blob: 7983240c3ddaef517e73d3ce2178254e80bf79d1 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
Pete Cooper35b00d52016-08-13 01:05:32 +0000122static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
Pete Cooper35b00d52016-08-13 01:05:32 +0000125void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Pete Cooper35b00d52016-08-13 01:05:32 +0000133bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
134 const DataLayout &DL,
Jingyue Wuca321902015-05-14 23:53:19 +0000135 AssumptionCache *AC, const Instruction *CxtI,
136 const DominatorTree *DT) {
137 assert(LHS->getType() == RHS->getType() &&
138 "LHS and RHS should have the same type");
139 assert(LHS->getType()->isIntOrIntVectorTy() &&
140 "LHS and RHS should be integers");
141 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
142 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
143 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
144 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
145 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
146 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
147}
148
Pete Cooper35b00d52016-08-13 01:05:32 +0000149static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000150 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000151
Pete Cooper35b00d52016-08-13 01:05:32 +0000152void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000153 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000154 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000155 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000156 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
157 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000158}
159
Pete Cooper35b00d52016-08-13 01:05:32 +0000160static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000161 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000162
Pete Cooper35b00d52016-08-13 01:05:32 +0000163bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
164 bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000165 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000166 const Instruction *CxtI,
167 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000169 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000170}
171
Pete Cooper35b00d52016-08-13 01:05:32 +0000172static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000173
Pete Cooper35b00d52016-08-13 01:05:32 +0000174bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000175 AssumptionCache *AC, const Instruction *CxtI,
176 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000177 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000178}
179
Pete Cooper35b00d52016-08-13 01:05:32 +0000180bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
181 unsigned Depth,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000182 AssumptionCache *AC, const Instruction *CxtI,
183 const DominatorTree *DT) {
184 bool NonNegative, Negative;
185 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
186 return NonNegative;
187}
188
Pete Cooper35b00d52016-08-13 01:05:32 +0000189bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Philip Reames8f12eba2016-03-09 21:31:47 +0000190 AssumptionCache *AC, const Instruction *CxtI,
191 const DominatorTree *DT) {
192 if (auto *CI = dyn_cast<ConstantInt>(V))
193 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000194
Philip Reames8f12eba2016-03-09 21:31:47 +0000195 // TODO: We'd doing two recursive queries here. We should factor this such
196 // that only a single query is needed.
197 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
198 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
199}
200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Nick Lewycky762f8a82016-04-21 00:53:14 +0000202 AssumptionCache *AC, const Instruction *CxtI,
203 const DominatorTree *DT) {
204 bool NonNegative, Negative;
205 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
206 return Negative;
207}
208
Pete Cooper35b00d52016-08-13 01:05:32 +0000209static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000210
Pete Cooper35b00d52016-08-13 01:05:32 +0000211bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
212 const DataLayout &DL,
213 AssumptionCache *AC, const Instruction *CxtI,
214 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000215 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
216 safeCxtI(V1, safeCxtI(V2, CxtI)),
217 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000218}
219
Pete Cooper35b00d52016-08-13 01:05:32 +0000220static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000221 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000222
Pete Cooper35b00d52016-08-13 01:05:32 +0000223bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
224 const DataLayout &DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000225 unsigned Depth, AssumptionCache *AC,
226 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227 return ::MaskedValueIsZero(V, Mask, Depth,
228 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000229}
230
Pete Cooper35b00d52016-08-13 01:05:32 +0000231static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
232 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000233
Pete Cooper35b00d52016-08-13 01:05:32 +0000234unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000235 unsigned Depth, AssumptionCache *AC,
236 const Instruction *CxtI,
237 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000239}
240
Pete Cooper35b00d52016-08-13 01:05:32 +0000241static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
242 bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000243 APInt &KnownZero, APInt &KnownOne,
244 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000245 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000246 if (!Add) {
Pete Cooper35b00d52016-08-13 01:05:32 +0000247 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000248 // We know that the top bits of C-X are clear if X contains less bits
249 // than C (i.e. no wrap-around can happen). For example, 20-X is
250 // positive if we can prove that X is >= 0 and < 16.
251 if (!CLHS->getValue().isNegative()) {
252 unsigned BitWidth = KnownZero.getBitWidth();
253 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
254 // NLZ can't be BitWidth with no sign bit
255 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000256 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000257
258 // If all of the MaskV bits are known to be zero, then we know the
259 // output top bits are zero, because we now know that the output is
260 // from [0-C].
261 if ((KnownZero2 & MaskV) == MaskV) {
262 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
263 // Top bits known zero.
264 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
265 }
266 }
267 }
268 }
269
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000270 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000271
David Majnemer97ddca32014-08-22 00:40:43 +0000272 // If an initial sequence of bits in the result is not needed, the
273 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000274 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000275 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
276 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // Carry in a 1 for a subtract, rather than a 0.
279 APInt CarryIn(BitWidth, 0);
280 if (!Add) {
281 // Sum = LHS + ~RHS + 1
282 std::swap(KnownZero2, KnownOne2);
283 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000284 }
285
David Majnemer97ddca32014-08-22 00:40:43 +0000286 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
287 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
288
289 // Compute known bits of the carry.
290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
292
293 // Compute set of known bits (where all three relevant bits are known).
294 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
295 APInt RHSKnown = KnownZero2 | KnownOne2;
296 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
297 APInt Known = LHSKnown & RHSKnown & CarryKnown;
298
299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
300 "known bits of sum differ");
301
302 // Compute known bits of the result.
303 KnownZero = ~PossibleSumOne & Known;
304 KnownOne = PossibleSumOne & Known;
305
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000306 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000307 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000308 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000309 // Adding two non-negative numbers, or subtracting a negative number from
310 // a non-negative one, can't wrap into negative.
311 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
312 KnownZero |= APInt::getSignBit(BitWidth);
313 // Adding two negative numbers, or subtracting a non-negative number from
314 // a negative one, can't wrap into non-negative.
315 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
316 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000317 }
318 }
319}
320
Pete Cooper35b00d52016-08-13 01:05:32 +0000321static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000322 APInt &KnownZero, APInt &KnownOne,
323 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000324 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000326 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
327 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000328
329 bool isKnownNegative = false;
330 bool isKnownNonNegative = false;
331 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000332 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000333 if (Op0 == Op1) {
334 // The product of a number with itself is non-negative.
335 isKnownNonNegative = true;
336 } else {
337 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
338 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
339 bool isKnownNegativeOp1 = KnownOne.isNegative();
340 bool isKnownNegativeOp0 = KnownOne2.isNegative();
341 // The product of two numbers with the same sign is non-negative.
342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
344 // The product of a negative number and a non-negative number is either
345 // negative or zero.
346 if (!isKnownNonNegative)
347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000348 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000350 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000351 }
352 }
353
354 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000355 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000356 // More trickiness is possible, but this is sufficient for the
357 // interesting case of alignment computation.
358 KnownOne.clearAllBits();
359 unsigned TrailZ = KnownZero.countTrailingOnes() +
360 KnownZero2.countTrailingOnes();
361 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
362 KnownZero2.countLeadingOnes(),
363 BitWidth) - BitWidth;
364
365 TrailZ = std::min(TrailZ, BitWidth);
366 LeadZ = std::min(LeadZ, BitWidth);
367 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
368 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000369
370 // Only make use of no-wrap flags if we failed to compute the sign bit
371 // directly. This matters if the multiplication always overflows, in
372 // which case we prefer to follow the result of the direct computation,
373 // though as the program is invoking undefined behaviour we can choose
374 // whatever we like here.
375 if (isKnownNonNegative && !KnownOne.isNegative())
376 KnownZero.setBit(BitWidth - 1);
377 else if (isKnownNegative && !KnownZero.isNegative())
378 KnownOne.setBit(BitWidth - 1);
379}
380
Jingyue Wu37fcb592014-06-19 16:50:16 +0000381void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000382 APInt &KnownZero,
383 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000384 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000385 unsigned NumRanges = Ranges.getNumOperands() / 2;
386 assert(NumRanges >= 1);
387
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388 KnownZero.setAllBits();
389 KnownOne.setAllBits();
390
Rafael Espindola53190532012-03-30 15:52:11 +0000391 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000392 ConstantInt *Lower =
393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
394 ConstantInt *Upper =
395 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000396 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000397
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000398 // The first CommonPrefixBits of all values in Range are equal.
399 unsigned CommonPrefixBits =
400 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
401
402 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
403 KnownOne &= Range.getUnsignedMax() & Mask;
404 KnownZero &= ~Range.getUnsignedMax() & Mask;
405 }
Rafael Espindola53190532012-03-30 15:52:11 +0000406}
Jay Foad5a29c362014-05-15 12:12:55 +0000407
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000408static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000409 SmallVector<const Value *, 16> WorkSet(1, I);
410 SmallPtrSet<const Value *, 32> Visited;
411 SmallPtrSet<const Value *, 16> EphValues;
412
Hal Finkelf2199b22015-10-23 20:37:08 +0000413 // The instruction defining an assumption's condition itself is always
414 // considered ephemeral to that assumption (even if it has other
415 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000416 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000417 return true;
418
Hal Finkel60db0582014-09-07 18:57:58 +0000419 while (!WorkSet.empty()) {
420 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000421 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000422 continue;
423
424 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000425 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000426 if (V == E)
427 return true;
428
429 EphValues.insert(V);
430 if (const User *U = dyn_cast<User>(V))
431 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
432 J != JE; ++J) {
433 if (isSafeToSpeculativelyExecute(*J))
434 WorkSet.push_back(*J);
435 }
436 }
437 }
438
439 return false;
440}
441
442// Is this an intrinsic that cannot be speculated but also cannot trap?
443static bool isAssumeLikeIntrinsic(const Instruction *I) {
444 if (const CallInst *CI = dyn_cast<CallInst>(I))
445 if (Function *F = CI->getCalledFunction())
446 switch (F->getIntrinsicID()) {
447 default: break;
448 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
449 case Intrinsic::assume:
450 case Intrinsic::dbg_declare:
451 case Intrinsic::dbg_value:
452 case Intrinsic::invariant_start:
453 case Intrinsic::invariant_end:
454 case Intrinsic::lifetime_start:
455 case Intrinsic::lifetime_end:
456 case Intrinsic::objectsize:
457 case Intrinsic::ptr_annotation:
458 case Intrinsic::var_annotation:
459 return true;
460 }
461
462 return false;
463}
464
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000465bool llvm::isValidAssumeForContext(const Instruction *Inv,
466 const Instruction *CxtI,
467 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000468
469 // There are two restrictions on the use of an assume:
470 // 1. The assume must dominate the context (or the control flow must
471 // reach the assume whenever it reaches the context).
472 // 2. The context must not be in the assume's set of ephemeral values
473 // (otherwise we will use the assume to prove that the condition
474 // feeding the assume is trivially true, thus causing the removal of
475 // the assume).
476
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000477 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000478 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000479 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000480 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
481 // We don't have a DT, but this trivially dominates.
482 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000483 }
484
Pete Cooper54a02552016-08-12 01:00:15 +0000485 // With or without a DT, the only remaining case we will check is if the
486 // instructions are in the same BB. Give up if that is not the case.
487 if (Inv->getParent() != CxtI->getParent())
488 return false;
489
490 // If we have a dom tree, then we now know that the assume doens't dominate
491 // the other instruction. If we don't have a dom tree then we can check if
492 // the assume is first in the BB.
493 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000494 // Search forward from the assume until we reach the context (or the end
495 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000496 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000497 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000498 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000499 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000500 }
501
Pete Cooper54a02552016-08-12 01:00:15 +0000502 // The context comes first, but they're both in the same block. Make sure
503 // there is nothing in between that might interrupt the control flow.
504 for (BasicBlock::const_iterator I =
505 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
506 I != IE; ++I)
507 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
508 return false;
509
510 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000511}
512
Pete Cooper35b00d52016-08-13 01:05:32 +0000513static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000514 APInt &KnownOne, unsigned Depth,
515 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000516 // Use of assumptions is context-sensitive. If we don't have a context, we
517 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000518 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000519 return;
520
521 unsigned BitWidth = KnownZero.getBitWidth();
522
Chandler Carruth66b31302015-01-04 12:03:27 +0000523 for (auto &AssumeVH : Q.AC->assumptions()) {
524 if (!AssumeVH)
525 continue;
526 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000528 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000529 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000530 continue;
531
Philip Reames00d3b272014-11-24 23:44:28 +0000532 // Warning: This loop can end up being somewhat performance sensetive.
533 // We're running this loop for once for each value queried resulting in a
534 // runtime of ~O(#assumes * #values).
535
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000537 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000538
Philip Reames00d3b272014-11-24 23:44:28 +0000539 Value *Arg = I->getArgOperand(0);
540
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000542 assert(BitWidth == 1 && "assume operand is not i1?");
543 KnownZero.clearAllBits();
544 KnownOne.setAllBits();
545 return;
546 }
547
David Majnemer9b609752014-12-12 23:59:29 +0000548 // The remaining tests are all recursive, so bail out if we hit the limit.
549 if (Depth == MaxDepth)
550 continue;
551
Hal Finkel60db0582014-09-07 18:57:58 +0000552 Value *A, *B;
553 auto m_V = m_CombineOr(m_Specific(V),
554 m_CombineOr(m_PtrToInt(m_Specific(V)),
555 m_BitCast(m_Specific(V))));
556
557 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000558 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000559 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000560 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000564 KnownZero |= RHSKnownZero;
565 KnownOne |= RHSKnownOne;
566 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000567 } else if (match(Arg,
568 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000569 Pred == ICmpInst::ICMP_EQ &&
570 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000573 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000574 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000575
576 // For those bits in the mask that are known to be one, we can propagate
577 // known bits from the RHS to V.
578 KnownZero |= RHSKnownZero & MaskKnownOne;
579 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000580 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000581 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
582 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000583 Pred == ICmpInst::ICMP_EQ &&
584 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000585 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000586 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000587 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000588 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000589
590 // For those bits in the mask that are known to be one, we can propagate
591 // inverted known bits from the RHS to V.
592 KnownZero |= RHSKnownOne & MaskKnownOne;
593 KnownOne |= RHSKnownZero & MaskKnownOne;
594 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000595 } else if (match(Arg,
596 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000597 Pred == ICmpInst::ICMP_EQ &&
598 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000599 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000600 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000601 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000602 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000603
604 // For those bits in B that are known to be zero, we can propagate known
605 // bits from the RHS to V.
606 KnownZero |= RHSKnownZero & BKnownZero;
607 KnownOne |= RHSKnownOne & BKnownZero;
608 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000609 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
610 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000611 Pred == ICmpInst::ICMP_EQ &&
612 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000613 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000614 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000616 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000617
618 // For those bits in B that are known to be zero, we can propagate
619 // inverted known bits from the RHS to V.
620 KnownZero |= RHSKnownOne & BKnownZero;
621 KnownOne |= RHSKnownZero & BKnownZero;
622 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000623 } else if (match(Arg,
624 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000625 Pred == ICmpInst::ICMP_EQ &&
626 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000627 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000628 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000629 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000630 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000631
632 // For those bits in B that are known to be zero, we can propagate known
633 // bits from the RHS to V. For those bits in B that are known to be one,
634 // we can propagate inverted known bits from the RHS to V.
635 KnownZero |= RHSKnownZero & BKnownZero;
636 KnownOne |= RHSKnownOne & BKnownZero;
637 KnownZero |= RHSKnownOne & BKnownOne;
638 KnownOne |= RHSKnownZero & BKnownOne;
639 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
641 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000642 Pred == ICmpInst::ICMP_EQ &&
643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000644 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000645 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000646 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000647 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000648
649 // For those bits in B that are known to be zero, we can propagate
650 // inverted known bits from the RHS to V. For those bits in B that are
651 // known to be one, we can propagate known bits from the RHS to V.
652 KnownZero |= RHSKnownOne & BKnownZero;
653 KnownOne |= RHSKnownZero & BKnownZero;
654 KnownZero |= RHSKnownZero & BKnownOne;
655 KnownOne |= RHSKnownOne & BKnownOne;
656 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000657 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
658 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000659 Pred == ICmpInst::ICMP_EQ &&
660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000662 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000663 // For those bits in RHS that are known, we can propagate them to known
664 // bits in V shifted to the right by C.
665 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
666 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
667 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
669 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000670 Pred == ICmpInst::ICMP_EQ &&
671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000672 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000673 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 // For those bits in RHS that are known, we can propagate them inverted
675 // to known bits in V shifted to the right by C.
676 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
677 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
678 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000679 } else if (match(Arg,
680 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000681 m_AShr(m_V, m_ConstantInt(C))),
682 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000683 Pred == ICmpInst::ICMP_EQ &&
684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000685 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000686 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000687 // For those bits in RHS that are known, we can propagate them to known
688 // bits in V shifted to the right by C.
689 KnownZero |= RHSKnownZero << C->getZExtValue();
690 KnownOne |= RHSKnownOne << C->getZExtValue();
691 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000692 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000693 m_LShr(m_V, m_ConstantInt(C)),
694 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000695 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000696 Pred == ICmpInst::ICMP_EQ &&
697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000700 // For those bits in RHS that are known, we can propagate them inverted
701 // to known bits in V shifted to the right by C.
702 KnownZero |= RHSKnownOne << C->getZExtValue();
703 KnownOne |= RHSKnownZero << C->getZExtValue();
704 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000705 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000706 Pred == ICmpInst::ICMP_SGE &&
707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000708 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000709 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000710
711 if (RHSKnownZero.isNegative()) {
712 // We know that the sign bit is zero.
713 KnownZero |= APInt::getSignBit(BitWidth);
714 }
715 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000717 Pred == ICmpInst::ICMP_SGT &&
718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000721
722 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
723 // We know that the sign bit is zero.
724 KnownZero |= APInt::getSignBit(BitWidth);
725 }
726 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000728 Pred == ICmpInst::ICMP_SLE &&
729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000732
733 if (RHSKnownOne.isNegative()) {
734 // We know that the sign bit is one.
735 KnownOne |= APInt::getSignBit(BitWidth);
736 }
737 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000739 Pred == ICmpInst::ICMP_SLT &&
740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000743
744 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
745 // We know that the sign bit is one.
746 KnownOne |= APInt::getSignBit(BitWidth);
747 }
748 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000750 Pred == ICmpInst::ICMP_ULE &&
751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000754
755 // Whatever high bits in c are zero are known to be zero.
756 KnownZero |=
757 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
758 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000759 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000760 Pred == ICmpInst::ICMP_ULT &&
761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000762 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000763 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000764
765 // Whatever high bits in c are zero are known to be zero (if c is a power
766 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000767 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 KnownZero |=
769 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
770 else
771 KnownZero |=
772 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000773 }
774 }
775}
776
Hal Finkelf2199b22015-10-23 20:37:08 +0000777// Compute known bits from a shift operator, including those with a
778// non-constant shift amount. KnownZero and KnownOne are the outputs of this
779// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
780// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
781// functors that, given the known-zero or known-one bits respectively, and a
782// shift amount, compute the implied known-zero or known-one bits of the shift
783// operator's result respectively for that shift amount. The results from calling
784// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000785static void computeKnownBitsFromShiftOperator(
786 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
787 APInt &KnownOne2, unsigned Depth, const Query &Q,
788 function_ref<APInt(const APInt &, unsigned)> KZF,
789 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000790 unsigned BitWidth = KnownZero.getBitWidth();
791
792 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
793 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
794
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000795 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000796 KnownZero = KZF(KnownZero, ShiftAmt);
797 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000798 // If there is conflict between KnownZero and KnownOne, this must be an
799 // overflowing left shift, so the shift result is undefined. Clear KnownZero
800 // and KnownOne bits so that other code could propagate this undef.
801 if ((KnownZero & KnownOne) != 0) {
802 KnownZero.clearAllBits();
803 KnownOne.clearAllBits();
804 }
805
Hal Finkelf2199b22015-10-23 20:37:08 +0000806 return;
807 }
808
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000809 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000810
811 // Note: We cannot use KnownZero.getLimitedValue() here, because if
812 // BitWidth > 64 and any upper bits are known, we'll end up returning the
813 // limit value (which implies all bits are known).
814 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
815 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
816
817 // It would be more-clearly correct to use the two temporaries for this
818 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000819 KnownZero.clearAllBits();
820 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000821
James Molloy493e57d2015-10-26 14:10:46 +0000822 // If we know the shifter operand is nonzero, we can sometimes infer more
823 // known bits. However this is expensive to compute, so be lazy about it and
824 // only compute it when absolutely necessary.
825 Optional<bool> ShifterOperandIsNonZero;
826
Hal Finkelf2199b22015-10-23 20:37:08 +0000827 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000828 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
829 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000830 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000831 if (!*ShifterOperandIsNonZero)
832 return;
833 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000834
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000835 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000836
837 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
838 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
839 // Combine the shifted known input bits only for those shift amounts
840 // compatible with its known constraints.
841 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
842 continue;
843 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
844 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000845 // If we know the shifter is nonzero, we may be able to infer more known
846 // bits. This check is sunk down as far as possible to avoid the expensive
847 // call to isKnownNonZero if the cheaper checks above fail.
848 if (ShiftAmt == 0) {
849 if (!ShifterOperandIsNonZero.hasValue())
850 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000851 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000852 if (*ShifterOperandIsNonZero)
853 continue;
854 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000855
856 KnownZero &= KZF(KnownZero2, ShiftAmt);
857 KnownOne &= KOF(KnownOne2, ShiftAmt);
858 }
859
860 // If there are no compatible shift amounts, then we've proven that the shift
861 // amount must be >= the BitWidth, and the result is undefined. We could
862 // return anything we'd like, but we need to make sure the sets of known bits
863 // stay disjoint (it should be better for some other code to actually
864 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000865 if ((KnownZero & KnownOne) != 0) {
866 KnownZero.clearAllBits();
867 KnownOne.clearAllBits();
868 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000869}
870
Pete Cooper35b00d52016-08-13 01:05:32 +0000871static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000872 APInt &KnownOne, unsigned Depth,
873 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000874 unsigned BitWidth = KnownZero.getBitWidth();
875
Chris Lattner965c7692008-06-02 01:18:21 +0000876 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000877 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000878 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000879 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000880 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000881 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000882 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000883 case Instruction::And: {
884 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000885 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
886 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000887
Chris Lattner965c7692008-06-02 01:18:21 +0000888 // Output known-1 bits are only known if set in both the LHS & RHS.
889 KnownOne &= KnownOne2;
890 // Output known-0 are known to be clear if zero in either the LHS | RHS.
891 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000892
893 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
894 // here we handle the more general case of adding any odd number by
895 // matching the form add(x, add(x, y)) where y is odd.
896 // TODO: This could be generalized to clearing any bit set in y where the
897 // following bit is known to be unset in y.
898 Value *Y = nullptr;
899 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
900 m_Value(Y))) ||
901 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
902 m_Value(Y)))) {
903 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000904 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000905 if (KnownOne3.countTrailingOnes() > 0)
906 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
907 }
Jay Foad5a29c362014-05-15 12:12:55 +0000908 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000909 }
910 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000911 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
912 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000913
Chris Lattner965c7692008-06-02 01:18:21 +0000914 // Output known-0 bits are only known if clear in both the LHS & RHS.
915 KnownZero &= KnownZero2;
916 // Output known-1 are known to be set if set in either the LHS | RHS.
917 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000918 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000919 }
920 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000921 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
922 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000923
Chris Lattner965c7692008-06-02 01:18:21 +0000924 // Output known-0 bits are known if clear or set in both the LHS & RHS.
925 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
926 // Output known-1 are known to be set if set in only one of the LHS, RHS.
927 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
928 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000929 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000930 }
931 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000932 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000933 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000934 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000935 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000936 }
937 case Instruction::UDiv: {
938 // For the purposes of computing leading zeros we can conservatively
939 // treat a udiv as a logical right shift by the power of 2 known to
940 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000941 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000942 unsigned LeadZ = KnownZero2.countLeadingOnes();
943
Jay Foad25a5e4c2010-12-01 08:53:58 +0000944 KnownOne2.clearAllBits();
945 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000946 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000947 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
948 if (RHSUnknownLeadingOnes != BitWidth)
949 LeadZ = std::min(BitWidth,
950 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
951
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000952 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000953 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000954 }
David Majnemera19d0f22016-08-06 08:16:00 +0000955 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000956 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
957 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000958
Pete Cooper35b00d52016-08-13 01:05:32 +0000959 const Value *LHS;
960 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000961 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
962 if (SelectPatternResult::isMinOrMax(SPF)) {
963 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
964 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
965 } else {
966 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
967 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
968 }
969
970 unsigned MaxHighOnes = 0;
971 unsigned MaxHighZeros = 0;
972 if (SPF == SPF_SMAX) {
973 // If both sides are negative, the result is negative.
974 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
975 // We can derive a lower bound on the result by taking the max of the
976 // leading one bits.
977 MaxHighOnes =
978 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
979 // If either side is non-negative, the result is non-negative.
980 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
981 MaxHighZeros = 1;
982 } else if (SPF == SPF_SMIN) {
983 // If both sides are non-negative, the result is non-negative.
984 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
985 // We can derive an upper bound on the result by taking the max of the
986 // leading zero bits.
987 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
988 KnownZero2.countLeadingOnes());
989 // If either side is negative, the result is negative.
990 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
991 MaxHighOnes = 1;
992 } else if (SPF == SPF_UMAX) {
993 // We can derive a lower bound on the result by taking the max of the
994 // leading one bits.
995 MaxHighOnes =
996 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
997 } else if (SPF == SPF_UMIN) {
998 // We can derive an upper bound on the result by taking the max of the
999 // leading zero bits.
1000 MaxHighZeros =
1001 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1002 }
1003
Chris Lattner965c7692008-06-02 01:18:21 +00001004 // Only known if known in both the LHS and RHS.
1005 KnownOne &= KnownOne2;
1006 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001007 if (MaxHighOnes > 0)
1008 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1009 if (MaxHighZeros > 0)
1010 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001011 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001012 }
Chris Lattner965c7692008-06-02 01:18:21 +00001013 case Instruction::FPTrunc:
1014 case Instruction::FPExt:
1015 case Instruction::FPToUI:
1016 case Instruction::FPToSI:
1017 case Instruction::SIToFP:
1018 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001019 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001020 case Instruction::PtrToInt:
1021 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001022 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001023 // Fall through and handle them the same as zext/trunc.
1024 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001025 case Instruction::ZExt:
1026 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001027 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001028
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001029 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001030 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1031 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001032 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001033
1034 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001035 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1036 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001037 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001038 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1039 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001040 // Any top bits are known to be zero.
1041 if (BitWidth > SrcBitWidth)
1042 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001043 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001044 }
1045 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001046 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001047 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001048 // TODO: For now, not handling conversions like:
1049 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001050 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001051 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001052 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001053 }
1054 break;
1055 }
1056 case Instruction::SExt: {
1057 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001058 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001059
Jay Foad583abbc2010-12-07 08:25:19 +00001060 KnownZero = KnownZero.trunc(SrcBitWidth);
1061 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001062 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001063 KnownZero = KnownZero.zext(BitWidth);
1064 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001065
1066 // If the sign bit of the input is known set or clear, then we know the
1067 // top bits of the result.
1068 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1069 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1070 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1071 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001072 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001073 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001074 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001075 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001076 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1077 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1078 APInt KZResult =
1079 (KnownZero << ShiftAmt) |
1080 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1081 // If this shift has "nsw" keyword, then the result is either a poison
1082 // value or has the same sign bit as the first operand.
1083 if (NSW && KnownZero.isNegative())
1084 KZResult.setBit(BitWidth - 1);
1085 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001086 };
1087
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001088 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1089 APInt KOResult = KnownOne << ShiftAmt;
1090 if (NSW && KnownOne.isNegative())
1091 KOResult.setBit(BitWidth - 1);
1092 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001093 };
1094
1095 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001096 KnownZero2, KnownOne2, Depth, Q, KZF,
1097 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001098 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001099 }
1100 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001101 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001102 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1103 return APIntOps::lshr(KnownZero, ShiftAmt) |
1104 // High bits known zero.
1105 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1106 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001107
Hal Finkelf2199b22015-10-23 20:37:08 +00001108 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1109 return APIntOps::lshr(KnownOne, ShiftAmt);
1110 };
1111
1112 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001113 KnownZero2, KnownOne2, Depth, Q, KZF,
1114 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001115 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001116 }
1117 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001118 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001119 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1120 return APIntOps::ashr(KnownZero, ShiftAmt);
1121 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001122
Hal Finkelf2199b22015-10-23 20:37:08 +00001123 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1124 return APIntOps::ashr(KnownOne, ShiftAmt);
1125 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001126
Hal Finkelf2199b22015-10-23 20:37:08 +00001127 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001128 KnownZero2, KnownOne2, Depth, Q, KZF,
1129 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001130 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001131 }
Chris Lattner965c7692008-06-02 01:18:21 +00001132 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001133 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001134 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001135 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1136 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001137 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001138 }
Chris Lattner965c7692008-06-02 01:18:21 +00001139 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001140 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001141 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001142 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1143 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001144 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001145 }
1146 case Instruction::SRem:
1147 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001148 APInt RA = Rem->getValue().abs();
1149 if (RA.isPowerOf2()) {
1150 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001151 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001152 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001153
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001154 // The low bits of the first operand are unchanged by the srem.
1155 KnownZero = KnownZero2 & LowBits;
1156 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001157
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001158 // If the first operand is non-negative or has all low bits zero, then
1159 // the upper bits are all zero.
1160 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1161 KnownZero |= ~LowBits;
1162
1163 // If the first operand is negative and not all low bits are zero, then
1164 // the upper bits are all one.
1165 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1166 KnownOne |= ~LowBits;
1167
Craig Topper1bef2c82012-12-22 19:15:35 +00001168 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001169 }
1170 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001171
1172 // The sign bit is the LHS's sign bit, except when the result of the
1173 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001174 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001175 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001176 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1177 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001178 // If it's known zero, our sign bit is also zero.
1179 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001180 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001181 }
1182
Chris Lattner965c7692008-06-02 01:18:21 +00001183 break;
1184 case Instruction::URem: {
1185 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001186 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001187 if (RA.isPowerOf2()) {
1188 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001189 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001190 KnownZero |= ~LowBits;
1191 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001192 break;
1193 }
1194 }
1195
1196 // Since the result is less than or equal to either operand, any leading
1197 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001198 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1199 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001200
Chris Lattner4612ae12009-01-20 18:22:57 +00001201 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001202 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001203 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001204 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001205 break;
1206 }
1207
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001208 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001209 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001210 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001211 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001212 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001213
Chris Lattner965c7692008-06-02 01:18:21 +00001214 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001215 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001216 break;
1217 }
1218 case Instruction::GetElementPtr: {
1219 // Analyze all of the subscripts of this getelementptr instruction
1220 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001221 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001222 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1223 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001224 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1225
1226 gep_type_iterator GTI = gep_type_begin(I);
1227 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1228 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001229 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001230 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001231
1232 // Handle case when index is vector zeroinitializer
1233 Constant *CIndex = cast<Constant>(Index);
1234 if (CIndex->isZeroValue())
1235 continue;
1236
1237 if (CIndex->getType()->isVectorTy())
1238 Index = CIndex->getSplatValue();
1239
Chris Lattner965c7692008-06-02 01:18:21 +00001240 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001241 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001242 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001243 TrailZ = std::min<unsigned>(TrailZ,
1244 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001245 } else {
1246 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001247 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001248 if (!IndexedTy->isSized()) {
1249 TrailZ = 0;
1250 break;
1251 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001252 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001253 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001254 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001255 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001256 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001257 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001258 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001259 }
1260 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001261
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001262 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001263 break;
1264 }
1265 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001266 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001267 // Handle the case of a simple two-predecessor recurrence PHI.
1268 // There's a lot more that could theoretically be done here, but
1269 // this is sufficient to catch some interesting cases.
1270 if (P->getNumIncomingValues() == 2) {
1271 for (unsigned i = 0; i != 2; ++i) {
1272 Value *L = P->getIncomingValue(i);
1273 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001274 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001275 if (!LU)
1276 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001277 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001278 // Check for operations that have the property that if
1279 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001280 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001281 if (Opcode == Instruction::Add ||
1282 Opcode == Instruction::Sub ||
1283 Opcode == Instruction::And ||
1284 Opcode == Instruction::Or ||
1285 Opcode == Instruction::Mul) {
1286 Value *LL = LU->getOperand(0);
1287 Value *LR = LU->getOperand(1);
1288 // Find a recurrence.
1289 if (LL == I)
1290 L = LR;
1291 else if (LR == I)
1292 L = LL;
1293 else
1294 break;
1295 // Ok, we have a PHI of the form L op= R. Check for low
1296 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001297 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001298
1299 // We need to take the minimum number of known bits
1300 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001301 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001302
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001303 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001304 std::min(KnownZero2.countTrailingOnes(),
1305 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001306 break;
1307 }
1308 }
1309 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001310
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001311 // Unreachable blocks may have zero-operand PHI nodes.
1312 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001313 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001314
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001315 // Otherwise take the unions of the known bit sets of the operands,
1316 // taking conservative care to avoid excessive recursion.
1317 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001318 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001319 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001320 break;
1321
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001322 KnownZero = APInt::getAllOnesValue(BitWidth);
1323 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001324 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001325 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001326 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001327
1328 KnownZero2 = APInt(BitWidth, 0);
1329 KnownOne2 = APInt(BitWidth, 0);
1330 // Recurse, but cap the recursion to one level, because we don't
1331 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001332 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001333 KnownZero &= KnownZero2;
1334 KnownOne &= KnownOne2;
1335 // If all bits have been ruled out, there's no need to check
1336 // more operands.
1337 if (!KnownZero && !KnownOne)
1338 break;
1339 }
1340 }
Chris Lattner965c7692008-06-02 01:18:21 +00001341 break;
1342 }
1343 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001344 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001345 // If range metadata is attached to this call, set known bits from that,
1346 // and then intersect with known bits based on other properties of the
1347 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001348 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001349 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001350 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001351 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1352 KnownZero |= KnownZero2;
1353 KnownOne |= KnownOne2;
1354 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001355 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001356 switch (II->getIntrinsicID()) {
1357 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001358 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001359 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001360 KnownZero |= KnownZero2.byteSwap();
1361 KnownOne |= KnownOne2.byteSwap();
1362 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001363 case Intrinsic::ctlz:
1364 case Intrinsic::cttz: {
1365 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001366 // If this call is undefined for 0, the result will be less than 2^n.
1367 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1368 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001369 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001370 break;
1371 }
1372 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001373 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001374 // We can bound the space the count needs. Also, bits known to be zero
1375 // can't contribute to the population.
1376 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1377 unsigned LeadingZeros =
1378 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001379 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001380 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1381 KnownOne &= ~KnownZero;
1382 // TODO: we could bound KnownOne using the lower bound on the number
1383 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001384 break;
1385 }
Chad Rosierb3628842011-05-26 23:13:19 +00001386 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001387 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001388 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001389 }
1390 }
1391 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001392 case Instruction::ExtractValue:
1393 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001394 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001395 if (EVI->getNumIndices() != 1) break;
1396 if (EVI->getIndices()[0] == 0) {
1397 switch (II->getIntrinsicID()) {
1398 default: break;
1399 case Intrinsic::uadd_with_overflow:
1400 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001401 computeKnownBitsAddSub(true, II->getArgOperand(0),
1402 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001403 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001404 break;
1405 case Intrinsic::usub_with_overflow:
1406 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001407 computeKnownBitsAddSub(false, II->getArgOperand(0),
1408 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001409 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001410 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001411 case Intrinsic::umul_with_overflow:
1412 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001413 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001414 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1415 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001416 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001417 }
1418 }
1419 }
Chris Lattner965c7692008-06-02 01:18:21 +00001420 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001421}
1422
1423/// Determine which bits of V are known to be either zero or one and return
1424/// them in the KnownZero/KnownOne bit sets.
1425///
1426/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1427/// we cannot optimize based on the assumption that it is zero without changing
1428/// it to be an explicit zero. If we don't change it to zero, other code could
1429/// optimized based on the contradictory assumption that it is non-zero.
1430/// Because instcombine aggressively folds operations with undef args anyway,
1431/// this won't lose us code quality.
1432///
1433/// This function is defined on values with integer type, values with pointer
1434/// type, and vectors of integers. In the case
1435/// where V is a vector, known zero, and known one values are the
1436/// same width as the vector element, and the bit is set only if it is true
1437/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001438void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001439 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001440 assert(V && "No Value?");
1441 assert(Depth <= MaxDepth && "Limit Search Depth");
1442 unsigned BitWidth = KnownZero.getBitWidth();
1443
1444 assert((V->getType()->isIntOrIntVectorTy() ||
1445 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001446 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001447 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001448 (!V->getType()->isIntOrIntVectorTy() ||
1449 V->getType()->getScalarSizeInBits() == BitWidth) &&
1450 KnownZero.getBitWidth() == BitWidth &&
1451 KnownOne.getBitWidth() == BitWidth &&
1452 "V, KnownOne and KnownZero should have same BitWidth");
1453
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001454 const APInt *C;
1455 if (match(V, m_APInt(C))) {
1456 // We know all of the bits for a scalar constant or a splat vector constant!
1457 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001458 KnownZero = ~KnownOne;
1459 return;
1460 }
1461 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001462 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001463 KnownOne.clearAllBits();
1464 KnownZero = APInt::getAllOnesValue(BitWidth);
1465 return;
1466 }
1467 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001468 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001469 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001470 // We know that CDS must be a vector of integers. Take the intersection of
1471 // each element.
1472 KnownZero.setAllBits(); KnownOne.setAllBits();
1473 APInt Elt(KnownZero.getBitWidth(), 0);
1474 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1475 Elt = CDS->getElementAsInteger(i);
1476 KnownZero &= ~Elt;
1477 KnownOne &= Elt;
1478 }
1479 return;
1480 }
1481
Pete Cooper35b00d52016-08-13 01:05:32 +00001482 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001483 // We know that CV must be a vector of integers. Take the intersection of
1484 // each element.
1485 KnownZero.setAllBits(); KnownOne.setAllBits();
1486 APInt Elt(KnownZero.getBitWidth(), 0);
1487 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1488 Constant *Element = CV->getAggregateElement(i);
1489 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1490 if (!ElementCI) {
1491 KnownZero.clearAllBits();
1492 KnownOne.clearAllBits();
1493 return;
1494 }
1495 Elt = ElementCI->getValue();
1496 KnownZero &= ~Elt;
1497 KnownOne &= Elt;
1498 }
1499 return;
1500 }
1501
Jingyue Wu12b0c282015-06-15 05:46:29 +00001502 // Start out not knowing anything.
1503 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1504
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001505 // We can't imply anything about undefs.
1506 if (isa<UndefValue>(V))
1507 return;
1508
1509 // There's no point in looking through other users of ConstantData for
1510 // assumptions. Confirm that we've handled them all.
1511 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1512
Jingyue Wu12b0c282015-06-15 05:46:29 +00001513 // Limit search depth.
1514 // All recursive calls that increase depth must come after this.
1515 if (Depth == MaxDepth)
1516 return;
1517
1518 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1519 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001520 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001521 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001522 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001523 return;
1524 }
1525
Pete Cooper35b00d52016-08-13 01:05:32 +00001526 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001527 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001528
Artur Pilipenko029d8532015-09-30 11:55:45 +00001529 // Aligned pointers have trailing zeros - refine KnownZero set
1530 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001531 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001532 if (Align)
1533 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1534 }
1535
Philip Reames146307e2016-03-03 19:44:06 +00001536 // computeKnownBitsFromAssume strictly refines KnownZero and
1537 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001538
1539 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001540 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001541
Jay Foad5a29c362014-05-15 12:12:55 +00001542 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001543}
1544
Sanjay Patelaee84212014-11-04 16:27:42 +00001545/// Determine whether the sign bit is known to be zero or one.
1546/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001547void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001548 unsigned Depth, const Query &Q) {
1549 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001550 if (!BitWidth) {
1551 KnownZero = false;
1552 KnownOne = false;
1553 return;
1554 }
1555 APInt ZeroBits(BitWidth, 0);
1556 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001557 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001558 KnownOne = OneBits[BitWidth - 1];
1559 KnownZero = ZeroBits[BitWidth - 1];
1560}
1561
Sanjay Patelaee84212014-11-04 16:27:42 +00001562/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001563/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001564/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001565/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001566bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001567 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001568 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001569 if (C->isNullValue())
1570 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001571
1572 const APInt *ConstIntOrConstSplatInt;
1573 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1574 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001575 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001576
1577 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1578 // it is shifted off the end then the result is undefined.
1579 if (match(V, m_Shl(m_One(), m_Value())))
1580 return true;
1581
1582 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1583 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001584 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001585 return true;
1586
1587 // The remaining tests are all recursive, so bail out if we hit the limit.
1588 if (Depth++ == MaxDepth)
1589 return false;
1590
Craig Topper9f008862014-04-15 04:59:12 +00001591 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001592 // A shift left or a logical shift right of a power of two is a power of two
1593 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001594 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001595 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001596 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001597
Pete Cooper35b00d52016-08-13 01:05:32 +00001598 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001599 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001600
Pete Cooper35b00d52016-08-13 01:05:32 +00001601 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001602 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1603 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001604
Duncan Sandsba286d72011-10-26 20:55:21 +00001605 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1606 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001607 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1608 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001609 return true;
1610 // X & (-X) is always a power of two or zero.
1611 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1612 return true;
1613 return false;
1614 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001615
David Majnemerb7d54092013-07-30 21:01:36 +00001616 // Adding a power-of-two or zero to the same power-of-two or zero yields
1617 // either the original power-of-two, a larger power-of-two or zero.
1618 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001619 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001620 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1621 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1622 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001623 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001624 return true;
1625 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1626 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001627 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001628 return true;
1629
1630 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1631 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001632 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001633
1634 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001635 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001636 // If i8 V is a power of two or zero:
1637 // ZeroBits: 1 1 1 0 1 1 1 1
1638 // ~ZeroBits: 0 0 0 1 0 0 0 0
1639 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1640 // If OrZero isn't set, we cannot give back a zero result.
1641 // Make sure either the LHS or RHS has a bit set.
1642 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1643 return true;
1644 }
1645 }
David Majnemerbeab5672013-05-18 19:30:37 +00001646
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001647 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001648 // is a power of two only if the first operand is a power of two and not
1649 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001650 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1651 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001652 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001653 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001654 }
1655
Duncan Sandsd3951082011-01-25 09:38:29 +00001656 return false;
1657}
1658
Chandler Carruth80d3e562012-12-07 02:08:58 +00001659/// \brief Test whether a GEP's result is known to be non-null.
1660///
1661/// Uses properties inherent in a GEP to try to determine whether it is known
1662/// to be non-null.
1663///
1664/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001665static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001666 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001667 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1668 return false;
1669
1670 // FIXME: Support vector-GEPs.
1671 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1672
1673 // If the base pointer is non-null, we cannot walk to a null address with an
1674 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001675 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001676 return true;
1677
Chandler Carruth80d3e562012-12-07 02:08:58 +00001678 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1679 // If so, then the GEP cannot produce a null pointer, as doing so would
1680 // inherently violate the inbounds contract within address space zero.
1681 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1682 GTI != GTE; ++GTI) {
1683 // Struct types are easy -- they must always be indexed by a constant.
1684 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1685 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1686 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001687 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001688 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1689 if (ElementOffset > 0)
1690 return true;
1691 continue;
1692 }
1693
1694 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001695 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001696 continue;
1697
1698 // Fast path the constant operand case both for efficiency and so we don't
1699 // increment Depth when just zipping down an all-constant GEP.
1700 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1701 if (!OpC->isZero())
1702 return true;
1703 continue;
1704 }
1705
1706 // We post-increment Depth here because while isKnownNonZero increments it
1707 // as well, when we pop back up that increment won't persist. We don't want
1708 // to recurse 10k times just because we have 10k GEP operands. We don't
1709 // bail completely out because we want to handle constant GEPs regardless
1710 // of depth.
1711 if (Depth++ >= MaxDepth)
1712 continue;
1713
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001714 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001715 return true;
1716 }
1717
1718 return false;
1719}
1720
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001721/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1722/// ensure that the value it's attached to is never Value? 'RangeType' is
1723/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001724static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001725 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1726 assert(NumRanges >= 1);
1727 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001728 ConstantInt *Lower =
1729 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1730 ConstantInt *Upper =
1731 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001732 ConstantRange Range(Lower->getValue(), Upper->getValue());
1733 if (Range.contains(Value))
1734 return false;
1735 }
1736 return true;
1737}
1738
Sanjay Patelaee84212014-11-04 16:27:42 +00001739/// Return true if the given value is known to be non-zero when defined.
1740/// For vectors return true if every element is known to be non-zero when
1741/// defined. Supports values with integer or pointer type and vectors of
1742/// integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001743bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001744 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001745 if (C->isNullValue())
1746 return false;
1747 if (isa<ConstantInt>(C))
1748 // Must be non-zero due to null test above.
1749 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001750
1751 // For constant vectors, check that all elements are undefined or known
1752 // non-zero to determine that the whole vector is known non-zero.
1753 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1754 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1755 Constant *Elt = C->getAggregateElement(i);
1756 if (!Elt || Elt->isNullValue())
1757 return false;
1758 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1759 return false;
1760 }
1761 return true;
1762 }
1763
Duncan Sandsd3951082011-01-25 09:38:29 +00001764 return false;
1765 }
1766
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001767 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001768 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001769 // If the possible ranges don't contain zero, then the value is
1770 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001771 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001772 const APInt ZeroValue(Ty->getBitWidth(), 0);
1773 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1774 return true;
1775 }
1776 }
1777 }
1778
Duncan Sandsd3951082011-01-25 09:38:29 +00001779 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001780 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001781 return false;
1782
Chandler Carruth80d3e562012-12-07 02:08:58 +00001783 // Check for pointer simplifications.
1784 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001785 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001786 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001787 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001788 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001789 return true;
1790 }
1791
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001792 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001793
1794 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001795 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001796 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001797 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001798
1799 // ext X != 0 if X != 0.
1800 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001801 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001802
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001803 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001804 // if the lowest bit is shifted off the end.
1805 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001806 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001807 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001808 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001809 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001810
Duncan Sandsd3951082011-01-25 09:38:29 +00001811 APInt KnownZero(BitWidth, 0);
1812 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001813 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001814 if (KnownOne[0])
1815 return true;
1816 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001817 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001818 // defined if the sign bit is shifted off the end.
1819 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001820 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001821 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001822 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001823 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001824
Duncan Sandsd3951082011-01-25 09:38:29 +00001825 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001826 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001827 if (XKnownNegative)
1828 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001829
1830 // If the shifter operand is a constant, and all of the bits shifted
1831 // out are known to be zero, and X is known non-zero then at least one
1832 // non-zero bit must remain.
1833 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1834 APInt KnownZero(BitWidth, 0);
1835 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001836 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001837
James Molloyb6be1eb2015-09-24 16:06:32 +00001838 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1839 // Is there a known one in the portion not shifted out?
1840 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1841 return true;
1842 // Are all the bits to be shifted out known zero?
1843 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001844 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001845 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001846 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001847 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001848 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001849 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001850 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001851 // X + Y.
1852 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1853 bool XKnownNonNegative, XKnownNegative;
1854 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001855 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1856 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001857
1858 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001859 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001860 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001861 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001862 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001863
1864 // If X and Y are both negative (as signed values) then their sum is not
1865 // zero unless both X and Y equal INT_MIN.
1866 if (BitWidth && XKnownNegative && YKnownNegative) {
1867 APInt KnownZero(BitWidth, 0);
1868 APInt KnownOne(BitWidth, 0);
1869 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1870 // The sign bit of X is set. If some other bit is set then X is not equal
1871 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001872 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001873 if ((KnownOne & Mask) != 0)
1874 return true;
1875 // The sign bit of Y is set. If some other bit is set then Y is not equal
1876 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001877 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001878 if ((KnownOne & Mask) != 0)
1879 return true;
1880 }
1881
1882 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001883 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001884 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001885 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001886 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001887 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001888 return true;
1889 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001890 // X * Y.
1891 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001892 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001893 // If X and Y are non-zero then so is X * Y as long as the multiplication
1894 // does not overflow.
1895 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001896 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001897 return true;
1898 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001899 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001900 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001901 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1902 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001903 return true;
1904 }
James Molloy897048b2015-09-29 14:08:45 +00001905 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001906 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001907 // Try and detect a recurrence that monotonically increases from a
1908 // starting value, as these are common as induction variables.
1909 if (PN->getNumIncomingValues() == 2) {
1910 Value *Start = PN->getIncomingValue(0);
1911 Value *Induction = PN->getIncomingValue(1);
1912 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1913 std::swap(Start, Induction);
1914 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1915 if (!C->isZero() && !C->isNegative()) {
1916 ConstantInt *X;
1917 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1918 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1919 !X->isNegative())
1920 return true;
1921 }
1922 }
1923 }
Jun Bum Limca832662016-02-01 17:03:07 +00001924 // Check if all incoming values are non-zero constant.
1925 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1926 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1927 });
1928 if (AllNonZeroConstants)
1929 return true;
James Molloy897048b2015-09-29 14:08:45 +00001930 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001931
1932 if (!BitWidth) return false;
1933 APInt KnownZero(BitWidth, 0);
1934 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001935 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001936 return KnownOne != 0;
1937}
1938
James Molloy1d88d6f2015-10-22 13:18:42 +00001939/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001940static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1941 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001942 if (!BO || BO->getOpcode() != Instruction::Add)
1943 return false;
1944 Value *Op = nullptr;
1945 if (V2 == BO->getOperand(0))
1946 Op = BO->getOperand(1);
1947 else if (V2 == BO->getOperand(1))
1948 Op = BO->getOperand(0);
1949 else
1950 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001951 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001952}
1953
1954/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00001955static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001956 if (V1->getType()->isVectorTy() || V1 == V2)
1957 return false;
1958 if (V1->getType() != V2->getType())
1959 // We can't look through casts yet.
1960 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001961 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001962 return true;
1963
1964 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1965 // Are any known bits in V1 contradictory to known bits in V2? If V1
1966 // has a known zero where V2 has a known one, they must not be equal.
1967 auto BitWidth = Ty->getBitWidth();
1968 APInt KnownZero1(BitWidth, 0);
1969 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001970 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001971 APInt KnownZero2(BitWidth, 0);
1972 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001973 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001974
1975 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1976 if (OppositeBits.getBoolValue())
1977 return true;
1978 }
1979 return false;
1980}
1981
Sanjay Patelaee84212014-11-04 16:27:42 +00001982/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1983/// simplify operations downstream. Mask is known to be zero for bits that V
1984/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001985///
1986/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001987/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001988/// where V is a vector, the mask, known zero, and known one values are the
1989/// same width as the vector element, and the bit is set only if it is true
1990/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001991bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001992 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001993 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001994 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001995 return (KnownZero & Mask) == Mask;
1996}
1997
Sanjay Patela06d9892016-06-22 19:20:59 +00001998/// For vector constants, loop over the elements and find the constant with the
1999/// minimum number of sign bits. Return 0 if the value is not a vector constant
2000/// or if any element was not analyzed; otherwise, return the count for the
2001/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002002static unsigned computeNumSignBitsVectorConstant(const Value *V,
2003 unsigned TyBits) {
2004 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002005 if (!CV || !CV->getType()->isVectorTy())
2006 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002007
Sanjay Patela06d9892016-06-22 19:20:59 +00002008 unsigned MinSignBits = TyBits;
2009 unsigned NumElts = CV->getType()->getVectorNumElements();
2010 for (unsigned i = 0; i != NumElts; ++i) {
2011 // If we find a non-ConstantInt, bail out.
2012 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2013 if (!Elt)
2014 return 0;
2015
2016 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2017 APInt EltVal = Elt->getValue();
2018 if (EltVal.isNegative())
2019 EltVal = ~EltVal;
2020 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2021 }
2022
2023 return MinSignBits;
2024}
Chris Lattner965c7692008-06-02 01:18:21 +00002025
Sanjay Patelaee84212014-11-04 16:27:42 +00002026/// Return the number of times the sign bit of the register is replicated into
2027/// the other bits. We know that at least 1 bit is always equal to the sign bit
2028/// (itself), but other cases can give us information. For example, immediately
2029/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002030/// other, so we return 3. For vectors, return the number of sign bits for the
2031/// vector element with the mininum number of known sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002032unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002033 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002034 unsigned Tmp, Tmp2;
2035 unsigned FirstAnswer = 1;
2036
Jay Foada0653a32014-05-14 21:14:37 +00002037 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002038 // below.
2039
Chris Lattner965c7692008-06-02 01:18:21 +00002040 if (Depth == 6)
2041 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002042
Pete Cooper35b00d52016-08-13 01:05:32 +00002043 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002044 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002045 default: break;
2046 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002047 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002048 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002049
Nadav Rotemc99a3872015-03-06 00:23:58 +00002050 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002051 const APInt *Denominator;
2052 // sdiv X, C -> adds log(C) sign bits.
2053 if (match(U->getOperand(1), m_APInt(Denominator))) {
2054
2055 // Ignore non-positive denominator.
2056 if (!Denominator->isStrictlyPositive())
2057 break;
2058
2059 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002060 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002061
2062 // Add floor(log(C)) bits to the numerator bits.
2063 return std::min(TyBits, NumBits + Denominator->logBase2());
2064 }
2065 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002066 }
2067
2068 case Instruction::SRem: {
2069 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002070 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2071 // positive constant. This let us put a lower bound on the number of sign
2072 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002073 if (match(U->getOperand(1), m_APInt(Denominator))) {
2074
2075 // Ignore non-positive denominator.
2076 if (!Denominator->isStrictlyPositive())
2077 break;
2078
2079 // Calculate the incoming numerator bits. SRem by a positive constant
2080 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002081 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002082 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002083
2084 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002085 // denominator. Given that the denominator is positive, there are two
2086 // cases:
2087 //
2088 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2089 // (1 << ceilLogBase2(C)).
2090 //
2091 // 2. the numerator is negative. Then the result range is (-C,0] and
2092 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2093 //
2094 // Thus a lower bound on the number of sign bits is `TyBits -
2095 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002096
Sanjoy Dase561fee2015-03-25 22:33:53 +00002097 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002098 return std::max(NumrBits, ResBits);
2099 }
2100 break;
2101 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002102
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002103 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002104 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002105 // ashr X, C -> adds C sign bits. Vectors too.
2106 const APInt *ShAmt;
2107 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2108 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002109 if (Tmp > TyBits) Tmp = TyBits;
2110 }
2111 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002112 }
2113 case Instruction::Shl: {
2114 const APInt *ShAmt;
2115 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002116 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002117 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002118 Tmp2 = ShAmt->getZExtValue();
2119 if (Tmp2 >= TyBits || // Bad shift.
2120 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2121 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002122 }
2123 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002124 }
Chris Lattner965c7692008-06-02 01:18:21 +00002125 case Instruction::And:
2126 case Instruction::Or:
2127 case Instruction::Xor: // NOT is handled here.
2128 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002129 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002130 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002131 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002132 FirstAnswer = std::min(Tmp, Tmp2);
2133 // We computed what we know about the sign bits as our first
2134 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002135 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002136 }
2137 break;
2138
2139 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002140 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002141 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002142 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002143 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002144
Chris Lattner965c7692008-06-02 01:18:21 +00002145 case Instruction::Add:
2146 // Add can have at most one carry bit. Thus we know that the output
2147 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002148 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002149 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002150
Chris Lattner965c7692008-06-02 01:18:21 +00002151 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002152 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002153 if (CRHS->isAllOnesValue()) {
2154 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002155 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002156
Chris Lattner965c7692008-06-02 01:18:21 +00002157 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2158 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002159 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002160 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002161
Chris Lattner965c7692008-06-02 01:18:21 +00002162 // If we are subtracting one from a positive number, there is no carry
2163 // out of the result.
2164 if (KnownZero.isNegative())
2165 return Tmp;
2166 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002167
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002168 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002169 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002170 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002171
Chris Lattner965c7692008-06-02 01:18:21 +00002172 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002173 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002174 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002175
Chris Lattner965c7692008-06-02 01:18:21 +00002176 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002177 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002178 if (CLHS->isNullValue()) {
2179 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002180 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002181 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2182 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002183 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002184 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002185
Chris Lattner965c7692008-06-02 01:18:21 +00002186 // If the input is known to be positive (the sign bit is known clear),
2187 // the output of the NEG has the same number of sign bits as the input.
2188 if (KnownZero.isNegative())
2189 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002190
Chris Lattner965c7692008-06-02 01:18:21 +00002191 // Otherwise, we treat this like a SUB.
2192 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002193
Chris Lattner965c7692008-06-02 01:18:21 +00002194 // Sub can have at most one carry bit. Thus we know that the output
2195 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002196 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002197 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002198 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002199
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002200 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002201 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002202 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002203 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002204 if (NumIncomingValues > 4) break;
2205 // Unreachable blocks may have zero-operand PHI nodes.
2206 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002207
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002208 // Take the minimum of all incoming values. This can't infinitely loop
2209 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002210 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002211 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002212 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002213 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002214 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002215 }
2216 return Tmp;
2217 }
2218
Chris Lattner965c7692008-06-02 01:18:21 +00002219 case Instruction::Trunc:
2220 // FIXME: it's tricky to do anything useful for this, but it is an important
2221 // case for targets like X86.
2222 break;
2223 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002224
Chris Lattner965c7692008-06-02 01:18:21 +00002225 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2226 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002227
2228 // If we can examine all elements of a vector constant successfully, we're
2229 // done (we can't do any better than that). If not, keep trying.
2230 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2231 return VecSignBits;
2232
Chris Lattner965c7692008-06-02 01:18:21 +00002233 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002234 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002235
Sanjay Patele0536212016-06-23 17:41:59 +00002236 // If we know that the sign bit is either zero or one, determine the number of
2237 // identical bits in the top of the input value.
2238 if (KnownZero.isNegative())
2239 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002240
Sanjay Patele0536212016-06-23 17:41:59 +00002241 if (KnownOne.isNegative())
2242 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2243
2244 // computeKnownBits gave us no extra information about the top bits.
2245 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002246}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002247
Sanjay Patelaee84212014-11-04 16:27:42 +00002248/// This function computes the integer multiple of Base that equals V.
2249/// If successful, it returns true and returns the multiple in
2250/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002251/// through SExt instructions only if LookThroughSExt is true.
2252bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002253 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002254 const unsigned MaxDepth = 6;
2255
Dan Gohman6a976bb2009-11-18 00:58:27 +00002256 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002257 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002258 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002259
Chris Lattner229907c2011-07-18 04:54:35 +00002260 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002261
Dan Gohman6a976bb2009-11-18 00:58:27 +00002262 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002263
2264 if (Base == 0)
2265 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002266
Victor Hernandez47444882009-11-10 08:28:35 +00002267 if (Base == 1) {
2268 Multiple = V;
2269 return true;
2270 }
2271
2272 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2273 Constant *BaseVal = ConstantInt::get(T, Base);
2274 if (CO && CO == BaseVal) {
2275 // Multiple is 1.
2276 Multiple = ConstantInt::get(T, 1);
2277 return true;
2278 }
2279
2280 if (CI && CI->getZExtValue() % Base == 0) {
2281 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002282 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002283 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002284
Victor Hernandez47444882009-11-10 08:28:35 +00002285 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002286
Victor Hernandez47444882009-11-10 08:28:35 +00002287 Operator *I = dyn_cast<Operator>(V);
2288 if (!I) return false;
2289
2290 switch (I->getOpcode()) {
2291 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002292 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002293 if (!LookThroughSExt) return false;
2294 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002295 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002296 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2297 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002298 case Instruction::Shl:
2299 case Instruction::Mul: {
2300 Value *Op0 = I->getOperand(0);
2301 Value *Op1 = I->getOperand(1);
2302
2303 if (I->getOpcode() == Instruction::Shl) {
2304 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2305 if (!Op1CI) return false;
2306 // Turn Op0 << Op1 into Op0 * 2^Op1
2307 APInt Op1Int = Op1CI->getValue();
2308 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002309 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002310 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002311 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002312 }
2313
Craig Topper9f008862014-04-15 04:59:12 +00002314 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002315 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2316 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2317 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002318 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002319 MulC->getType()->getPrimitiveSizeInBits())
2320 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002321 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002322 MulC->getType()->getPrimitiveSizeInBits())
2323 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002324
Chris Lattner72d283c2010-09-05 17:20:46 +00002325 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2326 Multiple = ConstantExpr::getMul(MulC, Op1C);
2327 return true;
2328 }
Victor Hernandez47444882009-11-10 08:28:35 +00002329
2330 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2331 if (Mul0CI->getValue() == 1) {
2332 // V == Base * Op1, so return Op1
2333 Multiple = Op1;
2334 return true;
2335 }
2336 }
2337
Craig Topper9f008862014-04-15 04:59:12 +00002338 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002339 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2340 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2341 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002342 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002343 MulC->getType()->getPrimitiveSizeInBits())
2344 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002345 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002346 MulC->getType()->getPrimitiveSizeInBits())
2347 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002348
Chris Lattner72d283c2010-09-05 17:20:46 +00002349 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2350 Multiple = ConstantExpr::getMul(MulC, Op0C);
2351 return true;
2352 }
Victor Hernandez47444882009-11-10 08:28:35 +00002353
2354 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2355 if (Mul1CI->getValue() == 1) {
2356 // V == Base * Op0, so return Op0
2357 Multiple = Op0;
2358 return true;
2359 }
2360 }
Victor Hernandez47444882009-11-10 08:28:35 +00002361 }
2362 }
2363
2364 // We could not determine if V is a multiple of Base.
2365 return false;
2366}
2367
David Majnemerb4b27232016-04-19 19:10:21 +00002368Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2369 const TargetLibraryInfo *TLI) {
2370 const Function *F = ICS.getCalledFunction();
2371 if (!F)
2372 return Intrinsic::not_intrinsic;
2373
2374 if (F->isIntrinsic())
2375 return F->getIntrinsicID();
2376
2377 if (!TLI)
2378 return Intrinsic::not_intrinsic;
2379
2380 LibFunc::Func Func;
2381 // We're going to make assumptions on the semantics of the functions, check
2382 // that the target knows that it's available in this environment and it does
2383 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002384 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2385 return Intrinsic::not_intrinsic;
2386
2387 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002388 return Intrinsic::not_intrinsic;
2389
2390 // Otherwise check if we have a call to a function that can be turned into a
2391 // vector intrinsic.
2392 switch (Func) {
2393 default:
2394 break;
2395 case LibFunc::sin:
2396 case LibFunc::sinf:
2397 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002398 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002399 case LibFunc::cos:
2400 case LibFunc::cosf:
2401 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002402 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002403 case LibFunc::exp:
2404 case LibFunc::expf:
2405 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002406 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002407 case LibFunc::exp2:
2408 case LibFunc::exp2f:
2409 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002410 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002411 case LibFunc::log:
2412 case LibFunc::logf:
2413 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002414 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002415 case LibFunc::log10:
2416 case LibFunc::log10f:
2417 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002418 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002419 case LibFunc::log2:
2420 case LibFunc::log2f:
2421 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002422 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002423 case LibFunc::fabs:
2424 case LibFunc::fabsf:
2425 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002426 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002427 case LibFunc::fmin:
2428 case LibFunc::fminf:
2429 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002430 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002431 case LibFunc::fmax:
2432 case LibFunc::fmaxf:
2433 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002434 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002435 case LibFunc::copysign:
2436 case LibFunc::copysignf:
2437 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002438 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002439 case LibFunc::floor:
2440 case LibFunc::floorf:
2441 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002442 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002443 case LibFunc::ceil:
2444 case LibFunc::ceilf:
2445 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002446 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002447 case LibFunc::trunc:
2448 case LibFunc::truncf:
2449 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002450 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002451 case LibFunc::rint:
2452 case LibFunc::rintf:
2453 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002454 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002455 case LibFunc::nearbyint:
2456 case LibFunc::nearbyintf:
2457 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002458 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002459 case LibFunc::round:
2460 case LibFunc::roundf:
2461 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002462 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002463 case LibFunc::pow:
2464 case LibFunc::powf:
2465 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002466 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002467 case LibFunc::sqrt:
2468 case LibFunc::sqrtf:
2469 case LibFunc::sqrtl:
2470 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002471 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002472 return Intrinsic::not_intrinsic;
2473 }
2474
2475 return Intrinsic::not_intrinsic;
2476}
2477
Sanjay Patelaee84212014-11-04 16:27:42 +00002478/// Return true if we can prove that the specified FP value is never equal to
2479/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002480///
2481/// NOTE: this function will need to be revisited when we support non-default
2482/// rounding modes!
2483///
David Majnemer3ee5f342016-04-13 06:55:52 +00002484bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2485 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002486 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2487 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002488
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002489 // FIXME: Magic number! At the least, this should be given a name because it's
2490 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2491 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002492 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002493 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002494
Dan Gohman80ca01c2009-07-17 20:47:02 +00002495 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002496 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002497
2498 // Check if the nsz fast-math flag is set
2499 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2500 if (FPO->hasNoSignedZeros())
2501 return true;
2502
Chris Lattnera12a6de2008-06-02 01:29:46 +00002503 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002504 if (I->getOpcode() == Instruction::FAdd)
2505 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2506 if (CFP->isNullValue())
2507 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002508
Chris Lattnera12a6de2008-06-02 01:29:46 +00002509 // sitofp and uitofp turn into +0.0 for zero.
2510 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2511 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002512
David Majnemer3ee5f342016-04-13 06:55:52 +00002513 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002514 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002515 switch (IID) {
2516 default:
2517 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002518 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002519 case Intrinsic::sqrt:
2520 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2521 // fabs(x) != -0.0
2522 case Intrinsic::fabs:
2523 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002524 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002525 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002526
Chris Lattnera12a6de2008-06-02 01:29:46 +00002527 return false;
2528}
2529
David Majnemer3ee5f342016-04-13 06:55:52 +00002530bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2531 const TargetLibraryInfo *TLI,
2532 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002533 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2534 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2535
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002536 // FIXME: Magic number! At the least, this should be given a name because it's
2537 // used similarly in CannotBeNegativeZero(). A better fix may be to
2538 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002539 if (Depth == 6)
2540 return false; // Limit search depth.
2541
2542 const Operator *I = dyn_cast<Operator>(V);
2543 if (!I) return false;
2544
2545 switch (I->getOpcode()) {
2546 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002547 // Unsigned integers are always nonnegative.
2548 case Instruction::UIToFP:
2549 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002550 case Instruction::FMul:
2551 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002552 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002553 return true;
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002554 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002555 case Instruction::FAdd:
2556 case Instruction::FDiv:
2557 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002558 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2559 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002560 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002561 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2562 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002563 case Instruction::FPExt:
2564 case Instruction::FPTrunc:
2565 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002566 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2567 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002568 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002569 switch (IID) {
2570 default:
2571 break;
2572 case Intrinsic::maxnum:
2573 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2574 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2575 case Intrinsic::minnum:
2576 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2577 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2578 case Intrinsic::exp:
2579 case Intrinsic::exp2:
2580 case Intrinsic::fabs:
2581 case Intrinsic::sqrt:
2582 return true;
2583 case Intrinsic::powi:
2584 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2585 // powi(x,n) is non-negative if n is even.
2586 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2587 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002588 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002589 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2590 case Intrinsic::fma:
2591 case Intrinsic::fmuladd:
2592 // x*x+y is non-negative if y is non-negative.
2593 return I->getOperand(0) == I->getOperand(1) &&
2594 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2595 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002596 break;
2597 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002598 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002599}
2600
Sanjay Patelaee84212014-11-04 16:27:42 +00002601/// If the specified value can be set by repeating the same byte in memory,
2602/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002603/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2604/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2605/// byte store (e.g. i16 0x1234), return null.
2606Value *llvm::isBytewiseValue(Value *V) {
2607 // All byte-wide stores are splatable, even of arbitrary variables.
2608 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002609
2610 // Handle 'null' ConstantArrayZero etc.
2611 if (Constant *C = dyn_cast<Constant>(V))
2612 if (C->isNullValue())
2613 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002614
Chris Lattner9cb10352010-12-26 20:15:01 +00002615 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002616 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002617 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2618 if (CFP->getType()->isFloatTy())
2619 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2620 if (CFP->getType()->isDoubleTy())
2621 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2622 // Don't handle long double formats, which have strange constraints.
2623 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002624
Benjamin Kramer17d90152015-02-07 19:29:02 +00002625 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002626 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002627 if (CI->getBitWidth() % 8 == 0) {
2628 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002629
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002630 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002631 return nullptr;
2632 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002633 }
2634 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002635
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002636 // A ConstantDataArray/Vector is splatable if all its members are equal and
2637 // also splatable.
2638 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2639 Value *Elt = CA->getElementAsConstant(0);
2640 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002641 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002642 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002643
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002644 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2645 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002646 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002647
Chris Lattner9cb10352010-12-26 20:15:01 +00002648 return Val;
2649 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002650
Chris Lattner9cb10352010-12-26 20:15:01 +00002651 // Conceptually, we could handle things like:
2652 // %a = zext i8 %X to i16
2653 // %b = shl i16 %a, 8
2654 // %c = or i16 %a, %b
2655 // but until there is an example that actually needs this, it doesn't seem
2656 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002657 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002658}
2659
2660
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002661// This is the recursive version of BuildSubAggregate. It takes a few different
2662// arguments. Idxs is the index within the nested struct From that we are
2663// looking at now (which is of type IndexedType). IdxSkip is the number of
2664// indices from Idxs that should be left out when inserting into the resulting
2665// struct. To is the result struct built so far, new insertvalue instructions
2666// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002667static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002668 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002669 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002670 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002671 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002672 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002673 // Save the original To argument so we can modify it
2674 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002675 // General case, the type indexed by Idxs is a struct
2676 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2677 // Process each struct element recursively
2678 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002679 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002680 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002681 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002682 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002683 if (!To) {
2684 // Couldn't find any inserted value for this index? Cleanup
2685 while (PrevTo != OrigTo) {
2686 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2687 PrevTo = Del->getAggregateOperand();
2688 Del->eraseFromParent();
2689 }
2690 // Stop processing elements
2691 break;
2692 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002693 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002694 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002695 if (To)
2696 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002697 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002698 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2699 // the struct's elements had a value that was inserted directly. In the latter
2700 // case, perhaps we can't determine each of the subelements individually, but
2701 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002702
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002703 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002704 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002705
2706 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002707 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002708
2709 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002710 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002711 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002712}
2713
2714// This helper takes a nested struct and extracts a part of it (which is again a
2715// struct) into a new value. For example, given the struct:
2716// { a, { b, { c, d }, e } }
2717// and the indices "1, 1" this returns
2718// { c, d }.
2719//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002720// It does this by inserting an insertvalue for each element in the resulting
2721// struct, as opposed to just inserting a single struct. This will only work if
2722// each of the elements of the substruct are known (ie, inserted into From by an
2723// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002724//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002725// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002726static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002727 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002728 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002729 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002730 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002731 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002732 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002733 unsigned IdxSkip = Idxs.size();
2734
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002735 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002736}
2737
Sanjay Patelaee84212014-11-04 16:27:42 +00002738/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002739/// the scalar value indexed is already around as a register, for example if it
2740/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002741///
2742/// If InsertBefore is not null, this function will duplicate (modified)
2743/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002744Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2745 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002746 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002747 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002748 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002749 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002750 // We have indices, so V should have an indexable type.
2751 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2752 "Not looking at a struct or array?");
2753 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2754 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002755
Chris Lattner67058832012-01-25 06:48:06 +00002756 if (Constant *C = dyn_cast<Constant>(V)) {
2757 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002758 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002759 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2760 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002761
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002762 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002763 // Loop the indices for the insertvalue instruction in parallel with the
2764 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002765 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002766 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2767 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002768 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002769 // We can't handle this without inserting insertvalues
2770 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002771 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002772
2773 // The requested index identifies a part of a nested aggregate. Handle
2774 // this specially. For example,
2775 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2776 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2777 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2778 // This can be changed into
2779 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2780 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2781 // which allows the unused 0,0 element from the nested struct to be
2782 // removed.
2783 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2784 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002785 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002786
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002787 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002788 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002789 // looking for, then.
2790 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002791 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002792 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002793 }
2794 // If we end up here, the indices of the insertvalue match with those
2795 // requested (though possibly only partially). Now we recursively look at
2796 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002797 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002798 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002799 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002800 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002801
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002802 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002803 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002804 // something else, we can extract from that something else directly instead.
2805 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002806
2807 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002808 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002809 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002810 SmallVector<unsigned, 5> Idxs;
2811 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002812 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002813 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002814
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002815 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002816 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002817
Craig Topper1bef2c82012-12-22 19:15:35 +00002818 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002819 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002820
Jay Foad57aa6362011-07-13 10:26:04 +00002821 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002822 }
2823 // Otherwise, we don't know (such as, extracting from a function return value
2824 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002825 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002826}
Evan Chengda3db112008-06-30 07:31:25 +00002827
Sanjay Patelaee84212014-11-04 16:27:42 +00002828/// Analyze the specified pointer to see if it can be expressed as a base
2829/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002830Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002831 const DataLayout &DL) {
2832 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002833 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002834
2835 // We walk up the defs but use a visited set to handle unreachable code. In
2836 // that case, we stop after accumulating the cycle once (not that it
2837 // matters).
2838 SmallPtrSet<Value *, 16> Visited;
2839 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002840 if (Ptr->getType()->isVectorTy())
2841 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002842
Nuno Lopes368c4d02012-12-31 20:48:35 +00002843 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002844 APInt GEPOffset(BitWidth, 0);
2845 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2846 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002847
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002848 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002849
Nuno Lopes368c4d02012-12-31 20:48:35 +00002850 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002851 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2852 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002853 Ptr = cast<Operator>(Ptr)->getOperand(0);
2854 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002855 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002856 break;
2857 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002858 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002859 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002860 }
2861 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002862 Offset = ByteOffset.getSExtValue();
2863 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002864}
2865
David L Kreitzer752c1442016-04-13 14:31:06 +00002866bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2867 // Make sure the GEP has exactly three arguments.
2868 if (GEP->getNumOperands() != 3)
2869 return false;
2870
2871 // Make sure the index-ee is a pointer to array of i8.
2872 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2873 if (!AT || !AT->getElementType()->isIntegerTy(8))
2874 return false;
2875
2876 // Check to make sure that the first operand of the GEP is an integer and
2877 // has value 0 so that we are sure we're indexing into the initializer.
2878 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2879 if (!FirstIdx || !FirstIdx->isZero())
2880 return false;
2881
2882 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002883}
Chris Lattnere28618d2010-11-30 22:25:26 +00002884
Sanjay Patelaee84212014-11-04 16:27:42 +00002885/// This function computes the length of a null-terminated C string pointed to
2886/// by V. If successful, it returns true and returns the string in Str.
2887/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002888bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2889 uint64_t Offset, bool TrimAtNul) {
2890 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002891
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002892 // Look through bitcast instructions and geps.
2893 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002894
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002895 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002896 // offset.
2897 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002898 // The GEP operator should be based on a pointer to string constant, and is
2899 // indexing into the string constant.
2900 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002901 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002902
Evan Chengda3db112008-06-30 07:31:25 +00002903 // If the second index isn't a ConstantInt, then this is a variable index
2904 // into the array. If this occurs, we can't say anything meaningful about
2905 // the string.
2906 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002907 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002908 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002909 else
2910 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002911 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2912 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002913 }
Nick Lewycky46209882011-10-20 00:34:35 +00002914
Evan Chengda3db112008-06-30 07:31:25 +00002915 // The GEP instruction, constant or instruction, must reference a global
2916 // variable that is a constant and is initialized. The referenced constant
2917 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002918 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002919 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002920 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002921
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002922 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002923 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002924 // This is a degenerate case. The initializer is constant zero so the
2925 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002926 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002927 return true;
2928 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002929
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002930 // This must be a ConstantDataArray.
2931 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002932 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002933 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002934
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002935 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002936 uint64_t NumElts = Array->getType()->getArrayNumElements();
2937
2938 // Start out with the entire array in the StringRef.
2939 Str = Array->getAsString();
2940
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002941 if (Offset > NumElts)
2942 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002943
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002944 // Skip over 'offset' bytes.
2945 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002946
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002947 if (TrimAtNul) {
2948 // Trim off the \0 and anything after it. If the array is not nul
2949 // terminated, we just return the whole end of string. The client may know
2950 // some other way that the string is length-bound.
2951 Str = Str.substr(0, Str.find('\0'));
2952 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002953 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002954}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002955
2956// These next two are very similar to the above, but also look through PHI
2957// nodes.
2958// TODO: See if we can integrate these two together.
2959
Sanjay Patelaee84212014-11-04 16:27:42 +00002960/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002961/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00002962static uint64_t GetStringLengthH(const Value *V,
2963 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002964 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002965 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002966
2967 // If this is a PHI node, there are two cases: either we have already seen it
2968 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00002969 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002970 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002971 return ~0ULL; // already in the set.
2972
2973 // If it was new, see if all the input strings are the same length.
2974 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002975 for (Value *IncValue : PN->incoming_values()) {
2976 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002977 if (Len == 0) return 0; // Unknown length -> unknown.
2978
2979 if (Len == ~0ULL) continue;
2980
2981 if (Len != LenSoFar && LenSoFar != ~0ULL)
2982 return 0; // Disagree -> unknown.
2983 LenSoFar = Len;
2984 }
2985
2986 // Success, all agree.
2987 return LenSoFar;
2988 }
2989
2990 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00002991 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002992 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2993 if (Len1 == 0) return 0;
2994 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2995 if (Len2 == 0) return 0;
2996 if (Len1 == ~0ULL) return Len2;
2997 if (Len2 == ~0ULL) return Len1;
2998 if (Len1 != Len2) return 0;
2999 return Len1;
3000 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003001
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003002 // Otherwise, see if we can read the string.
3003 StringRef StrData;
3004 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003005 return 0;
3006
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003007 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003008}
3009
Sanjay Patelaee84212014-11-04 16:27:42 +00003010/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003011/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003012uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003013 if (!V->getType()->isPointerTy()) return 0;
3014
Pete Cooper35b00d52016-08-13 01:05:32 +00003015 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003016 uint64_t Len = GetStringLengthH(V, PHIs);
3017 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3018 // an empty string as a length.
3019 return Len == ~0ULL ? 1 : Len;
3020}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003021
Adam Nemete2b885c2015-04-23 20:09:20 +00003022/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3023/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003024static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3025 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003026 // Find the loop-defined value.
3027 Loop *L = LI->getLoopFor(PN->getParent());
3028 if (PN->getNumIncomingValues() != 2)
3029 return true;
3030
3031 // Find the value from previous iteration.
3032 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3033 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3034 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3035 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3036 return true;
3037
3038 // If a new pointer is loaded in the loop, the pointer references a different
3039 // object in every iteration. E.g.:
3040 // for (i)
3041 // int *p = a[i];
3042 // ...
3043 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3044 if (!L->isLoopInvariant(Load->getPointerOperand()))
3045 return false;
3046 return true;
3047}
3048
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003049Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3050 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003051 if (!V->getType()->isPointerTy())
3052 return V;
3053 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3054 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3055 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003056 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3057 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003058 V = cast<Operator>(V)->getOperand(0);
3059 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003060 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003061 return V;
3062 V = GA->getAliasee();
3063 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003064 if (auto CS = CallSite(V))
3065 if (Value *RV = CS.getReturnedArgOperand()) {
3066 V = RV;
3067 continue;
3068 }
3069
Dan Gohman05b18f12010-12-15 20:49:55 +00003070 // See if InstructionSimplify knows any relevant tricks.
3071 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003072 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003073 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003074 V = Simplified;
3075 continue;
3076 }
3077
Dan Gohmana4fcd242010-12-15 20:02:24 +00003078 return V;
3079 }
3080 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3081 }
3082 return V;
3083}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003084
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003085void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003086 const DataLayout &DL, LoopInfo *LI,
3087 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003088 SmallPtrSet<Value *, 4> Visited;
3089 SmallVector<Value *, 4> Worklist;
3090 Worklist.push_back(V);
3091 do {
3092 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003093 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003094
David Blaikie70573dc2014-11-19 07:49:26 +00003095 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003096 continue;
3097
3098 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3099 Worklist.push_back(SI->getTrueValue());
3100 Worklist.push_back(SI->getFalseValue());
3101 continue;
3102 }
3103
3104 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003105 // If this PHI changes the underlying object in every iteration of the
3106 // loop, don't look through it. Consider:
3107 // int **A;
3108 // for (i) {
3109 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3110 // Curr = A[i];
3111 // *Prev, *Curr;
3112 //
3113 // Prev is tracking Curr one iteration behind so they refer to different
3114 // underlying objects.
3115 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3116 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003117 for (Value *IncValue : PN->incoming_values())
3118 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003119 continue;
3120 }
3121
3122 Objects.push_back(P);
3123 } while (!Worklist.empty());
3124}
3125
Sanjay Patelaee84212014-11-04 16:27:42 +00003126/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003127bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003128 for (const User *U : V->users()) {
3129 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003130 if (!II) return false;
3131
3132 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3133 II->getIntrinsicID() != Intrinsic::lifetime_end)
3134 return false;
3135 }
3136 return true;
3137}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003138
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003139bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3140 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003141 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003142 const Operator *Inst = dyn_cast<Operator>(V);
3143 if (!Inst)
3144 return false;
3145
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003146 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3147 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3148 if (C->canTrap())
3149 return false;
3150
3151 switch (Inst->getOpcode()) {
3152 default:
3153 return true;
3154 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003155 case Instruction::URem: {
3156 // x / y is undefined if y == 0.
3157 const APInt *V;
3158 if (match(Inst->getOperand(1), m_APInt(V)))
3159 return *V != 0;
3160 return false;
3161 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003162 case Instruction::SDiv:
3163 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003164 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003165 const APInt *Numerator, *Denominator;
3166 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3167 return false;
3168 // We cannot hoist this division if the denominator is 0.
3169 if (*Denominator == 0)
3170 return false;
3171 // It's safe to hoist if the denominator is not 0 or -1.
3172 if (*Denominator != -1)
3173 return true;
3174 // At this point we know that the denominator is -1. It is safe to hoist as
3175 // long we know that the numerator is not INT_MIN.
3176 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3177 return !Numerator->isMinSignedValue();
3178 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003179 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003180 }
3181 case Instruction::Load: {
3182 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003183 if (!LI->isUnordered() ||
3184 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003185 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003186 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003187 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003188 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003189 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003190 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3191 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003192 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003193 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003194 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3195 switch (II->getIntrinsicID()) {
3196 // These synthetic intrinsics have no side-effects and just mark
3197 // information about their operands.
3198 // FIXME: There are other no-op synthetic instructions that potentially
3199 // should be considered at least *safe* to speculate...
3200 case Intrinsic::dbg_declare:
3201 case Intrinsic::dbg_value:
3202 return true;
3203
3204 case Intrinsic::bswap:
3205 case Intrinsic::ctlz:
3206 case Intrinsic::ctpop:
3207 case Intrinsic::cttz:
3208 case Intrinsic::objectsize:
3209 case Intrinsic::sadd_with_overflow:
3210 case Intrinsic::smul_with_overflow:
3211 case Intrinsic::ssub_with_overflow:
3212 case Intrinsic::uadd_with_overflow:
3213 case Intrinsic::umul_with_overflow:
3214 case Intrinsic::usub_with_overflow:
3215 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003216 // These intrinsics are defined to have the same behavior as libm
3217 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003218 case Intrinsic::sqrt:
3219 case Intrinsic::fma:
3220 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003221 return true;
3222 // These intrinsics are defined to have the same behavior as libm
3223 // functions, and the corresponding libm functions never set errno.
3224 case Intrinsic::trunc:
3225 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003226 case Intrinsic::fabs:
3227 case Intrinsic::minnum:
3228 case Intrinsic::maxnum:
3229 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003230 // These intrinsics are defined to have the same behavior as libm
3231 // functions, which never overflow when operating on the IEEE754 types
3232 // that we support, and never set errno otherwise.
3233 case Intrinsic::ceil:
3234 case Intrinsic::floor:
3235 case Intrinsic::nearbyint:
3236 case Intrinsic::rint:
3237 case Intrinsic::round:
3238 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003239 // TODO: are convert_{from,to}_fp16 safe?
3240 // TODO: can we list target-specific intrinsics here?
3241 default: break;
3242 }
3243 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003244 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003245 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003246 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003247 case Instruction::VAArg:
3248 case Instruction::Alloca:
3249 case Instruction::Invoke:
3250 case Instruction::PHI:
3251 case Instruction::Store:
3252 case Instruction::Ret:
3253 case Instruction::Br:
3254 case Instruction::IndirectBr:
3255 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003256 case Instruction::Unreachable:
3257 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003258 case Instruction::AtomicRMW:
3259 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003260 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003261 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003262 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003263 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003264 case Instruction::CatchRet:
3265 case Instruction::CleanupPad:
3266 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003267 return false; // Misc instructions which have effects
3268 }
3269}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003270
Quentin Colombet6443cce2015-08-06 18:44:34 +00003271bool llvm::mayBeMemoryDependent(const Instruction &I) {
3272 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3273}
3274
Sanjay Patelaee84212014-11-04 16:27:42 +00003275/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003276bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003277 assert(V->getType()->isPointerTy() && "V must be pointer type");
3278
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003279 // Alloca never returns null, malloc might.
3280 if (isa<AllocaInst>(V)) return true;
3281
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003282 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003283 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003284 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003285
Pete Cooper6b716212015-08-27 03:16:29 +00003286 // A global variable in address space 0 is non null unless extern weak.
3287 // Other address spaces may have null as a valid address for a global,
3288 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003289 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003290 return !GV->hasExternalWeakLinkage() &&
3291 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003292
Sanjoy Das5056e192016-05-07 02:08:22 +00003293 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003294 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003295 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003296
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003297 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003298 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003299 return true;
3300
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003301 return false;
3302}
David Majnemer491331a2015-01-02 07:29:43 +00003303
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003304static bool isKnownNonNullFromDominatingCondition(const Value *V,
3305 const Instruction *CtxI,
3306 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003307 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003308 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Chen Li0d043b52015-09-14 18:10:43 +00003309
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003310 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003311 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003312 // Avoid massive lists
3313 if (NumUsesExplored >= DomConditionsMaxUses)
3314 break;
3315 NumUsesExplored++;
3316 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003317 CmpInst::Predicate Pred;
3318 if (!match(const_cast<User *>(U),
3319 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3320 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003321 continue;
3322
Sanjoy Das987aaa12016-05-07 02:08:24 +00003323 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003324 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3325 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003326
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003327 BasicBlock *NonNullSuccessor =
3328 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3329 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3330 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3331 return true;
3332 } else if (Pred == ICmpInst::ICMP_NE &&
3333 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3334 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003335 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003336 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003337 }
3338 }
3339
3340 return false;
3341}
3342
3343bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003344 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003345 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3346 return false;
3347
Sean Silva45835e72016-07-02 23:47:27 +00003348 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003349 return true;
3350
3351 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3352}
3353
Pete Cooper35b00d52016-08-13 01:05:32 +00003354OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3355 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003356 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003357 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003358 const Instruction *CxtI,
3359 const DominatorTree *DT) {
3360 // Multiplying n * m significant bits yields a result of n + m significant
3361 // bits. If the total number of significant bits does not exceed the
3362 // result bit width (minus 1), there is no overflow.
3363 // This means if we have enough leading zero bits in the operands
3364 // we can guarantee that the result does not overflow.
3365 // Ref: "Hacker's Delight" by Henry Warren
3366 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3367 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003368 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003369 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003370 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003371 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3372 DT);
3373 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3374 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003375 // Note that underestimating the number of zero bits gives a more
3376 // conservative answer.
3377 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3378 RHSKnownZero.countLeadingOnes();
3379 // First handle the easy case: if we have enough zero bits there's
3380 // definitely no overflow.
3381 if (ZeroBits >= BitWidth)
3382 return OverflowResult::NeverOverflows;
3383
3384 // Get the largest possible values for each operand.
3385 APInt LHSMax = ~LHSKnownZero;
3386 APInt RHSMax = ~RHSKnownZero;
3387
3388 // We know the multiply operation doesn't overflow if the maximum values for
3389 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003390 bool MaxOverflow;
3391 LHSMax.umul_ov(RHSMax, MaxOverflow);
3392 if (!MaxOverflow)
3393 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003394
David Majnemerc8a576b2015-01-02 07:29:47 +00003395 // We know it always overflows if multiplying the smallest possible values for
3396 // the operands also results in overflow.
3397 bool MinOverflow;
3398 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3399 if (MinOverflow)
3400 return OverflowResult::AlwaysOverflows;
3401
3402 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003403}
David Majnemer5310c1e2015-01-07 00:39:50 +00003404
Pete Cooper35b00d52016-08-13 01:05:32 +00003405OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3406 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003407 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003408 AssumptionCache *AC,
3409 const Instruction *CxtI,
3410 const DominatorTree *DT) {
3411 bool LHSKnownNonNegative, LHSKnownNegative;
3412 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3413 AC, CxtI, DT);
3414 if (LHSKnownNonNegative || LHSKnownNegative) {
3415 bool RHSKnownNonNegative, RHSKnownNegative;
3416 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3417 AC, CxtI, DT);
3418
3419 if (LHSKnownNegative && RHSKnownNegative) {
3420 // The sign bit is set in both cases: this MUST overflow.
3421 // Create a simple add instruction, and insert it into the struct.
3422 return OverflowResult::AlwaysOverflows;
3423 }
3424
3425 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3426 // The sign bit is clear in both cases: this CANNOT overflow.
3427 // Create a simple add instruction, and insert it into the struct.
3428 return OverflowResult::NeverOverflows;
3429 }
3430 }
3431
3432 return OverflowResult::MayOverflow;
3433}
James Molloy71b91c22015-05-11 14:42:20 +00003434
Pete Cooper35b00d52016-08-13 01:05:32 +00003435static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3436 const Value *RHS,
3437 const AddOperator *Add,
3438 const DataLayout &DL,
3439 AssumptionCache *AC,
3440 const Instruction *CxtI,
3441 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003442 if (Add && Add->hasNoSignedWrap()) {
3443 return OverflowResult::NeverOverflows;
3444 }
3445
3446 bool LHSKnownNonNegative, LHSKnownNegative;
3447 bool RHSKnownNonNegative, RHSKnownNegative;
3448 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3449 AC, CxtI, DT);
3450 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3451 AC, CxtI, DT);
3452
3453 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3454 (LHSKnownNegative && RHSKnownNonNegative)) {
3455 // The sign bits are opposite: this CANNOT overflow.
3456 return OverflowResult::NeverOverflows;
3457 }
3458
3459 // The remaining code needs Add to be available. Early returns if not so.
3460 if (!Add)
3461 return OverflowResult::MayOverflow;
3462
3463 // If the sign of Add is the same as at least one of the operands, this add
3464 // CANNOT overflow. This is particularly useful when the sum is
3465 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3466 // operands.
3467 bool LHSOrRHSKnownNonNegative =
3468 (LHSKnownNonNegative || RHSKnownNonNegative);
3469 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3470 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3471 bool AddKnownNonNegative, AddKnownNegative;
3472 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3473 /*Depth=*/0, AC, CxtI, DT);
3474 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3475 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3476 return OverflowResult::NeverOverflows;
3477 }
3478 }
3479
3480 return OverflowResult::MayOverflow;
3481}
3482
Pete Cooper35b00d52016-08-13 01:05:32 +00003483bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3484 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003485#ifndef NDEBUG
3486 auto IID = II->getIntrinsicID();
3487 assert((IID == Intrinsic::sadd_with_overflow ||
3488 IID == Intrinsic::uadd_with_overflow ||
3489 IID == Intrinsic::ssub_with_overflow ||
3490 IID == Intrinsic::usub_with_overflow ||
3491 IID == Intrinsic::smul_with_overflow ||
3492 IID == Intrinsic::umul_with_overflow) &&
3493 "Not an overflow intrinsic!");
3494#endif
3495
Pete Cooper35b00d52016-08-13 01:05:32 +00003496 SmallVector<const BranchInst *, 2> GuardingBranches;
3497 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003498
Pete Cooper35b00d52016-08-13 01:05:32 +00003499 for (const User *U : II->users()) {
3500 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003501 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3502
3503 if (EVI->getIndices()[0] == 0)
3504 Results.push_back(EVI);
3505 else {
3506 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3507
Pete Cooper35b00d52016-08-13 01:05:32 +00003508 for (const auto *U : EVI->users())
3509 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003510 assert(B->isConditional() && "How else is it using an i1?");
3511 GuardingBranches.push_back(B);
3512 }
3513 }
3514 } else {
3515 // We are using the aggregate directly in a way we don't want to analyze
3516 // here (storing it to a global, say).
3517 return false;
3518 }
3519 }
3520
Pete Cooper35b00d52016-08-13 01:05:32 +00003521 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003522 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3523 if (!NoWrapEdge.isSingleEdge())
3524 return false;
3525
3526 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003527 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003528 // If the extractvalue itself is not executed on overflow, the we don't
3529 // need to check each use separately, since domination is transitive.
3530 if (DT.dominates(NoWrapEdge, Result->getParent()))
3531 continue;
3532
3533 for (auto &RU : Result->uses())
3534 if (!DT.dominates(NoWrapEdge, RU))
3535 return false;
3536 }
3537
3538 return true;
3539 };
3540
3541 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3542}
3543
3544
Pete Cooper35b00d52016-08-13 01:05:32 +00003545OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003546 const DataLayout &DL,
3547 AssumptionCache *AC,
3548 const Instruction *CxtI,
3549 const DominatorTree *DT) {
3550 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3551 Add, DL, AC, CxtI, DT);
3552}
3553
Pete Cooper35b00d52016-08-13 01:05:32 +00003554OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3555 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003556 const DataLayout &DL,
3557 AssumptionCache *AC,
3558 const Instruction *CxtI,
3559 const DominatorTree *DT) {
3560 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3561}
3562
Jingyue Wu42f1d672015-07-28 18:22:40 +00003563bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003564 // A memory operation returns normally if it isn't volatile. A volatile
3565 // operation is allowed to trap.
3566 //
3567 // An atomic operation isn't guaranteed to return in a reasonable amount of
3568 // time because it's possible for another thread to interfere with it for an
3569 // arbitrary length of time, but programs aren't allowed to rely on that.
3570 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3571 return !LI->isVolatile();
3572 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3573 return !SI->isVolatile();
3574 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3575 return !CXI->isVolatile();
3576 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3577 return !RMWI->isVolatile();
3578 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3579 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003580
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003581 // If there is no successor, then execution can't transfer to it.
3582 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3583 return !CRI->unwindsToCaller();
3584 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3585 return !CatchSwitch->unwindsToCaller();
3586 if (isa<ResumeInst>(I))
3587 return false;
3588 if (isa<ReturnInst>(I))
3589 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003590
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003591 // Calls can throw, or contain an infinite loop, or kill the process.
3592 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3593 // Calls which don't write to arbitrary memory are safe.
3594 // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3595 // but it's consistent with other passes. See http://llvm.org/PR965 .
3596 // FIXME: This isn't aggressive enough; a call which only writes to a
3597 // global is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003598 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3599 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003600 }
3601
3602 // Other instructions return normally.
3603 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003604}
3605
3606bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3607 const Loop *L) {
3608 // The loop header is guaranteed to be executed for every iteration.
3609 //
3610 // FIXME: Relax this constraint to cover all basic blocks that are
3611 // guaranteed to be executed at every iteration.
3612 if (I->getParent() != L->getHeader()) return false;
3613
3614 for (const Instruction &LI : *L->getHeader()) {
3615 if (&LI == I) return true;
3616 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3617 }
3618 llvm_unreachable("Instruction not contained in its own parent basic block.");
3619}
3620
3621bool llvm::propagatesFullPoison(const Instruction *I) {
3622 switch (I->getOpcode()) {
3623 case Instruction::Add:
3624 case Instruction::Sub:
3625 case Instruction::Xor:
3626 case Instruction::Trunc:
3627 case Instruction::BitCast:
3628 case Instruction::AddrSpaceCast:
3629 // These operations all propagate poison unconditionally. Note that poison
3630 // is not any particular value, so xor or subtraction of poison with
3631 // itself still yields poison, not zero.
3632 return true;
3633
3634 case Instruction::AShr:
3635 case Instruction::SExt:
3636 // For these operations, one bit of the input is replicated across
3637 // multiple output bits. A replicated poison bit is still poison.
3638 return true;
3639
3640 case Instruction::Shl: {
3641 // Left shift *by* a poison value is poison. The number of
3642 // positions to shift is unsigned, so no negative values are
3643 // possible there. Left shift by zero places preserves poison. So
3644 // it only remains to consider left shift of poison by a positive
3645 // number of places.
3646 //
3647 // A left shift by a positive number of places leaves the lowest order bit
3648 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3649 // make the poison operand violate that flag, yielding a fresh full-poison
3650 // value.
3651 auto *OBO = cast<OverflowingBinaryOperator>(I);
3652 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3653 }
3654
3655 case Instruction::Mul: {
3656 // A multiplication by zero yields a non-poison zero result, so we need to
3657 // rule out zero as an operand. Conservatively, multiplication by a
3658 // non-zero constant is not multiplication by zero.
3659 //
3660 // Multiplication by a non-zero constant can leave some bits
3661 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3662 // order bit unpoisoned. So we need to consider that.
3663 //
3664 // Multiplication by 1 preserves poison. If the multiplication has a
3665 // no-wrap flag, then we can make the poison operand violate that flag
3666 // when multiplied by any integer other than 0 and 1.
3667 auto *OBO = cast<OverflowingBinaryOperator>(I);
3668 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3669 for (Value *V : OBO->operands()) {
3670 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3671 // A ConstantInt cannot yield poison, so we can assume that it is
3672 // the other operand that is poison.
3673 return !CI->isZero();
3674 }
3675 }
3676 }
3677 return false;
3678 }
3679
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003680 case Instruction::ICmp:
3681 // Comparing poison with any value yields poison. This is why, for
3682 // instance, x s< (x +nsw 1) can be folded to true.
3683 return true;
3684
Jingyue Wu42f1d672015-07-28 18:22:40 +00003685 case Instruction::GetElementPtr:
3686 // A GEP implicitly represents a sequence of additions, subtractions,
3687 // truncations, sign extensions and multiplications. The multiplications
3688 // are by the non-zero sizes of some set of types, so we do not have to be
3689 // concerned with multiplication by zero. If the GEP is in-bounds, then
3690 // these operations are implicitly no-signed-wrap so poison is propagated
3691 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3692 return cast<GEPOperator>(I)->isInBounds();
3693
3694 default:
3695 return false;
3696 }
3697}
3698
3699const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3700 switch (I->getOpcode()) {
3701 case Instruction::Store:
3702 return cast<StoreInst>(I)->getPointerOperand();
3703
3704 case Instruction::Load:
3705 return cast<LoadInst>(I)->getPointerOperand();
3706
3707 case Instruction::AtomicCmpXchg:
3708 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3709
3710 case Instruction::AtomicRMW:
3711 return cast<AtomicRMWInst>(I)->getPointerOperand();
3712
3713 case Instruction::UDiv:
3714 case Instruction::SDiv:
3715 case Instruction::URem:
3716 case Instruction::SRem:
3717 return I->getOperand(1);
3718
3719 default:
3720 return nullptr;
3721 }
3722}
3723
3724bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3725 // We currently only look for uses of poison values within the same basic
3726 // block, as that makes it easier to guarantee that the uses will be
3727 // executed given that PoisonI is executed.
3728 //
3729 // FIXME: Expand this to consider uses beyond the same basic block. To do
3730 // this, look out for the distinction between post-dominance and strong
3731 // post-dominance.
3732 const BasicBlock *BB = PoisonI->getParent();
3733
3734 // Set of instructions that we have proved will yield poison if PoisonI
3735 // does.
3736 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003737 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003738 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003739 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003740
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003741 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003742
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003743 unsigned Iter = 0;
3744 while (Iter++ < MaxDepth) {
3745 for (auto &I : make_range(Begin, End)) {
3746 if (&I != PoisonI) {
3747 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3748 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3749 return true;
3750 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3751 return false;
3752 }
3753
3754 // Mark poison that propagates from I through uses of I.
3755 if (YieldsPoison.count(&I)) {
3756 for (const User *User : I.users()) {
3757 const Instruction *UserI = cast<Instruction>(User);
3758 if (propagatesFullPoison(UserI))
3759 YieldsPoison.insert(User);
3760 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003761 }
3762 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003763
3764 if (auto *NextBB = BB->getSingleSuccessor()) {
3765 if (Visited.insert(NextBB).second) {
3766 BB = NextBB;
3767 Begin = BB->getFirstNonPHI()->getIterator();
3768 End = BB->end();
3769 continue;
3770 }
3771 }
3772
3773 break;
3774 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003775 return false;
3776}
3777
Pete Cooper35b00d52016-08-13 01:05:32 +00003778static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003779 if (FMF.noNaNs())
3780 return true;
3781
3782 if (auto *C = dyn_cast<ConstantFP>(V))
3783 return !C->isNaN();
3784 return false;
3785}
3786
Pete Cooper35b00d52016-08-13 01:05:32 +00003787static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003788 if (auto *C = dyn_cast<ConstantFP>(V))
3789 return !C->isZero();
3790 return false;
3791}
3792
3793static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3794 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003795 Value *CmpLHS, Value *CmpRHS,
3796 Value *TrueVal, Value *FalseVal,
3797 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003798 LHS = CmpLHS;
3799 RHS = CmpRHS;
3800
James Molloy134bec22015-08-11 09:12:57 +00003801 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3802 // return inconsistent results between implementations.
3803 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3804 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3805 // Therefore we behave conservatively and only proceed if at least one of the
3806 // operands is known to not be zero, or if we don't care about signed zeroes.
3807 switch (Pred) {
3808 default: break;
3809 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3810 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3811 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3812 !isKnownNonZero(CmpRHS))
3813 return {SPF_UNKNOWN, SPNB_NA, false};
3814 }
3815
3816 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3817 bool Ordered = false;
3818
3819 // When given one NaN and one non-NaN input:
3820 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3821 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3822 // ordered comparison fails), which could be NaN or non-NaN.
3823 // so here we discover exactly what NaN behavior is required/accepted.
3824 if (CmpInst::isFPPredicate(Pred)) {
3825 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3826 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3827
3828 if (LHSSafe && RHSSafe) {
3829 // Both operands are known non-NaN.
3830 NaNBehavior = SPNB_RETURNS_ANY;
3831 } else if (CmpInst::isOrdered(Pred)) {
3832 // An ordered comparison will return false when given a NaN, so it
3833 // returns the RHS.
3834 Ordered = true;
3835 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003836 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003837 NaNBehavior = SPNB_RETURNS_NAN;
3838 else if (RHSSafe)
3839 NaNBehavior = SPNB_RETURNS_OTHER;
3840 else
3841 // Completely unsafe.
3842 return {SPF_UNKNOWN, SPNB_NA, false};
3843 } else {
3844 Ordered = false;
3845 // An unordered comparison will return true when given a NaN, so it
3846 // returns the LHS.
3847 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003848 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003849 NaNBehavior = SPNB_RETURNS_OTHER;
3850 else if (RHSSafe)
3851 NaNBehavior = SPNB_RETURNS_NAN;
3852 else
3853 // Completely unsafe.
3854 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003855 }
3856 }
3857
James Molloy71b91c22015-05-11 14:42:20 +00003858 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003859 std::swap(CmpLHS, CmpRHS);
3860 Pred = CmpInst::getSwappedPredicate(Pred);
3861 if (NaNBehavior == SPNB_RETURNS_NAN)
3862 NaNBehavior = SPNB_RETURNS_OTHER;
3863 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3864 NaNBehavior = SPNB_RETURNS_NAN;
3865 Ordered = !Ordered;
3866 }
3867
3868 // ([if]cmp X, Y) ? X : Y
3869 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003870 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003871 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003872 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003873 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003874 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003875 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003876 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003877 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003878 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003879 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3880 case FCmpInst::FCMP_UGT:
3881 case FCmpInst::FCMP_UGE:
3882 case FCmpInst::FCMP_OGT:
3883 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3884 case FCmpInst::FCMP_ULT:
3885 case FCmpInst::FCMP_ULE:
3886 case FCmpInst::FCMP_OLT:
3887 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003888 }
3889 }
3890
3891 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3892 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3893 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3894
3895 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3896 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3897 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003898 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003899 }
3900
3901 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3902 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3903 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003904 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003905 }
3906 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003907
James Molloy71b91c22015-05-11 14:42:20 +00003908 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3909 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003910 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3911 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003912 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3913 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3914 LHS = TrueVal;
3915 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003916 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003917 }
3918 }
3919 }
3920
3921 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3922
James Molloy134bec22015-08-11 09:12:57 +00003923 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003924}
James Molloy270ef8c2015-05-15 16:04:50 +00003925
James Molloy569cea62015-09-02 17:25:25 +00003926static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3927 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003928 CastInst *CI = dyn_cast<CastInst>(V1);
3929 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003930 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003931 return nullptr;
3932 *CastOp = CI->getOpcode();
3933
David Majnemerd2a074b2016-04-29 18:40:34 +00003934 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00003935 // If V1 and V2 are both the same cast from the same type, we can look
3936 // through V1.
3937 if (CI2->getOpcode() == CI->getOpcode() &&
3938 CI2->getSrcTy() == CI->getSrcTy())
3939 return CI2->getOperand(0);
3940 return nullptr;
3941 } else if (!C) {
3942 return nullptr;
3943 }
3944
David Majnemerd2a074b2016-04-29 18:40:34 +00003945 Constant *CastedTo = nullptr;
3946
David Majnemer826e9832016-04-29 21:22:04 +00003947 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3948 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3949
David Majnemerd2a074b2016-04-29 18:40:34 +00003950 if (isa<SExtInst>(CI) && CmpI->isSigned())
3951 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3952
David Majnemer826e9832016-04-29 21:22:04 +00003953 if (isa<TruncInst>(CI))
3954 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3955
3956 if (isa<FPTruncInst>(CI))
3957 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3958
3959 if (isa<FPExtInst>(CI))
3960 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3961
David Majnemerd2a074b2016-04-29 18:40:34 +00003962 if (isa<FPToUIInst>(CI))
3963 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3964
3965 if (isa<FPToSIInst>(CI))
3966 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3967
3968 if (isa<UIToFPInst>(CI))
3969 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3970
3971 if (isa<SIToFPInst>(CI))
3972 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3973
3974 if (!CastedTo)
3975 return nullptr;
3976
3977 Constant *CastedBack =
3978 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3979 // Make sure the cast doesn't lose any information.
3980 if (CastedBack != C)
3981 return nullptr;
3982
3983 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00003984}
3985
Sanjay Patele8dc0902016-05-23 17:57:54 +00003986SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003987 Instruction::CastOps *CastOp) {
3988 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003989 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003990
James Molloy134bec22015-08-11 09:12:57 +00003991 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3992 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003993
James Molloy134bec22015-08-11 09:12:57 +00003994 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003995 Value *CmpLHS = CmpI->getOperand(0);
3996 Value *CmpRHS = CmpI->getOperand(1);
3997 Value *TrueVal = SI->getTrueValue();
3998 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003999 FastMathFlags FMF;
4000 if (isa<FPMathOperator>(CmpI))
4001 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004002
4003 // Bail out early.
4004 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004005 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004006
4007 // Deal with type mismatches.
4008 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004009 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004010 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004011 cast<CastInst>(TrueVal)->getOperand(0), C,
4012 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004013 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004014 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004015 C, cast<CastInst>(FalseVal)->getOperand(0),
4016 LHS, RHS);
4017 }
James Molloy134bec22015-08-11 09:12:57 +00004018 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004019 LHS, RHS);
4020}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004021
Pete Cooper35b00d52016-08-13 01:05:32 +00004022ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004023 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4024 assert(NumRanges >= 1 && "Must have at least one range!");
4025 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4026
4027 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4028 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4029
4030 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4031
4032 for (unsigned i = 1; i < NumRanges; ++i) {
4033 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4034 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4035
4036 // Note: unionWith will potentially create a range that contains values not
4037 // contained in any of the original N ranges.
4038 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4039 }
4040
4041 return CR;
4042}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004043
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004044/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004045static bool isTruePredicate(CmpInst::Predicate Pred,
4046 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004047 const DataLayout &DL, unsigned Depth,
4048 AssumptionCache *AC, const Instruction *CxtI,
4049 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004050 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004051 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4052 return true;
4053
4054 switch (Pred) {
4055 default:
4056 return false;
4057
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004058 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004059 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004060
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004061 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004062 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004063 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004064 return false;
4065 }
4066
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004067 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004068 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004069
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004070 // LHS u<= LHS +_{nuw} C for any C
4071 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004072 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004073
4074 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004075 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4076 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004077 const APInt *&CA, const APInt *&CB) {
4078 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4079 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4080 return true;
4081
4082 // If X & C == 0 then (X | C) == X +_{nuw} C
4083 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4084 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4085 unsigned BitWidth = CA->getBitWidth();
4086 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4087 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4088
4089 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4090 return true;
4091 }
4092
4093 return false;
4094 };
4095
Pete Cooper35b00d52016-08-13 01:05:32 +00004096 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004097 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004098 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4099 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004100
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004101 return false;
4102 }
4103 }
4104}
4105
4106/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004107/// ALHS ARHS" is true. Otherwise, return None.
4108static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004109isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4110 const Value *ARHS, const Value *BLHS,
4111 const Value *BRHS, const DataLayout &DL,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004112 unsigned Depth, AssumptionCache *AC,
4113 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004114 switch (Pred) {
4115 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004116 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004117
4118 case CmpInst::ICMP_SLT:
4119 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004120 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4121 DT) &&
4122 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4123 return true;
4124 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004125
4126 case CmpInst::ICMP_ULT:
4127 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004128 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4129 DT) &&
4130 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4131 return true;
4132 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004133 }
4134}
4135
Chad Rosier226a7342016-05-05 17:41:19 +00004136/// Return true if the operands of the two compares match. IsSwappedOps is true
4137/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004138static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4139 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004140 bool &IsSwappedOps) {
4141
4142 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4143 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4144 return IsMatchingOps || IsSwappedOps;
4145}
4146
Chad Rosier41dd31f2016-04-20 19:15:26 +00004147/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4148/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4149/// BRHS" is false. Otherwise, return None if we can't infer anything.
4150static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004151 const Value *ALHS,
4152 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004153 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004154 const Value *BLHS,
4155 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004156 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004157 // Canonicalize the operands so they're matching.
4158 if (IsSwappedOps) {
4159 std::swap(BLHS, BRHS);
4160 BPred = ICmpInst::getSwappedPredicate(BPred);
4161 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004162 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004163 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004164 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004165 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004166
Chad Rosier41dd31f2016-04-20 19:15:26 +00004167 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004168}
4169
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004170/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4171/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4172/// C2" is false. Otherwise, return None if we can't infer anything.
4173static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004174isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4175 const ConstantInt *C1,
4176 CmpInst::Predicate BPred,
4177 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004178 assert(ALHS == BLHS && "LHS operands must match.");
4179 ConstantRange DomCR =
4180 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4181 ConstantRange CR =
4182 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4183 ConstantRange Intersection = DomCR.intersectWith(CR);
4184 ConstantRange Difference = DomCR.difference(CR);
4185 if (Intersection.isEmptySet())
4186 return false;
4187 if (Difference.isEmptySet())
4188 return true;
4189 return None;
4190}
4191
Pete Cooper35b00d52016-08-13 01:05:32 +00004192Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004193 const DataLayout &DL, bool InvertAPred,
4194 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004195 const Instruction *CxtI,
4196 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004197 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4198 if (LHS->getType() != RHS->getType())
4199 return None;
4200
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004201 Type *OpTy = LHS->getType();
4202 assert(OpTy->getScalarType()->isIntegerTy(1));
4203
4204 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004205 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004206 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004207
4208 if (OpTy->isVectorTy())
4209 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004210 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004211 assert(OpTy->isIntegerTy(1) && "implied by above");
4212
4213 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004214 Value *ALHS, *ARHS;
4215 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004216
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004217 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4218 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004219 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004220
Chad Rosiere2cbd132016-04-25 17:23:36 +00004221 if (InvertAPred)
4222 APred = CmpInst::getInversePredicate(APred);
4223
Chad Rosier226a7342016-05-05 17:41:19 +00004224 // Can we infer anything when the two compares have matching operands?
4225 bool IsSwappedOps;
4226 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4227 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4228 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004229 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004230 // No amount of additional analysis will infer the second condition, so
4231 // early exit.
4232 return None;
4233 }
4234
4235 // Can we infer anything when the LHS operands match and the RHS operands are
4236 // constants (not necessarily matching)?
4237 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4238 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4239 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4240 cast<ConstantInt>(BRHS)))
4241 return Implication;
4242 // No amount of additional analysis will infer the second condition, so
4243 // early exit.
4244 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004245 }
4246
Chad Rosier41dd31f2016-04-20 19:15:26 +00004247 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004248 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4249 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004250
Chad Rosier41dd31f2016-04-20 19:15:26 +00004251 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004252}