blob: f87a5596c86689d6e812c82bf7a6e2fa6fb5beb0 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000091#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000092#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000093using namespace llvm;
94
Chandler Carruthf1221bd2014-04-22 02:48:03 +000095#define DEBUG_TYPE "scalar-evolution"
96
Chris Lattner57ef9422006-12-19 22:30:33 +000097STATISTIC(NumArrayLenItCounts,
98 "Number of trip counts computed with array length");
99STATISTIC(NumTripCountsComputed,
100 "Number of loops with predictable loop counts");
101STATISTIC(NumTripCountsNotComputed,
102 "Number of loops without predictable loop counts");
103STATISTIC(NumBruteForceTripCountsComputed,
104 "Number of loops with trip counts computed by force");
105
Dan Gohmand78c4002008-05-13 00:00:25 +0000106static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000107MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
108 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000109 "symbolically execute a constant "
110 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000111 cl::init(100));
112
Benjamin Kramer214935e2012-10-26 17:31:32 +0000113// FIXME: Enable this with XDEBUG when the test suite is clean.
114static cl::opt<bool>
115VerifySCEV("verify-scev",
116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
117
Chris Lattnerd934c702004-04-02 20:23:17 +0000118//===----------------------------------------------------------------------===//
119// SCEV class definitions
120//===----------------------------------------------------------------------===//
121
122//===----------------------------------------------------------------------===//
123// Implementation of the SCEV class.
124//
Dan Gohman3423e722009-06-30 20:13:32 +0000125
Manman Ren49d684e2012-09-12 05:06:18 +0000126#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000127void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000128 print(dbgs());
129 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000130}
Manman Renc3366cc2012-09-06 19:55:56 +0000131#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000132
Dan Gohman534749b2010-11-17 22:27:42 +0000133void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000134 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000135 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000137 return;
138 case scTruncate: {
139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140 const SCEV *Op = Trunc->getOperand();
141 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142 << *Trunc->getType() << ")";
143 return;
144 }
145 case scZeroExtend: {
146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147 const SCEV *Op = ZExt->getOperand();
148 OS << "(zext " << *Op->getType() << " " << *Op << " to "
149 << *ZExt->getType() << ")";
150 return;
151 }
152 case scSignExtend: {
153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154 const SCEV *Op = SExt->getOperand();
155 OS << "(sext " << *Op->getType() << " " << *Op << " to "
156 << *SExt->getType() << ")";
157 return;
158 }
159 case scAddRecExpr: {
160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161 OS << "{" << *AR->getOperand(0);
162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163 OS << ",+," << *AR->getOperand(i);
164 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000165 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000166 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000167 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000168 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNW) &&
170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000173 OS << ">";
174 return;
175 }
176 case scAddExpr:
177 case scMulExpr:
178 case scUMaxExpr:
179 case scSMaxExpr: {
180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000181 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000182 switch (NAry->getSCEVType()) {
183 case scAddExpr: OpStr = " + "; break;
184 case scMulExpr: OpStr = " * "; break;
185 case scUMaxExpr: OpStr = " umax "; break;
186 case scSMaxExpr: OpStr = " smax "; break;
187 }
188 OS << "(";
189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190 I != E; ++I) {
191 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000192 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000193 OS << OpStr;
194 }
195 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000196 switch (NAry->getSCEVType()) {
197 case scAddExpr:
198 case scMulExpr:
199 if (NAry->getNoWrapFlags(FlagNUW))
200 OS << "<nuw>";
201 if (NAry->getNoWrapFlags(FlagNSW))
202 OS << "<nsw>";
203 }
Dan Gohman534749b2010-11-17 22:27:42 +0000204 return;
205 }
206 case scUDivExpr: {
207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209 return;
210 }
211 case scUnknown: {
212 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000213 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000214 if (U->isSizeOf(AllocTy)) {
215 OS << "sizeof(" << *AllocTy << ")";
216 return;
217 }
218 if (U->isAlignOf(AllocTy)) {
219 OS << "alignof(" << *AllocTy << ")";
220 return;
221 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000222
Chris Lattner229907c2011-07-18 04:54:35 +0000223 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000224 Constant *FieldNo;
225 if (U->isOffsetOf(CTy, FieldNo)) {
226 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000227 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000228 OS << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Dan Gohman534749b2010-11-17 22:27:42 +0000232 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000233 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000234 return;
235 }
236 case scCouldNotCompute:
237 OS << "***COULDNOTCOMPUTE***";
238 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattner229907c2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000244 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000264 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000266}
267
Dan Gohmanbe928e32008-06-18 16:23:07 +0000268bool SCEV::isZero() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isZero();
271 return false;
272}
273
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000274bool SCEV::isOne() const {
275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276 return SC->getValue()->isOne();
277 return false;
278}
Chris Lattnerd934c702004-04-02 20:23:17 +0000279
Dan Gohman18a96bb2009-06-24 00:30:26 +0000280bool SCEV::isAllOnesValue() const {
281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282 return SC->getValue()->isAllOnesValue();
283 return false;
284}
285
Andrew Trick881a7762012-01-07 00:27:31 +0000286/// isNonConstantNegative - Return true if the specified scev is negated, but
287/// not a constant.
288bool SCEV::isNonConstantNegative() const {
289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290 if (!Mul) return false;
291
292 // If there is a constant factor, it will be first.
293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294 if (!SC) return false;
295
296 // Return true if the value is negative, this matches things like (-42 * V).
297 return SC->getValue()->getValue().isNegative();
298}
299
Owen Anderson04052ec2009-06-22 21:57:23 +0000300SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000302
Chris Lattnerd934c702004-04-02 20:23:17 +0000303bool SCEVCouldNotCompute::classof(const SCEV *S) {
304 return S->getSCEVType() == scCouldNotCompute;
305}
306
Dan Gohmanaf752342009-07-07 17:06:11 +0000307const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000308 FoldingSetNodeID ID;
309 ID.AddInteger(scConstant);
310 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000311 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000314 UniqueSCEVs.InsertNode(S, IP);
315 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000316}
Chris Lattnerd934c702004-04-02 20:23:17 +0000317
Nick Lewycky31eaca52014-01-27 10:04:03 +0000318const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000319 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000320}
321
Dan Gohmanaf752342009-07-07 17:06:11 +0000322const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000323ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000325 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000326}
327
Dan Gohman24ceda82010-06-18 19:54:20 +0000328SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000329 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000338}
Chris Lattnerd934c702004-04-02 20:23:17 +0000339
Dan Gohman24ceda82010-06-18 19:54:20 +0000340SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000341 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000342 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346}
347
Dan Gohman24ceda82010-06-18 19:54:20 +0000348SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000349 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000350 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000354}
355
Dan Gohman7cac9572010-08-02 23:49:30 +0000356void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000357 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000358 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000359
360 // Remove this SCEVUnknown from the uniquing map.
361 SE->UniqueSCEVs.RemoveNode(this);
362
363 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000364 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000365}
366
367void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000368 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000369 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370
371 // Remove this SCEVUnknown from the uniquing map.
372 SE->UniqueSCEVs.RemoveNode(this);
373
374 // Update this SCEVUnknown to point to the new value. This is needed
375 // because there may still be outstanding SCEVs which still point to
376 // this SCEVUnknown.
377 setValPtr(New);
378}
379
Chris Lattner229907c2011-07-18 04:54:35 +0000380bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000382 if (VCE->getOpcode() == Instruction::PtrToInt)
383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000384 if (CE->getOpcode() == Instruction::GetElementPtr &&
385 CE->getOperand(0)->isNullValue() &&
386 CE->getNumOperands() == 2)
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388 if (CI->isOne()) {
389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390 ->getElementType();
391 return true;
392 }
Dan Gohmancf913832010-01-28 02:15:55 +0000393
394 return false;
395}
396
Chris Lattner229907c2011-07-18 04:54:35 +0000397bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000399 if (VCE->getOpcode() == Instruction::PtrToInt)
400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000401 if (CE->getOpcode() == Instruction::GetElementPtr &&
402 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000403 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000405 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (!STy->isPacked() &&
407 CE->getNumOperands() == 3 &&
408 CE->getOperand(1)->isNullValue()) {
409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410 if (CI->isOne() &&
411 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000412 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 AllocTy = STy->getElementType(1);
414 return true;
415 }
416 }
417 }
Dan Gohmancf913832010-01-28 02:15:55 +0000418
419 return false;
420}
421
Chris Lattner229907c2011-07-18 04:54:35 +0000422bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000424 if (VCE->getOpcode() == Instruction::PtrToInt)
425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426 if (CE->getOpcode() == Instruction::GetElementPtr &&
427 CE->getNumOperands() == 3 &&
428 CE->getOperand(0)->isNullValue() &&
429 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000430 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432 // Ignore vector types here so that ScalarEvolutionExpander doesn't
433 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000434 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 CTy = Ty;
436 FieldNo = CE->getOperand(2);
437 return true;
438 }
439 }
440
441 return false;
442}
443
Chris Lattnereb3e8402004-06-20 06:23:15 +0000444//===----------------------------------------------------------------------===//
445// SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
451 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000452 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000453 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000454 public:
Dan Gohman992db002010-07-23 21:18:55 +0000455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000456
Dan Gohman27065672010-08-27 15:26:01 +0000457 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000458 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000459 return compare(LHS, RHS) < 0;
460 }
461
462 // Return negative, zero, or positive, if LHS is less than, equal to, or
463 // greater than RHS, respectively. A three-way result allows recursive
464 // comparisons to be more efficient.
465 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000466 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000468 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000469
Dan Gohman9ba542c2009-05-07 14:39:04 +0000470 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000473 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474
Dan Gohman24ceda82010-06-18 19:54:20 +0000475 // Aside from the getSCEVType() ordering, the particular ordering
476 // isn't very important except that it's beneficial to be consistent,
477 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000478 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000479 case scUnknown: {
480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000482
483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000485 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000486
487 // Order pointer values after integer values. This helps SCEVExpander
488 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000489 bool LIsPointer = LV->getType()->isPointerTy(),
490 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000491 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000492 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
494 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000495 unsigned LID = LV->getValueID(),
496 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000497 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000498 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000499
500 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000501 if (const Argument *LA = dyn_cast<Argument>(LV)) {
502 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000505 }
506
Dan Gohman27065672010-08-27 15:26:01 +0000507 // For instructions, compare their loop depth, and their operand
508 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000511
512 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000513 const BasicBlock *LParent = LInst->getParent(),
514 *RParent = RInst->getParent();
515 if (LParent != RParent) {
516 unsigned LDepth = LI->getLoopDepth(LParent),
517 RDepth = LI->getLoopDepth(RParent);
518 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000519 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000521
522 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000523 unsigned LNumOps = LInst->getNumOperands(),
524 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000525 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000526 }
527
Dan Gohman27065672010-08-27 15:26:01 +0000528 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000529 }
530
Dan Gohman27065672010-08-27 15:26:01 +0000531 case scConstant: {
532 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000534
535 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000536 const APInt &LA = LC->getValue()->getValue();
537 const APInt &RA = RC->getValue()->getValue();
538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000539 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000540 return (int)LBitWidth - (int)RBitWidth;
541 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 }
543
Dan Gohman27065672010-08-27 15:26:01 +0000544 case scAddRecExpr: {
545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000547
548 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550 if (LLoop != RLoop) {
551 unsigned LDepth = LLoop->getLoopDepth(),
552 RDepth = RLoop->getLoopDepth();
553 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000554 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000555 }
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Addrec complexity grows with operand count.
558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559 if (LNumOps != RNumOps)
560 return (int)LNumOps - (int)RNumOps;
561
562 // Lexicographically compare.
563 for (unsigned i = 0; i != LNumOps; ++i) {
564 long X = compare(LA->getOperand(i), RA->getOperand(i));
565 if (X != 0)
566 return X;
567 }
568
569 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000570 }
571
Dan Gohman27065672010-08-27 15:26:01 +0000572 case scAddExpr:
573 case scMulExpr:
574 case scSMaxExpr:
575 case scUMaxExpr: {
576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000578
579 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000581 if (LNumOps != RNumOps)
582 return (int)LNumOps - (int)RNumOps;
583
Dan Gohman5ae31022010-07-23 21:20:52 +0000584 for (unsigned i = 0; i != LNumOps; ++i) {
585 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000586 return 1;
587 long X = compare(LC->getOperand(i), RC->getOperand(i));
588 if (X != 0)
589 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000590 }
Dan Gohman27065672010-08-27 15:26:01 +0000591 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000592 }
593
Dan Gohman27065672010-08-27 15:26:01 +0000594 case scUDivExpr: {
595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000597
598 // Lexicographically compare udiv expressions.
599 long X = compare(LC->getLHS(), RC->getLHS());
600 if (X != 0)
601 return X;
602 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000603 }
604
Dan Gohman27065672010-08-27 15:26:01 +0000605 case scTruncate:
606 case scZeroExtend:
607 case scSignExtend: {
608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000610
611 // Compare cast expressions by operand.
612 return compare(LC->getOperand(), RC->getOperand());
613 }
614
Benjamin Kramer987b8502014-02-11 19:02:55 +0000615 case scCouldNotCompute:
616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000617 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000618 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000619 }
620 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000621}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000628/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000629/// results from this routine. In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
Dan Gohmanaf752342009-07-07 17:06:11 +0000633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000634 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000635 if (Ops.size() < 2) return; // Noop
636 if (Ops.size() == 2) {
637 // This is the common case, which also happens to be trivially simple.
638 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640 if (SCEVComplexityCompare(LI)(RHS, LHS))
641 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 return;
643 }
644
Dan Gohman24ceda82010-06-18 19:54:20 +0000645 // Do the rough sort by complexity.
646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648 // Now that we are sorted by complexity, group elements of the same
649 // complexity. Note that this is, at worst, N^2, but the vector is likely to
650 // be extremely short in practice. Note that we take this approach because we
651 // do not want to depend on the addresses of the objects we are grouping.
652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653 const SCEV *S = Ops[i];
654 unsigned Complexity = S->getSCEVType();
655
656 // If there are any objects of the same complexity and same value as this
657 // one, group them.
658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659 if (Ops[j] == S) { // Found a duplicate.
660 // Move it to immediately after i'th element.
661 std::swap(Ops[i+1], Ops[j]);
662 ++i; // no need to rescan it.
663 if (i == e-2) return; // Done!
664 }
665 }
666 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000667}
668
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000669namespace {
670struct FindSCEVSize {
671 int Size;
672 FindSCEVSize() : Size(0) {}
673
674 bool follow(const SCEV *S) {
675 ++Size;
676 // Keep looking at all operands of S.
677 return true;
678 }
679 bool isDone() const {
680 return false;
681 }
682};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000683}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000684
685// Returns the size of the SCEV S.
686static inline int sizeOfSCEV(const SCEV *S) {
687 FindSCEVSize F;
688 SCEVTraversal<FindSCEVSize> ST(F);
689 ST.visitAll(S);
690 return F.Size;
691}
692
693namespace {
694
David Majnemer4e879362014-12-14 09:12:33 +0000695struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000696public:
697 // Computes the Quotient and Remainder of the division of Numerator by
698 // Denominator.
699 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700 const SCEV *Denominator, const SCEV **Quotient,
701 const SCEV **Remainder) {
702 assert(Numerator && Denominator && "Uninitialized SCEV");
703
David Majnemer4e879362014-12-14 09:12:33 +0000704 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705
706 // Check for the trivial case here to avoid having to check for it in the
707 // rest of the code.
708 if (Numerator == Denominator) {
709 *Quotient = D.One;
710 *Remainder = D.Zero;
711 return;
712 }
713
714 if (Numerator->isZero()) {
715 *Quotient = D.Zero;
716 *Remainder = D.Zero;
717 return;
718 }
719
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000720 // A simple case when N/1. The quotient is N.
721 if (Denominator->isOne()) {
722 *Quotient = Numerator;
723 *Remainder = D.Zero;
724 return;
725 }
726
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000727 // Split the Denominator when it is a product.
728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
729 const SCEV *Q, *R;
730 *Quotient = Numerator;
731 for (const SCEV *Op : T->operands()) {
732 divide(SE, *Quotient, Op, &Q, &R);
733 *Quotient = Q;
734
735 // Bail out when the Numerator is not divisible by one of the terms of
736 // the Denominator.
737 if (!R->isZero()) {
738 *Quotient = D.Zero;
739 *Remainder = Numerator;
740 return;
741 }
742 }
743 *Remainder = D.Zero;
744 return;
745 }
746
747 D.visit(Numerator);
748 *Quotient = D.Quotient;
749 *Remainder = D.Remainder;
750 }
751
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000752 // Except in the trivial case described above, we do not know how to divide
753 // Expr by Denominator for the following functions with empty implementation.
754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760 void visitUnknown(const SCEVUnknown *Numerator) {}
761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762
David Majnemer4e879362014-12-14 09:12:33 +0000763 void visitConstant(const SCEVConstant *Numerator) {
764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765 APInt NumeratorVal = Numerator->getValue()->getValue();
766 APInt DenominatorVal = D->getValue()->getValue();
767 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769
770 if (NumeratorBW > DenominatorBW)
771 DenominatorVal = DenominatorVal.sext(NumeratorBW);
772 else if (NumeratorBW < DenominatorBW)
773 NumeratorVal = NumeratorVal.sext(DenominatorBW);
774
775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778 Quotient = SE.getConstant(QuotientVal);
779 Remainder = SE.getConstant(RemainderVal);
780 return;
781 }
782 }
783
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000786 if (!Numerator->isAffine())
787 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000790 // Bail out if the types do not match.
791 Type *Ty = Denominator->getType();
792 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000793 Ty != StepQ->getType() || Ty != StepR->getType())
794 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 }
800
801 void visitAddExpr(const SCEVAddExpr *Numerator) {
802 SmallVector<const SCEV *, 2> Qs, Rs;
803 Type *Ty = Denominator->getType();
804
805 for (const SCEV *Op : Numerator->operands()) {
806 const SCEV *Q, *R;
807 divide(SE, Op, Denominator, &Q, &R);
808
809 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000810 if (Ty != Q->getType() || Ty != R->getType())
811 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000812
813 Qs.push_back(Q);
814 Rs.push_back(R);
815 }
816
817 if (Qs.size() == 1) {
818 Quotient = Qs[0];
819 Remainder = Rs[0];
820 return;
821 }
822
823 Quotient = SE.getAddExpr(Qs);
824 Remainder = SE.getAddExpr(Rs);
825 }
826
827 void visitMulExpr(const SCEVMulExpr *Numerator) {
828 SmallVector<const SCEV *, 2> Qs;
829 Type *Ty = Denominator->getType();
830
831 bool FoundDenominatorTerm = false;
832 for (const SCEV *Op : Numerator->operands()) {
833 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000834 if (Ty != Op->getType())
835 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000836
837 if (FoundDenominatorTerm) {
838 Qs.push_back(Op);
839 continue;
840 }
841
842 // Check whether Denominator divides one of the product operands.
843 const SCEV *Q, *R;
844 divide(SE, Op, Denominator, &Q, &R);
845 if (!R->isZero()) {
846 Qs.push_back(Op);
847 continue;
848 }
849
850 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000851 if (Ty != Q->getType())
852 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000853
854 FoundDenominatorTerm = true;
855 Qs.push_back(Q);
856 }
857
858 if (FoundDenominatorTerm) {
859 Remainder = Zero;
860 if (Qs.size() == 1)
861 Quotient = Qs[0];
862 else
863 Quotient = SE.getMulExpr(Qs);
864 return;
865 }
866
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000867 if (!isa<SCEVUnknown>(Denominator))
868 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000869
870 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871 ValueToValueMap RewriteMap;
872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873 cast<SCEVConstant>(Zero)->getValue();
874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875
876 if (Remainder->isZero()) {
877 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879 cast<SCEVConstant>(One)->getValue();
880 Quotient =
881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882 return;
883 }
884
885 // Quotient is (Numerator - Remainder) divided by Denominator.
886 const SCEV *Q, *R;
887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000888 // This SCEV does not seem to simplify: fail the division here.
889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000891 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000892 if (R != Zero)
893 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000894 Quotient = Q;
895 }
896
897private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899 const SCEV *Denominator)
900 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000901 Zero = SE.getZero(Denominator->getType());
902 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000903
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000904 // We generally do not know how to divide Expr by Denominator. We
905 // initialize the division to a "cannot divide" state to simplify the rest
906 // of the code.
907 cannotDivide(Numerator);
908 }
909
910 // Convenience function for giving up on the division. We set the quotient to
911 // be equal to zero and the remainder to be equal to the numerator.
912 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000913 Quotient = Zero;
914 Remainder = Numerator;
915 }
916
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000917 ScalarEvolution &SE;
918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000919};
920
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000921}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000922
Chris Lattnerd934c702004-04-02 20:23:17 +0000923//===----------------------------------------------------------------------===//
924// Simple SCEV method implementations
925//===----------------------------------------------------------------------===//
926
Eli Friedman61f67622008-08-04 23:49:06 +0000927/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000928/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000929static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000930 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000931 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000932 // Handle the simplest case efficiently.
933 if (K == 1)
934 return SE.getTruncateOrZeroExtend(It, ResultTy);
935
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000936 // We are using the following formula for BC(It, K):
937 //
938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
939 //
Eli Friedman61f67622008-08-04 23:49:06 +0000940 // Suppose, W is the bitwidth of the return value. We must be prepared for
941 // overflow. Hence, we must assure that the result of our computation is
942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
943 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000944 //
Eli Friedman61f67622008-08-04 23:49:06 +0000945 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000946 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
948 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000949 //
Eli Friedman61f67622008-08-04 23:49:06 +0000950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000951 //
Eli Friedman61f67622008-08-04 23:49:06 +0000952 // This formula is trivially equivalent to the previous formula. However,
953 // this formula can be implemented much more efficiently. The trick is that
954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
955 // arithmetic. To do exact division in modular arithmetic, all we have
956 // to do is multiply by the inverse. Therefore, this step can be done at
957 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000958 //
Eli Friedman61f67622008-08-04 23:49:06 +0000959 // The next issue is how to safely do the division by 2^T. The way this
960 // is done is by doing the multiplication step at a width of at least W + T
961 // bits. This way, the bottom W+T bits of the product are accurate. Then,
962 // when we perform the division by 2^T (which is equivalent to a right shift
963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
964 // truncated out after the division by 2^T.
965 //
966 // In comparison to just directly using the first formula, this technique
967 // is much more efficient; using the first formula requires W * K bits,
968 // but this formula less than W + K bits. Also, the first formula requires
969 // a division step, whereas this formula only requires multiplies and shifts.
970 //
971 // It doesn't matter whether the subtraction step is done in the calculation
972 // width or the input iteration count's width; if the subtraction overflows,
973 // the result must be zero anyway. We prefer here to do it in the width of
974 // the induction variable because it helps a lot for certain cases; CodeGen
975 // isn't smart enough to ignore the overflow, which leads to much less
976 // efficient code if the width of the subtraction is wider than the native
977 // register width.
978 //
979 // (It's possible to not widen at all by pulling out factors of 2 before
980 // the multiplication; for example, K=2 can be calculated as
981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
982 // extra arithmetic, so it's not an obvious win, and it gets
983 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000984
Eli Friedman61f67622008-08-04 23:49:06 +0000985 // Protection from insane SCEVs; this bound is conservative,
986 // but it probably doesn't matter.
987 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000988 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000989
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000990 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000991
Eli Friedman61f67622008-08-04 23:49:06 +0000992 // Calculate K! / 2^T and T; we divide out the factors of two before
993 // multiplying for calculating K! / 2^T to avoid overflow.
994 // Other overflow doesn't matter because we only care about the bottom
995 // W bits of the result.
996 APInt OddFactorial(W, 1);
997 unsigned T = 1;
998 for (unsigned i = 3; i <= K; ++i) {
999 APInt Mult(W, i);
1000 unsigned TwoFactors = Mult.countTrailingZeros();
1001 T += TwoFactors;
1002 Mult = Mult.lshr(TwoFactors);
1003 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001004 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001005
Eli Friedman61f67622008-08-04 23:49:06 +00001006 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001007 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001008
Dan Gohman8b0a4192010-03-01 17:49:51 +00001009 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001011
1012 // Calculate the multiplicative inverse of K! / 2^T;
1013 // this multiplication factor will perform the exact division by
1014 // K! / 2^T.
1015 APInt Mod = APInt::getSignedMinValue(W+1);
1016 APInt MultiplyFactor = OddFactorial.zext(W+1);
1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1018 MultiplyFactor = MultiplyFactor.trunc(W);
1019
1020 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001022 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001024 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001026 Dividend = SE.getMulExpr(Dividend,
1027 SE.getTruncateOrZeroExtend(S, CalculationTy));
1028 }
1029
1030 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001032
1033 // Truncate the result, and divide by K! / 2^T.
1034
1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001037}
1038
Chris Lattnerd934c702004-04-02 20:23:17 +00001039/// evaluateAtIteration - Return the value of this chain of recurrences at
1040/// the specified iteration number. We can evaluate this recurrence by
1041/// multiplying each element in the chain by the binomial coefficient
1042/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1043///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001044/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001045///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001047///
Dan Gohmanaf752342009-07-07 17:06:11 +00001048const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001049 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001050 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001052 // The computation is correct in the face of overflow provided that the
1053 // multiplication is performed _after_ the evaluation of the binomial
1054 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001056 if (isa<SCEVCouldNotCompute>(Coeff))
1057 return Coeff;
1058
1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001060 }
1061 return Result;
1062}
1063
Chris Lattnerd934c702004-04-02 20:23:17 +00001064//===----------------------------------------------------------------------===//
1065// SCEV Expression folder implementations
1066//===----------------------------------------------------------------------===//
1067
Dan Gohmanaf752342009-07-07 17:06:11 +00001068const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001069 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001071 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001072 assert(isSCEVable(Ty) &&
1073 "This is not a conversion to a SCEVable type!");
1074 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001075
Dan Gohman3a302cb2009-07-13 20:50:19 +00001076 FoldingSetNodeID ID;
1077 ID.AddInteger(scTruncate);
1078 ID.AddPointer(Op);
1079 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001080 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1082
Dan Gohman3423e722009-06-30 20:13:32 +00001083 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001085 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001087
Dan Gohman79af8542009-04-22 16:20:48 +00001088 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001090 return getTruncateExpr(ST->getOperand(), Ty);
1091
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001094 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1095
1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1099
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001101 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1103 SmallVector<const SCEV *, 4> Operands;
1104 bool hasTrunc = false;
1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001107 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1108 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001109 Operands.push_back(S);
1110 }
1111 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001112 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001114 }
1115
Nick Lewycky5c901f32011-01-19 18:56:00 +00001116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001117 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1119 SmallVector<const SCEV *, 4> Operands;
1120 bool hasTrunc = false;
1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001123 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1124 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001125 Operands.push_back(S);
1126 }
1127 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001128 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001130 }
1131
Dan Gohman5a728c92009-06-18 16:24:47 +00001132 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001134 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001135 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001136 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001138 }
1139
Dan Gohman89dd42a2010-06-25 18:47:08 +00001140 // The cast wasn't folded; create an explicit cast node. We can reuse
1141 // the existing insert position since if we get here, we won't have
1142 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1144 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001145 UniqueSCEVs.InsertNode(S, IP);
1146 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001147}
1148
Sanjoy Das4153f472015-02-18 01:47:07 +00001149// Get the limit of a recurrence such that incrementing by Step cannot cause
1150// signed overflow as long as the value of the recurrence within the
1151// loop does not exceed this limit before incrementing.
1152static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1153 ICmpInst::Predicate *Pred,
1154 ScalarEvolution *SE) {
1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1156 if (SE->isKnownPositive(Step)) {
1157 *Pred = ICmpInst::ICMP_SLT;
1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1159 SE->getSignedRange(Step).getSignedMax());
1160 }
1161 if (SE->isKnownNegative(Step)) {
1162 *Pred = ICmpInst::ICMP_SGT;
1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1164 SE->getSignedRange(Step).getSignedMin());
1165 }
1166 return nullptr;
1167}
1168
1169// Get the limit of a recurrence such that incrementing by Step cannot cause
1170// unsigned overflow as long as the value of the recurrence within the loop does
1171// not exceed this limit before incrementing.
1172static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1173 ICmpInst::Predicate *Pred,
1174 ScalarEvolution *SE) {
1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1176 *Pred = ICmpInst::ICMP_ULT;
1177
1178 return SE->getConstant(APInt::getMinValue(BitWidth) -
1179 SE->getUnsignedRange(Step).getUnsignedMax());
1180}
1181
1182namespace {
1183
1184struct ExtendOpTraitsBase {
1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1186};
1187
1188// Used to make code generic over signed and unsigned overflow.
1189template <typename ExtendOp> struct ExtendOpTraits {
1190 // Members present:
1191 //
1192 // static const SCEV::NoWrapFlags WrapType;
1193 //
1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1195 //
1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1197 // ICmpInst::Predicate *Pred,
1198 // ScalarEvolution *SE);
1199};
1200
1201template <>
1202struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1204
1205 static const GetExtendExprTy GetExtendExpr;
1206
1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1208 ICmpInst::Predicate *Pred,
1209 ScalarEvolution *SE) {
1210 return getSignedOverflowLimitForStep(Step, Pred, SE);
1211 }
1212};
1213
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001214const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1216
1217template <>
1218struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1220
1221 static const GetExtendExprTy GetExtendExpr;
1222
1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1224 ICmpInst::Predicate *Pred,
1225 ScalarEvolution *SE) {
1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1227 }
1228};
1229
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001230const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001232}
Sanjoy Das4153f472015-02-18 01:47:07 +00001233
1234// The recurrence AR has been shown to have no signed/unsigned wrap or something
1235// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1236// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1237// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1238// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1239// expression "Step + sext/zext(PreIncAR)" is congruent with
1240// "sext/zext(PostIncAR)"
1241template <typename ExtendOpTy>
1242static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1243 ScalarEvolution *SE) {
1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1246
1247 const Loop *L = AR->getLoop();
1248 const SCEV *Start = AR->getStart();
1249 const SCEV *Step = AR->getStepRecurrence(*SE);
1250
1251 // Check for a simple looking step prior to loop entry.
1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1253 if (!SA)
1254 return nullptr;
1255
1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1257 // subtraction is expensive. For this purpose, perform a quick and dirty
1258 // difference, by checking for Step in the operand list.
1259 SmallVector<const SCEV *, 4> DiffOps;
1260 for (const SCEV *Op : SA->operands())
1261 if (Op != Step)
1262 DiffOps.push_back(Op);
1263
1264 if (DiffOps.size() == SA->getNumOperands())
1265 return nullptr;
1266
1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1268 // `Step`:
1269
1270 // 1. NSW/NUW flags on the step increment.
1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1274
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1276 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001277 //
1278
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001279 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001282 return PreStart;
1283
1284 // 2. Direct overflow check on the step operation's expression.
1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1287 const SCEV *OperandExtendedStart =
1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1289 (SE->*GetExtendExpr)(Step, WideTy));
1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1291 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1296 }
1297 return PreStart;
1298 }
1299
1300 // 3. Loop precondition.
1301 ICmpInst::Predicate Pred;
1302 const SCEV *OverflowLimit =
1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1304
1305 if (OverflowLimit &&
1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1307 return PreStart;
1308 }
1309 return nullptr;
1310}
1311
1312// Get the normalized zero or sign extended expression for this AddRec's Start.
1313template <typename ExtendOpTy>
1314static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1315 ScalarEvolution *SE) {
1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1317
1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1319 if (!PreStart)
1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1321
1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1323 (SE->*GetExtendExpr)(PreStart, Ty));
1324}
1325
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001326// Try to prove away overflow by looking at "nearby" add recurrences. A
1327// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1328// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1329//
1330// Formally:
1331//
1332// {S,+,X} == {S-T,+,X} + T
1333// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1334//
1335// If ({S-T,+,X} + T) does not overflow ... (1)
1336//
1337// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1338//
1339// If {S-T,+,X} does not overflow ... (2)
1340//
1341// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1342// == {Ext(S-T)+Ext(T),+,Ext(X)}
1343//
1344// If (S-T)+T does not overflow ... (3)
1345//
1346// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1347// == {Ext(S),+,Ext(X)} == LHS
1348//
1349// Thus, if (1), (2) and (3) are true for some T, then
1350// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1351//
1352// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1353// does not overflow" restricted to the 0th iteration. Therefore we only need
1354// to check for (1) and (2).
1355//
1356// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1357// is `Delta` (defined below).
1358//
1359template <typename ExtendOpTy>
1360bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1361 const SCEV *Step,
1362 const Loop *L) {
1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1364
1365 // We restrict `Start` to a constant to prevent SCEV from spending too much
1366 // time here. It is correct (but more expensive) to continue with a
1367 // non-constant `Start` and do a general SCEV subtraction to compute
1368 // `PreStart` below.
1369 //
1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1371 if (!StartC)
1372 return false;
1373
1374 APInt StartAI = StartC->getValue()->getValue();
1375
1376 for (unsigned Delta : {-2, -1, 1, 2}) {
1377 const SCEV *PreStart = getConstant(StartAI - Delta);
1378
1379 // Give up if we don't already have the add recurrence we need because
1380 // actually constructing an add recurrence is relatively expensive.
1381 const SCEVAddRecExpr *PreAR = [&]() {
1382 FoldingSetNodeID ID;
1383 ID.AddInteger(scAddRecExpr);
1384 ID.AddPointer(PreStart);
1385 ID.AddPointer(Step);
1386 ID.AddPointer(L);
1387 void *IP = nullptr;
1388 return static_cast<SCEVAddRecExpr *>(
NAKAMURA Takumi8f49dd32015-03-05 01:02:45 +00001389 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001390 }();
1391
1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1396 DeltaS, &Pred, this);
1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1398 return true;
1399 }
1400 }
1401
1402 return false;
1403}
1404
Dan Gohmanaf752342009-07-07 17:06:11 +00001405const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001406 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001408 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001409 assert(isSCEVable(Ty) &&
1410 "This is not a conversion to a SCEVable type!");
1411 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001412
Dan Gohman3423e722009-06-30 20:13:32 +00001413 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1415 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001417
Dan Gohman79af8542009-04-22 16:20:48 +00001418 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001420 return getZeroExtendExpr(SZ->getOperand(), Ty);
1421
Dan Gohman74a0ba12009-07-13 20:55:53 +00001422 // Before doing any expensive analysis, check to see if we've already
1423 // computed a SCEV for this Op and Ty.
1424 FoldingSetNodeID ID;
1425 ID.AddInteger(scZeroExtend);
1426 ID.AddPointer(Op);
1427 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001428 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1430
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001431 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1433 // It's possible the bits taken off by the truncate were all zero bits. If
1434 // so, we should be able to simplify this further.
1435 const SCEV *X = ST->getOperand();
1436 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001437 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1438 unsigned NewBits = getTypeSizeInBits(Ty);
1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001440 CR.zextOrTrunc(NewBits)))
1441 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001442 }
1443
Dan Gohman76466372009-04-27 20:16:15 +00001444 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001445 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001446 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001449 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001450 const SCEV *Start = AR->getStart();
1451 const SCEV *Step = AR->getStepRecurrence(*this);
1452 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1453 const Loop *L = AR->getLoop();
1454
Dan Gohman62ef6a72009-07-25 01:22:26 +00001455 // If we have special knowledge that this addrec won't overflow,
1456 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001457 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001458 return getAddRecExpr(
1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001461
Dan Gohman76466372009-04-27 20:16:15 +00001462 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1463 // Note that this serves two purposes: It filters out loops that are
1464 // simply not analyzable, and it covers the case where this code is
1465 // being called from within backedge-taken count analysis, such that
1466 // attempting to ask for the backedge-taken count would likely result
1467 // in infinite recursion. In the later case, the analysis code will
1468 // cope with a conservative value, and it will take care to purge
1469 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001472 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001473 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001474
1475 // Check whether the backedge-taken count can be losslessly casted to
1476 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001477 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001478 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001479 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1481 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001483 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1487 const SCEV *WideMaxBECount =
1488 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001489 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001490 getAddExpr(WideStart,
1491 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001492 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001493 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001494 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001496 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001497 return getAddRecExpr(
1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001500 }
Dan Gohman76466372009-04-27 20:16:15 +00001501 // Similar to above, only this time treat the step value as signed.
1502 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001503 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001504 getAddExpr(WideStart,
1505 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001506 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001507 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001508 // Cache knowledge of AR NW, which is propagated to this AddRec.
1509 // Negative step causes unsigned wrap, but it still can't self-wrap.
1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001511 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001512 return getAddRecExpr(
1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001515 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001516 }
1517
1518 // If the backedge is guarded by a comparison with the pre-inc value
1519 // the addrec is safe. Also, if the entry is guarded by a comparison
1520 // with the start value and the backedge is guarded by a comparison
1521 // with the post-inc value, the addrec is safe.
1522 if (isKnownPositive(Step)) {
1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1524 getUnsignedRange(Step).getUnsignedMax());
1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001528 AR->getPostIncExpr(*this), N))) {
1529 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001531 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001532 return getAddRecExpr(
1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001535 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001536 } else if (isKnownNegative(Step)) {
1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1538 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001542 AR->getPostIncExpr(*this), N))) {
1543 // Cache knowledge of AR NW, which is propagated to this AddRec.
1544 // Negative step causes unsigned wrap, but it still can't self-wrap.
1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1546 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001547 return getAddRecExpr(
1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001550 }
Dan Gohman76466372009-04-27 20:16:15 +00001551 }
1552 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001553
1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1556 return getAddRecExpr(
1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1559 }
Dan Gohman76466372009-04-27 20:16:15 +00001560 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001561
Dan Gohman74a0ba12009-07-13 20:55:53 +00001562 // The cast wasn't folded; create an explicit cast node.
1563 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001565 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1566 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001567 UniqueSCEVs.InsertNode(S, IP);
1568 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001569}
1570
Dan Gohmanaf752342009-07-07 17:06:11 +00001571const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001572 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001573 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001574 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001575 assert(isSCEVable(Ty) &&
1576 "This is not a conversion to a SCEVable type!");
1577 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001578
Dan Gohman3423e722009-06-30 20:13:32 +00001579 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001580 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1581 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001582 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001583
Dan Gohman79af8542009-04-22 16:20:48 +00001584 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001585 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001586 return getSignExtendExpr(SS->getOperand(), Ty);
1587
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001588 // sext(zext(x)) --> zext(x)
1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1590 return getZeroExtendExpr(SZ->getOperand(), Ty);
1591
Dan Gohman74a0ba12009-07-13 20:55:53 +00001592 // Before doing any expensive analysis, check to see if we've already
1593 // computed a SCEV for this Op and Ty.
1594 FoldingSetNodeID ID;
1595 ID.AddInteger(scSignExtend);
1596 ID.AddPointer(Op);
1597 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001598 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1600
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001601 // If the input value is provably positive, build a zext instead.
1602 if (isKnownNonNegative(Op))
1603 return getZeroExtendExpr(Op, Ty);
1604
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001605 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1606 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1607 // It's possible the bits taken off by the truncate were all sign bits. If
1608 // so, we should be able to simplify this further.
1609 const SCEV *X = ST->getOperand();
1610 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001611 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1612 unsigned NewBits = getTypeSizeInBits(Ty);
1613 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001614 CR.sextOrTrunc(NewBits)))
1615 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001616 }
1617
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001618 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1619 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1620 if (SA->getNumOperands() == 2) {
1621 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1622 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1623 if (SMul && SC1) {
1624 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001625 const APInt &C1 = SC1->getValue()->getValue();
1626 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001627 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001628 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001629 return getAddExpr(getSignExtendExpr(SC1, Ty),
1630 getSignExtendExpr(SMul, Ty));
1631 }
1632 }
1633 }
1634 }
Dan Gohman76466372009-04-27 20:16:15 +00001635 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001636 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001637 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001638 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001640 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001641 const SCEV *Start = AR->getStart();
1642 const SCEV *Step = AR->getStepRecurrence(*this);
1643 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1644 const Loop *L = AR->getLoop();
1645
Dan Gohman62ef6a72009-07-25 01:22:26 +00001646 // If we have special knowledge that this addrec won't overflow,
1647 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001648 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001649 return getAddRecExpr(
1650 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1651 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001652
Dan Gohman76466372009-04-27 20:16:15 +00001653 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1654 // Note that this serves two purposes: It filters out loops that are
1655 // simply not analyzable, and it covers the case where this code is
1656 // being called from within backedge-taken count analysis, such that
1657 // attempting to ask for the backedge-taken count would likely result
1658 // in infinite recursion. In the later case, the analysis code will
1659 // cope with a conservative value, and it will take care to purge
1660 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001661 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001662 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001663 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001664 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001665
1666 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001667 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001668 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001669 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001670 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001671 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1672 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001673 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001674 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001675 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001676 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1677 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1678 const SCEV *WideMaxBECount =
1679 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001680 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001681 getAddExpr(WideStart,
1682 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001683 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001684 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001685 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1686 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001687 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001688 return getAddRecExpr(
1689 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1690 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001691 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001692 // Similar to above, only this time treat the step value as unsigned.
1693 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001694 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001695 getAddExpr(WideStart,
1696 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001697 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001698 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001699 // If AR wraps around then
1700 //
1701 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1702 // => SAdd != OperandExtendedAdd
1703 //
1704 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1705 // (SAdd == OperandExtendedAdd => AR is NW)
1706
1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1708
Dan Gohman8c129d72009-07-16 17:34:36 +00001709 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001710 return getAddRecExpr(
1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1712 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001713 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001714 }
1715
1716 // If the backedge is guarded by a comparison with the pre-inc value
1717 // the addrec is safe. Also, if the entry is guarded by a comparison
1718 // with the start value and the backedge is guarded by a comparison
1719 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001720 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001721 const SCEV *OverflowLimit =
1722 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001723 if (OverflowLimit &&
1724 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1725 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1726 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1727 OverflowLimit)))) {
1728 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001730 return getAddRecExpr(
1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1732 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001733 }
1734 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001735 // If Start and Step are constants, check if we can apply this
1736 // transformation:
1737 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1738 auto SC1 = dyn_cast<SCEVConstant>(Start);
1739 auto SC2 = dyn_cast<SCEVConstant>(Step);
1740 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001741 const APInt &C1 = SC1->getValue()->getValue();
1742 const APInt &C2 = SC2->getValue()->getValue();
1743 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1744 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001745 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001746 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1747 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001748 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1749 }
1750 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001751
1752 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1754 return getAddRecExpr(
1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1757 }
Dan Gohman76466372009-04-27 20:16:15 +00001758 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001759
Dan Gohman74a0ba12009-07-13 20:55:53 +00001760 // The cast wasn't folded; create an explicit cast node.
1761 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001762 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001763 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1764 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001765 UniqueSCEVs.InsertNode(S, IP);
1766 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001767}
1768
Dan Gohman8db2edc2009-06-13 15:56:47 +00001769/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1770/// unspecified bits out to the given type.
1771///
Dan Gohmanaf752342009-07-07 17:06:11 +00001772const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001773 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001774 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1775 "This is not an extending conversion!");
1776 assert(isSCEVable(Ty) &&
1777 "This is not a conversion to a SCEVable type!");
1778 Ty = getEffectiveSCEVType(Ty);
1779
1780 // Sign-extend negative constants.
1781 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1782 if (SC->getValue()->getValue().isNegative())
1783 return getSignExtendExpr(Op, Ty);
1784
1785 // Peel off a truncate cast.
1786 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001787 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001788 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1789 return getAnyExtendExpr(NewOp, Ty);
1790 return getTruncateOrNoop(NewOp, Ty);
1791 }
1792
1793 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001794 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001795 if (!isa<SCEVZeroExtendExpr>(ZExt))
1796 return ZExt;
1797
1798 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001799 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001800 if (!isa<SCEVSignExtendExpr>(SExt))
1801 return SExt;
1802
Dan Gohman51ad99d2010-01-21 02:09:26 +00001803 // Force the cast to be folded into the operands of an addrec.
1804 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1805 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001806 for (const SCEV *Op : AR->operands())
1807 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001808 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001809 }
1810
Dan Gohman8db2edc2009-06-13 15:56:47 +00001811 // If the expression is obviously signed, use the sext cast value.
1812 if (isa<SCEVSMaxExpr>(Op))
1813 return SExt;
1814
1815 // Absent any other information, use the zext cast value.
1816 return ZExt;
1817}
1818
Dan Gohman038d02e2009-06-14 22:58:51 +00001819/// CollectAddOperandsWithScales - Process the given Ops list, which is
1820/// a list of operands to be added under the given scale, update the given
1821/// map. This is a helper function for getAddRecExpr. As an example of
1822/// what it does, given a sequence of operands that would form an add
1823/// expression like this:
1824///
Tobias Grosserba49e422014-03-05 10:37:17 +00001825/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001826///
1827/// where A and B are constants, update the map with these values:
1828///
1829/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1830///
1831/// and add 13 + A*B*29 to AccumulatedConstant.
1832/// This will allow getAddRecExpr to produce this:
1833///
1834/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1835///
1836/// This form often exposes folding opportunities that are hidden in
1837/// the original operand list.
1838///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001839/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001840/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1841/// the common case where no interesting opportunities are present, and
1842/// is also used as a check to avoid infinite recursion.
1843///
1844static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001845CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001846 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001847 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001848 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001849 const APInt &Scale,
1850 ScalarEvolution &SE) {
1851 bool Interesting = false;
1852
Dan Gohman45073042010-06-18 19:12:32 +00001853 // Iterate over the add operands. They are sorted, with constants first.
1854 unsigned i = 0;
1855 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1856 ++i;
1857 // Pull a buried constant out to the outside.
1858 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1859 Interesting = true;
1860 AccumulatedConstant += Scale * C->getValue()->getValue();
1861 }
1862
1863 // Next comes everything else. We're especially interested in multiplies
1864 // here, but they're in the middle, so just visit the rest with one loop.
1865 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001866 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1867 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1868 APInt NewScale =
1869 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1870 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1871 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001872 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001873 Interesting |=
1874 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001875 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001876 NewScale, SE);
1877 } else {
1878 // A multiplication of a constant with some other value. Update
1879 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001880 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1881 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Das7a9f8bb2015-09-17 19:04:09 +00001882 auto Pair = M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001883 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001884 NewOps.push_back(Pair.first->first);
1885 } else {
1886 Pair.first->second += NewScale;
1887 // The map already had an entry for this value, which may indicate
1888 // a folding opportunity.
1889 Interesting = true;
1890 }
1891 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001892 } else {
1893 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001894 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001895 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001896 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001897 NewOps.push_back(Pair.first->first);
1898 } else {
1899 Pair.first->second += Scale;
1900 // The map already had an entry for this value, which may indicate
1901 // a folding opportunity.
1902 Interesting = true;
1903 }
1904 }
1905 }
1906
1907 return Interesting;
1908}
1909
1910namespace {
1911 struct APIntCompare {
1912 bool operator()(const APInt &LHS, const APInt &RHS) const {
1913 return LHS.ult(RHS);
1914 }
1915 };
1916}
1917
Sanjoy Das81401d42015-01-10 23:41:24 +00001918// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1919// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1920// can't-overflow flags for the operation if possible.
1921static SCEV::NoWrapFlags
1922StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1923 const SmallVectorImpl<const SCEV *> &Ops,
1924 SCEV::NoWrapFlags OldFlags) {
1925 using namespace std::placeholders;
1926
1927 bool CanAnalyze =
1928 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1929 (void)CanAnalyze;
1930 assert(CanAnalyze && "don't call from other places!");
1931
1932 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1933 SCEV::NoWrapFlags SignOrUnsignWrap =
1934 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1935
1936 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1937 auto IsKnownNonNegative =
1938 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1939
1940 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1941 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1942 return ScalarEvolution::setFlags(OldFlags,
1943 (SCEV::NoWrapFlags)SignOrUnsignMask);
1944
1945 return OldFlags;
1946}
1947
Dan Gohman4d5435d2009-05-24 23:45:28 +00001948/// getAddExpr - Get a canonical add expression, or something simpler if
1949/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001950const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001951 SCEV::NoWrapFlags Flags) {
1952 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1953 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001954 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001955 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001956#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001957 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001958 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001959 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001960 "SCEVAddExpr operand types don't match!");
1961#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001962
Sanjoy Das81401d42015-01-10 23:41:24 +00001963 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001964
Chris Lattnerd934c702004-04-02 20:23:17 +00001965 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001966 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001967
1968 // If there are any constants, fold them together.
1969 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001970 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001971 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001972 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001973 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001974 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001975 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1976 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001977 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001978 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001979 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001980 }
1981
1982 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001983 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001984 Ops.erase(Ops.begin());
1985 --Idx;
1986 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001987
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001988 if (Ops.size() == 1) return Ops[0];
1989 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001990
Dan Gohman15871f22010-08-27 21:39:59 +00001991 // Okay, check to see if the same value occurs in the operand list more than
1992 // once. If so, merge them together into an multiply expression. Since we
1993 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001994 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001995 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001996 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001997 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001998 // Scan ahead to count how many equal operands there are.
1999 unsigned Count = 2;
2000 while (i+Count != e && Ops[i+Count] == Ops[i])
2001 ++Count;
2002 // Merge the values into a multiply.
2003 const SCEV *Scale = getConstant(Ty, Count);
2004 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2005 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002006 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002007 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002008 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002009 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002010 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002012 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002013 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002014
Dan Gohman2e55cc52009-05-08 21:03:19 +00002015 // Check for truncates. If all the operands are truncated from the same
2016 // type, see if factoring out the truncate would permit the result to be
2017 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2018 // if the contents of the resulting outer trunc fold to something simple.
2019 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2020 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002021 Type *DstType = Trunc->getType();
2022 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002023 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002024 bool Ok = true;
2025 // Check all the operands to see if they can be represented in the
2026 // source type of the truncate.
2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2028 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2029 if (T->getOperand()->getType() != SrcType) {
2030 Ok = false;
2031 break;
2032 }
2033 LargeOps.push_back(T->getOperand());
2034 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002035 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002036 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002037 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002038 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2039 if (const SCEVTruncateExpr *T =
2040 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2041 if (T->getOperand()->getType() != SrcType) {
2042 Ok = false;
2043 break;
2044 }
2045 LargeMulOps.push_back(T->getOperand());
2046 } else if (const SCEVConstant *C =
2047 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002048 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002049 } else {
2050 Ok = false;
2051 break;
2052 }
2053 }
2054 if (Ok)
2055 LargeOps.push_back(getMulExpr(LargeMulOps));
2056 } else {
2057 Ok = false;
2058 break;
2059 }
2060 }
2061 if (Ok) {
2062 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002063 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002064 // If it folds to something simple, use it. Otherwise, don't.
2065 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2066 return getTruncateExpr(Fold, DstType);
2067 }
2068 }
2069
2070 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002071 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2072 ++Idx;
2073
2074 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002075 if (Idx < Ops.size()) {
2076 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002077 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002078 // If we have an add, expand the add operands onto the end of the operands
2079 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002080 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002081 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002082 DeletedAdd = true;
2083 }
2084
2085 // If we deleted at least one add, we added operands to the end of the list,
2086 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002087 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002088 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002089 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002090 }
2091
2092 // Skip over the add expression until we get to a multiply.
2093 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2094 ++Idx;
2095
Dan Gohman038d02e2009-06-14 22:58:51 +00002096 // Check to see if there are any folding opportunities present with
2097 // operands multiplied by constant values.
2098 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2099 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002100 DenseMap<const SCEV *, APInt> M;
2101 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002102 APInt AccumulatedConstant(BitWidth, 0);
2103 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002104 Ops.data(), Ops.size(),
2105 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002106 // Some interesting folding opportunity is present, so its worthwhile to
2107 // re-generate the operands list. Group the operands by constant scale,
2108 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002109 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002110 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002111 E = NewOps.end(); I != E; ++I)
2112 MulOpLists[M.find(*I)->second].push_back(*I);
2113 // Re-generate the operands list.
2114 Ops.clear();
2115 if (AccumulatedConstant != 0)
2116 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002117 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2118 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002119 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002120 Ops.push_back(getMulExpr(getConstant(I->first),
2121 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002122 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002123 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002124 if (Ops.size() == 1)
2125 return Ops[0];
2126 return getAddExpr(Ops);
2127 }
2128 }
2129
Chris Lattnerd934c702004-04-02 20:23:17 +00002130 // If we are adding something to a multiply expression, make sure the
2131 // something is not already an operand of the multiply. If so, merge it into
2132 // the multiply.
2133 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002134 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002135 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002136 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002137 if (isa<SCEVConstant>(MulOpSCEV))
2138 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002139 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002140 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002141 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002142 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002143 if (Mul->getNumOperands() != 2) {
2144 // If the multiply has more than two operands, we must get the
2145 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002146 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2147 Mul->op_begin()+MulOp);
2148 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002149 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002150 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002151 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002152 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002153 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002154 if (Ops.size() == 2) return OuterMul;
2155 if (AddOp < Idx) {
2156 Ops.erase(Ops.begin()+AddOp);
2157 Ops.erase(Ops.begin()+Idx-1);
2158 } else {
2159 Ops.erase(Ops.begin()+Idx);
2160 Ops.erase(Ops.begin()+AddOp-1);
2161 }
2162 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002163 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002164 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002165
Chris Lattnerd934c702004-04-02 20:23:17 +00002166 // Check this multiply against other multiplies being added together.
2167 for (unsigned OtherMulIdx = Idx+1;
2168 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2169 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002170 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002171 // If MulOp occurs in OtherMul, we can fold the two multiplies
2172 // together.
2173 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2174 OMulOp != e; ++OMulOp)
2175 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2176 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002177 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002178 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002179 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002180 Mul->op_begin()+MulOp);
2181 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002182 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002183 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002184 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002185 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002186 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002187 OtherMul->op_begin()+OMulOp);
2188 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002189 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002190 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002191 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2192 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002193 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002194 Ops.erase(Ops.begin()+Idx);
2195 Ops.erase(Ops.begin()+OtherMulIdx-1);
2196 Ops.push_back(OuterMul);
2197 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002198 }
2199 }
2200 }
2201 }
2202
2203 // If there are any add recurrences in the operands list, see if any other
2204 // added values are loop invariant. If so, we can fold them into the
2205 // recurrence.
2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2207 ++Idx;
2208
2209 // Scan over all recurrences, trying to fold loop invariants into them.
2210 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2211 // Scan all of the other operands to this add and add them to the vector if
2212 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002213 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002214 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002215 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002216 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002217 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002218 LIOps.push_back(Ops[i]);
2219 Ops.erase(Ops.begin()+i);
2220 --i; --e;
2221 }
2222
2223 // If we found some loop invariants, fold them into the recurrence.
2224 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002225 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002226 LIOps.push_back(AddRec->getStart());
2227
Dan Gohmanaf752342009-07-07 17:06:11 +00002228 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002229 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002230 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002231
Dan Gohman16206132010-06-30 07:16:37 +00002232 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002233 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002234 // Always propagate NW.
2235 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002236 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002237
Chris Lattnerd934c702004-04-02 20:23:17 +00002238 // If all of the other operands were loop invariant, we are done.
2239 if (Ops.size() == 1) return NewRec;
2240
Nick Lewyckydb66b822011-09-06 05:08:09 +00002241 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002242 for (unsigned i = 0;; ++i)
2243 if (Ops[i] == AddRec) {
2244 Ops[i] = NewRec;
2245 break;
2246 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002247 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002248 }
2249
2250 // Okay, if there weren't any loop invariants to be folded, check to see if
2251 // there are multiple AddRec's with the same loop induction variable being
2252 // added together. If so, we can fold them.
2253 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002254 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2255 ++OtherIdx)
2256 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2257 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2258 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2259 AddRec->op_end());
2260 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2261 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002262 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002263 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002264 if (OtherAddRec->getLoop() == AddRecLoop) {
2265 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2266 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002267 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002268 AddRecOps.append(OtherAddRec->op_begin()+i,
2269 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002270 break;
2271 }
Dan Gohman028c1812010-08-29 14:53:34 +00002272 AddRecOps[i] = getAddExpr(AddRecOps[i],
2273 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002274 }
2275 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002276 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002277 // Step size has changed, so we cannot guarantee no self-wraparound.
2278 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002279 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002280 }
2281
2282 // Otherwise couldn't fold anything into this recurrence. Move onto the
2283 // next one.
2284 }
2285
2286 // Okay, it looks like we really DO need an add expr. Check to see if we
2287 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002288 FoldingSetNodeID ID;
2289 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002290 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2291 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002292 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002293 SCEVAddExpr *S =
2294 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2295 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002296 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2297 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002298 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2299 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002300 UniqueSCEVs.InsertNode(S, IP);
2301 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002302 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002303 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002304}
2305
Nick Lewycky287682e2011-10-04 06:51:26 +00002306static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2307 uint64_t k = i*j;
2308 if (j > 1 && k / j != i) Overflow = true;
2309 return k;
2310}
2311
2312/// Compute the result of "n choose k", the binomial coefficient. If an
2313/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002314/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002315static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2316 // We use the multiplicative formula:
2317 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2318 // At each iteration, we take the n-th term of the numeral and divide by the
2319 // (k-n)th term of the denominator. This division will always produce an
2320 // integral result, and helps reduce the chance of overflow in the
2321 // intermediate computations. However, we can still overflow even when the
2322 // final result would fit.
2323
2324 if (n == 0 || n == k) return 1;
2325 if (k > n) return 0;
2326
2327 if (k > n/2)
2328 k = n-k;
2329
2330 uint64_t r = 1;
2331 for (uint64_t i = 1; i <= k; ++i) {
2332 r = umul_ov(r, n-(i-1), Overflow);
2333 r /= i;
2334 }
2335 return r;
2336}
2337
Nick Lewycky05044c22014-12-06 00:45:50 +00002338/// Determine if any of the operands in this SCEV are a constant or if
2339/// any of the add or multiply expressions in this SCEV contain a constant.
2340static bool containsConstantSomewhere(const SCEV *StartExpr) {
2341 SmallVector<const SCEV *, 4> Ops;
2342 Ops.push_back(StartExpr);
2343 while (!Ops.empty()) {
2344 const SCEV *CurrentExpr = Ops.pop_back_val();
2345 if (isa<SCEVConstant>(*CurrentExpr))
2346 return true;
2347
2348 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2349 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002350 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002351 }
2352 }
2353 return false;
2354}
2355
Dan Gohman4d5435d2009-05-24 23:45:28 +00002356/// getMulExpr - Get a canonical multiply expression, or something simpler if
2357/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002358const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002359 SCEV::NoWrapFlags Flags) {
2360 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2361 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002362 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002363 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002364#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002365 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002366 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002367 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002368 "SCEVMulExpr operand types don't match!");
2369#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002370
Sanjoy Das81401d42015-01-10 23:41:24 +00002371 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002372
Chris Lattnerd934c702004-04-02 20:23:17 +00002373 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002374 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002375
2376 // If there are any constants, fold them together.
2377 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002378 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002379
2380 // C1*(C2+V) -> C1*C2 + C1*V
2381 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002382 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2383 // If any of Add's ops are Adds or Muls with a constant,
2384 // apply this transformation as well.
2385 if (Add->getNumOperands() == 2)
2386 if (containsConstantSomewhere(Add))
2387 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2388 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002389
Chris Lattnerd934c702004-04-02 20:23:17 +00002390 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002392 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002393 ConstantInt *Fold = ConstantInt::get(getContext(),
2394 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002395 RHSC->getValue()->getValue());
2396 Ops[0] = getConstant(Fold);
2397 Ops.erase(Ops.begin()+1); // Erase the folded element
2398 if (Ops.size() == 1) return Ops[0];
2399 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002400 }
2401
2402 // If we are left with a constant one being multiplied, strip it off.
2403 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2404 Ops.erase(Ops.begin());
2405 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002407 // If we have a multiply of zero, it will always be zero.
2408 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002409 } else if (Ops[0]->isAllOnesValue()) {
2410 // If we have a mul by -1 of an add, try distributing the -1 among the
2411 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002412 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002413 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2414 SmallVector<const SCEV *, 4> NewOps;
2415 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002416 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2417 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002418 const SCEV *Mul = getMulExpr(Ops[0], *I);
2419 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2420 NewOps.push_back(Mul);
2421 }
2422 if (AnyFolded)
2423 return getAddExpr(NewOps);
2424 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002425 else if (const SCEVAddRecExpr *
2426 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2427 // Negation preserves a recurrence's no self-wrap property.
2428 SmallVector<const SCEV *, 4> Operands;
2429 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2430 E = AddRec->op_end(); I != E; ++I) {
2431 Operands.push_back(getMulExpr(Ops[0], *I));
2432 }
2433 return getAddRecExpr(Operands, AddRec->getLoop(),
2434 AddRec->getNoWrapFlags(SCEV::FlagNW));
2435 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002436 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002437 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002438
2439 if (Ops.size() == 1)
2440 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002441 }
2442
2443 // Skip over the add expression until we get to a multiply.
2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2445 ++Idx;
2446
Chris Lattnerd934c702004-04-02 20:23:17 +00002447 // If there are mul operands inline them all into this expression.
2448 if (Idx < Ops.size()) {
2449 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002450 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002451 // If we have an mul, expand the mul operands onto the end of the operands
2452 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002453 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002454 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002455 DeletedMul = true;
2456 }
2457
2458 // If we deleted at least one mul, we added operands to the end of the list,
2459 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002460 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002461 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002462 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002463 }
2464
2465 // If there are any add recurrences in the operands list, see if any other
2466 // added values are loop invariant. If so, we can fold them into the
2467 // recurrence.
2468 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2469 ++Idx;
2470
2471 // Scan over all recurrences, trying to fold loop invariants into them.
2472 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2473 // Scan all of the other operands to this mul and add them to the vector if
2474 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002475 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002476 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002477 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002478 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002479 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002480 LIOps.push_back(Ops[i]);
2481 Ops.erase(Ops.begin()+i);
2482 --i; --e;
2483 }
2484
2485 // If we found some loop invariants, fold them into the recurrence.
2486 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002487 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002488 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002489 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002490 const SCEV *Scale = getMulExpr(LIOps);
2491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2492 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002493
Dan Gohman16206132010-06-30 07:16:37 +00002494 // Build the new addrec. Propagate the NUW and NSW flags if both the
2495 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002496 //
2497 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002498 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002499 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2500 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002501
2502 // If all of the other operands were loop invariant, we are done.
2503 if (Ops.size() == 1) return NewRec;
2504
Nick Lewyckydb66b822011-09-06 05:08:09 +00002505 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002506 for (unsigned i = 0;; ++i)
2507 if (Ops[i] == AddRec) {
2508 Ops[i] = NewRec;
2509 break;
2510 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002511 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002512 }
2513
2514 // Okay, if there weren't any loop invariants to be folded, check to see if
2515 // there are multiple AddRec's with the same loop induction variable being
2516 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002517
2518 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2519 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2520 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2521 // ]]],+,...up to x=2n}.
2522 // Note that the arguments to choose() are always integers with values
2523 // known at compile time, never SCEV objects.
2524 //
2525 // The implementation avoids pointless extra computations when the two
2526 // addrec's are of different length (mathematically, it's equivalent to
2527 // an infinite stream of zeros on the right).
2528 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002529 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002530 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002531 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002532 const SCEVAddRecExpr *OtherAddRec =
2533 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2534 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002535 continue;
2536
Nick Lewycky97756402014-09-01 05:17:15 +00002537 bool Overflow = false;
2538 Type *Ty = AddRec->getType();
2539 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2540 SmallVector<const SCEV*, 7> AddRecOps;
2541 for (int x = 0, xe = AddRec->getNumOperands() +
2542 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002543 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002544 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2545 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2546 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2547 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2548 z < ze && !Overflow; ++z) {
2549 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2550 uint64_t Coeff;
2551 if (LargerThan64Bits)
2552 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2553 else
2554 Coeff = Coeff1*Coeff2;
2555 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2556 const SCEV *Term1 = AddRec->getOperand(y-z);
2557 const SCEV *Term2 = OtherAddRec->getOperand(z);
2558 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002559 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002560 }
Nick Lewycky97756402014-09-01 05:17:15 +00002561 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002562 }
Nick Lewycky97756402014-09-01 05:17:15 +00002563 if (!Overflow) {
2564 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2565 SCEV::FlagAnyWrap);
2566 if (Ops.size() == 2) return NewAddRec;
2567 Ops[Idx] = NewAddRec;
2568 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2569 OpsModified = true;
2570 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2571 if (!AddRec)
2572 break;
2573 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002574 }
Nick Lewycky97756402014-09-01 05:17:15 +00002575 if (OpsModified)
2576 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002577
2578 // Otherwise couldn't fold anything into this recurrence. Move onto the
2579 // next one.
2580 }
2581
2582 // Okay, it looks like we really DO need an mul expr. Check to see if we
2583 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002584 FoldingSetNodeID ID;
2585 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002586 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2587 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002588 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002589 SCEVMulExpr *S =
2590 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2591 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002592 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2593 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002594 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2595 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002596 UniqueSCEVs.InsertNode(S, IP);
2597 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002598 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002599 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002600}
2601
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002602/// getUDivExpr - Get a canonical unsigned division expression, or something
2603/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002604const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2605 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002606 assert(getEffectiveSCEVType(LHS->getType()) ==
2607 getEffectiveSCEVType(RHS->getType()) &&
2608 "SCEVUDivExpr operand types don't match!");
2609
Dan Gohmana30370b2009-05-04 22:02:23 +00002610 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002611 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002612 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002613 // If the denominator is zero, the result of the udiv is undefined. Don't
2614 // try to analyze it, because the resolution chosen here may differ from
2615 // the resolution chosen in other parts of the compiler.
2616 if (!RHSC->getValue()->isZero()) {
2617 // Determine if the division can be folded into the operands of
2618 // its operands.
2619 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002620 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002621 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002622 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002623 // For non-power-of-two values, effectively round the value up to the
2624 // nearest power of two.
2625 if (!RHSC->getValue()->getValue().isPowerOf2())
2626 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002627 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002628 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002629 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2630 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002631 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2632 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2633 const APInt &StepInt = Step->getValue()->getValue();
2634 const APInt &DivInt = RHSC->getValue()->getValue();
2635 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002636 getZeroExtendExpr(AR, ExtTy) ==
2637 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2638 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002639 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002640 SmallVector<const SCEV *, 4> Operands;
2641 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2642 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002643 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002644 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002645 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002646 /// Get a canonical UDivExpr for a recurrence.
2647 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2648 // We can currently only fold X%N if X is constant.
2649 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2650 if (StartC && !DivInt.urem(StepInt) &&
2651 getZeroExtendExpr(AR, ExtTy) ==
2652 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2653 getZeroExtendExpr(Step, ExtTy),
2654 AR->getLoop(), SCEV::FlagAnyWrap)) {
2655 const APInt &StartInt = StartC->getValue()->getValue();
2656 const APInt &StartRem = StartInt.urem(StepInt);
2657 if (StartRem != 0)
2658 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2659 AR->getLoop(), SCEV::FlagNW);
2660 }
2661 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002662 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2663 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2664 SmallVector<const SCEV *, 4> Operands;
2665 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2666 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2667 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2668 // Find an operand that's safely divisible.
2669 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2670 const SCEV *Op = M->getOperand(i);
2671 const SCEV *Div = getUDivExpr(Op, RHSC);
2672 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2673 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2674 M->op_end());
2675 Operands[i] = Div;
2676 return getMulExpr(Operands);
2677 }
2678 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002679 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002680 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002681 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002682 SmallVector<const SCEV *, 4> Operands;
2683 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2684 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2685 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2686 Operands.clear();
2687 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2688 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2689 if (isa<SCEVUDivExpr>(Op) ||
2690 getMulExpr(Op, RHS) != A->getOperand(i))
2691 break;
2692 Operands.push_back(Op);
2693 }
2694 if (Operands.size() == A->getNumOperands())
2695 return getAddExpr(Operands);
2696 }
2697 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002698
Dan Gohmanacd700a2010-04-22 01:35:11 +00002699 // Fold if both operands are constant.
2700 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2701 Constant *LHSCV = LHSC->getValue();
2702 Constant *RHSCV = RHSC->getValue();
2703 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2704 RHSCV)));
2705 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002706 }
2707 }
2708
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002709 FoldingSetNodeID ID;
2710 ID.AddInteger(scUDivExpr);
2711 ID.AddPointer(LHS);
2712 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002713 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002714 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002715 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2716 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002717 UniqueSCEVs.InsertNode(S, IP);
2718 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002719}
2720
Nick Lewycky31eaca52014-01-27 10:04:03 +00002721static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2722 APInt A = C1->getValue()->getValue().abs();
2723 APInt B = C2->getValue()->getValue().abs();
2724 uint32_t ABW = A.getBitWidth();
2725 uint32_t BBW = B.getBitWidth();
2726
2727 if (ABW > BBW)
2728 B = B.zext(ABW);
2729 else if (ABW < BBW)
2730 A = A.zext(BBW);
2731
2732 return APIntOps::GreatestCommonDivisor(A, B);
2733}
2734
2735/// getUDivExactExpr - Get a canonical unsigned division expression, or
2736/// something simpler if possible. There is no representation for an exact udiv
2737/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2738/// We can't do this when it's not exact because the udiv may be clearing bits.
2739const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2740 const SCEV *RHS) {
2741 // TODO: we could try to find factors in all sorts of things, but for now we
2742 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2743 // end of this file for inspiration.
2744
2745 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2746 if (!Mul)
2747 return getUDivExpr(LHS, RHS);
2748
2749 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2750 // If the mulexpr multiplies by a constant, then that constant must be the
2751 // first element of the mulexpr.
2752 if (const SCEVConstant *LHSCst =
2753 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2754 if (LHSCst == RHSCst) {
2755 SmallVector<const SCEV *, 2> Operands;
2756 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2757 return getMulExpr(Operands);
2758 }
2759
2760 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2761 // that there's a factor provided by one of the other terms. We need to
2762 // check.
2763 APInt Factor = gcd(LHSCst, RHSCst);
2764 if (!Factor.isIntN(1)) {
2765 LHSCst = cast<SCEVConstant>(
2766 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2767 RHSCst = cast<SCEVConstant>(
2768 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2769 SmallVector<const SCEV *, 2> Operands;
2770 Operands.push_back(LHSCst);
2771 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2772 LHS = getMulExpr(Operands);
2773 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002774 Mul = dyn_cast<SCEVMulExpr>(LHS);
2775 if (!Mul)
2776 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002777 }
2778 }
2779 }
2780
2781 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2782 if (Mul->getOperand(i) == RHS) {
2783 SmallVector<const SCEV *, 2> Operands;
2784 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2785 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2786 return getMulExpr(Operands);
2787 }
2788 }
2789
2790 return getUDivExpr(LHS, RHS);
2791}
Chris Lattnerd934c702004-04-02 20:23:17 +00002792
Dan Gohman4d5435d2009-05-24 23:45:28 +00002793/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2794/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002795const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2796 const Loop *L,
2797 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002798 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002799 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002800 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002801 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002802 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002803 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002804 }
2805
2806 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002807 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002808}
2809
Dan Gohman4d5435d2009-05-24 23:45:28 +00002810/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2811/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002812const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002813ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002814 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002815 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002816#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002817 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002818 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002819 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002820 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002821 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002822 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002823 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002824#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002825
Dan Gohmanbe928e32008-06-18 16:23:07 +00002826 if (Operands.back()->isZero()) {
2827 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002828 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002829 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002830
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002831 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2832 // use that information to infer NUW and NSW flags. However, computing a
2833 // BE count requires calling getAddRecExpr, so we may not yet have a
2834 // meaningful BE count at this point (and if we don't, we'd be stuck
2835 // with a SCEVCouldNotCompute as the cached BE count).
2836
Sanjoy Das81401d42015-01-10 23:41:24 +00002837 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002838
Dan Gohman223a5d22008-08-08 18:33:12 +00002839 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002840 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002841 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002842 if (L->contains(NestedLoop)
2843 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2844 : (!NestedLoop->contains(L) &&
2845 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002846 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002847 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002848 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002849 // AddRecs require their operands be loop-invariant with respect to their
2850 // loops. Don't perform this transformation if it would break this
2851 // requirement.
2852 bool AllInvariant = true;
2853 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002854 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002855 AllInvariant = false;
2856 break;
2857 }
2858 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002859 // Create a recurrence for the outer loop with the same step size.
2860 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002861 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2862 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002863 SCEV::NoWrapFlags OuterFlags =
2864 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002865
2866 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002867 AllInvariant = true;
2868 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002869 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002870 AllInvariant = false;
2871 break;
2872 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002873 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002874 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002875 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002876 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2877 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002878 SCEV::NoWrapFlags InnerFlags =
2879 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002880 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2881 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002882 }
2883 // Reset Operands to its original state.
2884 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002885 }
2886 }
2887
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002888 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2889 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002890 FoldingSetNodeID ID;
2891 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002892 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2893 ID.AddPointer(Operands[i]);
2894 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002895 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002896 SCEVAddRecExpr *S =
2897 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2898 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002899 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2900 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002901 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2902 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002903 UniqueSCEVs.InsertNode(S, IP);
2904 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002905 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002906 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002907}
2908
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002909const SCEV *
2910ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2911 const SmallVectorImpl<const SCEV *> &IndexExprs,
2912 bool InBounds) {
2913 // getSCEV(Base)->getType() has the same address space as Base->getType()
2914 // because SCEV::getType() preserves the address space.
2915 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2916 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2917 // instruction to its SCEV, because the Instruction may be guarded by control
2918 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002919 // context. This can be fixed similarly to how these flags are handled for
2920 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002921 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2922
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002923 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002924 // The address space is unimportant. The first thing we do on CurTy is getting
2925 // its element type.
2926 Type *CurTy = PointerType::getUnqual(PointeeType);
2927 for (const SCEV *IndexExpr : IndexExprs) {
2928 // Compute the (potentially symbolic) offset in bytes for this index.
2929 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2930 // For a struct, add the member offset.
2931 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2932 unsigned FieldNo = Index->getZExtValue();
2933 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2934
2935 // Add the field offset to the running total offset.
2936 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2937
2938 // Update CurTy to the type of the field at Index.
2939 CurTy = STy->getTypeAtIndex(Index);
2940 } else {
2941 // Update CurTy to its element type.
2942 CurTy = cast<SequentialType>(CurTy)->getElementType();
2943 // For an array, add the element offset, explicitly scaled.
2944 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2945 // Getelementptr indices are signed.
2946 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2947
2948 // Multiply the index by the element size to compute the element offset.
2949 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2950
2951 // Add the element offset to the running total offset.
2952 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2953 }
2954 }
2955
2956 // Add the total offset from all the GEP indices to the base.
2957 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2958}
2959
Dan Gohmanabd17092009-06-24 14:49:00 +00002960const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2961 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002962 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002963 Ops.push_back(LHS);
2964 Ops.push_back(RHS);
2965 return getSMaxExpr(Ops);
2966}
2967
Dan Gohmanaf752342009-07-07 17:06:11 +00002968const SCEV *
2969ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002970 assert(!Ops.empty() && "Cannot get empty smax!");
2971 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002972#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002973 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002974 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002975 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002976 "SCEVSMaxExpr operand types don't match!");
2977#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002978
2979 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002980 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002981
2982 // If there are any constants, fold them together.
2983 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002984 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002985 ++Idx;
2986 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002987 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002988 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002989 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002990 APIntOps::smax(LHSC->getValue()->getValue(),
2991 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002992 Ops[0] = getConstant(Fold);
2993 Ops.erase(Ops.begin()+1); // Erase the folded element
2994 if (Ops.size() == 1) return Ops[0];
2995 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002996 }
2997
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002998 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002999 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3000 Ops.erase(Ops.begin());
3001 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003002 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3003 // If we have an smax with a constant maximum-int, it will always be
3004 // maximum-int.
3005 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003006 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003007
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003008 if (Ops.size() == 1) return Ops[0];
3009 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003010
3011 // Find the first SMax
3012 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3013 ++Idx;
3014
3015 // Check to see if one of the operands is an SMax. If so, expand its operands
3016 // onto our operand list, and recurse to simplify.
3017 if (Idx < Ops.size()) {
3018 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003019 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003020 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003021 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003022 DeletedSMax = true;
3023 }
3024
3025 if (DeletedSMax)
3026 return getSMaxExpr(Ops);
3027 }
3028
3029 // Okay, check to see if the same value occurs in the operand list twice. If
3030 // so, delete one. Since we sorted the list, these values are required to
3031 // be adjacent.
3032 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003033 // X smax Y smax Y --> X smax Y
3034 // X smax Y --> X, if X is always greater than Y
3035 if (Ops[i] == Ops[i+1] ||
3036 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3037 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3038 --i; --e;
3039 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003040 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3041 --i; --e;
3042 }
3043
3044 if (Ops.size() == 1) return Ops[0];
3045
3046 assert(!Ops.empty() && "Reduced smax down to nothing!");
3047
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003048 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003049 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003050 FoldingSetNodeID ID;
3051 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003052 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3053 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003054 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003055 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003056 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3057 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003058 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3059 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003060 UniqueSCEVs.InsertNode(S, IP);
3061 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003062}
3063
Dan Gohmanabd17092009-06-24 14:49:00 +00003064const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3065 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003066 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003067 Ops.push_back(LHS);
3068 Ops.push_back(RHS);
3069 return getUMaxExpr(Ops);
3070}
3071
Dan Gohmanaf752342009-07-07 17:06:11 +00003072const SCEV *
3073ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003074 assert(!Ops.empty() && "Cannot get empty umax!");
3075 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003076#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003077 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003078 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003079 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003080 "SCEVUMaxExpr operand types don't match!");
3081#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003082
3083 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003084 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003085
3086 // If there are any constants, fold them together.
3087 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003088 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003089 ++Idx;
3090 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003091 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003092 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003093 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003094 APIntOps::umax(LHSC->getValue()->getValue(),
3095 RHSC->getValue()->getValue()));
3096 Ops[0] = getConstant(Fold);
3097 Ops.erase(Ops.begin()+1); // Erase the folded element
3098 if (Ops.size() == 1) return Ops[0];
3099 LHSC = cast<SCEVConstant>(Ops[0]);
3100 }
3101
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003102 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003103 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3104 Ops.erase(Ops.begin());
3105 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003106 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3107 // If we have an umax with a constant maximum-int, it will always be
3108 // maximum-int.
3109 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003110 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003111
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003112 if (Ops.size() == 1) return Ops[0];
3113 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003114
3115 // Find the first UMax
3116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3117 ++Idx;
3118
3119 // Check to see if one of the operands is a UMax. If so, expand its operands
3120 // onto our operand list, and recurse to simplify.
3121 if (Idx < Ops.size()) {
3122 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003123 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003124 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003125 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003126 DeletedUMax = true;
3127 }
3128
3129 if (DeletedUMax)
3130 return getUMaxExpr(Ops);
3131 }
3132
3133 // Okay, check to see if the same value occurs in the operand list twice. If
3134 // so, delete one. Since we sorted the list, these values are required to
3135 // be adjacent.
3136 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003137 // X umax Y umax Y --> X umax Y
3138 // X umax Y --> X, if X is always greater than Y
3139 if (Ops[i] == Ops[i+1] ||
3140 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3141 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3142 --i; --e;
3143 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003144 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3145 --i; --e;
3146 }
3147
3148 if (Ops.size() == 1) return Ops[0];
3149
3150 assert(!Ops.empty() && "Reduced umax down to nothing!");
3151
3152 // Okay, it looks like we really DO need a umax expr. Check to see if we
3153 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003154 FoldingSetNodeID ID;
3155 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003156 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3157 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003158 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003159 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003160 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3161 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003162 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3163 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003164 UniqueSCEVs.InsertNode(S, IP);
3165 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003166}
3167
Dan Gohmanabd17092009-06-24 14:49:00 +00003168const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3169 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003170 // ~smax(~x, ~y) == smin(x, y).
3171 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3172}
3173
Dan Gohmanabd17092009-06-24 14:49:00 +00003174const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3175 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003176 // ~umax(~x, ~y) == umin(x, y)
3177 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3178}
3179
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003180const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003181 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003182 // constant expression and then folding it back into a ConstantInt.
3183 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003184 return getConstant(IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003185 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003186}
3187
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003188const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3189 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003190 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003191 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003192 // constant expression and then folding it back into a ConstantInt.
3193 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003194 return getConstant(
3195 IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003196 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003197 FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003198}
3199
Dan Gohmanaf752342009-07-07 17:06:11 +00003200const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003201 // Don't attempt to do anything other than create a SCEVUnknown object
3202 // here. createSCEV only calls getUnknown after checking for all other
3203 // interesting possibilities, and any other code that calls getUnknown
3204 // is doing so in order to hide a value from SCEV canonicalization.
3205
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003206 FoldingSetNodeID ID;
3207 ID.AddInteger(scUnknown);
3208 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003209 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003210 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3211 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3212 "Stale SCEVUnknown in uniquing map!");
3213 return S;
3214 }
3215 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3216 FirstUnknown);
3217 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003218 UniqueSCEVs.InsertNode(S, IP);
3219 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003220}
3221
Chris Lattnerd934c702004-04-02 20:23:17 +00003222//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003223// Basic SCEV Analysis and PHI Idiom Recognition Code
3224//
3225
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003226/// isSCEVable - Test if values of the given type are analyzable within
3227/// the SCEV framework. This primarily includes integer types, and it
3228/// can optionally include pointer types if the ScalarEvolution class
3229/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003230bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003231 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003232 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003233}
3234
3235/// getTypeSizeInBits - Return the size in bits of the specified type,
3236/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003237uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003238 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003239 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003240}
3241
3242/// getEffectiveSCEVType - Return a type with the same bitwidth as
3243/// the given type and which represents how SCEV will treat the given
3244/// type, for which isSCEVable must return true. For pointer types,
3245/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003246Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003247 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3248
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003249 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003250 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003251 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003252
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003253 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003254 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003255 return F.getParent()->getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003256}
Chris Lattnerd934c702004-04-02 20:23:17 +00003257
Dan Gohmanaf752342009-07-07 17:06:11 +00003258const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003259 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003260}
3261
Shuxin Yangefc4c012013-07-08 17:33:13 +00003262namespace {
3263 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3264 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3265 // is set iff if find such SCEVUnknown.
3266 //
3267 struct FindInvalidSCEVUnknown {
3268 bool FindOne;
3269 FindInvalidSCEVUnknown() { FindOne = false; }
3270 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003271 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003272 case scConstant:
3273 return false;
3274 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003275 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003276 FindOne = true;
3277 return false;
3278 default:
3279 return true;
3280 }
3281 }
3282 bool isDone() const { return FindOne; }
3283 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003284}
Shuxin Yangefc4c012013-07-08 17:33:13 +00003285
3286bool ScalarEvolution::checkValidity(const SCEV *S) const {
3287 FindInvalidSCEVUnknown F;
3288 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3289 ST.visitAll(S);
3290
3291 return !F.FindOne;
3292}
3293
Chris Lattnerd934c702004-04-02 20:23:17 +00003294/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3295/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003296const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003297 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003298
Jingyue Wu42f1d672015-07-28 18:22:40 +00003299 const SCEV *S = getExistingSCEV(V);
3300 if (S == nullptr) {
3301 S = createSCEV(V);
3302 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3303 }
3304 return S;
3305}
3306
3307const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3308 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3309
Shuxin Yangefc4c012013-07-08 17:33:13 +00003310 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3311 if (I != ValueExprMap.end()) {
3312 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003313 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003314 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003315 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003316 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003317 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003318}
3319
Dan Gohman0a40ad92009-04-16 03:18:22 +00003320/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3321///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003322const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3323 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003324 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003325 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003326 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003327
Chris Lattner229907c2011-07-18 04:54:35 +00003328 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003329 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003330 return getMulExpr(
3331 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003332}
3333
3334/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003335const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003336 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003337 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003338 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003339
Chris Lattner229907c2011-07-18 04:54:35 +00003340 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003341 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003342 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003343 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003344 return getMinusSCEV(AllOnes, V);
3345}
3346
Andrew Trick8b55b732011-03-14 16:50:06 +00003347/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003348const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003349 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003350 // Fast path: X - X --> 0.
3351 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003352 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003353
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003354 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3355 // makes it so that we cannot make much use of NUW.
3356 auto AddFlags = SCEV::FlagAnyWrap;
3357 const bool RHSIsNotMinSigned =
3358 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3359 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3360 // Let M be the minimum representable signed value. Then (-1)*RHS
3361 // signed-wraps if and only if RHS is M. That can happen even for
3362 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3363 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3364 // (-1)*RHS, we need to prove that RHS != M.
3365 //
3366 // If LHS is non-negative and we know that LHS - RHS does not
3367 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3368 // either by proving that RHS > M or that LHS >= 0.
3369 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3370 AddFlags = SCEV::FlagNSW;
3371 }
3372 }
3373
3374 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3375 // RHS is NSW and LHS >= 0.
3376 //
3377 // The difficulty here is that the NSW flag may have been proven
3378 // relative to a loop that is to be found in a recurrence in LHS and
3379 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3380 // larger scope than intended.
3381 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3382
3383 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003384}
3385
3386/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3387/// input value to the specified type. If the type must be extended, it is zero
3388/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003389const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003390ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3391 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003392 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3393 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003394 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003395 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003396 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003397 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003398 return getTruncateExpr(V, Ty);
3399 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003400}
3401
3402/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3403/// input value to the specified type. If the type must be extended, it is sign
3404/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003405const SCEV *
3406ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003407 Type *Ty) {
3408 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003409 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3410 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003411 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003412 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003413 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003414 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003415 return getTruncateExpr(V, Ty);
3416 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003417}
3418
Dan Gohmane712a2f2009-05-13 03:46:30 +00003419/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3420/// input value to the specified type. If the type must be extended, it is zero
3421/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003422const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003423ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3424 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003425 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3426 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003427 "Cannot noop or zero extend with non-integer arguments!");
3428 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3429 "getNoopOrZeroExtend cannot truncate!");
3430 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3431 return V; // No conversion
3432 return getZeroExtendExpr(V, Ty);
3433}
3434
3435/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3436/// input value to the specified type. If the type must be extended, it is sign
3437/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003438const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003439ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3440 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003441 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3442 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003443 "Cannot noop or sign extend with non-integer arguments!");
3444 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3445 "getNoopOrSignExtend cannot truncate!");
3446 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3447 return V; // No conversion
3448 return getSignExtendExpr(V, Ty);
3449}
3450
Dan Gohman8db2edc2009-06-13 15:56:47 +00003451/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3452/// the input value to the specified type. If the type must be extended,
3453/// it is extended with unspecified bits. The conversion must not be
3454/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003455const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003456ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3457 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003458 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3459 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003460 "Cannot noop or any extend with non-integer arguments!");
3461 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3462 "getNoopOrAnyExtend cannot truncate!");
3463 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3464 return V; // No conversion
3465 return getAnyExtendExpr(V, Ty);
3466}
3467
Dan Gohmane712a2f2009-05-13 03:46:30 +00003468/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3469/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003470const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003471ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3472 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3474 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003475 "Cannot truncate or noop with non-integer arguments!");
3476 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3477 "getTruncateOrNoop cannot extend!");
3478 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3479 return V; // No conversion
3480 return getTruncateExpr(V, Ty);
3481}
3482
Dan Gohman96212b62009-06-22 00:31:57 +00003483/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3484/// the types using zero-extension, and then perform a umax operation
3485/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003486const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3487 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003488 const SCEV *PromotedLHS = LHS;
3489 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003490
3491 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3492 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3493 else
3494 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3495
3496 return getUMaxExpr(PromotedLHS, PromotedRHS);
3497}
3498
Dan Gohman2bc22302009-06-22 15:03:27 +00003499/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3500/// the types using zero-extension, and then perform a umin operation
3501/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003502const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3503 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003504 const SCEV *PromotedLHS = LHS;
3505 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003506
3507 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3508 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3509 else
3510 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3511
3512 return getUMinExpr(PromotedLHS, PromotedRHS);
3513}
3514
Andrew Trick87716c92011-03-17 23:51:11 +00003515/// getPointerBase - Transitively follow the chain of pointer-type operands
3516/// until reaching a SCEV that does not have a single pointer operand. This
3517/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3518/// but corner cases do exist.
3519const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3520 // A pointer operand may evaluate to a nonpointer expression, such as null.
3521 if (!V->getType()->isPointerTy())
3522 return V;
3523
3524 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3525 return getPointerBase(Cast->getOperand());
3526 }
3527 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003528 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003529 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3530 I != E; ++I) {
3531 if ((*I)->getType()->isPointerTy()) {
3532 // Cannot find the base of an expression with multiple pointer operands.
3533 if (PtrOp)
3534 return V;
3535 PtrOp = *I;
3536 }
3537 }
3538 if (!PtrOp)
3539 return V;
3540 return getPointerBase(PtrOp);
3541 }
3542 return V;
3543}
3544
Dan Gohman0b89dff2009-07-25 01:13:03 +00003545/// PushDefUseChildren - Push users of the given Instruction
3546/// onto the given Worklist.
3547static void
3548PushDefUseChildren(Instruction *I,
3549 SmallVectorImpl<Instruction *> &Worklist) {
3550 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003551 for (User *U : I->users())
3552 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003553}
3554
3555/// ForgetSymbolicValue - This looks up computed SCEV values for all
3556/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003557/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003558/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003559void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003560ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003561 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003562 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003563
Dan Gohman0b89dff2009-07-25 01:13:03 +00003564 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003565 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003566 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003567 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003568 if (!Visited.insert(I).second)
3569 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003570
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003571 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003572 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003573 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003574 const SCEV *Old = It->second;
3575
Dan Gohman0b89dff2009-07-25 01:13:03 +00003576 // Short-circuit the def-use traversal if the symbolic name
3577 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003578 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003579 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003580
Dan Gohman0b89dff2009-07-25 01:13:03 +00003581 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003582 // structure, it's a PHI that's in the progress of being computed
3583 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3584 // additional loop trip count information isn't going to change anything.
3585 // In the second case, createNodeForPHI will perform the necessary
3586 // updates on its own when it gets to that point. In the third, we do
3587 // want to forget the SCEVUnknown.
3588 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003589 !isa<SCEVUnknown>(Old) ||
3590 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003591 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003592 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003593 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003594 }
3595
3596 PushDefUseChildren(I, Worklist);
3597 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003598}
Chris Lattnerd934c702004-04-02 20:23:17 +00003599
3600/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3601/// a loop header, making it a potential recurrence, or it doesn't.
3602///
Dan Gohmanaf752342009-07-07 17:06:11 +00003603const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003604 if (const Loop *L = LI.getLoopFor(PN->getParent()))
Dan Gohman6635bb22010-04-12 07:49:36 +00003605 if (L->getHeader() == PN->getParent()) {
3606 // The loop may have multiple entrances or multiple exits; we can analyze
3607 // this phi as an addrec if it has a unique entry value and a unique
3608 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003609 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3611 Value *V = PN->getIncomingValue(i);
3612 if (L->contains(PN->getIncomingBlock(i))) {
3613 if (!BEValueV) {
3614 BEValueV = V;
3615 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003616 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003617 break;
3618 }
3619 } else if (!StartValueV) {
3620 StartValueV = V;
3621 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003622 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003623 break;
3624 }
3625 }
3626 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003627 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003628 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003629 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003630 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003631 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003632
3633 // Using this symbolic name for the PHI, analyze the value coming around
3634 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003635 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003636
3637 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3638 // has a special value for the first iteration of the loop.
3639
3640 // If the value coming around the backedge is an add with the symbolic
3641 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003642 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003643 // If there is a single occurrence of the symbolic value, replace it
3644 // with a recurrence.
3645 unsigned FoundIndex = Add->getNumOperands();
3646 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3647 if (Add->getOperand(i) == SymbolicName)
3648 if (FoundIndex == e) {
3649 FoundIndex = i;
3650 break;
3651 }
3652
3653 if (FoundIndex != Add->getNumOperands()) {
3654 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003655 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003656 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3657 if (i != FoundIndex)
3658 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003659 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003660
3661 // This is not a valid addrec if the step amount is varying each
3662 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003663 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003664 (isa<SCEVAddRecExpr>(Accum) &&
3665 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003666 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003667
3668 // If the increment doesn't overflow, then neither the addrec nor
3669 // the post-increment will overflow.
3670 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003671 if (OBO->getOperand(0) == PN) {
3672 if (OBO->hasNoUnsignedWrap())
3673 Flags = setFlags(Flags, SCEV::FlagNUW);
3674 if (OBO->hasNoSignedWrap())
3675 Flags = setFlags(Flags, SCEV::FlagNSW);
3676 }
Benjamin Kramer6094f302013-10-28 07:30:06 +00003677 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003678 // If the increment is an inbounds GEP, then we know the address
3679 // space cannot be wrapped around. We cannot make any guarantee
3680 // about signed or unsigned overflow because pointers are
3681 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003682 // pointer. We can guarantee that no unsigned wrap occurs if the
3683 // indices form a positive value.
Nick Lewyckyb6ef9a12015-03-13 01:37:52 +00003684 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003685 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003686
3687 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3688 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3689 Flags = setFlags(Flags, SCEV::FlagNUW);
3690 }
Sanjoy Dascb473662015-01-22 00:48:47 +00003691
3692 // We cannot transfer nuw and nsw flags from subtraction
3693 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3694 // for instance.
Dan Gohman51ad99d2010-01-21 02:09:26 +00003695 }
3696
Dan Gohman6635bb22010-04-12 07:49:36 +00003697 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003698 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003699
Dan Gohman51ad99d2010-01-21 02:09:26 +00003700 // Since the no-wrap flags are on the increment, they apply to the
3701 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003702 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003703 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003704 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003705
3706 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003707 // to be symbolic. We now need to go back and purge all of the
3708 // entries for the scalars that use the symbolic expression.
3709 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003710 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003711 return PHISCEV;
3712 }
3713 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003714 } else if (const SCEVAddRecExpr *AddRec =
3715 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003716 // Otherwise, this could be a loop like this:
3717 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3718 // In this case, j = {1,+,1} and BEValue is j.
3719 // Because the other in-value of i (0) fits the evolution of BEValue
3720 // i really is an addrec evolution.
3721 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003722 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003723
3724 // If StartVal = j.start - j.stride, we can use StartVal as the
3725 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003726 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003727 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003728 // FIXME: For constant StartVal, we should be able to infer
3729 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003730 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003731 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3732 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003733
3734 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003735 // to be symbolic. We now need to go back and purge all of the
3736 // entries for the scalars that use the symbolic expression.
3737 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003738 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003739 return PHISCEV;
3740 }
3741 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003742 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003743 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003744 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003745
Dan Gohmana9c205c2010-02-25 06:57:05 +00003746 // If the PHI has a single incoming value, follow that value, unless the
3747 // PHI's incoming blocks are in a different loop, in which case doing so
3748 // risks breaking LCSSA form. Instcombine would normally zap these, but
3749 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003750 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI,
3751 &DT, &AC))
3752 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003753 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003754
Chris Lattnerd934c702004-04-02 20:23:17 +00003755 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003756 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003757}
3758
Dan Gohmanee750d12009-05-08 20:26:55 +00003759/// createNodeForGEP - Expand GEP instructions into add and multiply
3760/// operations. This allows them to be analyzed by regular SCEV code.
3761///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003762const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00003763 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003764 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003765 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003766 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003767
Jingyue Wu2982d4d2015-05-18 17:03:25 +00003768 SmallVector<const SCEV *, 4> IndexExprs;
3769 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
3770 IndexExprs.push_back(getSCEV(*Index));
3771 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
3772 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00003773}
3774
Nick Lewycky3783b462007-11-22 07:59:40 +00003775/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3776/// guaranteed to end in (at every loop iteration). It is, at the same time,
3777/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3778/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003779uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003780ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003781 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003782 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003783
Dan Gohmana30370b2009-05-04 22:02:23 +00003784 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003785 return std::min(GetMinTrailingZeros(T->getOperand()),
3786 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003787
Dan Gohmana30370b2009-05-04 22:02:23 +00003788 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003789 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3790 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3791 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003792 }
3793
Dan Gohmana30370b2009-05-04 22:02:23 +00003794 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003795 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3796 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3797 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003798 }
3799
Dan Gohmana30370b2009-05-04 22:02:23 +00003800 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003801 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003802 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003803 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003804 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003805 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003806 }
3807
Dan Gohmana30370b2009-05-04 22:02:23 +00003808 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003809 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003810 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3811 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003812 for (unsigned i = 1, e = M->getNumOperands();
3813 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003814 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003815 BitWidth);
3816 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003817 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003818
Dan Gohmana30370b2009-05-04 22:02:23 +00003819 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003820 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003821 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003822 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003823 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003824 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003825 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003826
Dan Gohmana30370b2009-05-04 22:02:23 +00003827 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003828 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003829 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003830 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003831 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003832 return MinOpRes;
3833 }
3834
Dan Gohmana30370b2009-05-04 22:02:23 +00003835 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003836 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003837 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003838 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003839 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003840 return MinOpRes;
3841 }
3842
Dan Gohmanc702fc02009-06-19 23:29:04 +00003843 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3844 // For a SCEVUnknown, ask ValueTracking.
3845 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003846 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003847 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(),
3848 0, &AC, nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003849 return Zeros.countTrailingOnes();
3850 }
3851
3852 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003853 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003854}
Chris Lattnerd934c702004-04-02 20:23:17 +00003855
Sanjoy Das1f05c512014-10-10 21:22:34 +00003856/// GetRangeFromMetadata - Helper method to assign a range to V from
3857/// metadata present in the IR.
3858static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3859 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003860 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003861 ConstantRange TotalRange(
3862 cast<IntegerType>(I->getType())->getBitWidth(), false);
3863
3864 unsigned NumRanges = MD->getNumOperands() / 2;
3865 assert(NumRanges >= 1);
3866
3867 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003868 ConstantInt *Lower =
3869 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3870 ConstantInt *Upper =
3871 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003872 ConstantRange Range(Lower->getValue(), Upper->getValue());
3873 TotalRange = TotalRange.unionWith(Range);
3874 }
3875
3876 return TotalRange;
3877 }
3878 }
3879
3880 return None;
3881}
3882
Sanjoy Das91b54772015-03-09 21:43:43 +00003883/// getRange - Determine the range for a particular SCEV. If SignHint is
3884/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
3885/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00003886///
3887ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00003888ScalarEvolution::getRange(const SCEV *S,
3889 ScalarEvolution::RangeSignHint SignHint) {
3890 DenseMap<const SCEV *, ConstantRange> &Cache =
3891 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
3892 : SignedRanges;
3893
Dan Gohman761065e2010-11-17 02:44:44 +00003894 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00003895 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
3896 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00003897 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003898
3899 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00003900 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003901
Dan Gohman85be4332010-01-26 19:19:05 +00003902 unsigned BitWidth = getTypeSizeInBits(S->getType());
3903 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3904
Sanjoy Das91b54772015-03-09 21:43:43 +00003905 // If the value has known zeros, the maximum value will have those known zeros
3906 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00003907 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00003908 if (TZ != 0) {
3909 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
3910 ConservativeResult =
3911 ConstantRange(APInt::getMinValue(BitWidth),
3912 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3913 else
3914 ConservativeResult = ConstantRange(
3915 APInt::getSignedMinValue(BitWidth),
3916 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3917 }
Dan Gohman85be4332010-01-26 19:19:05 +00003918
Dan Gohmane65c9172009-07-13 21:35:55 +00003919 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003920 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003921 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003922 X = X.add(getRange(Add->getOperand(i), SignHint));
3923 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003924 }
3925
3926 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003927 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003928 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003929 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
3930 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003931 }
3932
3933 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003934 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003935 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003936 X = X.smax(getRange(SMax->getOperand(i), SignHint));
3937 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003938 }
3939
3940 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003941 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00003942 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00003943 X = X.umax(getRange(UMax->getOperand(i), SignHint));
3944 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003945 }
3946
3947 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003948 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
3949 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
3950 return setRange(UDiv, SignHint,
3951 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003952 }
3953
3954 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003955 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
3956 return setRange(ZExt, SignHint,
3957 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003958 }
3959
3960 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003961 ConstantRange X = getRange(SExt->getOperand(), SignHint);
3962 return setRange(SExt, SignHint,
3963 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003964 }
3965
3966 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00003967 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
3968 return setRange(Trunc, SignHint,
3969 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003970 }
3971
Dan Gohmane65c9172009-07-13 21:35:55 +00003972 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003973 // If there's no unsigned wrap, the value will never be less than its
3974 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003975 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003976 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003977 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003978 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003979 ConservativeResult.intersectWith(
3980 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003981
Dan Gohman51ad99d2010-01-21 02:09:26 +00003982 // If there's no signed wrap, and all the operands have the same sign or
3983 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003984 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003985 bool AllNonNeg = true;
3986 bool AllNonPos = true;
3987 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3988 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3989 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3990 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003991 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003992 ConservativeResult = ConservativeResult.intersectWith(
3993 ConstantRange(APInt(BitWidth, 0),
3994 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003995 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003996 ConservativeResult = ConservativeResult.intersectWith(
3997 ConstantRange(APInt::getSignedMinValue(BitWidth),
3998 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003999 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004000
4001 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004002 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004003 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004004 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004005 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4006 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004007
4008 // Check for overflow. This must be done with ConstantRange arithmetic
4009 // because we could be called from within the ScalarEvolution overflow
4010 // checking code.
4011
Dan Gohmane65c9172009-07-13 21:35:55 +00004012 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004013 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4014 ConstantRange ZExtMaxBECountRange =
4015 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004016
4017 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004018 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004019 ConstantRange StepSRange = getSignedRange(Step);
4020 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004021
Sanjoy Das91b54772015-03-09 21:43:43 +00004022 ConstantRange StartURange = getUnsignedRange(Start);
4023 ConstantRange EndURange =
4024 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004025
Sanjoy Das91b54772015-03-09 21:43:43 +00004026 // Check for unsigned overflow.
4027 ConstantRange ZExtStartURange =
4028 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4029 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4030 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4031 ZExtEndURange) {
4032 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4033 EndURange.getUnsignedMin());
4034 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4035 EndURange.getUnsignedMax());
4036 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4037 if (!IsFullRange)
4038 ConservativeResult =
4039 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4040 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004041
Sanjoy Das91b54772015-03-09 21:43:43 +00004042 ConstantRange StartSRange = getSignedRange(Start);
4043 ConstantRange EndSRange =
4044 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4045
4046 // Check for signed overflow. This must be done with ConstantRange
4047 // arithmetic because we could be called from within the ScalarEvolution
4048 // overflow checking code.
4049 ConstantRange SExtStartSRange =
4050 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4051 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4052 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4053 SExtEndSRange) {
4054 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4055 EndSRange.getSignedMin());
4056 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4057 EndSRange.getSignedMax());
4058 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4059 if (!IsFullRange)
4060 ConservativeResult =
4061 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4062 }
Dan Gohmand261d272009-06-24 01:05:09 +00004063 }
Dan Gohmand261d272009-06-24 01:05:09 +00004064 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004065
Sanjoy Das91b54772015-03-09 21:43:43 +00004066 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004067 }
4068
Dan Gohmanc702fc02009-06-19 23:29:04 +00004069 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004070 // Check if the IR explicitly contains !range metadata.
4071 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4072 if (MDRange.hasValue())
4073 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4074
Sanjoy Das91b54772015-03-09 21:43:43 +00004075 // Split here to avoid paying the compile-time cost of calling both
4076 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4077 // if needed.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004078 const DataLayout &DL = F.getParent()->getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004079 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4080 // For a SCEVUnknown, ask ValueTracking.
4081 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004082 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004083 if (Ones != ~Zeros + 1)
4084 ConservativeResult =
4085 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4086 } else {
4087 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4088 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004089 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004090 if (NS > 1)
4091 ConservativeResult = ConservativeResult.intersectWith(
4092 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4093 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004094 }
4095
4096 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004097 }
4098
Sanjoy Das91b54772015-03-09 21:43:43 +00004099 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004100}
4101
Jingyue Wu42f1d672015-07-28 18:22:40 +00004102SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004103 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004104 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4105
4106 // Return early if there are no flags to propagate to the SCEV.
4107 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4108 if (BinOp->hasNoUnsignedWrap())
4109 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4110 if (BinOp->hasNoSignedWrap())
4111 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4112 if (Flags == SCEV::FlagAnyWrap) {
4113 return SCEV::FlagAnyWrap;
4114 }
4115
4116 // Here we check that BinOp is in the header of the innermost loop
4117 // containing BinOp, since we only deal with instructions in the loop
4118 // header. The actual loop we need to check later will come from an add
4119 // recurrence, but getting that requires computing the SCEV of the operands,
4120 // which can be expensive. This check we can do cheaply to rule out some
4121 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004122 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004123 if (innermostContainingLoop == nullptr ||
4124 innermostContainingLoop->getHeader() != BinOp->getParent())
4125 return SCEV::FlagAnyWrap;
4126
4127 // Only proceed if we can prove that BinOp does not yield poison.
4128 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4129
4130 // At this point we know that if V is executed, then it does not wrap
4131 // according to at least one of NSW or NUW. If V is not executed, then we do
4132 // not know if the calculation that V represents would wrap. Multiple
4133 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4134 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4135 // derived from other instructions that map to the same SCEV. We cannot make
4136 // that guarantee for cases where V is not executed. So we need to find the
4137 // loop that V is considered in relation to and prove that V is executed for
4138 // every iteration of that loop. That implies that the value that V
4139 // calculates does not wrap anywhere in the loop, so then we can apply the
4140 // flags to the SCEV.
4141 //
4142 // We check isLoopInvariant to disambiguate in case we are adding two
4143 // recurrences from different loops, so that we know which loop to prove
4144 // that V is executed in.
4145 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4146 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4147 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4148 const int OtherOpIndex = 1 - OpIndex;
4149 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4150 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4151 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4152 return Flags;
4153 }
4154 }
4155 return SCEV::FlagAnyWrap;
4156}
4157
4158/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4159/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004160///
Dan Gohmanaf752342009-07-07 17:06:11 +00004161const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004162 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004163 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004164
Dan Gohman05e89732008-06-22 19:56:46 +00004165 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004166 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004167 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004168
4169 // Don't attempt to analyze instructions in blocks that aren't
4170 // reachable. Such instructions don't matter, and they aren't required
4171 // to obey basic rules for definitions dominating uses which this
4172 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004173 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004174 return getUnknown(V);
4175 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004176 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004177 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4178 return getConstant(CI);
4179 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004180 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004181 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4182 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004183 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004184 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004185
Dan Gohman80ca01c2009-07-17 20:47:02 +00004186 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004187 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004188 case Instruction::Add: {
4189 // The simple thing to do would be to just call getSCEV on both operands
4190 // and call getAddExpr with the result. However if we're looking at a
4191 // bunch of things all added together, this can be quite inefficient,
4192 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4193 // Instead, gather up all the operands and make a single getAddExpr call.
4194 // LLVM IR canonical form means we need only traverse the left operands.
4195 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004196 for (Value *Op = U;; Op = U->getOperand(0)) {
4197 U = dyn_cast<Operator>(Op);
4198 unsigned Opcode = U ? U->getOpcode() : 0;
4199 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4200 assert(Op != V && "V should be an add");
4201 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004202 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004203 }
4204
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004205 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004206 AddOps.push_back(OpSCEV);
4207 break;
4208 }
4209
4210 // If a NUW or NSW flag can be applied to the SCEV for this
4211 // addition, then compute the SCEV for this addition by itself
4212 // with a separate call to getAddExpr. We need to do that
4213 // instead of pushing the operands of the addition onto AddOps,
4214 // since the flags are only known to apply to this particular
4215 // addition - they may not apply to other additions that can be
4216 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004217 const SCEV *RHS = getSCEV(U->getOperand(1));
4218 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4219 if (Flags != SCEV::FlagAnyWrap) {
4220 const SCEV *LHS = getSCEV(U->getOperand(0));
4221 if (Opcode == Instruction::Sub)
4222 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4223 else
4224 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4225 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004226 }
4227
Dan Gohman47308d52010-08-31 22:53:17 +00004228 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004229 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004230 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004231 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004232 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004233 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004234 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004235
Dan Gohmane5fb1032010-08-16 16:03:49 +00004236 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004237 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004238 for (Value *Op = U;; Op = U->getOperand(0)) {
4239 U = dyn_cast<Operator>(Op);
4240 if (!U || U->getOpcode() != Instruction::Mul) {
4241 assert(Op != V && "V should be a mul");
4242 MulOps.push_back(getSCEV(Op));
4243 break;
4244 }
4245
4246 if (auto *OpSCEV = getExistingSCEV(U)) {
4247 MulOps.push_back(OpSCEV);
4248 break;
4249 }
4250
4251 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4252 if (Flags != SCEV::FlagAnyWrap) {
4253 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4254 getSCEV(U->getOperand(1)), Flags));
4255 break;
4256 }
4257
Dan Gohmane5fb1032010-08-16 16:03:49 +00004258 MulOps.push_back(getSCEV(U->getOperand(1)));
4259 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004260 return getMulExpr(MulOps);
4261 }
Dan Gohman05e89732008-06-22 19:56:46 +00004262 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004263 return getUDivExpr(getSCEV(U->getOperand(0)),
4264 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004265 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004266 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4267 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004268 case Instruction::And:
4269 // For an expression like x&255 that merely masks off the high bits,
4270 // use zext(trunc(x)) as the SCEV expression.
4271 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004272 if (CI->isNullValue())
4273 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004274 if (CI->isAllOnesValue())
4275 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004276 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004277
4278 // Instcombine's ShrinkDemandedConstant may strip bits out of
4279 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004280 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004281 // knew about to reconstruct a low-bits mask value.
4282 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004283 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004284 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004285 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004286 computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004287 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004288
Nick Lewycky31eaca52014-01-27 10:04:03 +00004289 APInt EffectiveMask =
4290 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4291 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4292 const SCEV *MulCount = getConstant(
4293 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4294 return getMulExpr(
4295 getZeroExtendExpr(
4296 getTruncateExpr(
4297 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4298 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4299 U->getType()),
4300 MulCount);
4301 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004302 }
4303 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004304
Dan Gohman05e89732008-06-22 19:56:46 +00004305 case Instruction::Or:
4306 // If the RHS of the Or is a constant, we may have something like:
4307 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4308 // optimizations will transparently handle this case.
4309 //
4310 // In order for this transformation to be safe, the LHS must be of the
4311 // form X*(2^n) and the Or constant must be less than 2^n.
4312 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004313 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004314 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004315 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004316 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4317 // Build a plain add SCEV.
4318 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4319 // If the LHS of the add was an addrec and it has no-wrap flags,
4320 // transfer the no-wrap flags, since an or won't introduce a wrap.
4321 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4322 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004323 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4324 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004325 }
4326 return S;
4327 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004328 }
Dan Gohman05e89732008-06-22 19:56:46 +00004329 break;
4330 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004331 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004332 // If the RHS of the xor is a signbit, then this is just an add.
4333 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004334 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004335 return getAddExpr(getSCEV(U->getOperand(0)),
4336 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004337
4338 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004339 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004340 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004341
4342 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4343 // This is a variant of the check for xor with -1, and it handles
4344 // the case where instcombine has trimmed non-demanded bits out
4345 // of an xor with -1.
4346 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4347 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4348 if (BO->getOpcode() == Instruction::And &&
4349 LCI->getValue() == CI->getValue())
4350 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004351 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004352 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004353 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004354 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004355 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4356
Dan Gohman8b0a4192010-03-01 17:49:51 +00004357 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004358 // mask off the high bits. Complement the operand and
4359 // re-apply the zext.
4360 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4361 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4362
4363 // If C is a single bit, it may be in the sign-bit position
4364 // before the zero-extend. In this case, represent the xor
4365 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004366 APInt Trunc = CI->getValue().trunc(Z0TySize);
4367 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004368 Trunc.isSignBit())
4369 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4370 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004371 }
Dan Gohman05e89732008-06-22 19:56:46 +00004372 }
4373 break;
4374
4375 case Instruction::Shl:
4376 // Turn shift left of a constant amount into a multiply.
4377 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004378 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004379
4380 // If the shift count is not less than the bitwidth, the result of
4381 // the shift is undefined. Don't try to analyze it, because the
4382 // resolution chosen here may differ from the resolution chosen in
4383 // other parts of the compiler.
4384 if (SA->getValue().uge(BitWidth))
4385 break;
4386
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004387 // It is currently not resolved how to interpret NSW for left
4388 // shift by BitWidth - 1, so we avoid applying flags in that
4389 // case. Remove this check (or this comment) once the situation
4390 // is resolved. See
4391 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4392 // and http://reviews.llvm.org/D8890 .
4393 auto Flags = SCEV::FlagAnyWrap;
4394 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4395
Owen Andersonedb4a702009-07-24 23:12:02 +00004396 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004397 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004398 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004399 }
4400 break;
4401
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004402 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004403 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004404 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004405 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004406
4407 // If the shift count is not less than the bitwidth, the result of
4408 // the shift is undefined. Don't try to analyze it, because the
4409 // resolution chosen here may differ from the resolution chosen in
4410 // other parts of the compiler.
4411 if (SA->getValue().uge(BitWidth))
4412 break;
4413
Owen Andersonedb4a702009-07-24 23:12:02 +00004414 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004415 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004416 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004417 }
4418 break;
4419
Dan Gohman0ec05372009-04-21 02:26:00 +00004420 case Instruction::AShr:
4421 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4422 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004423 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004424 if (L->getOpcode() == Instruction::Shl &&
4425 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004426 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4427
4428 // If the shift count is not less than the bitwidth, the result of
4429 // the shift is undefined. Don't try to analyze it, because the
4430 // resolution chosen here may differ from the resolution chosen in
4431 // other parts of the compiler.
4432 if (CI->getValue().uge(BitWidth))
4433 break;
4434
Dan Gohmandf199482009-04-25 17:05:40 +00004435 uint64_t Amt = BitWidth - CI->getZExtValue();
4436 if (Amt == BitWidth)
4437 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004438 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004439 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004440 IntegerType::get(getContext(),
4441 Amt)),
4442 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004443 }
4444 break;
4445
Dan Gohman05e89732008-06-22 19:56:46 +00004446 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004447 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004448
4449 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004450 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004451
4452 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004453 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004454
4455 case Instruction::BitCast:
4456 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004457 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004458 return getSCEV(U->getOperand(0));
4459 break;
4460
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004461 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4462 // lead to pointer expressions which cannot safely be expanded to GEPs,
4463 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4464 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004465
Dan Gohmanee750d12009-05-08 20:26:55 +00004466 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004467 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004468
Dan Gohman05e89732008-06-22 19:56:46 +00004469 case Instruction::PHI:
4470 return createNodeForPHI(cast<PHINode>(U));
4471
4472 case Instruction::Select:
4473 // This could be a smax or umax that was lowered earlier.
4474 // Try to recover it.
4475 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4476 Value *LHS = ICI->getOperand(0);
4477 Value *RHS = ICI->getOperand(1);
4478 switch (ICI->getPredicate()) {
4479 case ICmpInst::ICMP_SLT:
4480 case ICmpInst::ICMP_SLE:
4481 std::swap(LHS, RHS);
4482 // fall through
4483 case ICmpInst::ICMP_SGT:
4484 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004485 // a >s b ? a+x : b+x -> smax(a, b)+x
4486 // a >s b ? b+x : a+x -> smin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004487 if (getTypeSizeInBits(LHS->getType()) <=
4488 getTypeSizeInBits(U->getType())) {
4489 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4490 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004491 const SCEV *LA = getSCEV(U->getOperand(1));
4492 const SCEV *RA = getSCEV(U->getOperand(2));
4493 const SCEV *LDiff = getMinusSCEV(LA, LS);
4494 const SCEV *RDiff = getMinusSCEV(RA, RS);
4495 if (LDiff == RDiff)
4496 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4497 LDiff = getMinusSCEV(LA, RS);
4498 RDiff = getMinusSCEV(RA, LS);
4499 if (LDiff == RDiff)
4500 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4501 }
Dan Gohman05e89732008-06-22 19:56:46 +00004502 break;
4503 case ICmpInst::ICMP_ULT:
4504 case ICmpInst::ICMP_ULE:
4505 std::swap(LHS, RHS);
4506 // fall through
4507 case ICmpInst::ICMP_UGT:
4508 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004509 // a >u b ? a+x : b+x -> umax(a, b)+x
4510 // a >u b ? b+x : a+x -> umin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004511 if (getTypeSizeInBits(LHS->getType()) <=
4512 getTypeSizeInBits(U->getType())) {
4513 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4514 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004515 const SCEV *LA = getSCEV(U->getOperand(1));
4516 const SCEV *RA = getSCEV(U->getOperand(2));
4517 const SCEV *LDiff = getMinusSCEV(LA, LS);
4518 const SCEV *RDiff = getMinusSCEV(RA, RS);
4519 if (LDiff == RDiff)
4520 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4521 LDiff = getMinusSCEV(LA, RS);
4522 RDiff = getMinusSCEV(RA, LS);
4523 if (LDiff == RDiff)
4524 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4525 }
Dan Gohman05e89732008-06-22 19:56:46 +00004526 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004527 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004528 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004529 if (getTypeSizeInBits(LHS->getType()) <=
4530 getTypeSizeInBits(U->getType()) &&
4531 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004532 const SCEV *One = getOne(U->getType());
Johannes Doerfert2683e562015-02-09 12:34:23 +00004533 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004534 const SCEV *LA = getSCEV(U->getOperand(1));
4535 const SCEV *RA = getSCEV(U->getOperand(2));
4536 const SCEV *LDiff = getMinusSCEV(LA, LS);
4537 const SCEV *RDiff = getMinusSCEV(RA, One);
4538 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004539 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004540 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004541 break;
4542 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004543 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004544 if (getTypeSizeInBits(LHS->getType()) <=
4545 getTypeSizeInBits(U->getType()) &&
4546 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004547 const SCEV *One = getOne(U->getType());
Johannes Doerfert2683e562015-02-09 12:34:23 +00004548 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004549 const SCEV *LA = getSCEV(U->getOperand(1));
4550 const SCEV *RA = getSCEV(U->getOperand(2));
4551 const SCEV *LDiff = getMinusSCEV(LA, One);
4552 const SCEV *RDiff = getMinusSCEV(RA, LS);
4553 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004554 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004555 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004556 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004557 default:
4558 break;
4559 }
4560 }
4561
4562 default: // We cannot analyze this expression.
4563 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004564 }
4565
Dan Gohmanc8e23622009-04-21 23:15:49 +00004566 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004567}
4568
4569
4570
4571//===----------------------------------------------------------------------===//
4572// Iteration Count Computation Code
4573//
4574
Chandler Carruth6666c272014-10-11 00:12:11 +00004575unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4576 if (BasicBlock *ExitingBB = L->getExitingBlock())
4577 return getSmallConstantTripCount(L, ExitingBB);
4578
4579 // No trip count information for multiple exits.
4580 return 0;
4581}
4582
Andrew Trick2b6860f2011-08-11 23:36:16 +00004583/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004584/// normal unsigned value. Returns 0 if the trip count is unknown or not
4585/// constant. Will also return 0 if the maximum trip count is very large (>=
4586/// 2^32).
4587///
4588/// This "trip count" assumes that control exits via ExitingBlock. More
4589/// precisely, it is the number of times that control may reach ExitingBlock
4590/// before taking the branch. For loops with multiple exits, it may not be the
4591/// number times that the loop header executes because the loop may exit
4592/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004593unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4594 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004595 assert(ExitingBlock && "Must pass a non-null exiting block!");
4596 assert(L->isLoopExiting(ExitingBlock) &&
4597 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004598 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004599 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004600 if (!ExitCount)
4601 return 0;
4602
4603 ConstantInt *ExitConst = ExitCount->getValue();
4604
4605 // Guard against huge trip counts.
4606 if (ExitConst->getValue().getActiveBits() > 32)
4607 return 0;
4608
4609 // In case of integer overflow, this returns 0, which is correct.
4610 return ((unsigned)ExitConst->getZExtValue()) + 1;
4611}
4612
Chandler Carruth6666c272014-10-11 00:12:11 +00004613unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4614 if (BasicBlock *ExitingBB = L->getExitingBlock())
4615 return getSmallConstantTripMultiple(L, ExitingBB);
4616
4617 // No trip multiple information for multiple exits.
4618 return 0;
4619}
4620
Andrew Trick2b6860f2011-08-11 23:36:16 +00004621/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4622/// trip count of this loop as a normal unsigned value, if possible. This
4623/// means that the actual trip count is always a multiple of the returned
4624/// value (don't forget the trip count could very well be zero as well!).
4625///
4626/// Returns 1 if the trip count is unknown or not guaranteed to be the
4627/// multiple of a constant (which is also the case if the trip count is simply
4628/// constant, use getSmallConstantTripCount for that case), Will also return 1
4629/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004630///
4631/// As explained in the comments for getSmallConstantTripCount, this assumes
4632/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004633unsigned
4634ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4635 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004636 assert(ExitingBlock && "Must pass a non-null exiting block!");
4637 assert(L->isLoopExiting(ExitingBlock) &&
4638 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004639 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004640 if (ExitCount == getCouldNotCompute())
4641 return 1;
4642
4643 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004644 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004645 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4646 // to factor simple cases.
4647 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4648 TCMul = Mul->getOperand(0);
4649
4650 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4651 if (!MulC)
4652 return 1;
4653
4654 ConstantInt *Result = MulC->getValue();
4655
Hal Finkel30bd9342012-10-24 19:46:44 +00004656 // Guard against huge trip counts (this requires checking
4657 // for zero to handle the case where the trip count == -1 and the
4658 // addition wraps).
4659 if (!Result || Result->getValue().getActiveBits() > 32 ||
4660 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004661 return 1;
4662
4663 return (unsigned)Result->getZExtValue();
4664}
4665
Andrew Trick3ca3f982011-07-26 17:19:55 +00004666// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004667// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004668// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004669const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4670 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004671}
4672
Dan Gohman0bddac12009-02-24 18:55:53 +00004673/// getBackedgeTakenCount - If the specified loop has a predictable
4674/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4675/// object. The backedge-taken count is the number of times the loop header
4676/// will be branched to from within the loop. This is one less than the
4677/// trip count of the loop, since it doesn't count the first iteration,
4678/// when the header is branched to from outside the loop.
4679///
4680/// Note that it is not valid to call this method on a loop without a
4681/// loop-invariant backedge-taken count (see
4682/// hasLoopInvariantBackedgeTakenCount).
4683///
Dan Gohmanaf752342009-07-07 17:06:11 +00004684const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004685 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004686}
4687
4688/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4689/// return the least SCEV value that is known never to be less than the
4690/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004691const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004692 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004693}
4694
Dan Gohmandc191042009-07-08 19:23:34 +00004695/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4696/// onto the given Worklist.
4697static void
4698PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4699 BasicBlock *Header = L->getHeader();
4700
4701 // Push all Loop-header PHIs onto the Worklist stack.
4702 for (BasicBlock::iterator I = Header->begin();
4703 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4704 Worklist.push_back(PN);
4705}
4706
Dan Gohman2b8da352009-04-30 20:47:05 +00004707const ScalarEvolution::BackedgeTakenInfo &
4708ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004709 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004710 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004711 // update the value. The temporary CouldNotCompute value tells SCEV
4712 // code elsewhere that it shouldn't attempt to request a new
4713 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004714 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004715 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004716 if (!Pair.second)
4717 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004718
Andrew Trick3ca3f982011-07-26 17:19:55 +00004719 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4720 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4721 // must be cleared in this scope.
4722 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4723
4724 if (Result.getExact(this) != getCouldNotCompute()) {
4725 assert(isLoopInvariant(Result.getExact(this), L) &&
4726 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004727 "Computed backedge-taken count isn't loop invariant for loop!");
4728 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004729 }
4730 else if (Result.getMax(this) == getCouldNotCompute() &&
4731 isa<PHINode>(L->getHeader()->begin())) {
4732 // Only count loops that have phi nodes as not being computable.
4733 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004734 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004735
Chris Lattnera337f5e2011-01-09 02:16:18 +00004736 // Now that we know more about the trip count for this loop, forget any
4737 // existing SCEV values for PHI nodes in this loop since they are only
4738 // conservative estimates made without the benefit of trip count
4739 // information. This is similar to the code in forgetLoop, except that
4740 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004741 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004742 SmallVector<Instruction *, 16> Worklist;
4743 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004744
Chris Lattnera337f5e2011-01-09 02:16:18 +00004745 SmallPtrSet<Instruction *, 8> Visited;
4746 while (!Worklist.empty()) {
4747 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004748 if (!Visited.insert(I).second)
4749 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004750
Chris Lattnera337f5e2011-01-09 02:16:18 +00004751 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004752 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004753 if (It != ValueExprMap.end()) {
4754 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004755
Chris Lattnera337f5e2011-01-09 02:16:18 +00004756 // SCEVUnknown for a PHI either means that it has an unrecognized
4757 // structure, or it's a PHI that's in the progress of being computed
4758 // by createNodeForPHI. In the former case, additional loop trip
4759 // count information isn't going to change anything. In the later
4760 // case, createNodeForPHI will perform the necessary updates on its
4761 // own when it gets to that point.
4762 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4763 forgetMemoizedResults(Old);
4764 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004765 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004766 if (PHINode *PN = dyn_cast<PHINode>(I))
4767 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004768 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004769
4770 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004771 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004772 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004773
4774 // Re-lookup the insert position, since the call to
4775 // ComputeBackedgeTakenCount above could result in a
4776 // recusive call to getBackedgeTakenInfo (on a different
4777 // loop), which would invalidate the iterator computed
4778 // earlier.
4779 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004780}
4781
Dan Gohman880c92a2009-10-31 15:04:55 +00004782/// forgetLoop - This method should be called by the client when it has
4783/// changed a loop in a way that may effect ScalarEvolution's ability to
4784/// compute a trip count, or if the loop is deleted.
4785void ScalarEvolution::forgetLoop(const Loop *L) {
4786 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004787 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4788 BackedgeTakenCounts.find(L);
4789 if (BTCPos != BackedgeTakenCounts.end()) {
4790 BTCPos->second.clear();
4791 BackedgeTakenCounts.erase(BTCPos);
4792 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004793
Dan Gohman880c92a2009-10-31 15:04:55 +00004794 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004795 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004796 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004797
Dan Gohmandc191042009-07-08 19:23:34 +00004798 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004799 while (!Worklist.empty()) {
4800 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004801 if (!Visited.insert(I).second)
4802 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004803
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004804 ValueExprMapType::iterator It =
4805 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004806 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004807 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004808 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004809 if (PHINode *PN = dyn_cast<PHINode>(I))
4810 ConstantEvolutionLoopExitValue.erase(PN);
4811 }
4812
4813 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004814 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004815
4816 // Forget all contained loops too, to avoid dangling entries in the
4817 // ValuesAtScopes map.
4818 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4819 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004820}
4821
Eric Christopheref6d5932010-07-29 01:25:38 +00004822/// forgetValue - This method should be called by the client when it has
4823/// changed a value in a way that may effect its value, or which may
4824/// disconnect it from a def-use chain linking it to a loop.
4825void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004826 Instruction *I = dyn_cast<Instruction>(V);
4827 if (!I) return;
4828
4829 // Drop information about expressions based on loop-header PHIs.
4830 SmallVector<Instruction *, 16> Worklist;
4831 Worklist.push_back(I);
4832
4833 SmallPtrSet<Instruction *, 8> Visited;
4834 while (!Worklist.empty()) {
4835 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004836 if (!Visited.insert(I).second)
4837 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004838
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004839 ValueExprMapType::iterator It =
4840 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004841 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004842 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004843 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004844 if (PHINode *PN = dyn_cast<PHINode>(I))
4845 ConstantEvolutionLoopExitValue.erase(PN);
4846 }
4847
4848 PushDefUseChildren(I, Worklist);
4849 }
4850}
4851
Andrew Trick3ca3f982011-07-26 17:19:55 +00004852/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00004853/// exits. A computable result can only be returned for loops with a single
4854/// exit. Returning the minimum taken count among all exits is incorrect
4855/// because one of the loop's exit limit's may have been skipped. HowFarToZero
4856/// assumes that the limit of each loop test is never skipped. This is a valid
4857/// assumption as long as the loop exits via that test. For precise results, it
4858/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00004859/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004860const SCEV *
4861ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4862 // If any exits were not computable, the loop is not computable.
4863 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4864
Andrew Trick90c7a102011-11-16 00:52:40 +00004865 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004866 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004867 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4868
Craig Topper9f008862014-04-15 04:59:12 +00004869 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004870 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004871 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004872
4873 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4874
4875 if (!BECount)
4876 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004877 else if (BECount != ENT->ExactNotTaken)
4878 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004879 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004880 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004881 return BECount;
4882}
4883
4884/// getExact - Get the exact not taken count for this loop exit.
4885const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004886ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004887 ScalarEvolution *SE) const {
4888 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004889 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004890
Andrew Trick77c55422011-08-02 04:23:35 +00004891 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004892 return ENT->ExactNotTaken;
4893 }
4894 return SE->getCouldNotCompute();
4895}
4896
4897/// getMax - Get the max backedge taken count for the loop.
4898const SCEV *
4899ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4900 return Max ? Max : SE->getCouldNotCompute();
4901}
4902
Andrew Trick9093e152013-03-26 03:14:53 +00004903bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4904 ScalarEvolution *SE) const {
4905 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4906 return true;
4907
4908 if (!ExitNotTaken.ExitingBlock)
4909 return false;
4910
4911 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004912 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004913
4914 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4915 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4916 return true;
4917 }
4918 }
4919 return false;
4920}
4921
Andrew Trick3ca3f982011-07-26 17:19:55 +00004922/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4923/// computable exit into a persistent ExitNotTakenInfo array.
4924ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4925 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4926 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4927
4928 if (!Complete)
4929 ExitNotTaken.setIncomplete();
4930
4931 unsigned NumExits = ExitCounts.size();
4932 if (NumExits == 0) return;
4933
Andrew Trick77c55422011-08-02 04:23:35 +00004934 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004935 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4936 if (NumExits == 1) return;
4937
4938 // Handle the rare case of multiple computable exits.
4939 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4940
4941 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4942 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4943 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004944 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004945 ENT->ExactNotTaken = ExitCounts[i].second;
4946 }
4947}
4948
4949/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4950void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004951 ExitNotTaken.ExitingBlock = nullptr;
4952 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004953 delete[] ExitNotTaken.getNextExit();
4954}
4955
Dan Gohman0bddac12009-02-24 18:55:53 +00004956/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4957/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004958ScalarEvolution::BackedgeTakenInfo
4959ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004960 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004961 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004962
Andrew Trick839e30b2014-05-23 19:47:13 +00004963 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004964 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004965 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004966 const SCEV *MustExitMaxBECount = nullptr;
4967 const SCEV *MayExitMaxBECount = nullptr;
4968
4969 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4970 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004971 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004972 BasicBlock *ExitBB = ExitingBlocks[i];
4973 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4974
4975 // 1. For each exit that can be computed, add an entry to ExitCounts.
4976 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004977 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004978 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004979 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004980 CouldComputeBECount = false;
4981 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004982 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004983
Andrew Trick839e30b2014-05-23 19:47:13 +00004984 // 2. Derive the loop's MaxBECount from each exit's max number of
4985 // non-exiting iterations. Partition the loop exits into two kinds:
4986 // LoopMustExits and LoopMayExits.
4987 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004988 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4989 // is a LoopMayExit. If any computable LoopMustExit is found, then
4990 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4991 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4992 // considered greater than any computable EL.Max.
4993 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004994 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004995 if (!MustExitMaxBECount)
4996 MustExitMaxBECount = EL.Max;
4997 else {
4998 MustExitMaxBECount =
4999 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005000 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005001 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5002 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5003 MayExitMaxBECount = EL.Max;
5004 else {
5005 MayExitMaxBECount =
5006 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5007 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005008 }
Dan Gohman96212b62009-06-22 00:31:57 +00005009 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005010 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5011 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005012 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005013}
5014
Andrew Trick3ca3f982011-07-26 17:19:55 +00005015/// ComputeExitLimit - Compute the number of times the backedge of the specified
5016/// loop will execute if it exits via the specified block.
5017ScalarEvolution::ExitLimit
5018ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005019
5020 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00005021 // exit at this block and remember the exit block and whether all other targets
5022 // lead to the loop header.
5023 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005024 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005025 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5026 SI != SE; ++SI)
5027 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005028 if (Exit) // Multiple exit successors.
5029 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005030 Exit = *SI;
5031 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005032 MustExecuteLoopHeader = false;
5033 }
Dan Gohmance973df2009-06-24 04:48:43 +00005034
Chris Lattner18954852007-01-07 02:24:26 +00005035 // At this point, we know we have a conditional branch that determines whether
5036 // the loop is exited. However, we don't know if the branch is executed each
5037 // time through the loop. If not, then the execution count of the branch will
5038 // not be equal to the trip count of the loop.
5039 //
5040 // Currently we check for this by checking to see if the Exit branch goes to
5041 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005042 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005043 // loop header. This is common for un-rotated loops.
5044 //
5045 // If both of those tests fail, walk up the unique predecessor chain to the
5046 // header, stopping if there is an edge that doesn't exit the loop. If the
5047 // header is reached, the execution count of the branch will be equal to the
5048 // trip count of the loop.
5049 //
5050 // More extensive analysis could be done to handle more cases here.
5051 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005052 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005053 // The simple checks failed, try climbing the unique predecessor chain
5054 // up to the header.
5055 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005056 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005057 BasicBlock *Pred = BB->getUniquePredecessor();
5058 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005059 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005060 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005061 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005062 if (PredSucc == BB)
5063 continue;
5064 // If the predecessor has a successor that isn't BB and isn't
5065 // outside the loop, assume the worst.
5066 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005067 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005068 }
5069 if (Pred == L->getHeader()) {
5070 Ok = true;
5071 break;
5072 }
5073 BB = Pred;
5074 }
5075 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005076 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005077 }
5078
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005079 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005080 TerminatorInst *Term = ExitingBlock->getTerminator();
5081 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5082 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5083 // Proceed to the next level to examine the exit condition expression.
5084 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5085 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005086 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005087 }
5088
5089 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5090 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005091 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005092
5093 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005094}
5095
Andrew Trick3ca3f982011-07-26 17:19:55 +00005096/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005097/// backedge of the specified loop will execute if its exit condition
5098/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005099///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005100/// @param ControlsExit is true if ExitCond directly controls the exit
5101/// branch. In this case, we can assume that the loop exits only if the
5102/// condition is true and can infer that failing to meet the condition prior to
5103/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005104ScalarEvolution::ExitLimit
5105ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
5106 Value *ExitCond,
5107 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005108 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005109 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005110 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005111 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5112 if (BO->getOpcode() == Instruction::And) {
5113 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005114 bool EitherMayExit = L->contains(TBB);
5115 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005116 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005117 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005118 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005119 const SCEV *BECount = getCouldNotCompute();
5120 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005121 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005122 // Both conditions must be true for the loop to continue executing.
5123 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005124 if (EL0.Exact == getCouldNotCompute() ||
5125 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005126 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005127 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005128 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5129 if (EL0.Max == getCouldNotCompute())
5130 MaxBECount = EL1.Max;
5131 else if (EL1.Max == getCouldNotCompute())
5132 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005133 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005134 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005135 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005136 // Both conditions must be true at the same time for the loop to exit.
5137 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005138 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005139 if (EL0.Max == EL1.Max)
5140 MaxBECount = EL0.Max;
5141 if (EL0.Exact == EL1.Exact)
5142 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005143 }
5144
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005145 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005146 }
5147 if (BO->getOpcode() == Instruction::Or) {
5148 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005149 bool EitherMayExit = L->contains(FBB);
5150 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005151 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005152 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005153 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005154 const SCEV *BECount = getCouldNotCompute();
5155 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005156 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005157 // Both conditions must be false for the loop to continue executing.
5158 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005159 if (EL0.Exact == getCouldNotCompute() ||
5160 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005161 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005162 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005163 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5164 if (EL0.Max == getCouldNotCompute())
5165 MaxBECount = EL1.Max;
5166 else if (EL1.Max == getCouldNotCompute())
5167 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005168 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005169 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005170 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005171 // Both conditions must be false at the same time for the loop to exit.
5172 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005173 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005174 if (EL0.Max == EL1.Max)
5175 MaxBECount = EL0.Max;
5176 if (EL0.Exact == EL1.Exact)
5177 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005178 }
5179
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005180 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005181 }
5182 }
5183
5184 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005185 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005186 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005187 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005188
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005189 // Check for a constant condition. These are normally stripped out by
5190 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5191 // preserve the CFG and is temporarily leaving constant conditions
5192 // in place.
5193 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5194 if (L->contains(FBB) == !CI->getZExtValue())
5195 // The backedge is always taken.
5196 return getCouldNotCompute();
5197 else
5198 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005199 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005200 }
5201
Eli Friedmanebf98b02009-05-09 12:32:42 +00005202 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005203 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005204}
5205
Andrew Trick3ca3f982011-07-26 17:19:55 +00005206/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005207/// backedge of the specified loop will execute if its exit condition
5208/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005209ScalarEvolution::ExitLimit
5210ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5211 ICmpInst *ExitCond,
5212 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005213 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005214 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005215
Reid Spencer266e42b2006-12-23 06:05:41 +00005216 // If the condition was exit on true, convert the condition to exit on false
5217 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005218 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005219 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005220 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005221 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005222
5223 // Handle common loops like: for (X = "string"; *X; ++X)
5224 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5225 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005226 ExitLimit ItCnt =
5227 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005228 if (ItCnt.hasAnyInfo())
5229 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005230 }
5231
Dan Gohmanaf752342009-07-07 17:06:11 +00005232 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5233 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005234
5235 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005236 LHS = getSCEVAtScope(LHS, L);
5237 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005238
Dan Gohmance973df2009-06-24 04:48:43 +00005239 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005240 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005241 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005242 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005243 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005244 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005245 }
5246
Dan Gohman81585c12010-05-03 16:35:17 +00005247 // Simplify the operands before analyzing them.
5248 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5249
Chris Lattnerd934c702004-04-02 20:23:17 +00005250 // If we have a comparison of a chrec against a constant, try to use value
5251 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005252 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5253 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005254 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005255 // Form the constant range.
5256 ConstantRange CompRange(
5257 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005258
Dan Gohmanaf752342009-07-07 17:06:11 +00005259 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005260 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005261 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005262
Chris Lattnerd934c702004-04-02 20:23:17 +00005263 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005264 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005265 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005266 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005267 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005268 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005269 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005270 case ICmpInst::ICMP_EQ: { // while (X == Y)
5271 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005272 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5273 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005274 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005275 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005276 case ICmpInst::ICMP_SLT:
5277 case ICmpInst::ICMP_ULT: { // while (X < Y)
5278 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005279 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005280 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005281 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005282 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005283 case ICmpInst::ICMP_SGT:
5284 case ICmpInst::ICMP_UGT: { // while (X > Y)
5285 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005286 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005287 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005288 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005289 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005290 default:
Chris Lattner09169212004-04-02 20:26:46 +00005291#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005292 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005293 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005294 dbgs() << "[unsigned] ";
5295 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005296 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005297 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005298#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005299 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005300 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005301 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005302}
5303
Benjamin Kramer5a188542014-02-11 15:44:32 +00005304ScalarEvolution::ExitLimit
5305ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5306 SwitchInst *Switch,
5307 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005308 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005309 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5310
5311 // Give up if the exit is the default dest of a switch.
5312 if (Switch->getDefaultDest() == ExitingBlock)
5313 return getCouldNotCompute();
5314
5315 assert(L->contains(Switch->getDefaultDest()) &&
5316 "Default case must not exit the loop!");
5317 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5318 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5319
5320 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005321 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005322 if (EL.hasAnyInfo())
5323 return EL;
5324
5325 return getCouldNotCompute();
5326}
5327
Chris Lattnerec901cc2004-10-12 01:49:27 +00005328static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005329EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5330 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005331 const SCEV *InVal = SE.getConstant(C);
5332 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005333 assert(isa<SCEVConstant>(Val) &&
5334 "Evaluation of SCEV at constant didn't fold correctly?");
5335 return cast<SCEVConstant>(Val)->getValue();
5336}
5337
Andrew Trick3ca3f982011-07-26 17:19:55 +00005338/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005339/// 'icmp op load X, cst', try to see if we can compute the backedge
5340/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005341ScalarEvolution::ExitLimit
5342ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5343 LoadInst *LI,
5344 Constant *RHS,
5345 const Loop *L,
5346 ICmpInst::Predicate predicate) {
5347
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005348 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005349
5350 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005351 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005352 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005353 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005354
5355 // Make sure that it is really a constant global we are gepping, with an
5356 // initializer, and make sure the first IDX is really 0.
5357 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005358 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005359 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5360 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005361 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005362
5363 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005364 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005365 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005366 unsigned VarIdxNum = 0;
5367 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5368 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5369 Indexes.push_back(CI);
5370 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005371 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005372 VarIdx = GEP->getOperand(i);
5373 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005374 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005375 }
5376
Andrew Trick7004e4b2012-03-26 22:33:59 +00005377 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5378 if (!VarIdx)
5379 return getCouldNotCompute();
5380
Chris Lattnerec901cc2004-10-12 01:49:27 +00005381 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5382 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005383 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005384 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005385
5386 // We can only recognize very limited forms of loop index expressions, in
5387 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005388 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005389 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005390 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5391 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005392 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005393
5394 unsigned MaxSteps = MaxBruteForceIterations;
5395 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005396 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005397 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005398 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005399
5400 // Form the GEP offset.
5401 Indexes[VarIdxNum] = Val;
5402
Chris Lattnere166a852012-01-24 05:49:24 +00005403 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5404 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005405 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005406
5407 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005408 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005409 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005410 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005411#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005412 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005413 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5414 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005415#endif
5416 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005417 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005418 }
5419 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005420 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005421}
5422
5423
Chris Lattnerdd730472004-04-17 22:58:41 +00005424/// CanConstantFold - Return true if we can constant fold an instruction of the
5425/// specified type, assuming that all operands were constants.
5426static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005427 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005428 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5429 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005430 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005431
Chris Lattnerdd730472004-04-17 22:58:41 +00005432 if (const CallInst *CI = dyn_cast<CallInst>(I))
5433 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005434 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005435 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005436}
5437
Andrew Trick3a86ba72011-10-05 03:25:31 +00005438/// Determine whether this instruction can constant evolve within this loop
5439/// assuming its operands can all constant evolve.
5440static bool canConstantEvolve(Instruction *I, const Loop *L) {
5441 // An instruction outside of the loop can't be derived from a loop PHI.
5442 if (!L->contains(I)) return false;
5443
5444 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005445 // We don't currently keep track of the control flow needed to evaluate
5446 // PHIs, so we cannot handle PHIs inside of loops.
5447 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005448 }
5449
5450 // If we won't be able to constant fold this expression even if the operands
5451 // are constants, bail early.
5452 return CanConstantFold(I);
5453}
5454
5455/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5456/// recursing through each instruction operand until reaching a loop header phi.
5457static PHINode *
5458getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005459 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005460
5461 // Otherwise, we can evaluate this instruction if all of its operands are
5462 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005463 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005464 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5465 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5466
5467 if (isa<Constant>(*OpI)) continue;
5468
5469 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005470 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005471
5472 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005473 if (!P)
5474 // If this operand is already visited, reuse the prior result.
5475 // We may have P != PHI if this is the deepest point at which the
5476 // inconsistent paths meet.
5477 P = PHIMap.lookup(OpInst);
5478 if (!P) {
5479 // Recurse and memoize the results, whether a phi is found or not.
5480 // This recursive call invalidates pointers into PHIMap.
5481 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5482 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005483 }
Craig Topper9f008862014-04-15 04:59:12 +00005484 if (!P)
5485 return nullptr; // Not evolving from PHI
5486 if (PHI && PHI != P)
5487 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005488 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005489 }
5490 // This is a expression evolving from a constant PHI!
5491 return PHI;
5492}
5493
Chris Lattnerdd730472004-04-17 22:58:41 +00005494/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5495/// in the loop that V is derived from. We allow arbitrary operations along the
5496/// way, but the operands of an operation must either be constants or a value
5497/// derived from a constant PHI. If this expression does not fit with these
5498/// constraints, return null.
5499static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005500 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005501 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005502
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005503 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005504 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005505 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005506
Andrew Trick3a86ba72011-10-05 03:25:31 +00005507 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005508 DenseMap<Instruction *, PHINode *> PHIMap;
5509 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005510}
5511
5512/// EvaluateExpression - Given an expression that passes the
5513/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5514/// in the loop has the value PHIVal. If we can't fold this expression for some
5515/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005516static Constant *EvaluateExpression(Value *V, const Loop *L,
5517 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005518 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005519 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005520 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005521 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005522 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005523 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005524
Andrew Trick3a86ba72011-10-05 03:25:31 +00005525 if (Constant *C = Vals.lookup(I)) return C;
5526
Nick Lewyckya6674c72011-10-22 19:58:20 +00005527 // An instruction inside the loop depends on a value outside the loop that we
5528 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005529 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005530
5531 // An unmapped PHI can be due to a branch or another loop inside this loop,
5532 // or due to this not being the initial iteration through a loop where we
5533 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005534 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005535
Dan Gohmanf820bd32010-06-22 13:15:46 +00005536 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005537
5538 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005539 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5540 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005541 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005542 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005543 continue;
5544 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005545 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005546 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005547 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005548 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005549 }
5550
Nick Lewyckya6674c72011-10-22 19:58:20 +00005551 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005552 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005553 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005554 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5555 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005556 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005557 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005558 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005559 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005560}
5561
5562/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5563/// in the header of its containing loop, we know the loop executes a
5564/// constant number of times, and the PHI node is just a recurrence
5565/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005566Constant *
5567ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005568 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005569 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005570 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005571 ConstantEvolutionLoopExitValue.find(PN);
5572 if (I != ConstantEvolutionLoopExitValue.end())
5573 return I->second;
5574
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005575 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005576 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005577
5578 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5579
Andrew Trick3a86ba72011-10-05 03:25:31 +00005580 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005581 BasicBlock *Header = L->getHeader();
5582 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005583
Chris Lattnerdd730472004-04-17 22:58:41 +00005584 // Since the loop is canonicalized, the PHI node must have two entries. One
5585 // entry must be a constant (coming in from outside of the loop), and the
5586 // second must be derived from the same PHI.
5587 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005588 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005589 for (BasicBlock::iterator I = Header->begin();
5590 (PHI = dyn_cast<PHINode>(I)); ++I) {
5591 Constant *StartCST =
5592 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005593 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005594 CurrentIterVals[PHI] = StartCST;
5595 }
5596 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005597 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005598
5599 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005600
5601 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005602 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005603 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005604
Dan Gohman0bddac12009-02-24 18:55:53 +00005605 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005606 unsigned IterationNum = 0;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005607 const DataLayout &DL = F.getParent()->getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005608 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005609 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005610 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005611
Nick Lewyckya6674c72011-10-22 19:58:20 +00005612 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005613 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005614 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005615 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005616 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005617 if (!NextPHI)
5618 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005619 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005620
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005621 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5622
Nick Lewyckya6674c72011-10-22 19:58:20 +00005623 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5624 // cease to be able to evaluate one of them or if they stop evolving,
5625 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005626 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005627 for (DenseMap<Instruction *, Constant *>::const_iterator
5628 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5629 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005630 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005631 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5632 }
5633 // We use two distinct loops because EvaluateExpression may invalidate any
5634 // iterators into CurrentIterVals.
5635 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5636 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5637 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005638 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005639 if (!NextPHI) { // Not already computed.
5640 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005641 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005642 }
5643 if (NextPHI != I->second)
5644 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005645 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005646
5647 // If all entries in CurrentIterVals == NextIterVals then we can stop
5648 // iterating, the loop can't continue to change.
5649 if (StoppedEvolving)
5650 return RetVal = CurrentIterVals[PN];
5651
Andrew Trick3a86ba72011-10-05 03:25:31 +00005652 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005653 }
5654}
5655
Andrew Trick3ca3f982011-07-26 17:19:55 +00005656/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005657/// constant number of times (the condition evolves only from constants),
5658/// try to evaluate a few iterations of the loop until we get the exit
5659/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005660/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005661const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5662 Value *Cond,
5663 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005664 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005665 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005666
Dan Gohman866971e2010-06-19 14:17:24 +00005667 // If the loop is canonicalized, the PHI will have exactly two entries.
5668 // That's the only form we support here.
5669 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5670
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005671 DenseMap<Instruction *, Constant *> CurrentIterVals;
5672 BasicBlock *Header = L->getHeader();
5673 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5674
Dan Gohman866971e2010-06-19 14:17:24 +00005675 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005676 // second must be derived from the same PHI.
5677 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005678 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005679 for (BasicBlock::iterator I = Header->begin();
5680 (PHI = dyn_cast<PHINode>(I)); ++I) {
5681 Constant *StartCST =
5682 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005683 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005684 CurrentIterVals[PHI] = StartCST;
5685 }
5686 if (!CurrentIterVals.count(PN))
5687 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005688
5689 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5690 // the loop symbolically to determine when the condition gets a value of
5691 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00005692 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005693 const DataLayout &DL = F.getParent()->getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005694 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005695 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005696 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005697
Zhou Sheng75b871f2007-01-11 12:24:14 +00005698 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005699 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005700
Reid Spencer983e3b32007-03-01 07:25:48 +00005701 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005702 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005703 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005704 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005705
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005706 // Update all the PHI nodes for the next iteration.
5707 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005708
5709 // Create a list of which PHIs we need to compute. We want to do this before
5710 // calling EvaluateExpression on them because that may invalidate iterators
5711 // into CurrentIterVals.
5712 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005713 for (DenseMap<Instruction *, Constant *>::const_iterator
5714 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5715 PHINode *PHI = dyn_cast<PHINode>(I->first);
5716 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005717 PHIsToCompute.push_back(PHI);
5718 }
5719 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5720 E = PHIsToCompute.end(); I != E; ++I) {
5721 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005722 Constant *&NextPHI = NextIterVals[PHI];
5723 if (NextPHI) continue; // Already computed!
5724
5725 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005726 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005727 }
5728 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005729 }
5730
5731 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005732 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005733}
5734
Dan Gohman237d9e52009-09-03 15:00:26 +00005735/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005736/// at the specified scope in the program. The L value specifies a loop
5737/// nest to evaluate the expression at, where null is the top-level or a
5738/// specified loop is immediately inside of the loop.
5739///
5740/// This method can be used to compute the exit value for a variable defined
5741/// in a loop by querying what the value will hold in the parent loop.
5742///
Dan Gohman8ca08852009-05-24 23:25:42 +00005743/// In the case that a relevant loop exit value cannot be computed, the
5744/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005745const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005746 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005747 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5748 for (unsigned u = 0; u < Values.size(); u++) {
5749 if (Values[u].first == L)
5750 return Values[u].second ? Values[u].second : V;
5751 }
Craig Topper9f008862014-04-15 04:59:12 +00005752 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005753 // Otherwise compute it.
5754 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005755 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5756 for (unsigned u = Values2.size(); u > 0; u--) {
5757 if (Values2[u - 1].first == L) {
5758 Values2[u - 1].second = C;
5759 break;
5760 }
5761 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005762 return C;
5763}
5764
Nick Lewyckya6674c72011-10-22 19:58:20 +00005765/// This builds up a Constant using the ConstantExpr interface. That way, we
5766/// will return Constants for objects which aren't represented by a
5767/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5768/// Returns NULL if the SCEV isn't representable as a Constant.
5769static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005770 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005771 case scCouldNotCompute:
5772 case scAddRecExpr:
5773 break;
5774 case scConstant:
5775 return cast<SCEVConstant>(V)->getValue();
5776 case scUnknown:
5777 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5778 case scSignExtend: {
5779 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5780 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5781 return ConstantExpr::getSExt(CastOp, SS->getType());
5782 break;
5783 }
5784 case scZeroExtend: {
5785 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5786 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5787 return ConstantExpr::getZExt(CastOp, SZ->getType());
5788 break;
5789 }
5790 case scTruncate: {
5791 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5792 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5793 return ConstantExpr::getTrunc(CastOp, ST->getType());
5794 break;
5795 }
5796 case scAddExpr: {
5797 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5798 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005799 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5800 unsigned AS = PTy->getAddressSpace();
5801 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5802 C = ConstantExpr::getBitCast(C, DestPtrTy);
5803 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005804 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5805 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005806 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005807
5808 // First pointer!
5809 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005810 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005811 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005812 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005813 // The offsets have been converted to bytes. We can add bytes to an
5814 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005815 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005816 }
5817
5818 // Don't bother trying to sum two pointers. We probably can't
5819 // statically compute a load that results from it anyway.
5820 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005821 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005822
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005823 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5824 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005825 C2 = ConstantExpr::getIntegerCast(
5826 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00005827 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005828 } else
5829 C = ConstantExpr::getAdd(C, C2);
5830 }
5831 return C;
5832 }
5833 break;
5834 }
5835 case scMulExpr: {
5836 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5837 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5838 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005839 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005840 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5841 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005842 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005843 C = ConstantExpr::getMul(C, C2);
5844 }
5845 return C;
5846 }
5847 break;
5848 }
5849 case scUDivExpr: {
5850 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5851 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5852 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5853 if (LHS->getType() == RHS->getType())
5854 return ConstantExpr::getUDiv(LHS, RHS);
5855 break;
5856 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005857 case scSMaxExpr:
5858 case scUMaxExpr:
5859 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005860 }
Craig Topper9f008862014-04-15 04:59:12 +00005861 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005862}
5863
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005864const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005865 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005866
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005867 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005868 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005869 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005870 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005871 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005872 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5873 if (PHINode *PN = dyn_cast<PHINode>(I))
5874 if (PN->getParent() == LI->getHeader()) {
5875 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005876 // to see if the loop that contains it has a known backedge-taken
5877 // count. If so, we may be able to force computation of the exit
5878 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005879 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005880 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005881 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005882 // Okay, we know how many times the containing loop executes. If
5883 // this is a constant evolving PHI node, get the final value at
5884 // the specified iteration number.
5885 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005886 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005887 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005888 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005889 }
5890 }
5891
Reid Spencere6328ca2006-12-04 21:33:23 +00005892 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005893 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005894 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005895 // result. This is particularly useful for computing loop exit values.
5896 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005897 SmallVector<Constant *, 4> Operands;
5898 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005899 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5900 Value *Op = I->getOperand(i);
5901 if (Constant *C = dyn_cast<Constant>(Op)) {
5902 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005903 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005904 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005905
5906 // If any of the operands is non-constant and if they are
5907 // non-integer and non-pointer, don't even try to analyze them
5908 // with scev techniques.
5909 if (!isSCEVable(Op->getType()))
5910 return V;
5911
5912 const SCEV *OrigV = getSCEV(Op);
5913 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5914 MadeImprovement |= OrigV != OpV;
5915
Nick Lewyckya6674c72011-10-22 19:58:20 +00005916 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005917 if (!C) return V;
5918 if (C->getType() != Op->getType())
5919 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5920 Op->getType(),
5921 false),
5922 C, Op->getType());
5923 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005924 }
Dan Gohmance973df2009-06-24 04:48:43 +00005925
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005926 // Check to see if getSCEVAtScope actually made an improvement.
5927 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005928 Constant *C = nullptr;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005929 const DataLayout &DL = F.getParent()->getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005930 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005931 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005932 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005933 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5934 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005935 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005936 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005937 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005938 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005939 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005940 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005941 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005942 }
5943 }
5944
5945 // This is some other type of SCEVUnknown, just return it.
5946 return V;
5947 }
5948
Dan Gohmana30370b2009-05-04 22:02:23 +00005949 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005950 // Avoid performing the look-up in the common case where the specified
5951 // expression has no loop-variant portions.
5952 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005953 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005954 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005955 // Okay, at least one of these operands is loop variant but might be
5956 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005957 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5958 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005959 NewOps.push_back(OpAtScope);
5960
5961 for (++i; i != e; ++i) {
5962 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005963 NewOps.push_back(OpAtScope);
5964 }
5965 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005966 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005967 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005968 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005969 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005970 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005971 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005972 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005973 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005974 }
5975 }
5976 // If we got here, all operands are loop invariant.
5977 return Comm;
5978 }
5979
Dan Gohmana30370b2009-05-04 22:02:23 +00005980 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005981 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5982 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005983 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5984 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005985 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005986 }
5987
5988 // If this is a loop recurrence for a loop that does not contain L, then we
5989 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005990 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005991 // First, attempt to evaluate each operand.
5992 // Avoid performing the look-up in the common case where the specified
5993 // expression has no loop-variant portions.
5994 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5995 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5996 if (OpAtScope == AddRec->getOperand(i))
5997 continue;
5998
5999 // Okay, at least one of these operands is loop variant but might be
6000 // foldable. Build a new instance of the folded commutative expression.
6001 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6002 AddRec->op_begin()+i);
6003 NewOps.push_back(OpAtScope);
6004 for (++i; i != e; ++i)
6005 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6006
Andrew Trick759ba082011-04-27 01:21:25 +00006007 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006008 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006009 AddRec->getNoWrapFlags(SCEV::FlagNW));
6010 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006011 // The addrec may be folded to a nonrecurrence, for example, if the
6012 // induction variable is multiplied by zero after constant folding. Go
6013 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006014 if (!AddRec)
6015 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006016 break;
6017 }
6018
6019 // If the scope is outside the addrec's loop, evaluate it by using the
6020 // loop exit value of the addrec.
6021 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006022 // To evaluate this recurrence, we need to know how many times the AddRec
6023 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006024 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006025 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006026
Eli Friedman61f67622008-08-04 23:49:06 +00006027 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006028 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006029 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006030
Dan Gohman8ca08852009-05-24 23:25:42 +00006031 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006032 }
6033
Dan Gohmana30370b2009-05-04 22:02:23 +00006034 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006035 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006036 if (Op == Cast->getOperand())
6037 return Cast; // must be loop invariant
6038 return getZeroExtendExpr(Op, Cast->getType());
6039 }
6040
Dan Gohmana30370b2009-05-04 22:02:23 +00006041 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006042 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006043 if (Op == Cast->getOperand())
6044 return Cast; // must be loop invariant
6045 return getSignExtendExpr(Op, Cast->getType());
6046 }
6047
Dan Gohmana30370b2009-05-04 22:02:23 +00006048 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006049 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006050 if (Op == Cast->getOperand())
6051 return Cast; // must be loop invariant
6052 return getTruncateExpr(Op, Cast->getType());
6053 }
6054
Torok Edwinfbcc6632009-07-14 16:55:14 +00006055 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006056}
6057
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006058/// getSCEVAtScope - This is a convenience function which does
6059/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006060const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006061 return getSCEVAtScope(getSCEV(V), L);
6062}
6063
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006064/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6065/// following equation:
6066///
6067/// A * X = B (mod N)
6068///
6069/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6070/// A and B isn't important.
6071///
6072/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006073static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006074 ScalarEvolution &SE) {
6075 uint32_t BW = A.getBitWidth();
6076 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6077 assert(A != 0 && "A must be non-zero.");
6078
6079 // 1. D = gcd(A, N)
6080 //
6081 // The gcd of A and N may have only one prime factor: 2. The number of
6082 // trailing zeros in A is its multiplicity
6083 uint32_t Mult2 = A.countTrailingZeros();
6084 // D = 2^Mult2
6085
6086 // 2. Check if B is divisible by D.
6087 //
6088 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6089 // is not less than multiplicity of this prime factor for D.
6090 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006091 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006092
6093 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6094 // modulo (N / D).
6095 //
6096 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6097 // bit width during computations.
6098 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6099 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006100 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006101 APInt I = AD.multiplicativeInverse(Mod);
6102
6103 // 4. Compute the minimum unsigned root of the equation:
6104 // I * (B / D) mod (N / D)
6105 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6106
6107 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6108 // bits.
6109 return SE.getConstant(Result.trunc(BW));
6110}
Chris Lattnerd934c702004-04-02 20:23:17 +00006111
6112/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6113/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6114/// might be the same) or two SCEVCouldNotCompute objects.
6115///
Dan Gohmanaf752342009-07-07 17:06:11 +00006116static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006117SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006118 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006119 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6120 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6121 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006122
Chris Lattnerd934c702004-04-02 20:23:17 +00006123 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006124 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006125 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006126 return std::make_pair(CNC, CNC);
6127 }
6128
Reid Spencer983e3b32007-03-01 07:25:48 +00006129 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006130 const APInt &L = LC->getValue()->getValue();
6131 const APInt &M = MC->getValue()->getValue();
6132 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006133 APInt Two(BitWidth, 2);
6134 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006135
Dan Gohmance973df2009-06-24 04:48:43 +00006136 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006137 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006138 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006139 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6140 // The B coefficient is M-N/2
6141 APInt B(M);
6142 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006143
Reid Spencer983e3b32007-03-01 07:25:48 +00006144 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006145 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006146
Reid Spencer983e3b32007-03-01 07:25:48 +00006147 // Compute the B^2-4ac term.
6148 APInt SqrtTerm(B);
6149 SqrtTerm *= B;
6150 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006151
Nick Lewyckyfb780832012-08-01 09:14:36 +00006152 if (SqrtTerm.isNegative()) {
6153 // The loop is provably infinite.
6154 const SCEV *CNC = SE.getCouldNotCompute();
6155 return std::make_pair(CNC, CNC);
6156 }
6157
Reid Spencer983e3b32007-03-01 07:25:48 +00006158 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6159 // integer value or else APInt::sqrt() will assert.
6160 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006161
Dan Gohmance973df2009-06-24 04:48:43 +00006162 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006163 // The divisions must be performed as signed divisions.
6164 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006165 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006166 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006167 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006168 return std::make_pair(CNC, CNC);
6169 }
6170
Owen Anderson47db9412009-07-22 00:24:57 +00006171 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006172
6173 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006174 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006175 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006176 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006177
Dan Gohmance973df2009-06-24 04:48:43 +00006178 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006179 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006180 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006181}
6182
6183/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006184/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006185///
6186/// This is only used for loops with a "x != y" exit test. The exit condition is
6187/// now expressed as a single expression, V = x-y. So the exit test is
6188/// effectively V != 0. We know and take advantage of the fact that this
6189/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006190ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006191ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006192 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006193 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006194 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006195 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006196 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006197 }
6198
Dan Gohman48f82222009-05-04 22:30:44 +00006199 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006200 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006201 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006202
Chris Lattnerdff679f2011-01-09 22:39:48 +00006203 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6204 // the quadratic equation to solve it.
6205 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6206 std::pair<const SCEV *,const SCEV *> Roots =
6207 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006208 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6209 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006210 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006211#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006212 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006213 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006214#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006215 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006216 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006217 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6218 R1->getValue(),
6219 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006220 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006221 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006222
Chris Lattnerd934c702004-04-02 20:23:17 +00006223 // We can only use this value if the chrec ends up with an exact zero
6224 // value at this index. When solving for "X*X != 5", for example, we
6225 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006226 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006227 if (Val->isZero())
6228 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006229 }
6230 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006231 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006232 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006233
Chris Lattnerdff679f2011-01-09 22:39:48 +00006234 // Otherwise we can only handle this if it is affine.
6235 if (!AddRec->isAffine())
6236 return getCouldNotCompute();
6237
6238 // If this is an affine expression, the execution count of this branch is
6239 // the minimum unsigned root of the following equation:
6240 //
6241 // Start + Step*N = 0 (mod 2^BW)
6242 //
6243 // equivalent to:
6244 //
6245 // Step*N = -Start (mod 2^BW)
6246 //
6247 // where BW is the common bit width of Start and Step.
6248
6249 // Get the initial value for the loop.
6250 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6251 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6252
6253 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006254 //
6255 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6256 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6257 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6258 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006259 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006260 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006261 return getCouldNotCompute();
6262
Andrew Trick8b55b732011-03-14 16:50:06 +00006263 // For positive steps (counting up until unsigned overflow):
6264 // N = -Start/Step (as unsigned)
6265 // For negative steps (counting down to zero):
6266 // N = Start/-Step
6267 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006268 bool CountDown = StepC->getValue()->getValue().isNegative();
6269 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006270
6271 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006272 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6273 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006274 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6275 ConstantRange CR = getUnsignedRange(Start);
6276 const SCEV *MaxBECount;
6277 if (!CountDown && CR.getUnsignedMin().isMinValue())
6278 // When counting up, the worst starting value is 1, not 0.
6279 MaxBECount = CR.getUnsignedMax().isMinValue()
6280 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6281 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6282 else
6283 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6284 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006285 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006286 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006287
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006288 // As a special case, handle the instance where Step is a positive power of
6289 // two. In this case, determining whether Step divides Distance evenly can be
6290 // done by counting and comparing the number of trailing zeros of Step and
6291 // Distance.
6292 if (!CountDown) {
6293 const APInt &StepV = StepC->getValue()->getValue();
6294 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6295 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6296 // case is not handled as this code is guarded by !CountDown.
6297 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006298 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6299 // Here we've constrained the equation to be of the form
6300 //
6301 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6302 //
6303 // where we're operating on a W bit wide integer domain and k is
6304 // non-negative. The smallest unsigned solution for X is the trip count.
6305 //
6306 // (0) is equivalent to:
6307 //
6308 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6309 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6310 // <=> 2^k * Distance' - X = L * 2^(W - N)
6311 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6312 //
6313 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6314 // by 2^(W - N).
6315 //
6316 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6317 //
6318 // E.g. say we're solving
6319 //
6320 // 2 * Val = 2 * X (in i8) ... (3)
6321 //
6322 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6323 //
6324 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6325 // necessarily the smallest unsigned value of X that satisfies (3).
6326 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6327 // is i8 1, not i8 -127
6328
6329 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6330
6331 // Since SCEV does not have a URem node, we construct one using a truncate
6332 // and a zero extend.
6333
6334 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6335 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6336 auto *WideTy = Distance->getType();
6337
6338 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6339 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006340 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006341
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006342 // If the condition controls loop exit (the loop exits only if the expression
6343 // is true) and the addition is no-wrap we can use unsigned divide to
6344 // compute the backedge count. In this case, the step may not divide the
6345 // distance, but we don't care because if the condition is "missed" the loop
6346 // will have undefined behavior due to wrapping.
6347 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6348 const SCEV *Exact =
6349 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6350 return ExitLimit(Exact, Exact);
6351 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006352
Chris Lattnerdff679f2011-01-09 22:39:48 +00006353 // Then, try to solve the above equation provided that Start is constant.
6354 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6355 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6356 -StartC->getValue()->getValue(),
6357 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006358 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006359}
6360
6361/// HowFarToNonZero - Return the number of times a backedge checking the
6362/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006363/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006364ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006365ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006366 // Loops that look like: while (X == 0) are very strange indeed. We don't
6367 // handle them yet except for the trivial case. This could be expanded in the
6368 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006369
Chris Lattnerd934c702004-04-02 20:23:17 +00006370 // If the value is a constant, check to see if it is known to be non-zero
6371 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006372 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006373 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006374 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006375 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006376 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006377
Chris Lattnerd934c702004-04-02 20:23:17 +00006378 // We could implement others, but I really doubt anyone writes loops like
6379 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006380 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006381}
6382
Dan Gohmanf9081a22008-09-15 22:18:04 +00006383/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6384/// (which may not be an immediate predecessor) which has exactly one
6385/// successor from which BB is reachable, or null if no such block is
6386/// found.
6387///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006388std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006389ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006390 // If the block has a unique predecessor, then there is no path from the
6391 // predecessor to the block that does not go through the direct edge
6392 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006393 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006394 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006395
6396 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006397 // If the header has a unique predecessor outside the loop, it must be
6398 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006399 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006400 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006401
Dan Gohman4e3c1132010-04-15 16:19:08 +00006402 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006403}
6404
Dan Gohman450f4e02009-06-20 00:35:32 +00006405/// HasSameValue - SCEV structural equivalence is usually sufficient for
6406/// testing whether two expressions are equal, however for the purposes of
6407/// looking for a condition guarding a loop, it can be useful to be a little
6408/// more general, since a front-end may have replicated the controlling
6409/// expression.
6410///
Dan Gohmanaf752342009-07-07 17:06:11 +00006411static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006412 // Quick check to see if they are the same SCEV.
6413 if (A == B) return true;
6414
6415 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6416 // two different instructions with the same value. Check for this case.
6417 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6418 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6419 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6420 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006421 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006422 return true;
6423
6424 // Otherwise assume they may have a different value.
6425 return false;
6426}
6427
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006428/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006429/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006430///
6431bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006432 const SCEV *&LHS, const SCEV *&RHS,
6433 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006434 bool Changed = false;
6435
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006436 // If we hit the max recursion limit bail out.
6437 if (Depth >= 3)
6438 return false;
6439
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006440 // Canonicalize a constant to the right side.
6441 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6442 // Check for both operands constant.
6443 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6444 if (ConstantExpr::getICmp(Pred,
6445 LHSC->getValue(),
6446 RHSC->getValue())->isNullValue())
6447 goto trivially_false;
6448 else
6449 goto trivially_true;
6450 }
6451 // Otherwise swap the operands to put the constant on the right.
6452 std::swap(LHS, RHS);
6453 Pred = ICmpInst::getSwappedPredicate(Pred);
6454 Changed = true;
6455 }
6456
6457 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006458 // addrec's loop, put the addrec on the left. Also make a dominance check,
6459 // as both operands could be addrecs loop-invariant in each other's loop.
6460 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6461 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006462 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006463 std::swap(LHS, RHS);
6464 Pred = ICmpInst::getSwappedPredicate(Pred);
6465 Changed = true;
6466 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006467 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006468
6469 // If there's a constant operand, canonicalize comparisons with boundary
6470 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6471 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6472 const APInt &RA = RC->getValue()->getValue();
6473 switch (Pred) {
6474 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6475 case ICmpInst::ICMP_EQ:
6476 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006477 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6478 if (!RA)
6479 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6480 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006481 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6482 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006483 RHS = AE->getOperand(1);
6484 LHS = ME->getOperand(1);
6485 Changed = true;
6486 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006487 break;
6488 case ICmpInst::ICMP_UGE:
6489 if ((RA - 1).isMinValue()) {
6490 Pred = ICmpInst::ICMP_NE;
6491 RHS = getConstant(RA - 1);
6492 Changed = true;
6493 break;
6494 }
6495 if (RA.isMaxValue()) {
6496 Pred = ICmpInst::ICMP_EQ;
6497 Changed = true;
6498 break;
6499 }
6500 if (RA.isMinValue()) goto trivially_true;
6501
6502 Pred = ICmpInst::ICMP_UGT;
6503 RHS = getConstant(RA - 1);
6504 Changed = true;
6505 break;
6506 case ICmpInst::ICMP_ULE:
6507 if ((RA + 1).isMaxValue()) {
6508 Pred = ICmpInst::ICMP_NE;
6509 RHS = getConstant(RA + 1);
6510 Changed = true;
6511 break;
6512 }
6513 if (RA.isMinValue()) {
6514 Pred = ICmpInst::ICMP_EQ;
6515 Changed = true;
6516 break;
6517 }
6518 if (RA.isMaxValue()) goto trivially_true;
6519
6520 Pred = ICmpInst::ICMP_ULT;
6521 RHS = getConstant(RA + 1);
6522 Changed = true;
6523 break;
6524 case ICmpInst::ICMP_SGE:
6525 if ((RA - 1).isMinSignedValue()) {
6526 Pred = ICmpInst::ICMP_NE;
6527 RHS = getConstant(RA - 1);
6528 Changed = true;
6529 break;
6530 }
6531 if (RA.isMaxSignedValue()) {
6532 Pred = ICmpInst::ICMP_EQ;
6533 Changed = true;
6534 break;
6535 }
6536 if (RA.isMinSignedValue()) goto trivially_true;
6537
6538 Pred = ICmpInst::ICMP_SGT;
6539 RHS = getConstant(RA - 1);
6540 Changed = true;
6541 break;
6542 case ICmpInst::ICMP_SLE:
6543 if ((RA + 1).isMaxSignedValue()) {
6544 Pred = ICmpInst::ICMP_NE;
6545 RHS = getConstant(RA + 1);
6546 Changed = true;
6547 break;
6548 }
6549 if (RA.isMinSignedValue()) {
6550 Pred = ICmpInst::ICMP_EQ;
6551 Changed = true;
6552 break;
6553 }
6554 if (RA.isMaxSignedValue()) goto trivially_true;
6555
6556 Pred = ICmpInst::ICMP_SLT;
6557 RHS = getConstant(RA + 1);
6558 Changed = true;
6559 break;
6560 case ICmpInst::ICMP_UGT:
6561 if (RA.isMinValue()) {
6562 Pred = ICmpInst::ICMP_NE;
6563 Changed = true;
6564 break;
6565 }
6566 if ((RA + 1).isMaxValue()) {
6567 Pred = ICmpInst::ICMP_EQ;
6568 RHS = getConstant(RA + 1);
6569 Changed = true;
6570 break;
6571 }
6572 if (RA.isMaxValue()) goto trivially_false;
6573 break;
6574 case ICmpInst::ICMP_ULT:
6575 if (RA.isMaxValue()) {
6576 Pred = ICmpInst::ICMP_NE;
6577 Changed = true;
6578 break;
6579 }
6580 if ((RA - 1).isMinValue()) {
6581 Pred = ICmpInst::ICMP_EQ;
6582 RHS = getConstant(RA - 1);
6583 Changed = true;
6584 break;
6585 }
6586 if (RA.isMinValue()) goto trivially_false;
6587 break;
6588 case ICmpInst::ICMP_SGT:
6589 if (RA.isMinSignedValue()) {
6590 Pred = ICmpInst::ICMP_NE;
6591 Changed = true;
6592 break;
6593 }
6594 if ((RA + 1).isMaxSignedValue()) {
6595 Pred = ICmpInst::ICMP_EQ;
6596 RHS = getConstant(RA + 1);
6597 Changed = true;
6598 break;
6599 }
6600 if (RA.isMaxSignedValue()) goto trivially_false;
6601 break;
6602 case ICmpInst::ICMP_SLT:
6603 if (RA.isMaxSignedValue()) {
6604 Pred = ICmpInst::ICMP_NE;
6605 Changed = true;
6606 break;
6607 }
6608 if ((RA - 1).isMinSignedValue()) {
6609 Pred = ICmpInst::ICMP_EQ;
6610 RHS = getConstant(RA - 1);
6611 Changed = true;
6612 break;
6613 }
6614 if (RA.isMinSignedValue()) goto trivially_false;
6615 break;
6616 }
6617 }
6618
6619 // Check for obvious equality.
6620 if (HasSameValue(LHS, RHS)) {
6621 if (ICmpInst::isTrueWhenEqual(Pred))
6622 goto trivially_true;
6623 if (ICmpInst::isFalseWhenEqual(Pred))
6624 goto trivially_false;
6625 }
6626
Dan Gohman81585c12010-05-03 16:35:17 +00006627 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6628 // adding or subtracting 1 from one of the operands.
6629 switch (Pred) {
6630 case ICmpInst::ICMP_SLE:
6631 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6632 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006633 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006634 Pred = ICmpInst::ICMP_SLT;
6635 Changed = true;
6636 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006637 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006638 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006639 Pred = ICmpInst::ICMP_SLT;
6640 Changed = true;
6641 }
6642 break;
6643 case ICmpInst::ICMP_SGE:
6644 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006645 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006646 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006647 Pred = ICmpInst::ICMP_SGT;
6648 Changed = true;
6649 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6650 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006651 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006652 Pred = ICmpInst::ICMP_SGT;
6653 Changed = true;
6654 }
6655 break;
6656 case ICmpInst::ICMP_ULE:
6657 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006658 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006659 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006660 Pred = ICmpInst::ICMP_ULT;
6661 Changed = true;
6662 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006663 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006664 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006665 Pred = ICmpInst::ICMP_ULT;
6666 Changed = true;
6667 }
6668 break;
6669 case ICmpInst::ICMP_UGE:
6670 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006671 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006672 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006673 Pred = ICmpInst::ICMP_UGT;
6674 Changed = true;
6675 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006676 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006677 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006678 Pred = ICmpInst::ICMP_UGT;
6679 Changed = true;
6680 }
6681 break;
6682 default:
6683 break;
6684 }
6685
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006686 // TODO: More simplifications are possible here.
6687
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006688 // Recursively simplify until we either hit a recursion limit or nothing
6689 // changes.
6690 if (Changed)
6691 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6692
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006693 return Changed;
6694
6695trivially_true:
6696 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006697 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006698 Pred = ICmpInst::ICMP_EQ;
6699 return true;
6700
6701trivially_false:
6702 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006703 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006704 Pred = ICmpInst::ICMP_NE;
6705 return true;
6706}
6707
Dan Gohmane65c9172009-07-13 21:35:55 +00006708bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6709 return getSignedRange(S).getSignedMax().isNegative();
6710}
6711
6712bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6713 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6714}
6715
6716bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6717 return !getSignedRange(S).getSignedMin().isNegative();
6718}
6719
6720bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6721 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6722}
6723
6724bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6725 return isKnownNegative(S) || isKnownPositive(S);
6726}
6727
6728bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6729 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006730 // Canonicalize the inputs first.
6731 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6732
Dan Gohman07591692010-04-11 22:16:48 +00006733 // If LHS or RHS is an addrec, check to see if the condition is true in
6734 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006735 // If LHS and RHS are both addrec, both conditions must be true in
6736 // every iteration of the loop.
6737 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6738 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6739 bool LeftGuarded = false;
6740 bool RightGuarded = false;
6741 if (LAR) {
6742 const Loop *L = LAR->getLoop();
6743 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6744 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6745 if (!RAR) return true;
6746 LeftGuarded = true;
6747 }
6748 }
6749 if (RAR) {
6750 const Loop *L = RAR->getLoop();
6751 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6752 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6753 if (!LAR) return true;
6754 RightGuarded = true;
6755 }
6756 }
6757 if (LeftGuarded && RightGuarded)
6758 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006759
Dan Gohman07591692010-04-11 22:16:48 +00006760 // Otherwise see what can be done with known constant ranges.
6761 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6762}
6763
Sanjoy Das5dab2052015-07-27 21:42:49 +00006764bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
6765 ICmpInst::Predicate Pred,
6766 bool &Increasing) {
6767 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
6768
6769#ifndef NDEBUG
6770 // Verify an invariant: inverting the predicate should turn a monotonically
6771 // increasing change to a monotonically decreasing one, and vice versa.
6772 bool IncreasingSwapped;
6773 bool ResultSwapped = isMonotonicPredicateImpl(
6774 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
6775
6776 assert(Result == ResultSwapped && "should be able to analyze both!");
6777 if (ResultSwapped)
6778 assert(Increasing == !IncreasingSwapped &&
6779 "monotonicity should flip as we flip the predicate");
6780#endif
6781
6782 return Result;
6783}
6784
6785bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
6786 ICmpInst::Predicate Pred,
6787 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00006788
6789 // A zero step value for LHS means the induction variable is essentially a
6790 // loop invariant value. We don't really depend on the predicate actually
6791 // flipping from false to true (for increasing predicates, and the other way
6792 // around for decreasing predicates), all we care about is that *if* the
6793 // predicate changes then it only changes from false to true.
6794 //
6795 // A zero step value in itself is not very useful, but there may be places
6796 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
6797 // as general as possible.
6798
Sanjoy Das366acc12015-08-06 20:43:41 +00006799 switch (Pred) {
6800 default:
6801 return false; // Conservative answer
6802
6803 case ICmpInst::ICMP_UGT:
6804 case ICmpInst::ICMP_UGE:
6805 case ICmpInst::ICMP_ULT:
6806 case ICmpInst::ICMP_ULE:
6807 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
6808 return false;
6809
6810 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00006811 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00006812
6813 case ICmpInst::ICMP_SGT:
6814 case ICmpInst::ICMP_SGE:
6815 case ICmpInst::ICMP_SLT:
6816 case ICmpInst::ICMP_SLE: {
6817 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
6818 return false;
6819
6820 const SCEV *Step = LHS->getStepRecurrence(*this);
6821
6822 if (isKnownNonNegative(Step)) {
6823 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
6824 return true;
6825 }
6826
6827 if (isKnownNonPositive(Step)) {
6828 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
6829 return true;
6830 }
6831
6832 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00006833 }
6834
Sanjoy Das5dab2052015-07-27 21:42:49 +00006835 }
6836
Sanjoy Das366acc12015-08-06 20:43:41 +00006837 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00006838}
6839
6840bool ScalarEvolution::isLoopInvariantPredicate(
6841 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
6842 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
6843 const SCEV *&InvariantRHS) {
6844
6845 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
6846 if (!isLoopInvariant(RHS, L)) {
6847 if (!isLoopInvariant(LHS, L))
6848 return false;
6849
6850 std::swap(LHS, RHS);
6851 Pred = ICmpInst::getSwappedPredicate(Pred);
6852 }
6853
6854 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
6855 if (!ArLHS || ArLHS->getLoop() != L)
6856 return false;
6857
6858 bool Increasing;
6859 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
6860 return false;
6861
6862 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
6863 // true as the loop iterates, and the backedge is control dependent on
6864 // "ArLHS `Pred` RHS" == true then we can reason as follows:
6865 //
6866 // * if the predicate was false in the first iteration then the predicate
6867 // is never evaluated again, since the loop exits without taking the
6868 // backedge.
6869 // * if the predicate was true in the first iteration then it will
6870 // continue to be true for all future iterations since it is
6871 // monotonically increasing.
6872 //
6873 // For both the above possibilities, we can replace the loop varying
6874 // predicate with its value on the first iteration of the loop (which is
6875 // loop invariant).
6876 //
6877 // A similar reasoning applies for a monotonically decreasing predicate, by
6878 // replacing true with false and false with true in the above two bullets.
6879
6880 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
6881
6882 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
6883 return false;
6884
6885 InvariantPred = Pred;
6886 InvariantLHS = ArLHS->getStart();
6887 InvariantRHS = RHS;
6888 return true;
6889}
6890
Dan Gohman07591692010-04-11 22:16:48 +00006891bool
6892ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6893 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006894 if (HasSameValue(LHS, RHS))
6895 return ICmpInst::isTrueWhenEqual(Pred);
6896
Dan Gohman07591692010-04-11 22:16:48 +00006897 // This code is split out from isKnownPredicate because it is called from
6898 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006899 switch (Pred) {
6900 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006901 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006902 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006903 std::swap(LHS, RHS);
6904 case ICmpInst::ICMP_SLT: {
6905 ConstantRange LHSRange = getSignedRange(LHS);
6906 ConstantRange RHSRange = getSignedRange(RHS);
6907 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6908 return true;
6909 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6910 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006911 break;
6912 }
6913 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006914 std::swap(LHS, RHS);
6915 case ICmpInst::ICMP_SLE: {
6916 ConstantRange LHSRange = getSignedRange(LHS);
6917 ConstantRange RHSRange = getSignedRange(RHS);
6918 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6919 return true;
6920 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6921 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006922 break;
6923 }
6924 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006925 std::swap(LHS, RHS);
6926 case ICmpInst::ICMP_ULT: {
6927 ConstantRange LHSRange = getUnsignedRange(LHS);
6928 ConstantRange RHSRange = getUnsignedRange(RHS);
6929 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6930 return true;
6931 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6932 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006933 break;
6934 }
6935 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006936 std::swap(LHS, RHS);
6937 case ICmpInst::ICMP_ULE: {
6938 ConstantRange LHSRange = getUnsignedRange(LHS);
6939 ConstantRange RHSRange = getUnsignedRange(RHS);
6940 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6941 return true;
6942 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6943 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006944 break;
6945 }
6946 case ICmpInst::ICMP_NE: {
6947 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6948 return true;
6949 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6950 return true;
6951
6952 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6953 if (isKnownNonZero(Diff))
6954 return true;
6955 break;
6956 }
6957 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006958 // The check at the top of the function catches the case where
6959 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006960 break;
6961 }
6962 return false;
6963}
6964
6965/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6966/// protected by a conditional between LHS and RHS. This is used to
6967/// to eliminate casts.
6968bool
6969ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6970 ICmpInst::Predicate Pred,
6971 const SCEV *LHS, const SCEV *RHS) {
6972 // Interpret a null as meaning no loop, where there is obviously no guard
6973 // (interprocedural conditions notwithstanding).
6974 if (!L) return true;
6975
Sanjoy Das1f05c512014-10-10 21:22:34 +00006976 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6977
Dan Gohmane65c9172009-07-13 21:35:55 +00006978 BasicBlock *Latch = L->getLoopLatch();
6979 if (!Latch)
6980 return false;
6981
6982 BranchInst *LoopContinuePredicate =
6983 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006984 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6985 isImpliedCond(Pred, LHS, RHS,
6986 LoopContinuePredicate->getCondition(),
6987 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6988 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006989
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00006990 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00006991 // -- that can lead to O(n!) time complexity.
6992 if (WalkingBEDominatingConds)
6993 return false;
6994
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00006995 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00006996
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00006997 // Check conditions due to any @llvm.assume intrinsics.
6998 for (auto &AssumeVH : AC.assumptions()) {
6999 if (!AssumeVH)
7000 continue;
7001 auto *CI = cast<CallInst>(AssumeVH);
7002 if (!DT.dominates(CI, Latch->getTerminator()))
7003 continue;
7004
7005 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7006 return true;
7007 }
7008
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007009 // If the loop is not reachable from the entry block, we risk running into an
7010 // infinite loop as we walk up into the dom tree. These loops do not matter
7011 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007012 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007013 return false;
7014
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007015 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7016 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007017
7018 assert(DTN && "should reach the loop header before reaching the root!");
7019
7020 BasicBlock *BB = DTN->getBlock();
7021 BasicBlock *PBB = BB->getSinglePredecessor();
7022 if (!PBB)
7023 continue;
7024
7025 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7026 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7027 continue;
7028
7029 Value *Condition = ContinuePredicate->getCondition();
7030
7031 // If we have an edge `E` within the loop body that dominates the only
7032 // latch, the condition guarding `E` also guards the backedge. This
7033 // reasoning works only for loops with a single latch.
7034
7035 BasicBlockEdge DominatingEdge(PBB, BB);
7036 if (DominatingEdge.isSingleEdge()) {
7037 // We're constructively (and conservatively) enumerating edges within the
7038 // loop body that dominate the latch. The dominator tree better agree
7039 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007040 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007041
7042 if (isImpliedCond(Pred, LHS, RHS, Condition,
7043 BB != ContinuePredicate->getSuccessor(0)))
7044 return true;
7045 }
7046 }
7047
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007048 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007049}
7050
Dan Gohmanb50349a2010-04-11 19:27:13 +00007051/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007052/// by a conditional between LHS and RHS. This is used to help avoid max
7053/// expressions in loop trip counts, and to eliminate casts.
7054bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007055ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7056 ICmpInst::Predicate Pred,
7057 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007058 // Interpret a null as meaning no loop, where there is obviously no guard
7059 // (interprocedural conditions notwithstanding).
7060 if (!L) return false;
7061
Sanjoy Das1f05c512014-10-10 21:22:34 +00007062 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7063
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007064 // Starting at the loop predecessor, climb up the predecessor chain, as long
7065 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007066 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007067 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007068 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007069 Pair.first;
7070 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007071
7072 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007073 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007074 if (!LoopEntryPredicate ||
7075 LoopEntryPredicate->isUnconditional())
7076 continue;
7077
Dan Gohmane18c2d62010-08-10 23:46:30 +00007078 if (isImpliedCond(Pred, LHS, RHS,
7079 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007080 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007081 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007082 }
7083
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007084 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007085 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007086 if (!AssumeVH)
7087 continue;
7088 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007089 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007090 continue;
7091
7092 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7093 return true;
7094 }
7095
Dan Gohman2a62fd92008-08-12 20:17:31 +00007096 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007097}
7098
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007099/// RAII wrapper to prevent recursive application of isImpliedCond.
7100/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7101/// currently evaluating isImpliedCond.
7102struct MarkPendingLoopPredicate {
7103 Value *Cond;
7104 DenseSet<Value*> &LoopPreds;
7105 bool Pending;
7106
7107 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7108 : Cond(C), LoopPreds(LP) {
7109 Pending = !LoopPreds.insert(Cond).second;
7110 }
7111 ~MarkPendingLoopPredicate() {
7112 if (!Pending)
7113 LoopPreds.erase(Cond);
7114 }
7115};
7116
Dan Gohman430f0cc2009-07-21 23:03:19 +00007117/// isImpliedCond - Test whether the condition described by Pred, LHS,
7118/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007119bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007120 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007121 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007122 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007123 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7124 if (Mark.Pending)
7125 return false;
7126
Dan Gohman8b0a4192010-03-01 17:49:51 +00007127 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007128 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007129 if (BO->getOpcode() == Instruction::And) {
7130 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007131 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7132 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007133 } else if (BO->getOpcode() == Instruction::Or) {
7134 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007135 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7136 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007137 }
7138 }
7139
Dan Gohmane18c2d62010-08-10 23:46:30 +00007140 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007141 if (!ICI) return false;
7142
Andrew Trickfa594032012-11-29 18:35:13 +00007143 // Now that we found a conditional branch that dominates the loop or controls
7144 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007145 ICmpInst::Predicate FoundPred;
7146 if (Inverse)
7147 FoundPred = ICI->getInversePredicate();
7148 else
7149 FoundPred = ICI->getPredicate();
7150
7151 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7152 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007153
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007154 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7155}
7156
7157bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7158 const SCEV *RHS,
7159 ICmpInst::Predicate FoundPred,
7160 const SCEV *FoundLHS,
7161 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007162 // Balance the types.
7163 if (getTypeSizeInBits(LHS->getType()) <
7164 getTypeSizeInBits(FoundLHS->getType())) {
7165 if (CmpInst::isSigned(Pred)) {
7166 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7167 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7168 } else {
7169 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7170 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7171 }
7172 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007173 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007174 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007175 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7176 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7177 } else {
7178 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7179 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7180 }
7181 }
7182
Dan Gohman430f0cc2009-07-21 23:03:19 +00007183 // Canonicalize the query to match the way instcombine will have
7184 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007185 if (SimplifyICmpOperands(Pred, LHS, RHS))
7186 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007187 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007188 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7189 if (FoundLHS == FoundRHS)
7190 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007191
7192 // Check to see if we can make the LHS or RHS match.
7193 if (LHS == FoundRHS || RHS == FoundLHS) {
7194 if (isa<SCEVConstant>(RHS)) {
7195 std::swap(FoundLHS, FoundRHS);
7196 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7197 } else {
7198 std::swap(LHS, RHS);
7199 Pred = ICmpInst::getSwappedPredicate(Pred);
7200 }
7201 }
7202
7203 // Check whether the found predicate is the same as the desired predicate.
7204 if (FoundPred == Pred)
7205 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7206
7207 // Check whether swapping the found predicate makes it the same as the
7208 // desired predicate.
7209 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7210 if (isa<SCEVConstant>(RHS))
7211 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7212 else
7213 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7214 RHS, LHS, FoundLHS, FoundRHS);
7215 }
7216
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007217 // Check if we can make progress by sharpening ranges.
7218 if (FoundPred == ICmpInst::ICMP_NE &&
7219 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7220
7221 const SCEVConstant *C = nullptr;
7222 const SCEV *V = nullptr;
7223
7224 if (isa<SCEVConstant>(FoundLHS)) {
7225 C = cast<SCEVConstant>(FoundLHS);
7226 V = FoundRHS;
7227 } else {
7228 C = cast<SCEVConstant>(FoundRHS);
7229 V = FoundLHS;
7230 }
7231
7232 // The guarding predicate tells us that C != V. If the known range
7233 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7234 // range we consider has to correspond to same signedness as the
7235 // predicate we're interested in folding.
7236
7237 APInt Min = ICmpInst::isSigned(Pred) ?
7238 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7239
7240 if (Min == C->getValue()->getValue()) {
7241 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7242 // This is true even if (Min + 1) wraps around -- in case of
7243 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7244
7245 APInt SharperMin = Min + 1;
7246
7247 switch (Pred) {
7248 case ICmpInst::ICMP_SGE:
7249 case ICmpInst::ICMP_UGE:
7250 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7251 // RHS, we're done.
7252 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7253 getConstant(SharperMin)))
7254 return true;
7255
7256 case ICmpInst::ICMP_SGT:
7257 case ICmpInst::ICMP_UGT:
7258 // We know from the range information that (V `Pred` Min ||
7259 // V == Min). We know from the guarding condition that !(V
7260 // == Min). This gives us
7261 //
7262 // V `Pred` Min || V == Min && !(V == Min)
7263 // => V `Pred` Min
7264 //
7265 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7266
7267 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7268 return true;
7269
7270 default:
7271 // No change
7272 break;
7273 }
7274 }
7275 }
7276
Dan Gohman430f0cc2009-07-21 23:03:19 +00007277 // Check whether the actual condition is beyond sufficient.
7278 if (FoundPred == ICmpInst::ICMP_EQ)
7279 if (ICmpInst::isTrueWhenEqual(Pred))
7280 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7281 return true;
7282 if (Pred == ICmpInst::ICMP_NE)
7283 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7284 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7285 return true;
7286
7287 // Otherwise assume the worst.
7288 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007289}
7290
Sanjoy Dasfdec9de2015-09-25 19:59:49 +00007291// Return true if More == (Less + C), where C is a constant.
7292static bool IsConstDiff(ScalarEvolution &SE, const SCEV *Less, const SCEV *More,
7293 APInt &C) {
7294 // We avoid subtracting expressions here because this function is usually
7295 // fairly deep in the call stack (i.e. is called many times).
7296
7297 auto SplitBinaryAdd = [](const SCEV *Expr, const SCEV *&L, const SCEV *&R) {
7298 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7299 if (!AE || AE->getNumOperands() != 2)
7300 return false;
7301
7302 L = AE->getOperand(0);
7303 R = AE->getOperand(1);
7304 return true;
7305 };
7306
7307 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7308 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7309 const auto *MAR = cast<SCEVAddRecExpr>(More);
7310
7311 if (LAR->getLoop() != MAR->getLoop())
7312 return false;
7313
7314 // We look at affine expressions only; not for correctness but to keep
7315 // getStepRecurrence cheap.
7316 if (!LAR->isAffine() || !MAR->isAffine())
7317 return false;
7318
7319 if (LAR->getStepRecurrence(SE) != MAR->getStepRecurrence(SE))
7320 return false;
7321
7322 Less = LAR->getStart();
7323 More = MAR->getStart();
7324
7325 // fall through
7326 }
7327
7328 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7329 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue();
7330 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue();
7331 C = M - L;
7332 return true;
7333 }
7334
7335 const SCEV *L, *R;
7336 if (SplitBinaryAdd(Less, L, R))
7337 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7338 if (R == More) {
7339 C = -(LC->getValue()->getValue());
7340 return true;
7341 }
7342
7343 if (SplitBinaryAdd(More, L, R))
7344 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7345 if (R == Less) {
7346 C = LC->getValue()->getValue();
7347 return true;
7348 }
7349
7350 return false;
7351}
7352
7353bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7354 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7355 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7356 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7357 return false;
7358
7359 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7360 if (!AddRecLHS)
7361 return false;
7362
7363 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7364 if (!AddRecFoundLHS)
7365 return false;
7366
7367 // We'd like to let SCEV reason about control dependencies, so we constrain
7368 // both the inequalities to be about add recurrences on the same loop. This
7369 // way we can use isLoopEntryGuardedByCond later.
7370
7371 const Loop *L = AddRecFoundLHS->getLoop();
7372 if (L != AddRecLHS->getLoop())
7373 return false;
7374
7375 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7376 //
7377 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7378 // ... (2)
7379 //
7380 // Informal proof for (2), assuming (1) [*]:
7381 //
7382 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7383 //
7384 // Then
7385 //
7386 // FoundLHS s< FoundRHS s< INT_MIN - C
7387 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7388 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7389 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7390 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7391 // <=> FoundLHS + C s< FoundRHS + C
7392 //
7393 // [*]: (1) can be proved by ruling out overflow.
7394 //
7395 // [**]: This can be proved by analyzing all the four possibilities:
7396 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7397 // (A s>= 0, B s>= 0).
7398 //
7399 // Note:
7400 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7401 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7402 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7403 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7404 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7405 // C)".
7406
7407 APInt LDiff, RDiff;
7408 if (!IsConstDiff(*this, FoundLHS, LHS, LDiff) ||
7409 !IsConstDiff(*this, FoundRHS, RHS, RDiff) ||
7410 LDiff != RDiff)
7411 return false;
7412
7413 if (LDiff == 0)
7414 return true;
7415
7416 unsigned Width = cast<IntegerType>(RHS->getType())->getBitWidth();
7417 APInt FoundRHSLimit;
7418
7419 if (Pred == CmpInst::ICMP_ULT) {
7420 FoundRHSLimit = -RDiff;
7421 } else {
7422 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
7423 FoundRHSLimit = APInt::getSignedMinValue(Width) - RDiff;
7424 }
7425
7426 // Try to prove (1) or (2), as needed.
7427 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7428 getConstant(FoundRHSLimit));
7429}
7430
Dan Gohman430f0cc2009-07-21 23:03:19 +00007431/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007432/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007433/// and FoundRHS is true.
7434bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7435 const SCEV *LHS, const SCEV *RHS,
7436 const SCEV *FoundLHS,
7437 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007438 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7439 return true;
7440
Sanjoy Dasfdec9de2015-09-25 19:59:49 +00007441 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7442 return true;
7443
Dan Gohman430f0cc2009-07-21 23:03:19 +00007444 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7445 FoundLHS, FoundRHS) ||
7446 // ~x < ~y --> x > y
7447 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7448 getNotSCEV(FoundRHS),
7449 getNotSCEV(FoundLHS));
7450}
7451
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007452
7453/// If Expr computes ~A, return A else return nullptr
7454static const SCEV *MatchNotExpr(const SCEV *Expr) {
7455 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7456 if (!Add || Add->getNumOperands() != 2) return nullptr;
7457
7458 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
7459 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
7460 return nullptr;
7461
7462 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7463 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
7464
7465 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
7466 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
7467 return nullptr;
7468
7469 return AddRHS->getOperand(1);
7470}
7471
7472
7473/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7474template<typename MaxExprType>
7475static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7476 const SCEV *Candidate) {
7477 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7478 if (!MaxExpr) return false;
7479
7480 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7481 return It != MaxExpr->op_end();
7482}
7483
7484
7485/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7486template<typename MaxExprType>
7487static bool IsMinConsistingOf(ScalarEvolution &SE,
7488 const SCEV *MaybeMinExpr,
7489 const SCEV *Candidate) {
7490 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7491 if (!MaybeMaxExpr)
7492 return false;
7493
7494 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7495}
7496
Hal Finkela8d205f2015-08-19 01:51:51 +00007497static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7498 ICmpInst::Predicate Pred,
7499 const SCEV *LHS, const SCEV *RHS) {
7500
7501 // If both sides are affine addrecs for the same loop, with equal
7502 // steps, and we know the recurrences don't wrap, then we only
7503 // need to check the predicate on the starting values.
7504
7505 if (!ICmpInst::isRelational(Pred))
7506 return false;
7507
7508 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7509 if (!LAR)
7510 return false;
7511 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7512 if (!RAR)
7513 return false;
7514 if (LAR->getLoop() != RAR->getLoop())
7515 return false;
7516 if (!LAR->isAffine() || !RAR->isAffine())
7517 return false;
7518
7519 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
7520 return false;
7521
Hal Finkelff08a2e2015-08-19 17:26:07 +00007522 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
7523 SCEV::FlagNSW : SCEV::FlagNUW;
7524 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00007525 return false;
7526
7527 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
7528}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007529
7530/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7531/// expression?
7532static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7533 ICmpInst::Predicate Pred,
7534 const SCEV *LHS, const SCEV *RHS) {
7535 switch (Pred) {
7536 default:
7537 return false;
7538
7539 case ICmpInst::ICMP_SGE:
7540 std::swap(LHS, RHS);
7541 // fall through
7542 case ICmpInst::ICMP_SLE:
7543 return
7544 // min(A, ...) <= A
7545 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7546 // A <= max(A, ...)
7547 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7548
7549 case ICmpInst::ICMP_UGE:
7550 std::swap(LHS, RHS);
7551 // fall through
7552 case ICmpInst::ICMP_ULE:
7553 return
7554 // min(A, ...) <= A
7555 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7556 // A <= max(A, ...)
7557 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7558 }
7559
7560 llvm_unreachable("covered switch fell through?!");
7561}
7562
Dan Gohman430f0cc2009-07-21 23:03:19 +00007563/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007564/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007565/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007566bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007567ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7568 const SCEV *LHS, const SCEV *RHS,
7569 const SCEV *FoundLHS,
7570 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007571 auto IsKnownPredicateFull =
7572 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7573 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Hal Finkela8d205f2015-08-19 01:51:51 +00007574 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
7575 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007576 };
7577
Dan Gohmane65c9172009-07-13 21:35:55 +00007578 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007579 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7580 case ICmpInst::ICMP_EQ:
7581 case ICmpInst::ICMP_NE:
7582 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7583 return true;
7584 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007585 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007586 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007587 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7588 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007589 return true;
7590 break;
7591 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007592 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007593 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7594 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007595 return true;
7596 break;
7597 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007598 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007599 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7600 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007601 return true;
7602 break;
7603 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007604 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007605 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7606 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007607 return true;
7608 break;
7609 }
7610
7611 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007612}
7613
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007614/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7615/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7616bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7617 const SCEV *LHS,
7618 const SCEV *RHS,
7619 const SCEV *FoundLHS,
7620 const SCEV *FoundRHS) {
7621 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7622 // The restriction on `FoundRHS` be lifted easily -- it exists only to
7623 // reduce the compile time impact of this optimization.
7624 return false;
7625
7626 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7627 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7628 !isa<SCEVConstant>(AddLHS->getOperand(0)))
7629 return false;
7630
7631 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7632
7633 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7634 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7635 ConstantRange FoundLHSRange =
7636 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7637
7638 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7639 // for `LHS`:
7640 APInt Addend =
7641 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7642 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7643
7644 // We can also compute the range of values for `LHS` that satisfy the
7645 // consequent, "`LHS` `Pred` `RHS`":
7646 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7647 ConstantRange SatisfyingLHSRange =
7648 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7649
7650 // The antecedent implies the consequent if every value of `LHS` that
7651 // satisfies the antecedent also satisfies the consequent.
7652 return SatisfyingLHSRange.contains(LHSRange);
7653}
7654
Johannes Doerfert2683e562015-02-09 12:34:23 +00007655// Verify if an linear IV with positive stride can overflow when in a
7656// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007657// stride and the knowledge of NSW/NUW flags on the recurrence.
7658bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7659 bool IsSigned, bool NoWrap) {
7660 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007661
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007662 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007663 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00007664
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007665 if (IsSigned) {
7666 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7667 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7668 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7669 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007670
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007671 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7672 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007673 }
Dan Gohman01048422009-06-21 23:46:38 +00007674
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007675 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7676 APInt MaxValue = APInt::getMaxValue(BitWidth);
7677 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7678 .getUnsignedMax();
7679
7680 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7681 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7682}
7683
Johannes Doerfert2683e562015-02-09 12:34:23 +00007684// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007685// greater-than comparison, knowing the invariant term of the comparison,
7686// the stride and the knowledge of NSW/NUW flags on the recurrence.
7687bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7688 bool IsSigned, bool NoWrap) {
7689 if (NoWrap) return false;
7690
7691 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007692 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007693
7694 if (IsSigned) {
7695 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7696 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7697 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7698 .getSignedMax();
7699
7700 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7701 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7702 }
7703
7704 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7705 APInt MinValue = APInt::getMinValue(BitWidth);
7706 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7707 .getUnsignedMax();
7708
7709 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7710 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7711}
7712
7713// Compute the backedge taken count knowing the interval difference, the
7714// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00007715const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007716 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007717 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007718 Delta = Equality ? getAddExpr(Delta, Step)
7719 : getAddExpr(Delta, getMinusSCEV(Step, One));
7720 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007721}
7722
Chris Lattner587a75b2005-08-15 23:33:51 +00007723/// HowManyLessThans - Return the number of times a backedge containing the
7724/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007725/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007726///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007727/// @param ControlsExit is true when the LHS < RHS condition directly controls
7728/// the branch (loops exits only if condition is true). In this case, we can use
7729/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007730ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007731ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007732 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007733 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007734 // We handle only IV < Invariant
7735 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007736 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007737
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007738 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007739
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007740 // Avoid weird loops
7741 if (!IV || IV->getLoop() != L || !IV->isAffine())
7742 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007743
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007744 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007745 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007746
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007747 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007748
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007749 // Avoid negative or zero stride values
7750 if (!isKnownPositive(Stride))
7751 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007752
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007753 // Avoid proven overflow cases: this will ensure that the backedge taken count
7754 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007755 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007756 // behaviors like the case of C language.
7757 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7758 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007759
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007760 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7761 : ICmpInst::ICMP_ULT;
7762 const SCEV *Start = IV->getStart();
7763 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007764 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7765 const SCEV *Diff = getMinusSCEV(RHS, Start);
7766 // If we have NoWrap set, then we can assume that the increment won't
7767 // overflow, in which case if RHS - Start is a constant, we don't need to
7768 // do a max operation since we can just figure it out statically
7769 if (NoWrap && isa<SCEVConstant>(Diff)) {
7770 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7771 if (D.isNegative())
7772 End = Start;
7773 } else
7774 End = IsSigned ? getSMaxExpr(RHS, Start)
7775 : getUMaxExpr(RHS, Start);
7776 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007777
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007778 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007779
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007780 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7781 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007782
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007783 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7784 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007785
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007786 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7787 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7788 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007789
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007790 // Although End can be a MAX expression we estimate MaxEnd considering only
7791 // the case End = RHS. This is safe because in the other case (End - Start)
7792 // is zero, leading to a zero maximum backedge taken count.
7793 APInt MaxEnd =
7794 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7795 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7796
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007797 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007798 if (isa<SCEVConstant>(BECount))
7799 MaxBECount = BECount;
7800 else
7801 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7802 getConstant(MinStride), false);
7803
7804 if (isa<SCEVCouldNotCompute>(MaxBECount))
7805 MaxBECount = BECount;
7806
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007807 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007808}
7809
7810ScalarEvolution::ExitLimit
7811ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7812 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007813 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007814 // We handle only IV > Invariant
7815 if (!isLoopInvariant(RHS, L))
7816 return getCouldNotCompute();
7817
7818 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7819
7820 // Avoid weird loops
7821 if (!IV || IV->getLoop() != L || !IV->isAffine())
7822 return getCouldNotCompute();
7823
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007824 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007825 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7826
7827 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7828
7829 // Avoid negative or zero stride values
7830 if (!isKnownPositive(Stride))
7831 return getCouldNotCompute();
7832
7833 // Avoid proven overflow cases: this will ensure that the backedge taken count
7834 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007835 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007836 // behaviors like the case of C language.
7837 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7838 return getCouldNotCompute();
7839
7840 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7841 : ICmpInst::ICMP_UGT;
7842
7843 const SCEV *Start = IV->getStart();
7844 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007845 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7846 const SCEV *Diff = getMinusSCEV(RHS, Start);
7847 // If we have NoWrap set, then we can assume that the increment won't
7848 // overflow, in which case if RHS - Start is a constant, we don't need to
7849 // do a max operation since we can just figure it out statically
7850 if (NoWrap && isa<SCEVConstant>(Diff)) {
7851 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7852 if (!D.isNegative())
7853 End = Start;
7854 } else
7855 End = IsSigned ? getSMinExpr(RHS, Start)
7856 : getUMinExpr(RHS, Start);
7857 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007858
7859 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7860
7861 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7862 : getUnsignedRange(Start).getUnsignedMax();
7863
7864 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7865 : getUnsignedRange(Stride).getUnsignedMin();
7866
7867 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7868 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7869 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7870
7871 // Although End can be a MIN expression we estimate MinEnd considering only
7872 // the case End = RHS. This is safe because in the other case (Start - End)
7873 // is zero, leading to a zero maximum backedge taken count.
7874 APInt MinEnd =
7875 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7876 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7877
7878
7879 const SCEV *MaxBECount = getCouldNotCompute();
7880 if (isa<SCEVConstant>(BECount))
7881 MaxBECount = BECount;
7882 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00007883 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007884 getConstant(MinStride), false);
7885
7886 if (isa<SCEVCouldNotCompute>(MaxBECount))
7887 MaxBECount = BECount;
7888
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007889 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007890}
7891
Chris Lattnerd934c702004-04-02 20:23:17 +00007892/// getNumIterationsInRange - Return the number of iterations of this loop that
7893/// produce values in the specified constant range. Another way of looking at
7894/// this is that it returns the first iteration number where the value is not in
7895/// the condition, thus computing the exit count. If the iteration count can't
7896/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007897const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007898 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007899 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007900 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007901
7902 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007903 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007904 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007905 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007906 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00007907 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007908 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007909 if (const SCEVAddRecExpr *ShiftedAddRec =
7910 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007911 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007912 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007913 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007914 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007915 }
7916
7917 // The only time we can solve this is when we have all constant indices.
7918 // Otherwise, we cannot determine the overflow conditions.
7919 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7920 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007921 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007922
7923
7924 // Okay at this point we know that all elements of the chrec are constants and
7925 // that the start element is zero.
7926
7927 // First check to see if the range contains zero. If not, the first
7928 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007929 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007930 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007931 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00007932
Chris Lattnerd934c702004-04-02 20:23:17 +00007933 if (isAffine()) {
7934 // If this is an affine expression then we have this situation:
7935 // Solve {0,+,A} in Range === Ax in Range
7936
Nick Lewycky52460262007-07-16 02:08:00 +00007937 // We know that zero is in the range. If A is positive then we know that
7938 // the upper value of the range must be the first possible exit value.
7939 // If A is negative then the lower of the range is the last possible loop
7940 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007941 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007942 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7943 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007944
Nick Lewycky52460262007-07-16 02:08:00 +00007945 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007946 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007947 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007948
7949 // Evaluate at the exit value. If we really did fall out of the valid
7950 // range, then we computed our trip count, otherwise wrap around or other
7951 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007952 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007953 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007954 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007955
7956 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007957 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007958 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007959 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007960 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007961 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007962 } else if (isQuadratic()) {
7963 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7964 // quadratic equation to solve it. To do this, we must frame our problem in
7965 // terms of figuring out when zero is crossed, instead of when
7966 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007967 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007968 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007969 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7970 // getNoWrapFlags(FlagNW)
7971 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007972
7973 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007974 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007975 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007976 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7977 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007978 if (R1) {
7979 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007980 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007981 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007982 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00007983 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00007984 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007985
Chris Lattnerd934c702004-04-02 20:23:17 +00007986 // Make sure the root is not off by one. The returned iteration should
7987 // not be in the range, but the previous one should be. When solving
7988 // for "X*X < 5", for example, we should not return a root of 2.
7989 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007990 R1->getValue(),
7991 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007992 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007993 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007994 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007995 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007996
Dan Gohmana37eaf22007-10-22 18:31:58 +00007997 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007998 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007999 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008000 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008001 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008002
Chris Lattnerd934c702004-04-02 20:23:17 +00008003 // If R1 was not in the range, then it is a good return value. Make
8004 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008005 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008006 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008007 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008008 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008009 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008010 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008011 }
8012 }
8013 }
8014
Dan Gohman31efa302009-04-18 17:58:19 +00008015 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008016}
8017
Sebastian Pop448712b2014-05-07 18:01:20 +00008018namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008019struct FindUndefs {
8020 bool Found;
8021 FindUndefs() : Found(false) {}
8022
8023 bool follow(const SCEV *S) {
8024 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8025 if (isa<UndefValue>(C->getValue()))
8026 Found = true;
8027 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8028 if (isa<UndefValue>(C->getValue()))
8029 Found = true;
8030 }
8031
8032 // Keep looking if we haven't found it yet.
8033 return !Found;
8034 }
8035 bool isDone() const {
8036 // Stop recursion if we have found an undef.
8037 return Found;
8038 }
8039};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008040}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008041
8042// Return true when S contains at least an undef value.
8043static inline bool
8044containsUndefs(const SCEV *S) {
8045 FindUndefs F;
8046 SCEVTraversal<FindUndefs> ST(F);
8047 ST.visitAll(S);
8048
8049 return F.Found;
8050}
8051
8052namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008053// Collect all steps of SCEV expressions.
8054struct SCEVCollectStrides {
8055 ScalarEvolution &SE;
8056 SmallVectorImpl<const SCEV *> &Strides;
8057
8058 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8059 : SE(SE), Strides(S) {}
8060
8061 bool follow(const SCEV *S) {
8062 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8063 Strides.push_back(AR->getStepRecurrence(SE));
8064 return true;
8065 }
8066 bool isDone() const { return false; }
8067};
8068
8069// Collect all SCEVUnknown and SCEVMulExpr expressions.
8070struct SCEVCollectTerms {
8071 SmallVectorImpl<const SCEV *> &Terms;
8072
8073 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8074 : Terms(T) {}
8075
8076 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008077 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008078 if (!containsUndefs(S))
8079 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008080
8081 // Stop recursion: once we collected a term, do not walk its operands.
8082 return false;
8083 }
8084
8085 // Keep looking.
8086 return true;
8087 }
8088 bool isDone() const { return false; }
8089};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008090}
Sebastian Pop448712b2014-05-07 18:01:20 +00008091
8092/// Find parametric terms in this SCEVAddRecExpr.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008093void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8094 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008095 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008096 SCEVCollectStrides StrideCollector(*this, Strides);
8097 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008098
8099 DEBUG({
8100 dbgs() << "Strides:\n";
8101 for (const SCEV *S : Strides)
8102 dbgs() << *S << "\n";
8103 });
8104
8105 for (const SCEV *S : Strides) {
8106 SCEVCollectTerms TermCollector(Terms);
8107 visitAll(S, TermCollector);
8108 }
8109
8110 DEBUG({
8111 dbgs() << "Terms:\n";
8112 for (const SCEV *T : Terms)
8113 dbgs() << *T << "\n";
8114 });
8115}
8116
Sebastian Popb1a548f2014-05-12 19:01:53 +00008117static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008118 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008119 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008120 int Last = Terms.size() - 1;
8121 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008122
Sebastian Pop448712b2014-05-07 18:01:20 +00008123 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008124 if (Last == 0) {
8125 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008126 SmallVector<const SCEV *, 2> Qs;
8127 for (const SCEV *Op : M->operands())
8128 if (!isa<SCEVConstant>(Op))
8129 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008130
Sebastian Pope30bd352014-05-27 22:41:56 +00008131 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008132 }
8133
Sebastian Pope30bd352014-05-27 22:41:56 +00008134 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008135 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008136 }
8137
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008138 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008139 // Normalize the terms before the next call to findArrayDimensionsRec.
8140 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008141 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008142
8143 // Bail out when GCD does not evenly divide one of the terms.
8144 if (!R->isZero())
8145 return false;
8146
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008147 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008148 }
8149
Tobias Grosser3080cf12014-05-08 07:55:34 +00008150 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008151 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8152 return isa<SCEVConstant>(E);
8153 }),
8154 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008155
Sebastian Pop448712b2014-05-07 18:01:20 +00008156 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008157 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8158 return false;
8159
Sebastian Pope30bd352014-05-27 22:41:56 +00008160 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008161 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008162}
Sebastian Popc62c6792013-11-12 22:47:20 +00008163
Sebastian Pop448712b2014-05-07 18:01:20 +00008164namespace {
8165struct FindParameter {
8166 bool FoundParameter;
8167 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00008168
Sebastian Pop448712b2014-05-07 18:01:20 +00008169 bool follow(const SCEV *S) {
8170 if (isa<SCEVUnknown>(S)) {
8171 FoundParameter = true;
8172 // Stop recursion: we found a parameter.
8173 return false;
8174 }
8175 // Keep looking.
8176 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008177 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008178 bool isDone() const {
8179 // Stop recursion if we have found a parameter.
8180 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00008181 }
Sebastian Popc62c6792013-11-12 22:47:20 +00008182};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008183}
Sebastian Popc62c6792013-11-12 22:47:20 +00008184
Sebastian Pop448712b2014-05-07 18:01:20 +00008185// Returns true when S contains at least a SCEVUnknown parameter.
8186static inline bool
8187containsParameters(const SCEV *S) {
8188 FindParameter F;
8189 SCEVTraversal<FindParameter> ST(F);
8190 ST.visitAll(S);
8191
8192 return F.FoundParameter;
8193}
8194
8195// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8196static inline bool
8197containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8198 for (const SCEV *T : Terms)
8199 if (containsParameters(T))
8200 return true;
8201 return false;
8202}
8203
8204// Return the number of product terms in S.
8205static inline int numberOfTerms(const SCEV *S) {
8206 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8207 return Expr->getNumOperands();
8208 return 1;
8209}
8210
Sebastian Popa6e58602014-05-27 22:41:45 +00008211static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8212 if (isa<SCEVConstant>(T))
8213 return nullptr;
8214
8215 if (isa<SCEVUnknown>(T))
8216 return T;
8217
8218 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8219 SmallVector<const SCEV *, 2> Factors;
8220 for (const SCEV *Op : M->operands())
8221 if (!isa<SCEVConstant>(Op))
8222 Factors.push_back(Op);
8223
8224 return SE.getMulExpr(Factors);
8225 }
8226
8227 return T;
8228}
8229
8230/// Return the size of an element read or written by Inst.
8231const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8232 Type *Ty;
8233 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8234 Ty = Store->getValueOperand()->getType();
8235 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008236 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008237 else
8238 return nullptr;
8239
8240 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8241 return getSizeOfExpr(ETy, Ty);
8242}
8243
Sebastian Pop448712b2014-05-07 18:01:20 +00008244/// Second step of delinearization: compute the array dimensions Sizes from the
8245/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008246void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8247 SmallVectorImpl<const SCEV *> &Sizes,
8248 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008249
Sebastian Pop53524082014-05-29 19:44:05 +00008250 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008251 return;
8252
8253 // Early return when Terms do not contain parameters: we do not delinearize
8254 // non parametric SCEVs.
8255 if (!containsParameters(Terms))
8256 return;
8257
8258 DEBUG({
8259 dbgs() << "Terms:\n";
8260 for (const SCEV *T : Terms)
8261 dbgs() << *T << "\n";
8262 });
8263
8264 // Remove duplicates.
8265 std::sort(Terms.begin(), Terms.end());
8266 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8267
8268 // Put larger terms first.
8269 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8270 return numberOfTerms(LHS) > numberOfTerms(RHS);
8271 });
8272
Sebastian Popa6e58602014-05-27 22:41:45 +00008273 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8274
8275 // Divide all terms by the element size.
8276 for (const SCEV *&Term : Terms) {
8277 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008278 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00008279 Term = Q;
8280 }
8281
8282 SmallVector<const SCEV *, 4> NewTerms;
8283
8284 // Remove constant factors.
8285 for (const SCEV *T : Terms)
8286 if (const SCEV *NewT = removeConstantFactors(SE, T))
8287 NewTerms.push_back(NewT);
8288
Sebastian Pop448712b2014-05-07 18:01:20 +00008289 DEBUG({
8290 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008291 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008292 dbgs() << *T << "\n";
8293 });
8294
Sebastian Popa6e58602014-05-27 22:41:45 +00008295 if (NewTerms.empty() ||
8296 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008297 Sizes.clear();
8298 return;
8299 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008300
Sebastian Popa6e58602014-05-27 22:41:45 +00008301 // The last element to be pushed into Sizes is the size of an element.
8302 Sizes.push_back(ElementSize);
8303
Sebastian Pop448712b2014-05-07 18:01:20 +00008304 DEBUG({
8305 dbgs() << "Sizes:\n";
8306 for (const SCEV *S : Sizes)
8307 dbgs() << *S << "\n";
8308 });
8309}
8310
8311/// Third step of delinearization: compute the access functions for the
8312/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008313void ScalarEvolution::computeAccessFunctions(
8314 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8315 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008316
Sebastian Popb1a548f2014-05-12 19:01:53 +00008317 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008318 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008319 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008320
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008321 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr))
8322 if (!AR->isAffine())
8323 return;
8324
8325 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008326 int Last = Sizes.size() - 1;
8327 for (int i = Last; i >= 0; i--) {
8328 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008329 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008330
8331 DEBUG({
8332 dbgs() << "Res: " << *Res << "\n";
8333 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8334 dbgs() << "Res divided by Sizes[i]:\n";
8335 dbgs() << "Quotient: " << *Q << "\n";
8336 dbgs() << "Remainder: " << *R << "\n";
8337 });
8338
8339 Res = Q;
8340
Sebastian Popa6e58602014-05-27 22:41:45 +00008341 // Do not record the last subscript corresponding to the size of elements in
8342 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008343 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008344
8345 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008346 if (isa<SCEVAddRecExpr>(R)) {
8347 Subscripts.clear();
8348 Sizes.clear();
8349 return;
8350 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008351
Sebastian Pop448712b2014-05-07 18:01:20 +00008352 continue;
8353 }
8354
8355 // Record the access function for the current subscript.
8356 Subscripts.push_back(R);
8357 }
8358
8359 // Also push in last position the remainder of the last division: it will be
8360 // the access function of the innermost dimension.
8361 Subscripts.push_back(Res);
8362
8363 std::reverse(Subscripts.begin(), Subscripts.end());
8364
8365 DEBUG({
8366 dbgs() << "Subscripts:\n";
8367 for (const SCEV *S : Subscripts)
8368 dbgs() << *S << "\n";
8369 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008370}
8371
Sebastian Popc62c6792013-11-12 22:47:20 +00008372/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8373/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008374/// is the offset start of the array. The SCEV->delinearize algorithm computes
8375/// the multiples of SCEV coefficients: that is a pattern matching of sub
8376/// expressions in the stride and base of a SCEV corresponding to the
8377/// computation of a GCD (greatest common divisor) of base and stride. When
8378/// SCEV->delinearize fails, it returns the SCEV unchanged.
8379///
8380/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8381///
8382/// void foo(long n, long m, long o, double A[n][m][o]) {
8383///
8384/// for (long i = 0; i < n; i++)
8385/// for (long j = 0; j < m; j++)
8386/// for (long k = 0; k < o; k++)
8387/// A[i][j][k] = 1.0;
8388/// }
8389///
8390/// the delinearization input is the following AddRec SCEV:
8391///
8392/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8393///
8394/// From this SCEV, we are able to say that the base offset of the access is %A
8395/// because it appears as an offset that does not divide any of the strides in
8396/// the loops:
8397///
8398/// CHECK: Base offset: %A
8399///
8400/// and then SCEV->delinearize determines the size of some of the dimensions of
8401/// the array as these are the multiples by which the strides are happening:
8402///
8403/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8404///
8405/// Note that the outermost dimension remains of UnknownSize because there are
8406/// no strides that would help identifying the size of the last dimension: when
8407/// the array has been statically allocated, one could compute the size of that
8408/// dimension by dividing the overall size of the array by the size of the known
8409/// dimensions: %m * %o * 8.
8410///
8411/// Finally delinearize provides the access functions for the array reference
8412/// that does correspond to A[i][j][k] of the above C testcase:
8413///
8414/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8415///
8416/// The testcases are checking the output of a function pass:
8417/// DelinearizationPass that walks through all loads and stores of a function
8418/// asking for the SCEV of the memory access with respect to all enclosing
8419/// loops, calling SCEV->delinearize on that and printing the results.
8420
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008421void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008422 SmallVectorImpl<const SCEV *> &Subscripts,
8423 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008424 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008425 // First step: collect parametric terms.
8426 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008427 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008428
Sebastian Popb1a548f2014-05-12 19:01:53 +00008429 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008430 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008431
Sebastian Pop448712b2014-05-07 18:01:20 +00008432 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008433 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008434
Sebastian Popb1a548f2014-05-12 19:01:53 +00008435 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008436 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008437
Sebastian Pop448712b2014-05-07 18:01:20 +00008438 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008439 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00008440
Sebastian Pop28e6b972014-05-27 22:41:51 +00008441 if (Subscripts.empty())
8442 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008443
Sebastian Pop448712b2014-05-07 18:01:20 +00008444 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008445 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00008446 dbgs() << "ArrayDecl[UnknownSize]";
8447 for (const SCEV *S : Sizes)
8448 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00008449
Sebastian Pop444621a2014-05-09 22:45:02 +00008450 dbgs() << "\nArrayRef";
8451 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00008452 dbgs() << "[" << *S << "]";
8453 dbgs() << "\n";
8454 });
Sebastian Popc62c6792013-11-12 22:47:20 +00008455}
Chris Lattnerd934c702004-04-02 20:23:17 +00008456
8457//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00008458// SCEVCallbackVH Class Implementation
8459//===----------------------------------------------------------------------===//
8460
Dan Gohmand33a0902009-05-19 19:22:47 +00008461void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00008462 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00008463 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
8464 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008465 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00008466 // this now dangles!
8467}
8468
Dan Gohman7a066722010-07-28 01:09:07 +00008469void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00008470 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00008471
Dan Gohman48f82222009-05-04 22:30:44 +00008472 // Forget all the expressions associated with users of the old value,
8473 // so that future queries will recompute the expressions using the new
8474 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00008475 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00008476 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00008477 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00008478 while (!Worklist.empty()) {
8479 User *U = Worklist.pop_back_val();
8480 // Deleting the Old value will cause this to dangle. Postpone
8481 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008482 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00008483 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00008484 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00008485 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00008486 if (PHINode *PN = dyn_cast<PHINode>(U))
8487 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008488 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00008489 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00008490 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008491 // Delete the Old value.
8492 if (PHINode *PN = dyn_cast<PHINode>(Old))
8493 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008494 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008495 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00008496}
8497
Dan Gohmand33a0902009-05-19 19:22:47 +00008498ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00008499 : CallbackVH(V), SE(se) {}
8500
8501//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00008502// ScalarEvolution Class Implementation
8503//===----------------------------------------------------------------------===//
8504
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008505ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
8506 AssumptionCache &AC, DominatorTree &DT,
8507 LoopInfo &LI)
8508 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
8509 CouldNotCompute(new SCEVCouldNotCompute()),
8510 WalkingBEDominatingConds(false), ValuesAtScopes(64), LoopDispositions(64),
8511 BlockDispositions(64), FirstUnknown(nullptr) {}
8512
8513ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
8514 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
8515 CouldNotCompute(std::move(Arg.CouldNotCompute)),
8516 ValueExprMap(std::move(Arg.ValueExprMap)),
8517 WalkingBEDominatingConds(false),
8518 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
8519 ConstantEvolutionLoopExitValue(
8520 std::move(Arg.ConstantEvolutionLoopExitValue)),
8521 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
8522 LoopDispositions(std::move(Arg.LoopDispositions)),
8523 BlockDispositions(std::move(Arg.BlockDispositions)),
8524 UnsignedRanges(std::move(Arg.UnsignedRanges)),
8525 SignedRanges(std::move(Arg.SignedRanges)),
8526 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
8527 SCEVAllocator(std::move(Arg.SCEVAllocator)),
8528 FirstUnknown(Arg.FirstUnknown) {
8529 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00008530}
8531
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008532ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00008533 // Iterate through all the SCEVUnknown instances and call their
8534 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00008535 for (SCEVUnknown *U = FirstUnknown; U;) {
8536 SCEVUnknown *Tmp = U;
8537 U = U->Next;
8538 Tmp->~SCEVUnknown();
8539 }
Craig Topper9f008862014-04-15 04:59:12 +00008540 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00008541
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008542 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008543
8544 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
8545 // that a loop had multiple computable exits.
8546 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8547 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
8548 I != E; ++I) {
8549 I->second.clear();
8550 }
8551
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008552 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00008553 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00008554}
8555
Dan Gohmanc8e23622009-04-21 23:15:49 +00008556bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008557 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008558}
8559
Dan Gohmanc8e23622009-04-21 23:15:49 +00008560static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008561 const Loop *L) {
8562 // Print all inner loops first
8563 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8564 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008565
Dan Gohmanbc694912010-01-09 18:17:45 +00008566 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008567 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008568 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008569
Dan Gohmancb0efec2009-12-18 01:14:11 +00008570 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008571 L->getExitBlocks(ExitBlocks);
8572 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008573 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008574
Dan Gohman0bddac12009-02-24 18:55:53 +00008575 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8576 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008577 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008578 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008579 }
8580
Dan Gohmanbc694912010-01-09 18:17:45 +00008581 OS << "\n"
8582 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008583 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008584 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008585
8586 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8587 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8588 } else {
8589 OS << "Unpredictable max backedge-taken count. ";
8590 }
8591
8592 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008593}
8594
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008595void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008596 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008597 // out SCEV values of all instructions that are interesting. Doing
8598 // this potentially causes it to create new SCEV objects though,
8599 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008600 // observable from outside the class though, so casting away the
8601 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008602 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008603
Dan Gohmanbc694912010-01-09 18:17:45 +00008604 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008605 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008606 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008607 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00008608 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00008609 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008610 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008611 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008612 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008613 if (!isa<SCEVCouldNotCompute>(SV)) {
8614 OS << " U: ";
8615 SE.getUnsignedRange(SV).print(OS);
8616 OS << " S: ";
8617 SE.getSignedRange(SV).print(OS);
8618 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008619
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008620 const Loop *L = LI.getLoopFor((*I).getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00008621
Dan Gohmanaf752342009-07-07 17:06:11 +00008622 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008623 if (AtUse != SV) {
8624 OS << " --> ";
8625 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008626 if (!isa<SCEVCouldNotCompute>(AtUse)) {
8627 OS << " U: ";
8628 SE.getUnsignedRange(AtUse).print(OS);
8629 OS << " S: ";
8630 SE.getSignedRange(AtUse).print(OS);
8631 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00008632 }
8633
8634 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00008635 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008636 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00008637 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008638 OS << "<<Unknown>>";
8639 } else {
8640 OS << *ExitValue;
8641 }
8642 }
8643
Chris Lattnerd934c702004-04-02 20:23:17 +00008644 OS << "\n";
8645 }
8646
Dan Gohmanbc694912010-01-09 18:17:45 +00008647 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008648 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008649 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008650 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00008651 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008652}
Dan Gohmane20f8242009-04-21 00:47:46 +00008653
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008654ScalarEvolution::LoopDisposition
8655ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008656 auto &Values = LoopDispositions[S];
8657 for (auto &V : Values) {
8658 if (V.getPointer() == L)
8659 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008660 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008661 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008662 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008663 auto &Values2 = LoopDispositions[S];
8664 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8665 if (V.getPointer() == L) {
8666 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008667 break;
8668 }
8669 }
8670 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008671}
8672
8673ScalarEvolution::LoopDisposition
8674ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008675 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008676 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008677 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008678 case scTruncate:
8679 case scZeroExtend:
8680 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008681 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008682 case scAddRecExpr: {
8683 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8684
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008685 // If L is the addrec's loop, it's computable.
8686 if (AR->getLoop() == L)
8687 return LoopComputable;
8688
Dan Gohmanafd6db92010-11-17 21:23:15 +00008689 // Add recurrences are never invariant in the function-body (null loop).
8690 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008691 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008692
8693 // This recurrence is variant w.r.t. L if L contains AR's loop.
8694 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008695 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008696
8697 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8698 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008699 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008700
8701 // This recurrence is variant w.r.t. L if any of its operands
8702 // are variant.
8703 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8704 I != E; ++I)
8705 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008706 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008707
8708 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008709 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008710 }
8711 case scAddExpr:
8712 case scMulExpr:
8713 case scUMaxExpr:
8714 case scSMaxExpr: {
8715 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008716 bool HasVarying = false;
8717 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8718 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008719 LoopDisposition D = getLoopDisposition(*I, L);
8720 if (D == LoopVariant)
8721 return LoopVariant;
8722 if (D == LoopComputable)
8723 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008724 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008725 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008726 }
8727 case scUDivExpr: {
8728 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008729 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8730 if (LD == LoopVariant)
8731 return LoopVariant;
8732 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8733 if (RD == LoopVariant)
8734 return LoopVariant;
8735 return (LD == LoopInvariant && RD == LoopInvariant) ?
8736 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008737 }
8738 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008739 // All non-instruction values are loop invariant. All instructions are loop
8740 // invariant if they are not contained in the specified loop.
8741 // Instructions are never considered invariant in the function body
8742 // (null loop) because they are defined within the "loop".
8743 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8744 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8745 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008746 case scCouldNotCompute:
8747 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008748 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008749 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008750}
8751
8752bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8753 return getLoopDisposition(S, L) == LoopInvariant;
8754}
8755
8756bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8757 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008758}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008759
Dan Gohman8ea83d82010-11-18 00:34:22 +00008760ScalarEvolution::BlockDisposition
8761ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008762 auto &Values = BlockDispositions[S];
8763 for (auto &V : Values) {
8764 if (V.getPointer() == BB)
8765 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008766 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008767 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008768 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008769 auto &Values2 = BlockDispositions[S];
8770 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8771 if (V.getPointer() == BB) {
8772 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008773 break;
8774 }
8775 }
8776 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008777}
8778
Dan Gohman8ea83d82010-11-18 00:34:22 +00008779ScalarEvolution::BlockDisposition
8780ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008781 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008782 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008783 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008784 case scTruncate:
8785 case scZeroExtend:
8786 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008787 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008788 case scAddRecExpr: {
8789 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008790 // to test for proper dominance too, because the instruction which
8791 // produces the addrec's value is a PHI, and a PHI effectively properly
8792 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008793 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008794 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008795 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008796 }
8797 // FALL THROUGH into SCEVNAryExpr handling.
8798 case scAddExpr:
8799 case scMulExpr:
8800 case scUMaxExpr:
8801 case scSMaxExpr: {
8802 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008803 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008804 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008805 I != E; ++I) {
8806 BlockDisposition D = getBlockDisposition(*I, BB);
8807 if (D == DoesNotDominateBlock)
8808 return DoesNotDominateBlock;
8809 if (D == DominatesBlock)
8810 Proper = false;
8811 }
8812 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008813 }
8814 case scUDivExpr: {
8815 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008816 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8817 BlockDisposition LD = getBlockDisposition(LHS, BB);
8818 if (LD == DoesNotDominateBlock)
8819 return DoesNotDominateBlock;
8820 BlockDisposition RD = getBlockDisposition(RHS, BB);
8821 if (RD == DoesNotDominateBlock)
8822 return DoesNotDominateBlock;
8823 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8824 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008825 }
8826 case scUnknown:
8827 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008828 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8829 if (I->getParent() == BB)
8830 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008831 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008832 return ProperlyDominatesBlock;
8833 return DoesNotDominateBlock;
8834 }
8835 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008836 case scCouldNotCompute:
8837 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008838 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008839 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008840}
8841
8842bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8843 return getBlockDisposition(S, BB) >= DominatesBlock;
8844}
8845
8846bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8847 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008848}
Dan Gohman534749b2010-11-17 22:27:42 +00008849
Andrew Trick365e31c2012-07-13 23:33:03 +00008850namespace {
8851// Search for a SCEV expression node within an expression tree.
8852// Implements SCEVTraversal::Visitor.
8853struct SCEVSearch {
8854 const SCEV *Node;
8855 bool IsFound;
8856
8857 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8858
8859 bool follow(const SCEV *S) {
8860 IsFound |= (S == Node);
8861 return !IsFound;
8862 }
8863 bool isDone() const { return IsFound; }
8864};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008865}
Andrew Trick365e31c2012-07-13 23:33:03 +00008866
Dan Gohman534749b2010-11-17 22:27:42 +00008867bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008868 SCEVSearch Search(Op);
8869 visitAll(S, Search);
8870 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008871}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008872
8873void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8874 ValuesAtScopes.erase(S);
8875 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008876 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008877 UnsignedRanges.erase(S);
8878 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008879
8880 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8881 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8882 BackedgeTakenInfo &BEInfo = I->second;
8883 if (BEInfo.hasOperand(S, this)) {
8884 BEInfo.clear();
8885 BackedgeTakenCounts.erase(I++);
8886 }
8887 else
8888 ++I;
8889 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008890}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008891
8892typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008893
Alp Tokercb402912014-01-24 17:20:08 +00008894/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008895static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8896 size_t Pos = 0;
8897 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8898 Str.replace(Pos, From.size(), To.data(), To.size());
8899 Pos += To.size();
8900 }
8901}
8902
Benjamin Kramer214935e2012-10-26 17:31:32 +00008903/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8904static void
8905getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8906 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8907 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8908
8909 std::string &S = Map[L];
8910 if (S.empty()) {
8911 raw_string_ostream OS(S);
8912 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008913
8914 // false and 0 are semantically equivalent. This can happen in dead loops.
8915 replaceSubString(OS.str(), "false", "0");
8916 // Remove wrap flags, their use in SCEV is highly fragile.
8917 // FIXME: Remove this when SCEV gets smarter about them.
8918 replaceSubString(OS.str(), "<nw>", "");
8919 replaceSubString(OS.str(), "<nsw>", "");
8920 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008921 }
8922 }
8923}
8924
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008925void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00008926 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8927
8928 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8929 // FIXME: It would be much better to store actual values instead of strings,
8930 // but SCEV pointers will change if we drop the caches.
8931 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008932 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00008933 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8934
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008935 // Gather stringified backedge taken counts for all loops using a fresh
8936 // ScalarEvolution object.
8937 ScalarEvolution SE2(F, TLI, AC, DT, LI);
8938 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
8939 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00008940
8941 // Now compare whether they're the same with and without caches. This allows
8942 // verifying that no pass changed the cache.
8943 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8944 "New loops suddenly appeared!");
8945
8946 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8947 OldE = BackedgeDumpsOld.end(),
8948 NewI = BackedgeDumpsNew.begin();
8949 OldI != OldE; ++OldI, ++NewI) {
8950 assert(OldI->first == NewI->first && "Loop order changed!");
8951
8952 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8953 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008954 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008955 // means that a pass is buggy or SCEV has to learn a new pattern but is
8956 // usually not harmful.
8957 if (OldI->second != NewI->second &&
8958 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008959 NewI->second.find("undef") == std::string::npos &&
8960 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008961 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008962 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008963 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008964 << "' changed from '" << OldI->second
8965 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008966 std::abort();
8967 }
8968 }
8969
8970 // TODO: Verify more things.
8971}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008972
8973char ScalarEvolutionAnalysis::PassID;
8974
8975ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
8976 AnalysisManager<Function> *AM) {
8977 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
8978 AM->getResult<AssumptionAnalysis>(F),
8979 AM->getResult<DominatorTreeAnalysis>(F),
8980 AM->getResult<LoopAnalysis>(F));
8981}
8982
8983PreservedAnalyses
8984ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
8985 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
8986 return PreservedAnalyses::all();
8987}
8988
8989INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
8990 "Scalar Evolution Analysis", false, true)
8991INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8992INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
8993INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
8994INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
8995INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
8996 "Scalar Evolution Analysis", false, true)
8997char ScalarEvolutionWrapperPass::ID = 0;
8998
8999ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9000 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9001}
9002
9003bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9004 SE.reset(new ScalarEvolution(
9005 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9006 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9007 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9008 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9009 return false;
9010}
9011
9012void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9013
9014void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9015 SE->print(OS);
9016}
9017
9018void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9019 if (!VerifySCEV)
9020 return;
9021
9022 SE->verify();
9023}
9024
9025void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9026 AU.setPreservesAll();
9027 AU.addRequiredTransitive<AssumptionCacheTracker>();
9028 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9029 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9030 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9031}