blob: 5dd668400bee7185553343d16d22249fe588a2e9 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner0f53cf22010-03-18 18:10:56 +000041 return 4;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
48 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
49 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000050 };
Chris Lattner8d31de62010-02-11 21:27:18 +000051
52 if (Kind < FirstTargetFixupKind)
53 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000054
Chris Lattner8d31de62010-02-11 21:27:18 +000055 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000056 "Invalid kind!");
57 return Infos[Kind - FirstTargetFixupKind];
58 }
Chris Lattner45762472010-02-03 21:24:49 +000059
Chris Lattner28249d92010-02-05 01:53:19 +000060 static unsigned GetX86RegNum(const MCOperand &MO) {
61 return X86RegisterInfo::getX86RegNum(MO.getReg());
62 }
63
Chris Lattner37ce80e2010-02-10 06:41:02 +000064 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000065 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000066 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000067 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000068
Chris Lattner37ce80e2010-02-10 06:41:02 +000069 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
70 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000071 // Output the constant in little endian byte order.
72 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000073 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000074 Val >>= 8;
75 }
76 }
Chris Lattner0e73c392010-02-05 06:16:07 +000077
Chris Lattnercf653392010-02-12 22:36:47 +000078 void EmitImmediate(const MCOperand &Disp,
79 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000080 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000081 SmallVectorImpl<MCFixup> &Fixups,
82 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +000083
84 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
85 unsigned RM) {
86 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
87 return RM | (RegOpcode << 3) | (Mod << 6);
88 }
89
90 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000091 unsigned &CurByte, raw_ostream &OS) const {
92 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000093 }
94
Chris Lattner0e73c392010-02-05 06:16:07 +000095 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +000096 unsigned &CurByte, raw_ostream &OS) const {
97 // SIB byte is in the same format as the ModRMByte.
98 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +000099 }
100
101
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000102 void EmitSegmentOverridePrefix(const MCOperand &Op, unsigned TSFlags,
103 unsigned &CurByte, raw_ostream &OS) const;
104
Chris Lattner1ac23b12010-02-05 02:18:40 +0000105 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000106 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000107 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000108 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000109
Daniel Dunbar73c55742010-02-09 22:59:55 +0000110 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
111 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000112
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000113 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
114 const MCInst &MI, const TargetInstrDesc &Desc,
115 raw_ostream &OS) const;
116
117 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
118 const MCInst &MI, const TargetInstrDesc &Desc,
119 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000120};
121
122} // end anonymous namespace
123
124
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000125MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000126 TargetMachine &TM,
127 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000128 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000129}
130
131MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000132 TargetMachine &TM,
133 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000134 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000135}
136
137
Chris Lattner1ac23b12010-02-05 02:18:40 +0000138/// isDisp8 - Return true if this signed displacement fits in a 8-bit
139/// sign-extended field.
140static bool isDisp8(int Value) {
141 return Value == (signed char)Value;
142}
143
Chris Lattnercf653392010-02-12 22:36:47 +0000144/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
145/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000146static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000147 unsigned Size = X86II::getSizeOfImm(TSFlags);
148 bool isPCRel = X86II::isImmPCRel(TSFlags);
149
Chris Lattnercf653392010-02-12 22:36:47 +0000150 switch (Size) {
151 default: assert(0 && "Unknown immediate size");
152 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
153 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
154 case 2: assert(!isPCRel); return FK_Data_2;
155 case 8: assert(!isPCRel); return FK_Data_8;
156 }
157}
158
159
Chris Lattner0e73c392010-02-05 06:16:07 +0000160void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000161EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000162 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000163 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000164 // If this is a simple integer displacement that doesn't require a relocation,
165 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000166 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000167 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
168 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000169 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000170 return;
171 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000172
Chris Lattner835acab2010-02-12 23:00:36 +0000173 // If we have an immoffset, add it to the expression.
174 const MCExpr *Expr = DispOp.getExpr();
Chris Lattnera08b5872010-02-16 05:03:17 +0000175
176 // If the fixup is pc-relative, we need to bias the value to be relative to
177 // the start of the field, not the end of the field.
178 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000179 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
180 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000181 ImmOffset -= 4;
182 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
183 ImmOffset -= 1;
184
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000185 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000186 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000187 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000188
Chris Lattner5dccfad2010-02-10 06:52:12 +0000189 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000190 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000191 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000192}
193
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000194void X86MCCodeEmitter::EmitSegmentOverridePrefix(const MCOperand &Op,
195 unsigned TSFlags,
196 unsigned &CurByte,
197 raw_ostream &OS) const {
198 // If no segment register is present, we don't need anything.
199 if (Op.getReg() == 0)
200 return;
201
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000202 // Check if we need an override.
203 switch (Op.getReg()) {
204 case X86::CS: EmitByte(0x2E, CurByte, OS); return;
205 case X86::SS: EmitByte(0x36, CurByte, OS); return;
206 case X86::DS: EmitByte(0x3E, CurByte, OS); return;
207 case X86::ES: EmitByte(0x26, CurByte, OS); return;
208 case X86::FS: EmitByte(0x64, CurByte, OS); return;
209 case X86::GS: EmitByte(0x65, CurByte, OS); return;
210 }
211
212 assert(0 && "Invalid segment register!");
213}
Chris Lattner0e73c392010-02-05 06:16:07 +0000214
Chris Lattner1ac23b12010-02-05 02:18:40 +0000215void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
216 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000217 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000218 raw_ostream &OS,
219 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000220 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000221 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000222 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000223 const MCOperand &IndexReg = MI.getOperand(Op+2);
224 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000225
226 // Handle %rip relative addressing.
227 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000228 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
229 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000230 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000231
Chris Lattner0f53cf22010-03-18 18:10:56 +0000232 unsigned FixupKind = X86::reloc_riprel_4byte;
233
234 // movq loads are handled with a special relocation form which allows the
235 // linker to eliminate some loads for GOT references which end up in the
236 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000237 if (MI.getOpcode() == X86::MOV64rm ||
238 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000239 FixupKind = X86::reloc_riprel_4byte_movq_load;
240
Chris Lattner835acab2010-02-12 23:00:36 +0000241 // rip-relative addressing is actually relative to the *next* instruction.
242 // Since an immediate can follow the mod/rm byte for an instruction, this
243 // means that we need to bias the immediate field of the instruction with
244 // the size of the immediate field. If we have this case, add it into the
245 // expression to emit.
246 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnera08b5872010-02-16 05:03:17 +0000247
Chris Lattner0f53cf22010-03-18 18:10:56 +0000248 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000249 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000250 return;
251 }
252
253 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000254
Chris Lattnera8168ec2010-02-09 21:57:34 +0000255 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000256 // If no BaseReg, issue a RIP relative instruction only if the MCE can
257 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
258 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000259
Chris Lattnera8168ec2010-02-09 21:57:34 +0000260 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000261 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000262 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
263 // encode to an R/M value of 4, which indicates that a SIB byte is
264 // present.
265 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000266 // If there is no base register and we're in 64-bit mode, we need a SIB
267 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
268 (!Is64BitMode || BaseReg != 0)) {
269
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000270 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000271 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000272 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000273 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000274 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000275
Chris Lattnera8168ec2010-02-09 21:57:34 +0000276 // If the base is not EBP/ESP and there is no displacement, use simple
277 // indirect register encoding, this handles addresses like [EAX]. The
278 // encoding for [EBP] with no displacement means [disp32] so we handle it
279 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000280 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000281 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000282 return;
283 }
284
285 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000286 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000287 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000288 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000289 return;
290 }
291
292 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000293 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000294 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000295 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000296 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000297
298 // We need a SIB byte, so start by outputting the ModR/M byte first
299 assert(IndexReg.getReg() != X86::ESP &&
300 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
301
302 bool ForceDisp32 = false;
303 bool ForceDisp8 = false;
304 if (BaseReg == 0) {
305 // If there is no base register, we emit the special case SIB byte with
306 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000307 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000308 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000309 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000310 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000311 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000312 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000313 } else if (Disp.getImm() == 0 &&
314 // Base reg can't be anything that ends up with '5' as the base
315 // reg, it is the magic [*] nomenclature that indicates no base.
316 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000317 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000318 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000319 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000320 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000321 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000322 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
323 } else {
324 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000325 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000326 }
327
328 // Calculate what the SS field value should be...
329 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
330 unsigned SS = SSTable[Scale.getImm()];
331
332 if (BaseReg == 0) {
333 // Handle the SIB byte for the case where there is no base, see Intel
334 // Manual 2A, table 2-7. The displacement has already been output.
335 unsigned IndexRegNo;
336 if (IndexReg.getReg())
337 IndexRegNo = GetX86RegNum(IndexReg);
338 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
339 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000340 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000341 } else {
342 unsigned IndexRegNo;
343 if (IndexReg.getReg())
344 IndexRegNo = GetX86RegNum(IndexReg);
345 else
346 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000347 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000348 }
349
350 // Do we need to output a displacement?
351 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000352 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000353 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000354 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000355}
356
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000357/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
358/// called VEX.
359void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
360 const MCInst &MI, const TargetInstrDesc &Desc,
361 raw_ostream &OS) const {
362
363 // Pseudo instructions never have a VEX prefix.
364 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
365 return;
366
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000367 bool HasVEX_4V = false;
368 if ((TSFlags >> 32) & X86II::VEX_4V)
369 HasVEX_4V = true;
370
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000371 // VEX_R: opcode externsion equivalent to REX.R in
372 // 1's complement (inverted) form
373 //
374 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
375 // 0: Same as REX_R=1 (64 bit mode only)
376 //
377 unsigned char VEX_R = 0x1;
378
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000379 // VEX_X: equivalent to REX.X, only used when a
380 // register is used for index in SIB Byte.
381 //
382 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
383 // 0: Same as REX.X=1 (64-bit mode only)
384 unsigned char VEX_X = 0x1;
385
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000386 // VEX_B:
387 //
388 // 1: Same as REX_B=0 (ignored in 32-bit mode)
389 // 0: Same as REX_B=1 (64 bit mode only)
390 //
391 unsigned char VEX_B = 0x1;
392
393 // VEX_W: opcode specific (use like REX.W, or used for
394 // opcode extension, or ignored, depending on the opcode byte)
395 unsigned char VEX_W = 0;
396
397 // VEX_5M (VEX m-mmmmm field):
398 //
399 // 0b00000: Reserved for future use
400 // 0b00001: implied 0F leading opcode
401 // 0b00010: implied 0F 38 leading opcode bytes
402 // 0b00011: implied 0F 3A leading opcode bytes
403 // 0b00100-0b11111: Reserved for future use
404 //
405 unsigned char VEX_5M = 0x1;
406
407 // VEX_4V (VEX vvvv field): a register specifier
408 // (in 1's complement form) or 1111 if unused.
409 unsigned char VEX_4V = 0xf;
410
411 // VEX_L (Vector Length):
412 //
413 // 0: scalar or 128-bit vector
414 // 1: 256-bit vector
415 //
416 unsigned char VEX_L = 0;
417
418 // VEX_PP: opcode extension providing equivalent
419 // functionality of a SIMD prefix
420 //
421 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000422 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000423 // 0b10: F3
424 // 0b11: F2
425 //
426 unsigned char VEX_PP = 0;
427
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000428 // Encode the operand size opcode prefix as needed.
429 if (TSFlags & X86II::OpSize)
430 VEX_PP = 0x01;
431
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000432 switch (TSFlags & X86II::Op0Mask) {
433 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000434 case X86II::T8: // 0F 38
435 VEX_5M = 0x2;
436 break;
437 case X86II::TA: // 0F 3A
438 VEX_5M = 0x3;
439 break;
440 case X86II::TF: // F2 0F 38
441 VEX_PP = 0x3;
442 VEX_5M = 0x2;
443 break;
444 case X86II::XS: // F3 0F
445 VEX_PP = 0x2;
446 break;
447 case X86II::XD: // F2 0F
448 VEX_PP = 0x3;
449 break;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000450 case X86II::TB: // Bypass: Not used by VEX
451 case 0:
452 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000453 }
454
455 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000456 unsigned CurOp = 0;
457
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000458 switch (TSFlags & X86II::FormMask) {
459 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000460 case X86II::MRM0m: case X86II::MRM1m:
461 case X86II::MRM2m: case X86II::MRM3m:
462 case X86II::MRM4m: case X86II::MRM5m:
463 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000464 case X86II::MRMDestMem:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000465 NumOps = CurOp = X86AddrNumOperands;
466 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000467 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000468 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000469 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000470 VEX_R = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000471
472 // If the memory destination has been checked first,
473 // go back to the first operand
474 CurOp = (CurOp == NumOps) ? 0 : CurOp+1;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000475
476 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the
477 // range 0-7 and the difference between the 2 groups is given by the
478 // REX prefix. In the VEX prefix, registers are seen sequencially
479 // from 0-15 and encoded in 1's complement form, example:
480 //
481 // ModRM field => XMM9 => 1
482 // VEX.VVVV => XMM9 => ~9
483 //
484 // See table 4-35 of Intel AVX Programming Reference for details.
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000485 if (HasVEX_4V) {
486 unsigned SrcReg = MI.getOperand(CurOp).getReg();
487 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(1));
488 if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
489 SrcRegNum += 8;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000490
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000491 // The registers represented through VEX_VVVV should
492 // be encoded in 1's complement form.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000493 VEX_4V = (~SrcRegNum) & 0xf;
494
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000495 CurOp++;
496 }
497
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000498 for (; CurOp != NumOps; ++CurOp) {
499 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000500 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
501 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000502 if (!VEX_B && MO.isReg() &&
503 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000504 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
505 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000506 }
507 break;
508 default:
509 assert(0 && "Not implemented!");
510 }
511
512 // VEX opcode prefix can have 2 or 3 bytes
513 //
514 // 3 bytes:
515 // +-----+ +--------------+ +-------------------+
516 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
517 // +-----+ +--------------+ +-------------------+
518 // 2 bytes:
519 // +-----+ +-------------------+
520 // | C5h | | R | vvvv | L | pp |
521 // +-----+ +-------------------+
522 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000523 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
524
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000525 if (VEX_B && VEX_X) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000526 EmitByte(0xC5, CurByte, OS);
527 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
528 return;
529 }
530
531 // 3 byte VEX prefix
532 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000533 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000534 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
535}
536
Chris Lattner39a612e2010-02-05 22:10:22 +0000537/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
538/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
539/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000540static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000541 const TargetInstrDesc &Desc) {
Chris Lattner1cea10a2010-02-13 19:16:53 +0000542 // Pseudo instructions never have a rex byte.
543 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
544 return 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000545
Chris Lattner7e851802010-02-11 22:39:10 +0000546 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000547 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000548 REX |= 1 << 3; // set REX.W
Chris Lattner39a612e2010-02-05 22:10:22 +0000549
550 if (MI.getNumOperands() == 0) return REX;
551
552 unsigned NumOps = MI.getNumOperands();
553 // FIXME: MCInst should explicitize the two-addrness.
554 bool isTwoAddr = NumOps > 1 &&
555 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
556
557 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
558 unsigned i = isTwoAddr ? 1 : 0;
559 for (; i != NumOps; ++i) {
560 const MCOperand &MO = MI.getOperand(i);
561 if (!MO.isReg()) continue;
562 unsigned Reg = MO.getReg();
563 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000564 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
565 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000566 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000567 break;
568 }
569
570 switch (TSFlags & X86II::FormMask) {
571 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
572 case X86II::MRMSrcReg:
573 if (MI.getOperand(0).isReg() &&
574 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000575 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000576 i = isTwoAddr ? 2 : 1;
577 for (; i != NumOps; ++i) {
578 const MCOperand &MO = MI.getOperand(i);
579 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000580 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000581 }
582 break;
583 case X86II::MRMSrcMem: {
584 if (MI.getOperand(0).isReg() &&
585 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000586 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000587 unsigned Bit = 0;
588 i = isTwoAddr ? 2 : 1;
589 for (; i != NumOps; ++i) {
590 const MCOperand &MO = MI.getOperand(i);
591 if (MO.isReg()) {
592 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000593 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000594 Bit++;
595 }
596 }
597 break;
598 }
599 case X86II::MRM0m: case X86II::MRM1m:
600 case X86II::MRM2m: case X86II::MRM3m:
601 case X86II::MRM4m: case X86II::MRM5m:
602 case X86II::MRM6m: case X86II::MRM7m:
603 case X86II::MRMDestMem: {
604 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
605 i = isTwoAddr ? 1 : 0;
606 if (NumOps > e && MI.getOperand(e).isReg() &&
607 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000608 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000609 unsigned Bit = 0;
610 for (; i != e; ++i) {
611 const MCOperand &MO = MI.getOperand(i);
612 if (MO.isReg()) {
613 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000614 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000615 Bit++;
616 }
617 }
618 break;
619 }
620 default:
621 if (MI.getOperand(0).isReg() &&
622 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000623 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000624 i = isTwoAddr ? 2 : 1;
625 for (unsigned e = NumOps; i != e; ++i) {
626 const MCOperand &MO = MI.getOperand(i);
627 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000628 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000629 }
630 break;
631 }
632 return REX;
633}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000634
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000635/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
636void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
637 const MCInst &MI, const TargetInstrDesc &Desc,
638 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000639
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000640 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000641 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000642 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000643
644 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000645 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000646 default: assert(0 && "Invalid segment!");
647 case 0: break; // No segment override!
648 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000649 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000650 break;
651 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000652 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000653 break;
654 }
655
Chris Lattner1e80f402010-02-03 21:57:59 +0000656 // Emit the repeat opcode prefix as needed.
657 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000658 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000659
Chris Lattner1e80f402010-02-03 21:57:59 +0000660 // Emit the operand size opcode prefix as needed.
661 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000662 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000663
664 // Emit the address size opcode prefix as needed.
665 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000666 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000667
668 bool Need0FPrefix = false;
669 switch (TSFlags & X86II::Op0Mask) {
670 default: assert(0 && "Invalid prefix!");
671 case 0: break; // No prefix!
672 case X86II::REP: break; // already handled.
673 case X86II::TB: // Two-byte opcode prefix
674 case X86II::T8: // 0F 38
675 case X86II::TA: // 0F 3A
676 Need0FPrefix = true;
677 break;
678 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000679 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000680 Need0FPrefix = true;
681 break;
682 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000683 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000684 Need0FPrefix = true;
685 break;
686 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000687 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000688 Need0FPrefix = true;
689 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000690 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
691 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
692 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
693 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
694 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
695 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
696 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
697 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000698 }
699
700 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000701 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000702 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000703 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000704 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000705 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000706
707 // 0x0F escape code must be emitted just before the opcode.
708 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000709 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000710
711 // FIXME: Pull this up into previous switch if REX can be moved earlier.
712 switch (TSFlags & X86II::Op0Mask) {
713 case X86II::TF: // F2 0F 38
714 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000715 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000716 break;
717 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000718 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000719 break;
720 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000721}
722
723void X86MCCodeEmitter::
724EncodeInstruction(const MCInst &MI, raw_ostream &OS,
725 SmallVectorImpl<MCFixup> &Fixups) const {
726 unsigned Opcode = MI.getOpcode();
727 const TargetInstrDesc &Desc = TII.get(Opcode);
728 uint64_t TSFlags = Desc.TSFlags;
729
730 // Keep track of the current byte being emitted.
731 unsigned CurByte = 0;
732
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000733 // Is this instruction encoded using the AVX VEX prefix?
734 bool HasVEXPrefix = false;
735
736 // It uses the VEX.VVVV field?
737 bool HasVEX_4V = false;
738
739 if ((TSFlags >> 32) & X86II::VEX)
740 HasVEXPrefix = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000741 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000742 HasVEX_4V = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000743
744 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
745 // in order to provide diffability.
746
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000747 if (!HasVEXPrefix)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000748 EmitOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
749 else
750 EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000751
752 // If this is a two-address instruction, skip one of the register operands.
753 unsigned NumOps = Desc.getNumOperands();
754 unsigned CurOp = 0;
755 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
756 ++CurOp;
757 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
758 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
759 --NumOps;
760
Chris Lattner74a21512010-02-05 19:24:13 +0000761 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000762 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000763 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000764 case X86II::MRMInitReg:
765 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000766 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000767 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1cea10a2010-02-13 19:16:53 +0000768 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000769 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000770 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000771 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000772
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000773 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000774 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000775 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000776
777 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000778 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000779 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000780 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000781 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000782 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000783
784 case X86II::MRMDestMem:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000785 EmitSegmentOverridePrefix(MI.getOperand(CurOp + 4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000786 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000787 EmitMemModRMByte(MI, CurOp,
788 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000789 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000790 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000791 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000792
793 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000794 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000795 SrcRegNum = CurOp + 1;
796
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000797 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000798 SrcRegNum++;
799
800 EmitRegModRMByte(MI.getOperand(SrcRegNum),
801 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
802 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000803 break;
804
805 case X86II::MRMSrcMem: {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000806 int AddrOperands = X86AddrNumOperands;
807 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000808 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000809 ++AddrOperands;
810 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
811 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000812
813 // FIXME: Maybe lea should have its own form? This is a horrible hack.
Chris Lattnerdaa45552010-02-05 19:04:37 +0000814 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
815 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000816 --AddrOperands; // No segment register
Chris Lattnerdaa45552010-02-05 19:04:37 +0000817 else
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000818 EmitSegmentOverridePrefix(MI.getOperand(FirstMemOp+4),
819 TSFlags, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000820
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000821 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000822
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000823
824 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000825 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000826 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000827 break;
828 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000829
830 case X86II::MRM0r: case X86II::MRM1r:
831 case X86II::MRM2r: case X86II::MRM3r:
832 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000833 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000834 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000835 EmitRegModRMByte(MI.getOperand(CurOp++),
836 (TSFlags & X86II::FormMask)-X86II::MRM0r,
837 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000838 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000839 case X86II::MRM0m: case X86II::MRM1m:
840 case X86II::MRM2m: case X86II::MRM3m:
841 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000842 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000843 EmitSegmentOverridePrefix(MI.getOperand(CurOp+4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000844 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000845 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000846 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000847 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000848 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000849 case X86II::MRM_C1:
850 EmitByte(BaseOpcode, CurByte, OS);
851 EmitByte(0xC1, CurByte, OS);
852 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000853 case X86II::MRM_C2:
854 EmitByte(BaseOpcode, CurByte, OS);
855 EmitByte(0xC2, CurByte, OS);
856 break;
857 case X86II::MRM_C3:
858 EmitByte(BaseOpcode, CurByte, OS);
859 EmitByte(0xC3, CurByte, OS);
860 break;
861 case X86II::MRM_C4:
862 EmitByte(BaseOpcode, CurByte, OS);
863 EmitByte(0xC4, CurByte, OS);
864 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000865 case X86II::MRM_C8:
866 EmitByte(BaseOpcode, CurByte, OS);
867 EmitByte(0xC8, CurByte, OS);
868 break;
869 case X86II::MRM_C9:
870 EmitByte(BaseOpcode, CurByte, OS);
871 EmitByte(0xC9, CurByte, OS);
872 break;
873 case X86II::MRM_E8:
874 EmitByte(BaseOpcode, CurByte, OS);
875 EmitByte(0xE8, CurByte, OS);
876 break;
877 case X86II::MRM_F0:
878 EmitByte(BaseOpcode, CurByte, OS);
879 EmitByte(0xF0, CurByte, OS);
880 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000881 case X86II::MRM_F8:
882 EmitByte(BaseOpcode, CurByte, OS);
883 EmitByte(0xF8, CurByte, OS);
884 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000885 case X86II::MRM_F9:
886 EmitByte(BaseOpcode, CurByte, OS);
887 EmitByte(0xF9, CurByte, OS);
888 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000889 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000890
891 // If there is a remaining operand, it must be a trailing immediate. Emit it
892 // according to the right size for the instruction.
893 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000894 EmitImmediate(MI.getOperand(CurOp++),
895 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000896 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000897
898#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000899 // FIXME: Verify.
900 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000901 errs() << "Cannot encode all operands of: ";
902 MI.dump();
903 errs() << '\n';
904 abort();
905 }
906#endif
Chris Lattner45762472010-02-03 21:24:49 +0000907}