blob: e3ac4bb78311daacafa3c1f38a1b9b66e7ea084c [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
Pete Cooper35b00d52016-08-13 01:05:32 +0000122static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
Pete Cooper35b00d52016-08-13 01:05:32 +0000125void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Pete Cooper35b00d52016-08-13 01:05:32 +0000133bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
134 const DataLayout &DL,
Jingyue Wuca321902015-05-14 23:53:19 +0000135 AssumptionCache *AC, const Instruction *CxtI,
136 const DominatorTree *DT) {
137 assert(LHS->getType() == RHS->getType() &&
138 "LHS and RHS should have the same type");
139 assert(LHS->getType()->isIntOrIntVectorTy() &&
140 "LHS and RHS should be integers");
141 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
142 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
143 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
144 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
145 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
146 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
147}
148
Pete Cooper35b00d52016-08-13 01:05:32 +0000149static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000150 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000151
Pete Cooper35b00d52016-08-13 01:05:32 +0000152void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000153 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000154 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000155 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000156 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
157 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000158}
159
Pete Cooper35b00d52016-08-13 01:05:32 +0000160static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000161 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000162
Pete Cooper35b00d52016-08-13 01:05:32 +0000163bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
164 bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000165 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000166 const Instruction *CxtI,
167 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000169 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000170}
171
Pete Cooper35b00d52016-08-13 01:05:32 +0000172static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000173
Pete Cooper35b00d52016-08-13 01:05:32 +0000174bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000175 AssumptionCache *AC, const Instruction *CxtI,
176 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000177 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000178}
179
Pete Cooper35b00d52016-08-13 01:05:32 +0000180bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
181 unsigned Depth,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000182 AssumptionCache *AC, const Instruction *CxtI,
183 const DominatorTree *DT) {
184 bool NonNegative, Negative;
185 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
186 return NonNegative;
187}
188
Pete Cooper35b00d52016-08-13 01:05:32 +0000189bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Philip Reames8f12eba2016-03-09 21:31:47 +0000190 AssumptionCache *AC, const Instruction *CxtI,
191 const DominatorTree *DT) {
192 if (auto *CI = dyn_cast<ConstantInt>(V))
193 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000194
Philip Reames8f12eba2016-03-09 21:31:47 +0000195 // TODO: We'd doing two recursive queries here. We should factor this such
196 // that only a single query is needed.
197 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
198 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
199}
200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Nick Lewycky762f8a82016-04-21 00:53:14 +0000202 AssumptionCache *AC, const Instruction *CxtI,
203 const DominatorTree *DT) {
204 bool NonNegative, Negative;
205 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
206 return Negative;
207}
208
Pete Cooper35b00d52016-08-13 01:05:32 +0000209static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000210
Pete Cooper35b00d52016-08-13 01:05:32 +0000211bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
212 const DataLayout &DL,
213 AssumptionCache *AC, const Instruction *CxtI,
214 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000215 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
216 safeCxtI(V1, safeCxtI(V2, CxtI)),
217 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000218}
219
Pete Cooper35b00d52016-08-13 01:05:32 +0000220static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000221 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000222
Pete Cooper35b00d52016-08-13 01:05:32 +0000223bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
224 const DataLayout &DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000225 unsigned Depth, AssumptionCache *AC,
226 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227 return ::MaskedValueIsZero(V, Mask, Depth,
228 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000229}
230
Pete Cooper35b00d52016-08-13 01:05:32 +0000231static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
232 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000233
Pete Cooper35b00d52016-08-13 01:05:32 +0000234unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000235 unsigned Depth, AssumptionCache *AC,
236 const Instruction *CxtI,
237 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000239}
240
Pete Cooper35b00d52016-08-13 01:05:32 +0000241static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
242 bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000243 APInt &KnownZero, APInt &KnownOne,
244 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000245 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000246 if (!Add) {
Pete Cooper35b00d52016-08-13 01:05:32 +0000247 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000248 // We know that the top bits of C-X are clear if X contains less bits
249 // than C (i.e. no wrap-around can happen). For example, 20-X is
250 // positive if we can prove that X is >= 0 and < 16.
251 if (!CLHS->getValue().isNegative()) {
252 unsigned BitWidth = KnownZero.getBitWidth();
253 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
254 // NLZ can't be BitWidth with no sign bit
255 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000256 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000257
258 // If all of the MaskV bits are known to be zero, then we know the
259 // output top bits are zero, because we now know that the output is
260 // from [0-C].
261 if ((KnownZero2 & MaskV) == MaskV) {
262 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
263 // Top bits known zero.
264 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
265 }
266 }
267 }
268 }
269
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000270 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000271
David Majnemer97ddca32014-08-22 00:40:43 +0000272 // If an initial sequence of bits in the result is not needed, the
273 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000274 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000275 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
276 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // Carry in a 1 for a subtract, rather than a 0.
279 APInt CarryIn(BitWidth, 0);
280 if (!Add) {
281 // Sum = LHS + ~RHS + 1
282 std::swap(KnownZero2, KnownOne2);
283 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000284 }
285
David Majnemer97ddca32014-08-22 00:40:43 +0000286 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
287 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
288
289 // Compute known bits of the carry.
290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
292
293 // Compute set of known bits (where all three relevant bits are known).
294 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
295 APInt RHSKnown = KnownZero2 | KnownOne2;
296 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
297 APInt Known = LHSKnown & RHSKnown & CarryKnown;
298
299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
300 "known bits of sum differ");
301
302 // Compute known bits of the result.
303 KnownZero = ~PossibleSumOne & Known;
304 KnownOne = PossibleSumOne & Known;
305
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000306 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000307 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000308 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000309 // Adding two non-negative numbers, or subtracting a negative number from
310 // a non-negative one, can't wrap into negative.
311 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
312 KnownZero |= APInt::getSignBit(BitWidth);
313 // Adding two negative numbers, or subtracting a non-negative number from
314 // a negative one, can't wrap into non-negative.
315 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
316 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000317 }
318 }
319}
320
Pete Cooper35b00d52016-08-13 01:05:32 +0000321static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000322 APInt &KnownZero, APInt &KnownOne,
323 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000324 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000326 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
327 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000328
329 bool isKnownNegative = false;
330 bool isKnownNonNegative = false;
331 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000332 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000333 if (Op0 == Op1) {
334 // The product of a number with itself is non-negative.
335 isKnownNonNegative = true;
336 } else {
337 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
338 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
339 bool isKnownNegativeOp1 = KnownOne.isNegative();
340 bool isKnownNegativeOp0 = KnownOne2.isNegative();
341 // The product of two numbers with the same sign is non-negative.
342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
344 // The product of a negative number and a non-negative number is either
345 // negative or zero.
346 if (!isKnownNonNegative)
347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000348 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000350 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000351 }
352 }
353
354 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000355 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000356 // More trickiness is possible, but this is sufficient for the
357 // interesting case of alignment computation.
358 KnownOne.clearAllBits();
359 unsigned TrailZ = KnownZero.countTrailingOnes() +
360 KnownZero2.countTrailingOnes();
361 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
362 KnownZero2.countLeadingOnes(),
363 BitWidth) - BitWidth;
364
365 TrailZ = std::min(TrailZ, BitWidth);
366 LeadZ = std::min(LeadZ, BitWidth);
367 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
368 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000369
370 // Only make use of no-wrap flags if we failed to compute the sign bit
371 // directly. This matters if the multiplication always overflows, in
372 // which case we prefer to follow the result of the direct computation,
373 // though as the program is invoking undefined behaviour we can choose
374 // whatever we like here.
375 if (isKnownNonNegative && !KnownOne.isNegative())
376 KnownZero.setBit(BitWidth - 1);
377 else if (isKnownNegative && !KnownZero.isNegative())
378 KnownOne.setBit(BitWidth - 1);
379}
380
Jingyue Wu37fcb592014-06-19 16:50:16 +0000381void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000382 APInt &KnownZero,
383 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000384 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000385 unsigned NumRanges = Ranges.getNumOperands() / 2;
386 assert(NumRanges >= 1);
387
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388 KnownZero.setAllBits();
389 KnownOne.setAllBits();
390
Rafael Espindola53190532012-03-30 15:52:11 +0000391 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000392 ConstantInt *Lower =
393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
394 ConstantInt *Upper =
395 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000396 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000397
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000398 // The first CommonPrefixBits of all values in Range are equal.
399 unsigned CommonPrefixBits =
400 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
401
402 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
403 KnownOne &= Range.getUnsignedMax() & Mask;
404 KnownZero &= ~Range.getUnsignedMax() & Mask;
405 }
Rafael Espindola53190532012-03-30 15:52:11 +0000406}
Jay Foad5a29c362014-05-15 12:12:55 +0000407
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000408static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000409 SmallVector<const Value *, 16> WorkSet(1, I);
410 SmallPtrSet<const Value *, 32> Visited;
411 SmallPtrSet<const Value *, 16> EphValues;
412
Hal Finkelf2199b22015-10-23 20:37:08 +0000413 // The instruction defining an assumption's condition itself is always
414 // considered ephemeral to that assumption (even if it has other
415 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000416 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000417 return true;
418
Hal Finkel60db0582014-09-07 18:57:58 +0000419 while (!WorkSet.empty()) {
420 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000421 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000422 continue;
423
424 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000425 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000426 if (V == E)
427 return true;
428
429 EphValues.insert(V);
430 if (const User *U = dyn_cast<User>(V))
431 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
432 J != JE; ++J) {
433 if (isSafeToSpeculativelyExecute(*J))
434 WorkSet.push_back(*J);
435 }
436 }
437 }
438
439 return false;
440}
441
442// Is this an intrinsic that cannot be speculated but also cannot trap?
443static bool isAssumeLikeIntrinsic(const Instruction *I) {
444 if (const CallInst *CI = dyn_cast<CallInst>(I))
445 if (Function *F = CI->getCalledFunction())
446 switch (F->getIntrinsicID()) {
447 default: break;
448 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
449 case Intrinsic::assume:
450 case Intrinsic::dbg_declare:
451 case Intrinsic::dbg_value:
452 case Intrinsic::invariant_start:
453 case Intrinsic::invariant_end:
454 case Intrinsic::lifetime_start:
455 case Intrinsic::lifetime_end:
456 case Intrinsic::objectsize:
457 case Intrinsic::ptr_annotation:
458 case Intrinsic::var_annotation:
459 return true;
460 }
461
462 return false;
463}
464
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000465bool llvm::isValidAssumeForContext(const Instruction *Inv,
466 const Instruction *CxtI,
467 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000468
469 // There are two restrictions on the use of an assume:
470 // 1. The assume must dominate the context (or the control flow must
471 // reach the assume whenever it reaches the context).
472 // 2. The context must not be in the assume's set of ephemeral values
473 // (otherwise we will use the assume to prove that the condition
474 // feeding the assume is trivially true, thus causing the removal of
475 // the assume).
476
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000477 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000478 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000479 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000480 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
481 // We don't have a DT, but this trivially dominates.
482 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000483 }
484
Pete Cooper54a02552016-08-12 01:00:15 +0000485 // With or without a DT, the only remaining case we will check is if the
486 // instructions are in the same BB. Give up if that is not the case.
487 if (Inv->getParent() != CxtI->getParent())
488 return false;
489
490 // If we have a dom tree, then we now know that the assume doens't dominate
491 // the other instruction. If we don't have a dom tree then we can check if
492 // the assume is first in the BB.
493 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000494 // Search forward from the assume until we reach the context (or the end
495 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000496 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000497 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000498 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000499 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000500 }
501
Pete Cooper54a02552016-08-12 01:00:15 +0000502 // The context comes first, but they're both in the same block. Make sure
503 // there is nothing in between that might interrupt the control flow.
504 for (BasicBlock::const_iterator I =
505 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
506 I != IE; ++I)
507 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
508 return false;
509
510 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000511}
512
Pete Cooper35b00d52016-08-13 01:05:32 +0000513static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000514 APInt &KnownOne, unsigned Depth,
515 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000516 // Use of assumptions is context-sensitive. If we don't have a context, we
517 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000518 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000519 return;
520
521 unsigned BitWidth = KnownZero.getBitWidth();
522
Chandler Carruth66b31302015-01-04 12:03:27 +0000523 for (auto &AssumeVH : Q.AC->assumptions()) {
524 if (!AssumeVH)
525 continue;
526 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000528 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000529 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000530 continue;
531
Philip Reames00d3b272014-11-24 23:44:28 +0000532 // Warning: This loop can end up being somewhat performance sensetive.
533 // We're running this loop for once for each value queried resulting in a
534 // runtime of ~O(#assumes * #values).
535
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000537 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000538
Philip Reames00d3b272014-11-24 23:44:28 +0000539 Value *Arg = I->getArgOperand(0);
540
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000542 assert(BitWidth == 1 && "assume operand is not i1?");
543 KnownZero.clearAllBits();
544 KnownOne.setAllBits();
545 return;
546 }
547
David Majnemer9b609752014-12-12 23:59:29 +0000548 // The remaining tests are all recursive, so bail out if we hit the limit.
549 if (Depth == MaxDepth)
550 continue;
551
Hal Finkel60db0582014-09-07 18:57:58 +0000552 Value *A, *B;
553 auto m_V = m_CombineOr(m_Specific(V),
554 m_CombineOr(m_PtrToInt(m_Specific(V)),
555 m_BitCast(m_Specific(V))));
556
557 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000558 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000559 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000560 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000564 KnownZero |= RHSKnownZero;
565 KnownOne |= RHSKnownOne;
566 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000567 } else if (match(Arg,
568 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000569 Pred == ICmpInst::ICMP_EQ &&
570 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000573 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000574 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000575
576 // For those bits in the mask that are known to be one, we can propagate
577 // known bits from the RHS to V.
578 KnownZero |= RHSKnownZero & MaskKnownOne;
579 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000580 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000581 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
582 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000583 Pred == ICmpInst::ICMP_EQ &&
584 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000585 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000586 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000587 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000588 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000589
590 // For those bits in the mask that are known to be one, we can propagate
591 // inverted known bits from the RHS to V.
592 KnownZero |= RHSKnownOne & MaskKnownOne;
593 KnownOne |= RHSKnownZero & MaskKnownOne;
594 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000595 } else if (match(Arg,
596 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000597 Pred == ICmpInst::ICMP_EQ &&
598 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000599 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000600 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000601 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000602 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000603
604 // For those bits in B that are known to be zero, we can propagate known
605 // bits from the RHS to V.
606 KnownZero |= RHSKnownZero & BKnownZero;
607 KnownOne |= RHSKnownOne & BKnownZero;
608 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000609 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
610 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000611 Pred == ICmpInst::ICMP_EQ &&
612 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000613 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000614 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000616 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000617
618 // For those bits in B that are known to be zero, we can propagate
619 // inverted known bits from the RHS to V.
620 KnownZero |= RHSKnownOne & BKnownZero;
621 KnownOne |= RHSKnownZero & BKnownZero;
622 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000623 } else if (match(Arg,
624 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000625 Pred == ICmpInst::ICMP_EQ &&
626 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000627 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000628 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000629 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000630 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000631
632 // For those bits in B that are known to be zero, we can propagate known
633 // bits from the RHS to V. For those bits in B that are known to be one,
634 // we can propagate inverted known bits from the RHS to V.
635 KnownZero |= RHSKnownZero & BKnownZero;
636 KnownOne |= RHSKnownOne & BKnownZero;
637 KnownZero |= RHSKnownOne & BKnownOne;
638 KnownOne |= RHSKnownZero & BKnownOne;
639 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
641 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000642 Pred == ICmpInst::ICMP_EQ &&
643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000644 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000645 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000646 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000647 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000648
649 // For those bits in B that are known to be zero, we can propagate
650 // inverted known bits from the RHS to V. For those bits in B that are
651 // known to be one, we can propagate known bits from the RHS to V.
652 KnownZero |= RHSKnownOne & BKnownZero;
653 KnownOne |= RHSKnownZero & BKnownZero;
654 KnownZero |= RHSKnownZero & BKnownOne;
655 KnownOne |= RHSKnownOne & BKnownOne;
656 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000657 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
658 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000659 Pred == ICmpInst::ICMP_EQ &&
660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000661 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000662 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000663 // For those bits in RHS that are known, we can propagate them to known
664 // bits in V shifted to the right by C.
665 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
666 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
667 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
669 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000670 Pred == ICmpInst::ICMP_EQ &&
671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000672 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000673 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674 // For those bits in RHS that are known, we can propagate them inverted
675 // to known bits in V shifted to the right by C.
676 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
677 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
678 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000679 } else if (match(Arg,
680 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000681 m_AShr(m_V, m_ConstantInt(C))),
682 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000683 Pred == ICmpInst::ICMP_EQ &&
684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000685 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000686 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000687 // For those bits in RHS that are known, we can propagate them to known
688 // bits in V shifted to the right by C.
689 KnownZero |= RHSKnownZero << C->getZExtValue();
690 KnownOne |= RHSKnownOne << C->getZExtValue();
691 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000692 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000693 m_LShr(m_V, m_ConstantInt(C)),
694 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000695 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000696 Pred == ICmpInst::ICMP_EQ &&
697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000700 // For those bits in RHS that are known, we can propagate them inverted
701 // to known bits in V shifted to the right by C.
702 KnownZero |= RHSKnownOne << C->getZExtValue();
703 KnownOne |= RHSKnownZero << C->getZExtValue();
704 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000705 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000706 Pred == ICmpInst::ICMP_SGE &&
707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000708 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000709 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000710
711 if (RHSKnownZero.isNegative()) {
712 // We know that the sign bit is zero.
713 KnownZero |= APInt::getSignBit(BitWidth);
714 }
715 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000717 Pred == ICmpInst::ICMP_SGT &&
718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000721
722 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
723 // We know that the sign bit is zero.
724 KnownZero |= APInt::getSignBit(BitWidth);
725 }
726 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000728 Pred == ICmpInst::ICMP_SLE &&
729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000732
733 if (RHSKnownOne.isNegative()) {
734 // We know that the sign bit is one.
735 KnownOne |= APInt::getSignBit(BitWidth);
736 }
737 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000739 Pred == ICmpInst::ICMP_SLT &&
740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000743
744 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
745 // We know that the sign bit is one.
746 KnownOne |= APInt::getSignBit(BitWidth);
747 }
748 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000750 Pred == ICmpInst::ICMP_ULE &&
751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000754
755 // Whatever high bits in c are zero are known to be zero.
756 KnownZero |=
757 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
758 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000759 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000760 Pred == ICmpInst::ICMP_ULT &&
761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000762 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000763 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000764
765 // Whatever high bits in c are zero are known to be zero (if c is a power
766 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000767 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 KnownZero |=
769 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
770 else
771 KnownZero |=
772 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000773 }
774 }
775}
776
Hal Finkelf2199b22015-10-23 20:37:08 +0000777// Compute known bits from a shift operator, including those with a
778// non-constant shift amount. KnownZero and KnownOne are the outputs of this
779// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
780// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
781// functors that, given the known-zero or known-one bits respectively, and a
782// shift amount, compute the implied known-zero or known-one bits of the shift
783// operator's result respectively for that shift amount. The results from calling
784// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000785static void computeKnownBitsFromShiftOperator(
786 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
787 APInt &KnownOne2, unsigned Depth, const Query &Q,
788 function_ref<APInt(const APInt &, unsigned)> KZF,
789 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000790 unsigned BitWidth = KnownZero.getBitWidth();
791
792 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
793 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
794
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000795 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000796 KnownZero = KZF(KnownZero, ShiftAmt);
797 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000798 // If there is conflict between KnownZero and KnownOne, this must be an
799 // overflowing left shift, so the shift result is undefined. Clear KnownZero
800 // and KnownOne bits so that other code could propagate this undef.
801 if ((KnownZero & KnownOne) != 0) {
802 KnownZero.clearAllBits();
803 KnownOne.clearAllBits();
804 }
805
Hal Finkelf2199b22015-10-23 20:37:08 +0000806 return;
807 }
808
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000809 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000810
811 // Note: We cannot use KnownZero.getLimitedValue() here, because if
812 // BitWidth > 64 and any upper bits are known, we'll end up returning the
813 // limit value (which implies all bits are known).
814 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
815 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
816
817 // It would be more-clearly correct to use the two temporaries for this
818 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000819 KnownZero.clearAllBits();
820 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000821
James Molloy493e57d2015-10-26 14:10:46 +0000822 // If we know the shifter operand is nonzero, we can sometimes infer more
823 // known bits. However this is expensive to compute, so be lazy about it and
824 // only compute it when absolutely necessary.
825 Optional<bool> ShifterOperandIsNonZero;
826
Hal Finkelf2199b22015-10-23 20:37:08 +0000827 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000828 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
829 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000830 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000831 if (!*ShifterOperandIsNonZero)
832 return;
833 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000834
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000835 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000836
837 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
838 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
839 // Combine the shifted known input bits only for those shift amounts
840 // compatible with its known constraints.
841 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
842 continue;
843 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
844 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000845 // If we know the shifter is nonzero, we may be able to infer more known
846 // bits. This check is sunk down as far as possible to avoid the expensive
847 // call to isKnownNonZero if the cheaper checks above fail.
848 if (ShiftAmt == 0) {
849 if (!ShifterOperandIsNonZero.hasValue())
850 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000851 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000852 if (*ShifterOperandIsNonZero)
853 continue;
854 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000855
856 KnownZero &= KZF(KnownZero2, ShiftAmt);
857 KnownOne &= KOF(KnownOne2, ShiftAmt);
858 }
859
860 // If there are no compatible shift amounts, then we've proven that the shift
861 // amount must be >= the BitWidth, and the result is undefined. We could
862 // return anything we'd like, but we need to make sure the sets of known bits
863 // stay disjoint (it should be better for some other code to actually
864 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000865 if ((KnownZero & KnownOne) != 0) {
866 KnownZero.clearAllBits();
867 KnownOne.clearAllBits();
868 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000869}
870
Pete Cooper35b00d52016-08-13 01:05:32 +0000871static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000872 APInt &KnownOne, unsigned Depth,
873 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000874 unsigned BitWidth = KnownZero.getBitWidth();
875
Chris Lattner965c7692008-06-02 01:18:21 +0000876 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000877 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000878 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000879 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000880 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000881 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000882 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000883 case Instruction::And: {
884 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000885 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
886 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000887
Chris Lattner965c7692008-06-02 01:18:21 +0000888 // Output known-1 bits are only known if set in both the LHS & RHS.
889 KnownOne &= KnownOne2;
890 // Output known-0 are known to be clear if zero in either the LHS | RHS.
891 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000892
893 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
894 // here we handle the more general case of adding any odd number by
895 // matching the form add(x, add(x, y)) where y is odd.
896 // TODO: This could be generalized to clearing any bit set in y where the
897 // following bit is known to be unset in y.
898 Value *Y = nullptr;
899 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
900 m_Value(Y))) ||
901 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
902 m_Value(Y)))) {
903 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000904 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000905 if (KnownOne3.countTrailingOnes() > 0)
906 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
907 }
Jay Foad5a29c362014-05-15 12:12:55 +0000908 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000909 }
910 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000911 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
912 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000913
Chris Lattner965c7692008-06-02 01:18:21 +0000914 // Output known-0 bits are only known if clear in both the LHS & RHS.
915 KnownZero &= KnownZero2;
916 // Output known-1 are known to be set if set in either the LHS | RHS.
917 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000918 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000919 }
920 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000921 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
922 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000923
Chris Lattner965c7692008-06-02 01:18:21 +0000924 // Output known-0 bits are known if clear or set in both the LHS & RHS.
925 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
926 // Output known-1 are known to be set if set in only one of the LHS, RHS.
927 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
928 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000929 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000930 }
931 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000932 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000933 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000934 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000935 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000936 }
937 case Instruction::UDiv: {
938 // For the purposes of computing leading zeros we can conservatively
939 // treat a udiv as a logical right shift by the power of 2 known to
940 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000941 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000942 unsigned LeadZ = KnownZero2.countLeadingOnes();
943
Jay Foad25a5e4c2010-12-01 08:53:58 +0000944 KnownOne2.clearAllBits();
945 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000946 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000947 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
948 if (RHSUnknownLeadingOnes != BitWidth)
949 LeadZ = std::min(BitWidth,
950 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
951
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000952 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000953 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000954 }
David Majnemera19d0f22016-08-06 08:16:00 +0000955 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000956 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
957 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000958
Pete Cooper35b00d52016-08-13 01:05:32 +0000959 const Value *LHS;
960 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000961 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
962 if (SelectPatternResult::isMinOrMax(SPF)) {
963 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
964 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
965 } else {
966 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
967 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
968 }
969
970 unsigned MaxHighOnes = 0;
971 unsigned MaxHighZeros = 0;
972 if (SPF == SPF_SMAX) {
973 // If both sides are negative, the result is negative.
974 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
975 // We can derive a lower bound on the result by taking the max of the
976 // leading one bits.
977 MaxHighOnes =
978 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
979 // If either side is non-negative, the result is non-negative.
980 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
981 MaxHighZeros = 1;
982 } else if (SPF == SPF_SMIN) {
983 // If both sides are non-negative, the result is non-negative.
984 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
985 // We can derive an upper bound on the result by taking the max of the
986 // leading zero bits.
987 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
988 KnownZero2.countLeadingOnes());
989 // If either side is negative, the result is negative.
990 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
991 MaxHighOnes = 1;
992 } else if (SPF == SPF_UMAX) {
993 // We can derive a lower bound on the result by taking the max of the
994 // leading one bits.
995 MaxHighOnes =
996 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
997 } else if (SPF == SPF_UMIN) {
998 // We can derive an upper bound on the result by taking the max of the
999 // leading zero bits.
1000 MaxHighZeros =
1001 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1002 }
1003
Chris Lattner965c7692008-06-02 01:18:21 +00001004 // Only known if known in both the LHS and RHS.
1005 KnownOne &= KnownOne2;
1006 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001007 if (MaxHighOnes > 0)
1008 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1009 if (MaxHighZeros > 0)
1010 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001011 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001012 }
Chris Lattner965c7692008-06-02 01:18:21 +00001013 case Instruction::FPTrunc:
1014 case Instruction::FPExt:
1015 case Instruction::FPToUI:
1016 case Instruction::FPToSI:
1017 case Instruction::SIToFP:
1018 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001019 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001020 case Instruction::PtrToInt:
1021 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001022 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001023 // Fall through and handle them the same as zext/trunc.
1024 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001025 case Instruction::ZExt:
1026 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001027 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001028
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001029 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001030 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1031 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001032 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001033
1034 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001035 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1036 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001037 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001038 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1039 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001040 // Any top bits are known to be zero.
1041 if (BitWidth > SrcBitWidth)
1042 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001043 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001044 }
1045 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001046 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001047 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001048 // TODO: For now, not handling conversions like:
1049 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001050 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001051 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001052 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001053 }
1054 break;
1055 }
1056 case Instruction::SExt: {
1057 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001058 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001059
Jay Foad583abbc2010-12-07 08:25:19 +00001060 KnownZero = KnownZero.trunc(SrcBitWidth);
1061 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001062 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001063 KnownZero = KnownZero.zext(BitWidth);
1064 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001065
1066 // If the sign bit of the input is known set or clear, then we know the
1067 // top bits of the result.
1068 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1069 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1070 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1071 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001072 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001073 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001074 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001075 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001076 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1077 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1078 APInt KZResult =
1079 (KnownZero << ShiftAmt) |
1080 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1081 // If this shift has "nsw" keyword, then the result is either a poison
1082 // value or has the same sign bit as the first operand.
1083 if (NSW && KnownZero.isNegative())
1084 KZResult.setBit(BitWidth - 1);
1085 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001086 };
1087
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001088 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1089 APInt KOResult = KnownOne << ShiftAmt;
1090 if (NSW && KnownOne.isNegative())
1091 KOResult.setBit(BitWidth - 1);
1092 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001093 };
1094
1095 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001096 KnownZero2, KnownOne2, Depth, Q, KZF,
1097 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001098 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001099 }
1100 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001101 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001102 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1103 return APIntOps::lshr(KnownZero, ShiftAmt) |
1104 // High bits known zero.
1105 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1106 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001107
Hal Finkelf2199b22015-10-23 20:37:08 +00001108 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1109 return APIntOps::lshr(KnownOne, ShiftAmt);
1110 };
1111
1112 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001113 KnownZero2, KnownOne2, Depth, Q, KZF,
1114 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001115 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001116 }
1117 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001118 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001119 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1120 return APIntOps::ashr(KnownZero, ShiftAmt);
1121 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001122
Hal Finkelf2199b22015-10-23 20:37:08 +00001123 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1124 return APIntOps::ashr(KnownOne, ShiftAmt);
1125 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001126
Hal Finkelf2199b22015-10-23 20:37:08 +00001127 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001128 KnownZero2, KnownOne2, Depth, Q, KZF,
1129 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001130 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001131 }
Chris Lattner965c7692008-06-02 01:18:21 +00001132 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001133 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001134 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001135 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1136 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001137 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001138 }
Chris Lattner965c7692008-06-02 01:18:21 +00001139 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001140 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001141 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001142 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1143 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001144 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001145 }
1146 case Instruction::SRem:
1147 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001148 APInt RA = Rem->getValue().abs();
1149 if (RA.isPowerOf2()) {
1150 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001151 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001152 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001153
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001154 // The low bits of the first operand are unchanged by the srem.
1155 KnownZero = KnownZero2 & LowBits;
1156 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001157
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001158 // If the first operand is non-negative or has all low bits zero, then
1159 // the upper bits are all zero.
1160 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1161 KnownZero |= ~LowBits;
1162
1163 // If the first operand is negative and not all low bits are zero, then
1164 // the upper bits are all one.
1165 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1166 KnownOne |= ~LowBits;
1167
Craig Topper1bef2c82012-12-22 19:15:35 +00001168 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001169 }
1170 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001171
1172 // The sign bit is the LHS's sign bit, except when the result of the
1173 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001174 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001175 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001176 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1177 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001178 // If it's known zero, our sign bit is also zero.
1179 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001180 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001181 }
1182
Chris Lattner965c7692008-06-02 01:18:21 +00001183 break;
1184 case Instruction::URem: {
1185 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001186 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001187 if (RA.isPowerOf2()) {
1188 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001189 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001190 KnownZero |= ~LowBits;
1191 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001192 break;
1193 }
1194 }
1195
1196 // Since the result is less than or equal to either operand, any leading
1197 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001198 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1199 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001200
Chris Lattner4612ae12009-01-20 18:22:57 +00001201 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001202 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001203 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001204 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001205 break;
1206 }
1207
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001208 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001209 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001210 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001211 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001212 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001213
Chris Lattner965c7692008-06-02 01:18:21 +00001214 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001215 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001216 break;
1217 }
1218 case Instruction::GetElementPtr: {
1219 // Analyze all of the subscripts of this getelementptr instruction
1220 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001221 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001222 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1223 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001224 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1225
1226 gep_type_iterator GTI = gep_type_begin(I);
1227 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1228 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001229 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001230 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001231
1232 // Handle case when index is vector zeroinitializer
1233 Constant *CIndex = cast<Constant>(Index);
1234 if (CIndex->isZeroValue())
1235 continue;
1236
1237 if (CIndex->getType()->isVectorTy())
1238 Index = CIndex->getSplatValue();
1239
Chris Lattner965c7692008-06-02 01:18:21 +00001240 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001241 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001242 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001243 TrailZ = std::min<unsigned>(TrailZ,
1244 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001245 } else {
1246 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001247 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001248 if (!IndexedTy->isSized()) {
1249 TrailZ = 0;
1250 break;
1251 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001252 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001253 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001254 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001255 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001256 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001257 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001258 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001259 }
1260 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001261
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001262 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001263 break;
1264 }
1265 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001266 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001267 // Handle the case of a simple two-predecessor recurrence PHI.
1268 // There's a lot more that could theoretically be done here, but
1269 // this is sufficient to catch some interesting cases.
1270 if (P->getNumIncomingValues() == 2) {
1271 for (unsigned i = 0; i != 2; ++i) {
1272 Value *L = P->getIncomingValue(i);
1273 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001274 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001275 if (!LU)
1276 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001277 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001278 // Check for operations that have the property that if
1279 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001280 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001281 if (Opcode == Instruction::Add ||
1282 Opcode == Instruction::Sub ||
1283 Opcode == Instruction::And ||
1284 Opcode == Instruction::Or ||
1285 Opcode == Instruction::Mul) {
1286 Value *LL = LU->getOperand(0);
1287 Value *LR = LU->getOperand(1);
1288 // Find a recurrence.
1289 if (LL == I)
1290 L = LR;
1291 else if (LR == I)
1292 L = LL;
1293 else
1294 break;
1295 // Ok, we have a PHI of the form L op= R. Check for low
1296 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001297 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001298
1299 // We need to take the minimum number of known bits
1300 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001301 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001302
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001303 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001304 std::min(KnownZero2.countTrailingOnes(),
1305 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001306 break;
1307 }
1308 }
1309 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001310
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001311 // Unreachable blocks may have zero-operand PHI nodes.
1312 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001313 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001314
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001315 // Otherwise take the unions of the known bit sets of the operands,
1316 // taking conservative care to avoid excessive recursion.
1317 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001318 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001319 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001320 break;
1321
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001322 KnownZero = APInt::getAllOnesValue(BitWidth);
1323 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001324 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001325 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001326 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001327
1328 KnownZero2 = APInt(BitWidth, 0);
1329 KnownOne2 = APInt(BitWidth, 0);
1330 // Recurse, but cap the recursion to one level, because we don't
1331 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001332 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001333 KnownZero &= KnownZero2;
1334 KnownOne &= KnownOne2;
1335 // If all bits have been ruled out, there's no need to check
1336 // more operands.
1337 if (!KnownZero && !KnownOne)
1338 break;
1339 }
1340 }
Chris Lattner965c7692008-06-02 01:18:21 +00001341 break;
1342 }
1343 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001344 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001345 // If range metadata is attached to this call, set known bits from that,
1346 // and then intersect with known bits based on other properties of the
1347 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001348 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001349 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001350 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001351 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1352 KnownZero |= KnownZero2;
1353 KnownOne |= KnownOne2;
1354 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001355 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001356 switch (II->getIntrinsicID()) {
1357 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001358 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001359 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001360 KnownZero |= KnownZero2.byteSwap();
1361 KnownOne |= KnownOne2.byteSwap();
1362 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001363 case Intrinsic::ctlz:
1364 case Intrinsic::cttz: {
1365 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001366 // If this call is undefined for 0, the result will be less than 2^n.
1367 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1368 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001369 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001370 break;
1371 }
1372 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001373 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001374 // We can bound the space the count needs. Also, bits known to be zero
1375 // can't contribute to the population.
1376 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1377 unsigned LeadingZeros =
1378 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001379 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001380 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1381 KnownOne &= ~KnownZero;
1382 // TODO: we could bound KnownOne using the lower bound on the number
1383 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001384 break;
1385 }
Chad Rosierb3628842011-05-26 23:13:19 +00001386 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001387 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001388 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001389 }
1390 }
1391 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001392 case Instruction::ExtractValue:
1393 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001394 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001395 if (EVI->getNumIndices() != 1) break;
1396 if (EVI->getIndices()[0] == 0) {
1397 switch (II->getIntrinsicID()) {
1398 default: break;
1399 case Intrinsic::uadd_with_overflow:
1400 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001401 computeKnownBitsAddSub(true, II->getArgOperand(0),
1402 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001403 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001404 break;
1405 case Intrinsic::usub_with_overflow:
1406 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001407 computeKnownBitsAddSub(false, II->getArgOperand(0),
1408 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001409 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001410 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001411 case Intrinsic::umul_with_overflow:
1412 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001413 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001414 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1415 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001416 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001417 }
1418 }
1419 }
Chris Lattner965c7692008-06-02 01:18:21 +00001420 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001421}
1422
1423/// Determine which bits of V are known to be either zero or one and return
1424/// them in the KnownZero/KnownOne bit sets.
1425///
1426/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1427/// we cannot optimize based on the assumption that it is zero without changing
1428/// it to be an explicit zero. If we don't change it to zero, other code could
1429/// optimized based on the contradictory assumption that it is non-zero.
1430/// Because instcombine aggressively folds operations with undef args anyway,
1431/// this won't lose us code quality.
1432///
1433/// This function is defined on values with integer type, values with pointer
1434/// type, and vectors of integers. In the case
1435/// where V is a vector, known zero, and known one values are the
1436/// same width as the vector element, and the bit is set only if it is true
1437/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001438void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001439 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001440 assert(V && "No Value?");
1441 assert(Depth <= MaxDepth && "Limit Search Depth");
1442 unsigned BitWidth = KnownZero.getBitWidth();
1443
1444 assert((V->getType()->isIntOrIntVectorTy() ||
1445 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001446 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001447 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001448 (!V->getType()->isIntOrIntVectorTy() ||
1449 V->getType()->getScalarSizeInBits() == BitWidth) &&
1450 KnownZero.getBitWidth() == BitWidth &&
1451 KnownOne.getBitWidth() == BitWidth &&
1452 "V, KnownOne and KnownZero should have same BitWidth");
1453
Pete Cooper35b00d52016-08-13 01:05:32 +00001454 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001455 // We know all of the bits for a constant!
1456 KnownOne = CI->getValue();
1457 KnownZero = ~KnownOne;
1458 return;
1459 }
1460 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001461 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001462 KnownOne.clearAllBits();
1463 KnownZero = APInt::getAllOnesValue(BitWidth);
1464 return;
1465 }
1466 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001467 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001468 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001469 // We know that CDS must be a vector of integers. Take the intersection of
1470 // each element.
1471 KnownZero.setAllBits(); KnownOne.setAllBits();
1472 APInt Elt(KnownZero.getBitWidth(), 0);
1473 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1474 Elt = CDS->getElementAsInteger(i);
1475 KnownZero &= ~Elt;
1476 KnownOne &= Elt;
1477 }
1478 return;
1479 }
1480
Pete Cooper35b00d52016-08-13 01:05:32 +00001481 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001482 // We know that CV must be a vector of integers. Take the intersection of
1483 // each element.
1484 KnownZero.setAllBits(); KnownOne.setAllBits();
1485 APInt Elt(KnownZero.getBitWidth(), 0);
1486 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1487 Constant *Element = CV->getAggregateElement(i);
1488 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1489 if (!ElementCI) {
1490 KnownZero.clearAllBits();
1491 KnownOne.clearAllBits();
1492 return;
1493 }
1494 Elt = ElementCI->getValue();
1495 KnownZero &= ~Elt;
1496 KnownOne &= Elt;
1497 }
1498 return;
1499 }
1500
Jingyue Wu12b0c282015-06-15 05:46:29 +00001501 // Start out not knowing anything.
1502 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1503
1504 // Limit search depth.
1505 // All recursive calls that increase depth must come after this.
1506 if (Depth == MaxDepth)
1507 return;
1508
1509 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1510 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001511 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001512 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001513 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001514 return;
1515 }
1516
Pete Cooper35b00d52016-08-13 01:05:32 +00001517 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001518 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001519
Artur Pilipenko029d8532015-09-30 11:55:45 +00001520 // Aligned pointers have trailing zeros - refine KnownZero set
1521 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001522 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001523 if (Align)
1524 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1525 }
1526
Philip Reames146307e2016-03-03 19:44:06 +00001527 // computeKnownBitsFromAssume strictly refines KnownZero and
1528 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001529
1530 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001531 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001532
Jay Foad5a29c362014-05-15 12:12:55 +00001533 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001534}
1535
Sanjay Patelaee84212014-11-04 16:27:42 +00001536/// Determine whether the sign bit is known to be zero or one.
1537/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001538void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001539 unsigned Depth, const Query &Q) {
1540 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001541 if (!BitWidth) {
1542 KnownZero = false;
1543 KnownOne = false;
1544 return;
1545 }
1546 APInt ZeroBits(BitWidth, 0);
1547 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001548 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001549 KnownOne = OneBits[BitWidth - 1];
1550 KnownZero = ZeroBits[BitWidth - 1];
1551}
1552
Sanjay Patelaee84212014-11-04 16:27:42 +00001553/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001554/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001555/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001556/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001557bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001558 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001559 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001560 if (C->isNullValue())
1561 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001562
1563 const APInt *ConstIntOrConstSplatInt;
1564 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1565 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001566 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001567
1568 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1569 // it is shifted off the end then the result is undefined.
1570 if (match(V, m_Shl(m_One(), m_Value())))
1571 return true;
1572
1573 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1574 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001575 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001576 return true;
1577
1578 // The remaining tests are all recursive, so bail out if we hit the limit.
1579 if (Depth++ == MaxDepth)
1580 return false;
1581
Craig Topper9f008862014-04-15 04:59:12 +00001582 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001583 // A shift left or a logical shift right of a power of two is a power of two
1584 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001585 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001586 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001587 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001588
Pete Cooper35b00d52016-08-13 01:05:32 +00001589 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001590 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001591
Pete Cooper35b00d52016-08-13 01:05:32 +00001592 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001593 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1594 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001595
Duncan Sandsba286d72011-10-26 20:55:21 +00001596 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1597 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001598 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1599 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001600 return true;
1601 // X & (-X) is always a power of two or zero.
1602 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1603 return true;
1604 return false;
1605 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001606
David Majnemerb7d54092013-07-30 21:01:36 +00001607 // Adding a power-of-two or zero to the same power-of-two or zero yields
1608 // either the original power-of-two, a larger power-of-two or zero.
1609 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001610 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001611 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1612 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1613 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001614 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001615 return true;
1616 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1617 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001618 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001619 return true;
1620
1621 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1622 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001623 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001624
1625 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001626 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001627 // If i8 V is a power of two or zero:
1628 // ZeroBits: 1 1 1 0 1 1 1 1
1629 // ~ZeroBits: 0 0 0 1 0 0 0 0
1630 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1631 // If OrZero isn't set, we cannot give back a zero result.
1632 // Make sure either the LHS or RHS has a bit set.
1633 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1634 return true;
1635 }
1636 }
David Majnemerbeab5672013-05-18 19:30:37 +00001637
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001638 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001639 // is a power of two only if the first operand is a power of two and not
1640 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001641 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1642 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001643 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001644 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001645 }
1646
Duncan Sandsd3951082011-01-25 09:38:29 +00001647 return false;
1648}
1649
Chandler Carruth80d3e562012-12-07 02:08:58 +00001650/// \brief Test whether a GEP's result is known to be non-null.
1651///
1652/// Uses properties inherent in a GEP to try to determine whether it is known
1653/// to be non-null.
1654///
1655/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001656static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001657 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001658 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1659 return false;
1660
1661 // FIXME: Support vector-GEPs.
1662 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1663
1664 // If the base pointer is non-null, we cannot walk to a null address with an
1665 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001666 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001667 return true;
1668
Chandler Carruth80d3e562012-12-07 02:08:58 +00001669 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1670 // If so, then the GEP cannot produce a null pointer, as doing so would
1671 // inherently violate the inbounds contract within address space zero.
1672 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1673 GTI != GTE; ++GTI) {
1674 // Struct types are easy -- they must always be indexed by a constant.
1675 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1676 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1677 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001678 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001679 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1680 if (ElementOffset > 0)
1681 return true;
1682 continue;
1683 }
1684
1685 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001686 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001687 continue;
1688
1689 // Fast path the constant operand case both for efficiency and so we don't
1690 // increment Depth when just zipping down an all-constant GEP.
1691 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1692 if (!OpC->isZero())
1693 return true;
1694 continue;
1695 }
1696
1697 // We post-increment Depth here because while isKnownNonZero increments it
1698 // as well, when we pop back up that increment won't persist. We don't want
1699 // to recurse 10k times just because we have 10k GEP operands. We don't
1700 // bail completely out because we want to handle constant GEPs regardless
1701 // of depth.
1702 if (Depth++ >= MaxDepth)
1703 continue;
1704
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001705 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001706 return true;
1707 }
1708
1709 return false;
1710}
1711
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001712/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1713/// ensure that the value it's attached to is never Value? 'RangeType' is
1714/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001715static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001716 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1717 assert(NumRanges >= 1);
1718 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001719 ConstantInt *Lower =
1720 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1721 ConstantInt *Upper =
1722 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001723 ConstantRange Range(Lower->getValue(), Upper->getValue());
1724 if (Range.contains(Value))
1725 return false;
1726 }
1727 return true;
1728}
1729
Sanjay Patelaee84212014-11-04 16:27:42 +00001730/// Return true if the given value is known to be non-zero when defined.
1731/// For vectors return true if every element is known to be non-zero when
1732/// defined. Supports values with integer or pointer type and vectors of
1733/// integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001734bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001735 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001736 if (C->isNullValue())
1737 return false;
1738 if (isa<ConstantInt>(C))
1739 // Must be non-zero due to null test above.
1740 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001741
1742 // For constant vectors, check that all elements are undefined or known
1743 // non-zero to determine that the whole vector is known non-zero.
1744 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1745 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1746 Constant *Elt = C->getAggregateElement(i);
1747 if (!Elt || Elt->isNullValue())
1748 return false;
1749 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1750 return false;
1751 }
1752 return true;
1753 }
1754
Duncan Sandsd3951082011-01-25 09:38:29 +00001755 return false;
1756 }
1757
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001758 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001759 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001760 // If the possible ranges don't contain zero, then the value is
1761 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001762 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001763 const APInt ZeroValue(Ty->getBitWidth(), 0);
1764 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1765 return true;
1766 }
1767 }
1768 }
1769
Duncan Sandsd3951082011-01-25 09:38:29 +00001770 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001771 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001772 return false;
1773
Chandler Carruth80d3e562012-12-07 02:08:58 +00001774 // Check for pointer simplifications.
1775 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001776 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001777 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001778 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001779 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001780 return true;
1781 }
1782
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001783 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001784
1785 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001786 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001787 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001788 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001789
1790 // ext X != 0 if X != 0.
1791 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001792 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001793
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001794 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001795 // if the lowest bit is shifted off the end.
1796 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001797 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001798 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001799 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001800 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001801
Duncan Sandsd3951082011-01-25 09:38:29 +00001802 APInt KnownZero(BitWidth, 0);
1803 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001804 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001805 if (KnownOne[0])
1806 return true;
1807 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001808 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001809 // defined if the sign bit is shifted off the end.
1810 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001811 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001812 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001813 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001814 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001815
Duncan Sandsd3951082011-01-25 09:38:29 +00001816 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001817 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001818 if (XKnownNegative)
1819 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001820
1821 // If the shifter operand is a constant, and all of the bits shifted
1822 // out are known to be zero, and X is known non-zero then at least one
1823 // non-zero bit must remain.
1824 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1825 APInt KnownZero(BitWidth, 0);
1826 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001827 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001828
James Molloyb6be1eb2015-09-24 16:06:32 +00001829 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1830 // Is there a known one in the portion not shifted out?
1831 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1832 return true;
1833 // Are all the bits to be shifted out known zero?
1834 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001835 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001836 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001837 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001838 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001839 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001840 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001841 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001842 // X + Y.
1843 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1844 bool XKnownNonNegative, XKnownNegative;
1845 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001846 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1847 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001848
1849 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001850 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001851 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001852 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001853 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001854
1855 // If X and Y are both negative (as signed values) then their sum is not
1856 // zero unless both X and Y equal INT_MIN.
1857 if (BitWidth && XKnownNegative && YKnownNegative) {
1858 APInt KnownZero(BitWidth, 0);
1859 APInt KnownOne(BitWidth, 0);
1860 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1861 // The sign bit of X is set. If some other bit is set then X is not equal
1862 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001863 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001864 if ((KnownOne & Mask) != 0)
1865 return true;
1866 // The sign bit of Y is set. If some other bit is set then Y is not equal
1867 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001868 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001869 if ((KnownOne & Mask) != 0)
1870 return true;
1871 }
1872
1873 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001874 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001875 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001876 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001877 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001878 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001879 return true;
1880 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001881 // X * Y.
1882 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001883 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001884 // If X and Y are non-zero then so is X * Y as long as the multiplication
1885 // does not overflow.
1886 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001887 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001888 return true;
1889 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001890 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001891 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001892 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1893 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001894 return true;
1895 }
James Molloy897048b2015-09-29 14:08:45 +00001896 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001897 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001898 // Try and detect a recurrence that monotonically increases from a
1899 // starting value, as these are common as induction variables.
1900 if (PN->getNumIncomingValues() == 2) {
1901 Value *Start = PN->getIncomingValue(0);
1902 Value *Induction = PN->getIncomingValue(1);
1903 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1904 std::swap(Start, Induction);
1905 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1906 if (!C->isZero() && !C->isNegative()) {
1907 ConstantInt *X;
1908 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1909 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1910 !X->isNegative())
1911 return true;
1912 }
1913 }
1914 }
Jun Bum Limca832662016-02-01 17:03:07 +00001915 // Check if all incoming values are non-zero constant.
1916 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1917 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1918 });
1919 if (AllNonZeroConstants)
1920 return true;
James Molloy897048b2015-09-29 14:08:45 +00001921 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001922
1923 if (!BitWidth) return false;
1924 APInt KnownZero(BitWidth, 0);
1925 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001926 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001927 return KnownOne != 0;
1928}
1929
James Molloy1d88d6f2015-10-22 13:18:42 +00001930/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001931static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1932 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001933 if (!BO || BO->getOpcode() != Instruction::Add)
1934 return false;
1935 Value *Op = nullptr;
1936 if (V2 == BO->getOperand(0))
1937 Op = BO->getOperand(1);
1938 else if (V2 == BO->getOperand(1))
1939 Op = BO->getOperand(0);
1940 else
1941 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001942 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001943}
1944
1945/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00001946static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001947 if (V1->getType()->isVectorTy() || V1 == V2)
1948 return false;
1949 if (V1->getType() != V2->getType())
1950 // We can't look through casts yet.
1951 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001952 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001953 return true;
1954
1955 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1956 // Are any known bits in V1 contradictory to known bits in V2? If V1
1957 // has a known zero where V2 has a known one, they must not be equal.
1958 auto BitWidth = Ty->getBitWidth();
1959 APInt KnownZero1(BitWidth, 0);
1960 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001961 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001962 APInt KnownZero2(BitWidth, 0);
1963 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001964 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001965
1966 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1967 if (OppositeBits.getBoolValue())
1968 return true;
1969 }
1970 return false;
1971}
1972
Sanjay Patelaee84212014-11-04 16:27:42 +00001973/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1974/// simplify operations downstream. Mask is known to be zero for bits that V
1975/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001976///
1977/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001978/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001979/// where V is a vector, the mask, known zero, and known one values are the
1980/// same width as the vector element, and the bit is set only if it is true
1981/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001982bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001983 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001984 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001985 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001986 return (KnownZero & Mask) == Mask;
1987}
1988
Sanjay Patela06d9892016-06-22 19:20:59 +00001989/// For vector constants, loop over the elements and find the constant with the
1990/// minimum number of sign bits. Return 0 if the value is not a vector constant
1991/// or if any element was not analyzed; otherwise, return the count for the
1992/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001993static unsigned computeNumSignBitsVectorConstant(const Value *V,
1994 unsigned TyBits) {
1995 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00001996 if (!CV || !CV->getType()->isVectorTy())
1997 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00001998
Sanjay Patela06d9892016-06-22 19:20:59 +00001999 unsigned MinSignBits = TyBits;
2000 unsigned NumElts = CV->getType()->getVectorNumElements();
2001 for (unsigned i = 0; i != NumElts; ++i) {
2002 // If we find a non-ConstantInt, bail out.
2003 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2004 if (!Elt)
2005 return 0;
2006
2007 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2008 APInt EltVal = Elt->getValue();
2009 if (EltVal.isNegative())
2010 EltVal = ~EltVal;
2011 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2012 }
2013
2014 return MinSignBits;
2015}
Chris Lattner965c7692008-06-02 01:18:21 +00002016
Sanjay Patelaee84212014-11-04 16:27:42 +00002017/// Return the number of times the sign bit of the register is replicated into
2018/// the other bits. We know that at least 1 bit is always equal to the sign bit
2019/// (itself), but other cases can give us information. For example, immediately
2020/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002021/// other, so we return 3. For vectors, return the number of sign bits for the
2022/// vector element with the mininum number of known sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002023unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002024 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002025 unsigned Tmp, Tmp2;
2026 unsigned FirstAnswer = 1;
2027
Jay Foada0653a32014-05-14 21:14:37 +00002028 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002029 // below.
2030
Chris Lattner965c7692008-06-02 01:18:21 +00002031 if (Depth == 6)
2032 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002033
Pete Cooper35b00d52016-08-13 01:05:32 +00002034 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002035 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002036 default: break;
2037 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002038 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002039 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002040
Nadav Rotemc99a3872015-03-06 00:23:58 +00002041 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002042 const APInt *Denominator;
2043 // sdiv X, C -> adds log(C) sign bits.
2044 if (match(U->getOperand(1), m_APInt(Denominator))) {
2045
2046 // Ignore non-positive denominator.
2047 if (!Denominator->isStrictlyPositive())
2048 break;
2049
2050 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002051 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002052
2053 // Add floor(log(C)) bits to the numerator bits.
2054 return std::min(TyBits, NumBits + Denominator->logBase2());
2055 }
2056 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002057 }
2058
2059 case Instruction::SRem: {
2060 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002061 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2062 // positive constant. This let us put a lower bound on the number of sign
2063 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002064 if (match(U->getOperand(1), m_APInt(Denominator))) {
2065
2066 // Ignore non-positive denominator.
2067 if (!Denominator->isStrictlyPositive())
2068 break;
2069
2070 // Calculate the incoming numerator bits. SRem by a positive constant
2071 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002072 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002073 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002074
2075 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002076 // denominator. Given that the denominator is positive, there are two
2077 // cases:
2078 //
2079 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2080 // (1 << ceilLogBase2(C)).
2081 //
2082 // 2. the numerator is negative. Then the result range is (-C,0] and
2083 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2084 //
2085 // Thus a lower bound on the number of sign bits is `TyBits -
2086 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002087
Sanjoy Dase561fee2015-03-25 22:33:53 +00002088 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002089 return std::max(NumrBits, ResBits);
2090 }
2091 break;
2092 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002093
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002094 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002095 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002096 // ashr X, C -> adds C sign bits. Vectors too.
2097 const APInt *ShAmt;
2098 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2099 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002100 if (Tmp > TyBits) Tmp = TyBits;
2101 }
2102 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002103 }
2104 case Instruction::Shl: {
2105 const APInt *ShAmt;
2106 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002107 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002108 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002109 Tmp2 = ShAmt->getZExtValue();
2110 if (Tmp2 >= TyBits || // Bad shift.
2111 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2112 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002113 }
2114 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002115 }
Chris Lattner965c7692008-06-02 01:18:21 +00002116 case Instruction::And:
2117 case Instruction::Or:
2118 case Instruction::Xor: // NOT is handled here.
2119 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002120 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002121 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002122 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002123 FirstAnswer = std::min(Tmp, Tmp2);
2124 // We computed what we know about the sign bits as our first
2125 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002126 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002127 }
2128 break;
2129
2130 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002131 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002132 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002133 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002134 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002135
Chris Lattner965c7692008-06-02 01:18:21 +00002136 case Instruction::Add:
2137 // Add can have at most one carry bit. Thus we know that the output
2138 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002139 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002140 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002141
Chris Lattner965c7692008-06-02 01:18:21 +00002142 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002143 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002144 if (CRHS->isAllOnesValue()) {
2145 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002146 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002147
Chris Lattner965c7692008-06-02 01:18:21 +00002148 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2149 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002150 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002151 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002152
Chris Lattner965c7692008-06-02 01:18:21 +00002153 // If we are subtracting one from a positive number, there is no carry
2154 // out of the result.
2155 if (KnownZero.isNegative())
2156 return Tmp;
2157 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002158
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002159 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002160 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002161 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002162
Chris Lattner965c7692008-06-02 01:18:21 +00002163 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002164 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002165 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002166
Chris Lattner965c7692008-06-02 01:18:21 +00002167 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002168 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002169 if (CLHS->isNullValue()) {
2170 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002171 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002172 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2173 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002174 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002175 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002176
Chris Lattner965c7692008-06-02 01:18:21 +00002177 // If the input is known to be positive (the sign bit is known clear),
2178 // the output of the NEG has the same number of sign bits as the input.
2179 if (KnownZero.isNegative())
2180 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002181
Chris Lattner965c7692008-06-02 01:18:21 +00002182 // Otherwise, we treat this like a SUB.
2183 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002184
Chris Lattner965c7692008-06-02 01:18:21 +00002185 // Sub can have at most one carry bit. Thus we know that the output
2186 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002187 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002188 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002189 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002190
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002191 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002192 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002193 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002194 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002195 if (NumIncomingValues > 4) break;
2196 // Unreachable blocks may have zero-operand PHI nodes.
2197 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002198
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002199 // Take the minimum of all incoming values. This can't infinitely loop
2200 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002201 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002202 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002203 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002204 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002205 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002206 }
2207 return Tmp;
2208 }
2209
Chris Lattner965c7692008-06-02 01:18:21 +00002210 case Instruction::Trunc:
2211 // FIXME: it's tricky to do anything useful for this, but it is an important
2212 // case for targets like X86.
2213 break;
2214 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002215
Chris Lattner965c7692008-06-02 01:18:21 +00002216 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2217 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002218
2219 // If we can examine all elements of a vector constant successfully, we're
2220 // done (we can't do any better than that). If not, keep trying.
2221 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2222 return VecSignBits;
2223
Chris Lattner965c7692008-06-02 01:18:21 +00002224 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002225 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002226
Sanjay Patele0536212016-06-23 17:41:59 +00002227 // If we know that the sign bit is either zero or one, determine the number of
2228 // identical bits in the top of the input value.
2229 if (KnownZero.isNegative())
2230 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002231
Sanjay Patele0536212016-06-23 17:41:59 +00002232 if (KnownOne.isNegative())
2233 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2234
2235 // computeKnownBits gave us no extra information about the top bits.
2236 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002237}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002238
Sanjay Patelaee84212014-11-04 16:27:42 +00002239/// This function computes the integer multiple of Base that equals V.
2240/// If successful, it returns true and returns the multiple in
2241/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002242/// through SExt instructions only if LookThroughSExt is true.
2243bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002244 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002245 const unsigned MaxDepth = 6;
2246
Dan Gohman6a976bb2009-11-18 00:58:27 +00002247 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002248 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002249 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002250
Chris Lattner229907c2011-07-18 04:54:35 +00002251 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002252
Dan Gohman6a976bb2009-11-18 00:58:27 +00002253 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002254
2255 if (Base == 0)
2256 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002257
Victor Hernandez47444882009-11-10 08:28:35 +00002258 if (Base == 1) {
2259 Multiple = V;
2260 return true;
2261 }
2262
2263 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2264 Constant *BaseVal = ConstantInt::get(T, Base);
2265 if (CO && CO == BaseVal) {
2266 // Multiple is 1.
2267 Multiple = ConstantInt::get(T, 1);
2268 return true;
2269 }
2270
2271 if (CI && CI->getZExtValue() % Base == 0) {
2272 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002273 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002274 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002275
Victor Hernandez47444882009-11-10 08:28:35 +00002276 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002277
Victor Hernandez47444882009-11-10 08:28:35 +00002278 Operator *I = dyn_cast<Operator>(V);
2279 if (!I) return false;
2280
2281 switch (I->getOpcode()) {
2282 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002283 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002284 if (!LookThroughSExt) return false;
2285 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002286 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002287 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2288 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002289 case Instruction::Shl:
2290 case Instruction::Mul: {
2291 Value *Op0 = I->getOperand(0);
2292 Value *Op1 = I->getOperand(1);
2293
2294 if (I->getOpcode() == Instruction::Shl) {
2295 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2296 if (!Op1CI) return false;
2297 // Turn Op0 << Op1 into Op0 * 2^Op1
2298 APInt Op1Int = Op1CI->getValue();
2299 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002300 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002301 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002302 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002303 }
2304
Craig Topper9f008862014-04-15 04:59:12 +00002305 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002306 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2307 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2308 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002309 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002310 MulC->getType()->getPrimitiveSizeInBits())
2311 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002312 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002313 MulC->getType()->getPrimitiveSizeInBits())
2314 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002315
Chris Lattner72d283c2010-09-05 17:20:46 +00002316 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2317 Multiple = ConstantExpr::getMul(MulC, Op1C);
2318 return true;
2319 }
Victor Hernandez47444882009-11-10 08:28:35 +00002320
2321 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2322 if (Mul0CI->getValue() == 1) {
2323 // V == Base * Op1, so return Op1
2324 Multiple = Op1;
2325 return true;
2326 }
2327 }
2328
Craig Topper9f008862014-04-15 04:59:12 +00002329 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002330 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2331 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2332 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002333 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002334 MulC->getType()->getPrimitiveSizeInBits())
2335 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002336 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002337 MulC->getType()->getPrimitiveSizeInBits())
2338 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002339
Chris Lattner72d283c2010-09-05 17:20:46 +00002340 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2341 Multiple = ConstantExpr::getMul(MulC, Op0C);
2342 return true;
2343 }
Victor Hernandez47444882009-11-10 08:28:35 +00002344
2345 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2346 if (Mul1CI->getValue() == 1) {
2347 // V == Base * Op0, so return Op0
2348 Multiple = Op0;
2349 return true;
2350 }
2351 }
Victor Hernandez47444882009-11-10 08:28:35 +00002352 }
2353 }
2354
2355 // We could not determine if V is a multiple of Base.
2356 return false;
2357}
2358
David Majnemerb4b27232016-04-19 19:10:21 +00002359Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2360 const TargetLibraryInfo *TLI) {
2361 const Function *F = ICS.getCalledFunction();
2362 if (!F)
2363 return Intrinsic::not_intrinsic;
2364
2365 if (F->isIntrinsic())
2366 return F->getIntrinsicID();
2367
2368 if (!TLI)
2369 return Intrinsic::not_intrinsic;
2370
2371 LibFunc::Func Func;
2372 // We're going to make assumptions on the semantics of the functions, check
2373 // that the target knows that it's available in this environment and it does
2374 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002375 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2376 return Intrinsic::not_intrinsic;
2377
2378 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002379 return Intrinsic::not_intrinsic;
2380
2381 // Otherwise check if we have a call to a function that can be turned into a
2382 // vector intrinsic.
2383 switch (Func) {
2384 default:
2385 break;
2386 case LibFunc::sin:
2387 case LibFunc::sinf:
2388 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002389 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002390 case LibFunc::cos:
2391 case LibFunc::cosf:
2392 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002393 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002394 case LibFunc::exp:
2395 case LibFunc::expf:
2396 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002397 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002398 case LibFunc::exp2:
2399 case LibFunc::exp2f:
2400 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002401 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002402 case LibFunc::log:
2403 case LibFunc::logf:
2404 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002405 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002406 case LibFunc::log10:
2407 case LibFunc::log10f:
2408 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002409 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002410 case LibFunc::log2:
2411 case LibFunc::log2f:
2412 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002413 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002414 case LibFunc::fabs:
2415 case LibFunc::fabsf:
2416 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002417 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002418 case LibFunc::fmin:
2419 case LibFunc::fminf:
2420 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002421 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002422 case LibFunc::fmax:
2423 case LibFunc::fmaxf:
2424 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002425 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002426 case LibFunc::copysign:
2427 case LibFunc::copysignf:
2428 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002429 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002430 case LibFunc::floor:
2431 case LibFunc::floorf:
2432 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002433 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002434 case LibFunc::ceil:
2435 case LibFunc::ceilf:
2436 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002437 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002438 case LibFunc::trunc:
2439 case LibFunc::truncf:
2440 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002441 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002442 case LibFunc::rint:
2443 case LibFunc::rintf:
2444 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002445 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002446 case LibFunc::nearbyint:
2447 case LibFunc::nearbyintf:
2448 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002449 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002450 case LibFunc::round:
2451 case LibFunc::roundf:
2452 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002453 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002454 case LibFunc::pow:
2455 case LibFunc::powf:
2456 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002457 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002458 case LibFunc::sqrt:
2459 case LibFunc::sqrtf:
2460 case LibFunc::sqrtl:
2461 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002462 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002463 return Intrinsic::not_intrinsic;
2464 }
2465
2466 return Intrinsic::not_intrinsic;
2467}
2468
Sanjay Patelaee84212014-11-04 16:27:42 +00002469/// Return true if we can prove that the specified FP value is never equal to
2470/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002471///
2472/// NOTE: this function will need to be revisited when we support non-default
2473/// rounding modes!
2474///
David Majnemer3ee5f342016-04-13 06:55:52 +00002475bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2476 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002477 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2478 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002479
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002480 // FIXME: Magic number! At the least, this should be given a name because it's
2481 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2482 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002483 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002484 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002485
Dan Gohman80ca01c2009-07-17 20:47:02 +00002486 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002487 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002488
2489 // Check if the nsz fast-math flag is set
2490 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2491 if (FPO->hasNoSignedZeros())
2492 return true;
2493
Chris Lattnera12a6de2008-06-02 01:29:46 +00002494 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002495 if (I->getOpcode() == Instruction::FAdd)
2496 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2497 if (CFP->isNullValue())
2498 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002499
Chris Lattnera12a6de2008-06-02 01:29:46 +00002500 // sitofp and uitofp turn into +0.0 for zero.
2501 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2502 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002503
David Majnemer3ee5f342016-04-13 06:55:52 +00002504 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002505 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002506 switch (IID) {
2507 default:
2508 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002509 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002510 case Intrinsic::sqrt:
2511 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2512 // fabs(x) != -0.0
2513 case Intrinsic::fabs:
2514 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002515 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002516 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002517
Chris Lattnera12a6de2008-06-02 01:29:46 +00002518 return false;
2519}
2520
David Majnemer3ee5f342016-04-13 06:55:52 +00002521bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2522 const TargetLibraryInfo *TLI,
2523 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002524 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2525 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2526
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002527 // FIXME: Magic number! At the least, this should be given a name because it's
2528 // used similarly in CannotBeNegativeZero(). A better fix may be to
2529 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002530 if (Depth == 6)
2531 return false; // Limit search depth.
2532
2533 const Operator *I = dyn_cast<Operator>(V);
2534 if (!I) return false;
2535
2536 switch (I->getOpcode()) {
2537 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002538 // Unsigned integers are always nonnegative.
2539 case Instruction::UIToFP:
2540 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002541 case Instruction::FMul:
2542 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002543 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002544 return true;
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002545 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002546 case Instruction::FAdd:
2547 case Instruction::FDiv:
2548 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002549 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2550 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002551 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002552 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2553 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002554 case Instruction::FPExt:
2555 case Instruction::FPTrunc:
2556 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002557 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2558 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002559 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002560 switch (IID) {
2561 default:
2562 break;
2563 case Intrinsic::maxnum:
2564 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2565 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2566 case Intrinsic::minnum:
2567 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2568 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2569 case Intrinsic::exp:
2570 case Intrinsic::exp2:
2571 case Intrinsic::fabs:
2572 case Intrinsic::sqrt:
2573 return true;
2574 case Intrinsic::powi:
2575 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2576 // powi(x,n) is non-negative if n is even.
2577 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2578 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002579 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002580 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2581 case Intrinsic::fma:
2582 case Intrinsic::fmuladd:
2583 // x*x+y is non-negative if y is non-negative.
2584 return I->getOperand(0) == I->getOperand(1) &&
2585 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2586 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002587 break;
2588 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002589 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002590}
2591
Sanjay Patelaee84212014-11-04 16:27:42 +00002592/// If the specified value can be set by repeating the same byte in memory,
2593/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002594/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2595/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2596/// byte store (e.g. i16 0x1234), return null.
2597Value *llvm::isBytewiseValue(Value *V) {
2598 // All byte-wide stores are splatable, even of arbitrary variables.
2599 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002600
2601 // Handle 'null' ConstantArrayZero etc.
2602 if (Constant *C = dyn_cast<Constant>(V))
2603 if (C->isNullValue())
2604 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002605
Chris Lattner9cb10352010-12-26 20:15:01 +00002606 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002607 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002608 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2609 if (CFP->getType()->isFloatTy())
2610 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2611 if (CFP->getType()->isDoubleTy())
2612 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2613 // Don't handle long double formats, which have strange constraints.
2614 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002615
Benjamin Kramer17d90152015-02-07 19:29:02 +00002616 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002617 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002618 if (CI->getBitWidth() % 8 == 0) {
2619 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002620
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002621 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002622 return nullptr;
2623 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002624 }
2625 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002626
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002627 // A ConstantDataArray/Vector is splatable if all its members are equal and
2628 // also splatable.
2629 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2630 Value *Elt = CA->getElementAsConstant(0);
2631 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002632 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002633 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002634
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002635 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2636 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002637 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002638
Chris Lattner9cb10352010-12-26 20:15:01 +00002639 return Val;
2640 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002641
Chris Lattner9cb10352010-12-26 20:15:01 +00002642 // Conceptually, we could handle things like:
2643 // %a = zext i8 %X to i16
2644 // %b = shl i16 %a, 8
2645 // %c = or i16 %a, %b
2646 // but until there is an example that actually needs this, it doesn't seem
2647 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002648 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002649}
2650
2651
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002652// This is the recursive version of BuildSubAggregate. It takes a few different
2653// arguments. Idxs is the index within the nested struct From that we are
2654// looking at now (which is of type IndexedType). IdxSkip is the number of
2655// indices from Idxs that should be left out when inserting into the resulting
2656// struct. To is the result struct built so far, new insertvalue instructions
2657// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002658static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002659 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002660 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002661 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002662 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002663 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002664 // Save the original To argument so we can modify it
2665 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002666 // General case, the type indexed by Idxs is a struct
2667 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2668 // Process each struct element recursively
2669 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002670 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002671 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002672 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002673 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002674 if (!To) {
2675 // Couldn't find any inserted value for this index? Cleanup
2676 while (PrevTo != OrigTo) {
2677 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2678 PrevTo = Del->getAggregateOperand();
2679 Del->eraseFromParent();
2680 }
2681 // Stop processing elements
2682 break;
2683 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002684 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002685 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002686 if (To)
2687 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002688 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002689 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2690 // the struct's elements had a value that was inserted directly. In the latter
2691 // case, perhaps we can't determine each of the subelements individually, but
2692 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002693
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002694 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002695 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002696
2697 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002698 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002699
2700 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002701 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002702 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002703}
2704
2705// This helper takes a nested struct and extracts a part of it (which is again a
2706// struct) into a new value. For example, given the struct:
2707// { a, { b, { c, d }, e } }
2708// and the indices "1, 1" this returns
2709// { c, d }.
2710//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002711// It does this by inserting an insertvalue for each element in the resulting
2712// struct, as opposed to just inserting a single struct. This will only work if
2713// each of the elements of the substruct are known (ie, inserted into From by an
2714// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002715//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002716// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002717static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002718 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002719 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002720 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002721 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002722 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002723 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002724 unsigned IdxSkip = Idxs.size();
2725
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002726 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002727}
2728
Sanjay Patelaee84212014-11-04 16:27:42 +00002729/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002730/// the scalar value indexed is already around as a register, for example if it
2731/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002732///
2733/// If InsertBefore is not null, this function will duplicate (modified)
2734/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002735Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2736 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002737 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002738 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002739 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002740 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002741 // We have indices, so V should have an indexable type.
2742 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2743 "Not looking at a struct or array?");
2744 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2745 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002746
Chris Lattner67058832012-01-25 06:48:06 +00002747 if (Constant *C = dyn_cast<Constant>(V)) {
2748 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002749 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002750 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2751 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002752
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002753 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002754 // Loop the indices for the insertvalue instruction in parallel with the
2755 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002756 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002757 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2758 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002759 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002760 // We can't handle this without inserting insertvalues
2761 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002762 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002763
2764 // The requested index identifies a part of a nested aggregate. Handle
2765 // this specially. For example,
2766 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2767 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2768 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2769 // This can be changed into
2770 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2771 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2772 // which allows the unused 0,0 element from the nested struct to be
2773 // removed.
2774 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2775 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002776 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002777
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002778 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002779 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002780 // looking for, then.
2781 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002782 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002783 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002784 }
2785 // If we end up here, the indices of the insertvalue match with those
2786 // requested (though possibly only partially). Now we recursively look at
2787 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002788 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002789 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002790 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002791 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002792
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002793 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002794 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002795 // something else, we can extract from that something else directly instead.
2796 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002797
2798 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002799 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002800 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002801 SmallVector<unsigned, 5> Idxs;
2802 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002803 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002804 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002805
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002806 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002807 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002808
Craig Topper1bef2c82012-12-22 19:15:35 +00002809 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002810 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002811
Jay Foad57aa6362011-07-13 10:26:04 +00002812 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002813 }
2814 // Otherwise, we don't know (such as, extracting from a function return value
2815 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002816 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002817}
Evan Chengda3db112008-06-30 07:31:25 +00002818
Sanjay Patelaee84212014-11-04 16:27:42 +00002819/// Analyze the specified pointer to see if it can be expressed as a base
2820/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002821Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002822 const DataLayout &DL) {
2823 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002824 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002825
2826 // We walk up the defs but use a visited set to handle unreachable code. In
2827 // that case, we stop after accumulating the cycle once (not that it
2828 // matters).
2829 SmallPtrSet<Value *, 16> Visited;
2830 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002831 if (Ptr->getType()->isVectorTy())
2832 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002833
Nuno Lopes368c4d02012-12-31 20:48:35 +00002834 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002835 APInt GEPOffset(BitWidth, 0);
2836 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2837 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002838
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002839 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002840
Nuno Lopes368c4d02012-12-31 20:48:35 +00002841 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002842 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2843 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002844 Ptr = cast<Operator>(Ptr)->getOperand(0);
2845 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002846 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002847 break;
2848 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002849 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002850 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002851 }
2852 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002853 Offset = ByteOffset.getSExtValue();
2854 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002855}
2856
David L Kreitzer752c1442016-04-13 14:31:06 +00002857bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2858 // Make sure the GEP has exactly three arguments.
2859 if (GEP->getNumOperands() != 3)
2860 return false;
2861
2862 // Make sure the index-ee is a pointer to array of i8.
2863 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2864 if (!AT || !AT->getElementType()->isIntegerTy(8))
2865 return false;
2866
2867 // Check to make sure that the first operand of the GEP is an integer and
2868 // has value 0 so that we are sure we're indexing into the initializer.
2869 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2870 if (!FirstIdx || !FirstIdx->isZero())
2871 return false;
2872
2873 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002874}
Chris Lattnere28618d2010-11-30 22:25:26 +00002875
Sanjay Patelaee84212014-11-04 16:27:42 +00002876/// This function computes the length of a null-terminated C string pointed to
2877/// by V. If successful, it returns true and returns the string in Str.
2878/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002879bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2880 uint64_t Offset, bool TrimAtNul) {
2881 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002882
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002883 // Look through bitcast instructions and geps.
2884 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002885
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002886 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002887 // offset.
2888 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002889 // The GEP operator should be based on a pointer to string constant, and is
2890 // indexing into the string constant.
2891 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002892 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002893
Evan Chengda3db112008-06-30 07:31:25 +00002894 // If the second index isn't a ConstantInt, then this is a variable index
2895 // into the array. If this occurs, we can't say anything meaningful about
2896 // the string.
2897 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002898 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002899 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002900 else
2901 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002902 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2903 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002904 }
Nick Lewycky46209882011-10-20 00:34:35 +00002905
Evan Chengda3db112008-06-30 07:31:25 +00002906 // The GEP instruction, constant or instruction, must reference a global
2907 // variable that is a constant and is initialized. The referenced constant
2908 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002909 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002910 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002911 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002912
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002913 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002914 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002915 // This is a degenerate case. The initializer is constant zero so the
2916 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002917 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002918 return true;
2919 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002920
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002921 // This must be a ConstantDataArray.
2922 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002923 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002924 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002925
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002926 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002927 uint64_t NumElts = Array->getType()->getArrayNumElements();
2928
2929 // Start out with the entire array in the StringRef.
2930 Str = Array->getAsString();
2931
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002932 if (Offset > NumElts)
2933 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002934
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002935 // Skip over 'offset' bytes.
2936 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002937
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002938 if (TrimAtNul) {
2939 // Trim off the \0 and anything after it. If the array is not nul
2940 // terminated, we just return the whole end of string. The client may know
2941 // some other way that the string is length-bound.
2942 Str = Str.substr(0, Str.find('\0'));
2943 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002944 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002945}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002946
2947// These next two are very similar to the above, but also look through PHI
2948// nodes.
2949// TODO: See if we can integrate these two together.
2950
Sanjay Patelaee84212014-11-04 16:27:42 +00002951/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002952/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00002953static uint64_t GetStringLengthH(const Value *V,
2954 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002955 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002956 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002957
2958 // If this is a PHI node, there are two cases: either we have already seen it
2959 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00002960 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002961 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002962 return ~0ULL; // already in the set.
2963
2964 // If it was new, see if all the input strings are the same length.
2965 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002966 for (Value *IncValue : PN->incoming_values()) {
2967 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002968 if (Len == 0) return 0; // Unknown length -> unknown.
2969
2970 if (Len == ~0ULL) continue;
2971
2972 if (Len != LenSoFar && LenSoFar != ~0ULL)
2973 return 0; // Disagree -> unknown.
2974 LenSoFar = Len;
2975 }
2976
2977 // Success, all agree.
2978 return LenSoFar;
2979 }
2980
2981 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00002982 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002983 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2984 if (Len1 == 0) return 0;
2985 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2986 if (Len2 == 0) return 0;
2987 if (Len1 == ~0ULL) return Len2;
2988 if (Len2 == ~0ULL) return Len1;
2989 if (Len1 != Len2) return 0;
2990 return Len1;
2991 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002992
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002993 // Otherwise, see if we can read the string.
2994 StringRef StrData;
2995 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002996 return 0;
2997
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002998 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002999}
3000
Sanjay Patelaee84212014-11-04 16:27:42 +00003001/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003002/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003003uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003004 if (!V->getType()->isPointerTy()) return 0;
3005
Pete Cooper35b00d52016-08-13 01:05:32 +00003006 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003007 uint64_t Len = GetStringLengthH(V, PHIs);
3008 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3009 // an empty string as a length.
3010 return Len == ~0ULL ? 1 : Len;
3011}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003012
Adam Nemete2b885c2015-04-23 20:09:20 +00003013/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3014/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003015static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3016 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003017 // Find the loop-defined value.
3018 Loop *L = LI->getLoopFor(PN->getParent());
3019 if (PN->getNumIncomingValues() != 2)
3020 return true;
3021
3022 // Find the value from previous iteration.
3023 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3024 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3025 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3026 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3027 return true;
3028
3029 // If a new pointer is loaded in the loop, the pointer references a different
3030 // object in every iteration. E.g.:
3031 // for (i)
3032 // int *p = a[i];
3033 // ...
3034 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3035 if (!L->isLoopInvariant(Load->getPointerOperand()))
3036 return false;
3037 return true;
3038}
3039
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003040Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3041 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003042 if (!V->getType()->isPointerTy())
3043 return V;
3044 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3045 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3046 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003047 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3048 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003049 V = cast<Operator>(V)->getOperand(0);
3050 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003051 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003052 return V;
3053 V = GA->getAliasee();
3054 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003055 if (auto CS = CallSite(V))
3056 if (Value *RV = CS.getReturnedArgOperand()) {
3057 V = RV;
3058 continue;
3059 }
3060
Dan Gohman05b18f12010-12-15 20:49:55 +00003061 // See if InstructionSimplify knows any relevant tricks.
3062 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003063 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003064 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003065 V = Simplified;
3066 continue;
3067 }
3068
Dan Gohmana4fcd242010-12-15 20:02:24 +00003069 return V;
3070 }
3071 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3072 }
3073 return V;
3074}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003075
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003076void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003077 const DataLayout &DL, LoopInfo *LI,
3078 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003079 SmallPtrSet<Value *, 4> Visited;
3080 SmallVector<Value *, 4> Worklist;
3081 Worklist.push_back(V);
3082 do {
3083 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003084 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003085
David Blaikie70573dc2014-11-19 07:49:26 +00003086 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003087 continue;
3088
3089 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3090 Worklist.push_back(SI->getTrueValue());
3091 Worklist.push_back(SI->getFalseValue());
3092 continue;
3093 }
3094
3095 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003096 // If this PHI changes the underlying object in every iteration of the
3097 // loop, don't look through it. Consider:
3098 // int **A;
3099 // for (i) {
3100 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3101 // Curr = A[i];
3102 // *Prev, *Curr;
3103 //
3104 // Prev is tracking Curr one iteration behind so they refer to different
3105 // underlying objects.
3106 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3107 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003108 for (Value *IncValue : PN->incoming_values())
3109 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003110 continue;
3111 }
3112
3113 Objects.push_back(P);
3114 } while (!Worklist.empty());
3115}
3116
Sanjay Patelaee84212014-11-04 16:27:42 +00003117/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003118bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003119 for (const User *U : V->users()) {
3120 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003121 if (!II) return false;
3122
3123 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3124 II->getIntrinsicID() != Intrinsic::lifetime_end)
3125 return false;
3126 }
3127 return true;
3128}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003129
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003130bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3131 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003132 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003133 const Operator *Inst = dyn_cast<Operator>(V);
3134 if (!Inst)
3135 return false;
3136
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003137 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3138 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3139 if (C->canTrap())
3140 return false;
3141
3142 switch (Inst->getOpcode()) {
3143 default:
3144 return true;
3145 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003146 case Instruction::URem: {
3147 // x / y is undefined if y == 0.
3148 const APInt *V;
3149 if (match(Inst->getOperand(1), m_APInt(V)))
3150 return *V != 0;
3151 return false;
3152 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003153 case Instruction::SDiv:
3154 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003155 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003156 const APInt *Numerator, *Denominator;
3157 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3158 return false;
3159 // We cannot hoist this division if the denominator is 0.
3160 if (*Denominator == 0)
3161 return false;
3162 // It's safe to hoist if the denominator is not 0 or -1.
3163 if (*Denominator != -1)
3164 return true;
3165 // At this point we know that the denominator is -1. It is safe to hoist as
3166 // long we know that the numerator is not INT_MIN.
3167 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3168 return !Numerator->isMinSignedValue();
3169 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003170 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003171 }
3172 case Instruction::Load: {
3173 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003174 if (!LI->isUnordered() ||
3175 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003176 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003177 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003178 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003179 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003180 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003181 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3182 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003183 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003184 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003185 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3186 switch (II->getIntrinsicID()) {
3187 // These synthetic intrinsics have no side-effects and just mark
3188 // information about their operands.
3189 // FIXME: There are other no-op synthetic instructions that potentially
3190 // should be considered at least *safe* to speculate...
3191 case Intrinsic::dbg_declare:
3192 case Intrinsic::dbg_value:
3193 return true;
3194
3195 case Intrinsic::bswap:
3196 case Intrinsic::ctlz:
3197 case Intrinsic::ctpop:
3198 case Intrinsic::cttz:
3199 case Intrinsic::objectsize:
3200 case Intrinsic::sadd_with_overflow:
3201 case Intrinsic::smul_with_overflow:
3202 case Intrinsic::ssub_with_overflow:
3203 case Intrinsic::uadd_with_overflow:
3204 case Intrinsic::umul_with_overflow:
3205 case Intrinsic::usub_with_overflow:
3206 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003207 // These intrinsics are defined to have the same behavior as libm
3208 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003209 case Intrinsic::sqrt:
3210 case Intrinsic::fma:
3211 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003212 return true;
3213 // These intrinsics are defined to have the same behavior as libm
3214 // functions, and the corresponding libm functions never set errno.
3215 case Intrinsic::trunc:
3216 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003217 case Intrinsic::fabs:
3218 case Intrinsic::minnum:
3219 case Intrinsic::maxnum:
3220 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003221 // These intrinsics are defined to have the same behavior as libm
3222 // functions, which never overflow when operating on the IEEE754 types
3223 // that we support, and never set errno otherwise.
3224 case Intrinsic::ceil:
3225 case Intrinsic::floor:
3226 case Intrinsic::nearbyint:
3227 case Intrinsic::rint:
3228 case Intrinsic::round:
3229 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003230 // TODO: are convert_{from,to}_fp16 safe?
3231 // TODO: can we list target-specific intrinsics here?
3232 default: break;
3233 }
3234 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003235 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003236 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003237 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003238 case Instruction::VAArg:
3239 case Instruction::Alloca:
3240 case Instruction::Invoke:
3241 case Instruction::PHI:
3242 case Instruction::Store:
3243 case Instruction::Ret:
3244 case Instruction::Br:
3245 case Instruction::IndirectBr:
3246 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003247 case Instruction::Unreachable:
3248 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003249 case Instruction::AtomicRMW:
3250 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003251 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003252 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003253 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003254 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003255 case Instruction::CatchRet:
3256 case Instruction::CleanupPad:
3257 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003258 return false; // Misc instructions which have effects
3259 }
3260}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003261
Quentin Colombet6443cce2015-08-06 18:44:34 +00003262bool llvm::mayBeMemoryDependent(const Instruction &I) {
3263 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3264}
3265
Sanjay Patelaee84212014-11-04 16:27:42 +00003266/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003267bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003268 assert(V->getType()->isPointerTy() && "V must be pointer type");
3269
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003270 // Alloca never returns null, malloc might.
3271 if (isa<AllocaInst>(V)) return true;
3272
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003273 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003274 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003275 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003276
Pete Cooper6b716212015-08-27 03:16:29 +00003277 // A global variable in address space 0 is non null unless extern weak.
3278 // Other address spaces may have null as a valid address for a global,
3279 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003280 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003281 return !GV->hasExternalWeakLinkage() &&
3282 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003283
Sanjoy Das5056e192016-05-07 02:08:22 +00003284 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003285 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003286 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003287
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003288 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003289 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003290 return true;
3291
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003292 return false;
3293}
David Majnemer491331a2015-01-02 07:29:43 +00003294
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003295static bool isKnownNonNullFromDominatingCondition(const Value *V,
3296 const Instruction *CtxI,
3297 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003298 assert(V->getType()->isPointerTy() && "V must be pointer type");
3299
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003300 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003301 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003302 // Avoid massive lists
3303 if (NumUsesExplored >= DomConditionsMaxUses)
3304 break;
3305 NumUsesExplored++;
3306 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003307 CmpInst::Predicate Pred;
3308 if (!match(const_cast<User *>(U),
3309 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3310 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003311 continue;
3312
Sanjoy Das987aaa12016-05-07 02:08:24 +00003313 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003314 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3315 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003316
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003317 BasicBlock *NonNullSuccessor =
3318 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3319 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3320 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3321 return true;
3322 } else if (Pred == ICmpInst::ICMP_NE &&
3323 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3324 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003325 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003326 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003327 }
3328 }
3329
3330 return false;
3331}
3332
3333bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003334 const DominatorTree *DT) {
3335 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003336 return true;
3337
3338 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3339}
3340
Pete Cooper35b00d52016-08-13 01:05:32 +00003341OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3342 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003343 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003344 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003345 const Instruction *CxtI,
3346 const DominatorTree *DT) {
3347 // Multiplying n * m significant bits yields a result of n + m significant
3348 // bits. If the total number of significant bits does not exceed the
3349 // result bit width (minus 1), there is no overflow.
3350 // This means if we have enough leading zero bits in the operands
3351 // we can guarantee that the result does not overflow.
3352 // Ref: "Hacker's Delight" by Henry Warren
3353 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3354 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003355 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003356 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003357 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003358 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3359 DT);
3360 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3361 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003362 // Note that underestimating the number of zero bits gives a more
3363 // conservative answer.
3364 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3365 RHSKnownZero.countLeadingOnes();
3366 // First handle the easy case: if we have enough zero bits there's
3367 // definitely no overflow.
3368 if (ZeroBits >= BitWidth)
3369 return OverflowResult::NeverOverflows;
3370
3371 // Get the largest possible values for each operand.
3372 APInt LHSMax = ~LHSKnownZero;
3373 APInt RHSMax = ~RHSKnownZero;
3374
3375 // We know the multiply operation doesn't overflow if the maximum values for
3376 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003377 bool MaxOverflow;
3378 LHSMax.umul_ov(RHSMax, MaxOverflow);
3379 if (!MaxOverflow)
3380 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003381
David Majnemerc8a576b2015-01-02 07:29:47 +00003382 // We know it always overflows if multiplying the smallest possible values for
3383 // the operands also results in overflow.
3384 bool MinOverflow;
3385 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3386 if (MinOverflow)
3387 return OverflowResult::AlwaysOverflows;
3388
3389 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003390}
David Majnemer5310c1e2015-01-07 00:39:50 +00003391
Pete Cooper35b00d52016-08-13 01:05:32 +00003392OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3393 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003394 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003395 AssumptionCache *AC,
3396 const Instruction *CxtI,
3397 const DominatorTree *DT) {
3398 bool LHSKnownNonNegative, LHSKnownNegative;
3399 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3400 AC, CxtI, DT);
3401 if (LHSKnownNonNegative || LHSKnownNegative) {
3402 bool RHSKnownNonNegative, RHSKnownNegative;
3403 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3404 AC, CxtI, DT);
3405
3406 if (LHSKnownNegative && RHSKnownNegative) {
3407 // The sign bit is set in both cases: this MUST overflow.
3408 // Create a simple add instruction, and insert it into the struct.
3409 return OverflowResult::AlwaysOverflows;
3410 }
3411
3412 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3413 // The sign bit is clear in both cases: this CANNOT overflow.
3414 // Create a simple add instruction, and insert it into the struct.
3415 return OverflowResult::NeverOverflows;
3416 }
3417 }
3418
3419 return OverflowResult::MayOverflow;
3420}
James Molloy71b91c22015-05-11 14:42:20 +00003421
Pete Cooper35b00d52016-08-13 01:05:32 +00003422static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3423 const Value *RHS,
3424 const AddOperator *Add,
3425 const DataLayout &DL,
3426 AssumptionCache *AC,
3427 const Instruction *CxtI,
3428 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003429 if (Add && Add->hasNoSignedWrap()) {
3430 return OverflowResult::NeverOverflows;
3431 }
3432
3433 bool LHSKnownNonNegative, LHSKnownNegative;
3434 bool RHSKnownNonNegative, RHSKnownNegative;
3435 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3436 AC, CxtI, DT);
3437 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3438 AC, CxtI, DT);
3439
3440 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3441 (LHSKnownNegative && RHSKnownNonNegative)) {
3442 // The sign bits are opposite: this CANNOT overflow.
3443 return OverflowResult::NeverOverflows;
3444 }
3445
3446 // The remaining code needs Add to be available. Early returns if not so.
3447 if (!Add)
3448 return OverflowResult::MayOverflow;
3449
3450 // If the sign of Add is the same as at least one of the operands, this add
3451 // CANNOT overflow. This is particularly useful when the sum is
3452 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3453 // operands.
3454 bool LHSOrRHSKnownNonNegative =
3455 (LHSKnownNonNegative || RHSKnownNonNegative);
3456 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3457 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3458 bool AddKnownNonNegative, AddKnownNegative;
3459 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3460 /*Depth=*/0, AC, CxtI, DT);
3461 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3462 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3463 return OverflowResult::NeverOverflows;
3464 }
3465 }
3466
3467 return OverflowResult::MayOverflow;
3468}
3469
Pete Cooper35b00d52016-08-13 01:05:32 +00003470bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3471 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003472#ifndef NDEBUG
3473 auto IID = II->getIntrinsicID();
3474 assert((IID == Intrinsic::sadd_with_overflow ||
3475 IID == Intrinsic::uadd_with_overflow ||
3476 IID == Intrinsic::ssub_with_overflow ||
3477 IID == Intrinsic::usub_with_overflow ||
3478 IID == Intrinsic::smul_with_overflow ||
3479 IID == Intrinsic::umul_with_overflow) &&
3480 "Not an overflow intrinsic!");
3481#endif
3482
Pete Cooper35b00d52016-08-13 01:05:32 +00003483 SmallVector<const BranchInst *, 2> GuardingBranches;
3484 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003485
Pete Cooper35b00d52016-08-13 01:05:32 +00003486 for (const User *U : II->users()) {
3487 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003488 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3489
3490 if (EVI->getIndices()[0] == 0)
3491 Results.push_back(EVI);
3492 else {
3493 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3494
Pete Cooper35b00d52016-08-13 01:05:32 +00003495 for (const auto *U : EVI->users())
3496 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003497 assert(B->isConditional() && "How else is it using an i1?");
3498 GuardingBranches.push_back(B);
3499 }
3500 }
3501 } else {
3502 // We are using the aggregate directly in a way we don't want to analyze
3503 // here (storing it to a global, say).
3504 return false;
3505 }
3506 }
3507
Pete Cooper35b00d52016-08-13 01:05:32 +00003508 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003509 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3510 if (!NoWrapEdge.isSingleEdge())
3511 return false;
3512
3513 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003514 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003515 // If the extractvalue itself is not executed on overflow, the we don't
3516 // need to check each use separately, since domination is transitive.
3517 if (DT.dominates(NoWrapEdge, Result->getParent()))
3518 continue;
3519
3520 for (auto &RU : Result->uses())
3521 if (!DT.dominates(NoWrapEdge, RU))
3522 return false;
3523 }
3524
3525 return true;
3526 };
3527
3528 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3529}
3530
3531
Pete Cooper35b00d52016-08-13 01:05:32 +00003532OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003533 const DataLayout &DL,
3534 AssumptionCache *AC,
3535 const Instruction *CxtI,
3536 const DominatorTree *DT) {
3537 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3538 Add, DL, AC, CxtI, DT);
3539}
3540
Pete Cooper35b00d52016-08-13 01:05:32 +00003541OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3542 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003543 const DataLayout &DL,
3544 AssumptionCache *AC,
3545 const Instruction *CxtI,
3546 const DominatorTree *DT) {
3547 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3548}
3549
Jingyue Wu42f1d672015-07-28 18:22:40 +00003550bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003551 // A memory operation returns normally if it isn't volatile. A volatile
3552 // operation is allowed to trap.
3553 //
3554 // An atomic operation isn't guaranteed to return in a reasonable amount of
3555 // time because it's possible for another thread to interfere with it for an
3556 // arbitrary length of time, but programs aren't allowed to rely on that.
3557 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3558 return !LI->isVolatile();
3559 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3560 return !SI->isVolatile();
3561 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3562 return !CXI->isVolatile();
3563 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3564 return !RMWI->isVolatile();
3565 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3566 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003567
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003568 // If there is no successor, then execution can't transfer to it.
3569 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3570 return !CRI->unwindsToCaller();
3571 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3572 return !CatchSwitch->unwindsToCaller();
3573 if (isa<ResumeInst>(I))
3574 return false;
3575 if (isa<ReturnInst>(I))
3576 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003577
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003578 // Calls can throw, or contain an infinite loop, or kill the process.
3579 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3580 // Calls which don't write to arbitrary memory are safe.
3581 // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3582 // but it's consistent with other passes. See http://llvm.org/PR965 .
3583 // FIXME: This isn't aggressive enough; a call which only writes to a
3584 // global is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003585 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3586 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003587 }
3588
3589 // Other instructions return normally.
3590 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003591}
3592
3593bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3594 const Loop *L) {
3595 // The loop header is guaranteed to be executed for every iteration.
3596 //
3597 // FIXME: Relax this constraint to cover all basic blocks that are
3598 // guaranteed to be executed at every iteration.
3599 if (I->getParent() != L->getHeader()) return false;
3600
3601 for (const Instruction &LI : *L->getHeader()) {
3602 if (&LI == I) return true;
3603 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3604 }
3605 llvm_unreachable("Instruction not contained in its own parent basic block.");
3606}
3607
3608bool llvm::propagatesFullPoison(const Instruction *I) {
3609 switch (I->getOpcode()) {
3610 case Instruction::Add:
3611 case Instruction::Sub:
3612 case Instruction::Xor:
3613 case Instruction::Trunc:
3614 case Instruction::BitCast:
3615 case Instruction::AddrSpaceCast:
3616 // These operations all propagate poison unconditionally. Note that poison
3617 // is not any particular value, so xor or subtraction of poison with
3618 // itself still yields poison, not zero.
3619 return true;
3620
3621 case Instruction::AShr:
3622 case Instruction::SExt:
3623 // For these operations, one bit of the input is replicated across
3624 // multiple output bits. A replicated poison bit is still poison.
3625 return true;
3626
3627 case Instruction::Shl: {
3628 // Left shift *by* a poison value is poison. The number of
3629 // positions to shift is unsigned, so no negative values are
3630 // possible there. Left shift by zero places preserves poison. So
3631 // it only remains to consider left shift of poison by a positive
3632 // number of places.
3633 //
3634 // A left shift by a positive number of places leaves the lowest order bit
3635 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3636 // make the poison operand violate that flag, yielding a fresh full-poison
3637 // value.
3638 auto *OBO = cast<OverflowingBinaryOperator>(I);
3639 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3640 }
3641
3642 case Instruction::Mul: {
3643 // A multiplication by zero yields a non-poison zero result, so we need to
3644 // rule out zero as an operand. Conservatively, multiplication by a
3645 // non-zero constant is not multiplication by zero.
3646 //
3647 // Multiplication by a non-zero constant can leave some bits
3648 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3649 // order bit unpoisoned. So we need to consider that.
3650 //
3651 // Multiplication by 1 preserves poison. If the multiplication has a
3652 // no-wrap flag, then we can make the poison operand violate that flag
3653 // when multiplied by any integer other than 0 and 1.
3654 auto *OBO = cast<OverflowingBinaryOperator>(I);
3655 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3656 for (Value *V : OBO->operands()) {
3657 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3658 // A ConstantInt cannot yield poison, so we can assume that it is
3659 // the other operand that is poison.
3660 return !CI->isZero();
3661 }
3662 }
3663 }
3664 return false;
3665 }
3666
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003667 case Instruction::ICmp:
3668 // Comparing poison with any value yields poison. This is why, for
3669 // instance, x s< (x +nsw 1) can be folded to true.
3670 return true;
3671
Jingyue Wu42f1d672015-07-28 18:22:40 +00003672 case Instruction::GetElementPtr:
3673 // A GEP implicitly represents a sequence of additions, subtractions,
3674 // truncations, sign extensions and multiplications. The multiplications
3675 // are by the non-zero sizes of some set of types, so we do not have to be
3676 // concerned with multiplication by zero. If the GEP is in-bounds, then
3677 // these operations are implicitly no-signed-wrap so poison is propagated
3678 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3679 return cast<GEPOperator>(I)->isInBounds();
3680
3681 default:
3682 return false;
3683 }
3684}
3685
3686const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3687 switch (I->getOpcode()) {
3688 case Instruction::Store:
3689 return cast<StoreInst>(I)->getPointerOperand();
3690
3691 case Instruction::Load:
3692 return cast<LoadInst>(I)->getPointerOperand();
3693
3694 case Instruction::AtomicCmpXchg:
3695 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3696
3697 case Instruction::AtomicRMW:
3698 return cast<AtomicRMWInst>(I)->getPointerOperand();
3699
3700 case Instruction::UDiv:
3701 case Instruction::SDiv:
3702 case Instruction::URem:
3703 case Instruction::SRem:
3704 return I->getOperand(1);
3705
3706 default:
3707 return nullptr;
3708 }
3709}
3710
3711bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3712 // We currently only look for uses of poison values within the same basic
3713 // block, as that makes it easier to guarantee that the uses will be
3714 // executed given that PoisonI is executed.
3715 //
3716 // FIXME: Expand this to consider uses beyond the same basic block. To do
3717 // this, look out for the distinction between post-dominance and strong
3718 // post-dominance.
3719 const BasicBlock *BB = PoisonI->getParent();
3720
3721 // Set of instructions that we have proved will yield poison if PoisonI
3722 // does.
3723 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003724 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003725 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003726 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003727
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003728 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003729
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003730 unsigned Iter = 0;
3731 while (Iter++ < MaxDepth) {
3732 for (auto &I : make_range(Begin, End)) {
3733 if (&I != PoisonI) {
3734 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3735 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3736 return true;
3737 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3738 return false;
3739 }
3740
3741 // Mark poison that propagates from I through uses of I.
3742 if (YieldsPoison.count(&I)) {
3743 for (const User *User : I.users()) {
3744 const Instruction *UserI = cast<Instruction>(User);
3745 if (propagatesFullPoison(UserI))
3746 YieldsPoison.insert(User);
3747 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003748 }
3749 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003750
3751 if (auto *NextBB = BB->getSingleSuccessor()) {
3752 if (Visited.insert(NextBB).second) {
3753 BB = NextBB;
3754 Begin = BB->getFirstNonPHI()->getIterator();
3755 End = BB->end();
3756 continue;
3757 }
3758 }
3759
3760 break;
3761 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003762 return false;
3763}
3764
Pete Cooper35b00d52016-08-13 01:05:32 +00003765static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003766 if (FMF.noNaNs())
3767 return true;
3768
3769 if (auto *C = dyn_cast<ConstantFP>(V))
3770 return !C->isNaN();
3771 return false;
3772}
3773
Pete Cooper35b00d52016-08-13 01:05:32 +00003774static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003775 if (auto *C = dyn_cast<ConstantFP>(V))
3776 return !C->isZero();
3777 return false;
3778}
3779
3780static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3781 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003782 Value *CmpLHS, Value *CmpRHS,
3783 Value *TrueVal, Value *FalseVal,
3784 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003785 LHS = CmpLHS;
3786 RHS = CmpRHS;
3787
James Molloy134bec22015-08-11 09:12:57 +00003788 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3789 // return inconsistent results between implementations.
3790 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3791 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3792 // Therefore we behave conservatively and only proceed if at least one of the
3793 // operands is known to not be zero, or if we don't care about signed zeroes.
3794 switch (Pred) {
3795 default: break;
3796 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3797 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3798 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3799 !isKnownNonZero(CmpRHS))
3800 return {SPF_UNKNOWN, SPNB_NA, false};
3801 }
3802
3803 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3804 bool Ordered = false;
3805
3806 // When given one NaN and one non-NaN input:
3807 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3808 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3809 // ordered comparison fails), which could be NaN or non-NaN.
3810 // so here we discover exactly what NaN behavior is required/accepted.
3811 if (CmpInst::isFPPredicate(Pred)) {
3812 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3813 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3814
3815 if (LHSSafe && RHSSafe) {
3816 // Both operands are known non-NaN.
3817 NaNBehavior = SPNB_RETURNS_ANY;
3818 } else if (CmpInst::isOrdered(Pred)) {
3819 // An ordered comparison will return false when given a NaN, so it
3820 // returns the RHS.
3821 Ordered = true;
3822 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003823 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003824 NaNBehavior = SPNB_RETURNS_NAN;
3825 else if (RHSSafe)
3826 NaNBehavior = SPNB_RETURNS_OTHER;
3827 else
3828 // Completely unsafe.
3829 return {SPF_UNKNOWN, SPNB_NA, false};
3830 } else {
3831 Ordered = false;
3832 // An unordered comparison will return true when given a NaN, so it
3833 // returns the LHS.
3834 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003835 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003836 NaNBehavior = SPNB_RETURNS_OTHER;
3837 else if (RHSSafe)
3838 NaNBehavior = SPNB_RETURNS_NAN;
3839 else
3840 // Completely unsafe.
3841 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003842 }
3843 }
3844
James Molloy71b91c22015-05-11 14:42:20 +00003845 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003846 std::swap(CmpLHS, CmpRHS);
3847 Pred = CmpInst::getSwappedPredicate(Pred);
3848 if (NaNBehavior == SPNB_RETURNS_NAN)
3849 NaNBehavior = SPNB_RETURNS_OTHER;
3850 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3851 NaNBehavior = SPNB_RETURNS_NAN;
3852 Ordered = !Ordered;
3853 }
3854
3855 // ([if]cmp X, Y) ? X : Y
3856 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003857 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003858 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003859 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003860 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003861 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003862 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003863 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003864 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003865 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003866 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3867 case FCmpInst::FCMP_UGT:
3868 case FCmpInst::FCMP_UGE:
3869 case FCmpInst::FCMP_OGT:
3870 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3871 case FCmpInst::FCMP_ULT:
3872 case FCmpInst::FCMP_ULE:
3873 case FCmpInst::FCMP_OLT:
3874 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003875 }
3876 }
3877
3878 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3879 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3880 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3881
3882 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3883 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3884 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003885 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003886 }
3887
3888 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3889 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3890 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003891 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003892 }
3893 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003894
James Molloy71b91c22015-05-11 14:42:20 +00003895 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3896 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003897 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3898 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003899 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3900 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3901 LHS = TrueVal;
3902 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003903 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003904 }
3905 }
3906 }
3907
3908 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3909
James Molloy134bec22015-08-11 09:12:57 +00003910 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003911}
James Molloy270ef8c2015-05-15 16:04:50 +00003912
James Molloy569cea62015-09-02 17:25:25 +00003913static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3914 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003915 CastInst *CI = dyn_cast<CastInst>(V1);
3916 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003917 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003918 return nullptr;
3919 *CastOp = CI->getOpcode();
3920
David Majnemerd2a074b2016-04-29 18:40:34 +00003921 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00003922 // If V1 and V2 are both the same cast from the same type, we can look
3923 // through V1.
3924 if (CI2->getOpcode() == CI->getOpcode() &&
3925 CI2->getSrcTy() == CI->getSrcTy())
3926 return CI2->getOperand(0);
3927 return nullptr;
3928 } else if (!C) {
3929 return nullptr;
3930 }
3931
David Majnemerd2a074b2016-04-29 18:40:34 +00003932 Constant *CastedTo = nullptr;
3933
David Majnemer826e9832016-04-29 21:22:04 +00003934 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3935 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3936
David Majnemerd2a074b2016-04-29 18:40:34 +00003937 if (isa<SExtInst>(CI) && CmpI->isSigned())
3938 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3939
David Majnemer826e9832016-04-29 21:22:04 +00003940 if (isa<TruncInst>(CI))
3941 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3942
3943 if (isa<FPTruncInst>(CI))
3944 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3945
3946 if (isa<FPExtInst>(CI))
3947 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3948
David Majnemerd2a074b2016-04-29 18:40:34 +00003949 if (isa<FPToUIInst>(CI))
3950 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3951
3952 if (isa<FPToSIInst>(CI))
3953 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3954
3955 if (isa<UIToFPInst>(CI))
3956 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3957
3958 if (isa<SIToFPInst>(CI))
3959 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3960
3961 if (!CastedTo)
3962 return nullptr;
3963
3964 Constant *CastedBack =
3965 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3966 // Make sure the cast doesn't lose any information.
3967 if (CastedBack != C)
3968 return nullptr;
3969
3970 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00003971}
3972
Sanjay Patele8dc0902016-05-23 17:57:54 +00003973SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003974 Instruction::CastOps *CastOp) {
3975 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003976 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003977
James Molloy134bec22015-08-11 09:12:57 +00003978 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3979 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003980
James Molloy134bec22015-08-11 09:12:57 +00003981 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003982 Value *CmpLHS = CmpI->getOperand(0);
3983 Value *CmpRHS = CmpI->getOperand(1);
3984 Value *TrueVal = SI->getTrueValue();
3985 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003986 FastMathFlags FMF;
3987 if (isa<FPMathOperator>(CmpI))
3988 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003989
3990 // Bail out early.
3991 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003992 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003993
3994 // Deal with type mismatches.
3995 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003996 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003997 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003998 cast<CastInst>(TrueVal)->getOperand(0), C,
3999 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004000 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004001 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004002 C, cast<CastInst>(FalseVal)->getOperand(0),
4003 LHS, RHS);
4004 }
James Molloy134bec22015-08-11 09:12:57 +00004005 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004006 LHS, RHS);
4007}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004008
Pete Cooper35b00d52016-08-13 01:05:32 +00004009ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004010 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4011 assert(NumRanges >= 1 && "Must have at least one range!");
4012 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4013
4014 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4015 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4016
4017 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4018
4019 for (unsigned i = 1; i < NumRanges; ++i) {
4020 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4021 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4022
4023 // Note: unionWith will potentially create a range that contains values not
4024 // contained in any of the original N ranges.
4025 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4026 }
4027
4028 return CR;
4029}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004030
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004031/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004032static bool isTruePredicate(CmpInst::Predicate Pred,
4033 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004034 const DataLayout &DL, unsigned Depth,
4035 AssumptionCache *AC, const Instruction *CxtI,
4036 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004037 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004038 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4039 return true;
4040
4041 switch (Pred) {
4042 default:
4043 return false;
4044
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004045 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004046 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004047
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004048 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004049 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004050 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004051 return false;
4052 }
4053
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004054 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004055 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004056
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004057 // LHS u<= LHS +_{nuw} C for any C
4058 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004059 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004060
4061 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004062 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4063 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004064 const APInt *&CA, const APInt *&CB) {
4065 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4066 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4067 return true;
4068
4069 // If X & C == 0 then (X | C) == X +_{nuw} C
4070 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4071 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4072 unsigned BitWidth = CA->getBitWidth();
4073 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4074 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4075
4076 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4077 return true;
4078 }
4079
4080 return false;
4081 };
4082
Pete Cooper35b00d52016-08-13 01:05:32 +00004083 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004084 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004085 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4086 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004087
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004088 return false;
4089 }
4090 }
4091}
4092
4093/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004094/// ALHS ARHS" is true. Otherwise, return None.
4095static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004096isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4097 const Value *ARHS, const Value *BLHS,
4098 const Value *BRHS, const DataLayout &DL,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004099 unsigned Depth, AssumptionCache *AC,
4100 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004101 switch (Pred) {
4102 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004103 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004104
4105 case CmpInst::ICMP_SLT:
4106 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004107 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4108 DT) &&
4109 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4110 return true;
4111 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004112
4113 case CmpInst::ICMP_ULT:
4114 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004115 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4116 DT) &&
4117 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4118 return true;
4119 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004120 }
4121}
4122
Chad Rosier226a7342016-05-05 17:41:19 +00004123/// Return true if the operands of the two compares match. IsSwappedOps is true
4124/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004125static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4126 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004127 bool &IsSwappedOps) {
4128
4129 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4130 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4131 return IsMatchingOps || IsSwappedOps;
4132}
4133
Chad Rosier41dd31f2016-04-20 19:15:26 +00004134/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4135/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4136/// BRHS" is false. Otherwise, return None if we can't infer anything.
4137static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004138 const Value *ALHS,
4139 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004140 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004141 const Value *BLHS,
4142 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004143 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004144 // Canonicalize the operands so they're matching.
4145 if (IsSwappedOps) {
4146 std::swap(BLHS, BRHS);
4147 BPred = ICmpInst::getSwappedPredicate(BPred);
4148 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004149 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004150 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004151 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004152 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004153
Chad Rosier41dd31f2016-04-20 19:15:26 +00004154 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004155}
4156
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004157/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4158/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4159/// C2" is false. Otherwise, return None if we can't infer anything.
4160static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004161isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4162 const ConstantInt *C1,
4163 CmpInst::Predicate BPred,
4164 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004165 assert(ALHS == BLHS && "LHS operands must match.");
4166 ConstantRange DomCR =
4167 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4168 ConstantRange CR =
4169 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4170 ConstantRange Intersection = DomCR.intersectWith(CR);
4171 ConstantRange Difference = DomCR.difference(CR);
4172 if (Intersection.isEmptySet())
4173 return false;
4174 if (Difference.isEmptySet())
4175 return true;
4176 return None;
4177}
4178
Pete Cooper35b00d52016-08-13 01:05:32 +00004179Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004180 const DataLayout &DL, bool InvertAPred,
4181 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004182 const Instruction *CxtI,
4183 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004184 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4185 if (LHS->getType() != RHS->getType())
4186 return None;
4187
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004188 Type *OpTy = LHS->getType();
4189 assert(OpTy->getScalarType()->isIntegerTy(1));
4190
4191 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004192 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004193 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004194
4195 if (OpTy->isVectorTy())
4196 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004197 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004198 assert(OpTy->isIntegerTy(1) && "implied by above");
4199
4200 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004201 Value *ALHS, *ARHS;
4202 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004203
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004204 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4205 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004206 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004207
Chad Rosiere2cbd132016-04-25 17:23:36 +00004208 if (InvertAPred)
4209 APred = CmpInst::getInversePredicate(APred);
4210
Chad Rosier226a7342016-05-05 17:41:19 +00004211 // Can we infer anything when the two compares have matching operands?
4212 bool IsSwappedOps;
4213 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4214 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4215 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004216 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004217 // No amount of additional analysis will infer the second condition, so
4218 // early exit.
4219 return None;
4220 }
4221
4222 // Can we infer anything when the LHS operands match and the RHS operands are
4223 // constants (not necessarily matching)?
4224 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4225 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4226 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4227 cast<ConstantInt>(BRHS)))
4228 return Implication;
4229 // No amount of additional analysis will infer the second condition, so
4230 // early exit.
4231 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004232 }
4233
Chad Rosier41dd31f2016-04-20 19:15:26 +00004234 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004235 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4236 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004237
Chad Rosier41dd31f2016-04-20 19:15:26 +00004238 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004239}