blob: 0838739468e0916ed3e34eca673185fee70fdfe1 [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffray52e724a2008-04-16 20:10:13 +000018#include "X86.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "X86RegisterInfo.h"
Dan Gohmand68a0762009-01-05 17:59:02 +000020#include "llvm/ADT/DenseMap.h"
Dan Gohman6f0d0242008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000022
Brian Gaeked0fde302003-11-11 22:41:34 +000023namespace llvm {
Evan Cheng25ab6902006-09-08 06:48:29 +000024 class X86RegisterInfo;
Evan Chengaa3c1412006-05-30 21:45:53 +000025 class X86TargetMachine;
Brian Gaeked0fde302003-11-11 22:41:34 +000026
Chris Lattner7fbe9722006-10-20 17:42:20 +000027namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
Dan Gohman653456c2009-01-07 00:15:08 +000044 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
Dan Gohman279c22e2008-10-21 03:29:32 +000047
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
55
Chris Lattner7fbe9722006-10-20 17:42:20 +000056 COND_INVALID
57 };
Christopher Lamb6634e262008-03-13 05:47:01 +000058
Chris Lattner7fbe9722006-10-20 17:42:20 +000059 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
Chris Lattner9cd68752006-10-21 05:52:40 +000061
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
Chris Lattner7fbe9722006-10-20 17:42:20 +000066}
67
Chris Lattner9d177402002-10-30 01:09:34 +000068/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72 enum {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000073 //===------------------------------------------------------------------===//
Chris Lattnerac5e8872009-06-25 17:38:33 +000074 // X86 Specific MachineOperand flags.
75
76 MO_NO_FLAG = 0,
77
78 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79 /// relocation of:
Chris Lattner55e7c822009-06-26 00:43:52 +000080 /// SYMBOL_LABEL + [. - PICBASELABEL]
Chris Lattnerac5e8872009-06-25 17:38:33 +000081 MO_GOT_ABSOLUTE_ADDRESS = 1,
82
Chris Lattner55e7c822009-06-26 00:43:52 +000083 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
84 /// immediate should get the value of the symbol minus the PIC base label:
85 /// SYMBOL_LABEL - PICBASELABEL
86 MO_PIC_BASE_OFFSET = 2,
87
Chris Lattnerb903bed2009-06-26 21:20:29 +000088 /// MO_GOT - On a symbol operand this indicates that the immediate is the
89 /// offset to the GOT entry for the symbol name from the base of the GOT.
90 ///
91 /// See the X86-64 ELF ABI supplement for more details.
92 /// SYMBOL_LABEL @GOT
93 MO_GOT = 3,
Chris Lattner55e7c822009-06-26 00:43:52 +000094
Chris Lattnerb903bed2009-06-26 21:20:29 +000095 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
96 /// the offset to the location of the symbol name from the base of the GOT.
97 ///
98 /// See the X86-64 ELF ABI supplement for more details.
99 /// SYMBOL_LABEL @GOTOFF
100 MO_GOTOFF = 4,
101
102 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
103 /// offset to the GOT entry for the symbol name from the current code
104 /// location.
105 ///
106 /// See the X86-64 ELF ABI supplement for more details.
107 /// SYMBOL_LABEL @GOTPCREL
108 MO_GOTPCREL = 5,
109
110 /// MO_PLT - On a symbol operand this indicates that the immediate is
111 /// offset to the PLT entry of symbol name from the current code location.
112 ///
113 /// See the X86-64 ELF ABI supplement for more details.
114 /// SYMBOL_LABEL @PLT
115 MO_PLT = 6,
116
117 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
118 /// some TLS offset.
119 ///
120 /// See 'ELF Handling for Thread-Local Storage' for more details.
121 /// SYMBOL_LABEL @TLSGD
122 MO_TLSGD = 7,
123
124 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
125 /// some TLS offset.
126 ///
127 /// See 'ELF Handling for Thread-Local Storage' for more details.
128 /// SYMBOL_LABEL @GOTTPOFF
129 MO_GOTTPOFF = 8,
130
131 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
132 /// some TLS offset.
133 ///
134 /// See 'ELF Handling for Thread-Local Storage' for more details.
135 /// SYMBOL_LABEL @INDNTPOFF
136 MO_INDNTPOFF = 9,
137
138 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
139 /// some TLS offset.
140 ///
141 /// See 'ELF Handling for Thread-Local Storage' for more details.
142 /// SYMBOL_LABEL @TPOFF
143 MO_TPOFF = 10,
144
145 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
146 /// some TLS offset.
147 ///
148 /// See 'ELF Handling for Thread-Local Storage' for more details.
149 /// SYMBOL_LABEL @NTPOFF
150 MO_NTPOFF = 11,
Chris Lattnerac5e8872009-06-25 17:38:33 +0000151
Chris Lattner4aa21aa2009-07-09 00:58:53 +0000152 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
153 /// reference is actually to the "__imp_FOO" symbol. This is used for
154 /// dllimport linkage on windows.
155 MO_DLLIMPORT = 12,
156
Chris Lattner74e726e2009-07-09 05:27:35 +0000157 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
158 /// reference is actually to the "FOO$stub" symbol. This is used for calls
159 /// and jumps to external functions on Tiger and before.
160 MO_DARWIN_STUB = 13,
161
Chris Lattner75cdf272009-07-09 06:59:17 +0000162 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
163 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
164 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
165 MO_DARWIN_NONLAZY = 14,
166
167 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
168 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
169 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
170 MO_DARWIN_NONLAZY_PIC_BASE = 15,
171
172 /// MO_DARWIN_HIDDEN_NONLAZY - On a symbol operand "FOO", this indicates
173 /// that the reference is actually to the "FOO$non_lazy_ptr" symbol, which
174 /// is a non-PIC-base-relative reference to a hidden dyld lazy pointer stub.
175 MO_DARWIN_HIDDEN_NONLAZY = 16,
176
177 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
178 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
179 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
180 /// stub.
Chris Lattner281bada2009-07-10 06:06:17 +0000181 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE = 17
Chris Lattner4aa21aa2009-07-09 00:58:53 +0000182
Chris Lattner281bada2009-07-10 06:06:17 +0000183 };
184}
185
186/// isGlobalStubReference - Return true if the specified GlobalValue operand is
187/// a reference to a stub for a global, not the global itself.
188inline static bool isGlobalStubReference(const MachineOperand &MO) {
189 assert(MO.isGlobal() && "Predicate only works on globalvalue operands");
190 switch (MO.getTargetFlags()) {
191 case X86II::MO_DLLIMPORT: // dllimport stub.
192 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
193 case X86II::MO_GOT: // normal GOT reference.
194 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
195 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
196 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
197 case X86II::MO_DARWIN_HIDDEN_NONLAZY: // Hidden $non_lazy_ptr ref.
198 return true;
199 default:
200 return false;
201 }
202}
203
204/// X86II - This namespace holds all of the target specific flags that
205/// instruction info tracks.
206///
207namespace X86II {
208 enum {
Chris Lattnerac5e8872009-06-25 17:38:33 +0000209 //===------------------------------------------------------------------===//
210 // Instruction encodings. These are the standard/most common forms for X86
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000211 // instructions.
212 //
213
Chris Lattner4c299f52002-12-25 05:09:59 +0000214 // PseudoFrm - This represents an instruction that is a pseudo instruction
215 // or one that has not been implemented yet. It is illegal to code generate
216 // it, but tolerated for intermediate implementation stages.
217 Pseudo = 0,
218
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000219 /// Raw - This form is for instructions that don't have any operands, so
220 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +0000221 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000222
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000223 /// AddRegFrm - This form is used for instructions like 'push r32' that have
224 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000225 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000226
227 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
228 /// to specify a destination, which in this case is a register.
229 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000230 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000231
232 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
233 /// to specify a destination, which in this case is memory.
234 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000235 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000236
237 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
238 /// to specify a source, which in this case is a register.
239 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000240 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000241
242 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
243 /// to specify a source, which in this case is memory.
244 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000245 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000246
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000247 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +0000248 /// a Mod/RM byte, and use the middle field to hold extended opcode
249 /// information. In the intel manual these are represented as /0, /1, ...
250 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000251
Chris Lattner85b39f22002-11-21 17:08:49 +0000252 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000253 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
254 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000255
256 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000257 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
258 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000259
Evan Cheng3c55c542006-02-01 06:13:50 +0000260 // MRMInitReg - This form is used for instructions whose source and
261 // destinations are the same register.
262 MRMInitReg = 32,
263
264 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000265
266 //===------------------------------------------------------------------===//
267 // Actual flags...
268
Chris Lattner11e53e32002-11-21 01:32:55 +0000269 // OpSize - Set if this instruction requires an operand size prefix (0x66),
270 // which most often indicates that the instruction operates on 16 bit data
271 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +0000272 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +0000273
Evan Cheng25ab6902006-09-08 06:48:29 +0000274 // AsSize - Set if this instruction requires an operand size prefix (0x67),
275 // which most often indicates that the instruction address 16 bit address
276 // instead of 32 bit address (or 32 bit address in 64 bit mode).
277 AdSize = 1 << 7,
278
279 //===------------------------------------------------------------------===//
Chris Lattner4c299f52002-12-25 05:09:59 +0000280 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +0000281 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
282 // used to obtain the setting of this field. If no bits in this field is
283 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000284 //
Evan Cheng25ab6902006-09-08 06:48:29 +0000285 Op0Shift = 8,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000286 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000287
288 // TB - TwoByte - Set if this instruction has a two byte opcode, which
289 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000290 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000291
Chris Lattner915e5e52004-02-12 17:53:22 +0000292 // REP - The 0xF3 prefix byte indicating repetition of the following
293 // instruction.
294 REP = 2 << Op0Shift,
295
Chris Lattner4c299f52002-12-25 05:09:59 +0000296 // D8-DF - These escape opcodes are used by the floating point unit. These
297 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000298 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
299 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
300 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
301 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000302
Nate Begemanf63be7d2005-07-06 18:59:04 +0000303 // XS, XD - These prefix codes are for single and double precision scalar
304 // floating point operations performed in the SSE registers.
Bill Wendlingbb1ee052007-04-10 22:10:25 +0000305 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
306
307 // T8, TA - Prefix after the 0x0F prefix.
308 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000309
Chris Lattner0c514f42003-01-13 00:49:24 +0000310 //===------------------------------------------------------------------===//
Evan Cheng25ab6902006-09-08 06:48:29 +0000311 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
312 // They are used to specify GPRs and SSE registers, 64-bit operand size,
313 // etc. We only cares about REX.W and REX.R bits and only the former is
314 // statically determined.
315 //
316 REXShift = 12,
317 REX_W = 1 << REXShift,
318
319 //===------------------------------------------------------------------===//
320 // This three-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000321 // unused so that we can tell if we forgot to set a value.
Evan Cheng25ab6902006-09-08 06:48:29 +0000322 ImmShift = 13,
323 ImmMask = 7 << ImmShift,
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000324 Imm8 = 1 << ImmShift,
325 Imm16 = 2 << ImmShift,
326 Imm32 = 3 << ImmShift,
Evan Cheng25ab6902006-09-08 06:48:29 +0000327 Imm64 = 4 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000328
Chris Lattner0c514f42003-01-13 00:49:24 +0000329 //===------------------------------------------------------------------===//
330 // FP Instruction Classification... Zero is non-fp instruction.
331
Chris Lattner2959b6e2003-08-06 15:32:20 +0000332 // FPTypeMask - Mask for all of the FP types...
Evan Cheng25ab6902006-09-08 06:48:29 +0000333 FPTypeShift = 16,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000334 FPTypeMask = 7 << FPTypeShift,
335
Chris Lattner79b13732004-01-30 22:24:18 +0000336 // NotFP - The default, set for instructions that do not use FP registers.
337 NotFP = 0 << FPTypeShift,
338
Chris Lattner0c514f42003-01-13 00:49:24 +0000339 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000340 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000341
342 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000343 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000344
345 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
346 // result back to ST(0). For example, fcos, fsqrt, etc.
347 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000348 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000349
350 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
351 // explicit argument, storing the result to either ST(0) or the implicit
352 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000353 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000354
Chris Lattnerab8decc2004-06-11 04:41:24 +0000355 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
356 // explicit argument, but have no destination. Example: fucom, fucomi, ...
357 CompareFP = 5 << FPTypeShift,
358
Chris Lattner1c54a852004-03-31 22:02:13 +0000359 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000360 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000361
Chris Lattner0c514f42003-01-13 00:49:24 +0000362 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000363 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000364
Andrew Lenharthea7da502008-03-01 13:37:02 +0000365 // Lock prefix
366 LOCKShift = 19,
367 LOCK = 1 << LOCKShift,
368
Anton Korobeynikovef93cec2008-10-11 19:09:15 +0000369 // Segment override prefixes. Currently we just need ability to address
370 // stuff in gs and fs segments.
371 SegOvrShift = 20,
372 SegOvrMask = 3 << SegOvrShift,
373 FS = 1 << SegOvrShift,
374 GS = 2 << SegOvrShift,
375
376 // Bits 22 -> 23 are unused
Evan Cheng25ab6902006-09-08 06:48:29 +0000377 OpcodeShift = 24,
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000378 OpcodeMask = 0xFF << OpcodeShift
Chris Lattner9d177402002-10-30 01:09:34 +0000379 };
380}
381
Rafael Espindola094fad32009-04-08 21:14:34 +0000382const int X86AddrNumOperands = 5;
Rafael Espindolada945e32009-03-28 18:55:31 +0000383
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000384inline static bool isScale(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000385 return MO.isImm() &&
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000386 (MO.getImm() == 1 || MO.getImm() == 2 ||
387 MO.getImm() == 4 || MO.getImm() == 8);
388}
389
Rafael Espindola094fad32009-04-08 21:14:34 +0000390inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmand735b802008-10-03 15:45:36 +0000391 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000392 return Op+4 <= MI->getNumOperands() &&
Dan Gohmand735b802008-10-03 15:45:36 +0000393 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
394 MI->getOperand(Op+2).isReg() &&
395 (MI->getOperand(Op+3).isImm() ||
396 MI->getOperand(Op+3).isGlobal() ||
397 MI->getOperand(Op+3).isCPI() ||
398 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000399}
400
Rafael Espindola094fad32009-04-08 21:14:34 +0000401inline static bool isMem(const MachineInstr *MI, unsigned Op) {
402 if (MI->getOperand(Op).isFI()) return true;
403 return Op+5 <= MI->getNumOperands() &&
404 MI->getOperand(Op+4).isReg() &&
405 isLeaMem(MI, Op);
406}
407
Chris Lattner64105522008-01-01 01:03:04 +0000408class X86InstrInfo : public TargetInstrInfoImpl {
Evan Chengaa3c1412006-05-30 21:45:53 +0000409 X86TargetMachine &TM;
Chris Lattner72614082002-10-25 22:55:53 +0000410 const X86RegisterInfo RI;
Owen Anderson43dbe052008-01-07 01:35:02 +0000411
412 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
413 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
414 ///
415 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
416 DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
417 DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
418 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
419
420 /// MemOp2RegOpTable - Load / store unfolding opcode map.
421 ///
422 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
423
Chris Lattner72614082002-10-25 22:55:53 +0000424public:
Dan Gohman950a4c42008-03-25 22:06:05 +0000425 explicit X86InstrInfo(X86TargetMachine &tm);
Chris Lattner72614082002-10-25 22:55:53 +0000426
Chris Lattner3501fea2003-01-14 22:00:31 +0000427 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000428 /// such, whenever a client has an instance of instruction info, it should
429 /// always be able to get register info as well (through this method).
430 ///
Dan Gohmanc9f5f3f2008-05-14 01:58:56 +0000431 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Chris Lattner72614082002-10-25 22:55:53 +0000432
Evan Cheng04ee5a12009-01-20 19:12:24 +0000433 /// Return true if the instruction is a register to register move and return
434 /// the source and dest operands and their sub-register indices by reference.
435 virtual bool isMoveInstr(const MachineInstr &MI,
436 unsigned &SrcReg, unsigned &DstReg,
437 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
438
Dan Gohmancbad42c2008-11-18 19:49:32 +0000439 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
440 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000441
Bill Wendling9f8fea32008-05-12 20:54:26 +0000442 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000443 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
444 unsigned DestReg, const MachineInstr *Orig) const;
445
Dan Gohmancbad42c2008-11-18 19:49:32 +0000446 bool isInvariantLoad(const MachineInstr *MI) const;
Bill Wendling627c00b2007-12-17 23:07:56 +0000447
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000448 /// convertToThreeAddress - This method must be implemented by targets that
449 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
450 /// may be able to convert a two-address instruction into a true
451 /// three-address instruction on demand. This allows the X86 target (for
452 /// example) to convert ADD and SHL instructions into LEA instructions if they
453 /// would require register copies due to two-addressness.
454 ///
455 /// This method returns a null pointer if the transformation cannot be
456 /// performed, otherwise it returns the new instruction.
457 ///
Evan Chengba59a1e2006-12-01 21:52:58 +0000458 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
459 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +0000460 LiveVariables *LV) const;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000461
Chris Lattner41e431b2005-01-19 07:11:01 +0000462 /// commuteInstruction - We have a few instructions that must be hacked on to
463 /// commute them.
464 ///
Evan Cheng58dcb0e2008-06-16 07:33:11 +0000465 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000466
Chris Lattner7fbe9722006-10-20 17:42:20 +0000467 // Branch analysis.
Dale Johannesen318093b2007-06-14 22:03:45 +0000468 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
Chris Lattner7fbe9722006-10-20 17:42:20 +0000469 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
470 MachineBasicBlock *&FBB,
Evan Chengdc54d312009-02-09 07:14:22 +0000471 SmallVectorImpl<MachineOperand> &Cond,
472 bool AllowModify) const;
Evan Cheng6ae36262007-05-18 00:18:17 +0000473 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
474 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
475 MachineBasicBlock *FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +0000476 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson940f83e2008-08-26 18:03:31 +0000477 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Andersond10fd972007-12-31 06:32:00 +0000478 MachineBasicBlock::iterator MI,
479 unsigned DestReg, unsigned SrcReg,
480 const TargetRegisterClass *DestRC,
481 const TargetRegisterClass *SrcRC) const;
Owen Andersonf6372aa2008-01-01 21:11:32 +0000482 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
483 MachineBasicBlock::iterator MI,
484 unsigned SrcReg, bool isKill, int FrameIndex,
485 const TargetRegisterClass *RC) const;
486
487 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
488 SmallVectorImpl<MachineOperand> &Addr,
489 const TargetRegisterClass *RC,
490 SmallVectorImpl<MachineInstr*> &NewMIs) const;
491
492 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
493 MachineBasicBlock::iterator MI,
494 unsigned DestReg, int FrameIndex,
495 const TargetRegisterClass *RC) const;
496
497 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
498 SmallVectorImpl<MachineOperand> &Addr,
499 const TargetRegisterClass *RC,
500 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Andersond94b6a12008-01-04 23:57:37 +0000501
502 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
503 MachineBasicBlock::iterator MI,
504 const std::vector<CalleeSavedInfo> &CSI) const;
505
506 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
507 MachineBasicBlock::iterator MI,
508 const std::vector<CalleeSavedInfo> &CSI) const;
509
Owen Anderson43dbe052008-01-07 01:35:02 +0000510 /// foldMemoryOperand - If this target supports it, fold a load or store of
511 /// the specified stack slot into the specified machine instruction for the
512 /// specified operand(s). If this is possible, the target should perform the
513 /// folding and return true, otherwise it should return false. If it folds
514 /// the instruction, it is likely that the MachineInstruction the iterator
515 /// references has been changed.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000516 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
517 MachineInstr* MI,
518 const SmallVectorImpl<unsigned> &Ops,
519 int FrameIndex) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000520
521 /// foldMemoryOperand - Same as the previous version except it allows folding
522 /// of any load and store from / to any address, not just from a specific
523 /// stack slot.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000524 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
525 MachineInstr* MI,
526 const SmallVectorImpl<unsigned> &Ops,
527 MachineInstr* LoadMI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000528
529 /// canFoldMemoryOperand - Returns true if the specified load / store is
530 /// folding is possible.
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000531 virtual bool canFoldMemoryOperand(const MachineInstr*,
532 const SmallVectorImpl<unsigned> &) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000533
534 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
535 /// a store or a load and a store into two or more instruction. If this is
536 /// possible, returns true as well as the new instructions by reference.
537 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
538 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
539 SmallVectorImpl<MachineInstr*> &NewMIs) const;
540
541 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
542 SmallVectorImpl<SDNode*> &NewNodes) const;
543
544 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
545 /// instruction after load / store are unfolded from an instruction of the
546 /// specified opcode. It returns zero if the specified unfolding is not
547 /// possible.
548 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
549 bool UnfoldLoad, bool UnfoldStore) const;
550
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000551 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Anderson44eb65c2008-08-14 22:49:33 +0000552 virtual
553 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000554
Evan Cheng4350eb82009-02-06 17:17:30 +0000555 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
556 /// instruction that defines the specified register class.
557 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
Evan Cheng23066282008-10-27 07:14:50 +0000558
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000559 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sandsee465742007-08-29 19:01:20 +0000560 // specified machine instruction.
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000561 //
Chris Lattner749c6f62008-01-07 07:27:27 +0000562 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Evan Cheng19f2ffc2006-12-05 04:01:03 +0000563 return TID->TSFlags >> X86II::OpcodeShift;
Chris Lattner4d18d5c2003-08-03 21:56:22 +0000564 }
Chris Lattnercc8cd0c2008-01-07 02:48:55 +0000565 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sandsee465742007-08-29 19:01:20 +0000566 return getBaseOpcodeFor(&get(Opcode));
567 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000568
569 static bool isX86_64NonExtLowByteReg(unsigned reg) {
570 return (reg == X86::SPL || reg == X86::BPL ||
571 reg == X86::SIL || reg == X86::DIL);
572 }
573
574 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000575 static bool isX86_64ExtendedReg(const MachineOperand &MO);
576 static unsigned determineREX(const MachineInstr &MI);
577
578 /// GetInstSize - Returns the size of the specified MachineInstr.
579 ///
580 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000581
Dan Gohman57c3dac2008-09-30 00:58:23 +0000582 /// getGlobalBaseReg - Return a virtual register initialized with the
583 /// the global base register value. Output instructions required to
584 /// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +0000585 ///
Dan Gohman57c3dac2008-09-30 00:58:23 +0000586 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohman8b746962008-09-23 18:22:58 +0000587
Owen Anderson43dbe052008-01-07 01:35:02 +0000588private:
Dan Gohmanc54baa22008-12-03 18:43:12 +0000589 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
590 MachineInstr* MI,
591 unsigned OpNum,
Dan Gohmand68a0762009-01-05 17:59:02 +0000592 const SmallVectorImpl<MachineOperand> &MOs) const;
Chris Lattner72614082002-10-25 22:55:53 +0000593};
594
Brian Gaeked0fde302003-11-11 22:41:34 +0000595} // End llvm namespace
596
Chris Lattner72614082002-10-25 22:55:53 +0000597#endif