blob: 0898173ef9e0c656339d7b5709593cad93a31d9c [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Owen Anderson07000c62006-05-12 06:33:49 +000015#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000016#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000018#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000019#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000020#include "llvm/ADT/StringExtras.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000022#include "llvm/Support/MathExtras.h"
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +000023#include "llvm/Target/TargetAsmInfo.h"
Chris Lattner310968c2005-01-07 07:44:53 +000024using namespace llvm;
25
Evan Cheng56966222007-01-12 02:11:51 +000026/// InitLibcallNames - Set default libcall names.
27///
Evan Cheng79cca502007-01-12 22:51:10 +000028static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000029 Names[RTLIB::SHL_I32] = "__ashlsi3";
30 Names[RTLIB::SHL_I64] = "__ashldi3";
31 Names[RTLIB::SRL_I32] = "__lshrsi3";
32 Names[RTLIB::SRL_I64] = "__lshrdi3";
33 Names[RTLIB::SRA_I32] = "__ashrsi3";
34 Names[RTLIB::SRA_I64] = "__ashrdi3";
35 Names[RTLIB::MUL_I32] = "__mulsi3";
36 Names[RTLIB::MUL_I64] = "__muldi3";
37 Names[RTLIB::SDIV_I32] = "__divsi3";
38 Names[RTLIB::SDIV_I64] = "__divdi3";
39 Names[RTLIB::UDIV_I32] = "__udivsi3";
40 Names[RTLIB::UDIV_I64] = "__udivdi3";
41 Names[RTLIB::SREM_I32] = "__modsi3";
42 Names[RTLIB::SREM_I64] = "__moddi3";
43 Names[RTLIB::UREM_I32] = "__umodsi3";
44 Names[RTLIB::UREM_I64] = "__umoddi3";
45 Names[RTLIB::NEG_I32] = "__negsi2";
46 Names[RTLIB::NEG_I64] = "__negdi2";
47 Names[RTLIB::ADD_F32] = "__addsf3";
48 Names[RTLIB::ADD_F64] = "__adddf3";
49 Names[RTLIB::SUB_F32] = "__subsf3";
50 Names[RTLIB::SUB_F64] = "__subdf3";
51 Names[RTLIB::MUL_F32] = "__mulsf3";
52 Names[RTLIB::MUL_F64] = "__muldf3";
53 Names[RTLIB::DIV_F32] = "__divsf3";
54 Names[RTLIB::DIV_F64] = "__divdf3";
55 Names[RTLIB::REM_F32] = "fmodf";
56 Names[RTLIB::REM_F64] = "fmod";
57 Names[RTLIB::NEG_F32] = "__negsf2";
58 Names[RTLIB::NEG_F64] = "__negdf2";
59 Names[RTLIB::POWI_F32] = "__powisf2";
60 Names[RTLIB::POWI_F64] = "__powidf2";
61 Names[RTLIB::SQRT_F32] = "sqrtf";
62 Names[RTLIB::SQRT_F64] = "sqrt";
63 Names[RTLIB::SIN_F32] = "sinf";
64 Names[RTLIB::SIN_F64] = "sin";
65 Names[RTLIB::COS_F32] = "cosf";
66 Names[RTLIB::COS_F64] = "cos";
67 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
68 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
69 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
70 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
71 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
72 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
Dale Johannesen73328d12007-09-19 23:55:34 +000073 Names[RTLIB::FPTOSINT_LD_I64] = "__fixxfdi";
Evan Cheng56966222007-01-12 02:11:51 +000074 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
75 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
76 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
77 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
Dale Johannesen73328d12007-09-19 23:55:34 +000078 Names[RTLIB::FPTOUINT_LD_I32] = "__fixunsxfsi";
79 Names[RTLIB::FPTOUINT_LD_I64] = "__fixunsxfdi";
Evan Cheng56966222007-01-12 02:11:51 +000080 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
81 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
82 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
83 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
Dale Johannesen73328d12007-09-19 23:55:34 +000084 Names[RTLIB::SINTTOFP_I64_LD] = "__floatdixf";
Evan Cheng56966222007-01-12 02:11:51 +000085 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
86 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
87 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
88 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
89 Names[RTLIB::OEQ_F32] = "__eqsf2";
90 Names[RTLIB::OEQ_F64] = "__eqdf2";
91 Names[RTLIB::UNE_F32] = "__nesf2";
92 Names[RTLIB::UNE_F64] = "__nedf2";
93 Names[RTLIB::OGE_F32] = "__gesf2";
94 Names[RTLIB::OGE_F64] = "__gedf2";
95 Names[RTLIB::OLT_F32] = "__ltsf2";
96 Names[RTLIB::OLT_F64] = "__ltdf2";
97 Names[RTLIB::OLE_F32] = "__lesf2";
98 Names[RTLIB::OLE_F64] = "__ledf2";
99 Names[RTLIB::OGT_F32] = "__gtsf2";
100 Names[RTLIB::OGT_F64] = "__gtdf2";
101 Names[RTLIB::UO_F32] = "__unordsf2";
102 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +0000103 Names[RTLIB::O_F32] = "__unordsf2";
104 Names[RTLIB::O_F64] = "__unorddf2";
105}
106
107/// InitCmpLibcallCCs - Set default comparison libcall CC.
108///
109static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
110 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
111 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
112 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
113 CCs[RTLIB::UNE_F32] = ISD::SETNE;
114 CCs[RTLIB::UNE_F64] = ISD::SETNE;
115 CCs[RTLIB::OGE_F32] = ISD::SETGE;
116 CCs[RTLIB::OGE_F64] = ISD::SETGE;
117 CCs[RTLIB::OLT_F32] = ISD::SETLT;
118 CCs[RTLIB::OLT_F64] = ISD::SETLT;
119 CCs[RTLIB::OLE_F32] = ISD::SETLE;
120 CCs[RTLIB::OLE_F64] = ISD::SETLE;
121 CCs[RTLIB::OGT_F32] = ISD::SETGT;
122 CCs[RTLIB::OGT_F64] = ISD::SETGT;
123 CCs[RTLIB::UO_F32] = ISD::SETNE;
124 CCs[RTLIB::UO_F64] = ISD::SETNE;
125 CCs[RTLIB::O_F32] = ISD::SETEQ;
126 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000127}
128
Chris Lattner310968c2005-01-07 07:44:53 +0000129TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000130 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000131 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000132 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000133 // All operations default to being supported.
134 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000135 memset(LoadXActions, 0, sizeof(LoadXActions));
Evan Cheng8b2794a2006-10-13 21:14:26 +0000136 memset(&StoreXActions, 0, sizeof(StoreXActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000137 memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
Dale Johannesen5411a392007-08-09 01:04:01 +0000138 memset(&ConvertActions, 0, sizeof(ConvertActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000139
140 // Set all indexed load / store to expand.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000141 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
142 for (unsigned IM = (unsigned)ISD::PRE_INC;
143 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
144 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
145 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
146 }
147 }
Chris Lattner310968c2005-01-07 07:44:53 +0000148
Owen Andersona69571c2006-05-03 01:29:57 +0000149 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000150 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000151 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000152 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000153 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Owen Anderson718cb662007-09-07 04:06:50 +0000154 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000155 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000156 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000157 UseUnderscoreSetJmp = false;
158 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000159 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000160 IntDivIsCheap = false;
161 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000162 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000163 ExceptionPointerRegister = 0;
164 ExceptionSelectorRegister = 0;
Chris Lattnerdfe89342007-09-21 17:06:39 +0000165 SetCCResultContents = UndefinedSetCCResult;
Evan Cheng0577a222006-01-25 18:52:42 +0000166 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000167 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000168 JumpBufAlignment = 0;
Evan Chengd60483e2007-05-16 23:45:53 +0000169 IfCvtBlockSizeLimit = 2;
Evan Cheng56966222007-01-12 02:11:51 +0000170
171 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000172 InitCmpLibcallCCs(CmpLibcallCCs);
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +0000173
174 // Tell Legalize whether the assembler supports DEBUG_LOC.
175 if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
176 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Chris Lattner310968c2005-01-07 07:44:53 +0000177}
178
Chris Lattnercba82f92005-01-16 07:28:11 +0000179TargetLowering::~TargetLowering() {}
180
Chris Lattner310968c2005-01-07 07:44:53 +0000181/// computeRegisterProperties - Once all of the register classes are added,
182/// this allows us to compute derived properties we expose.
183void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000184 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000185 "Too many value types for ValueTypeActions to hold!");
186
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000187 // Everything defaults to needing one register.
188 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000189 NumRegistersForVT[i] = 1;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000190 RegisterTypeForVT[i] = TransformToType[i] = i;
191 }
192 // ...except isVoid, which doesn't need any registers.
193 NumRegistersForVT[MVT::isVoid] = 0;
Misha Brukmanf976c852005-04-21 22:55:34 +0000194
Chris Lattner310968c2005-01-07 07:44:53 +0000195 // Find the largest integer register class.
196 unsigned LargestIntReg = MVT::i128;
197 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
198 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
199
200 // Every integer value type larger than this largest register takes twice as
201 // many registers to represent as the previous ValueType.
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000202 for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
203 MVT::isInteger(ExpandedReg); ++ExpandedReg) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000204 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000205 RegisterTypeForVT[ExpandedReg] = LargestIntReg;
206 TransformToType[ExpandedReg] = ExpandedReg - 1;
207 ValueTypeActions.setTypeAction(ExpandedReg, Expand);
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000208 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000209
210 // Inspect all of the ValueType's smaller than the largest integer
211 // register to see which ones need promotion.
212 MVT::ValueType LegalIntReg = LargestIntReg;
213 for (MVT::ValueType IntReg = LargestIntReg - 1;
214 IntReg >= MVT::i1; --IntReg) {
215 if (isTypeLegal(IntReg)) {
216 LegalIntReg = IntReg;
217 } else {
218 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
219 ValueTypeActions.setTypeAction(IntReg, Promote);
220 }
221 }
222
223 // Decide how to handle f64. If the target does not have native f64 support,
224 // expand it to i64 and we will be generating soft float library calls.
225 if (!isTypeLegal(MVT::f64)) {
226 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
227 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
228 TransformToType[MVT::f64] = MVT::i64;
229 ValueTypeActions.setTypeAction(MVT::f64, Expand);
230 }
231
232 // Decide how to handle f32. If the target does not have native support for
233 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
234 if (!isTypeLegal(MVT::f32)) {
235 if (isTypeLegal(MVT::f64)) {
236 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
237 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
238 TransformToType[MVT::f32] = MVT::f64;
239 ValueTypeActions.setTypeAction(MVT::f32, Promote);
240 } else {
241 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
242 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
243 TransformToType[MVT::f32] = MVT::i32;
244 ValueTypeActions.setTypeAction(MVT::f32, Expand);
245 }
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000246 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000247
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000248 // Loop over all of the vector value types to see which need transformations.
249 for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000250 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000251 if (!isTypeLegal(i)) {
252 MVT::ValueType IntermediateVT, RegisterVT;
253 unsigned NumIntermediates;
254 NumRegistersForVT[i] =
255 getVectorTypeBreakdown(i,
256 IntermediateVT, NumIntermediates,
257 RegisterVT);
258 RegisterTypeForVT[i] = RegisterVT;
259 TransformToType[i] = MVT::Other; // this isn't actually used
260 ValueTypeActions.setTypeAction(i, Expand);
Dan Gohman7f321562007-06-25 16:23:39 +0000261 }
Chris Lattner3a5935842006-03-16 19:50:01 +0000262 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000263}
Chris Lattnercba82f92005-01-16 07:28:11 +0000264
Evan Cheng72261582005-12-20 06:22:03 +0000265const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
266 return NULL;
267}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000268
Dan Gohman7f321562007-06-25 16:23:39 +0000269/// getVectorTypeBreakdown - Vector types are broken down into some number of
270/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000271/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
Dan Gohman7f321562007-06-25 16:23:39 +0000272/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
Chris Lattnerdc879292006-03-31 00:28:56 +0000273///
Dan Gohman7f321562007-06-25 16:23:39 +0000274/// This method returns the number of registers needed, and the VT for each
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000275/// register. It also returns the VT and quantity of the intermediate values
276/// before they are promoted/expanded.
Chris Lattnerdc879292006-03-31 00:28:56 +0000277///
Dan Gohman7f321562007-06-25 16:23:39 +0000278unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000279 MVT::ValueType &IntermediateVT,
280 unsigned &NumIntermediates,
281 MVT::ValueType &RegisterVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000282 // Figure out the right, legal destination reg to copy into.
Dan Gohman7f321562007-06-25 16:23:39 +0000283 unsigned NumElts = MVT::getVectorNumElements(VT);
284 MVT::ValueType EltTy = MVT::getVectorElementType(VT);
Chris Lattnerdc879292006-03-31 00:28:56 +0000285
286 unsigned NumVectorRegs = 1;
287
288 // Divide the input until we get to a supported size. This will always
289 // end with a scalar if the target doesn't support vectors.
Dan Gohman7f321562007-06-25 16:23:39 +0000290 while (NumElts > 1 &&
291 !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000292 NumElts >>= 1;
293 NumVectorRegs <<= 1;
294 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000295
296 NumIntermediates = NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000297
Dan Gohman7f321562007-06-25 16:23:39 +0000298 MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
299 if (!isTypeLegal(NewVT))
300 NewVT = EltTy;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000301 IntermediateVT = NewVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000302
Dan Gohman7f321562007-06-25 16:23:39 +0000303 MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000304 RegisterVT = DestVT;
Dan Gohman7f321562007-06-25 16:23:39 +0000305 if (DestVT < NewVT) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000306 // Value is expanded, e.g. i64 -> i16.
Dan Gohman7f321562007-06-25 16:23:39 +0000307 return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000308 } else {
309 // Otherwise, promotion or legal types use the same number of registers as
310 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000311 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000312 }
313
Evan Chenge9b3da12006-05-17 18:10:06 +0000314 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000315}
316
Chris Lattnereb8146b2006-02-04 02:13:02 +0000317//===----------------------------------------------------------------------===//
318// Optimization Methods
319//===----------------------------------------------------------------------===//
320
Nate Begeman368e18d2006-02-16 21:11:51 +0000321/// ShrinkDemandedConstant - Check to see if the specified operand of the
322/// specified instruction is a constant integer. If so, check to see if there
323/// are any bits set in the constant that are not demanded. If so, shrink the
324/// constant and return true.
325bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
326 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000327 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000328 switch(Op.getOpcode()) {
329 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000330 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000331 case ISD::OR:
332 case ISD::XOR:
333 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
334 if ((~Demanded & C->getValue()) != 0) {
335 MVT::ValueType VT = Op.getValueType();
336 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
337 DAG.getConstant(Demanded & C->getValue(),
338 VT));
339 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000340 }
Nate Begemande996292006-02-03 22:24:05 +0000341 break;
342 }
343 return false;
344}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000345
Nate Begeman368e18d2006-02-16 21:11:51 +0000346/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
347/// DemandedMask bits of the result of Op are ever used downstream. If we can
348/// use this information to simplify Op, create a new simplified DAG node and
349/// return true, returning the original and new nodes in Old and New. Otherwise,
350/// analyze the expression and return a mask of KnownOne and KnownZero bits for
351/// the expression (used to simplify the caller). The KnownZero/One bits may
352/// only be accurate for those bits in the DemandedMask.
353bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
354 uint64_t &KnownZero,
355 uint64_t &KnownOne,
356 TargetLoweringOpt &TLO,
357 unsigned Depth) const {
358 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner3fc5b012007-05-17 18:19:23 +0000359
360 // The masks are not wide enough to represent this type! Should use APInt.
361 if (Op.getValueType() == MVT::i128)
362 return false;
363
Nate Begeman368e18d2006-02-16 21:11:51 +0000364 // Other users may use these bits.
365 if (!Op.Val->hasOneUse()) {
366 if (Depth != 0) {
367 // If not at the root, Just compute the KnownZero/KnownOne bits to
368 // simplify things downstream.
Dan Gohmanea859be2007-06-22 14:59:07 +0000369 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Nate Begeman368e18d2006-02-16 21:11:51 +0000370 return false;
371 }
372 // If this is the root being simplified, allow it to have multiple uses,
373 // just set the DemandedMask to all bits.
374 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
375 } else if (DemandedMask == 0) {
376 // Not demanding any bits from Op.
377 if (Op.getOpcode() != ISD::UNDEF)
378 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
379 return false;
380 } else if (Depth == 6) { // Limit search depth.
381 return false;
382 }
383
384 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000385 switch (Op.getOpcode()) {
386 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000387 // We know all of the bits for a constant!
388 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
389 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000390 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000391 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000392 // If the RHS is a constant, check to see if the LHS would be zero without
393 // using the bits from the RHS. Below, we use knowledge about the RHS to
394 // simplify the LHS, here we're using information from the LHS to simplify
395 // the RHS.
396 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
397 uint64_t LHSZero, LHSOne;
Dan Gohmanea859be2007-06-22 14:59:07 +0000398 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
399 LHSZero, LHSOne, Depth+1);
Chris Lattner81cd3552006-02-27 00:36:27 +0000400 // If the LHS already has zeros where RHSC does, this and is dead.
401 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
402 return TLO.CombineTo(Op, Op.getOperand(0));
403 // If any of the set bits in the RHS are known zero on the LHS, shrink
404 // the constant.
405 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
406 return true;
407 }
408
Nate Begeman368e18d2006-02-16 21:11:51 +0000409 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
410 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000411 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000412 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000413 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
414 KnownZero2, KnownOne2, TLO, Depth+1))
415 return true;
416 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
417
418 // If all of the demanded bits are known one on one side, return the other.
419 // These bits cannot contribute to the result of the 'and'.
420 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
421 return TLO.CombineTo(Op, Op.getOperand(0));
422 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
423 return TLO.CombineTo(Op, Op.getOperand(1));
424 // If all of the demanded bits in the inputs are known zeros, return zero.
425 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
426 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
427 // If the RHS is a constant, see if we can simplify it.
428 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
429 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000430
Nate Begeman368e18d2006-02-16 21:11:51 +0000431 // Output known-1 bits are only known if set in both the LHS & RHS.
432 KnownOne &= KnownOne2;
433 // Output known-0 are known to be clear if zero in either the LHS | RHS.
434 KnownZero |= KnownZero2;
435 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000436 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000437 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
438 KnownOne, TLO, Depth+1))
439 return true;
440 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
441 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
442 KnownZero2, KnownOne2, TLO, Depth+1))
443 return true;
444 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
445
446 // If all of the demanded bits are known zero on one side, return the other.
447 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000448 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000449 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000450 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000451 return TLO.CombineTo(Op, Op.getOperand(1));
452 // If all of the potentially set bits on one side are known to be set on
453 // the other side, just use the 'other' side.
454 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
455 (DemandedMask & (~KnownZero)))
456 return TLO.CombineTo(Op, Op.getOperand(0));
457 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
458 (DemandedMask & (~KnownZero2)))
459 return TLO.CombineTo(Op, Op.getOperand(1));
460 // If the RHS is a constant, see if we can simplify it.
461 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
462 return true;
463
464 // Output known-0 bits are only known if clear in both the LHS & RHS.
465 KnownZero &= KnownZero2;
466 // Output known-1 are known to be set if set in either the LHS | RHS.
467 KnownOne |= KnownOne2;
468 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000469 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000470 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
471 KnownOne, TLO, Depth+1))
472 return true;
473 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
474 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
475 KnownOne2, TLO, Depth+1))
476 return true;
477 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
478
479 // If all of the demanded bits are known zero on one side, return the other.
480 // These bits cannot contribute to the result of the 'xor'.
481 if ((DemandedMask & KnownZero) == DemandedMask)
482 return TLO.CombineTo(Op, Op.getOperand(0));
483 if ((DemandedMask & KnownZero2) == DemandedMask)
484 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000485
486 // If all of the unknown bits are known to be zero on one side or the other
487 // (but not both) turn this into an *inclusive* or.
488 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
489 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
490 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
491 Op.getOperand(0),
492 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000493
494 // Output known-0 bits are known if clear or set in both the LHS & RHS.
495 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
496 // Output known-1 are known to be set if set in only one of the LHS, RHS.
497 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
498
Nate Begeman368e18d2006-02-16 21:11:51 +0000499 // If all of the demanded bits on one side are known, and all of the set
500 // bits on that side are also known to be set on the other side, turn this
501 // into an AND, as we know the bits will be cleared.
502 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
503 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
504 if ((KnownOne & KnownOne2) == KnownOne) {
505 MVT::ValueType VT = Op.getValueType();
506 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
507 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
508 ANDC));
509 }
510 }
511
512 // If the RHS is a constant, see if we can simplify it.
513 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
514 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
515 return true;
516
517 KnownZero = KnownZeroOut;
518 KnownOne = KnownOneOut;
519 break;
520 case ISD::SETCC:
521 // If we know the result of a setcc has the top bits zero, use this info.
522 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
523 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
524 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000525 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000526 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
527 KnownOne, TLO, Depth+1))
528 return true;
529 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
530 KnownOne2, TLO, Depth+1))
531 return true;
532 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
533 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
534
535 // If the operands are constants, see if we can simplify them.
536 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
537 return true;
538
539 // Only known if known in both the LHS and RHS.
540 KnownOne &= KnownOne2;
541 KnownZero &= KnownZero2;
542 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000543 case ISD::SELECT_CC:
544 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
545 KnownOne, TLO, Depth+1))
546 return true;
547 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
548 KnownOne2, TLO, Depth+1))
549 return true;
550 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
551 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
552
553 // If the operands are constants, see if we can simplify them.
554 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
555 return true;
556
557 // Only known if known in both the LHS and RHS.
558 KnownOne &= KnownOne2;
559 KnownZero &= KnownZero2;
560 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000561 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000562 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000563 unsigned ShAmt = SA->getValue();
564 SDOperand InOp = Op.getOperand(0);
565
566 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
567 // single shift. We can do this if the bottom bits (which are shifted
568 // out) are never demanded.
569 if (InOp.getOpcode() == ISD::SRL &&
570 isa<ConstantSDNode>(InOp.getOperand(1))) {
571 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
572 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
573 unsigned Opc = ISD::SHL;
574 int Diff = ShAmt-C1;
575 if (Diff < 0) {
576 Diff = -Diff;
577 Opc = ISD::SRL;
578 }
579
580 SDOperand NewSA =
Chris Lattner4e7e6cd2007-05-30 16:30:06 +0000581 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000582 MVT::ValueType VT = Op.getValueType();
Chris Lattner0a16a1f2007-04-18 03:01:40 +0000583 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
Chris Lattner895c4ab2007-04-17 21:14:16 +0000584 InOp.getOperand(0), NewSA));
585 }
586 }
587
588 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000589 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000590 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000591 KnownZero <<= SA->getValue();
592 KnownOne <<= SA->getValue();
593 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000594 }
595 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000596 case ISD::SRL:
597 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
598 MVT::ValueType VT = Op.getValueType();
599 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000600 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
601 unsigned VTSize = MVT::getSizeInBits(VT);
602 SDOperand InOp = Op.getOperand(0);
603
604 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
605 // single shift. We can do this if the top bits (which are shifted out)
606 // are never demanded.
607 if (InOp.getOpcode() == ISD::SHL &&
608 isa<ConstantSDNode>(InOp.getOperand(1))) {
609 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
610 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
611 unsigned Opc = ISD::SRL;
612 int Diff = ShAmt-C1;
613 if (Diff < 0) {
614 Diff = -Diff;
615 Opc = ISD::SHL;
616 }
617
618 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000619 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000620 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
621 InOp.getOperand(0), NewSA));
622 }
623 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000624
625 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000626 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000627 KnownZero, KnownOne, TLO, Depth+1))
628 return true;
629 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
630 KnownZero &= TypeMask;
631 KnownOne &= TypeMask;
632 KnownZero >>= ShAmt;
633 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000634
635 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000636 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000637 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000638 }
639 break;
640 case ISD::SRA:
641 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
642 MVT::ValueType VT = Op.getValueType();
643 unsigned ShAmt = SA->getValue();
644
645 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000646 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
647
Chris Lattner1b737132006-05-08 17:22:53 +0000648 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
649
650 // If any of the demanded bits are produced by the sign extension, we also
651 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000652 uint64_t HighBits = (1ULL << ShAmt)-1;
653 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000654 if (HighBits & DemandedMask)
655 InDemandedMask |= MVT::getIntVTSignBit(VT);
656
657 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000658 KnownZero, KnownOne, TLO, Depth+1))
659 return true;
660 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
661 KnownZero &= TypeMask;
662 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000663 KnownZero >>= ShAmt;
664 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000665
666 // Handle the sign bits.
667 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000668 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000669
670 // If the input sign bit is known to be zero, or if none of the top bits
671 // are demanded, turn this into an unsigned shift right.
672 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
673 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
674 Op.getOperand(1)));
675 } else if (KnownOne & SignBit) { // New bits are known one.
676 KnownOne |= HighBits;
677 }
678 }
679 break;
680 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000681 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
682
Chris Lattnerec665152006-02-26 23:36:02 +0000683 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000684 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000685 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000686
Chris Lattnerec665152006-02-26 23:36:02 +0000687 // If none of the extended bits are demanded, eliminate the sextinreg.
688 if (NewBits == 0)
689 return TLO.CombineTo(Op, Op.getOperand(0));
690
Nate Begeman368e18d2006-02-16 21:11:51 +0000691 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
692 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
693
Chris Lattnerec665152006-02-26 23:36:02 +0000694 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000695 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000696 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000697
698 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
699 KnownZero, KnownOne, TLO, Depth+1))
700 return true;
701 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
702
703 // If the sign bit of the input is known set or clear, then we know the
704 // top bits of the result.
705
Chris Lattnerec665152006-02-26 23:36:02 +0000706 // If the input sign bit is known zero, convert this into a zero extension.
707 if (KnownZero & InSignBit)
708 return TLO.CombineTo(Op,
709 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
710
711 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000712 KnownOne |= NewBits;
713 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000714 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000715 KnownZero &= ~NewBits;
716 KnownOne &= ~NewBits;
717 }
718 break;
719 }
Chris Lattnerec665152006-02-26 23:36:02 +0000720 case ISD::CTTZ:
721 case ISD::CTLZ:
722 case ISD::CTPOP: {
723 MVT::ValueType VT = Op.getValueType();
724 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
725 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
726 KnownOne = 0;
727 break;
728 }
Evan Cheng466685d2006-10-09 20:57:25 +0000729 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000730 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000731 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +0000732 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +0000733 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
734 }
Chris Lattnerec665152006-02-26 23:36:02 +0000735 break;
736 }
737 case ISD::ZERO_EXTEND: {
738 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
739
740 // If none of the top bits are demanded, convert this into an any_extend.
741 uint64_t NewBits = (~InMask) & DemandedMask;
742 if (NewBits == 0)
743 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
744 Op.getValueType(),
745 Op.getOperand(0)));
746
747 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
748 KnownZero, KnownOne, TLO, Depth+1))
749 return true;
750 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
751 KnownZero |= NewBits;
752 break;
753 }
754 case ISD::SIGN_EXTEND: {
755 MVT::ValueType InVT = Op.getOperand(0).getValueType();
756 uint64_t InMask = MVT::getIntVTBitMask(InVT);
757 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
758 uint64_t NewBits = (~InMask) & DemandedMask;
759
760 // If none of the top bits are demanded, convert this into an any_extend.
761 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000762 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000763 Op.getOperand(0)));
764
765 // Since some of the sign extended bits are demanded, we know that the sign
766 // bit is demanded.
767 uint64_t InDemandedBits = DemandedMask & InMask;
768 InDemandedBits |= InSignBit;
769
770 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
771 KnownOne, TLO, Depth+1))
772 return true;
773
774 // If the sign bit is known zero, convert this to a zero extend.
775 if (KnownZero & InSignBit)
776 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
777 Op.getValueType(),
778 Op.getOperand(0)));
779
780 // If the sign bit is known one, the top bits match.
781 if (KnownOne & InSignBit) {
782 KnownOne |= NewBits;
783 KnownZero &= ~NewBits;
784 } else { // Otherwise, top bits aren't known.
785 KnownOne &= ~NewBits;
786 KnownZero &= ~NewBits;
787 }
788 break;
789 }
790 case ISD::ANY_EXTEND: {
791 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
792 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
793 KnownZero, KnownOne, TLO, Depth+1))
794 return true;
795 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
796 break;
797 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000798 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000799 // Simplify the input, using demanded bit information, and compute the known
800 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000801 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
802 KnownZero, KnownOne, TLO, Depth+1))
803 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000804
805 // If the input is only used by this truncate, see if we can shrink it based
806 // on the known demanded bits.
807 if (Op.getOperand(0).Val->hasOneUse()) {
808 SDOperand In = Op.getOperand(0);
809 switch (In.getOpcode()) {
810 default: break;
811 case ISD::SRL:
812 // Shrink SRL by a constant if none of the high bits shifted in are
813 // demanded.
814 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
815 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
816 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
817 HighBits >>= ShAmt->getValue();
818
819 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
820 (DemandedMask & HighBits) == 0) {
821 // None of the shifted in bits are needed. Add a truncate of the
822 // shift input, then shift it.
823 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
824 Op.getValueType(),
825 In.getOperand(0));
826 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
827 NewTrunc, In.getOperand(1)));
828 }
829 }
830 break;
831 }
832 }
833
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000834 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
835 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
836 KnownZero &= OutMask;
837 KnownOne &= OutMask;
838 break;
839 }
Chris Lattnerec665152006-02-26 23:36:02 +0000840 case ISD::AssertZext: {
841 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
842 uint64_t InMask = MVT::getIntVTBitMask(VT);
843 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
844 KnownZero, KnownOne, TLO, Depth+1))
845 return true;
846 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
847 KnownZero |= ~InMask & DemandedMask;
848 break;
849 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000850 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000851 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000852 case ISD::INTRINSIC_WO_CHAIN:
853 case ISD::INTRINSIC_W_CHAIN:
854 case ISD::INTRINSIC_VOID:
855 // Just use ComputeMaskedBits to compute output bits.
Dan Gohmanea859be2007-06-22 14:59:07 +0000856 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000857 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000858 }
Chris Lattnerec665152006-02-26 23:36:02 +0000859
860 // If we know the value of all of the demanded bits, return this as a
861 // constant.
862 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
863 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
864
Nate Begeman368e18d2006-02-16 21:11:51 +0000865 return false;
866}
867
Nate Begeman368e18d2006-02-16 21:11:51 +0000868/// computeMaskedBitsForTargetNode - Determine which of the bits specified
869/// in Mask are known to be either zero or one and return them in the
870/// KnownZero/KnownOne bitsets.
871void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
872 uint64_t Mask,
873 uint64_t &KnownZero,
874 uint64_t &KnownOne,
Dan Gohmanea859be2007-06-22 14:59:07 +0000875 const SelectionDAG &DAG,
Nate Begeman368e18d2006-02-16 21:11:51 +0000876 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +0000877 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
878 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
879 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
880 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000881 "Should use MaskedValueIsZero if you don't know whether Op"
882 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +0000883 KnownZero = 0;
884 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000885}
Chris Lattner4ccb0702006-01-26 20:37:03 +0000886
Chris Lattner5c3e21d2006-05-06 09:27:13 +0000887/// ComputeNumSignBitsForTargetNode - This method can be implemented by
888/// targets that want to expose additional information about sign bits to the
889/// DAG Combiner.
890unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
891 unsigned Depth) const {
892 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
893 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
894 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
895 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
896 "Should use ComputeNumSignBits if you don't know whether Op"
897 " is a target node!");
898 return 1;
899}
900
901
Evan Chengfa1eb272007-02-08 22:13:59 +0000902/// SimplifySetCC - Try to simplify a setcc built with the specified operands
903/// and cc. If it is unable to simplify it, return a null SDOperand.
904SDOperand
905TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
906 ISD::CondCode Cond, bool foldBooleans,
907 DAGCombinerInfo &DCI) const {
908 SelectionDAG &DAG = DCI.DAG;
909
910 // These setcc operations always fold.
911 switch (Cond) {
912 default: break;
913 case ISD::SETFALSE:
914 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
915 case ISD::SETTRUE:
916 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
917 }
918
919 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
920 uint64_t C1 = N1C->getValue();
921 if (isa<ConstantSDNode>(N0.Val)) {
922 return DAG.FoldSetCC(VT, N0, N1, Cond);
923 } else {
924 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
925 // equality comparison, then we're just comparing whether X itself is
926 // zero.
927 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
928 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
929 N0.getOperand(1).getOpcode() == ISD::Constant) {
930 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
931 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
932 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
933 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
934 // (srl (ctlz x), 5) == 0 -> X != 0
935 // (srl (ctlz x), 5) != 1 -> X != 0
936 Cond = ISD::SETNE;
937 } else {
938 // (srl (ctlz x), 5) != 0 -> X == 0
939 // (srl (ctlz x), 5) == 1 -> X == 0
940 Cond = ISD::SETEQ;
941 }
942 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
943 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
944 Zero, Cond);
945 }
946 }
947
948 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
949 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
950 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
951
952 // If the comparison constant has bits in the upper part, the
953 // zero-extended value could never match.
954 if (C1 & (~0ULL << InSize)) {
955 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
956 switch (Cond) {
957 case ISD::SETUGT:
958 case ISD::SETUGE:
959 case ISD::SETEQ: return DAG.getConstant(0, VT);
960 case ISD::SETULT:
961 case ISD::SETULE:
962 case ISD::SETNE: return DAG.getConstant(1, VT);
963 case ISD::SETGT:
964 case ISD::SETGE:
965 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000966 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000967 case ISD::SETLT:
968 case ISD::SETLE:
969 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +0000970 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +0000971 default:
972 break;
973 }
974 }
975
976 // Otherwise, we can perform the comparison with the low bits.
977 switch (Cond) {
978 case ISD::SETEQ:
979 case ISD::SETNE:
980 case ISD::SETUGT:
981 case ISD::SETUGE:
982 case ISD::SETULT:
983 case ISD::SETULE:
984 return DAG.getSetCC(VT, N0.getOperand(0),
985 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
986 Cond);
987 default:
988 break; // todo, be more careful with signed comparisons
989 }
990 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
991 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
992 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
993 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
994 MVT::ValueType ExtDstTy = N0.getValueType();
995 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
996
997 // If the extended part has any inconsistent bits, it cannot ever
998 // compare equal. In other words, they have to be all ones or all
999 // zeros.
1000 uint64_t ExtBits =
1001 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1002 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1003 return DAG.getConstant(Cond == ISD::SETNE, VT);
1004
1005 SDOperand ZextOp;
1006 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1007 if (Op0Ty == ExtSrcTy) {
1008 ZextOp = N0.getOperand(0);
1009 } else {
1010 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1011 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1012 DAG.getConstant(Imm, Op0Ty));
1013 }
1014 if (!DCI.isCalledByLegalizer())
1015 DCI.AddToWorklist(ZextOp.Val);
1016 // Otherwise, make this a use of a zext.
1017 return DAG.getSetCC(VT, ZextOp,
1018 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1019 ExtDstTy),
1020 Cond);
1021 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1022 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1023
1024 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1025 if (N0.getOpcode() == ISD::SETCC) {
1026 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1027 if (TrueWhenTrue)
1028 return N0;
1029
1030 // Invert the condition.
1031 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1032 CC = ISD::getSetCCInverse(CC,
1033 MVT::isInteger(N0.getOperand(0).getValueType()));
1034 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1035 }
1036
1037 if ((N0.getOpcode() == ISD::XOR ||
1038 (N0.getOpcode() == ISD::AND &&
1039 N0.getOperand(0).getOpcode() == ISD::XOR &&
1040 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1041 isa<ConstantSDNode>(N0.getOperand(1)) &&
1042 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1043 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1044 // can only do this if the top bits are known zero.
Dan Gohmanea859be2007-06-22 14:59:07 +00001045 if (DAG.MaskedValueIsZero(N0,
1046 MVT::getIntVTBitMask(N0.getValueType())-1)){
Evan Chengfa1eb272007-02-08 22:13:59 +00001047 // Okay, get the un-inverted input value.
1048 SDOperand Val;
1049 if (N0.getOpcode() == ISD::XOR)
1050 Val = N0.getOperand(0);
1051 else {
1052 assert(N0.getOpcode() == ISD::AND &&
1053 N0.getOperand(0).getOpcode() == ISD::XOR);
1054 // ((X^1)&1)^1 -> X & 1
1055 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1056 N0.getOperand(0).getOperand(0),
1057 N0.getOperand(1));
1058 }
1059 return DAG.getSetCC(VT, Val, N1,
1060 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1061 }
1062 }
1063 }
1064
1065 uint64_t MinVal, MaxVal;
1066 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1067 if (ISD::isSignedIntSetCC(Cond)) {
1068 MinVal = 1ULL << (OperandBitSize-1);
1069 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1070 MaxVal = ~0ULL >> (65-OperandBitSize);
1071 else
1072 MaxVal = 0;
1073 } else {
1074 MinVal = 0;
1075 MaxVal = ~0ULL >> (64-OperandBitSize);
1076 }
1077
1078 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1079 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1080 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1081 --C1; // X >= C0 --> X > (C0-1)
1082 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1083 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1084 }
1085
1086 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1087 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1088 ++C1; // X <= C0 --> X < (C0+1)
1089 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1090 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1091 }
1092
1093 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1094 return DAG.getConstant(0, VT); // X < MIN --> false
1095 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1096 return DAG.getConstant(1, VT); // X >= MIN --> true
1097 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1098 return DAG.getConstant(0, VT); // X > MAX --> false
1099 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1100 return DAG.getConstant(1, VT); // X <= MAX --> true
1101
1102 // Canonicalize setgt X, Min --> setne X, Min
1103 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1104 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1105 // Canonicalize setlt X, Max --> setne X, Max
1106 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1107 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1108
1109 // If we have setult X, 1, turn it into seteq X, 0
1110 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1111 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1112 ISD::SETEQ);
1113 // If we have setugt X, Max-1, turn it into seteq X, Max
1114 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1115 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1116 ISD::SETEQ);
1117
1118 // If we have "setcc X, C0", check to see if we can shrink the immediate
1119 // by changing cc.
1120
1121 // SETUGT X, SINTMAX -> SETLT X, 0
1122 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1123 C1 == (~0ULL >> (65-OperandBitSize)))
1124 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1125 ISD::SETLT);
1126
1127 // FIXME: Implement the rest of these.
1128
1129 // Fold bit comparisons when we can.
1130 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1131 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1132 if (ConstantSDNode *AndRHS =
1133 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1134 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1135 // Perform the xform if the AND RHS is a single bit.
1136 if (isPowerOf2_64(AndRHS->getValue())) {
1137 return DAG.getNode(ISD::SRL, VT, N0,
1138 DAG.getConstant(Log2_64(AndRHS->getValue()),
1139 getShiftAmountTy()));
1140 }
1141 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1142 // (X & 8) == 8 --> (X & 8) >> 3
1143 // Perform the xform if C1 is a single bit.
1144 if (isPowerOf2_64(C1)) {
1145 return DAG.getNode(ISD::SRL, VT, N0,
1146 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1147 }
1148 }
1149 }
1150 }
1151 } else if (isa<ConstantSDNode>(N0.Val)) {
1152 // Ensure that the constant occurs on the RHS.
1153 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1154 }
1155
1156 if (isa<ConstantFPSDNode>(N0.Val)) {
1157 // Constant fold or commute setcc.
1158 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1159 if (O.Val) return O;
1160 }
1161
1162 if (N0 == N1) {
1163 // We can always fold X == X for integer setcc's.
1164 if (MVT::isInteger(N0.getValueType()))
1165 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1166 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1167 if (UOF == 2) // FP operators that are undefined on NaNs.
1168 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1169 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1170 return DAG.getConstant(UOF, VT);
1171 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1172 // if it is not already.
1173 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1174 if (NewCond != Cond)
1175 return DAG.getSetCC(VT, N0, N1, NewCond);
1176 }
1177
1178 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1179 MVT::isInteger(N0.getValueType())) {
1180 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1181 N0.getOpcode() == ISD::XOR) {
1182 // Simplify (X+Y) == (X+Z) --> Y == Z
1183 if (N0.getOpcode() == N1.getOpcode()) {
1184 if (N0.getOperand(0) == N1.getOperand(0))
1185 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1186 if (N0.getOperand(1) == N1.getOperand(1))
1187 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1188 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1189 // If X op Y == Y op X, try other combinations.
1190 if (N0.getOperand(0) == N1.getOperand(1))
1191 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1192 if (N0.getOperand(1) == N1.getOperand(0))
1193 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1194 }
1195 }
1196
1197 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1198 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1199 // Turn (X+C1) == C2 --> X == C2-C1
1200 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1201 return DAG.getSetCC(VT, N0.getOperand(0),
1202 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1203 N0.getValueType()), Cond);
1204 }
1205
1206 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1207 if (N0.getOpcode() == ISD::XOR)
1208 // If we know that all of the inverted bits are zero, don't bother
1209 // performing the inversion.
Dan Gohmanea859be2007-06-22 14:59:07 +00001210 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
Evan Chengfa1eb272007-02-08 22:13:59 +00001211 return DAG.getSetCC(VT, N0.getOperand(0),
1212 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1213 N0.getValueType()), Cond);
1214 }
1215
1216 // Turn (C1-X) == C2 --> X == C1-C2
1217 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1218 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1219 return DAG.getSetCC(VT, N0.getOperand(1),
1220 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1221 N0.getValueType()), Cond);
1222 }
1223 }
1224 }
1225
1226 // Simplify (X+Z) == X --> Z == 0
1227 if (N0.getOperand(0) == N1)
1228 return DAG.getSetCC(VT, N0.getOperand(1),
1229 DAG.getConstant(0, N0.getValueType()), Cond);
1230 if (N0.getOperand(1) == N1) {
1231 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1232 return DAG.getSetCC(VT, N0.getOperand(0),
1233 DAG.getConstant(0, N0.getValueType()), Cond);
Chris Lattner2ad913b2007-05-19 00:43:44 +00001234 else if (N0.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001235 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1236 // (Z-X) == X --> Z == X<<1
1237 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1238 N1,
1239 DAG.getConstant(1, getShiftAmountTy()));
1240 if (!DCI.isCalledByLegalizer())
1241 DCI.AddToWorklist(SH.Val);
1242 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1243 }
1244 }
1245 }
1246
1247 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1248 N1.getOpcode() == ISD::XOR) {
1249 // Simplify X == (X+Z) --> Z == 0
1250 if (N1.getOperand(0) == N0) {
1251 return DAG.getSetCC(VT, N1.getOperand(1),
1252 DAG.getConstant(0, N1.getValueType()), Cond);
1253 } else if (N1.getOperand(1) == N0) {
1254 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1255 return DAG.getSetCC(VT, N1.getOperand(0),
1256 DAG.getConstant(0, N1.getValueType()), Cond);
Chris Lattner7667c0b2007-05-19 00:46:51 +00001257 } else if (N1.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001258 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1259 // X == (Z-X) --> X<<1 == Z
1260 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1261 DAG.getConstant(1, getShiftAmountTy()));
1262 if (!DCI.isCalledByLegalizer())
1263 DCI.AddToWorklist(SH.Val);
1264 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1265 }
1266 }
1267 }
1268 }
1269
1270 // Fold away ALL boolean setcc's.
1271 SDOperand Temp;
1272 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1273 switch (Cond) {
1274 default: assert(0 && "Unknown integer setcc!");
1275 case ISD::SETEQ: // X == Y -> (X^Y)^1
1276 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1277 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1278 if (!DCI.isCalledByLegalizer())
1279 DCI.AddToWorklist(Temp.Val);
1280 break;
1281 case ISD::SETNE: // X != Y --> (X^Y)
1282 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1283 break;
1284 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1285 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1286 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1287 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1288 if (!DCI.isCalledByLegalizer())
1289 DCI.AddToWorklist(Temp.Val);
1290 break;
1291 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1292 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1293 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1294 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1295 if (!DCI.isCalledByLegalizer())
1296 DCI.AddToWorklist(Temp.Val);
1297 break;
1298 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1299 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1300 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1301 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1302 if (!DCI.isCalledByLegalizer())
1303 DCI.AddToWorklist(Temp.Val);
1304 break;
1305 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1306 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1307 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1308 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1309 break;
1310 }
1311 if (VT != MVT::i1) {
1312 if (!DCI.isCalledByLegalizer())
1313 DCI.AddToWorklist(N0.Val);
1314 // FIXME: If running after legalize, we probably can't do this.
1315 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1316 }
1317 return N0;
1318 }
1319
1320 // Could not fold it.
1321 return SDOperand();
1322}
1323
Chris Lattner00ffed02006-03-01 04:52:55 +00001324SDOperand TargetLowering::
1325PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1326 // Default implementation: no optimization.
1327 return SDOperand();
1328}
1329
Chris Lattnereb8146b2006-02-04 02:13:02 +00001330//===----------------------------------------------------------------------===//
1331// Inline Assembler Implementation Methods
1332//===----------------------------------------------------------------------===//
1333
1334TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001335TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001336 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001337 if (Constraint.size() == 1) {
1338 switch (Constraint[0]) {
1339 default: break;
1340 case 'r': return C_RegisterClass;
1341 case 'm': // memory
1342 case 'o': // offsetable
1343 case 'V': // not offsetable
1344 return C_Memory;
1345 case 'i': // Simple Integer or Relocatable Constant
1346 case 'n': // Simple Integer
1347 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001348 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001349 case 'I': // Target registers.
1350 case 'J':
1351 case 'K':
1352 case 'L':
1353 case 'M':
1354 case 'N':
1355 case 'O':
1356 case 'P':
1357 return C_Other;
1358 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001359 }
Chris Lattner065421f2007-03-25 02:18:14 +00001360
1361 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1362 Constraint[Constraint.size()-1] == '}')
1363 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001364 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001365}
1366
Chris Lattner48884cd2007-08-25 00:47:38 +00001367/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1368/// vector. If it is invalid, don't add anything to Ops.
1369void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1370 char ConstraintLetter,
1371 std::vector<SDOperand> &Ops,
1372 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001373 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001374 default: break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001375 case 'i': // Simple Integer or Relocatable Constant
1376 case 'n': // Simple Integer
1377 case 's': // Relocatable Constant
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001378 case 'X': { // Allows any operand.
1379 // These operands are interested in values of the form (GV+C), where C may
1380 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1381 // is possible and fine if either GV or C are missing.
1382 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1383 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1384
1385 // If we have "(add GV, C)", pull out GV/C
1386 if (Op.getOpcode() == ISD::ADD) {
1387 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1388 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1389 if (C == 0 || GA == 0) {
1390 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1391 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1392 }
1393 if (C == 0 || GA == 0)
1394 C = 0, GA = 0;
1395 }
1396
1397 // If we find a valid operand, map to the TargetXXX version so that the
1398 // value itself doesn't get selected.
1399 if (GA) { // Either &GV or &GV+C
1400 if (ConstraintLetter != 'n') {
1401 int64_t Offs = GA->getOffset();
1402 if (C) Offs += C->getValue();
Chris Lattner48884cd2007-08-25 00:47:38 +00001403 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1404 Op.getValueType(), Offs));
1405 return;
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001406 }
1407 }
1408 if (C) { // just C, no GV.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001409 // Simple constants are not allowed for 's'.
Chris Lattner48884cd2007-08-25 00:47:38 +00001410 if (ConstraintLetter != 's') {
1411 Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1412 return;
1413 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001414 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001415 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001416 }
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001417 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001418}
1419
Chris Lattner4ccb0702006-01-26 20:37:03 +00001420std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001421getRegClassForInlineAsmConstraint(const std::string &Constraint,
1422 MVT::ValueType VT) const {
1423 return std::vector<unsigned>();
1424}
1425
1426
1427std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001428getRegForInlineAsmConstraint(const std::string &Constraint,
1429 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001430 if (Constraint[0] != '{')
1431 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001432 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1433
1434 // Remove the braces from around the name.
1435 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001436
1437 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001438 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001439 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1440 E = RI->regclass_end(); RCI != E; ++RCI) {
1441 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001442
1443 // If none of the the value types for this register class are valid, we
1444 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1445 bool isLegal = false;
1446 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1447 I != E; ++I) {
1448 if (isTypeLegal(*I)) {
1449 isLegal = true;
1450 break;
1451 }
1452 }
1453
1454 if (!isLegal) continue;
1455
Chris Lattner1efa40f2006-02-22 00:56:39 +00001456 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1457 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001458 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001459 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001460 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001461 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001462
Chris Lattner1efa40f2006-02-22 00:56:39 +00001463 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001464}
Evan Cheng30b37b52006-03-13 23:18:16 +00001465
1466//===----------------------------------------------------------------------===//
1467// Loop Strength Reduction hooks
1468//===----------------------------------------------------------------------===//
1469
Chris Lattner1436bb62007-03-30 23:14:50 +00001470/// isLegalAddressingMode - Return true if the addressing mode represented
1471/// by AM is legal for this target, for a load/store of the specified type.
1472bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1473 const Type *Ty) const {
1474 // The default implementation of this implements a conservative RISCy, r+r and
1475 // r+i addr mode.
1476
1477 // Allows a sign-extended 16-bit immediate field.
1478 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1479 return false;
1480
1481 // No global is ever allowed as a base.
1482 if (AM.BaseGV)
1483 return false;
1484
1485 // Only support r+r,
1486 switch (AM.Scale) {
1487 case 0: // "r+i" or just "i", depending on HasBaseReg.
1488 break;
1489 case 1:
1490 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1491 return false;
1492 // Otherwise we have r+r or r+i.
1493 break;
1494 case 2:
1495 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1496 return false;
1497 // Allow 2*r as r+r.
1498 break;
1499 }
1500
1501 return true;
1502}
1503
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001504// Magic for divide replacement
1505
1506struct ms {
1507 int64_t m; // magic number
1508 int64_t s; // shift amount
1509};
1510
1511struct mu {
1512 uint64_t m; // magic number
1513 int64_t a; // add indicator
1514 int64_t s; // shift amount
1515};
1516
1517/// magic - calculate the magic numbers required to codegen an integer sdiv as
1518/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1519/// or -1.
1520static ms magic32(int32_t d) {
1521 int32_t p;
1522 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1523 const uint32_t two31 = 0x80000000U;
1524 struct ms mag;
1525
1526 ad = abs(d);
1527 t = two31 + ((uint32_t)d >> 31);
1528 anc = t - 1 - t%ad; // absolute value of nc
1529 p = 31; // initialize p
1530 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1531 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1532 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1533 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1534 do {
1535 p = p + 1;
1536 q1 = 2*q1; // update q1 = 2p/abs(nc)
1537 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1538 if (r1 >= anc) { // must be unsigned comparison
1539 q1 = q1 + 1;
1540 r1 = r1 - anc;
1541 }
1542 q2 = 2*q2; // update q2 = 2p/abs(d)
1543 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1544 if (r2 >= ad) { // must be unsigned comparison
1545 q2 = q2 + 1;
1546 r2 = r2 - ad;
1547 }
1548 delta = ad - r2;
1549 } while (q1 < delta || (q1 == delta && r1 == 0));
1550
1551 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1552 if (d < 0) mag.m = -mag.m; // resulting magic number
1553 mag.s = p - 32; // resulting shift
1554 return mag;
1555}
1556
1557/// magicu - calculate the magic numbers required to codegen an integer udiv as
1558/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1559static mu magicu32(uint32_t d) {
1560 int32_t p;
1561 uint32_t nc, delta, q1, r1, q2, r2;
1562 struct mu magu;
1563 magu.a = 0; // initialize "add" indicator
1564 nc = - 1 - (-d)%d;
1565 p = 31; // initialize p
1566 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1567 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1568 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1569 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1570 do {
1571 p = p + 1;
1572 if (r1 >= nc - r1 ) {
1573 q1 = 2*q1 + 1; // update q1
1574 r1 = 2*r1 - nc; // update r1
1575 }
1576 else {
1577 q1 = 2*q1; // update q1
1578 r1 = 2*r1; // update r1
1579 }
1580 if (r2 + 1 >= d - r2) {
1581 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1582 q2 = 2*q2 + 1; // update q2
1583 r2 = 2*r2 + 1 - d; // update r2
1584 }
1585 else {
1586 if (q2 >= 0x80000000) magu.a = 1;
1587 q2 = 2*q2; // update q2
1588 r2 = 2*r2 + 1; // update r2
1589 }
1590 delta = d - 1 - r2;
1591 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1592 magu.m = q2 + 1; // resulting magic number
1593 magu.s = p - 32; // resulting shift
1594 return magu;
1595}
1596
1597/// magic - calculate the magic numbers required to codegen an integer sdiv as
1598/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1599/// or -1.
1600static ms magic64(int64_t d) {
1601 int64_t p;
1602 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1603 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1604 struct ms mag;
1605
1606 ad = d >= 0 ? d : -d;
1607 t = two63 + ((uint64_t)d >> 63);
1608 anc = t - 1 - t%ad; // absolute value of nc
1609 p = 63; // initialize p
1610 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1611 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1612 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1613 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1614 do {
1615 p = p + 1;
1616 q1 = 2*q1; // update q1 = 2p/abs(nc)
1617 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1618 if (r1 >= anc) { // must be unsigned comparison
1619 q1 = q1 + 1;
1620 r1 = r1 - anc;
1621 }
1622 q2 = 2*q2; // update q2 = 2p/abs(d)
1623 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1624 if (r2 >= ad) { // must be unsigned comparison
1625 q2 = q2 + 1;
1626 r2 = r2 - ad;
1627 }
1628 delta = ad - r2;
1629 } while (q1 < delta || (q1 == delta && r1 == 0));
1630
1631 mag.m = q2 + 1;
1632 if (d < 0) mag.m = -mag.m; // resulting magic number
1633 mag.s = p - 64; // resulting shift
1634 return mag;
1635}
1636
1637/// magicu - calculate the magic numbers required to codegen an integer udiv as
1638/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1639static mu magicu64(uint64_t d)
1640{
1641 int64_t p;
1642 uint64_t nc, delta, q1, r1, q2, r2;
1643 struct mu magu;
1644 magu.a = 0; // initialize "add" indicator
1645 nc = - 1 - (-d)%d;
1646 p = 63; // initialize p
1647 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1648 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1649 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1650 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1651 do {
1652 p = p + 1;
1653 if (r1 >= nc - r1 ) {
1654 q1 = 2*q1 + 1; // update q1
1655 r1 = 2*r1 - nc; // update r1
1656 }
1657 else {
1658 q1 = 2*q1; // update q1
1659 r1 = 2*r1; // update r1
1660 }
1661 if (r2 + 1 >= d - r2) {
1662 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1663 q2 = 2*q2 + 1; // update q2
1664 r2 = 2*r2 + 1 - d; // update r2
1665 }
1666 else {
1667 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1668 q2 = 2*q2; // update q2
1669 r2 = 2*r2 + 1; // update r2
1670 }
1671 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001672 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001673 magu.m = q2 + 1; // resulting magic number
1674 magu.s = p - 64; // resulting shift
1675 return magu;
1676}
1677
1678/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1679/// return a DAG expression to select that will generate the same value by
1680/// multiplying by a magic number. See:
1681/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1682SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001683 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001684 MVT::ValueType VT = N->getValueType(0);
1685
1686 // Check to see if we can do this.
1687 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1688 return SDOperand(); // BuildSDIV only operates on i32 or i64
1689 if (!isOperationLegal(ISD::MULHS, VT))
1690 return SDOperand(); // Make sure the target supports MULHS.
1691
1692 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1693 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1694
1695 // Multiply the numerator (operand 0) by the magic value
1696 SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1697 DAG.getConstant(magics.m, VT));
1698 // If d > 0 and m < 0, add the numerator
1699 if (d > 0 && magics.m < 0) {
1700 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1701 if (Created)
1702 Created->push_back(Q.Val);
1703 }
1704 // If d < 0 and m > 0, subtract the numerator.
1705 if (d < 0 && magics.m > 0) {
1706 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1707 if (Created)
1708 Created->push_back(Q.Val);
1709 }
1710 // Shift right algebraic if shift value is nonzero
1711 if (magics.s > 0) {
1712 Q = DAG.getNode(ISD::SRA, VT, Q,
1713 DAG.getConstant(magics.s, getShiftAmountTy()));
1714 if (Created)
1715 Created->push_back(Q.Val);
1716 }
1717 // Extract the sign bit and add it to the quotient
1718 SDOperand T =
1719 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1720 getShiftAmountTy()));
1721 if (Created)
1722 Created->push_back(T.Val);
1723 return DAG.getNode(ISD::ADD, VT, Q, T);
1724}
1725
1726/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1727/// return a DAG expression to select that will generate the same value by
1728/// multiplying by a magic number. See:
1729/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1730SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001731 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001732 MVT::ValueType VT = N->getValueType(0);
1733
1734 // Check to see if we can do this.
1735 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1736 return SDOperand(); // BuildUDIV only operates on i32 or i64
1737 if (!isOperationLegal(ISD::MULHU, VT))
1738 return SDOperand(); // Make sure the target supports MULHU.
1739
1740 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1741 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1742
1743 // Multiply the numerator (operand 0) by the magic value
1744 SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1745 DAG.getConstant(magics.m, VT));
1746 if (Created)
1747 Created->push_back(Q.Val);
1748
1749 if (magics.a == 0) {
1750 return DAG.getNode(ISD::SRL, VT, Q,
1751 DAG.getConstant(magics.s, getShiftAmountTy()));
1752 } else {
1753 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1754 if (Created)
1755 Created->push_back(NPQ.Val);
1756 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1757 DAG.getConstant(1, getShiftAmountTy()));
1758 if (Created)
1759 Created->push_back(NPQ.Val);
1760 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1761 if (Created)
1762 Created->push_back(NPQ.Val);
1763 return DAG.getNode(ISD::SRL, VT, NPQ,
1764 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1765 }
1766}