits in B that are known to be zero, we can propagate known
610 // bits from the RHS to V.
611 KnownZero |= RHSKnownZero & BKnownZero;
612 KnownOne |= RHSKnownOne & BKnownZero;
613 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000614 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
615 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000616 Pred == ICmpInst::ICMP_EQ &&
617 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000618 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000619 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000620 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000621 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000622
623 // For those bits in B that are known to be zero, we can propagate
624 // inverted known bits from the RHS to V.
625 KnownZero |= RHSKnownOne & BKnownZero;
626 KnownOne |= RHSKnownZero & BKnownZero;
627 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000628 } else if (match(Arg,
629 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000630 Pred == ICmpInst::ICMP_EQ &&
631 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000632 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000633 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000634 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000635 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000636
637 // For those bits in B that are known to be zero, we can propagate known
638 // bits from the RHS to V. For those bits in B that are known to be one,
639 // we can propagate inverted known bits from the RHS to V.
640 KnownZero |= RHSKnownZero & BKnownZero;
641 KnownOne |= RHSKnownOne & BKnownZero;
642 KnownZero |= RHSKnownOne & BKnownOne;
643 KnownOne |= RHSKnownZero & BKnownOne;
644 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000645 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
646 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000647 Pred == ICmpInst::ICMP_EQ &&
648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000649 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000650 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000651 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000652 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653
654 // For those bits in B that are known to be zero, we can propagate
655 // inverted known bits from the RHS to V. For those bits in B that are
656 // known to be one, we can propagate known bits from the RHS to V.
657 KnownZero |= RHSKnownOne & BKnownZero;
658 KnownOne |= RHSKnownZero & BKnownZero;
659 KnownZero |= RHSKnownZero & BKnownOne;
660 KnownOne |= RHSKnownOne & BKnownOne;
661 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000662 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
663 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000664 Pred == ICmpInst::ICMP_EQ &&
665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000666 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000667 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000668 // For those bits in RHS that are known, we can propagate them to known
669 // bits in V shifted to the right by C.
670 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
671 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
672 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000673 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
674 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000675 Pred == ICmpInst::ICMP_EQ &&
676 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000677 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000678 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000679 // For those bits in RHS that are known, we can propagate them inverted
680 // to known bits in V shifted to the right by C.
681 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
682 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
683 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000684 } else if (match(Arg,
685 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000686 m_AShr(m_V, m_ConstantInt(C))),
687 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000688 Pred == ICmpInst::ICMP_EQ &&
689 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000690 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000691 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000692 // For those bits in RHS that are known, we can propagate them to known
693 // bits in V shifted to the right by C.
694 KnownZero |= RHSKnownZero << C->getZExtValue();
695 KnownOne |= RHSKnownOne << C->getZExtValue();
696 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000697 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000698 m_LShr(m_V, m_ConstantInt(C)),
699 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000700 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000701 Pred == ICmpInst::ICMP_EQ &&
702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000704 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000705 // For those bits in RHS that are known, we can propagate them inverted
706 // to known bits in V shifted to the right by C.
707 KnownZero |= RHSKnownOne << C->getZExtValue();
708 KnownOne |= RHSKnownZero << C->getZExtValue();
709 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000710 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000711 Pred == ICmpInst::ICMP_SGE &&
712 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000714 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000715
716 if (RHSKnownZero.isNegative()) {
717 // We know that the sign bit is zero.
718 KnownZero |= APInt::getSignBit(BitWidth);
719 }
720 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000721 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000722 Pred == ICmpInst::ICMP_SGT &&
723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000725 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000726
727 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
728 // We know that the sign bit is zero.
729 KnownZero |= APInt::getSignBit(BitWidth);
730 }
731 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000732 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000733 Pred == ICmpInst::ICMP_SLE &&
734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000735 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000736 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000737
738 if (RHSKnownOne.isNegative()) {
739 // We know that the sign bit is one.
740 KnownOne |= APInt::getSignBit(BitWidth);
741 }
742 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000743 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000744 Pred == ICmpInst::ICMP_SLT &&
745 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000747 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000748
749 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
750 // We know that the sign bit is one.
751 KnownOne |= APInt::getSignBit(BitWidth);
752 }
753 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000754 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000755 Pred == ICmpInst::ICMP_ULE &&
756 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000757 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000758 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000759
760 // Whatever high bits in c are zero are known to be zero.
761 KnownZero |=
762 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
763 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000764 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000765 Pred == ICmpInst::ICMP_ULT &&
766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000767 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000768 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000769
770 // Whatever high bits in c are zero are known to be zero (if c is a power
771 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000772 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000773 KnownZero |=
774 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
775 else
776 KnownZero |=
777 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000778 }
779 }
780}
781
Hal Finkelf2199b22015-10-23 20:37:08 +0000782// Compute known bits from a shift operator, including those with a
783// non-constant shift amount. KnownZero and KnownOne are the outputs of this
784// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
785// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
786// functors that, given the known-zero or known-one bits respectively, and a
787// shift amount, compute the implied known-zero or known-one bits of the shift
788// operator's result respectively for that shift amount. The results from calling
789// KZF and KOF are conservatively combined for all permitted shift amounts.
790template <typename KZFunctor, typename KOFunctor>
791static void computeKnownBitsFromShiftOperator(Operator *I,
792 APInt &KnownZero, APInt &KnownOne,
793 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000794 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000795 unsigned BitWidth = KnownZero.getBitWidth();
796
797 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
798 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
799
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000800 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000801 KnownZero = KZF(KnownZero, ShiftAmt);
802 KnownOne = KOF(KnownOne, ShiftAmt);
803 return;
804 }
805
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000806 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000807
808 // Note: We cannot use KnownZero.getLimitedValue() here, because if
809 // BitWidth > 64 and any upper bits are known, we'll end up returning the
810 // limit value (which implies all bits are known).
811 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
812 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
813
814 // It would be more-clearly correct to use the two temporaries for this
815 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000816 KnownZero.clearAllBits();
817 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000818
James Molloy493e57d2015-10-26 14:10:46 +0000819 // If we know the shifter operand is nonzero, we can sometimes infer more
820 // known bits. However this is expensive to compute, so be lazy about it and
821 // only compute it when absolutely necessary.
822 Optional<bool> ShifterOperandIsNonZero;
823
Hal Finkelf2199b22015-10-23 20:37:08 +0000824 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000825 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
826 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000827 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000828 if (!*ShifterOperandIsNonZero)
829 return;
830 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000831
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000832 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000833
834 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
835 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
836 // Combine the shifted known input bits only for those shift amounts
837 // compatible with its known constraints.
838 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
839 continue;
840 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
841 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000842 // If we know the shifter is nonzero, we may be able to infer more known
843 // bits. This check is sunk down as far as possible to avoid the expensive
844 // call to isKnownNonZero if the cheaper checks above fail.
845 if (ShiftAmt == 0) {
846 if (!ShifterOperandIsNonZero.hasValue())
847 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000848 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000849 if (*ShifterOperandIsNonZero)
850 continue;
851 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000852
853 KnownZero &= KZF(KnownZero2, ShiftAmt);
854 KnownOne &= KOF(KnownOne2, ShiftAmt);
855 }
856
857 // If there are no compatible shift amounts, then we've proven that the shift
858 // amount must be >= the BitWidth, and the result is undefined. We could
859 // return anything we'd like, but we need to make sure the sets of known bits
860 // stay disjoint (it should be better for some other code to actually
861 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000862 if ((KnownZero & KnownOne) != 0) {
863 KnownZero.clearAllBits();
864 KnownOne.clearAllBits();
865 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000866}
867
Jingyue Wu12b0c282015-06-15 05:46:29 +0000868static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000869 APInt &KnownOne, unsigned Depth,
870 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000871 unsigned BitWidth = KnownZero.getBitWidth();
872
Chris Lattner965c7692008-06-02 01:18:21 +0000873 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000874 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000875 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000876 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000877 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000878 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000879 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000880 case Instruction::And: {
881 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000882 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
883 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000884
Chris Lattner965c7692008-06-02 01:18:21 +0000885 // Output known-1 bits are only known if set in both the LHS & RHS.
886 KnownOne &= KnownOne2;
887 // Output known-0 are known to be clear if zero in either the LHS | RHS.
888 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000889
890 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
891 // here we handle the more general case of adding any odd number by
892 // matching the form add(x, add(x, y)) where y is odd.
893 // TODO: This could be generalized to clearing any bit set in y where the
894 // following bit is known to be unset in y.
895 Value *Y = nullptr;
896 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
897 m_Value(Y))) ||
898 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
899 m_Value(Y)))) {
900 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000901 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000902 if (KnownOne3.countTrailingOnes() > 0)
903 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
904 }
Jay Foad5a29c362014-05-15 12:12:55 +0000905 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000906 }
907 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000908 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
909 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000910
Chris Lattner965c7692008-06-02 01:18:21 +0000911 // Output known-0 bits are only known if clear in both the LHS & RHS.
912 KnownZero &= KnownZero2;
913 // Output known-1 are known to be set if set in either the LHS | RHS.
914 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000915 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000916 }
917 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000918 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
919 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000920
Chris Lattner965c7692008-06-02 01:18:21 +0000921 // Output known-0 bits are known if clear or set in both the LHS & RHS.
922 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
923 // Output known-1 are known to be set if set in only one of the LHS, RHS.
924 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
925 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000926 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000927 }
928 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000929 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000930 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000931 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000932 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000933 }
934 case Instruction::UDiv: {
935 // For the purposes of computing leading zeros we can conservatively
936 // treat a udiv as a logical right shift by the power of 2 known to
937 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000938 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000939 unsigned LeadZ = KnownZero2.countLeadingOnes();
940
Jay Foad25a5e4c2010-12-01 08:53:58 +0000941 KnownOne2.clearAllBits();
942 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000943 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000944 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
945 if (RHSUnknownLeadingOnes != BitWidth)
946 LeadZ = std::min(BitWidth,
947 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
948
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000949 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000950 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000951 }
David Majnemera19d0f22016-08-06 08:16:00 +0000952 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000953 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
954 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000955
David Majnemera19d0f22016-08-06 08:16:00 +0000956 Value *LHS, *RHS;
957 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
958 if (SelectPatternResult::isMinOrMax(SPF)) {
959 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
960 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
961 } else {
962 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
963 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
964 }
965
966 unsigned MaxHighOnes = 0;
967 unsigned MaxHighZeros = 0;
968 if (SPF == SPF_SMAX) {
969 // If both sides are negative, the result is negative.
970 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
971 // We can derive a lower bound on the result by taking the max of the
972 // leading one bits.
973 MaxHighOnes =
974 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
975 // If either side is non-negative, the result is non-negative.
976 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
977 MaxHighZeros = 1;
978 } else if (SPF == SPF_SMIN) {
979 // If both sides are non-negative, the result is non-negative.
980 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
981 // We can derive an upper bound on the result by taking the max of the
982 // leading zero bits.
983 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
984 KnownZero2.countLeadingOnes());
985 // If either side is negative, the result is negative.
986 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
987 MaxHighOnes = 1;
988 } else if (SPF == SPF_UMAX) {
989 // We can derive a lower bound on the result by taking the max of the
990 // leading one bits.
991 MaxHighOnes =
992 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
993 } else if (SPF == SPF_UMIN) {
994 // We can derive an upper bound on the result by taking the max of the
995 // leading zero bits.
996 MaxHighZeros =
997 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
998 }
999
Chris Lattner965c7692008-06-02 01:18:21 +00001000 // Only known if known in both the LHS and RHS.
1001 KnownOne &= KnownOne2;
1002 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001003 if (MaxHighOnes > 0)
1004 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1005 if (MaxHighZeros > 0)
1006 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001007 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001008 }
Chris Lattner965c7692008-06-02 01:18:21 +00001009 case Instruction::FPTrunc:
1010 case Instruction::FPExt:
1011 case Instruction::FPToUI:
1012 case Instruction::FPToSI:
1013 case Instruction::SIToFP:
1014 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001015 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001016 case Instruction::PtrToInt:
1017 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001018 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001019 // FALL THROUGH and handle them the same as zext/trunc.
1020 case Instruction::ZExt:
1021 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001022 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001023
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001024 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001025 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1026 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001027 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001028
1029 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001030 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1031 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001032 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001033 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1034 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001035 // Any top bits are known to be zero.
1036 if (BitWidth > SrcBitWidth)
1037 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001038 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001039 }
1040 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001041 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001042 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001043 // TODO: For now, not handling conversions like:
1044 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001045 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001046 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001047 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001048 }
1049 break;
1050 }
1051 case Instruction::SExt: {
1052 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001053 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001054
Jay Foad583abbc2010-12-07 08:25:19 +00001055 KnownZero = KnownZero.trunc(SrcBitWidth);
1056 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001057 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001058 KnownZero = KnownZero.zext(BitWidth);
1059 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001060
1061 // If the sign bit of the input is known set or clear, then we know the
1062 // top bits of the result.
1063 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1064 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1065 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1066 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001067 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001068 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001069 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001070 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Andrew Kaylor3c05edf2016-08-09 22:41:35 +00001071 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1072 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1073 APInt KZResult = (KnownZero << ShiftAmt) |
Hal Finkelf2199b22015-10-23 20:37:08 +00001074 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
Andrew Kaylor3c05edf2016-08-09 22:41:35 +00001075 // If this shift has "nsw" keyword, then the result is either a poison
1076 // value or has the same sign bit as the first operand.
1077 if (NSW && KnownZero.isNegative())
1078 KZResult.setBit(BitWidth - 1);
1079 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001080 };
1081
Andrew Kaylor3c05edf2016-08-09 22:41:35 +00001082 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1083 APInt KOResult = KnownOne << ShiftAmt;
1084 if (NSW && KnownOne.isNegative())
1085 KOResult.setBit(BitWidth - 1);
1086 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001087 };
1088
1089 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001090 KnownZero2, KnownOne2, Depth, Q, KZF,
1091 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001092 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001093 }
1094 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001095 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001096 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1097 return APIntOps::lshr(KnownZero, ShiftAmt) |
1098 // High bits known zero.
1099 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1100 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001101
Hal Finkelf2199b22015-10-23 20:37:08 +00001102 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1103 return APIntOps::lshr(KnownOne, ShiftAmt);
1104 };
1105
1106 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001107 KnownZero2, KnownOne2, Depth, Q, KZF,
1108 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001109 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001110 }
1111 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001112 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001113 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1114 return APIntOps::ashr(KnownZero, ShiftAmt);
1115 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001116
Hal Finkelf2199b22015-10-23 20:37:08 +00001117 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1118 return APIntOps::ashr(KnownOne, ShiftAmt);
1119 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001120
Hal Finkelf2199b22015-10-23 20:37:08 +00001121 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001122 KnownZero2, KnownOne2, Depth, Q, KZF,
1123 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001124 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001125 }
Chris Lattner965c7692008-06-02 01:18:21 +00001126 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001127 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001128 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001129 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1130 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001131 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001132 }
Chris Lattner965c7692008-06-02 01:18:21 +00001133 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001134 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001135 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001136 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1137 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001138 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001139 }
1140 case Instruction::SRem:
1141 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001142 APInt RA = Rem->getValue().abs();
1143 if (RA.isPowerOf2()) {
1144 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001145 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001146 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001147
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001148 // The low bits of the first operand are unchanged by the srem.
1149 KnownZero = KnownZero2 & LowBits;
1150 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001151
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001152 // If the first operand is non-negative or has all low bits zero, then
1153 // the upper bits are all zero.
1154 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1155 KnownZero |= ~LowBits;
1156
1157 // If the first operand is negative and not all low bits are zero, then
1158 // the upper bits are all one.
1159 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1160 KnownOne |= ~LowBits;
1161
Craig Topper1bef2c82012-12-22 19:15:35 +00001162 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001163 }
1164 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001165
1166 // The sign bit is the LHS's sign bit, except when the result of the
1167 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001168 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001169 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001170 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1171 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001172 // If it's known zero, our sign bit is also zero.
1173 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001174 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001175 }
1176
Chris Lattner965c7692008-06-02 01:18:21 +00001177 break;
1178 case Instruction::URem: {
1179 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001180 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001181 if (RA.isPowerOf2()) {
1182 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001183 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001184 KnownZero |= ~LowBits;
1185 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001186 break;
1187 }
1188 }
1189
1190 // Since the result is less than or equal to either operand, any leading
1191 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001192 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1193 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001194
Chris Lattner4612ae12009-01-20 18:22:57 +00001195 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001196 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001197 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001198 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001199 break;
1200 }
1201
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001202 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001203 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001204 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001205 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001206 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001207
Chris Lattner965c7692008-06-02 01:18:21 +00001208 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001209 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001210 break;
1211 }
1212 case Instruction::GetElementPtr: {
1213 // Analyze all of the subscripts of this getelementptr instruction
1214 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001215 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001216 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1217 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001218 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1219
1220 gep_type_iterator GTI = gep_type_begin(I);
1221 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1222 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001223 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001224 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001225
1226 // Handle case when index is vector zeroinitializer
1227 Constant *CIndex = cast<Constant>(Index);
1228 if (CIndex->isZeroValue())
1229 continue;
1230
1231 if (CIndex->getType()->isVectorTy())
1232 Index = CIndex->getSplatValue();
1233
Chris Lattner965c7692008-06-02 01:18:21 +00001234 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001235 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001236 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001237 TrailZ = std::min<unsigned>(TrailZ,
1238 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001239 } else {
1240 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001241 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001242 if (!IndexedTy->isSized()) {
1243 TrailZ = 0;
1244 break;
1245 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001246 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001247 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001249 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001250 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001251 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001252 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001253 }
1254 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001255
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001256 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001257 break;
1258 }
1259 case Instruction::PHI: {
1260 PHINode *P = cast<PHINode>(I);
1261 // Handle the case of a simple two-predecessor recurrence PHI.
1262 // There's a lot more that could theoretically be done here, but
1263 // this is sufficient to catch some interesting cases.
1264 if (P->getNumIncomingValues() == 2) {
1265 for (unsigned i = 0; i != 2; ++i) {
1266 Value *L = P->getIncomingValue(i);
1267 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001268 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001269 if (!LU)
1270 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001271 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001272 // Check for operations that have the property that if
1273 // both their operands have low zero bits, the result
Andrew Kaylorb10f6872016-08-10 18:47:19 +00001274 // will have low zero bits. Also check for operations
1275 // that are known to produce non-negative or negative
1276 // recurrence values.
Chris Lattner965c7692008-06-02 01:18:21 +00001277 if (Opcode == Instruction::Add ||
1278 Opcode == Instruction::Sub ||
1279 Opcode == Instruction::And ||
1280 Opcode == Instruction::Or ||
1281 Opcode == Instruction::Mul) {
1282 Value *LL = LU->getOperand(0);
1283 Value *LR = LU->getOperand(1);
1284 // Find a recurrence.
1285 if (LL == I)
1286 L = LR;
1287 else if (LR == I)
1288 L = LL;
1289 else
1290 break;
1291 // Ok, we have a PHI of the form L op= R. Check for low
1292 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001293 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001294
1295 // We need to take the minimum number of known bits
1296 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001297 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001298
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001299 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001300 std::min(KnownZero2.countTrailingOnes(),
1301 KnownZero3.countTrailingOnes()));
Andrew Kaylorb10f6872016-08-10 18:47:19 +00001302
1303 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1304 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1305 // If initial value of recurrence is nonnegative, and we are adding
1306 // a nonnegative number with nsw, the result can only be nonnegative
1307 // or poison value regardless of the number of times we execute the
1308 // add in phi recurrence. If initial value is negative and we are
1309 // adding a negative number with nsw, the result can only be
1310 // negative or poison value. Similar arguments apply to sub and mul.
1311 //
1312 // (add non-negative, non-negative) --> non-negative
1313 // (add negative, negative) --> negative
1314 if (Opcode == Instruction::Add) {
1315 if (KnownZero2.isNegative() && KnownZero3.isNegative())
1316 KnownZero.setBit(BitWidth - 1);
1317 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1318 KnownOne.setBit(BitWidth - 1);
1319 }
1320
1321 // (sub nsw non-negative, negative) --> non-negative
1322 // (sub nsw negative, non-negative) --> negative
1323 else if (Opcode == Instruction::Sub && LL == I) {
1324 if (KnownZero2.isNegative() && KnownOne3.isNegative())
1325 KnownZero.setBit(BitWidth - 1);
1326 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1327 KnownOne.setBit(BitWidth - 1);
1328 }
1329
1330 // (mul nsw non-negative, non-negative) --> non-negative
1331 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1332 KnownZero3.isNegative())
1333 KnownZero.setBit(BitWidth - 1);
1334 }
1335
Chris Lattner965c7692008-06-02 01:18:21 +00001336 break;
1337 }
1338 }
1339 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001340
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001341 // Unreachable blocks may have zero-operand PHI nodes.
1342 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001343 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001344
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001345 // Otherwise take the unions of the known bit sets of the operands,
1346 // taking conservative care to avoid excessive recursion.
1347 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001348 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001349 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001350 break;
1351
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001352 KnownZero = APInt::getAllOnesValue(BitWidth);
1353 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001354 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001355 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001356 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001357
1358 KnownZero2 = APInt(BitWidth, 0);
1359 KnownOne2 = APInt(BitWidth, 0);
1360 // Recurse, but cap the recursion to one level, because we don't
1361 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001362 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001363 KnownZero &= KnownZero2;
1364 KnownOne &= KnownOne2;
1365 // If all bits have been ruled out, there's no need to check
1366 // more operands.
1367 if (!KnownZero && !KnownOne)
1368 break;
1369 }
1370 }
Chris Lattner965c7692008-06-02 01:18:21 +00001371 break;
1372 }
1373 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001374 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001375 // If range metadata is attached to this call, set known bits from that,
1376 // and then intersect with known bits based on other properties of the
1377 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001378 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001379 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001380 if (Value *RV = CallSite(I).getReturnedArgOperand()) {
1381 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1382 KnownZero |= KnownZero2;
1383 KnownOne |= KnownOne2;
1384 }
Chris Lattner965c7692008-06-02 01:18:21 +00001385 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1386 switch (II->getIntrinsicID()) {
1387 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001388 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001389 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001390 KnownZero |= KnownZero2.byteSwap();
1391 KnownOne |= KnownOne2.byteSwap();
1392 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001393 case Intrinsic::ctlz:
1394 case Intrinsic::cttz: {
1395 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001396 // If this call is undefined for 0, the result will be less than 2^n.
1397 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1398 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001399 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001400 break;
1401 }
1402 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001403 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001404 // We can bound the space the count needs. Also, bits known to be zero
1405 // can't contribute to the population.
1406 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1407 unsigned LeadingZeros =
1408 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001409 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001410 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1411 KnownOne &= ~KnownZero;
1412 // TODO: we could bound KnownOne using the lower bound on the number
1413 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001414 break;
1415 }
Chad Rosierb3628842011-05-26 23:13:19 +00001416 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001417 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001418 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001419 }
1420 }
1421 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001422 case Instruction::ExtractValue:
1423 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1424 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1425 if (EVI->getNumIndices() != 1) break;
1426 if (EVI->getIndices()[0] == 0) {
1427 switch (II->getIntrinsicID()) {
1428 default: break;
1429 case Intrinsic::uadd_with_overflow:
1430 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001431 computeKnownBitsAddSub(true, II->getArgOperand(0),
1432 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001433 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001434 break;
1435 case Intrinsic::usub_with_overflow:
1436 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001437 computeKnownBitsAddSub(false, II->getArgOperand(0),
1438 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001439 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001440 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001441 case Intrinsic::umul_with_overflow:
1442 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001443 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001444 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1445 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001446 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001447 }
1448 }
1449 }
Chris Lattner965c7692008-06-02 01:18:21 +00001450 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001451}
1452
1453/// Determine which bits of V are known to be either zero or one and return
1454/// them in the KnownZero/KnownOne bit sets.
1455///
1456/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1457/// we cannot optimize based on the assumption that it is zero without changing
1458/// it to be an explicit zero. If we don't change it to zero, other code could
1459/// optimized based on the contradictory assumption that it is non-zero.
1460/// Because instcombine aggressively folds operations with undef args anyway,
1461/// this won't lose us code quality.
1462///
1463/// This function is defined on values with integer type, values with pointer
1464/// type, and vectors of integers. In the case
1465/// where V is a vector, known zero, and known one values are the
1466/// same width as the vector element, and the bit is set only if it is true
1467/// for all of the elements in the vector.
1468void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001469 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001470 assert(V && "No Value?");
1471 assert(Depth <= MaxDepth && "Limit Search Depth");
1472 unsigned BitWidth = KnownZero.getBitWidth();
1473
1474 assert((V->getType()->isIntOrIntVectorTy() ||
1475 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001476 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001477 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001478 (!V->getType()->isIntOrIntVectorTy() ||
1479 V->getType()->getScalarSizeInBits() == BitWidth) &&
1480 KnownZero.getBitWidth() == BitWidth &&
1481 KnownOne.getBitWidth() == BitWidth &&
1482 "V, KnownOne and KnownZero should have same BitWidth");
1483
1484 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1485 // We know all of the bits for a constant!
1486 KnownOne = CI->getValue();
1487 KnownZero = ~KnownOne;
1488 return;
1489 }
1490 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001491 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001492 KnownOne.clearAllBits();
1493 KnownZero = APInt::getAllOnesValue(BitWidth);
1494 return;
1495 }
1496 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001497 // each element.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001498 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1499 // We know that CDS must be a vector of integers. Take the intersection of
1500 // each element.
1501 KnownZero.setAllBits(); KnownOne.setAllBits();
1502 APInt Elt(KnownZero.getBitWidth(), 0);
1503 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1504 Elt = CDS->getElementAsInteger(i);
1505 KnownZero &= ~Elt;
1506 KnownOne &= Elt;
1507 }
1508 return;
1509 }
1510
David Majnemer3918cdd2016-05-04 06:13:33 +00001511 if (auto *CV = dyn_cast<ConstantVector>(V)) {
1512 // We know that CV must be a vector of integers. Take the intersection of
1513 // each element.
1514 KnownZero.setAllBits(); KnownOne.setAllBits();
1515 APInt Elt(KnownZero.getBitWidth(), 0);
1516 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1517 Constant *Element = CV->getAggregateElement(i);
1518 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1519 if (!ElementCI) {
1520 KnownZero.clearAllBits();
1521 KnownOne.clearAllBits();
1522 return;
1523 }
1524 Elt = ElementCI->getValue();
1525 KnownZero &= ~Elt;
1526 KnownOne &= Elt;
1527 }
1528 return;
1529 }
1530
Jingyue Wu12b0c282015-06-15 05:46:29 +00001531 // Start out not knowing anything.
1532 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1533
1534 // Limit search depth.
1535 // All recursive calls that increase depth must come after this.
1536 if (Depth == MaxDepth)
1537 return;
1538
1539 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1540 // the bits of its aliasee.
1541 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001542 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001543 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001544 return;
1545 }
1546
1547 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001548 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001549
Artur Pilipenko029d8532015-09-30 11:55:45 +00001550 // Aligned pointers have trailing zeros - refine KnownZero set
1551 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001552 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001553 if (Align)
1554 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1555 }
1556
Philip Reames146307e2016-03-03 19:44:06 +00001557 // computeKnownBitsFromAssume strictly refines KnownZero and
1558 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001559
1560 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001561 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001562
Jay Foad5a29c362014-05-15 12:12:55 +00001563 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001564}
1565
Sanjay Patelaee84212014-11-04 16:27:42 +00001566/// Determine whether the sign bit is known to be zero or one.
1567/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001568void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001569 unsigned Depth, const Query &Q) {
1570 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001571 if (!BitWidth) {
1572 KnownZero = false;
1573 KnownOne = false;
1574 return;
1575 }
1576 APInt ZeroBits(BitWidth, 0);
1577 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001578 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001579 KnownOne = OneBits[BitWidth - 1];
1580 KnownZero = ZeroBits[BitWidth - 1];
1581}
1582
Sanjay Patelaee84212014-11-04 16:27:42 +00001583/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001584/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001585/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001586/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001587bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001588 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001589 if (Constant *C = dyn_cast<Constant>(V)) {
1590 if (C->isNullValue())
1591 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001592
1593 const APInt *ConstIntOrConstSplatInt;
1594 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1595 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001596 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001597
1598 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1599 // it is shifted off the end then the result is undefined.
1600 if (match(V, m_Shl(m_One(), m_Value())))
1601 return true;
1602
1603 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1604 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001605 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001606 return true;
1607
1608 // The remaining tests are all recursive, so bail out if we hit the limit.
1609 if (Depth++ == MaxDepth)
1610 return false;
1611
Craig Topper9f008862014-04-15 04:59:12 +00001612 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001613 // A shift left or a logical shift right of a power of two is a power of two
1614 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001615 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001616 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001617 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001618
Duncan Sandsd3951082011-01-25 09:38:29 +00001619 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001620 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001621
1622 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001623 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1624 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001625
Duncan Sandsba286d72011-10-26 20:55:21 +00001626 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1627 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001628 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1629 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001630 return true;
1631 // X & (-X) is always a power of two or zero.
1632 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1633 return true;
1634 return false;
1635 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001636
David Majnemerb7d54092013-07-30 21:01:36 +00001637 // Adding a power-of-two or zero to the same power-of-two or zero yields
1638 // either the original power-of-two, a larger power-of-two or zero.
1639 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1640 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1641 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1642 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1643 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001644 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001645 return true;
1646 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1647 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001648 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001649 return true;
1650
1651 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1652 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001653 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001654
1655 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001656 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001657 // If i8 V is a power of two or zero:
1658 // ZeroBits: 1 1 1 0 1 1 1 1
1659 // ~ZeroBits: 0 0 0 1 0 0 0 0
1660 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1661 // If OrZero isn't set, we cannot give back a zero result.
1662 // Make sure either the LHS or RHS has a bit set.
1663 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1664 return true;
1665 }
1666 }
David Majnemerbeab5672013-05-18 19:30:37 +00001667
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001668 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001669 // is a power of two only if the first operand is a power of two and not
1670 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001671 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1672 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001673 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001674 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001675 }
1676
Duncan Sandsd3951082011-01-25 09:38:29 +00001677 return false;
1678}
1679
Chandler Carruth80d3e562012-12-07 02:08:58 +00001680/// \brief Test whether a GEP's result is known to be non-null.
1681///
1682/// Uses properties inherent in a GEP to try to determine whether it is known
1683/// to be non-null.
1684///
1685/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001686static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1687 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001688 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1689 return false;
1690
1691 // FIXME: Support vector-GEPs.
1692 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1693
1694 // If the base pointer is non-null, we cannot walk to a null address with an
1695 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001696 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001697 return true;
1698
Chandler Carruth80d3e562012-12-07 02:08:58 +00001699 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1700 // If so, then the GEP cannot produce a null pointer, as doing so would
1701 // inherently violate the inbounds contract within address space zero.
1702 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1703 GTI != GTE; ++GTI) {
1704 // Struct types are easy -- they must always be indexed by a constant.
1705 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1706 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1707 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001708 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001709 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1710 if (ElementOffset > 0)
1711 return true;
1712 continue;
1713 }
1714
1715 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001716 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001717 continue;
1718
1719 // Fast path the constant operand case both for efficiency and so we don't
1720 // increment Depth when just zipping down an all-constant GEP.
1721 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1722 if (!OpC->isZero())
1723 return true;
1724 continue;
1725 }
1726
1727 // We post-increment Depth here because while isKnownNonZero increments it
1728 // as well, when we pop back up that increment won't persist. We don't want
1729 // to recurse 10k times just because we have 10k GEP operands. We don't
1730 // bail completely out because we want to handle constant GEPs regardless
1731 // of depth.
1732 if (Depth++ >= MaxDepth)
1733 continue;
1734
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001735 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001736 return true;
1737 }
1738
1739 return false;
1740}
1741
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001742/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1743/// ensure that the value it's attached to is never Value? 'RangeType' is
1744/// is the type of the value described by the range.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001745static bool rangeMetadataExcludesValue(MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001746 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1747 assert(NumRanges >= 1);
1748 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001749 ConstantInt *Lower =
1750 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1751 ConstantInt *Upper =
1752 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001753 ConstantRange Range(Lower->getValue(), Upper->getValue());
1754 if (Range.contains(Value))
1755 return false;
1756 }
1757 return true;
1758}
1759
Sanjay Patelaee84212014-11-04 16:27:42 +00001760/// Return true if the given value is known to be non-zero when defined.
1761/// For vectors return true if every element is known to be non-zero when
1762/// defined. Supports values with integer or pointer type and vectors of
1763/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001764bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001765 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001766 if (C->isNullValue())
1767 return false;
1768 if (isa<ConstantInt>(C))
1769 // Must be non-zero due to null test above.
1770 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001771
1772 // For constant vectors, check that all elements are undefined or known
1773 // non-zero to determine that the whole vector is known non-zero.
1774 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1775 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1776 Constant *Elt = C->getAggregateElement(i);
1777 if (!Elt || Elt->isNullValue())
1778 return false;
1779 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1780 return false;
1781 }
1782 return true;
1783 }
1784
Duncan Sandsd3951082011-01-25 09:38:29 +00001785 return false;
1786 }
1787
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001788 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001789 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001790 // If the possible ranges don't contain zero, then the value is
1791 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001792 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001793 const APInt ZeroValue(Ty->getBitWidth(), 0);
1794 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1795 return true;
1796 }
1797 }
1798 }
1799
Duncan Sandsd3951082011-01-25 09:38:29 +00001800 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001801 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001802 return false;
1803
Chandler Carruth80d3e562012-12-07 02:08:58 +00001804 // Check for pointer simplifications.
1805 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001806 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001807 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001808 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001809 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001810 return true;
1811 }
1812
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001813 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001814
1815 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001816 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001817 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001818 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001819
1820 // ext X != 0 if X != 0.
1821 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001822 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001823
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001824 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001825 // if the lowest bit is shifted off the end.
1826 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001827 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001828 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001829 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001830 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001831
Duncan Sandsd3951082011-01-25 09:38:29 +00001832 APInt KnownZero(BitWidth, 0);
1833 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001834 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001835 if (KnownOne[0])
1836 return true;
1837 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001838 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001839 // defined if the sign bit is shifted off the end.
1840 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001841 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001842 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001843 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001844 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001845
Duncan Sandsd3951082011-01-25 09:38:29 +00001846 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001847 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001848 if (XKnownNegative)
1849 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001850
1851 // If the shifter operand is a constant, and all of the bits shifted
1852 // out are known to be zero, and X is known non-zero then at least one
1853 // non-zero bit must remain.
1854 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1855 APInt KnownZero(BitWidth, 0);
1856 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001857 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001858
James Molloyb6be1eb2015-09-24 16:06:32 +00001859 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1860 // Is there a known one in the portion not shifted out?
1861 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1862 return true;
1863 // Are all the bits to be shifted out known zero?
1864 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001865 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001866 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001867 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001868 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001869 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001870 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001871 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001872 // X + Y.
1873 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1874 bool XKnownNonNegative, XKnownNegative;
1875 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001876 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1877 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001878
1879 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001880 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001881 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001882 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001883 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001884
1885 // If X and Y are both negative (as signed values) then their sum is not
1886 // zero unless both X and Y equal INT_MIN.
1887 if (BitWidth && XKnownNegative && YKnownNegative) {
1888 APInt KnownZero(BitWidth, 0);
1889 APInt KnownOne(BitWidth, 0);
1890 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1891 // The sign bit of X is set. If some other bit is set then X is not equal
1892 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001893 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001894 if ((KnownOne & Mask) != 0)
1895 return true;
1896 // The sign bit of Y is set. If some other bit is set then Y is not equal
1897 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001898 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001899 if ((KnownOne & Mask) != 0)
1900 return true;
1901 }
1902
1903 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001904 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001905 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001906 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001907 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001908 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001909 return true;
1910 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001911 // X * Y.
1912 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1913 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1914 // If X and Y are non-zero then so is X * Y as long as the multiplication
1915 // does not overflow.
1916 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001917 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001918 return true;
1919 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001920 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1921 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001922 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1923 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001924 return true;
1925 }
James Molloy897048b2015-09-29 14:08:45 +00001926 // PHI
1927 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1928 // Try and detect a recurrence that monotonically increases from a
1929 // starting value, as these are common as induction variables.
1930 if (PN->getNumIncomingValues() == 2) {
1931 Value *Start = PN->getIncomingValue(0);
1932 Value *Induction = PN->getIncomingValue(1);
1933 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1934 std::swap(Start, Induction);
1935 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1936 if (!C->isZero() && !C->isNegative()) {
1937 ConstantInt *X;
1938 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1939 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1940 !X->isNegative())
1941 return true;
1942 }
1943 }
1944 }
Jun Bum Limca832662016-02-01 17:03:07 +00001945 // Check if all incoming values are non-zero constant.
1946 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1947 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1948 });
1949 if (AllNonZeroConstants)
1950 return true;
James Molloy897048b2015-09-29 14:08:45 +00001951 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001952
1953 if (!BitWidth) return false;
1954 APInt KnownZero(BitWidth, 0);
1955 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001956 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001957 return KnownOne != 0;
1958}
1959
James Molloy1d88d6f2015-10-22 13:18:42 +00001960/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001961static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001962 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1963 if (!BO || BO->getOpcode() != Instruction::Add)
1964 return false;
1965 Value *Op = nullptr;
1966 if (V2 == BO->getOperand(0))
1967 Op = BO->getOperand(1);
1968 else if (V2 == BO->getOperand(1))
1969 Op = BO->getOperand(0);
1970 else
1971 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001972 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001973}
1974
1975/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001976static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001977 if (V1->getType()->isVectorTy() || V1 == V2)
1978 return false;
1979 if (V1->getType() != V2->getType())
1980 // We can't look through casts yet.
1981 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001982 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001983 return true;
1984
1985 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1986 // Are any known bits in V1 contradictory to known bits in V2? If V1
1987 // has a known zero where V2 has a known one, they must not be equal.
1988 auto BitWidth = Ty->getBitWidth();
1989 APInt KnownZero1(BitWidth, 0);
1990 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001991 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001992 APInt KnownZero2(BitWidth, 0);
1993 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001994 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001995
1996 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1997 if (OppositeBits.getBoolValue())
1998 return true;
1999 }
2000 return false;
2001}
2002
Sanjay Patelaee84212014-11-04 16:27:42 +00002003/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2004/// simplify operations downstream. Mask is known to be zero for bits that V
2005/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002006///
2007/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002008/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002009/// where V is a vector, the mask, known zero, and known one values are the
2010/// same width as the vector element, and the bit is set only if it is true
2011/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002012bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
2013 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002014 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002015 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002016 return (KnownZero & Mask) == Mask;
2017}
2018
Sanjay Patela06d9892016-06-22 19:20:59 +00002019/// For vector constants, loop over the elements and find the constant with the
2020/// minimum number of sign bits. Return 0 if the value is not a vector constant
2021/// or if any element was not analyzed; otherwise, return the count for the
2022/// element with the minimum number of sign bits.
2023static unsigned computeNumSignBitsVectorConstant(Value *V, unsigned TyBits) {
2024 auto *CV = dyn_cast<Constant>(V);
2025 if (!CV || !CV->getType()->isVectorTy())
2026 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002027
Sanjay Patela06d9892016-06-22 19:20:59 +00002028 unsigned MinSignBits = TyBits;
2029 unsigned NumElts = CV->getType()->getVectorNumElements();
2030 for (unsigned i = 0; i != NumElts; ++i) {
2031 // If we find a non-ConstantInt, bail out.
2032 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2033 if (!Elt)
2034 return 0;
2035
2036 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2037 APInt EltVal = Elt->getValue();
2038 if (EltVal.isNegative())
2039 EltVal = ~EltVal;
2040 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2041 }
2042
2043 return MinSignBits;
2044}
Chris Lattner965c7692008-06-02 01:18:21 +00002045
Sanjay Patelaee84212014-11-04 16:27:42 +00002046/// Return the number of times the sign bit of the register is replicated into
2047/// the other bits. We know that at least 1 bit is always equal to the sign bit
2048/// (itself), but other cases can give us information. For example, immediately
2049/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002050/// other, so we return 3. For vectors, return the number of sign bits for the
2051/// vector element with the mininum number of known sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002052unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
2053 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002054 unsigned Tmp, Tmp2;
2055 unsigned FirstAnswer = 1;
2056
Jay Foada0653a32014-05-14 21:14:37 +00002057 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002058 // below.
2059
Chris Lattner965c7692008-06-02 01:18:21 +00002060 if (Depth == 6)
2061 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002062
Dan Gohman80ca01c2009-07-17 20:47:02 +00002063 Operator *U = dyn_cast<Operator>(V);
2064 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002065 default: break;
2066 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002067 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002068 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002069
Nadav Rotemc99a3872015-03-06 00:23:58 +00002070 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002071 const APInt *Denominator;
2072 // sdiv X, C -> adds log(C) sign bits.
2073 if (match(U->getOperand(1), m_APInt(Denominator))) {
2074
2075 // Ignore non-positive denominator.
2076 if (!Denominator->isStrictlyPositive())
2077 break;
2078
2079 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002080 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002081
2082 // Add floor(log(C)) bits to the numerator bits.
2083 return std::min(TyBits, NumBits + Denominator->logBase2());
2084 }
2085 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002086 }
2087
2088 case Instruction::SRem: {
2089 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002090 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2091 // positive constant. This let us put a lower bound on the number of sign
2092 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002093 if (match(U->getOperand(1), m_APInt(Denominator))) {
2094
2095 // Ignore non-positive denominator.
2096 if (!Denominator->isStrictlyPositive())
2097 break;
2098
2099 // Calculate the incoming numerator bits. SRem by a positive constant
2100 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002101 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002102 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002103
2104 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002105 // denominator. Given that the denominator is positive, there are two
2106 // cases:
2107 //
2108 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2109 // (1 << ceilLogBase2(C)).
2110 //
2111 // 2. the numerator is negative. Then the result range is (-C,0] and
2112 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2113 //
2114 // Thus a lower bound on the number of sign bits is `TyBits -
2115 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002116
Sanjoy Dase561fee2015-03-25 22:33:53 +00002117 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002118 return std::max(NumrBits, ResBits);
2119 }
2120 break;
2121 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002122
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002123 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002124 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002125 // ashr X, C -> adds C sign bits. Vectors too.
2126 const APInt *ShAmt;
2127 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2128 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002129 if (Tmp > TyBits) Tmp = TyBits;
2130 }
2131 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002132 }
2133 case Instruction::Shl: {
2134 const APInt *ShAmt;
2135 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002136 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002137 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002138 Tmp2 = ShAmt->getZExtValue();
2139 if (Tmp2 >= TyBits || // Bad shift.
2140 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2141 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002142 }
2143 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002144 }
Chris Lattner965c7692008-06-02 01:18:21 +00002145 case Instruction::And:
2146 case Instruction::Or:
2147 case Instruction::Xor: // NOT is handled here.
2148 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002149 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002150 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002151 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002152 FirstAnswer = std::min(Tmp, Tmp2);
2153 // We computed what we know about the sign bits as our first
2154 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002155 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002156 }
2157 break;
2158
2159 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002160 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002161 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002162 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002163 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002164
Chris Lattner965c7692008-06-02 01:18:21 +00002165 case Instruction::Add:
2166 // Add can have at most one carry bit. Thus we know that the output
2167 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002168 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002169 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002170
Chris Lattner965c7692008-06-02 01:18:21 +00002171 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002172 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002173 if (CRHS->isAllOnesValue()) {
2174 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002175 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002176
Chris Lattner965c7692008-06-02 01:18:21 +00002177 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2178 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002179 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002180 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002181
Chris Lattner965c7692008-06-02 01:18:21 +00002182 // If we are subtracting one from a positive number, there is no carry
2183 // out of the result.
2184 if (KnownZero.isNegative())
2185 return Tmp;
2186 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002187
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002188 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002189 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002190 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002191
Chris Lattner965c7692008-06-02 01:18:21 +00002192 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002193 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002194 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002195
Chris Lattner965c7692008-06-02 01:18:21 +00002196 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002197 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002198 if (CLHS->isNullValue()) {
2199 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002200 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002201 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2202 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002203 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002204 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002205
Chris Lattner965c7692008-06-02 01:18:21 +00002206 // If the input is known to be positive (the sign bit is known clear),
2207 // the output of the NEG has the same number of sign bits as the input.
2208 if (KnownZero.isNegative())
2209 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002210
Chris Lattner965c7692008-06-02 01:18:21 +00002211 // Otherwise, we treat this like a SUB.
2212 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002213
Chris Lattner965c7692008-06-02 01:18:21 +00002214 // Sub can have at most one carry bit. Thus we know that the output
2215 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002216 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002217 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002218 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002219
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002220 case Instruction::PHI: {
2221 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002222 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002223 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002224 if (NumIncomingValues > 4) break;
2225 // Unreachable blocks may have zero-operand PHI nodes.
2226 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002227
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002228 // Take the minimum of all incoming values. This can't infinitely loop
2229 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002230 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002231 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002232 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002233 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002234 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002235 }
2236 return Tmp;
2237 }
2238
Chris Lattner965c7692008-06-02 01:18:21 +00002239 case Instruction::Trunc:
2240 // FIXME: it's tricky to do anything useful for this, but it is an important
2241 // case for targets like X86.
2242 break;
2243 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002244
Chris Lattner965c7692008-06-02 01:18:21 +00002245 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2246 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002247
2248 // If we can examine all elements of a vector constant successfully, we're
2249 // done (we can't do any better than that). If not, keep trying.
2250 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2251 return VecSignBits;
2252
Chris Lattner965c7692008-06-02 01:18:21 +00002253 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002254 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002255
Sanjay Patele0536212016-06-23 17:41:59 +00002256 // If we know that the sign bit is either zero or one, determine the number of
2257 // identical bits in the top of the input value.
2258 if (KnownZero.isNegative())
2259 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002260
Sanjay Patele0536212016-06-23 17:41:59 +00002261 if (KnownOne.isNegative())
2262 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2263
2264 // computeKnownBits gave us no extra information about the top bits.
2265 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002266}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002267
Sanjay Patelaee84212014-11-04 16:27:42 +00002268/// This function computes the integer multiple of Base that equals V.
2269/// If successful, it returns true and returns the multiple in
2270/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002271/// through SExt instructions only if LookThroughSExt is true.
2272bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002273 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002274 const unsigned MaxDepth = 6;
2275
Dan Gohman6a976bb2009-11-18 00:58:27 +00002276 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002277 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002278 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002279
Chris Lattner229907c2011-07-18 04:54:35 +00002280 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002281
Dan Gohman6a976bb2009-11-18 00:58:27 +00002282 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002283
2284 if (Base == 0)
2285 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002286
Victor Hernandez47444882009-11-10 08:28:35 +00002287 if (Base == 1) {
2288 Multiple = V;
2289 return true;
2290 }
2291
2292 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2293 Constant *BaseVal = ConstantInt::get(T, Base);
2294 if (CO && CO == BaseVal) {
2295 // Multiple is 1.
2296 Multiple = ConstantInt::get(T, 1);
2297 return true;
2298 }
2299
2300 if (CI && CI->getZExtValue() % Base == 0) {
2301 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002302 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002303 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002304
Victor Hernandez47444882009-11-10 08:28:35 +00002305 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002306
Victor Hernandez47444882009-11-10 08:28:35 +00002307 Operator *I = dyn_cast<Operator>(V);
2308 if (!I) return false;
2309
2310 switch (I->getOpcode()) {
2311 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002312 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002313 if (!LookThroughSExt) return false;
2314 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002315 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002316 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2317 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002318 case Instruction::Shl:
2319 case Instruction::Mul: {
2320 Value *Op0 = I->getOperand(0);
2321 Value *Op1 = I->getOperand(1);
2322
2323 if (I->getOpcode() == Instruction::Shl) {
2324 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2325 if (!Op1CI) return false;
2326 // Turn Op0 << Op1 into Op0 * 2^Op1
2327 APInt Op1Int = Op1CI->getValue();
2328 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002329 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002330 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002331 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002332 }
2333
Craig Topper9f008862014-04-15 04:59:12 +00002334 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002335 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2336 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2337 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002338 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002339 MulC->getType()->getPrimitiveSizeInBits())
2340 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002341 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002342 MulC->getType()->getPrimitiveSizeInBits())
2343 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002344
Chris Lattner72d283c2010-09-05 17:20:46 +00002345 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2346 Multiple = ConstantExpr::getMul(MulC, Op1C);
2347 return true;
2348 }
Victor Hernandez47444882009-11-10 08:28:35 +00002349
2350 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2351 if (Mul0CI->getValue() == 1) {
2352 // V == Base * Op1, so return Op1
2353 Multiple = Op1;
2354 return true;
2355 }
2356 }
2357
Craig Topper9f008862014-04-15 04:59:12 +00002358 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002359 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2360 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2361 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002362 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002363 MulC->getType()->getPrimitiveSizeInBits())
2364 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002365 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002366 MulC->getType()->getPrimitiveSizeInBits())
2367 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002368
Chris Lattner72d283c2010-09-05 17:20:46 +00002369 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2370 Multiple = ConstantExpr::getMul(MulC, Op0C);
2371 return true;
2372 }
Victor Hernandez47444882009-11-10 08:28:35 +00002373
2374 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2375 if (Mul1CI->getValue() == 1) {
2376 // V == Base * Op0, so return Op0
2377 Multiple = Op0;
2378 return true;
2379 }
2380 }
Victor Hernandez47444882009-11-10 08:28:35 +00002381 }
2382 }
2383
2384 // We could not determine if V is a multiple of Base.
2385 return false;
2386}
2387
David Majnemerb4b27232016-04-19 19:10:21 +00002388Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2389 const TargetLibraryInfo *TLI) {
2390 const Function *F = ICS.getCalledFunction();
2391 if (!F)
2392 return Intrinsic::not_intrinsic;
2393
2394 if (F->isIntrinsic())
2395 return F->getIntrinsicID();
2396
2397 if (!TLI)
2398 return Intrinsic::not_intrinsic;
2399
2400 LibFunc::Func Func;
2401 // We're going to make assumptions on the semantics of the functions, check
2402 // that the target knows that it's available in this environment and it does
2403 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002404 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2405 return Intrinsic::not_intrinsic;
2406
2407 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002408 return Intrinsic::not_intrinsic;
2409
2410 // Otherwise check if we have a call to a function that can be turned into a
2411 // vector intrinsic.
2412 switch (Func) {
2413 default:
2414 break;
2415 case LibFunc::sin:
2416 case LibFunc::sinf:
2417 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002418 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002419 case LibFunc::cos:
2420 case LibFunc::cosf:
2421 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002422 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002423 case LibFunc::exp:
2424 case LibFunc::expf:
2425 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002426 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002427 case LibFunc::exp2:
2428 case LibFunc::exp2f:
2429 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002430 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002431 case LibFunc::log:
2432 case LibFunc::logf:
2433 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002434 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002435 case LibFunc::log10:
2436 case LibFunc::log10f:
2437 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002438 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002439 case LibFunc::log2:
2440 case LibFunc::log2f:
2441 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002442 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002443 case LibFunc::fabs:
2444 case LibFunc::fabsf:
2445 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002446 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002447 case LibFunc::fmin:
2448 case LibFunc::fminf:
2449 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002450 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002451 case LibFunc::fmax:
2452 case LibFunc::fmaxf:
2453 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002454 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002455 case LibFunc::copysign:
2456 case LibFunc::copysignf:
2457 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002458 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002459 case LibFunc::floor:
2460 case LibFunc::floorf:
2461 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002462 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002463 case LibFunc::ceil:
2464 case LibFunc::ceilf:
2465 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002466 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002467 case LibFunc::trunc:
2468 case LibFunc::truncf:
2469 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002470 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002471 case LibFunc::rint:
2472 case LibFunc::rintf:
2473 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002474 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002475 case LibFunc::nearbyint:
2476 case LibFunc::nearbyintf:
2477 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002478 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002479 case LibFunc::round:
2480 case LibFunc::roundf:
2481 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002482 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002483 case LibFunc::pow:
2484 case LibFunc::powf:
2485 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002486 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002487 case LibFunc::sqrt:
2488 case LibFunc::sqrtf:
2489 case LibFunc::sqrtl:
2490 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002491 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002492 return Intrinsic::not_intrinsic;
2493 }
2494
2495 return Intrinsic::not_intrinsic;
2496}
2497
Sanjay Patelaee84212014-11-04 16:27:42 +00002498/// Return true if we can prove that the specified FP value is never equal to
2499/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002500///
2501/// NOTE: this function will need to be revisited when we support non-default
2502/// rounding modes!
2503///
David Majnemer3ee5f342016-04-13 06:55:52 +00002504bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2505 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002506 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2507 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002508
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002509 // FIXME: Magic number! At the least, this should be given a name because it's
2510 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2511 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002512 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002513 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002514
Dan Gohman80ca01c2009-07-17 20:47:02 +00002515 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002516 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002517
2518 // Check if the nsz fast-math flag is set
2519 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2520 if (FPO->hasNoSignedZeros())
2521 return true;
2522
Chris Lattnera12a6de2008-06-02 01:29:46 +00002523 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002524 if (I->getOpcode() == Instruction::FAdd)
2525 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2526 if (CFP->isNullValue())
2527 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002528
Chris Lattnera12a6de2008-06-02 01:29:46 +00002529 // sitofp and uitofp turn into +0.0 for zero.
2530 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2531 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002532
David Majnemer3ee5f342016-04-13 06:55:52 +00002533 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002534 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002535 switch (IID) {
2536 default:
2537 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002538 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002539 case Intrinsic::sqrt:
2540 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2541 // fabs(x) != -0.0
2542 case Intrinsic::fabs:
2543 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002544 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002545 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002546
Chris Lattnera12a6de2008-06-02 01:29:46 +00002547 return false;
2548}
2549
David Majnemer3ee5f342016-04-13 06:55:52 +00002550bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2551 const TargetLibraryInfo *TLI,
2552 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002553 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2554 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2555
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002556 // FIXME: Magic number! At the least, this should be given a name because it's
2557 // used similarly in CannotBeNegativeZero(). A better fix may be to
2558 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002559 if (Depth == 6)
2560 return false; // Limit search depth.
2561
2562 const Operator *I = dyn_cast<Operator>(V);
2563 if (!I) return false;
2564
2565 switch (I->getOpcode()) {
2566 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002567 // Unsigned integers are always nonnegative.
2568 case Instruction::UIToFP:
2569 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002570 case Instruction::FMul:
2571 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002572 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002573 return true;
2574 // Fall through
2575 case Instruction::FAdd:
2576 case Instruction::FDiv:
2577 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002578 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2579 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002580 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002581 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2582 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002583 case Instruction::FPExt:
2584 case Instruction::FPTrunc:
2585 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002586 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2587 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002588 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002589 switch (IID) {
2590 default:
2591 break;
2592 case Intrinsic::maxnum:
2593 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2594 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2595 case Intrinsic::minnum:
2596 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2597 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2598 case Intrinsic::exp:
2599 case Intrinsic::exp2:
2600 case Intrinsic::fabs:
2601 case Intrinsic::sqrt:
2602 return true;
2603 case Intrinsic::powi:
2604 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2605 // powi(x,n) is non-negative if n is even.
2606 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2607 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002608 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002609 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2610 case Intrinsic::fma:
2611 case Intrinsic::fmuladd:
2612 // x*x+y is non-negative if y is non-negative.
2613 return I->getOperand(0) == I->getOperand(1) &&
2614 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2615 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002616 break;
2617 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002618 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002619}
2620
Sanjay Patelaee84212014-11-04 16:27:42 +00002621/// If the specified value can be set by repeating the same byte in memory,
2622/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002623/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2624/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2625/// byte store (e.g. i16 0x1234), return null.
2626Value *llvm::isBytewiseValue(Value *V) {
2627 // All byte-wide stores are splatable, even of arbitrary variables.
2628 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002629
2630 // Handle 'null' ConstantArrayZero etc.
2631 if (Constant *C = dyn_cast<Constant>(V))
2632 if (C->isNullValue())
2633 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002634
Chris Lattner9cb10352010-12-26 20:15:01 +00002635 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002636 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002637 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2638 if (CFP->getType()->isFloatTy())
2639 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2640 if (CFP->getType()->isDoubleTy())
2641 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2642 // Don't handle long double formats, which have strange constraints.
2643 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002644
Benjamin Kramer17d90152015-02-07 19:29:02 +00002645 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002646 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002647 if (CI->getBitWidth() % 8 == 0) {
2648 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002649
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002650 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002651 return nullptr;
2652 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002653 }
2654 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002655
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002656 // A ConstantDataArray/Vector is splatable if all its members are equal and
2657 // also splatable.
2658 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2659 Value *Elt = CA->getElementAsConstant(0);
2660 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002661 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002662 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002663
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002664 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2665 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002666 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002667
Chris Lattner9cb10352010-12-26 20:15:01 +00002668 return Val;
2669 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002670
Chris Lattner9cb10352010-12-26 20:15:01 +00002671 // Conceptually, we could handle things like:
2672 // %a = zext i8 %X to i16
2673 // %b = shl i16 %a, 8
2674 // %c = or i16 %a, %b
2675 // but until there is an example that actually needs this, it doesn't seem
2676 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002677 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002678}
2679
2680
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002681// This is the recursive version of BuildSubAggregate. It takes a few different
2682// arguments. Idxs is the index within the nested struct From that we are
2683// looking at now (which is of type IndexedType). IdxSkip is the number of
2684// indices from Idxs that should be left out when inserting into the resulting
2685// struct. To is the result struct built so far, new insertvalue instructions
2686// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002687static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002688 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002689 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002690 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002691 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002692 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002693 // Save the original To argument so we can modify it
2694 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002695 // General case, the type indexed by Idxs is a struct
2696 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2697 // Process each struct element recursively
2698 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002699 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002700 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002701 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002702 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002703 if (!To) {
2704 // Couldn't find any inserted value for this index? Cleanup
2705 while (PrevTo != OrigTo) {
2706 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2707 PrevTo = Del->getAggregateOperand();
2708 Del->eraseFromParent();
2709 }
2710 // Stop processing elements
2711 break;
2712 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002713 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002714 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002715 if (To)
2716 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002717 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002718 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2719 // the struct's elements had a value that was inserted directly. In the latter
2720 // case, perhaps we can't determine each of the subelements individually, but
2721 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002722
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002723 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002724 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002725
2726 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002727 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002728
2729 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002730 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002731 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002732}
2733
2734// This helper takes a nested struct and extracts a part of it (which is again a
2735// struct) into a new value. For example, given the struct:
2736// { a, { b, { c, d }, e } }
2737// and the indices "1, 1" this returns
2738// { c, d }.
2739//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002740// It does this by inserting an insertvalue for each element in the resulting
2741// struct, as opposed to just inserting a single struct. This will only work if
2742// each of the elements of the substruct are known (ie, inserted into From by an
2743// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002744//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002745// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002746static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002747 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002748 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002749 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002750 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002751 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002752 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002753 unsigned IdxSkip = Idxs.size();
2754
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002755 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002756}
2757
Sanjay Patelaee84212014-11-04 16:27:42 +00002758/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002759/// the scalar value indexed is already around as a register, for example if it
2760/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002761///
2762/// If InsertBefore is not null, this function will duplicate (modified)
2763/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002764Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2765 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002766 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002767 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002768 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002769 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002770 // We have indices, so V should have an indexable type.
2771 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2772 "Not looking at a struct or array?");
2773 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2774 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002775
Chris Lattner67058832012-01-25 06:48:06 +00002776 if (Constant *C = dyn_cast<Constant>(V)) {
2777 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002778 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002779 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2780 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002781
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002782 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002783 // Loop the indices for the insertvalue instruction in parallel with the
2784 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002785 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002786 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2787 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002788 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002789 // We can't handle this without inserting insertvalues
2790 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002791 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002792
2793 // The requested index identifies a part of a nested aggregate. Handle
2794 // this specially. For example,
2795 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2796 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2797 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2798 // This can be changed into
2799 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2800 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2801 // which allows the unused 0,0 element from the nested struct to be
2802 // removed.
2803 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2804 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002805 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002806
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002807 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002808 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002809 // looking for, then.
2810 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002811 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002812 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002813 }
2814 // If we end up here, the indices of the insertvalue match with those
2815 // requested (though possibly only partially). Now we recursively look at
2816 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002817 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002818 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002819 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002820 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002821
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002822 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002823 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002824 // something else, we can extract from that something else directly instead.
2825 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002826
2827 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002828 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002829 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002830 SmallVector<unsigned, 5> Idxs;
2831 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002832 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002833 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002834
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002835 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002836 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002837
Craig Topper1bef2c82012-12-22 19:15:35 +00002838 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002839 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002840
Jay Foad57aa6362011-07-13 10:26:04 +00002841 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002842 }
2843 // Otherwise, we don't know (such as, extracting from a function return value
2844 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002845 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002846}
Evan Chengda3db112008-06-30 07:31:25 +00002847
Sanjay Patelaee84212014-11-04 16:27:42 +00002848/// Analyze the specified pointer to see if it can be expressed as a base
2849/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002850Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002851 const DataLayout &DL) {
2852 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002853 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002854
2855 // We walk up the defs but use a visited set to handle unreachable code. In
2856 // that case, we stop after accumulating the cycle once (not that it
2857 // matters).
2858 SmallPtrSet<Value *, 16> Visited;
2859 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002860 if (Ptr->getType()->isVectorTy())
2861 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002862
Nuno Lopes368c4d02012-12-31 20:48:35 +00002863 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002864 APInt GEPOffset(BitWidth, 0);
2865 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2866 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002867
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002868 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002869
Nuno Lopes368c4d02012-12-31 20:48:35 +00002870 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002871 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2872 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002873 Ptr = cast<Operator>(Ptr)->getOperand(0);
2874 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002875 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002876 break;
2877 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002878 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002879 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002880 }
2881 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002882 Offset = ByteOffset.getSExtValue();
2883 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002884}
2885
David L Kreitzer752c1442016-04-13 14:31:06 +00002886bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2887 // Make sure the GEP has exactly three arguments.
2888 if (GEP->getNumOperands() != 3)
2889 return false;
2890
2891 // Make sure the index-ee is a pointer to array of i8.
2892 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2893 if (!AT || !AT->getElementType()->isIntegerTy(8))
2894 return false;
2895
2896 // Check to make sure that the first operand of the GEP is an integer and
2897 // has value 0 so that we are sure we're indexing into the initializer.
2898 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2899 if (!FirstIdx || !FirstIdx->isZero())
2900 return false;
2901
2902 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002903}
Chris Lattnere28618d2010-11-30 22:25:26 +00002904
Sanjay Patelaee84212014-11-04 16:27:42 +00002905/// This function computes the length of a null-terminated C string pointed to
2906/// by V. If successful, it returns true and returns the string in Str.
2907/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002908bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2909 uint64_t Offset, bool TrimAtNul) {
2910 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002911
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002912 // Look through bitcast instructions and geps.
2913 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002914
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002915 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002916 // offset.
2917 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002918 // The GEP operator should be based on a pointer to string constant, and is
2919 // indexing into the string constant.
2920 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002921 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002922
Evan Chengda3db112008-06-30 07:31:25 +00002923 // If the second index isn't a ConstantInt, then this is a variable index
2924 // into the array. If this occurs, we can't say anything meaningful about
2925 // the string.
2926 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002927 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002928 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002929 else
2930 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002931 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2932 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002933 }
Nick Lewycky46209882011-10-20 00:34:35 +00002934
Evan Chengda3db112008-06-30 07:31:25 +00002935 // The GEP instruction, constant or instruction, must reference a global
2936 // variable that is a constant and is initialized. The referenced constant
2937 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002938 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002939 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002940 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002941
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002942 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002943 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002944 // This is a degenerate case. The initializer is constant zero so the
2945 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002946 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002947 return true;
2948 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002949
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002950 // This must be a ConstantDataArray.
2951 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002952 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002953 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002954
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002955 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002956 uint64_t NumElts = Array->getType()->getArrayNumElements();
2957
2958 // Start out with the entire array in the StringRef.
2959 Str = Array->getAsString();
2960
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002961 if (Offset > NumElts)
2962 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002963
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002964 // Skip over 'offset' bytes.
2965 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002966
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002967 if (TrimAtNul) {
2968 // Trim off the \0 and anything after it. If the array is not nul
2969 // terminated, we just return the whole end of string. The client may know
2970 // some other way that the string is length-bound.
2971 Str = Str.substr(0, Str.find('\0'));
2972 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002973 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002974}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002975
2976// These next two are very similar to the above, but also look through PHI
2977// nodes.
2978// TODO: See if we can integrate these two together.
2979
Sanjay Patelaee84212014-11-04 16:27:42 +00002980/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002981/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002982static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002983 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002984 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002985
2986 // If this is a PHI node, there are two cases: either we have already seen it
2987 // or we haven't.
2988 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002989 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002990 return ~0ULL; // already in the set.
2991
2992 // If it was new, see if all the input strings are the same length.
2993 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002994 for (Value *IncValue : PN->incoming_values()) {
2995 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002996 if (Len == 0) return 0; // Unknown length -> unknown.
2997
2998 if (Len == ~0ULL) continue;
2999
3000 if (Len != LenSoFar && LenSoFar != ~0ULL)
3001 return 0; // Disagree -> unknown.
3002 LenSoFar = Len;
3003 }
3004
3005 // Success, all agree.
3006 return LenSoFar;
3007 }
3008
3009 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3010 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
3011 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3012 if (Len1 == 0) return 0;
3013 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3014 if (Len2 == 0) return 0;
3015 if (Len1 == ~0ULL) return Len2;
3016 if (Len2 == ~0ULL) return Len1;
3017 if (Len1 != Len2) return 0;
3018 return Len1;
3019 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003020
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003021 // Otherwise, see if we can read the string.
3022 StringRef StrData;
3023 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003024 return 0;
3025
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003026 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003027}
3028
Sanjay Patelaee84212014-11-04 16:27:42 +00003029/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003030/// the specified pointer, return 'len+1'. If we can't, return 0.
3031uint64_t llvm::GetStringLength(Value *V) {
3032 if (!V->getType()->isPointerTy()) return 0;
3033
3034 SmallPtrSet<PHINode*, 32> PHIs;
3035 uint64_t Len = GetStringLengthH(V, PHIs);
3036 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3037 // an empty string as a length.
3038 return Len == ~0ULL ? 1 : Len;
3039}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003040
Adam Nemete2b885c2015-04-23 20:09:20 +00003041/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3042/// previous iteration of the loop was referring to the same object as \p PN.
3043static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3044 // Find the loop-defined value.
3045 Loop *L = LI->getLoopFor(PN->getParent());
3046 if (PN->getNumIncomingValues() != 2)
3047 return true;
3048
3049 // Find the value from previous iteration.
3050 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3051 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3052 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3053 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3054 return true;
3055
3056 // If a new pointer is loaded in the loop, the pointer references a different
3057 // object in every iteration. E.g.:
3058 // for (i)
3059 // int *p = a[i];
3060 // ...
3061 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3062 if (!L->isLoopInvariant(Load->getPointerOperand()))
3063 return false;
3064 return true;
3065}
3066
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003067Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3068 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003069 if (!V->getType()->isPointerTy())
3070 return V;
3071 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3072 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3073 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003074 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3075 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003076 V = cast<Operator>(V)->getOperand(0);
3077 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003078 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003079 return V;
3080 V = GA->getAliasee();
3081 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003082 if (auto CS = CallSite(V))
3083 if (Value *RV = CS.getReturnedArgOperand()) {
3084 V = RV;
3085 continue;
3086 }
3087
Dan Gohman05b18f12010-12-15 20:49:55 +00003088 // See if InstructionSimplify knows any relevant tricks.
3089 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003090 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003091 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003092 V = Simplified;
3093 continue;
3094 }
3095
Dan Gohmana4fcd242010-12-15 20:02:24 +00003096 return V;
3097 }
3098 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3099 }
3100 return V;
3101}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003102
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003103void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003104 const DataLayout &DL, LoopInfo *LI,
3105 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003106 SmallPtrSet<Value *, 4> Visited;
3107 SmallVector<Value *, 4> Worklist;
3108 Worklist.push_back(V);
3109 do {
3110 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003111 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003112
David Blaikie70573dc2014-11-19 07:49:26 +00003113 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003114 continue;
3115
3116 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3117 Worklist.push_back(SI->getTrueValue());
3118 Worklist.push_back(SI->getFalseValue());
3119 continue;
3120 }
3121
3122 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003123 // If this PHI changes the underlying object in every iteration of the
3124 // loop, don't look through it. Consider:
3125 // int **A;
3126 // for (i) {
3127 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3128 // Curr = A[i];
3129 // *Prev, *Curr;
3130 //
3131 // Prev is tracking Curr one iteration behind so they refer to different
3132 // underlying objects.
3133 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3134 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003135 for (Value *IncValue : PN->incoming_values())
3136 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003137 continue;
3138 }
3139
3140 Objects.push_back(P);
3141 } while (!Worklist.empty());
3142}
3143
Sanjay Patelaee84212014-11-04 16:27:42 +00003144/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003145bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003146 for (const User *U : V->users()) {
3147 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003148 if (!II) return false;
3149
3150 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3151 II->getIntrinsicID() != Intrinsic::lifetime_end)
3152 return false;
3153 }
3154 return true;
3155}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003156
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003157bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3158 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003159 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003160 const Operator *Inst = dyn_cast<Operator>(V);
3161 if (!Inst)
3162 return false;
3163
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003164 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3165 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3166 if (C->canTrap())
3167 return false;
3168
3169 switch (Inst->getOpcode()) {
3170 default:
3171 return true;
3172 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003173 case Instruction::URem: {
3174 // x / y is undefined if y == 0.
3175 const APInt *V;
3176 if (match(Inst->getOperand(1), m_APInt(V)))
3177 return *V != 0;
3178 return false;
3179 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003180 case Instruction::SDiv:
3181 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003182 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003183 const APInt *Numerator, *Denominator;
3184 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3185 return false;
3186 // We cannot hoist this division if the denominator is 0.
3187 if (*Denominator == 0)
3188 return false;
3189 // It's safe to hoist if the denominator is not 0 or -1.
3190 if (*Denominator != -1)
3191 return true;
3192 // At this point we know that the denominator is -1. It is safe to hoist as
3193 // long we know that the numerator is not INT_MIN.
3194 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3195 return !Numerator->isMinSignedValue();
3196 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003197 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003198 }
3199 case Instruction::Load: {
3200 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003201 if (!LI->isUnordered() ||
3202 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003203 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003204 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003205 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003206 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003207 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003208 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3209 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003210 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003211 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003212 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3213 switch (II->getIntrinsicID()) {
3214 // These synthetic intrinsics have no side-effects and just mark
3215 // information about their operands.
3216 // FIXME: There are other no-op synthetic instructions that potentially
3217 // should be considered at least *safe* to speculate...
3218 case Intrinsic::dbg_declare:
3219 case Intrinsic::dbg_value:
3220 return true;
3221
3222 case Intrinsic::bswap:
3223 case Intrinsic::ctlz:
3224 case Intrinsic::ctpop:
3225 case Intrinsic::cttz:
3226 case Intrinsic::objectsize:
3227 case Intrinsic::sadd_with_overflow:
3228 case Intrinsic::smul_with_overflow:
3229 case Intrinsic::ssub_with_overflow:
3230 case Intrinsic::uadd_with_overflow:
3231 case Intrinsic::umul_with_overflow:
3232 case Intrinsic::usub_with_overflow:
3233 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003234 // These intrinsics are defined to have the same behavior as libm
3235 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003236 case Intrinsic::sqrt:
3237 case Intrinsic::fma:
3238 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003239 return true;
3240 // These intrinsics are defined to have the same behavior as libm
3241 // functions, and the corresponding libm functions never set errno.
3242 case Intrinsic::trunc:
3243 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003244 case Intrinsic::fabs:
3245 case Intrinsic::minnum:
3246 case Intrinsic::maxnum:
3247 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003248 // These intrinsics are defined to have the same behavior as libm
3249 // functions, which never overflow when operating on the IEEE754 types
3250 // that we support, and never set errno otherwise.
3251 case Intrinsic::ceil:
3252 case Intrinsic::floor:
3253 case Intrinsic::nearbyint:
3254 case Intrinsic::rint:
3255 case Intrinsic::round:
3256 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003257 // TODO: are convert_{from,to}_fp16 safe?
3258 // TODO: can we list target-specific intrinsics here?
3259 default: break;
3260 }
3261 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003262 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003263 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003264 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003265 case Instruction::VAArg:
3266 case Instruction::Alloca:
3267 case Instruction::Invoke:
3268 case Instruction::PHI:
3269 case Instruction::Store:
3270 case Instruction::Ret:
3271 case Instruction::Br:
3272 case Instruction::IndirectBr:
3273 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003274 case Instruction::Unreachable:
3275 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003276 case Instruction::AtomicRMW:
3277 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003278 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003279 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003280 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003281 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003282 case Instruction::CatchRet:
3283 case Instruction::CleanupPad:
3284 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003285 return false; // Misc instructions which have effects
3286 }
3287}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003288
Quentin Colombet6443cce2015-08-06 18:44:34 +00003289bool llvm::mayBeMemoryDependent(const Instruction &I) {
3290 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3291}
3292
Sanjay Patelaee84212014-11-04 16:27:42 +00003293/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003294bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003295 assert(V->getType()->isPointerTy() && "V must be pointer type");
3296
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003297 // Alloca never returns null, malloc might.
3298 if (isa<AllocaInst>(V)) return true;
3299
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003300 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003301 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003302 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003303
Pete Cooper6b716212015-08-27 03:16:29 +00003304 // A global variable in address space 0 is non null unless extern weak.
3305 // Other address spaces may have null as a valid address for a global,
3306 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003307 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003308 return !GV->hasExternalWeakLinkage() &&
3309 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003310
Sanjoy Das5056e192016-05-07 02:08:22 +00003311 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003312 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003313 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003314
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003315 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003316 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003317 return true;
3318
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003319 return false;
3320}
David Majnemer491331a2015-01-02 07:29:43 +00003321
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003322static bool isKnownNonNullFromDominatingCondition(const Value *V,
3323 const Instruction *CtxI,
3324 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003325 assert(V->getType()->isPointerTy() && "V must be pointer type");
3326
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003327 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003328 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003329 // Avoid massive lists
3330 if (NumUsesExplored >= DomConditionsMaxUses)
3331 break;
3332 NumUsesExplored++;
3333 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003334 CmpInst::Predicate Pred;
3335 if (!match(const_cast<User *>(U),
3336 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3337 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003338 continue;
3339
Sanjoy Das987aaa12016-05-07 02:08:24 +00003340 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003341 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3342 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003343
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003344 BasicBlock *NonNullSuccessor =
3345 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3346 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3347 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3348 return true;
3349 } else if (Pred == ICmpInst::ICMP_NE &&
3350 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3351 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003352 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003353 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003354 }
3355 }
3356
3357 return false;
3358}
3359
3360bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003361 const DominatorTree *DT) {
3362 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003363 return true;
3364
3365 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3366}
3367
David Majnemer491331a2015-01-02 07:29:43 +00003368OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003369 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003370 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003371 const Instruction *CxtI,
3372 const DominatorTree *DT) {
3373 // Multiplying n * m significant bits yields a result of n + m significant
3374 // bits. If the total number of significant bits does not exceed the
3375 // result bit width (minus 1), there is no overflow.
3376 // This means if we have enough leading zero bits in the operands
3377 // we can guarantee that the result does not overflow.
3378 // Ref: "Hacker's Delight" by Henry Warren
3379 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3380 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003381 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003382 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003383 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003384 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3385 DT);
3386 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3387 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003388 // Note that underestimating the number of zero bits gives a more
3389 // conservative answer.
3390 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3391 RHSKnownZero.countLeadingOnes();
3392 // First handle the easy case: if we have enough zero bits there's
3393 // definitely no overflow.
3394 if (ZeroBits >= BitWidth)
3395 return OverflowResult::NeverOverflows;
3396
3397 // Get the largest possible values for each operand.
3398 APInt LHSMax = ~LHSKnownZero;
3399 APInt RHSMax = ~RHSKnownZero;
3400
3401 // We know the multiply operation doesn't overflow if the maximum values for
3402 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003403 bool MaxOverflow;
3404 LHSMax.umul_ov(RHSMax, MaxOverflow);
3405 if (!MaxOverflow)
3406 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003407
David Majnemerc8a576b2015-01-02 07:29:47 +00003408 // We know it always overflows if multiplying the smallest possible values for
3409 // the operands also results in overflow.
3410 bool MinOverflow;
3411 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3412 if (MinOverflow)
3413 return OverflowResult::AlwaysOverflows;
3414
3415 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003416}
David Majnemer5310c1e2015-01-07 00:39:50 +00003417
3418OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003419 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003420 AssumptionCache *AC,
3421 const Instruction *CxtI,
3422 const DominatorTree *DT) {
3423 bool LHSKnownNonNegative, LHSKnownNegative;
3424 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3425 AC, CxtI, DT);
3426 if (LHSKnownNonNegative || LHSKnownNegative) {
3427 bool RHSKnownNonNegative, RHSKnownNegative;
3428 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3429 AC, CxtI, DT);
3430
3431 if (LHSKnownNegative && RHSKnownNegative) {
3432 // The sign bit is set in both cases: this MUST overflow.
3433 // Create a simple add instruction, and insert it into the struct.
3434 return OverflowResult::AlwaysOverflows;
3435 }
3436
3437 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3438 // The sign bit is clear in both cases: this CANNOT overflow.
3439 // Create a simple add instruction, and insert it into the struct.
3440 return OverflowResult::NeverOverflows;
3441 }
3442 }
3443
3444 return OverflowResult::MayOverflow;
3445}
James Molloy71b91c22015-05-11 14:42:20 +00003446
Jingyue Wu10fcea52015-08-20 18:27:04 +00003447static OverflowResult computeOverflowForSignedAdd(
3448 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3449 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3450 if (Add && Add->hasNoSignedWrap()) {
3451 return OverflowResult::NeverOverflows;
3452 }
3453
3454 bool LHSKnownNonNegative, LHSKnownNegative;
3455 bool RHSKnownNonNegative, RHSKnownNegative;
3456 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3457 AC, CxtI, DT);
3458 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3459 AC, CxtI, DT);
3460
3461 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3462 (LHSKnownNegative && RHSKnownNonNegative)) {
3463 // The sign bits are opposite: this CANNOT overflow.
3464 return OverflowResult::NeverOverflows;
3465 }
3466
3467 // The remaining code needs Add to be available. Early returns if not so.
3468 if (!Add)
3469 return OverflowResult::MayOverflow;
3470
3471 // If the sign of Add is the same as at least one of the operands, this add
3472 // CANNOT overflow. This is particularly useful when the sum is
3473 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3474 // operands.
3475 bool LHSOrRHSKnownNonNegative =
3476 (LHSKnownNonNegative || RHSKnownNonNegative);
3477 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3478 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3479 bool AddKnownNonNegative, AddKnownNegative;
3480 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3481 /*Depth=*/0, AC, CxtI, DT);
3482 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3483 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3484 return OverflowResult::NeverOverflows;
3485 }
3486 }
3487
3488 return OverflowResult::MayOverflow;
3489}
3490
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003491bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
3492#ifndef NDEBUG
3493 auto IID = II->getIntrinsicID();
3494 assert((IID == Intrinsic::sadd_with_overflow ||
3495 IID == Intrinsic::uadd_with_overflow ||
3496 IID == Intrinsic::ssub_with_overflow ||
3497 IID == Intrinsic::usub_with_overflow ||
3498 IID == Intrinsic::smul_with_overflow ||
3499 IID == Intrinsic::umul_with_overflow) &&
3500 "Not an overflow intrinsic!");
3501#endif
3502
3503 SmallVector<BranchInst *, 2> GuardingBranches;
3504 SmallVector<ExtractValueInst *, 2> Results;
3505
3506 for (User *U : II->users()) {
3507 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3508 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3509
3510 if (EVI->getIndices()[0] == 0)
3511 Results.push_back(EVI);
3512 else {
3513 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3514
3515 for (auto *U : EVI->users())
3516 if (auto *B = dyn_cast<BranchInst>(U)) {
3517 assert(B->isConditional() && "How else is it using an i1?");
3518 GuardingBranches.push_back(B);
3519 }
3520 }
3521 } else {
3522 // We are using the aggregate directly in a way we don't want to analyze
3523 // here (storing it to a global, say).
3524 return false;
3525 }
3526 }
3527
3528 auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
3529 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3530 if (!NoWrapEdge.isSingleEdge())
3531 return false;
3532
3533 // Check if all users of the add are provably no-wrap.
3534 for (auto *Result : Results) {
3535 // If the extractvalue itself is not executed on overflow, the we don't
3536 // need to check each use separately, since domination is transitive.
3537 if (DT.dominates(NoWrapEdge, Result->getParent()))
3538 continue;
3539
3540 for (auto &RU : Result->uses())
3541 if (!DT.dominates(NoWrapEdge, RU))
3542 return false;
3543 }
3544
3545 return true;
3546 };
3547
3548 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3549}
3550
3551
Jingyue Wu10fcea52015-08-20 18:27:04 +00003552OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3553 const DataLayout &DL,
3554 AssumptionCache *AC,
3555 const Instruction *CxtI,
3556 const DominatorTree *DT) {
3557 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3558 Add, DL, AC, CxtI, DT);
3559}
3560
3561OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3562 const DataLayout &DL,
3563 AssumptionCache *AC,
3564 const Instruction *CxtI,
3565 const DominatorTree *DT) {
3566 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3567}
3568
Jingyue Wu42f1d672015-07-28 18:22:40 +00003569bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003570 // A memory operation returns normally if it isn't volatile. A volatile
3571 // operation is allowed to trap.
3572 //
3573 // An atomic operation isn't guaranteed to return in a reasonable amount of
3574 // time because it's possible for another thread to interfere with it for an
3575 // arbitrary length of time, but programs aren't allowed to rely on that.
3576 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3577 return !LI->isVolatile();
3578 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3579 return !SI->isVolatile();
3580 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3581 return !CXI->isVolatile();
3582 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3583 return !RMWI->isVolatile();
3584 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3585 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003586
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003587 // If there is no successor, then execution can't transfer to it.
3588 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3589 return !CRI->unwindsToCaller();
3590 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3591 return !CatchSwitch->unwindsToCaller();
3592 if (isa<ResumeInst>(I))
3593 return false;
3594 if (isa<ReturnInst>(I))
3595 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003596
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003597 // Calls can throw, or contain an infinite loop, or kill the process.
3598 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3599 // Calls which don't write to arbitrary memory are safe.
3600 // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3601 // but it's consistent with other passes. See http://llvm.org/PR965 .
3602 // FIXME: This isn't aggressive enough; a call which only writes to a
3603 // global is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003604 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3605 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003606 }
3607
3608 // Other instructions return normally.
3609 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003610}
3611
3612bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3613 const Loop *L) {
3614 // The loop header is guaranteed to be executed for every iteration.
3615 //
3616 // FIXME: Relax this constraint to cover all basic blocks that are
3617 // guaranteed to be executed at every iteration.
3618 if (I->getParent() != L->getHeader()) return false;
3619
3620 for (const Instruction &LI : *L->getHeader()) {
3621 if (&LI == I) return true;
3622 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3623 }
3624 llvm_unreachable("Instruction not contained in its own parent basic block.");
3625}
3626
3627bool llvm::propagatesFullPoison(const Instruction *I) {
3628 switch (I->getOpcode()) {
3629 case Instruction::Add:
3630 case Instruction::Sub:
3631 case Instruction::Xor:
3632 case Instruction::Trunc:
3633 case Instruction::BitCast:
3634 case Instruction::AddrSpaceCast:
3635 // These operations all propagate poison unconditionally. Note that poison
3636 // is not any particular value, so xor or subtraction of poison with
3637 // itself still yields poison, not zero.
3638 return true;
3639
3640 case Instruction::AShr:
3641 case Instruction::SExt:
3642 // For these operations, one bit of the input is replicated across
3643 // multiple output bits. A replicated poison bit is still poison.
3644 return true;
3645
3646 case Instruction::Shl: {
3647 // Left shift *by* a poison value is poison. The number of
3648 // positions to shift is unsigned, so no negative values are
3649 // possible there. Left shift by zero places preserves poison. So
3650 // it only remains to consider left shift of poison by a positive
3651 // number of places.
3652 //
3653 // A left shift by a positive number of places leaves the lowest order bit
3654 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3655 // make the poison operand violate that flag, yielding a fresh full-poison
3656 // value.
3657 auto *OBO = cast<OverflowingBinaryOperator>(I);
3658 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3659 }
3660
3661 case Instruction::Mul: {
3662 // A multiplication by zero yields a non-poison zero result, so we need to
3663 // rule out zero as an operand. Conservatively, multiplication by a
3664 // non-zero constant is not multiplication by zero.
3665 //
3666 // Multiplication by a non-zero constant can leave some bits
3667 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3668 // order bit unpoisoned. So we need to consider that.
3669 //
3670 // Multiplication by 1 preserves poison. If the multiplication has a
3671 // no-wrap flag, then we can make the poison operand violate that flag
3672 // when multiplied by any integer other than 0 and 1.
3673 auto *OBO = cast<OverflowingBinaryOperator>(I);
3674 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3675 for (Value *V : OBO->operands()) {
3676 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3677 // A ConstantInt cannot yield poison, so we can assume that it is
3678 // the other operand that is poison.
3679 return !CI->isZero();
3680 }
3681 }
3682 }
3683 return false;
3684 }
3685
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003686 case Instruction::ICmp:
3687 // Comparing poison with any value yields poison. This is why, for
3688 // instance, x s< (x +nsw 1) can be folded to true.
3689 return true;
3690
Jingyue Wu42f1d672015-07-28 18:22:40 +00003691 case Instruction::GetElementPtr:
3692 // A GEP implicitly represents a sequence of additions, subtractions,
3693 // truncations, sign extensions and multiplications. The multiplications
3694 // are by the non-zero sizes of some set of types, so we do not have to be
3695 // concerned with multiplication by zero. If the GEP is in-bounds, then
3696 // these operations are implicitly no-signed-wrap so poison is propagated
3697 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3698 return cast<GEPOperator>(I)->isInBounds();
3699
3700 default:
3701 return false;
3702 }
3703}
3704
3705const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3706 switch (I->getOpcode()) {
3707 case Instruction::Store:
3708 return cast<StoreInst>(I)->getPointerOperand();
3709
3710 case Instruction::Load:
3711 return cast<LoadInst>(I)->getPointerOperand();
3712
3713 case Instruction::AtomicCmpXchg:
3714 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3715
3716 case Instruction::AtomicRMW:
3717 return cast<AtomicRMWInst>(I)->getPointerOperand();
3718
3719 case Instruction::UDiv:
3720 case Instruction::SDiv:
3721 case Instruction::URem:
3722 case Instruction::SRem:
3723 return I->getOperand(1);
3724
3725 default:
3726 return nullptr;
3727 }
3728}
3729
3730bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3731 // We currently only look for uses of poison values within the same basic
3732 // block, as that makes it easier to guarantee that the uses will be
3733 // executed given that PoisonI is executed.
3734 //
3735 // FIXME: Expand this to consider uses beyond the same basic block. To do
3736 // this, look out for the distinction between post-dominance and strong
3737 // post-dominance.
3738 const BasicBlock *BB = PoisonI->getParent();
3739
3740 // Set of instructions that we have proved will yield poison if PoisonI
3741 // does.
3742 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003743 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003744 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003745 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003746
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003747 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003748
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003749 unsigned Iter = 0;
3750 while (Iter++ < MaxDepth) {
3751 for (auto &I : make_range(Begin, End)) {
3752 if (&I != PoisonI) {
3753 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3754 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3755 return true;
3756 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3757 return false;
3758 }
3759
3760 // Mark poison that propagates from I through uses of I.
3761 if (YieldsPoison.count(&I)) {
3762 for (const User *User : I.users()) {
3763 const Instruction *UserI = cast<Instruction>(User);
3764 if (propagatesFullPoison(UserI))
3765 YieldsPoison.insert(User);
3766 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003767 }
3768 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003769
3770 if (auto *NextBB = BB->getSingleSuccessor()) {
3771 if (Visited.insert(NextBB).second) {
3772 BB = NextBB;
3773 Begin = BB->getFirstNonPHI()->getIterator();
3774 End = BB->end();
3775 continue;
3776 }
3777 }
3778
3779 break;
3780 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003781 return false;
3782}
3783
James Molloy134bec22015-08-11 09:12:57 +00003784static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3785 if (FMF.noNaNs())
3786 return true;
3787
3788 if (auto *C = dyn_cast<ConstantFP>(V))
3789 return !C->isNaN();
3790 return false;
3791}
3792
3793static bool isKnownNonZero(Value *V) {
3794 if (auto *C = dyn_cast<ConstantFP>(V))
3795 return !C->isZero();
3796 return false;
3797}
3798
3799static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3800 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003801 Value *CmpLHS, Value *CmpRHS,
3802 Value *TrueVal, Value *FalseVal,
3803 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003804 LHS = CmpLHS;
3805 RHS = CmpRHS;
3806
James Molloy134bec22015-08-11 09:12:57 +00003807 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3808 // return inconsistent results between implementations.
3809 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3810 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3811 // Therefore we behave conservatively and only proceed if at least one of the
3812 // operands is known to not be zero, or if we don't care about signed zeroes.
3813 switch (Pred) {
3814 default: break;
3815 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3816 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3817 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3818 !isKnownNonZero(CmpRHS))
3819 return {SPF_UNKNOWN, SPNB_NA, false};
3820 }
3821
3822 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3823 bool Ordered = false;
3824
3825 // When given one NaN and one non-NaN input:
3826 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3827 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3828 // ordered comparison fails), which could be NaN or non-NaN.
3829 // so here we discover exactly what NaN behavior is required/accepted.
3830 if (CmpInst::isFPPredicate(Pred)) {
3831 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3832 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3833
3834 if (LHSSafe && RHSSafe) {
3835 // Both operands are known non-NaN.
3836 NaNBehavior = SPNB_RETURNS_ANY;
3837 } else if (CmpInst::isOrdered(Pred)) {
3838 // An ordered comparison will return false when given a NaN, so it
3839 // returns the RHS.
3840 Ordered = true;
3841 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003842 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003843 NaNBehavior = SPNB_RETURNS_NAN;
3844 else if (RHSSafe)
3845 NaNBehavior = SPNB_RETURNS_OTHER;
3846 else
3847 // Completely unsafe.
3848 return {SPF_UNKNOWN, SPNB_NA, false};
3849 } else {
3850 Ordered = false;
3851 // An unordered comparison will return true when given a NaN, so it
3852 // returns the LHS.
3853 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003854 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003855 NaNBehavior = SPNB_RETURNS_OTHER;
3856 else if (RHSSafe)
3857 NaNBehavior = SPNB_RETURNS_NAN;
3858 else
3859 // Completely unsafe.
3860 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003861 }
3862 }
3863
James Molloy71b91c22015-05-11 14:42:20 +00003864 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003865 std::swap(CmpLHS, CmpRHS);
3866 Pred = CmpInst::getSwappedPredicate(Pred);
3867 if (NaNBehavior == SPNB_RETURNS_NAN)
3868 NaNBehavior = SPNB_RETURNS_OTHER;
3869 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3870 NaNBehavior = SPNB_RETURNS_NAN;
3871 Ordered = !Ordered;
3872 }
3873
3874 // ([if]cmp X, Y) ? X : Y
3875 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003876 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003877 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003878 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003879 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003880 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003881 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003882 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003883 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003884 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003885 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3886 case FCmpInst::FCMP_UGT:
3887 case FCmpInst::FCMP_UGE:
3888 case FCmpInst::FCMP_OGT:
3889 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3890 case FCmpInst::FCMP_ULT:
3891 case FCmpInst::FCMP_ULE:
3892 case FCmpInst::FCMP_OLT:
3893 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003894 }
3895 }
3896
3897 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3898 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3899 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3900
3901 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3902 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3903 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003904 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003905 }
3906
3907 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3908 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3909 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003910 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003911 }
3912 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003913
James Molloy71b91c22015-05-11 14:42:20 +00003914 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3915 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003916 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3917 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003918 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3919 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3920 LHS = TrueVal;
3921 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003922 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003923 }
3924 }
3925 }
3926
3927 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3928
James Molloy134bec22015-08-11 09:12:57 +00003929 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003930}
James Molloy270ef8c2015-05-15 16:04:50 +00003931
James Molloy569cea62015-09-02 17:25:25 +00003932static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3933 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003934 CastInst *CI = dyn_cast<CastInst>(V1);
3935 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003936 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003937 return nullptr;
3938 *CastOp = CI->getOpcode();
3939
David Majnemerd2a074b2016-04-29 18:40:34 +00003940 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00003941 // If V1 and V2 are both the same cast from the same type, we can look
3942 // through V1.
3943 if (CI2->getOpcode() == CI->getOpcode() &&
3944 CI2->getSrcTy() == CI->getSrcTy())
3945 return CI2->getOperand(0);
3946 return nullptr;
3947 } else if (!C) {
3948 return nullptr;
3949 }
3950
David Majnemerd2a074b2016-04-29 18:40:34 +00003951 Constant *CastedTo = nullptr;
3952
David Majnemer826e9832016-04-29 21:22:04 +00003953 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3954 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3955
David Majnemerd2a074b2016-04-29 18:40:34 +00003956 if (isa<SExtInst>(CI) && CmpI->isSigned())
3957 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3958
David Majnemer826e9832016-04-29 21:22:04 +00003959 if (isa<TruncInst>(CI))
3960 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3961
3962 if (isa<FPTruncInst>(CI))
3963 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3964
3965 if (isa<FPExtInst>(CI))
3966 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3967
David Majnemerd2a074b2016-04-29 18:40:34 +00003968 if (isa<FPToUIInst>(CI))
3969 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3970
3971 if (isa<FPToSIInst>(CI))
3972 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3973
3974 if (isa<UIToFPInst>(CI))
3975 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3976
3977 if (isa<SIToFPInst>(CI))
3978 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3979
3980 if (!CastedTo)
3981 return nullptr;
3982
3983 Constant *CastedBack =
3984 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3985 // Make sure the cast doesn't lose any information.
3986 if (CastedBack != C)
3987 return nullptr;
3988
3989 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00003990}
3991
Sanjay Patele8dc0902016-05-23 17:57:54 +00003992SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003993 Instruction::CastOps *CastOp) {
3994 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003995 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003996
James Molloy134bec22015-08-11 09:12:57 +00003997 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3998 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003999
James Molloy134bec22015-08-11 09:12:57 +00004000 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004001 Value *CmpLHS = CmpI->getOperand(0);
4002 Value *CmpRHS = CmpI->getOperand(1);
4003 Value *TrueVal = SI->getTrueValue();
4004 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004005 FastMathFlags FMF;
4006 if (isa<FPMathOperator>(CmpI))
4007 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004008
4009 // Bail out early.
4010 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004011 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004012
4013 // Deal with type mismatches.
4014 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004015 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004016 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004017 cast<CastInst>(TrueVal)->getOperand(0), C,
4018 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004019 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004020 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004021 C, cast<CastInst>(FalseVal)->getOperand(0),
4022 LHS, RHS);
4023 }
James Molloy134bec22015-08-11 09:12:57 +00004024 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004025 LHS, RHS);
4026}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004027
4028ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4029 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4030 assert(NumRanges >= 1 && "Must have at least one range!");
4031 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4032
4033 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4034 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4035
4036 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4037
4038 for (unsigned i = 1; i < NumRanges; ++i) {
4039 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4040 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4041
4042 // Note: unionWith will potentially create a range that contains values not
4043 // contained in any of the original N ranges.
4044 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4045 }
4046
4047 return CR;
4048}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004049
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004050/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004051static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4052 const DataLayout &DL, unsigned Depth,
4053 AssumptionCache *AC, const Instruction *CxtI,
4054 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004055 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004056 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4057 return true;
4058
4059 switch (Pred) {
4060 default:
4061 return false;
4062
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004063 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004064 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004065
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004066 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004067 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004068 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004069 return false;
4070 }
4071
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004072 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004073 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004074
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004075 // LHS u<= LHS +_{nuw} C for any C
4076 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004077 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004078
4079 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4080 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4081 const APInt *&CA, const APInt *&CB) {
4082 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4083 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4084 return true;
4085
4086 // If X & C == 0 then (X | C) == X +_{nuw} C
4087 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4088 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4089 unsigned BitWidth = CA->getBitWidth();
4090 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4091 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4092
4093 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4094 return true;
4095 }
4096
4097 return false;
4098 };
4099
4100 Value *X;
4101 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004102 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4103 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004104
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004105 return false;
4106 }
4107 }
4108}
4109
4110/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004111/// ALHS ARHS" is true. Otherwise, return None.
4112static Optional<bool>
4113isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
4114 Value *BLHS, Value *BRHS, const DataLayout &DL,
4115 unsigned Depth, AssumptionCache *AC,
4116 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004117 switch (Pred) {
4118 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004119 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004120
4121 case CmpInst::ICMP_SLT:
4122 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004123 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4124 DT) &&
4125 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4126 return true;
4127 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004128
4129 case CmpInst::ICMP_ULT:
4130 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004131 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4132 DT) &&
4133 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4134 return true;
4135 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004136 }
4137}
4138
Chad Rosier226a7342016-05-05 17:41:19 +00004139/// Return true if the operands of the two compares match. IsSwappedOps is true
4140/// when the operands match, but are swapped.
4141static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
4142 bool &IsSwappedOps) {
4143
4144 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4145 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4146 return IsMatchingOps || IsSwappedOps;
4147}
4148
Chad Rosier41dd31f2016-04-20 19:15:26 +00004149/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4150/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4151/// BRHS" is false. Otherwise, return None if we can't infer anything.
4152static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4153 Value *ALHS, Value *ARHS,
4154 CmpInst::Predicate BPred,
Chad Rosier226a7342016-05-05 17:41:19 +00004155 Value *BLHS, Value *BRHS,
4156 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004157 // Canonicalize the operands so they're matching.
4158 if (IsSwappedOps) {
4159 std::swap(BLHS, BRHS);
4160 BPred = ICmpInst::getSwappedPredicate(BPred);
4161 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004162 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004163 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004164 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004165 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004166
Chad Rosier41dd31f2016-04-20 19:15:26 +00004167 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004168}
4169
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004170/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4171/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4172/// C2" is false. Otherwise, return None if we can't infer anything.
4173static Optional<bool>
4174isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
4175 ConstantInt *C1, CmpInst::Predicate BPred,
4176 Value *BLHS, ConstantInt *C2) {
4177 assert(ALHS == BLHS && "LHS operands must match.");
4178 ConstantRange DomCR =
4179 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4180 ConstantRange CR =
4181 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4182 ConstantRange Intersection = DomCR.intersectWith(CR);
4183 ConstantRange Difference = DomCR.difference(CR);
4184 if (Intersection.isEmptySet())
4185 return false;
4186 if (Difference.isEmptySet())
4187 return true;
4188 return None;
4189}
4190
Chad Rosier41dd31f2016-04-20 19:15:26 +00004191Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004192 const DataLayout &DL, bool InvertAPred,
4193 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004194 const Instruction *CxtI,
4195 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004196 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4197 if (LHS->getType() != RHS->getType())
4198 return None;
4199
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004200 Type *OpTy = LHS->getType();
4201 assert(OpTy->getScalarType()->isIntegerTy(1));
4202
4203 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004204 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004205 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004206
4207 if (OpTy->isVectorTy())
4208 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004209 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004210 assert(OpTy->isIntegerTy(1) && "implied by above");
4211
4212 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004213 Value *ALHS, *ARHS;
4214 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004215
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004216 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4217 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004218 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004219
Chad Rosiere2cbd132016-04-25 17:23:36 +00004220 if (InvertAPred)
4221 APred = CmpInst::getInversePredicate(APred);
4222
Chad Rosier226a7342016-05-05 17:41:19 +00004223 // Can we infer anything when the two compares have matching operands?
4224 bool IsSwappedOps;
4225 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4226 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4227 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004228 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004229 // No amount of additional analysis will infer the second condition, so
4230 // early exit.
4231 return None;
4232 }
4233
4234 // Can we infer anything when the LHS operands match and the RHS operands are
4235 // constants (not necessarily matching)?
4236 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4237 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4238 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4239 cast<ConstantInt>(BRHS)))
4240 return Implication;
4241 // No amount of additional analysis will infer the second condition, so
4242 // early exit.
4243 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004244 }
4245
Chad Rosier41dd31f2016-04-20 19:15:26 +00004246 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004247 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4248 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004249
Chad Rosier41dd31f2016-04-20 19:15:26 +00004250 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004251}