blob: d641e8a708b54988cdbfb94a5432516c169b7aba [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000124
Chris Lattner53e677a2004-04-02 20:23:17 +0000125void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000126 print(dbgs());
127 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000128}
129
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000130bool SCEV::isZero() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isZero();
133 return false;
134}
135
Dan Gohman70a1fe72009-05-18 15:22:39 +0000136bool SCEV::isOne() const {
137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138 return SC->getValue()->isOne();
139 return false;
140}
Chris Lattner53e677a2004-04-02 20:23:17 +0000141
Dan Gohman4d289bf2009-06-24 00:30:26 +0000142bool SCEV::isAllOnesValue() const {
143 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
144 return SC->getValue()->isAllOnesValue();
145 return false;
146}
147
Owen Anderson753ad612009-06-22 21:57:23 +0000148SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000149 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000150
Chris Lattner53e677a2004-04-02 20:23:17 +0000151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000156bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000159}
160
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000161void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000162 OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166 return S->getSCEVType() == scCouldNotCompute;
167}
168
Dan Gohman0bba49c2009-07-07 17:06:11 +0000169const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000170 FoldingSetNodeID ID;
171 ID.AddInteger(scConstant);
172 ID.AddPointer(V);
173 void *IP = 0;
174 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000175 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000176 UniqueSCEVs.InsertNode(S, IP);
177 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000178}
Chris Lattner53e677a2004-04-02 20:23:17 +0000179
Dan Gohman0bba49c2009-07-07 17:06:11 +0000180const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000181 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000182}
183
Dan Gohman0bba49c2009-07-07 17:06:11 +0000184const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000185ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000186 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
187 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000188}
189
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000190const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000191
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000192void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000193 WriteAsOperand(OS, V, false);
194}
Chris Lattner53e677a2004-04-02 20:23:17 +0000195
Dan Gohman3bf63762010-06-18 19:54:20 +0000196SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000197 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000198 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000199
Dan Gohman84923602009-04-21 01:25:57 +0000200bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
201 return Op->dominates(BB, DT);
202}
203
Dan Gohman6e70e312009-09-27 15:26:03 +0000204bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
205 return Op->properlyDominates(BB, DT);
206}
207
Dan Gohman3bf63762010-06-18 19:54:20 +0000208SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000209 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000210 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000211 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
212 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000213 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000214}
Chris Lattner53e677a2004-04-02 20:23:17 +0000215
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000216void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000217 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218}
219
Dan Gohman3bf63762010-06-18 19:54:20 +0000220SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000221 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000222 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000223 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
224 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000225 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000226}
227
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000228void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000229 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230}
231
Dan Gohman3bf63762010-06-18 19:54:20 +0000232SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000233 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000234 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000235 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
236 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000237 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000238}
239
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000240void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000241 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000242}
243
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000244void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000245 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000246 OS << "(";
247 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
248 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000249 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000250 OS << OpStr;
251 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000252 OS << ")";
253}
254
Dan Gohmanecb403a2009-05-07 14:00:19 +0000255bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000256 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
257 if (!(*I)->dominates(BB, DT))
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000258 return false;
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000259 return true;
260}
261
Dan Gohman6e70e312009-09-27 15:26:03 +0000262bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
Dan Gohmanbb854092010-08-16 16:16:11 +0000263 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
264 if (!(*I)->properlyDominates(BB, DT))
Dan Gohman6e70e312009-09-27 15:26:03 +0000265 return false;
Dan Gohman6e70e312009-09-27 15:26:03 +0000266 return true;
267}
268
Dan Gohman2f199f92010-08-16 16:21:27 +0000269bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
270 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
271 const SCEV *S = *I;
272 if (O == S || S->hasOperand(O))
273 return true;
274 }
275 return false;
276}
277
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000278bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
279 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
280}
281
Dan Gohman6e70e312009-09-27 15:26:03 +0000282bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
283 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
284}
285
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000286void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000287 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000288}
289
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000290const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000291 // In most cases the types of LHS and RHS will be the same, but in some
292 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
293 // depend on the type for correctness, but handling types carefully can
294 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
295 // a pointer type than the RHS, so use the RHS' type here.
296 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297}
298
Dan Gohman39125d82010-02-13 00:19:39 +0000299bool
300SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
301 return DT->dominates(L->getHeader(), BB) &&
302 SCEVNAryExpr::dominates(BB, DT);
303}
304
305bool
306SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
307 // This uses a "dominates" query instead of "properly dominates" query because
308 // the instruction which produces the addrec's value is a PHI, and a PHI
309 // effectively properly dominates its entire containing block.
310 return DT->dominates(L->getHeader(), BB) &&
311 SCEVNAryExpr::properlyDominates(BB, DT);
312}
313
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000314void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000315 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000316 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000317 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000318 OS << "}<";
319 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
320 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000321}
Chris Lattner53e677a2004-04-02 20:23:17 +0000322
Dan Gohmanab37f502010-08-02 23:49:30 +0000323void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000324 // Clear this SCEVUnknown from various maps.
Dan Gohmanab37f502010-08-02 23:49:30 +0000325 SE->ValuesAtScopes.erase(this);
Dan Gohman6678e7b2010-11-17 02:44:44 +0000326 SE->UnsignedRanges.erase(this);
327 SE->SignedRanges.erase(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000328
329 // Remove this SCEVUnknown from the uniquing map.
330 SE->UniqueSCEVs.RemoveNode(this);
331
332 // Release the value.
333 setValPtr(0);
334}
335
336void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000337 // Clear this SCEVUnknown from various maps.
Dan Gohmanab37f502010-08-02 23:49:30 +0000338 SE->ValuesAtScopes.erase(this);
Dan Gohman6678e7b2010-11-17 02:44:44 +0000339 SE->UnsignedRanges.erase(this);
340 SE->SignedRanges.erase(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000341
342 // Remove this SCEVUnknown from the uniquing map.
343 SE->UniqueSCEVs.RemoveNode(this);
344
345 // Update this SCEVUnknown to point to the new value. This is needed
346 // because there may still be outstanding SCEVs which still point to
347 // this SCEVUnknown.
348 setValPtr(New);
349}
350
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000351bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
352 if (Instruction *I = dyn_cast<Instruction>(getValue()))
353 return DT->dominates(I->getParent(), BB);
354 return true;
355}
356
Dan Gohman6e70e312009-09-27 15:26:03 +0000357bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
358 if (Instruction *I = dyn_cast<Instruction>(getValue()))
359 return DT->properlyDominates(I->getParent(), BB);
360 return true;
361}
362
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000363const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000364 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000365}
Chris Lattner53e677a2004-04-02 20:23:17 +0000366
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000368 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000369 if (VCE->getOpcode() == Instruction::PtrToInt)
370 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000371 if (CE->getOpcode() == Instruction::GetElementPtr &&
372 CE->getOperand(0)->isNullValue() &&
373 CE->getNumOperands() == 2)
374 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
375 if (CI->isOne()) {
376 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
377 ->getElementType();
378 return true;
379 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000380
381 return false;
382}
383
384bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000386 if (VCE->getOpcode() == Instruction::PtrToInt)
387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000388 if (CE->getOpcode() == Instruction::GetElementPtr &&
389 CE->getOperand(0)->isNullValue()) {
390 const Type *Ty =
391 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
392 if (const StructType *STy = dyn_cast<StructType>(Ty))
393 if (!STy->isPacked() &&
394 CE->getNumOperands() == 3 &&
395 CE->getOperand(1)->isNullValue()) {
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
397 if (CI->isOne() &&
398 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000399 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000400 AllocTy = STy->getElementType(1);
401 return true;
402 }
403 }
404 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000405
406 return false;
407}
408
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000410 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000411 if (VCE->getOpcode() == Instruction::PtrToInt)
412 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
413 if (CE->getOpcode() == Instruction::GetElementPtr &&
414 CE->getNumOperands() == 3 &&
415 CE->getOperand(0)->isNullValue() &&
416 CE->getOperand(1)->isNullValue()) {
417 const Type *Ty =
418 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
419 // Ignore vector types here so that ScalarEvolutionExpander doesn't
420 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000421 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000422 CTy = Ty;
423 FieldNo = CE->getOperand(2);
424 return true;
425 }
426 }
427
428 return false;
429}
430
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000431void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000432 const Type *AllocTy;
433 if (isSizeOf(AllocTy)) {
434 OS << "sizeof(" << *AllocTy << ")";
435 return;
436 }
437 if (isAlignOf(AllocTy)) {
438 OS << "alignof(" << *AllocTy << ")";
439 return;
440 }
441
Dan Gohman4f8eea82010-02-01 18:27:38 +0000442 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000443 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000444 if (isOffsetOf(CTy, FieldNo)) {
445 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000446 WriteAsOperand(OS, FieldNo, false);
447 OS << ")";
448 return;
449 }
450
451 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000452 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000453}
454
Chris Lattner8d741b82004-06-20 06:23:15 +0000455//===----------------------------------------------------------------------===//
456// SCEV Utilities
457//===----------------------------------------------------------------------===//
458
459namespace {
460 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
461 /// than the complexity of the RHS. This comparator is used to canonicalize
462 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000463 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000464 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000465 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000466 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000467
Dan Gohman67ef74e2010-08-27 15:26:01 +0000468 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000469 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000470 return compare(LHS, RHS) < 0;
471 }
472
473 // Return negative, zero, or positive, if LHS is less than, equal to, or
474 // greater than RHS, respectively. A three-way result allows recursive
475 // comparisons to be more efficient.
476 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000477 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
478 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000479 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000480
Dan Gohman72861302009-05-07 14:39:04 +0000481 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000482 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
483 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000484 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000485
Dan Gohman3bf63762010-06-18 19:54:20 +0000486 // Aside from the getSCEVType() ordering, the particular ordering
487 // isn't very important except that it's beneficial to be consistent,
488 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000489 switch (LType) {
490 case scUnknown: {
491 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000492 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493
494 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
495 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000496 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000497
498 // Order pointer values after integer values. This helps SCEVExpander
499 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000500 bool LIsPointer = LV->getType()->isPointerTy(),
501 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000502 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000503 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000504
505 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000506 unsigned LID = LV->getValueID(),
507 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000508 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000509 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000510
511 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000512 if (const Argument *LA = dyn_cast<Argument>(LV)) {
513 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
515 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 // For instructions, compare their loop depth, and their operand
519 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000520 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
521 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000522
523 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000524 const BasicBlock *LParent = LInst->getParent(),
525 *RParent = RInst->getParent();
526 if (LParent != RParent) {
527 unsigned LDepth = LI->getLoopDepth(LParent),
528 RDepth = LI->getLoopDepth(RParent);
529 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000531 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000532
533 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000534 unsigned LNumOps = LInst->getNumOperands(),
535 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000536 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000537 }
538
Dan Gohman67ef74e2010-08-27 15:26:01 +0000539 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000540 }
541
Dan Gohman67ef74e2010-08-27 15:26:01 +0000542 case scConstant: {
543 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000545
546 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000547 const APInt &LA = LC->getValue()->getValue();
548 const APInt &RA = RC->getValue()->getValue();
549 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000550 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000551 return (int)LBitWidth - (int)RBitWidth;
552 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000553 }
554
Dan Gohman67ef74e2010-08-27 15:26:01 +0000555 case scAddRecExpr: {
556 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000557 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000558
559 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000560 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
561 if (LLoop != RLoop) {
562 unsigned LDepth = LLoop->getLoopDepth(),
563 RDepth = RLoop->getLoopDepth();
564 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000566 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000567
568 // Addrec complexity grows with operand count.
569 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
570 if (LNumOps != RNumOps)
571 return (int)LNumOps - (int)RNumOps;
572
573 // Lexicographically compare.
574 for (unsigned i = 0; i != LNumOps; ++i) {
575 long X = compare(LA->getOperand(i), RA->getOperand(i));
576 if (X != 0)
577 return X;
578 }
579
580 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000581 }
582
Dan Gohman67ef74e2010-08-27 15:26:01 +0000583 case scAddExpr:
584 case scMulExpr:
585 case scSMaxExpr:
586 case scUMaxExpr: {
587 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000589
590 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000591 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
592 for (unsigned i = 0; i != LNumOps; ++i) {
593 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000594 return 1;
595 long X = compare(LC->getOperand(i), RC->getOperand(i));
596 if (X != 0)
597 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000598 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000599 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000600 }
601
Dan Gohman67ef74e2010-08-27 15:26:01 +0000602 case scUDivExpr: {
603 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000604 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000605
606 // Lexicographically compare udiv expressions.
607 long X = compare(LC->getLHS(), RC->getLHS());
608 if (X != 0)
609 return X;
610 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000611 }
612
Dan Gohman67ef74e2010-08-27 15:26:01 +0000613 case scTruncate:
614 case scZeroExtend:
615 case scSignExtend: {
616 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000617 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000618
619 // Compare cast expressions by operand.
620 return compare(LC->getOperand(), RC->getOperand());
621 }
622
623 default:
624 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000625 }
626
627 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000628 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000629 }
630 };
631}
632
633/// GroupByComplexity - Given a list of SCEV objects, order them by their
634/// complexity, and group objects of the same complexity together by value.
635/// When this routine is finished, we know that any duplicates in the vector are
636/// consecutive and that complexity is monotonically increasing.
637///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000638/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000639/// results from this routine. In other words, we don't want the results of
640/// this to depend on where the addresses of various SCEV objects happened to
641/// land in memory.
642///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000643static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000644 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000645 if (Ops.size() < 2) return; // Noop
646 if (Ops.size() == 2) {
647 // This is the common case, which also happens to be trivially simple.
648 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000649 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
650 if (SCEVComplexityCompare(LI)(RHS, LHS))
651 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000652 return;
653 }
654
Dan Gohman3bf63762010-06-18 19:54:20 +0000655 // Do the rough sort by complexity.
656 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
657
658 // Now that we are sorted by complexity, group elements of the same
659 // complexity. Note that this is, at worst, N^2, but the vector is likely to
660 // be extremely short in practice. Note that we take this approach because we
661 // do not want to depend on the addresses of the objects we are grouping.
662 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
663 const SCEV *S = Ops[i];
664 unsigned Complexity = S->getSCEVType();
665
666 // If there are any objects of the same complexity and same value as this
667 // one, group them.
668 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
669 if (Ops[j] == S) { // Found a duplicate.
670 // Move it to immediately after i'th element.
671 std::swap(Ops[i+1], Ops[j]);
672 ++i; // no need to rescan it.
673 if (i == e-2) return; // Done!
674 }
675 }
676 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000677}
678
Chris Lattner53e677a2004-04-02 20:23:17 +0000679
Chris Lattner53e677a2004-04-02 20:23:17 +0000680
681//===----------------------------------------------------------------------===//
682// Simple SCEV method implementations
683//===----------------------------------------------------------------------===//
684
Eli Friedmanb42a6262008-08-04 23:49:06 +0000685/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000686/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000687static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000688 ScalarEvolution &SE,
689 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000690 // Handle the simplest case efficiently.
691 if (K == 1)
692 return SE.getTruncateOrZeroExtend(It, ResultTy);
693
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000694 // We are using the following formula for BC(It, K):
695 //
696 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
697 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // Suppose, W is the bitwidth of the return value. We must be prepared for
699 // overflow. Hence, we must assure that the result of our computation is
700 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
701 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000702 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000703 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000704 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000705 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
706 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000707 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000708 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000709 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000710 // This formula is trivially equivalent to the previous formula. However,
711 // this formula can be implemented much more efficiently. The trick is that
712 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
713 // arithmetic. To do exact division in modular arithmetic, all we have
714 // to do is multiply by the inverse. Therefore, this step can be done at
715 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000716 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000717 // The next issue is how to safely do the division by 2^T. The way this
718 // is done is by doing the multiplication step at a width of at least W + T
719 // bits. This way, the bottom W+T bits of the product are accurate. Then,
720 // when we perform the division by 2^T (which is equivalent to a right shift
721 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
722 // truncated out after the division by 2^T.
723 //
724 // In comparison to just directly using the first formula, this technique
725 // is much more efficient; using the first formula requires W * K bits,
726 // but this formula less than W + K bits. Also, the first formula requires
727 // a division step, whereas this formula only requires multiplies and shifts.
728 //
729 // It doesn't matter whether the subtraction step is done in the calculation
730 // width or the input iteration count's width; if the subtraction overflows,
731 // the result must be zero anyway. We prefer here to do it in the width of
732 // the induction variable because it helps a lot for certain cases; CodeGen
733 // isn't smart enough to ignore the overflow, which leads to much less
734 // efficient code if the width of the subtraction is wider than the native
735 // register width.
736 //
737 // (It's possible to not widen at all by pulling out factors of 2 before
738 // the multiplication; for example, K=2 can be calculated as
739 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
740 // extra arithmetic, so it's not an obvious win, and it gets
741 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000742
Eli Friedmanb42a6262008-08-04 23:49:06 +0000743 // Protection from insane SCEVs; this bound is conservative,
744 // but it probably doesn't matter.
745 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000746 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000747
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000748 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000749
Eli Friedmanb42a6262008-08-04 23:49:06 +0000750 // Calculate K! / 2^T and T; we divide out the factors of two before
751 // multiplying for calculating K! / 2^T to avoid overflow.
752 // Other overflow doesn't matter because we only care about the bottom
753 // W bits of the result.
754 APInt OddFactorial(W, 1);
755 unsigned T = 1;
756 for (unsigned i = 3; i <= K; ++i) {
757 APInt Mult(W, i);
758 unsigned TwoFactors = Mult.countTrailingZeros();
759 T += TwoFactors;
760 Mult = Mult.lshr(TwoFactors);
761 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000762 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000763
Eli Friedmanb42a6262008-08-04 23:49:06 +0000764 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000765 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000766
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000767 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000768 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
769
770 // Calculate the multiplicative inverse of K! / 2^T;
771 // this multiplication factor will perform the exact division by
772 // K! / 2^T.
773 APInt Mod = APInt::getSignedMinValue(W+1);
774 APInt MultiplyFactor = OddFactorial.zext(W+1);
775 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
776 MultiplyFactor = MultiplyFactor.trunc(W);
777
778 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000779 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
780 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000781 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000782 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000783 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000784 Dividend = SE.getMulExpr(Dividend,
785 SE.getTruncateOrZeroExtend(S, CalculationTy));
786 }
787
788 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000790
791 // Truncate the result, and divide by K! / 2^T.
792
793 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
794 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000795}
796
Chris Lattner53e677a2004-04-02 20:23:17 +0000797/// evaluateAtIteration - Return the value of this chain of recurrences at
798/// the specified iteration number. We can evaluate this recurrence by
799/// multiplying each element in the chain by the binomial coefficient
800/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
801///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000802/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000803///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000804/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000805///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000806const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000807 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000808 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000809 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000810 // The computation is correct in the face of overflow provided that the
811 // multiplication is performed _after_ the evaluation of the binomial
812 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000813 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000814 if (isa<SCEVCouldNotCompute>(Coeff))
815 return Coeff;
816
817 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000818 }
819 return Result;
820}
821
Chris Lattner53e677a2004-04-02 20:23:17 +0000822//===----------------------------------------------------------------------===//
823// SCEV Expression folder implementations
824//===----------------------------------------------------------------------===//
825
Dan Gohman0bba49c2009-07-07 17:06:11 +0000826const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000827 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000828 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000829 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000830 assert(isSCEVable(Ty) &&
831 "This is not a conversion to a SCEVable type!");
832 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000833
Dan Gohmanc050fd92009-07-13 20:50:19 +0000834 FoldingSetNodeID ID;
835 ID.AddInteger(scTruncate);
836 ID.AddPointer(Op);
837 ID.AddPointer(Ty);
838 void *IP = 0;
839 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
840
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000841 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000842 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000843 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000844 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
845 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000846
Dan Gohman20900ca2009-04-22 16:20:48 +0000847 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000848 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000849 return getTruncateExpr(ST->getOperand(), Ty);
850
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000851 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000852 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000853 return getTruncateOrSignExtend(SS->getOperand(), Ty);
854
855 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000856 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000857 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
858
Dan Gohman6864db62009-06-18 16:24:47 +0000859 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000860 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000861 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000862 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000863 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
864 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000865 }
866
Dan Gohmanf53462d2010-07-15 20:02:11 +0000867 // As a special case, fold trunc(undef) to undef. We don't want to
868 // know too much about SCEVUnknowns, but this special case is handy
869 // and harmless.
870 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
871 if (isa<UndefValue>(U->getValue()))
872 return getSCEV(UndefValue::get(Ty));
873
Dan Gohman420ab912010-06-25 18:47:08 +0000874 // The cast wasn't folded; create an explicit cast node. We can reuse
875 // the existing insert position since if we get here, we won't have
876 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000877 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
878 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000879 UniqueSCEVs.InsertNode(S, IP);
880 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000881}
882
Dan Gohman0bba49c2009-07-07 17:06:11 +0000883const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000884 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000885 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000886 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000887 assert(isSCEVable(Ty) &&
888 "This is not a conversion to a SCEVable type!");
889 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000890
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000891 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000892 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
893 return getConstant(
894 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
895 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000896
Dan Gohman20900ca2009-04-22 16:20:48 +0000897 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000898 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000899 return getZeroExtendExpr(SZ->getOperand(), Ty);
900
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000901 // Before doing any expensive analysis, check to see if we've already
902 // computed a SCEV for this Op and Ty.
903 FoldingSetNodeID ID;
904 ID.AddInteger(scZeroExtend);
905 ID.AddPointer(Op);
906 ID.AddPointer(Ty);
907 void *IP = 0;
908 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
909
Dan Gohman01ecca22009-04-27 20:16:15 +0000910 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000911 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000912 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000913 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000914 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000915 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000916 const SCEV *Start = AR->getStart();
917 const SCEV *Step = AR->getStepRecurrence(*this);
918 unsigned BitWidth = getTypeSizeInBits(AR->getType());
919 const Loop *L = AR->getLoop();
920
Dan Gohmaneb490a72009-07-25 01:22:26 +0000921 // If we have special knowledge that this addrec won't overflow,
922 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000923 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000924 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
925 getZeroExtendExpr(Step, Ty),
926 L);
927
Dan Gohman01ecca22009-04-27 20:16:15 +0000928 // Check whether the backedge-taken count is SCEVCouldNotCompute.
929 // Note that this serves two purposes: It filters out loops that are
930 // simply not analyzable, and it covers the case where this code is
931 // being called from within backedge-taken count analysis, such that
932 // attempting to ask for the backedge-taken count would likely result
933 // in infinite recursion. In the later case, the analysis code will
934 // cope with a conservative value, and it will take care to purge
935 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000936 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000937 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000938 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000939 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000940
941 // Check whether the backedge-taken count can be losslessly casted to
942 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000943 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000944 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000945 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000946 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
947 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000948 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000949 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000950 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000951 const SCEV *Add = getAddExpr(Start, ZMul);
952 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000953 getAddExpr(getZeroExtendExpr(Start, WideTy),
954 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
955 getZeroExtendExpr(Step, WideTy)));
956 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000957 // Return the expression with the addrec on the outside.
958 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
959 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000960 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000961
962 // Similar to above, only this time treat the step value as signed.
963 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000964 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000965 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000966 OperandExtendedAdd =
967 getAddExpr(getZeroExtendExpr(Start, WideTy),
968 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
969 getSignExtendExpr(Step, WideTy)));
970 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000971 // Return the expression with the addrec on the outside.
972 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
973 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000974 L);
975 }
976
977 // If the backedge is guarded by a comparison with the pre-inc value
978 // the addrec is safe. Also, if the entry is guarded by a comparison
979 // with the start value and the backedge is guarded by a comparison
980 // with the post-inc value, the addrec is safe.
981 if (isKnownPositive(Step)) {
982 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
983 getUnsignedRange(Step).getUnsignedMax());
984 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000985 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000986 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
987 AR->getPostIncExpr(*this), N)))
988 // Return the expression with the addrec on the outside.
989 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
990 getZeroExtendExpr(Step, Ty),
991 L);
992 } else if (isKnownNegative(Step)) {
993 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
994 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000995 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
996 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000997 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
998 AR->getPostIncExpr(*this), N)))
999 // Return the expression with the addrec on the outside.
1000 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1001 getSignExtendExpr(Step, Ty),
1002 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001003 }
1004 }
1005 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001006
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001007 // The cast wasn't folded; create an explicit cast node.
1008 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001009 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001010 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1011 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001012 UniqueSCEVs.InsertNode(S, IP);
1013 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001014}
1015
Dan Gohman0bba49c2009-07-07 17:06:11 +00001016const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001017 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001018 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001019 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001020 assert(isSCEVable(Ty) &&
1021 "This is not a conversion to a SCEVable type!");
1022 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001023
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001024 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001025 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1026 return getConstant(
1027 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1028 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001029
Dan Gohman20900ca2009-04-22 16:20:48 +00001030 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001031 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001032 return getSignExtendExpr(SS->getOperand(), Ty);
1033
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001034 // Before doing any expensive analysis, check to see if we've already
1035 // computed a SCEV for this Op and Ty.
1036 FoldingSetNodeID ID;
1037 ID.AddInteger(scSignExtend);
1038 ID.AddPointer(Op);
1039 ID.AddPointer(Ty);
1040 void *IP = 0;
1041 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1042
Dan Gohman01ecca22009-04-27 20:16:15 +00001043 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001044 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001045 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001046 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001047 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001048 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001049 const SCEV *Start = AR->getStart();
1050 const SCEV *Step = AR->getStepRecurrence(*this);
1051 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1052 const Loop *L = AR->getLoop();
1053
Dan Gohmaneb490a72009-07-25 01:22:26 +00001054 // If we have special knowledge that this addrec won't overflow,
1055 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001056 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001057 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1058 getSignExtendExpr(Step, Ty),
1059 L);
1060
Dan Gohman01ecca22009-04-27 20:16:15 +00001061 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1062 // Note that this serves two purposes: It filters out loops that are
1063 // simply not analyzable, and it covers the case where this code is
1064 // being called from within backedge-taken count analysis, such that
1065 // attempting to ask for the backedge-taken count would likely result
1066 // in infinite recursion. In the later case, the analysis code will
1067 // cope with a conservative value, and it will take care to purge
1068 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001069 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001070 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001071 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001072 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001073
1074 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001075 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001076 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001077 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001078 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001079 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1080 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001081 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001082 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001083 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001084 const SCEV *Add = getAddExpr(Start, SMul);
1085 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001086 getAddExpr(getSignExtendExpr(Start, WideTy),
1087 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1088 getSignExtendExpr(Step, WideTy)));
1089 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001090 // Return the expression with the addrec on the outside.
1091 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1092 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001093 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001094
1095 // Similar to above, only this time treat the step value as unsigned.
1096 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001097 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001098 Add = getAddExpr(Start, UMul);
1099 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001100 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001101 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1102 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001103 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001104 // Return the expression with the addrec on the outside.
1105 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1106 getZeroExtendExpr(Step, Ty),
1107 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001108 }
1109
1110 // If the backedge is guarded by a comparison with the pre-inc value
1111 // the addrec is safe. Also, if the entry is guarded by a comparison
1112 // with the start value and the backedge is guarded by a comparison
1113 // with the post-inc value, the addrec is safe.
1114 if (isKnownPositive(Step)) {
1115 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1116 getSignedRange(Step).getSignedMax());
1117 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001118 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001119 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1120 AR->getPostIncExpr(*this), N)))
1121 // Return the expression with the addrec on the outside.
1122 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1123 getSignExtendExpr(Step, Ty),
1124 L);
1125 } else if (isKnownNegative(Step)) {
1126 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1127 getSignedRange(Step).getSignedMin());
1128 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001129 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001130 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1131 AR->getPostIncExpr(*this), N)))
1132 // Return the expression with the addrec on the outside.
1133 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1134 getSignExtendExpr(Step, Ty),
1135 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001136 }
1137 }
1138 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001139
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001140 // The cast wasn't folded; create an explicit cast node.
1141 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001142 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001143 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1144 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001145 UniqueSCEVs.InsertNode(S, IP);
1146 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001147}
1148
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001149/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1150/// unspecified bits out to the given type.
1151///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001152const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001153 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001154 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1155 "This is not an extending conversion!");
1156 assert(isSCEVable(Ty) &&
1157 "This is not a conversion to a SCEVable type!");
1158 Ty = getEffectiveSCEVType(Ty);
1159
1160 // Sign-extend negative constants.
1161 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1162 if (SC->getValue()->getValue().isNegative())
1163 return getSignExtendExpr(Op, Ty);
1164
1165 // Peel off a truncate cast.
1166 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001167 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001168 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1169 return getAnyExtendExpr(NewOp, Ty);
1170 return getTruncateOrNoop(NewOp, Ty);
1171 }
1172
1173 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001174 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001175 if (!isa<SCEVZeroExtendExpr>(ZExt))
1176 return ZExt;
1177
1178 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001179 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001180 if (!isa<SCEVSignExtendExpr>(SExt))
1181 return SExt;
1182
Dan Gohmana10756e2010-01-21 02:09:26 +00001183 // Force the cast to be folded into the operands of an addrec.
1184 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1185 SmallVector<const SCEV *, 4> Ops;
1186 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1187 I != E; ++I)
1188 Ops.push_back(getAnyExtendExpr(*I, Ty));
1189 return getAddRecExpr(Ops, AR->getLoop());
1190 }
1191
Dan Gohmanf53462d2010-07-15 20:02:11 +00001192 // As a special case, fold anyext(undef) to undef. We don't want to
1193 // know too much about SCEVUnknowns, but this special case is handy
1194 // and harmless.
1195 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1196 if (isa<UndefValue>(U->getValue()))
1197 return getSCEV(UndefValue::get(Ty));
1198
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001199 // If the expression is obviously signed, use the sext cast value.
1200 if (isa<SCEVSMaxExpr>(Op))
1201 return SExt;
1202
1203 // Absent any other information, use the zext cast value.
1204 return ZExt;
1205}
1206
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001207/// CollectAddOperandsWithScales - Process the given Ops list, which is
1208/// a list of operands to be added under the given scale, update the given
1209/// map. This is a helper function for getAddRecExpr. As an example of
1210/// what it does, given a sequence of operands that would form an add
1211/// expression like this:
1212///
1213/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1214///
1215/// where A and B are constants, update the map with these values:
1216///
1217/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1218///
1219/// and add 13 + A*B*29 to AccumulatedConstant.
1220/// This will allow getAddRecExpr to produce this:
1221///
1222/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1223///
1224/// This form often exposes folding opportunities that are hidden in
1225/// the original operand list.
1226///
1227/// Return true iff it appears that any interesting folding opportunities
1228/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1229/// the common case where no interesting opportunities are present, and
1230/// is also used as a check to avoid infinite recursion.
1231///
1232static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001233CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1234 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001235 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001236 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001237 const APInt &Scale,
1238 ScalarEvolution &SE) {
1239 bool Interesting = false;
1240
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001241 // Iterate over the add operands. They are sorted, with constants first.
1242 unsigned i = 0;
1243 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1244 ++i;
1245 // Pull a buried constant out to the outside.
1246 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1247 Interesting = true;
1248 AccumulatedConstant += Scale * C->getValue()->getValue();
1249 }
1250
1251 // Next comes everything else. We're especially interested in multiplies
1252 // here, but they're in the middle, so just visit the rest with one loop.
1253 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001254 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1255 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1256 APInt NewScale =
1257 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1258 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1259 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001260 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001261 Interesting |=
1262 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001263 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001264 NewScale, SE);
1265 } else {
1266 // A multiplication of a constant with some other value. Update
1267 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001268 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1269 const SCEV *Key = SE.getMulExpr(MulOps);
1270 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001271 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001272 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001273 NewOps.push_back(Pair.first->first);
1274 } else {
1275 Pair.first->second += NewScale;
1276 // The map already had an entry for this value, which may indicate
1277 // a folding opportunity.
1278 Interesting = true;
1279 }
1280 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001281 } else {
1282 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001283 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001284 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001285 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001286 NewOps.push_back(Pair.first->first);
1287 } else {
1288 Pair.first->second += Scale;
1289 // The map already had an entry for this value, which may indicate
1290 // a folding opportunity.
1291 Interesting = true;
1292 }
1293 }
1294 }
1295
1296 return Interesting;
1297}
1298
1299namespace {
1300 struct APIntCompare {
1301 bool operator()(const APInt &LHS, const APInt &RHS) const {
1302 return LHS.ult(RHS);
1303 }
1304 };
1305}
1306
Dan Gohman6c0866c2009-05-24 23:45:28 +00001307/// getAddExpr - Get a canonical add expression, or something simpler if
1308/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001309const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1310 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001311 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001312 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001313#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001314 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001315 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001316 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001317 "SCEVAddExpr operand types don't match!");
1318#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001319
Dan Gohmana10756e2010-01-21 02:09:26 +00001320 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1321 if (!HasNUW && HasNSW) {
1322 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001323 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1324 E = Ops.end(); I != E; ++I)
1325 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001326 All = false;
1327 break;
1328 }
1329 if (All) HasNUW = true;
1330 }
1331
Chris Lattner53e677a2004-04-02 20:23:17 +00001332 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001333 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001334
1335 // If there are any constants, fold them together.
1336 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001337 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001338 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001339 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001340 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001341 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001342 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1343 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001344 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001345 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001346 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001347 }
1348
1349 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001350 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001351 Ops.erase(Ops.begin());
1352 --Idx;
1353 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001354
Dan Gohmanbca091d2010-04-12 23:08:18 +00001355 if (Ops.size() == 1) return Ops[0];
1356 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001357
Dan Gohman68ff7762010-08-27 21:39:59 +00001358 // Okay, check to see if the same value occurs in the operand list more than
1359 // once. If so, merge them together into an multiply expression. Since we
1360 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001361 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001362 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001363 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001364 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001365 // Scan ahead to count how many equal operands there are.
1366 unsigned Count = 2;
1367 while (i+Count != e && Ops[i+Count] == Ops[i])
1368 ++Count;
1369 // Merge the values into a multiply.
1370 const SCEV *Scale = getConstant(Ty, Count);
1371 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1372 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001373 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001374 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001375 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001376 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001377 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001378 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001379 if (FoundMatch)
1380 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001381
Dan Gohman728c7f32009-05-08 21:03:19 +00001382 // Check for truncates. If all the operands are truncated from the same
1383 // type, see if factoring out the truncate would permit the result to be
1384 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1385 // if the contents of the resulting outer trunc fold to something simple.
1386 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1387 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1388 const Type *DstType = Trunc->getType();
1389 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001390 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001391 bool Ok = true;
1392 // Check all the operands to see if they can be represented in the
1393 // source type of the truncate.
1394 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1395 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1396 if (T->getOperand()->getType() != SrcType) {
1397 Ok = false;
1398 break;
1399 }
1400 LargeOps.push_back(T->getOperand());
1401 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001402 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001403 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001404 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001405 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1406 if (const SCEVTruncateExpr *T =
1407 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1408 if (T->getOperand()->getType() != SrcType) {
1409 Ok = false;
1410 break;
1411 }
1412 LargeMulOps.push_back(T->getOperand());
1413 } else if (const SCEVConstant *C =
1414 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001415 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001416 } else {
1417 Ok = false;
1418 break;
1419 }
1420 }
1421 if (Ok)
1422 LargeOps.push_back(getMulExpr(LargeMulOps));
1423 } else {
1424 Ok = false;
1425 break;
1426 }
1427 }
1428 if (Ok) {
1429 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001430 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001431 // If it folds to something simple, use it. Otherwise, don't.
1432 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1433 return getTruncateExpr(Fold, DstType);
1434 }
1435 }
1436
1437 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001438 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1439 ++Idx;
1440
1441 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001442 if (Idx < Ops.size()) {
1443 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001444 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001445 // If we have an add, expand the add operands onto the end of the operands
1446 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001447 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001448 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001449 DeletedAdd = true;
1450 }
1451
1452 // If we deleted at least one add, we added operands to the end of the list,
1453 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001454 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001455 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001456 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001457 }
1458
1459 // Skip over the add expression until we get to a multiply.
1460 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1461 ++Idx;
1462
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001463 // Check to see if there are any folding opportunities present with
1464 // operands multiplied by constant values.
1465 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1466 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001467 DenseMap<const SCEV *, APInt> M;
1468 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001469 APInt AccumulatedConstant(BitWidth, 0);
1470 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001471 Ops.data(), Ops.size(),
1472 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001473 // Some interesting folding opportunity is present, so its worthwhile to
1474 // re-generate the operands list. Group the operands by constant scale,
1475 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001476 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001477 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001478 E = NewOps.end(); I != E; ++I)
1479 MulOpLists[M.find(*I)->second].push_back(*I);
1480 // Re-generate the operands list.
1481 Ops.clear();
1482 if (AccumulatedConstant != 0)
1483 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001484 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1485 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001486 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001487 Ops.push_back(getMulExpr(getConstant(I->first),
1488 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001489 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001490 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001491 if (Ops.size() == 1)
1492 return Ops[0];
1493 return getAddExpr(Ops);
1494 }
1495 }
1496
Chris Lattner53e677a2004-04-02 20:23:17 +00001497 // If we are adding something to a multiply expression, make sure the
1498 // something is not already an operand of the multiply. If so, merge it into
1499 // the multiply.
1500 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001501 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001502 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001503 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001504 if (isa<SCEVConstant>(MulOpSCEV))
1505 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001506 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001507 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001509 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001510 if (Mul->getNumOperands() != 2) {
1511 // If the multiply has more than two operands, we must get the
1512 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001513 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1514 Mul->op_begin()+MulOp);
1515 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001516 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001517 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001518 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001519 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001520 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 if (Ops.size() == 2) return OuterMul;
1522 if (AddOp < Idx) {
1523 Ops.erase(Ops.begin()+AddOp);
1524 Ops.erase(Ops.begin()+Idx-1);
1525 } else {
1526 Ops.erase(Ops.begin()+Idx);
1527 Ops.erase(Ops.begin()+AddOp-1);
1528 }
1529 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001530 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001531 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001532
Chris Lattner53e677a2004-04-02 20:23:17 +00001533 // Check this multiply against other multiplies being added together.
1534 for (unsigned OtherMulIdx = Idx+1;
1535 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1536 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001537 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001538 // If MulOp occurs in OtherMul, we can fold the two multiplies
1539 // together.
1540 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1541 OMulOp != e; ++OMulOp)
1542 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1543 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001544 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001545 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001546 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001547 Mul->op_begin()+MulOp);
1548 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001549 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001550 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001551 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001552 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001553 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001554 OtherMul->op_begin()+OMulOp);
1555 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001556 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001557 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001558 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1559 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001560 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001561 Ops.erase(Ops.begin()+Idx);
1562 Ops.erase(Ops.begin()+OtherMulIdx-1);
1563 Ops.push_back(OuterMul);
1564 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001565 }
1566 }
1567 }
1568 }
1569
1570 // If there are any add recurrences in the operands list, see if any other
1571 // added values are loop invariant. If so, we can fold them into the
1572 // recurrence.
1573 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1574 ++Idx;
1575
1576 // Scan over all recurrences, trying to fold loop invariants into them.
1577 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1578 // Scan all of the other operands to this add and add them to the vector if
1579 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001580 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001581 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001582 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001583 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001584 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 LIOps.push_back(Ops[i]);
1586 Ops.erase(Ops.begin()+i);
1587 --i; --e;
1588 }
1589
1590 // If we found some loop invariants, fold them into the recurrence.
1591 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001592 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001593 LIOps.push_back(AddRec->getStart());
1594
Dan Gohman0bba49c2009-07-07 17:06:11 +00001595 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001596 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001597 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001598
Dan Gohmanb9f96512010-06-30 07:16:37 +00001599 // Build the new addrec. Propagate the NUW and NSW flags if both the
1600 // outer add and the inner addrec are guaranteed to have no overflow.
1601 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1602 HasNUW && AddRec->hasNoUnsignedWrap(),
1603 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001604
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 // If all of the other operands were loop invariant, we are done.
1606 if (Ops.size() == 1) return NewRec;
1607
1608 // Otherwise, add the folded AddRec by the non-liv parts.
1609 for (unsigned i = 0;; ++i)
1610 if (Ops[i] == AddRec) {
1611 Ops[i] = NewRec;
1612 break;
1613 }
Dan Gohman246b2562007-10-22 18:31:58 +00001614 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 }
1616
1617 // Okay, if there weren't any loop invariants to be folded, check to see if
1618 // there are multiple AddRec's with the same loop induction variable being
1619 // added together. If so, we can fold them.
1620 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001621 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1622 ++OtherIdx)
1623 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1624 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1625 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1626 AddRec->op_end());
1627 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1628 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001629 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001630 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001631 if (OtherAddRec->getLoop() == AddRecLoop) {
1632 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1633 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001634 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001635 AddRecOps.append(OtherAddRec->op_begin()+i,
1636 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001637 break;
1638 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001639 AddRecOps[i] = getAddExpr(AddRecOps[i],
1640 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001641 }
1642 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001643 }
Dan Gohman32527152010-08-27 20:45:56 +00001644 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1645 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001646 }
1647
1648 // Otherwise couldn't fold anything into this recurrence. Move onto the
1649 // next one.
1650 }
1651
1652 // Okay, it looks like we really DO need an add expr. Check to see if we
1653 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001654 FoldingSetNodeID ID;
1655 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001656 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1657 ID.AddPointer(Ops[i]);
1658 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001659 SCEVAddExpr *S =
1660 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1661 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001662 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1663 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001664 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1665 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001666 UniqueSCEVs.InsertNode(S, IP);
1667 }
Dan Gohman3645b012009-10-09 00:10:36 +00001668 if (HasNUW) S->setHasNoUnsignedWrap(true);
1669 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001670 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001671}
1672
Dan Gohman6c0866c2009-05-24 23:45:28 +00001673/// getMulExpr - Get a canonical multiply expression, or something simpler if
1674/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001675const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1676 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001677 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001678 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001679#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001680 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001681 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001682 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001683 "SCEVMulExpr operand types don't match!");
1684#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001685
Dan Gohmana10756e2010-01-21 02:09:26 +00001686 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1687 if (!HasNUW && HasNSW) {
1688 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001689 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1690 E = Ops.end(); I != E; ++I)
1691 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001692 All = false;
1693 break;
1694 }
1695 if (All) HasNUW = true;
1696 }
1697
Chris Lattner53e677a2004-04-02 20:23:17 +00001698 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001699 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001700
1701 // If there are any constants, fold them together.
1702 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001703 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001704
1705 // C1*(C2+V) -> C1*C2 + C1*V
1706 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001707 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001708 if (Add->getNumOperands() == 2 &&
1709 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001710 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1711 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001712
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001714 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001716 ConstantInt *Fold = ConstantInt::get(getContext(),
1717 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001718 RHSC->getValue()->getValue());
1719 Ops[0] = getConstant(Fold);
1720 Ops.erase(Ops.begin()+1); // Erase the folded element
1721 if (Ops.size() == 1) return Ops[0];
1722 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001723 }
1724
1725 // If we are left with a constant one being multiplied, strip it off.
1726 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1727 Ops.erase(Ops.begin());
1728 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001729 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001730 // If we have a multiply of zero, it will always be zero.
1731 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001732 } else if (Ops[0]->isAllOnesValue()) {
1733 // If we have a mul by -1 of an add, try distributing the -1 among the
1734 // add operands.
1735 if (Ops.size() == 2)
1736 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1737 SmallVector<const SCEV *, 4> NewOps;
1738 bool AnyFolded = false;
1739 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1740 I != E; ++I) {
1741 const SCEV *Mul = getMulExpr(Ops[0], *I);
1742 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1743 NewOps.push_back(Mul);
1744 }
1745 if (AnyFolded)
1746 return getAddExpr(NewOps);
1747 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001748 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001749
1750 if (Ops.size() == 1)
1751 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001752 }
1753
1754 // Skip over the add expression until we get to a multiply.
1755 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1756 ++Idx;
1757
Chris Lattner53e677a2004-04-02 20:23:17 +00001758 // If there are mul operands inline them all into this expression.
1759 if (Idx < Ops.size()) {
1760 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001761 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001762 // If we have an mul, expand the mul operands onto the end of the operands
1763 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001764 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001765 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001766 DeletedMul = true;
1767 }
1768
1769 // If we deleted at least one mul, we added operands to the end of the list,
1770 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001771 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001772 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001773 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001774 }
1775
1776 // If there are any add recurrences in the operands list, see if any other
1777 // added values are loop invariant. If so, we can fold them into the
1778 // recurrence.
1779 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1780 ++Idx;
1781
1782 // Scan over all recurrences, trying to fold loop invariants into them.
1783 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1784 // Scan all of the other operands to this mul and add them to the vector if
1785 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001786 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001787 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001788 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001789 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001790 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001791 LIOps.push_back(Ops[i]);
1792 Ops.erase(Ops.begin()+i);
1793 --i; --e;
1794 }
1795
1796 // If we found some loop invariants, fold them into the recurrence.
1797 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001798 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001799 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001800 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001801 const SCEV *Scale = getMulExpr(LIOps);
1802 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1803 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001804
Dan Gohmanb9f96512010-06-30 07:16:37 +00001805 // Build the new addrec. Propagate the NUW and NSW flags if both the
1806 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001807 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001808 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001809 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001810
1811 // If all of the other operands were loop invariant, we are done.
1812 if (Ops.size() == 1) return NewRec;
1813
1814 // Otherwise, multiply the folded AddRec by the non-liv parts.
1815 for (unsigned i = 0;; ++i)
1816 if (Ops[i] == AddRec) {
1817 Ops[i] = NewRec;
1818 break;
1819 }
Dan Gohman246b2562007-10-22 18:31:58 +00001820 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001821 }
1822
1823 // Okay, if there weren't any loop invariants to be folded, check to see if
1824 // there are multiple AddRec's with the same loop induction variable being
1825 // multiplied together. If so, we can fold them.
1826 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001827 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1828 ++OtherIdx)
1829 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1830 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1831 // {A*C,+,F*D + G*B + B*D}<L>
1832 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1833 ++OtherIdx)
1834 if (const SCEVAddRecExpr *OtherAddRec =
1835 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1836 if (OtherAddRec->getLoop() == AddRecLoop) {
1837 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1838 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1839 const SCEV *B = F->getStepRecurrence(*this);
1840 const SCEV *D = G->getStepRecurrence(*this);
1841 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1842 getMulExpr(G, B),
1843 getMulExpr(B, D));
1844 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1845 F->getLoop());
1846 if (Ops.size() == 2) return NewAddRec;
1847 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1848 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1849 }
1850 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001851 }
1852
1853 // Otherwise couldn't fold anything into this recurrence. Move onto the
1854 // next one.
1855 }
1856
1857 // Okay, it looks like we really DO need an mul expr. Check to see if we
1858 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001859 FoldingSetNodeID ID;
1860 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001861 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1862 ID.AddPointer(Ops[i]);
1863 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001864 SCEVMulExpr *S =
1865 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1866 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001867 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1868 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001869 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1870 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001871 UniqueSCEVs.InsertNode(S, IP);
1872 }
Dan Gohman3645b012009-10-09 00:10:36 +00001873 if (HasNUW) S->setHasNoUnsignedWrap(true);
1874 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001875 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001876}
1877
Andreas Bolka8a11c982009-08-07 22:55:26 +00001878/// getUDivExpr - Get a canonical unsigned division expression, or something
1879/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001880const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1881 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001882 assert(getEffectiveSCEVType(LHS->getType()) ==
1883 getEffectiveSCEVType(RHS->getType()) &&
1884 "SCEVUDivExpr operand types don't match!");
1885
Dan Gohman622ed672009-05-04 22:02:23 +00001886 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001887 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001888 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001889 // If the denominator is zero, the result of the udiv is undefined. Don't
1890 // try to analyze it, because the resolution chosen here may differ from
1891 // the resolution chosen in other parts of the compiler.
1892 if (!RHSC->getValue()->isZero()) {
1893 // Determine if the division can be folded into the operands of
1894 // its operands.
1895 // TODO: Generalize this to non-constants by using known-bits information.
1896 const Type *Ty = LHS->getType();
1897 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001898 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001899 // For non-power-of-two values, effectively round the value up to the
1900 // nearest power of two.
1901 if (!RHSC->getValue()->getValue().isPowerOf2())
1902 ++MaxShiftAmt;
1903 const IntegerType *ExtTy =
1904 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1905 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1906 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1907 if (const SCEVConstant *Step =
1908 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1909 if (!Step->getValue()->getValue()
1910 .urem(RHSC->getValue()->getValue()) &&
1911 getZeroExtendExpr(AR, ExtTy) ==
1912 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1913 getZeroExtendExpr(Step, ExtTy),
1914 AR->getLoop())) {
1915 SmallVector<const SCEV *, 4> Operands;
1916 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1917 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1918 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001919 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001920 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1921 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1922 SmallVector<const SCEV *, 4> Operands;
1923 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1924 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1925 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1926 // Find an operand that's safely divisible.
1927 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1928 const SCEV *Op = M->getOperand(i);
1929 const SCEV *Div = getUDivExpr(Op, RHSC);
1930 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1931 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1932 M->op_end());
1933 Operands[i] = Div;
1934 return getMulExpr(Operands);
1935 }
1936 }
Dan Gohman185cf032009-05-08 20:18:49 +00001937 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001938 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1939 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1940 SmallVector<const SCEV *, 4> Operands;
1941 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1942 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1943 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1944 Operands.clear();
1945 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1946 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1947 if (isa<SCEVUDivExpr>(Op) ||
1948 getMulExpr(Op, RHS) != A->getOperand(i))
1949 break;
1950 Operands.push_back(Op);
1951 }
1952 if (Operands.size() == A->getNumOperands())
1953 return getAddExpr(Operands);
1954 }
1955 }
Dan Gohman185cf032009-05-08 20:18:49 +00001956
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001957 // Fold if both operands are constant.
1958 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1959 Constant *LHSCV = LHSC->getValue();
1960 Constant *RHSCV = RHSC->getValue();
1961 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1962 RHSCV)));
1963 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001964 }
1965 }
1966
Dan Gohman1c343752009-06-27 21:21:31 +00001967 FoldingSetNodeID ID;
1968 ID.AddInteger(scUDivExpr);
1969 ID.AddPointer(LHS);
1970 ID.AddPointer(RHS);
1971 void *IP = 0;
1972 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001973 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1974 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001975 UniqueSCEVs.InsertNode(S, IP);
1976 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001977}
1978
1979
Dan Gohman6c0866c2009-05-24 23:45:28 +00001980/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1981/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001982const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001983 const SCEV *Step, const Loop *L,
1984 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001985 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001986 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001987 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001988 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001989 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001990 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001991 }
1992
1993 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001994 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001995}
1996
Dan Gohman6c0866c2009-05-24 23:45:28 +00001997/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1998/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001999const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002000ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002001 const Loop *L,
2002 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002003 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002004#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002005 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002006 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002007 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002008 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00002009 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002010 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00002011 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00002012#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002013
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002014 if (Operands.back()->isZero()) {
2015 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002016 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002017 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002018
Dan Gohmanbc028532010-02-19 18:49:22 +00002019 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2020 // use that information to infer NUW and NSW flags. However, computing a
2021 // BE count requires calling getAddRecExpr, so we may not yet have a
2022 // meaningful BE count at this point (and if we don't, we'd be stuck
2023 // with a SCEVCouldNotCompute as the cached BE count).
2024
Dan Gohmana10756e2010-01-21 02:09:26 +00002025 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2026 if (!HasNUW && HasNSW) {
2027 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00002028 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2029 E = Operands.end(); I != E; ++I)
2030 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002031 All = false;
2032 break;
2033 }
2034 if (All) HasNUW = true;
2035 }
2036
Dan Gohmand9cc7492008-08-08 18:33:12 +00002037 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002038 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002039 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002040 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002041 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002042 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002043 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002044 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002045 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002046 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002047 // AddRecs require their operands be loop-invariant with respect to their
2048 // loops. Don't perform this transformation if it would break this
2049 // requirement.
2050 bool AllInvariant = true;
2051 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002052 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002053 AllInvariant = false;
2054 break;
2055 }
2056 if (AllInvariant) {
2057 NestedOperands[0] = getAddRecExpr(Operands, L);
2058 AllInvariant = true;
2059 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002060 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002061 AllInvariant = false;
2062 break;
2063 }
2064 if (AllInvariant)
2065 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002066 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002067 }
2068 // Reset Operands to its original state.
2069 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002070 }
2071 }
2072
Dan Gohman67847532010-01-19 22:27:22 +00002073 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2074 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002075 FoldingSetNodeID ID;
2076 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002077 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2078 ID.AddPointer(Operands[i]);
2079 ID.AddPointer(L);
2080 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002081 SCEVAddRecExpr *S =
2082 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2083 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002084 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2085 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002086 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2087 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002088 UniqueSCEVs.InsertNode(S, IP);
2089 }
Dan Gohman3645b012009-10-09 00:10:36 +00002090 if (HasNUW) S->setHasNoUnsignedWrap(true);
2091 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002092 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002093}
2094
Dan Gohman9311ef62009-06-24 14:49:00 +00002095const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2096 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002097 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002098 Ops.push_back(LHS);
2099 Ops.push_back(RHS);
2100 return getSMaxExpr(Ops);
2101}
2102
Dan Gohman0bba49c2009-07-07 17:06:11 +00002103const SCEV *
2104ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002105 assert(!Ops.empty() && "Cannot get empty smax!");
2106 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002107#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002108 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002109 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002110 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002111 "SCEVSMaxExpr operand types don't match!");
2112#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002113
2114 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002115 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002116
2117 // If there are any constants, fold them together.
2118 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002119 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002120 ++Idx;
2121 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002122 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002123 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002124 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002125 APIntOps::smax(LHSC->getValue()->getValue(),
2126 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002127 Ops[0] = getConstant(Fold);
2128 Ops.erase(Ops.begin()+1); // Erase the folded element
2129 if (Ops.size() == 1) return Ops[0];
2130 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002131 }
2132
Dan Gohmane5aceed2009-06-24 14:46:22 +00002133 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002134 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2135 Ops.erase(Ops.begin());
2136 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002137 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2138 // If we have an smax with a constant maximum-int, it will always be
2139 // maximum-int.
2140 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002141 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002142
Dan Gohman3ab13122010-04-13 16:49:23 +00002143 if (Ops.size() == 1) return Ops[0];
2144 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002145
2146 // Find the first SMax
2147 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2148 ++Idx;
2149
2150 // Check to see if one of the operands is an SMax. If so, expand its operands
2151 // onto our operand list, and recurse to simplify.
2152 if (Idx < Ops.size()) {
2153 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002154 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002155 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002156 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002157 DeletedSMax = true;
2158 }
2159
2160 if (DeletedSMax)
2161 return getSMaxExpr(Ops);
2162 }
2163
2164 // Okay, check to see if the same value occurs in the operand list twice. If
2165 // so, delete one. Since we sorted the list, these values are required to
2166 // be adjacent.
2167 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002168 // X smax Y smax Y --> X smax Y
2169 // X smax Y --> X, if X is always greater than Y
2170 if (Ops[i] == Ops[i+1] ||
2171 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2172 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2173 --i; --e;
2174 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002175 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2176 --i; --e;
2177 }
2178
2179 if (Ops.size() == 1) return Ops[0];
2180
2181 assert(!Ops.empty() && "Reduced smax down to nothing!");
2182
Nick Lewycky3e630762008-02-20 06:48:22 +00002183 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002184 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002185 FoldingSetNodeID ID;
2186 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002187 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2188 ID.AddPointer(Ops[i]);
2189 void *IP = 0;
2190 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002191 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2192 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002193 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2194 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002195 UniqueSCEVs.InsertNode(S, IP);
2196 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002197}
2198
Dan Gohman9311ef62009-06-24 14:49:00 +00002199const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2200 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002201 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002202 Ops.push_back(LHS);
2203 Ops.push_back(RHS);
2204 return getUMaxExpr(Ops);
2205}
2206
Dan Gohman0bba49c2009-07-07 17:06:11 +00002207const SCEV *
2208ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002209 assert(!Ops.empty() && "Cannot get empty umax!");
2210 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002211#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002212 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002213 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002214 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002215 "SCEVUMaxExpr operand types don't match!");
2216#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002217
2218 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002219 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002220
2221 // If there are any constants, fold them together.
2222 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002223 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002224 ++Idx;
2225 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002226 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002227 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002228 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002229 APIntOps::umax(LHSC->getValue()->getValue(),
2230 RHSC->getValue()->getValue()));
2231 Ops[0] = getConstant(Fold);
2232 Ops.erase(Ops.begin()+1); // Erase the folded element
2233 if (Ops.size() == 1) return Ops[0];
2234 LHSC = cast<SCEVConstant>(Ops[0]);
2235 }
2236
Dan Gohmane5aceed2009-06-24 14:46:22 +00002237 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002238 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2239 Ops.erase(Ops.begin());
2240 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002241 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2242 // If we have an umax with a constant maximum-int, it will always be
2243 // maximum-int.
2244 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002245 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002246
Dan Gohman3ab13122010-04-13 16:49:23 +00002247 if (Ops.size() == 1) return Ops[0];
2248 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002249
2250 // Find the first UMax
2251 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2252 ++Idx;
2253
2254 // Check to see if one of the operands is a UMax. If so, expand its operands
2255 // onto our operand list, and recurse to simplify.
2256 if (Idx < Ops.size()) {
2257 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002258 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002259 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002260 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002261 DeletedUMax = true;
2262 }
2263
2264 if (DeletedUMax)
2265 return getUMaxExpr(Ops);
2266 }
2267
2268 // Okay, check to see if the same value occurs in the operand list twice. If
2269 // so, delete one. Since we sorted the list, these values are required to
2270 // be adjacent.
2271 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002272 // X umax Y umax Y --> X umax Y
2273 // X umax Y --> X, if X is always greater than Y
2274 if (Ops[i] == Ops[i+1] ||
2275 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2276 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2277 --i; --e;
2278 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002279 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2280 --i; --e;
2281 }
2282
2283 if (Ops.size() == 1) return Ops[0];
2284
2285 assert(!Ops.empty() && "Reduced umax down to nothing!");
2286
2287 // Okay, it looks like we really DO need a umax expr. Check to see if we
2288 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002289 FoldingSetNodeID ID;
2290 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002291 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2292 ID.AddPointer(Ops[i]);
2293 void *IP = 0;
2294 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002295 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2296 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002297 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2298 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002299 UniqueSCEVs.InsertNode(S, IP);
2300 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002301}
2302
Dan Gohman9311ef62009-06-24 14:49:00 +00002303const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2304 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002305 // ~smax(~x, ~y) == smin(x, y).
2306 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2307}
2308
Dan Gohman9311ef62009-06-24 14:49:00 +00002309const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2310 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002311 // ~umax(~x, ~y) == umin(x, y)
2312 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2313}
2314
Dan Gohman4f8eea82010-02-01 18:27:38 +00002315const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002316 // If we have TargetData, we can bypass creating a target-independent
2317 // constant expression and then folding it back into a ConstantInt.
2318 // This is just a compile-time optimization.
2319 if (TD)
2320 return getConstant(TD->getIntPtrType(getContext()),
2321 TD->getTypeAllocSize(AllocTy));
2322
Dan Gohman4f8eea82010-02-01 18:27:38 +00002323 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002325 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2326 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002327 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2328 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2329}
2330
2331const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2332 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2333 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002334 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2335 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002336 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2337 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2338}
2339
2340const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2341 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002342 // If we have TargetData, we can bypass creating a target-independent
2343 // constant expression and then folding it back into a ConstantInt.
2344 // This is just a compile-time optimization.
2345 if (TD)
2346 return getConstant(TD->getIntPtrType(getContext()),
2347 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2348
Dan Gohman0f5efe52010-01-28 02:15:55 +00002349 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2350 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002351 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2352 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002353 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002354 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002355}
2356
Dan Gohman4f8eea82010-02-01 18:27:38 +00002357const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2358 Constant *FieldNo) {
2359 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002361 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2362 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002363 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002364 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002365}
2366
Dan Gohman0bba49c2009-07-07 17:06:11 +00002367const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002368 // Don't attempt to do anything other than create a SCEVUnknown object
2369 // here. createSCEV only calls getUnknown after checking for all other
2370 // interesting possibilities, and any other code that calls getUnknown
2371 // is doing so in order to hide a value from SCEV canonicalization.
2372
Dan Gohman1c343752009-06-27 21:21:31 +00002373 FoldingSetNodeID ID;
2374 ID.AddInteger(scUnknown);
2375 ID.AddPointer(V);
2376 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002377 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2378 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2379 "Stale SCEVUnknown in uniquing map!");
2380 return S;
2381 }
2382 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2383 FirstUnknown);
2384 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002385 UniqueSCEVs.InsertNode(S, IP);
2386 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002387}
2388
Chris Lattner53e677a2004-04-02 20:23:17 +00002389//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002390// Basic SCEV Analysis and PHI Idiom Recognition Code
2391//
2392
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002393/// isSCEVable - Test if values of the given type are analyzable within
2394/// the SCEV framework. This primarily includes integer types, and it
2395/// can optionally include pointer types if the ScalarEvolution class
2396/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002397bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002398 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002399 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002400}
2401
2402/// getTypeSizeInBits - Return the size in bits of the specified type,
2403/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002404uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002405 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2406
2407 // If we have a TargetData, use it!
2408 if (TD)
2409 return TD->getTypeSizeInBits(Ty);
2410
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002411 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002412 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002413 return Ty->getPrimitiveSizeInBits();
2414
2415 // The only other support type is pointer. Without TargetData, conservatively
2416 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002417 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002418 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002419}
2420
2421/// getEffectiveSCEVType - Return a type with the same bitwidth as
2422/// the given type and which represents how SCEV will treat the given
2423/// type, for which isSCEVable must return true. For pointer types,
2424/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002425const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002426 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2427
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002428 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002429 return Ty;
2430
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002431 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002432 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002433 if (TD) return TD->getIntPtrType(getContext());
2434
2435 // Without TargetData, conservatively assume pointers are 64-bit.
2436 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002437}
Chris Lattner53e677a2004-04-02 20:23:17 +00002438
Dan Gohman0bba49c2009-07-07 17:06:11 +00002439const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002440 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002441}
2442
Chris Lattner53e677a2004-04-02 20:23:17 +00002443/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2444/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002445const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002446 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002447
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002448 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2449 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002450 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002451
2452 // The process of creating a SCEV for V may have caused other SCEVs
2453 // to have been created, so it's necessary to insert the new entry
2454 // from scratch, rather than trying to remember the insert position
2455 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002456 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002457 return S;
2458}
2459
Dan Gohman2d1be872009-04-16 03:18:22 +00002460/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2461///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002462const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002463 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002464 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002465 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002466
2467 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002468 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002469 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002470 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002471}
2472
2473/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002474const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002475 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002476 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002477 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002478
2479 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002480 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002481 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002482 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002483 return getMinusSCEV(AllOnes, V);
2484}
2485
2486/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2487///
Dan Gohman9311ef62009-06-24 14:49:00 +00002488const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2489 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002490 // Fast path: X - X --> 0.
2491 if (LHS == RHS)
2492 return getConstant(LHS->getType(), 0);
2493
Dan Gohman2d1be872009-04-16 03:18:22 +00002494 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002495 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002496}
2497
2498/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2499/// input value to the specified type. If the type must be extended, it is zero
2500/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002501const SCEV *
2502ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002503 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002504 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002505 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2506 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002507 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002508 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002509 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002510 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002511 return getTruncateExpr(V, Ty);
2512 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002513}
2514
2515/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2516/// input value to the specified type. If the type must be extended, it is sign
2517/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002518const SCEV *
2519ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002520 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002521 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002522 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2523 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002524 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002525 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002526 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002527 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002528 return getTruncateExpr(V, Ty);
2529 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002530}
2531
Dan Gohman467c4302009-05-13 03:46:30 +00002532/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2533/// input value to the specified type. If the type must be extended, it is zero
2534/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002535const SCEV *
2536ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002537 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002538 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2539 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002540 "Cannot noop or zero extend with non-integer arguments!");
2541 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2542 "getNoopOrZeroExtend cannot truncate!");
2543 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2544 return V; // No conversion
2545 return getZeroExtendExpr(V, Ty);
2546}
2547
2548/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2549/// input value to the specified type. If the type must be extended, it is sign
2550/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002551const SCEV *
2552ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002553 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002554 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2555 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002556 "Cannot noop or sign extend with non-integer arguments!");
2557 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2558 "getNoopOrSignExtend cannot truncate!");
2559 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2560 return V; // No conversion
2561 return getSignExtendExpr(V, Ty);
2562}
2563
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002564/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2565/// the input value to the specified type. If the type must be extended,
2566/// it is extended with unspecified bits. The conversion must not be
2567/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002568const SCEV *
2569ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002570 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002571 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2572 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002573 "Cannot noop or any extend with non-integer arguments!");
2574 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2575 "getNoopOrAnyExtend cannot truncate!");
2576 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2577 return V; // No conversion
2578 return getAnyExtendExpr(V, Ty);
2579}
2580
Dan Gohman467c4302009-05-13 03:46:30 +00002581/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2582/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002583const SCEV *
2584ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002585 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002586 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2587 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002588 "Cannot truncate or noop with non-integer arguments!");
2589 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2590 "getTruncateOrNoop cannot extend!");
2591 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2592 return V; // No conversion
2593 return getTruncateExpr(V, Ty);
2594}
2595
Dan Gohmana334aa72009-06-22 00:31:57 +00002596/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2597/// the types using zero-extension, and then perform a umax operation
2598/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002599const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2600 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002601 const SCEV *PromotedLHS = LHS;
2602 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002603
2604 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2605 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2606 else
2607 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2608
2609 return getUMaxExpr(PromotedLHS, PromotedRHS);
2610}
2611
Dan Gohmanc9759e82009-06-22 15:03:27 +00002612/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2613/// the types using zero-extension, and then perform a umin operation
2614/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002615const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2616 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002617 const SCEV *PromotedLHS = LHS;
2618 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002619
2620 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2621 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2622 else
2623 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2624
2625 return getUMinExpr(PromotedLHS, PromotedRHS);
2626}
2627
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002628/// PushDefUseChildren - Push users of the given Instruction
2629/// onto the given Worklist.
2630static void
2631PushDefUseChildren(Instruction *I,
2632 SmallVectorImpl<Instruction *> &Worklist) {
2633 // Push the def-use children onto the Worklist stack.
2634 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2635 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002636 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002637}
2638
2639/// ForgetSymbolicValue - This looks up computed SCEV values for all
2640/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002641/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002642/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002643void
Dan Gohman85669632010-02-25 06:57:05 +00002644ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002645 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002646 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002647
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002648 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002649 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002650 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002651 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002652 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002653
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002654 ValueExprMapType::iterator It =
2655 ValueExprMap.find(static_cast<Value *>(I));
2656 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002657 const SCEV *Old = It->second;
2658
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002659 // Short-circuit the def-use traversal if the symbolic name
2660 // ceases to appear in expressions.
Dan Gohman6678e7b2010-11-17 02:44:44 +00002661 if (Old != SymName && !Old->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002662 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002663
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002664 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002665 // structure, it's a PHI that's in the progress of being computed
2666 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2667 // additional loop trip count information isn't going to change anything.
2668 // In the second case, createNodeForPHI will perform the necessary
2669 // updates on its own when it gets to that point. In the third, we do
2670 // want to forget the SCEVUnknown.
2671 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002672 !isa<SCEVUnknown>(Old) ||
2673 (I != PN && Old == SymName)) {
2674 ValuesAtScopes.erase(Old);
2675 UnsignedRanges.erase(Old);
2676 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002677 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002678 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002679 }
2680
2681 PushDefUseChildren(I, Worklist);
2682 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002683}
Chris Lattner53e677a2004-04-02 20:23:17 +00002684
2685/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2686/// a loop header, making it a potential recurrence, or it doesn't.
2687///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002688const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002689 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2690 if (L->getHeader() == PN->getParent()) {
2691 // The loop may have multiple entrances or multiple exits; we can analyze
2692 // this phi as an addrec if it has a unique entry value and a unique
2693 // backedge value.
2694 Value *BEValueV = 0, *StartValueV = 0;
2695 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2696 Value *V = PN->getIncomingValue(i);
2697 if (L->contains(PN->getIncomingBlock(i))) {
2698 if (!BEValueV) {
2699 BEValueV = V;
2700 } else if (BEValueV != V) {
2701 BEValueV = 0;
2702 break;
2703 }
2704 } else if (!StartValueV) {
2705 StartValueV = V;
2706 } else if (StartValueV != V) {
2707 StartValueV = 0;
2708 break;
2709 }
2710 }
2711 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002712 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002713 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002714 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002715 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002716 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002717
2718 // Using this symbolic name for the PHI, analyze the value coming around
2719 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002720 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002721
2722 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2723 // has a special value for the first iteration of the loop.
2724
2725 // If the value coming around the backedge is an add with the symbolic
2726 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002727 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002728 // If there is a single occurrence of the symbolic value, replace it
2729 // with a recurrence.
2730 unsigned FoundIndex = Add->getNumOperands();
2731 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2732 if (Add->getOperand(i) == SymbolicName)
2733 if (FoundIndex == e) {
2734 FoundIndex = i;
2735 break;
2736 }
2737
2738 if (FoundIndex != Add->getNumOperands()) {
2739 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002740 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002741 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2742 if (i != FoundIndex)
2743 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002744 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002745
2746 // This is not a valid addrec if the step amount is varying each
2747 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002748 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002749 (isa<SCEVAddRecExpr>(Accum) &&
2750 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002751 bool HasNUW = false;
2752 bool HasNSW = false;
2753
2754 // If the increment doesn't overflow, then neither the addrec nor
2755 // the post-increment will overflow.
2756 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2757 if (OBO->hasNoUnsignedWrap())
2758 HasNUW = true;
2759 if (OBO->hasNoSignedWrap())
2760 HasNSW = true;
2761 }
2762
Dan Gohman27dead42010-04-12 07:49:36 +00002763 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002764 const SCEV *PHISCEV =
2765 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002766
Dan Gohmana10756e2010-01-21 02:09:26 +00002767 // Since the no-wrap flags are on the increment, they apply to the
2768 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002769 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002770 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2771 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002772
2773 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002774 // to be symbolic. We now need to go back and purge all of the
2775 // entries for the scalars that use the symbolic expression.
2776 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002777 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002778 return PHISCEV;
2779 }
2780 }
Dan Gohman622ed672009-05-04 22:02:23 +00002781 } else if (const SCEVAddRecExpr *AddRec =
2782 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002783 // Otherwise, this could be a loop like this:
2784 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2785 // In this case, j = {1,+,1} and BEValue is j.
2786 // Because the other in-value of i (0) fits the evolution of BEValue
2787 // i really is an addrec evolution.
2788 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002789 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002790
2791 // If StartVal = j.start - j.stride, we can use StartVal as the
2792 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002793 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002794 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002795 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002796 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002797
2798 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002799 // to be symbolic. We now need to go back and purge all of the
2800 // entries for the scalars that use the symbolic expression.
2801 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002802 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002803 return PHISCEV;
2804 }
2805 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002806 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002807 }
Dan Gohman27dead42010-04-12 07:49:36 +00002808 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002809
Dan Gohman85669632010-02-25 06:57:05 +00002810 // If the PHI has a single incoming value, follow that value, unless the
2811 // PHI's incoming blocks are in a different loop, in which case doing so
2812 // risks breaking LCSSA form. Instcombine would normally zap these, but
2813 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsa0c52442010-11-17 04:18:45 +00002814 if (Value *V = SimplifyInstruction(PN, TD, DT)) {
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002815 Instruction *I = dyn_cast<Instruction>(V);
2816 // Only instructions are problematic for preserving LCSSA form.
2817 if (!I)
Dan Gohman85669632010-02-25 06:57:05 +00002818 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002819
2820 // If the instruction is not defined in a loop, then it can be used freely.
2821 Loop *ILoop = LI->getLoopFor(I->getParent());
2822 if (!ILoop)
2823 return getSCEV(I);
2824
2825 // If the instruction is defined in the same loop as the phi node, or in a
2826 // loop that contains the phi node loop as an inner loop, then using it as
2827 // a replacement for the phi node will not break LCSSA form.
2828 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2829 if (ILoop->contains(PNLoop))
2830 return getSCEV(I);
Dan Gohman85669632010-02-25 06:57:05 +00002831 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002832
Chris Lattner53e677a2004-04-02 20:23:17 +00002833 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002834 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002835}
2836
Dan Gohman26466c02009-05-08 20:26:55 +00002837/// createNodeForGEP - Expand GEP instructions into add and multiply
2838/// operations. This allows them to be analyzed by regular SCEV code.
2839///
Dan Gohmand281ed22009-12-18 02:09:29 +00002840const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002841
Dan Gohmanb9f96512010-06-30 07:16:37 +00002842 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2843 // Add expression, because the Instruction may be guarded by control flow
2844 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002845 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002846
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002847 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002848 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002849 // Don't attempt to analyze GEPs over unsized objects.
2850 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2851 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002852 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002853 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002854 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002855 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002856 I != E; ++I) {
2857 Value *Index = *I;
2858 // Compute the (potentially symbolic) offset in bytes for this index.
2859 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2860 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002861 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002862 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2863
Dan Gohmanb9f96512010-06-30 07:16:37 +00002864 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002865 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002866 } else {
2867 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002868 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2869 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002870 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002871 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2872
Dan Gohmanb9f96512010-06-30 07:16:37 +00002873 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002874 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002875
2876 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002877 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002878 }
2879 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002880
2881 // Get the SCEV for the GEP base.
2882 const SCEV *BaseS = getSCEV(Base);
2883
Dan Gohmanb9f96512010-06-30 07:16:37 +00002884 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002885 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002886}
2887
Nick Lewycky83bb0052007-11-22 07:59:40 +00002888/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2889/// guaranteed to end in (at every loop iteration). It is, at the same time,
2890/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2891/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002892uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002893ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002894 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002895 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002896
Dan Gohman622ed672009-05-04 22:02:23 +00002897 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002898 return std::min(GetMinTrailingZeros(T->getOperand()),
2899 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002900
Dan Gohman622ed672009-05-04 22:02:23 +00002901 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002902 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2903 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2904 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002905 }
2906
Dan Gohman622ed672009-05-04 22:02:23 +00002907 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002908 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2909 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2910 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002911 }
2912
Dan Gohman622ed672009-05-04 22:02:23 +00002913 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002914 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002915 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002916 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002917 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002918 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002919 }
2920
Dan Gohman622ed672009-05-04 22:02:23 +00002921 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002922 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002923 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2924 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002925 for (unsigned i = 1, e = M->getNumOperands();
2926 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002927 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002928 BitWidth);
2929 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002930 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002931
Dan Gohman622ed672009-05-04 22:02:23 +00002932 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002933 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002934 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002935 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002936 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002937 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002938 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002939
Dan Gohman622ed672009-05-04 22:02:23 +00002940 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002941 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002942 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002943 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002944 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002945 return MinOpRes;
2946 }
2947
Dan Gohman622ed672009-05-04 22:02:23 +00002948 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002949 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002950 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002951 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002952 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002953 return MinOpRes;
2954 }
2955
Dan Gohman2c364ad2009-06-19 23:29:04 +00002956 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2957 // For a SCEVUnknown, ask ValueTracking.
2958 unsigned BitWidth = getTypeSizeInBits(U->getType());
2959 APInt Mask = APInt::getAllOnesValue(BitWidth);
2960 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2961 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2962 return Zeros.countTrailingOnes();
2963 }
2964
2965 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002966 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002967}
Chris Lattner53e677a2004-04-02 20:23:17 +00002968
Dan Gohman85b05a22009-07-13 21:35:55 +00002969/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2970///
2971ConstantRange
2972ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002973 // See if we've computed this range already.
2974 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2975 if (I != UnsignedRanges.end())
2976 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002977
2978 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002979 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002980
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002981 unsigned BitWidth = getTypeSizeInBits(S->getType());
2982 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2983
2984 // If the value has known zeros, the maximum unsigned value will have those
2985 // known zeros as well.
2986 uint32_t TZ = GetMinTrailingZeros(S);
2987 if (TZ != 0)
2988 ConservativeResult =
2989 ConstantRange(APInt::getMinValue(BitWidth),
2990 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2991
Dan Gohman85b05a22009-07-13 21:35:55 +00002992 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2993 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2994 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2995 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002996 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002997 }
2998
2999 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3000 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3001 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3002 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003003 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003004 }
3005
3006 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3007 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3008 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3009 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003010 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003011 }
3012
3013 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3014 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3015 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3016 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003017 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003018 }
3019
3020 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3021 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3022 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003023 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003024 }
3025
3026 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3027 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003028 return setUnsignedRange(ZExt,
3029 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003030 }
3031
3032 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3033 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003034 return setUnsignedRange(SExt,
3035 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003036 }
3037
3038 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3039 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003040 return setUnsignedRange(Trunc,
3041 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003042 }
3043
Dan Gohman85b05a22009-07-13 21:35:55 +00003044 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003045 // If there's no unsigned wrap, the value will never be less than its
3046 // initial value.
3047 if (AddRec->hasNoUnsignedWrap())
3048 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003049 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003050 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003051 ConservativeResult.intersectWith(
3052 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003053
3054 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003055 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003056 const Type *Ty = AddRec->getType();
3057 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003058 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3059 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003060 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3061
3062 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003063 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003064
3065 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003066 ConstantRange StepRange = getSignedRange(Step);
3067 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3068 ConstantRange EndRange =
3069 StartRange.add(MaxBECountRange.multiply(StepRange));
3070
3071 // Check for overflow. This must be done with ConstantRange arithmetic
3072 // because we could be called from within the ScalarEvolution overflow
3073 // checking code.
3074 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3075 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3076 ConstantRange ExtMaxBECountRange =
3077 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3078 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3079 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3080 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003081 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003082
Dan Gohman85b05a22009-07-13 21:35:55 +00003083 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3084 EndRange.getUnsignedMin());
3085 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3086 EndRange.getUnsignedMax());
3087 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003088 return setUnsignedRange(AddRec, ConservativeResult);
3089 return setUnsignedRange(AddRec,
3090 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003091 }
3092 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003093
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003094 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003095 }
3096
3097 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3098 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003099 APInt Mask = APInt::getAllOnesValue(BitWidth);
3100 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3101 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003102 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003103 return setUnsignedRange(U, ConservativeResult);
3104 return setUnsignedRange(U,
3105 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003106 }
3107
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003108 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003109}
3110
Dan Gohman85b05a22009-07-13 21:35:55 +00003111/// getSignedRange - Determine the signed range for a particular SCEV.
3112///
3113ConstantRange
3114ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003115 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3116 if (I != SignedRanges.end())
3117 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003118
Dan Gohman85b05a22009-07-13 21:35:55 +00003119 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003120 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003121
Dan Gohman52fddd32010-01-26 04:40:18 +00003122 unsigned BitWidth = getTypeSizeInBits(S->getType());
3123 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3124
3125 // If the value has known zeros, the maximum signed value will have those
3126 // known zeros as well.
3127 uint32_t TZ = GetMinTrailingZeros(S);
3128 if (TZ != 0)
3129 ConservativeResult =
3130 ConstantRange(APInt::getSignedMinValue(BitWidth),
3131 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3132
Dan Gohman85b05a22009-07-13 21:35:55 +00003133 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3134 ConstantRange X = getSignedRange(Add->getOperand(0));
3135 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3136 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003137 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003138 }
3139
Dan Gohman85b05a22009-07-13 21:35:55 +00003140 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3141 ConstantRange X = getSignedRange(Mul->getOperand(0));
3142 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3143 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003144 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003145 }
3146
Dan Gohman85b05a22009-07-13 21:35:55 +00003147 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3148 ConstantRange X = getSignedRange(SMax->getOperand(0));
3149 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3150 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003151 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003152 }
Dan Gohman62849c02009-06-24 01:05:09 +00003153
Dan Gohman85b05a22009-07-13 21:35:55 +00003154 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3155 ConstantRange X = getSignedRange(UMax->getOperand(0));
3156 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3157 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003158 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003159 }
Dan Gohman62849c02009-06-24 01:05:09 +00003160
Dan Gohman85b05a22009-07-13 21:35:55 +00003161 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3162 ConstantRange X = getSignedRange(UDiv->getLHS());
3163 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003164 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003165 }
Dan Gohman62849c02009-06-24 01:05:09 +00003166
Dan Gohman85b05a22009-07-13 21:35:55 +00003167 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3168 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003169 return setSignedRange(ZExt,
3170 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003171 }
3172
3173 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3174 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003175 return setSignedRange(SExt,
3176 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003177 }
3178
3179 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3180 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003181 return setSignedRange(Trunc,
3182 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003183 }
3184
Dan Gohman85b05a22009-07-13 21:35:55 +00003185 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003186 // If there's no signed wrap, and all the operands have the same sign or
3187 // zero, the value won't ever change sign.
3188 if (AddRec->hasNoSignedWrap()) {
3189 bool AllNonNeg = true;
3190 bool AllNonPos = true;
3191 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3192 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3193 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3194 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003195 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003196 ConservativeResult = ConservativeResult.intersectWith(
3197 ConstantRange(APInt(BitWidth, 0),
3198 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003199 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003200 ConservativeResult = ConservativeResult.intersectWith(
3201 ConstantRange(APInt::getSignedMinValue(BitWidth),
3202 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003203 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003204
3205 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003206 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003207 const Type *Ty = AddRec->getType();
3208 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003209 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3210 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003211 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3212
3213 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003214 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003215
3216 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003217 ConstantRange StepRange = getSignedRange(Step);
3218 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3219 ConstantRange EndRange =
3220 StartRange.add(MaxBECountRange.multiply(StepRange));
3221
3222 // Check for overflow. This must be done with ConstantRange arithmetic
3223 // because we could be called from within the ScalarEvolution overflow
3224 // checking code.
3225 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3226 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3227 ConstantRange ExtMaxBECountRange =
3228 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3229 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3230 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3231 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003232 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003233
Dan Gohman85b05a22009-07-13 21:35:55 +00003234 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3235 EndRange.getSignedMin());
3236 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3237 EndRange.getSignedMax());
3238 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003239 return setSignedRange(AddRec, ConservativeResult);
3240 return setSignedRange(AddRec,
3241 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003242 }
Dan Gohman62849c02009-06-24 01:05:09 +00003243 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003244
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003245 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003246 }
3247
Dan Gohman2c364ad2009-06-19 23:29:04 +00003248 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3249 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003250 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003251 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003252 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3253 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003254 return setSignedRange(U, ConservativeResult);
3255 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003256 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003257 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003258 }
3259
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003260 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003261}
3262
Chris Lattner53e677a2004-04-02 20:23:17 +00003263/// createSCEV - We know that there is no SCEV for the specified value.
3264/// Analyze the expression.
3265///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003266const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003267 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003268 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003269
Dan Gohman6c459a22008-06-22 19:56:46 +00003270 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003271 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003272 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003273
3274 // Don't attempt to analyze instructions in blocks that aren't
3275 // reachable. Such instructions don't matter, and they aren't required
3276 // to obey basic rules for definitions dominating uses which this
3277 // analysis depends on.
3278 if (!DT->isReachableFromEntry(I->getParent()))
3279 return getUnknown(V);
3280 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003281 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003282 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3283 return getConstant(CI);
3284 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003285 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003286 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3287 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003288 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003289 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003290
Dan Gohmanca178902009-07-17 20:47:02 +00003291 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003292 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003293 case Instruction::Add: {
3294 // The simple thing to do would be to just call getSCEV on both operands
3295 // and call getAddExpr with the result. However if we're looking at a
3296 // bunch of things all added together, this can be quite inefficient,
3297 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3298 // Instead, gather up all the operands and make a single getAddExpr call.
3299 // LLVM IR canonical form means we need only traverse the left operands.
3300 SmallVector<const SCEV *, 4> AddOps;
3301 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003302 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3303 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3304 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3305 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003306 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003307 const SCEV *Op1 = getSCEV(U->getOperand(1));
3308 if (Opcode == Instruction::Sub)
3309 AddOps.push_back(getNegativeSCEV(Op1));
3310 else
3311 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003312 }
3313 AddOps.push_back(getSCEV(U->getOperand(0)));
3314 return getAddExpr(AddOps);
3315 }
3316 case Instruction::Mul: {
3317 // See the Add code above.
3318 SmallVector<const SCEV *, 4> MulOps;
3319 MulOps.push_back(getSCEV(U->getOperand(1)));
3320 for (Value *Op = U->getOperand(0);
3321 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3322 Op = U->getOperand(0)) {
3323 U = cast<Operator>(Op);
3324 MulOps.push_back(getSCEV(U->getOperand(1)));
3325 }
3326 MulOps.push_back(getSCEV(U->getOperand(0)));
3327 return getMulExpr(MulOps);
3328 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003329 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003330 return getUDivExpr(getSCEV(U->getOperand(0)),
3331 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003332 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003333 return getMinusSCEV(getSCEV(U->getOperand(0)),
3334 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003335 case Instruction::And:
3336 // For an expression like x&255 that merely masks off the high bits,
3337 // use zext(trunc(x)) as the SCEV expression.
3338 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003339 if (CI->isNullValue())
3340 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003341 if (CI->isAllOnesValue())
3342 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003343 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003344
3345 // Instcombine's ShrinkDemandedConstant may strip bits out of
3346 // constants, obscuring what would otherwise be a low-bits mask.
3347 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3348 // knew about to reconstruct a low-bits mask value.
3349 unsigned LZ = A.countLeadingZeros();
3350 unsigned BitWidth = A.getBitWidth();
3351 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3352 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3353 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3354
3355 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3356
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003357 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003358 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003359 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003360 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003361 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003362 }
3363 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003364
Dan Gohman6c459a22008-06-22 19:56:46 +00003365 case Instruction::Or:
3366 // If the RHS of the Or is a constant, we may have something like:
3367 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3368 // optimizations will transparently handle this case.
3369 //
3370 // In order for this transformation to be safe, the LHS must be of the
3371 // form X*(2^n) and the Or constant must be less than 2^n.
3372 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003373 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003374 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003375 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003376 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3377 // Build a plain add SCEV.
3378 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3379 // If the LHS of the add was an addrec and it has no-wrap flags,
3380 // transfer the no-wrap flags, since an or won't introduce a wrap.
3381 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3382 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3383 if (OldAR->hasNoUnsignedWrap())
3384 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3385 if (OldAR->hasNoSignedWrap())
3386 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3387 }
3388 return S;
3389 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003390 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003391 break;
3392 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003393 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003394 // If the RHS of the xor is a signbit, then this is just an add.
3395 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003396 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003397 return getAddExpr(getSCEV(U->getOperand(0)),
3398 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003399
3400 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003401 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003402 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003403
3404 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3405 // This is a variant of the check for xor with -1, and it handles
3406 // the case where instcombine has trimmed non-demanded bits out
3407 // of an xor with -1.
3408 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3409 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3410 if (BO->getOpcode() == Instruction::And &&
3411 LCI->getValue() == CI->getValue())
3412 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003413 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003414 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003415 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003416 const Type *Z0Ty = Z0->getType();
3417 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3418
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003419 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003420 // mask off the high bits. Complement the operand and
3421 // re-apply the zext.
3422 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3423 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3424
3425 // If C is a single bit, it may be in the sign-bit position
3426 // before the zero-extend. In this case, represent the xor
3427 // using an add, which is equivalent, and re-apply the zext.
3428 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3429 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3430 Trunc.isSignBit())
3431 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3432 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003433 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003434 }
3435 break;
3436
3437 case Instruction::Shl:
3438 // Turn shift left of a constant amount into a multiply.
3439 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003440 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003441
3442 // If the shift count is not less than the bitwidth, the result of
3443 // the shift is undefined. Don't try to analyze it, because the
3444 // resolution chosen here may differ from the resolution chosen in
3445 // other parts of the compiler.
3446 if (SA->getValue().uge(BitWidth))
3447 break;
3448
Owen Andersoneed707b2009-07-24 23:12:02 +00003449 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003450 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003451 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003452 }
3453 break;
3454
Nick Lewycky01eaf802008-07-07 06:15:49 +00003455 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003456 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003457 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003458 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003459
3460 // If the shift count is not less than the bitwidth, the result of
3461 // the shift is undefined. Don't try to analyze it, because the
3462 // resolution chosen here may differ from the resolution chosen in
3463 // other parts of the compiler.
3464 if (SA->getValue().uge(BitWidth))
3465 break;
3466
Owen Andersoneed707b2009-07-24 23:12:02 +00003467 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003468 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003469 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003470 }
3471 break;
3472
Dan Gohman4ee29af2009-04-21 02:26:00 +00003473 case Instruction::AShr:
3474 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3475 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003476 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003477 if (L->getOpcode() == Instruction::Shl &&
3478 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003479 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3480
3481 // If the shift count is not less than the bitwidth, the result of
3482 // the shift is undefined. Don't try to analyze it, because the
3483 // resolution chosen here may differ from the resolution chosen in
3484 // other parts of the compiler.
3485 if (CI->getValue().uge(BitWidth))
3486 break;
3487
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003488 uint64_t Amt = BitWidth - CI->getZExtValue();
3489 if (Amt == BitWidth)
3490 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003491 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003492 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003493 IntegerType::get(getContext(),
3494 Amt)),
3495 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003496 }
3497 break;
3498
Dan Gohman6c459a22008-06-22 19:56:46 +00003499 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003500 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003501
3502 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003503 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003504
3505 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003506 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003507
3508 case Instruction::BitCast:
3509 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003510 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003511 return getSCEV(U->getOperand(0));
3512 break;
3513
Dan Gohman4f8eea82010-02-01 18:27:38 +00003514 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3515 // lead to pointer expressions which cannot safely be expanded to GEPs,
3516 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3517 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003518
Dan Gohman26466c02009-05-08 20:26:55 +00003519 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003520 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003521
Dan Gohman6c459a22008-06-22 19:56:46 +00003522 case Instruction::PHI:
3523 return createNodeForPHI(cast<PHINode>(U));
3524
3525 case Instruction::Select:
3526 // This could be a smax or umax that was lowered earlier.
3527 // Try to recover it.
3528 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3529 Value *LHS = ICI->getOperand(0);
3530 Value *RHS = ICI->getOperand(1);
3531 switch (ICI->getPredicate()) {
3532 case ICmpInst::ICMP_SLT:
3533 case ICmpInst::ICMP_SLE:
3534 std::swap(LHS, RHS);
3535 // fall through
3536 case ICmpInst::ICMP_SGT:
3537 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003538 // a >s b ? a+x : b+x -> smax(a, b)+x
3539 // a >s b ? b+x : a+x -> smin(a, b)+x
3540 if (LHS->getType() == U->getType()) {
3541 const SCEV *LS = getSCEV(LHS);
3542 const SCEV *RS = getSCEV(RHS);
3543 const SCEV *LA = getSCEV(U->getOperand(1));
3544 const SCEV *RA = getSCEV(U->getOperand(2));
3545 const SCEV *LDiff = getMinusSCEV(LA, LS);
3546 const SCEV *RDiff = getMinusSCEV(RA, RS);
3547 if (LDiff == RDiff)
3548 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3549 LDiff = getMinusSCEV(LA, RS);
3550 RDiff = getMinusSCEV(RA, LS);
3551 if (LDiff == RDiff)
3552 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3553 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003554 break;
3555 case ICmpInst::ICMP_ULT:
3556 case ICmpInst::ICMP_ULE:
3557 std::swap(LHS, RHS);
3558 // fall through
3559 case ICmpInst::ICMP_UGT:
3560 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003561 // a >u b ? a+x : b+x -> umax(a, b)+x
3562 // a >u b ? b+x : a+x -> umin(a, b)+x
3563 if (LHS->getType() == U->getType()) {
3564 const SCEV *LS = getSCEV(LHS);
3565 const SCEV *RS = getSCEV(RHS);
3566 const SCEV *LA = getSCEV(U->getOperand(1));
3567 const SCEV *RA = getSCEV(U->getOperand(2));
3568 const SCEV *LDiff = getMinusSCEV(LA, LS);
3569 const SCEV *RDiff = getMinusSCEV(RA, RS);
3570 if (LDiff == RDiff)
3571 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3572 LDiff = getMinusSCEV(LA, RS);
3573 RDiff = getMinusSCEV(RA, LS);
3574 if (LDiff == RDiff)
3575 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3576 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003577 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003578 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003579 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3580 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003581 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003582 cast<ConstantInt>(RHS)->isZero()) {
3583 const SCEV *One = getConstant(LHS->getType(), 1);
3584 const SCEV *LS = getSCEV(LHS);
3585 const SCEV *LA = getSCEV(U->getOperand(1));
3586 const SCEV *RA = getSCEV(U->getOperand(2));
3587 const SCEV *LDiff = getMinusSCEV(LA, LS);
3588 const SCEV *RDiff = getMinusSCEV(RA, One);
3589 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003590 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003591 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003592 break;
3593 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003594 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3595 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003596 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003597 cast<ConstantInt>(RHS)->isZero()) {
3598 const SCEV *One = getConstant(LHS->getType(), 1);
3599 const SCEV *LS = getSCEV(LHS);
3600 const SCEV *LA = getSCEV(U->getOperand(1));
3601 const SCEV *RA = getSCEV(U->getOperand(2));
3602 const SCEV *LDiff = getMinusSCEV(LA, One);
3603 const SCEV *RDiff = getMinusSCEV(RA, LS);
3604 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003605 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003606 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003607 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003608 default:
3609 break;
3610 }
3611 }
3612
3613 default: // We cannot analyze this expression.
3614 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003615 }
3616
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003617 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003618}
3619
3620
3621
3622//===----------------------------------------------------------------------===//
3623// Iteration Count Computation Code
3624//
3625
Dan Gohman46bdfb02009-02-24 18:55:53 +00003626/// getBackedgeTakenCount - If the specified loop has a predictable
3627/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3628/// object. The backedge-taken count is the number of times the loop header
3629/// will be branched to from within the loop. This is one less than the
3630/// trip count of the loop, since it doesn't count the first iteration,
3631/// when the header is branched to from outside the loop.
3632///
3633/// Note that it is not valid to call this method on a loop without a
3634/// loop-invariant backedge-taken count (see
3635/// hasLoopInvariantBackedgeTakenCount).
3636///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003637const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003638 return getBackedgeTakenInfo(L).Exact;
3639}
3640
3641/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3642/// return the least SCEV value that is known never to be less than the
3643/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003644const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003645 return getBackedgeTakenInfo(L).Max;
3646}
3647
Dan Gohman59ae6b92009-07-08 19:23:34 +00003648/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3649/// onto the given Worklist.
3650static void
3651PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3652 BasicBlock *Header = L->getHeader();
3653
3654 // Push all Loop-header PHIs onto the Worklist stack.
3655 for (BasicBlock::iterator I = Header->begin();
3656 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3657 Worklist.push_back(PN);
3658}
3659
Dan Gohmana1af7572009-04-30 20:47:05 +00003660const ScalarEvolution::BackedgeTakenInfo &
3661ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003662 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003663 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003664 // update the value. The temporary CouldNotCompute value tells SCEV
3665 // code elsewhere that it shouldn't attempt to request a new
3666 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003667 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003668 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3669 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003670 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3671 if (BECount.Exact != getCouldNotCompute()) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00003672 assert(isLoopInvariant(BECount.Exact, L) &&
3673 isLoopInvariant(BECount.Max, L) &&
Dan Gohman93dacad2010-01-26 16:46:18 +00003674 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003675 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003676
Dan Gohman01ecca22009-04-27 20:16:15 +00003677 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003678 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003679 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003680 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003681 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003682 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003683 if (isa<PHINode>(L->getHeader()->begin()))
3684 // Only count loops that have phi nodes as not being computable.
3685 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003686 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003687
3688 // Now that we know more about the trip count for this loop, forget any
3689 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003690 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003691 // information. This is similar to the code in forgetLoop, except that
3692 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003693 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003694 SmallVector<Instruction *, 16> Worklist;
3695 PushLoopPHIs(L, Worklist);
3696
3697 SmallPtrSet<Instruction *, 8> Visited;
3698 while (!Worklist.empty()) {
3699 Instruction *I = Worklist.pop_back_val();
3700 if (!Visited.insert(I)) continue;
3701
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003702 ValueExprMapType::iterator It =
3703 ValueExprMap.find(static_cast<Value *>(I));
3704 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003705 const SCEV *Old = It->second;
3706
Dan Gohman59ae6b92009-07-08 19:23:34 +00003707 // SCEVUnknown for a PHI either means that it has an unrecognized
3708 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003709 // by createNodeForPHI. In the former case, additional loop trip
3710 // count information isn't going to change anything. In the later
3711 // case, createNodeForPHI will perform the necessary updates on its
3712 // own when it gets to that point.
Dan Gohman6678e7b2010-11-17 02:44:44 +00003713 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3714 ValuesAtScopes.erase(Old);
3715 UnsignedRanges.erase(Old);
3716 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003717 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003718 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003719 if (PHINode *PN = dyn_cast<PHINode>(I))
3720 ConstantEvolutionLoopExitValue.erase(PN);
3721 }
3722
3723 PushDefUseChildren(I, Worklist);
3724 }
3725 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003726 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003727 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003728}
3729
Dan Gohman4c7279a2009-10-31 15:04:55 +00003730/// forgetLoop - This method should be called by the client when it has
3731/// changed a loop in a way that may effect ScalarEvolution's ability to
3732/// compute a trip count, or if the loop is deleted.
3733void ScalarEvolution::forgetLoop(const Loop *L) {
3734 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003735 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003736
Dan Gohman4c7279a2009-10-31 15:04:55 +00003737 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003738 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003739 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003740
Dan Gohman59ae6b92009-07-08 19:23:34 +00003741 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003742 while (!Worklist.empty()) {
3743 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003744 if (!Visited.insert(I)) continue;
3745
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003746 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3747 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003748 const SCEV *Old = It->second;
3749 ValuesAtScopes.erase(Old);
3750 UnsignedRanges.erase(Old);
3751 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003752 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003753 if (PHINode *PN = dyn_cast<PHINode>(I))
3754 ConstantEvolutionLoopExitValue.erase(PN);
3755 }
3756
3757 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003758 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003759
3760 // Forget all contained loops too, to avoid dangling entries in the
3761 // ValuesAtScopes map.
3762 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3763 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003764}
3765
Eric Christophere6cbfa62010-07-29 01:25:38 +00003766/// forgetValue - This method should be called by the client when it has
3767/// changed a value in a way that may effect its value, or which may
3768/// disconnect it from a def-use chain linking it to a loop.
3769void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003770 Instruction *I = dyn_cast<Instruction>(V);
3771 if (!I) return;
3772
3773 // Drop information about expressions based on loop-header PHIs.
3774 SmallVector<Instruction *, 16> Worklist;
3775 Worklist.push_back(I);
3776
3777 SmallPtrSet<Instruction *, 8> Visited;
3778 while (!Worklist.empty()) {
3779 I = Worklist.pop_back_val();
3780 if (!Visited.insert(I)) continue;
3781
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003782 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3783 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003784 const SCEV *Old = It->second;
3785 ValuesAtScopes.erase(Old);
3786 UnsignedRanges.erase(Old);
3787 SignedRanges.erase(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003788 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003789 if (PHINode *PN = dyn_cast<PHINode>(I))
3790 ConstantEvolutionLoopExitValue.erase(PN);
3791 }
3792
3793 PushDefUseChildren(I, Worklist);
3794 }
3795}
3796
Dan Gohman46bdfb02009-02-24 18:55:53 +00003797/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3798/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003799ScalarEvolution::BackedgeTakenInfo
3800ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003801 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003802 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003803
Dan Gohmana334aa72009-06-22 00:31:57 +00003804 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003805 const SCEV *BECount = getCouldNotCompute();
3806 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003807 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003808 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3809 BackedgeTakenInfo NewBTI =
3810 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003811
Dan Gohman1c343752009-06-27 21:21:31 +00003812 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003813 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003814 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003815 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003816 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003817 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003818 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003819 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003820 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003821 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003822 }
Dan Gohman1c343752009-06-27 21:21:31 +00003823 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003824 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003825 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003826 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003827 }
3828
3829 return BackedgeTakenInfo(BECount, MaxBECount);
3830}
3831
3832/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3833/// of the specified loop will execute if it exits via the specified block.
3834ScalarEvolution::BackedgeTakenInfo
3835ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3836 BasicBlock *ExitingBlock) {
3837
3838 // Okay, we've chosen an exiting block. See what condition causes us to
3839 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003840 //
3841 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003842 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003843 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003844 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003845
Chris Lattner8b0e3602007-01-07 02:24:26 +00003846 // At this point, we know we have a conditional branch that determines whether
3847 // the loop is exited. However, we don't know if the branch is executed each
3848 // time through the loop. If not, then the execution count of the branch will
3849 // not be equal to the trip count of the loop.
3850 //
3851 // Currently we check for this by checking to see if the Exit branch goes to
3852 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003853 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003854 // loop header. This is common for un-rotated loops.
3855 //
3856 // If both of those tests fail, walk up the unique predecessor chain to the
3857 // header, stopping if there is an edge that doesn't exit the loop. If the
3858 // header is reached, the execution count of the branch will be equal to the
3859 // trip count of the loop.
3860 //
3861 // More extensive analysis could be done to handle more cases here.
3862 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003863 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003864 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003865 ExitBr->getParent() != L->getHeader()) {
3866 // The simple checks failed, try climbing the unique predecessor chain
3867 // up to the header.
3868 bool Ok = false;
3869 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3870 BasicBlock *Pred = BB->getUniquePredecessor();
3871 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003872 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003873 TerminatorInst *PredTerm = Pred->getTerminator();
3874 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3875 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3876 if (PredSucc == BB)
3877 continue;
3878 // If the predecessor has a successor that isn't BB and isn't
3879 // outside the loop, assume the worst.
3880 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003881 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003882 }
3883 if (Pred == L->getHeader()) {
3884 Ok = true;
3885 break;
3886 }
3887 BB = Pred;
3888 }
3889 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003890 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003891 }
3892
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003893 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003894 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3895 ExitBr->getSuccessor(0),
3896 ExitBr->getSuccessor(1));
3897}
3898
3899/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3900/// backedge of the specified loop will execute if its exit condition
3901/// were a conditional branch of ExitCond, TBB, and FBB.
3902ScalarEvolution::BackedgeTakenInfo
3903ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3904 Value *ExitCond,
3905 BasicBlock *TBB,
3906 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003907 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003908 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3909 if (BO->getOpcode() == Instruction::And) {
3910 // Recurse on the operands of the and.
3911 BackedgeTakenInfo BTI0 =
3912 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3913 BackedgeTakenInfo BTI1 =
3914 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003915 const SCEV *BECount = getCouldNotCompute();
3916 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003917 if (L->contains(TBB)) {
3918 // Both conditions must be true for the loop to continue executing.
3919 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003920 if (BTI0.Exact == getCouldNotCompute() ||
3921 BTI1.Exact == getCouldNotCompute())
3922 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003923 else
3924 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003925 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003926 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003927 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003928 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003929 else
3930 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003931 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003932 // Both conditions must be true at the same time for the loop to exit.
3933 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003934 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003935 if (BTI0.Max == BTI1.Max)
3936 MaxBECount = BTI0.Max;
3937 if (BTI0.Exact == BTI1.Exact)
3938 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003939 }
3940
3941 return BackedgeTakenInfo(BECount, MaxBECount);
3942 }
3943 if (BO->getOpcode() == Instruction::Or) {
3944 // Recurse on the operands of the or.
3945 BackedgeTakenInfo BTI0 =
3946 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3947 BackedgeTakenInfo BTI1 =
3948 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003949 const SCEV *BECount = getCouldNotCompute();
3950 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003951 if (L->contains(FBB)) {
3952 // Both conditions must be false for the loop to continue executing.
3953 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003954 if (BTI0.Exact == getCouldNotCompute() ||
3955 BTI1.Exact == getCouldNotCompute())
3956 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003957 else
3958 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003959 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003960 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003961 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003962 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003963 else
3964 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003965 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003966 // Both conditions must be false at the same time for the loop to exit.
3967 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003968 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003969 if (BTI0.Max == BTI1.Max)
3970 MaxBECount = BTI0.Max;
3971 if (BTI0.Exact == BTI1.Exact)
3972 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003973 }
3974
3975 return BackedgeTakenInfo(BECount, MaxBECount);
3976 }
3977 }
3978
3979 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003980 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003981 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3982 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003983
Dan Gohman00cb5b72010-02-19 18:12:07 +00003984 // Check for a constant condition. These are normally stripped out by
3985 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3986 // preserve the CFG and is temporarily leaving constant conditions
3987 // in place.
3988 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3989 if (L->contains(FBB) == !CI->getZExtValue())
3990 // The backedge is always taken.
3991 return getCouldNotCompute();
3992 else
3993 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003994 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003995 }
3996
Eli Friedman361e54d2009-05-09 12:32:42 +00003997 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003998 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3999}
4000
4001/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4002/// backedge of the specified loop will execute if its exit condition
4003/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4004ScalarEvolution::BackedgeTakenInfo
4005ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4006 ICmpInst *ExitCond,
4007 BasicBlock *TBB,
4008 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004009
Reid Spencere4d87aa2006-12-23 06:05:41 +00004010 // If the condition was exit on true, convert the condition to exit on false
4011 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004012 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004013 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004014 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004015 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004016
4017 // Handle common loops like: for (X = "string"; *X; ++X)
4018 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4019 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004020 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004021 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004022 if (ItCnt.hasAnyInfo())
4023 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004024 }
4025
Dan Gohman0bba49c2009-07-07 17:06:11 +00004026 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4027 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004028
4029 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004030 LHS = getSCEVAtScope(LHS, L);
4031 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004032
Dan Gohman64a845e2009-06-24 04:48:43 +00004033 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004034 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004035 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004036 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004037 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004038 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004039 }
4040
Dan Gohman03557dc2010-05-03 16:35:17 +00004041 // Simplify the operands before analyzing them.
4042 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4043
Chris Lattner53e677a2004-04-02 20:23:17 +00004044 // If we have a comparison of a chrec against a constant, try to use value
4045 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004046 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4047 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004048 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004049 // Form the constant range.
4050 ConstantRange CompRange(
4051 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004052
Dan Gohman0bba49c2009-07-07 17:06:11 +00004053 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004054 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004055 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004056
Chris Lattner53e677a2004-04-02 20:23:17 +00004057 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004058 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004059 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004060 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4061 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004062 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004063 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004064 case ICmpInst::ICMP_EQ: { // while (X == Y)
4065 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004066 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4067 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004068 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004069 }
4070 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004071 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4072 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004073 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004074 }
4075 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004076 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4077 getNotSCEV(RHS), L, true);
4078 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004079 break;
4080 }
4081 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004082 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4083 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004084 break;
4085 }
4086 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004087 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4088 getNotSCEV(RHS), L, false);
4089 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004090 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004091 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004092 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004093#if 0
David Greene25e0e872009-12-23 22:18:14 +00004094 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004095 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004096 dbgs() << "[unsigned] ";
4097 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004098 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004099 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004100#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004101 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004102 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004103 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004104 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004105}
4106
Chris Lattner673e02b2004-10-12 01:49:27 +00004107static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004108EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4109 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004110 const SCEV *InVal = SE.getConstant(C);
4111 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004112 assert(isa<SCEVConstant>(Val) &&
4113 "Evaluation of SCEV at constant didn't fold correctly?");
4114 return cast<SCEVConstant>(Val)->getValue();
4115}
4116
4117/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4118/// and a GEP expression (missing the pointer index) indexing into it, return
4119/// the addressed element of the initializer or null if the index expression is
4120/// invalid.
4121static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004122GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004123 const std::vector<ConstantInt*> &Indices) {
4124 Constant *Init = GV->getInitializer();
4125 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004126 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004127 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4128 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4129 Init = cast<Constant>(CS->getOperand(Idx));
4130 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4131 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4132 Init = cast<Constant>(CA->getOperand(Idx));
4133 } else if (isa<ConstantAggregateZero>(Init)) {
4134 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4135 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004136 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004137 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4138 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004139 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004140 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004141 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004142 }
4143 return 0;
4144 } else {
4145 return 0; // Unknown initializer type
4146 }
4147 }
4148 return Init;
4149}
4150
Dan Gohman46bdfb02009-02-24 18:55:53 +00004151/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4152/// 'icmp op load X, cst', try to see if we can compute the backedge
4153/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004154ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004155ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4156 LoadInst *LI,
4157 Constant *RHS,
4158 const Loop *L,
4159 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004160 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004161
4162 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004163 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004164 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004165 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004166
4167 // Make sure that it is really a constant global we are gepping, with an
4168 // initializer, and make sure the first IDX is really 0.
4169 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004170 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004171 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4172 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004173 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004174
4175 // Okay, we allow one non-constant index into the GEP instruction.
4176 Value *VarIdx = 0;
4177 std::vector<ConstantInt*> Indexes;
4178 unsigned VarIdxNum = 0;
4179 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4180 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4181 Indexes.push_back(CI);
4182 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004183 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004184 VarIdx = GEP->getOperand(i);
4185 VarIdxNum = i-2;
4186 Indexes.push_back(0);
4187 }
4188
4189 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4190 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004191 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004192 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004193
4194 // We can only recognize very limited forms of loop index expressions, in
4195 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004196 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004197 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004198 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4199 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004200 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004201
4202 unsigned MaxSteps = MaxBruteForceIterations;
4203 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004204 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004205 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004206 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004207
4208 // Form the GEP offset.
4209 Indexes[VarIdxNum] = Val;
4210
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004211 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004212 if (Result == 0) break; // Cannot compute!
4213
4214 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004215 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004216 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004217 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004218#if 0
David Greene25e0e872009-12-23 22:18:14 +00004219 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004220 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4221 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004222#endif
4223 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004224 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004225 }
4226 }
Dan Gohman1c343752009-06-27 21:21:31 +00004227 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004228}
4229
4230
Chris Lattner3221ad02004-04-17 22:58:41 +00004231/// CanConstantFold - Return true if we can constant fold an instruction of the
4232/// specified type, assuming that all operands were constants.
4233static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004234 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004235 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4236 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004237
Chris Lattner3221ad02004-04-17 22:58:41 +00004238 if (const CallInst *CI = dyn_cast<CallInst>(I))
4239 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004240 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004241 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004242}
4243
Chris Lattner3221ad02004-04-17 22:58:41 +00004244/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4245/// in the loop that V is derived from. We allow arbitrary operations along the
4246/// way, but the operands of an operation must either be constants or a value
4247/// derived from a constant PHI. If this expression does not fit with these
4248/// constraints, return null.
4249static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4250 // If this is not an instruction, or if this is an instruction outside of the
4251 // loop, it can't be derived from a loop PHI.
4252 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004253 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004254
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004255 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004256 if (L->getHeader() == I->getParent())
4257 return PN;
4258 else
4259 // We don't currently keep track of the control flow needed to evaluate
4260 // PHIs, so we cannot handle PHIs inside of loops.
4261 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004262 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004263
4264 // If we won't be able to constant fold this expression even if the operands
4265 // are constants, return early.
4266 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004267
Chris Lattner3221ad02004-04-17 22:58:41 +00004268 // Otherwise, we can evaluate this instruction if all of its operands are
4269 // constant or derived from a PHI node themselves.
4270 PHINode *PHI = 0;
4271 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004272 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004273 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4274 if (P == 0) return 0; // Not evolving from PHI
4275 if (PHI == 0)
4276 PHI = P;
4277 else if (PHI != P)
4278 return 0; // Evolving from multiple different PHIs.
4279 }
4280
4281 // This is a expression evolving from a constant PHI!
4282 return PHI;
4283}
4284
4285/// EvaluateExpression - Given an expression that passes the
4286/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4287/// in the loop has the value PHIVal. If we can't fold this expression for some
4288/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004289static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4290 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004291 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004292 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004293 Instruction *I = cast<Instruction>(V);
4294
Dan Gohman9d4588f2010-06-22 13:15:46 +00004295 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004296
4297 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004298 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004299 if (Operands[i] == 0) return 0;
4300 }
4301
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004302 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004303 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004304 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004305 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004306 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004307}
4308
4309/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4310/// in the header of its containing loop, we know the loop executes a
4311/// constant number of times, and the PHI node is just a recurrence
4312/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004313Constant *
4314ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004315 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004316 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004317 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004318 ConstantEvolutionLoopExitValue.find(PN);
4319 if (I != ConstantEvolutionLoopExitValue.end())
4320 return I->second;
4321
Dan Gohmane0567812010-04-08 23:03:40 +00004322 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004323 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4324
4325 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4326
4327 // Since the loop is canonicalized, the PHI node must have two entries. One
4328 // entry must be a constant (coming in from outside of the loop), and the
4329 // second must be derived from the same PHI.
4330 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4331 Constant *StartCST =
4332 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4333 if (StartCST == 0)
4334 return RetVal = 0; // Must be a constant.
4335
4336 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004337 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4338 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004339 return RetVal = 0; // Not derived from same PHI.
4340
4341 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004342 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004343 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004344
Dan Gohman46bdfb02009-02-24 18:55:53 +00004345 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004346 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004347 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4348 if (IterationNum == NumIterations)
4349 return RetVal = PHIVal; // Got exit value!
4350
4351 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004352 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004353 if (NextPHI == PHIVal)
4354 return RetVal = NextPHI; // Stopped evolving!
4355 if (NextPHI == 0)
4356 return 0; // Couldn't evaluate!
4357 PHIVal = NextPHI;
4358 }
4359}
4360
Dan Gohman07ad19b2009-07-27 16:09:48 +00004361/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004362/// constant number of times (the condition evolves only from constants),
4363/// try to evaluate a few iterations of the loop until we get the exit
4364/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004365/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004366const SCEV *
4367ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4368 Value *Cond,
4369 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004370 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004371 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004372
Dan Gohmanb92654d2010-06-19 14:17:24 +00004373 // If the loop is canonicalized, the PHI will have exactly two entries.
4374 // That's the only form we support here.
4375 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4376
4377 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004378 // second must be derived from the same PHI.
4379 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4380 Constant *StartCST =
4381 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004382 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004383
4384 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004385 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4386 !isa<Constant>(BEValue))
4387 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004388
4389 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4390 // the loop symbolically to determine when the condition gets a value of
4391 // "ExitWhen".
4392 unsigned IterationNum = 0;
4393 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4394 for (Constant *PHIVal = StartCST;
4395 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004396 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004397 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004398
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004399 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004400 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004401
Reid Spencere8019bb2007-03-01 07:25:48 +00004402 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004403 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004404 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004405 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004406
Chris Lattner3221ad02004-04-17 22:58:41 +00004407 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004408 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004409 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004410 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004411 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004412 }
4413
4414 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004415 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004416}
4417
Dan Gohmane7125f42009-09-03 15:00:26 +00004418/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004419/// at the specified scope in the program. The L value specifies a loop
4420/// nest to evaluate the expression at, where null is the top-level or a
4421/// specified loop is immediately inside of the loop.
4422///
4423/// This method can be used to compute the exit value for a variable defined
4424/// in a loop by querying what the value will hold in the parent loop.
4425///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004426/// In the case that a relevant loop exit value cannot be computed, the
4427/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004428const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004429 // Check to see if we've folded this expression at this loop before.
4430 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4431 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4432 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4433 if (!Pair.second)
4434 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004435
Dan Gohman42214892009-08-31 21:15:23 +00004436 // Otherwise compute it.
4437 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004438 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004439 return C;
4440}
4441
4442const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004443 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004444
Nick Lewycky3e630762008-02-20 06:48:22 +00004445 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004446 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004447 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004448 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004449 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004450 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4451 if (PHINode *PN = dyn_cast<PHINode>(I))
4452 if (PN->getParent() == LI->getHeader()) {
4453 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004454 // to see if the loop that contains it has a known backedge-taken
4455 // count. If so, we may be able to force computation of the exit
4456 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004457 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004458 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004459 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004460 // Okay, we know how many times the containing loop executes. If
4461 // this is a constant evolving PHI node, get the final value at
4462 // the specified iteration number.
4463 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004464 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004465 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004466 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004467 }
4468 }
4469
Reid Spencer09906f32006-12-04 21:33:23 +00004470 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004471 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004472 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004473 // result. This is particularly useful for computing loop exit values.
4474 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004475 SmallVector<Constant *, 4> Operands;
4476 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004477 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4478 Value *Op = I->getOperand(i);
4479 if (Constant *C = dyn_cast<Constant>(Op)) {
4480 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004481 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004482 }
Dan Gohman11046452010-06-29 23:43:06 +00004483
4484 // If any of the operands is non-constant and if they are
4485 // non-integer and non-pointer, don't even try to analyze them
4486 // with scev techniques.
4487 if (!isSCEVable(Op->getType()))
4488 return V;
4489
4490 const SCEV *OrigV = getSCEV(Op);
4491 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4492 MadeImprovement |= OrigV != OpV;
4493
4494 Constant *C = 0;
4495 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4496 C = SC->getValue();
4497 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4498 C = dyn_cast<Constant>(SU->getValue());
4499 if (!C) return V;
4500 if (C->getType() != Op->getType())
4501 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4502 Op->getType(),
4503 false),
4504 C, Op->getType());
4505 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004506 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004507
Dan Gohman11046452010-06-29 23:43:06 +00004508 // Check to see if getSCEVAtScope actually made an improvement.
4509 if (MadeImprovement) {
4510 Constant *C = 0;
4511 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4512 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4513 Operands[0], Operands[1], TD);
4514 else
4515 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4516 &Operands[0], Operands.size(), TD);
4517 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004518 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004519 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004520 }
4521 }
4522
4523 // This is some other type of SCEVUnknown, just return it.
4524 return V;
4525 }
4526
Dan Gohman622ed672009-05-04 22:02:23 +00004527 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004528 // Avoid performing the look-up in the common case where the specified
4529 // expression has no loop-variant portions.
4530 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004531 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004532 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004533 // Okay, at least one of these operands is loop variant but might be
4534 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004535 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4536 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004537 NewOps.push_back(OpAtScope);
4538
4539 for (++i; i != e; ++i) {
4540 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004541 NewOps.push_back(OpAtScope);
4542 }
4543 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004544 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004545 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004546 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004547 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004548 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004549 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004550 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004551 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004552 }
4553 }
4554 // If we got here, all operands are loop invariant.
4555 return Comm;
4556 }
4557
Dan Gohman622ed672009-05-04 22:02:23 +00004558 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004559 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4560 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004561 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4562 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004563 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004564 }
4565
4566 // If this is a loop recurrence for a loop that does not contain L, then we
4567 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004568 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004569 // First, attempt to evaluate each operand.
4570 // Avoid performing the look-up in the common case where the specified
4571 // expression has no loop-variant portions.
4572 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4573 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4574 if (OpAtScope == AddRec->getOperand(i))
4575 continue;
4576
4577 // Okay, at least one of these operands is loop variant but might be
4578 // foldable. Build a new instance of the folded commutative expression.
4579 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4580 AddRec->op_begin()+i);
4581 NewOps.push_back(OpAtScope);
4582 for (++i; i != e; ++i)
4583 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4584
4585 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4586 break;
4587 }
4588
4589 // If the scope is outside the addrec's loop, evaluate it by using the
4590 // loop exit value of the addrec.
4591 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004592 // To evaluate this recurrence, we need to know how many times the AddRec
4593 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004594 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004595 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004596
Eli Friedmanb42a6262008-08-04 23:49:06 +00004597 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004598 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004599 }
Dan Gohman11046452010-06-29 23:43:06 +00004600
Dan Gohmand594e6f2009-05-24 23:25:42 +00004601 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004602 }
4603
Dan Gohman622ed672009-05-04 22:02:23 +00004604 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004605 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004606 if (Op == Cast->getOperand())
4607 return Cast; // must be loop invariant
4608 return getZeroExtendExpr(Op, Cast->getType());
4609 }
4610
Dan Gohman622ed672009-05-04 22:02:23 +00004611 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004612 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004613 if (Op == Cast->getOperand())
4614 return Cast; // must be loop invariant
4615 return getSignExtendExpr(Op, Cast->getType());
4616 }
4617
Dan Gohman622ed672009-05-04 22:02:23 +00004618 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004619 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004620 if (Op == Cast->getOperand())
4621 return Cast; // must be loop invariant
4622 return getTruncateExpr(Op, Cast->getType());
4623 }
4624
Torok Edwinc23197a2009-07-14 16:55:14 +00004625 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004626 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004627}
4628
Dan Gohman66a7e852009-05-08 20:38:54 +00004629/// getSCEVAtScope - This is a convenience function which does
4630/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004631const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004632 return getSCEVAtScope(getSCEV(V), L);
4633}
4634
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004635/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4636/// following equation:
4637///
4638/// A * X = B (mod N)
4639///
4640/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4641/// A and B isn't important.
4642///
4643/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004644static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004645 ScalarEvolution &SE) {
4646 uint32_t BW = A.getBitWidth();
4647 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4648 assert(A != 0 && "A must be non-zero.");
4649
4650 // 1. D = gcd(A, N)
4651 //
4652 // The gcd of A and N may have only one prime factor: 2. The number of
4653 // trailing zeros in A is its multiplicity
4654 uint32_t Mult2 = A.countTrailingZeros();
4655 // D = 2^Mult2
4656
4657 // 2. Check if B is divisible by D.
4658 //
4659 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4660 // is not less than multiplicity of this prime factor for D.
4661 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004662 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004663
4664 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4665 // modulo (N / D).
4666 //
4667 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4668 // bit width during computations.
4669 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4670 APInt Mod(BW + 1, 0);
4671 Mod.set(BW - Mult2); // Mod = N / D
4672 APInt I = AD.multiplicativeInverse(Mod);
4673
4674 // 4. Compute the minimum unsigned root of the equation:
4675 // I * (B / D) mod (N / D)
4676 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4677
4678 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4679 // bits.
4680 return SE.getConstant(Result.trunc(BW));
4681}
Chris Lattner53e677a2004-04-02 20:23:17 +00004682
4683/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4684/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4685/// might be the same) or two SCEVCouldNotCompute objects.
4686///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004687static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004688SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004689 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004690 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4691 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4692 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004693
Chris Lattner53e677a2004-04-02 20:23:17 +00004694 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004695 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004696 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004697 return std::make_pair(CNC, CNC);
4698 }
4699
Reid Spencere8019bb2007-03-01 07:25:48 +00004700 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004701 const APInt &L = LC->getValue()->getValue();
4702 const APInt &M = MC->getValue()->getValue();
4703 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004704 APInt Two(BitWidth, 2);
4705 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004706
Dan Gohman64a845e2009-06-24 04:48:43 +00004707 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004708 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004709 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004710 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4711 // The B coefficient is M-N/2
4712 APInt B(M);
4713 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004714
Reid Spencere8019bb2007-03-01 07:25:48 +00004715 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004716 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004717
Reid Spencere8019bb2007-03-01 07:25:48 +00004718 // Compute the B^2-4ac term.
4719 APInt SqrtTerm(B);
4720 SqrtTerm *= B;
4721 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004722
Reid Spencere8019bb2007-03-01 07:25:48 +00004723 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4724 // integer value or else APInt::sqrt() will assert.
4725 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004726
Dan Gohman64a845e2009-06-24 04:48:43 +00004727 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004728 // The divisions must be performed as signed divisions.
4729 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004730 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004731 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004732 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004733 return std::make_pair(CNC, CNC);
4734 }
4735
Owen Andersone922c022009-07-22 00:24:57 +00004736 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004737
4738 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004739 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004740 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004741 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004742
Dan Gohman64a845e2009-06-24 04:48:43 +00004743 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004744 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004745 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004746}
4747
4748/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004749/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004750ScalarEvolution::BackedgeTakenInfo
4751ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004752 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004753 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004754 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004755 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004756 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004757 }
4758
Dan Gohman35738ac2009-05-04 22:30:44 +00004759 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004760 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004761 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004762
4763 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004764 // If this is an affine expression, the execution count of this branch is
4765 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004766 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004767 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004768 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004769 // equivalent to:
4770 //
4771 // Step*N = -Start (mod 2^BW)
4772 //
4773 // where BW is the common bit width of Start and Step.
4774
Chris Lattner53e677a2004-04-02 20:23:17 +00004775 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004776 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4777 L->getParentLoop());
4778 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4779 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004780
Dan Gohman622ed672009-05-04 22:02:23 +00004781 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004782 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004783
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004784 // First, handle unitary steps.
4785 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004786 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004787 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4788 return Start; // N = Start (as unsigned)
4789
4790 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004791 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004792 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004793 -StartC->getValue()->getValue(),
4794 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004795 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004796 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004797 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4798 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004799 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004800 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004801 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4802 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004803 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004804#if 0
David Greene25e0e872009-12-23 22:18:14 +00004805 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004806 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004807#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004808 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004809 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004810 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004811 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004812 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004813 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004814
Chris Lattner53e677a2004-04-02 20:23:17 +00004815 // We can only use this value if the chrec ends up with an exact zero
4816 // value at this index. When solving for "X*X != 5", for example, we
4817 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004818 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004819 if (Val->isZero())
4820 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004821 }
4822 }
4823 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004824
Dan Gohman1c343752009-06-27 21:21:31 +00004825 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004826}
4827
4828/// HowFarToNonZero - Return the number of times a backedge checking the
4829/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004830/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004831ScalarEvolution::BackedgeTakenInfo
4832ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004833 // Loops that look like: while (X == 0) are very strange indeed. We don't
4834 // handle them yet except for the trivial case. This could be expanded in the
4835 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004836
Chris Lattner53e677a2004-04-02 20:23:17 +00004837 // If the value is a constant, check to see if it is known to be non-zero
4838 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004839 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004840 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004841 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004842 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004843 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004844
Chris Lattner53e677a2004-04-02 20:23:17 +00004845 // We could implement others, but I really doubt anyone writes loops like
4846 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004847 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004848}
4849
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004850/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4851/// (which may not be an immediate predecessor) which has exactly one
4852/// successor from which BB is reachable, or null if no such block is
4853/// found.
4854///
Dan Gohman005752b2010-04-15 16:19:08 +00004855std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004856ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004857 // If the block has a unique predecessor, then there is no path from the
4858 // predecessor to the block that does not go through the direct edge
4859 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004860 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004861 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004862
4863 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004864 // If the header has a unique predecessor outside the loop, it must be
4865 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004866 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004867 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004868
Dan Gohman005752b2010-04-15 16:19:08 +00004869 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004870}
4871
Dan Gohman763bad12009-06-20 00:35:32 +00004872/// HasSameValue - SCEV structural equivalence is usually sufficient for
4873/// testing whether two expressions are equal, however for the purposes of
4874/// looking for a condition guarding a loop, it can be useful to be a little
4875/// more general, since a front-end may have replicated the controlling
4876/// expression.
4877///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004878static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004879 // Quick check to see if they are the same SCEV.
4880 if (A == B) return true;
4881
4882 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4883 // two different instructions with the same value. Check for this case.
4884 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4885 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4886 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4887 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004888 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004889 return true;
4890
4891 // Otherwise assume they may have a different value.
4892 return false;
4893}
4894
Dan Gohmane9796502010-04-24 01:28:42 +00004895/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4896/// predicate Pred. Return true iff any changes were made.
4897///
4898bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4899 const SCEV *&LHS, const SCEV *&RHS) {
4900 bool Changed = false;
4901
4902 // Canonicalize a constant to the right side.
4903 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4904 // Check for both operands constant.
4905 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4906 if (ConstantExpr::getICmp(Pred,
4907 LHSC->getValue(),
4908 RHSC->getValue())->isNullValue())
4909 goto trivially_false;
4910 else
4911 goto trivially_true;
4912 }
4913 // Otherwise swap the operands to put the constant on the right.
4914 std::swap(LHS, RHS);
4915 Pred = ICmpInst::getSwappedPredicate(Pred);
4916 Changed = true;
4917 }
4918
4919 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004920 // addrec's loop, put the addrec on the left. Also make a dominance check,
4921 // as both operands could be addrecs loop-invariant in each other's loop.
4922 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4923 const Loop *L = AR->getLoop();
Dan Gohman17ead4f2010-11-17 21:23:15 +00004924 if (isLoopInvariant(LHS, L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004925 std::swap(LHS, RHS);
4926 Pred = ICmpInst::getSwappedPredicate(Pred);
4927 Changed = true;
4928 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004929 }
Dan Gohmane9796502010-04-24 01:28:42 +00004930
4931 // If there's a constant operand, canonicalize comparisons with boundary
4932 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4933 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4934 const APInt &RA = RC->getValue()->getValue();
4935 switch (Pred) {
4936 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4937 case ICmpInst::ICMP_EQ:
4938 case ICmpInst::ICMP_NE:
4939 break;
4940 case ICmpInst::ICMP_UGE:
4941 if ((RA - 1).isMinValue()) {
4942 Pred = ICmpInst::ICMP_NE;
4943 RHS = getConstant(RA - 1);
4944 Changed = true;
4945 break;
4946 }
4947 if (RA.isMaxValue()) {
4948 Pred = ICmpInst::ICMP_EQ;
4949 Changed = true;
4950 break;
4951 }
4952 if (RA.isMinValue()) goto trivially_true;
4953
4954 Pred = ICmpInst::ICMP_UGT;
4955 RHS = getConstant(RA - 1);
4956 Changed = true;
4957 break;
4958 case ICmpInst::ICMP_ULE:
4959 if ((RA + 1).isMaxValue()) {
4960 Pred = ICmpInst::ICMP_NE;
4961 RHS = getConstant(RA + 1);
4962 Changed = true;
4963 break;
4964 }
4965 if (RA.isMinValue()) {
4966 Pred = ICmpInst::ICMP_EQ;
4967 Changed = true;
4968 break;
4969 }
4970 if (RA.isMaxValue()) goto trivially_true;
4971
4972 Pred = ICmpInst::ICMP_ULT;
4973 RHS = getConstant(RA + 1);
4974 Changed = true;
4975 break;
4976 case ICmpInst::ICMP_SGE:
4977 if ((RA - 1).isMinSignedValue()) {
4978 Pred = ICmpInst::ICMP_NE;
4979 RHS = getConstant(RA - 1);
4980 Changed = true;
4981 break;
4982 }
4983 if (RA.isMaxSignedValue()) {
4984 Pred = ICmpInst::ICMP_EQ;
4985 Changed = true;
4986 break;
4987 }
4988 if (RA.isMinSignedValue()) goto trivially_true;
4989
4990 Pred = ICmpInst::ICMP_SGT;
4991 RHS = getConstant(RA - 1);
4992 Changed = true;
4993 break;
4994 case ICmpInst::ICMP_SLE:
4995 if ((RA + 1).isMaxSignedValue()) {
4996 Pred = ICmpInst::ICMP_NE;
4997 RHS = getConstant(RA + 1);
4998 Changed = true;
4999 break;
5000 }
5001 if (RA.isMinSignedValue()) {
5002 Pred = ICmpInst::ICMP_EQ;
5003 Changed = true;
5004 break;
5005 }
5006 if (RA.isMaxSignedValue()) goto trivially_true;
5007
5008 Pred = ICmpInst::ICMP_SLT;
5009 RHS = getConstant(RA + 1);
5010 Changed = true;
5011 break;
5012 case ICmpInst::ICMP_UGT:
5013 if (RA.isMinValue()) {
5014 Pred = ICmpInst::ICMP_NE;
5015 Changed = true;
5016 break;
5017 }
5018 if ((RA + 1).isMaxValue()) {
5019 Pred = ICmpInst::ICMP_EQ;
5020 RHS = getConstant(RA + 1);
5021 Changed = true;
5022 break;
5023 }
5024 if (RA.isMaxValue()) goto trivially_false;
5025 break;
5026 case ICmpInst::ICMP_ULT:
5027 if (RA.isMaxValue()) {
5028 Pred = ICmpInst::ICMP_NE;
5029 Changed = true;
5030 break;
5031 }
5032 if ((RA - 1).isMinValue()) {
5033 Pred = ICmpInst::ICMP_EQ;
5034 RHS = getConstant(RA - 1);
5035 Changed = true;
5036 break;
5037 }
5038 if (RA.isMinValue()) goto trivially_false;
5039 break;
5040 case ICmpInst::ICMP_SGT:
5041 if (RA.isMinSignedValue()) {
5042 Pred = ICmpInst::ICMP_NE;
5043 Changed = true;
5044 break;
5045 }
5046 if ((RA + 1).isMaxSignedValue()) {
5047 Pred = ICmpInst::ICMP_EQ;
5048 RHS = getConstant(RA + 1);
5049 Changed = true;
5050 break;
5051 }
5052 if (RA.isMaxSignedValue()) goto trivially_false;
5053 break;
5054 case ICmpInst::ICMP_SLT:
5055 if (RA.isMaxSignedValue()) {
5056 Pred = ICmpInst::ICMP_NE;
5057 Changed = true;
5058 break;
5059 }
5060 if ((RA - 1).isMinSignedValue()) {
5061 Pred = ICmpInst::ICMP_EQ;
5062 RHS = getConstant(RA - 1);
5063 Changed = true;
5064 break;
5065 }
5066 if (RA.isMinSignedValue()) goto trivially_false;
5067 break;
5068 }
5069 }
5070
5071 // Check for obvious equality.
5072 if (HasSameValue(LHS, RHS)) {
5073 if (ICmpInst::isTrueWhenEqual(Pred))
5074 goto trivially_true;
5075 if (ICmpInst::isFalseWhenEqual(Pred))
5076 goto trivially_false;
5077 }
5078
Dan Gohman03557dc2010-05-03 16:35:17 +00005079 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5080 // adding or subtracting 1 from one of the operands.
5081 switch (Pred) {
5082 case ICmpInst::ICMP_SLE:
5083 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5084 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5085 /*HasNUW=*/false, /*HasNSW=*/true);
5086 Pred = ICmpInst::ICMP_SLT;
5087 Changed = true;
5088 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005089 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005090 /*HasNUW=*/false, /*HasNSW=*/true);
5091 Pred = ICmpInst::ICMP_SLT;
5092 Changed = true;
5093 }
5094 break;
5095 case ICmpInst::ICMP_SGE:
5096 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005097 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005098 /*HasNUW=*/false, /*HasNSW=*/true);
5099 Pred = ICmpInst::ICMP_SGT;
5100 Changed = true;
5101 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5102 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5103 /*HasNUW=*/false, /*HasNSW=*/true);
5104 Pred = ICmpInst::ICMP_SGT;
5105 Changed = true;
5106 }
5107 break;
5108 case ICmpInst::ICMP_ULE:
5109 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005110 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005111 /*HasNUW=*/true, /*HasNSW=*/false);
5112 Pred = ICmpInst::ICMP_ULT;
5113 Changed = true;
5114 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005115 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005116 /*HasNUW=*/true, /*HasNSW=*/false);
5117 Pred = ICmpInst::ICMP_ULT;
5118 Changed = true;
5119 }
5120 break;
5121 case ICmpInst::ICMP_UGE:
5122 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005123 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005124 /*HasNUW=*/true, /*HasNSW=*/false);
5125 Pred = ICmpInst::ICMP_UGT;
5126 Changed = true;
5127 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005128 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005129 /*HasNUW=*/true, /*HasNSW=*/false);
5130 Pred = ICmpInst::ICMP_UGT;
5131 Changed = true;
5132 }
5133 break;
5134 default:
5135 break;
5136 }
5137
Dan Gohmane9796502010-04-24 01:28:42 +00005138 // TODO: More simplifications are possible here.
5139
5140 return Changed;
5141
5142trivially_true:
5143 // Return 0 == 0.
5144 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5145 Pred = ICmpInst::ICMP_EQ;
5146 return true;
5147
5148trivially_false:
5149 // Return 0 != 0.
5150 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5151 Pred = ICmpInst::ICMP_NE;
5152 return true;
5153}
5154
Dan Gohman85b05a22009-07-13 21:35:55 +00005155bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5156 return getSignedRange(S).getSignedMax().isNegative();
5157}
5158
5159bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5160 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5161}
5162
5163bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5164 return !getSignedRange(S).getSignedMin().isNegative();
5165}
5166
5167bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5168 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5169}
5170
5171bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5172 return isKnownNegative(S) || isKnownPositive(S);
5173}
5174
5175bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5176 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005177 // Canonicalize the inputs first.
5178 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5179
Dan Gohman53c66ea2010-04-11 22:16:48 +00005180 // If LHS or RHS is an addrec, check to see if the condition is true in
5181 // every iteration of the loop.
5182 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5183 if (isLoopEntryGuardedByCond(
5184 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5185 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005186 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005187 return true;
5188 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5189 if (isLoopEntryGuardedByCond(
5190 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5191 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005192 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005193 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005194
Dan Gohman53c66ea2010-04-11 22:16:48 +00005195 // Otherwise see what can be done with known constant ranges.
5196 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5197}
5198
5199bool
5200ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5201 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005202 if (HasSameValue(LHS, RHS))
5203 return ICmpInst::isTrueWhenEqual(Pred);
5204
Dan Gohman53c66ea2010-04-11 22:16:48 +00005205 // This code is split out from isKnownPredicate because it is called from
5206 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005207 switch (Pred) {
5208 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005209 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005210 break;
5211 case ICmpInst::ICMP_SGT:
5212 Pred = ICmpInst::ICMP_SLT;
5213 std::swap(LHS, RHS);
5214 case ICmpInst::ICMP_SLT: {
5215 ConstantRange LHSRange = getSignedRange(LHS);
5216 ConstantRange RHSRange = getSignedRange(RHS);
5217 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5218 return true;
5219 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5220 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005221 break;
5222 }
5223 case ICmpInst::ICMP_SGE:
5224 Pred = ICmpInst::ICMP_SLE;
5225 std::swap(LHS, RHS);
5226 case ICmpInst::ICMP_SLE: {
5227 ConstantRange LHSRange = getSignedRange(LHS);
5228 ConstantRange RHSRange = getSignedRange(RHS);
5229 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5230 return true;
5231 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5232 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005233 break;
5234 }
5235 case ICmpInst::ICMP_UGT:
5236 Pred = ICmpInst::ICMP_ULT;
5237 std::swap(LHS, RHS);
5238 case ICmpInst::ICMP_ULT: {
5239 ConstantRange LHSRange = getUnsignedRange(LHS);
5240 ConstantRange RHSRange = getUnsignedRange(RHS);
5241 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5242 return true;
5243 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5244 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005245 break;
5246 }
5247 case ICmpInst::ICMP_UGE:
5248 Pred = ICmpInst::ICMP_ULE;
5249 std::swap(LHS, RHS);
5250 case ICmpInst::ICMP_ULE: {
5251 ConstantRange LHSRange = getUnsignedRange(LHS);
5252 ConstantRange RHSRange = getUnsignedRange(RHS);
5253 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5254 return true;
5255 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5256 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005257 break;
5258 }
5259 case ICmpInst::ICMP_NE: {
5260 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5261 return true;
5262 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5263 return true;
5264
5265 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5266 if (isKnownNonZero(Diff))
5267 return true;
5268 break;
5269 }
5270 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005271 // The check at the top of the function catches the case where
5272 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005273 break;
5274 }
5275 return false;
5276}
5277
5278/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5279/// protected by a conditional between LHS and RHS. This is used to
5280/// to eliminate casts.
5281bool
5282ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5283 ICmpInst::Predicate Pred,
5284 const SCEV *LHS, const SCEV *RHS) {
5285 // Interpret a null as meaning no loop, where there is obviously no guard
5286 // (interprocedural conditions notwithstanding).
5287 if (!L) return true;
5288
5289 BasicBlock *Latch = L->getLoopLatch();
5290 if (!Latch)
5291 return false;
5292
5293 BranchInst *LoopContinuePredicate =
5294 dyn_cast<BranchInst>(Latch->getTerminator());
5295 if (!LoopContinuePredicate ||
5296 LoopContinuePredicate->isUnconditional())
5297 return false;
5298
Dan Gohmanaf08a362010-08-10 23:46:30 +00005299 return isImpliedCond(Pred, LHS, RHS,
5300 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005301 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005302}
5303
Dan Gohman3948d0b2010-04-11 19:27:13 +00005304/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005305/// by a conditional between LHS and RHS. This is used to help avoid max
5306/// expressions in loop trip counts, and to eliminate casts.
5307bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005308ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5309 ICmpInst::Predicate Pred,
5310 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005311 // Interpret a null as meaning no loop, where there is obviously no guard
5312 // (interprocedural conditions notwithstanding).
5313 if (!L) return false;
5314
Dan Gohman859b4822009-05-18 15:36:09 +00005315 // Starting at the loop predecessor, climb up the predecessor chain, as long
5316 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005317 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005318 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005319 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005320 Pair.first;
5321 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005322
5323 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005324 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005325 if (!LoopEntryPredicate ||
5326 LoopEntryPredicate->isUnconditional())
5327 continue;
5328
Dan Gohmanaf08a362010-08-10 23:46:30 +00005329 if (isImpliedCond(Pred, LHS, RHS,
5330 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005331 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005332 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005333 }
5334
Dan Gohman38372182008-08-12 20:17:31 +00005335 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005336}
5337
Dan Gohman0f4b2852009-07-21 23:03:19 +00005338/// isImpliedCond - Test whether the condition described by Pred, LHS,
5339/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005340bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005341 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005342 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005343 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005344 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005345 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005346 if (BO->getOpcode() == Instruction::And) {
5347 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005348 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5349 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005350 } else if (BO->getOpcode() == Instruction::Or) {
5351 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005352 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5353 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005354 }
5355 }
5356
Dan Gohmanaf08a362010-08-10 23:46:30 +00005357 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005358 if (!ICI) return false;
5359
Dan Gohman85b05a22009-07-13 21:35:55 +00005360 // Bail if the ICmp's operands' types are wider than the needed type
5361 // before attempting to call getSCEV on them. This avoids infinite
5362 // recursion, since the analysis of widening casts can require loop
5363 // exit condition information for overflow checking, which would
5364 // lead back here.
5365 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005366 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005367 return false;
5368
Dan Gohman0f4b2852009-07-21 23:03:19 +00005369 // Now that we found a conditional branch that dominates the loop, check to
5370 // see if it is the comparison we are looking for.
5371 ICmpInst::Predicate FoundPred;
5372 if (Inverse)
5373 FoundPred = ICI->getInversePredicate();
5374 else
5375 FoundPred = ICI->getPredicate();
5376
5377 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5378 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005379
5380 // Balance the types. The case where FoundLHS' type is wider than
5381 // LHS' type is checked for above.
5382 if (getTypeSizeInBits(LHS->getType()) >
5383 getTypeSizeInBits(FoundLHS->getType())) {
5384 if (CmpInst::isSigned(Pred)) {
5385 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5386 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5387 } else {
5388 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5389 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5390 }
5391 }
5392
Dan Gohman0f4b2852009-07-21 23:03:19 +00005393 // Canonicalize the query to match the way instcombine will have
5394 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005395 if (SimplifyICmpOperands(Pred, LHS, RHS))
5396 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005397 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005398 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5399 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005400 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005401
5402 // Check to see if we can make the LHS or RHS match.
5403 if (LHS == FoundRHS || RHS == FoundLHS) {
5404 if (isa<SCEVConstant>(RHS)) {
5405 std::swap(FoundLHS, FoundRHS);
5406 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5407 } else {
5408 std::swap(LHS, RHS);
5409 Pred = ICmpInst::getSwappedPredicate(Pred);
5410 }
5411 }
5412
5413 // Check whether the found predicate is the same as the desired predicate.
5414 if (FoundPred == Pred)
5415 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5416
5417 // Check whether swapping the found predicate makes it the same as the
5418 // desired predicate.
5419 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5420 if (isa<SCEVConstant>(RHS))
5421 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5422 else
5423 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5424 RHS, LHS, FoundLHS, FoundRHS);
5425 }
5426
5427 // Check whether the actual condition is beyond sufficient.
5428 if (FoundPred == ICmpInst::ICMP_EQ)
5429 if (ICmpInst::isTrueWhenEqual(Pred))
5430 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5431 return true;
5432 if (Pred == ICmpInst::ICMP_NE)
5433 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5434 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5435 return true;
5436
5437 // Otherwise assume the worst.
5438 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005439}
5440
Dan Gohman0f4b2852009-07-21 23:03:19 +00005441/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005442/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005443/// and FoundRHS is true.
5444bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5445 const SCEV *LHS, const SCEV *RHS,
5446 const SCEV *FoundLHS,
5447 const SCEV *FoundRHS) {
5448 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5449 FoundLHS, FoundRHS) ||
5450 // ~x < ~y --> x > y
5451 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5452 getNotSCEV(FoundRHS),
5453 getNotSCEV(FoundLHS));
5454}
5455
5456/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005457/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005458/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005459bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005460ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5461 const SCEV *LHS, const SCEV *RHS,
5462 const SCEV *FoundLHS,
5463 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005464 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005465 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5466 case ICmpInst::ICMP_EQ:
5467 case ICmpInst::ICMP_NE:
5468 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5469 return true;
5470 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005471 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005472 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005473 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5474 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005475 return true;
5476 break;
5477 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005478 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005479 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5480 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005481 return true;
5482 break;
5483 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005484 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005485 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5486 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005487 return true;
5488 break;
5489 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005490 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005491 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5492 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005493 return true;
5494 break;
5495 }
5496
5497 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005498}
5499
Dan Gohman51f53b72009-06-21 23:46:38 +00005500/// getBECount - Subtract the end and start values and divide by the step,
5501/// rounding up, to get the number of times the backedge is executed. Return
5502/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005503const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005504 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005505 const SCEV *Step,
5506 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005507 assert(!isKnownNegative(Step) &&
5508 "This code doesn't handle negative strides yet!");
5509
Dan Gohman51f53b72009-06-21 23:46:38 +00005510 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005511 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005512 const SCEV *Diff = getMinusSCEV(End, Start);
5513 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005514
5515 // Add an adjustment to the difference between End and Start so that
5516 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005517 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005518
Dan Gohman1f96e672009-09-17 18:05:20 +00005519 if (!NoWrap) {
5520 // Check Add for unsigned overflow.
5521 // TODO: More sophisticated things could be done here.
5522 const Type *WideTy = IntegerType::get(getContext(),
5523 getTypeSizeInBits(Ty) + 1);
5524 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5525 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5526 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5527 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5528 return getCouldNotCompute();
5529 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005530
5531 return getUDivExpr(Add, Step);
5532}
5533
Chris Lattnerdb25de42005-08-15 23:33:51 +00005534/// HowManyLessThans - Return the number of times a backedge containing the
5535/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005536/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005537ScalarEvolution::BackedgeTakenInfo
5538ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5539 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005540 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005541 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005542
Dan Gohman35738ac2009-05-04 22:30:44 +00005543 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005544 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005545 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005546
Dan Gohman1f96e672009-09-17 18:05:20 +00005547 // Check to see if we have a flag which makes analysis easy.
5548 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5549 AddRec->hasNoUnsignedWrap();
5550
Chris Lattnerdb25de42005-08-15 23:33:51 +00005551 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005552 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005553 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005554
Dan Gohman52fddd32010-01-26 04:40:18 +00005555 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005556 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005557 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005558 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005559 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005560 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005561 // value and past the maximum value for its type in a single step.
5562 // Note that it's not sufficient to check NoWrap here, because even
5563 // though the value after a wrap is undefined, it's not undefined
5564 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005565 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005566 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005567 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005568 if (isSigned) {
5569 APInt Max = APInt::getSignedMaxValue(BitWidth);
5570 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5571 .slt(getSignedRange(RHS).getSignedMax()))
5572 return getCouldNotCompute();
5573 } else {
5574 APInt Max = APInt::getMaxValue(BitWidth);
5575 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5576 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5577 return getCouldNotCompute();
5578 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005579 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005580 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005581 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005582
Dan Gohmana1af7572009-04-30 20:47:05 +00005583 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5584 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5585 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005586 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005587
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005588 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005589 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005590
Dan Gohmana1af7572009-04-30 20:47:05 +00005591 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005592 const SCEV *MinStart = getConstant(isSigned ?
5593 getSignedRange(Start).getSignedMin() :
5594 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005595
Dan Gohmana1af7572009-04-30 20:47:05 +00005596 // If we know that the condition is true in order to enter the loop,
5597 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005598 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5599 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005600 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005601 if (!isLoopEntryGuardedByCond(L,
5602 isSigned ? ICmpInst::ICMP_SLT :
5603 ICmpInst::ICMP_ULT,
5604 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005605 End = isSigned ? getSMaxExpr(RHS, Start)
5606 : getUMaxExpr(RHS, Start);
5607
5608 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005609 const SCEV *MaxEnd = getConstant(isSigned ?
5610 getSignedRange(End).getSignedMax() :
5611 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005612
Dan Gohman52fddd32010-01-26 04:40:18 +00005613 // If MaxEnd is within a step of the maximum integer value in its type,
5614 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005615 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005616 // compute the correct value.
5617 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005618 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005619 MaxEnd = isSigned ?
5620 getSMinExpr(MaxEnd,
5621 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5622 StepMinusOne)) :
5623 getUMinExpr(MaxEnd,
5624 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5625 StepMinusOne));
5626
Dan Gohmana1af7572009-04-30 20:47:05 +00005627 // Finally, we subtract these two values and divide, rounding up, to get
5628 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005629 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005630
5631 // The maximum backedge count is similar, except using the minimum start
5632 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005633 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005634
5635 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005636 }
5637
Dan Gohman1c343752009-06-27 21:21:31 +00005638 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005639}
5640
Chris Lattner53e677a2004-04-02 20:23:17 +00005641/// getNumIterationsInRange - Return the number of iterations of this loop that
5642/// produce values in the specified constant range. Another way of looking at
5643/// this is that it returns the first iteration number where the value is not in
5644/// the condition, thus computing the exit count. If the iteration count can't
5645/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005646const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005647 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005648 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005649 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005650
5651 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005652 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005653 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005654 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005655 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005656 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005657 if (const SCEVAddRecExpr *ShiftedAddRec =
5658 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005659 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005660 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005661 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005662 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005663 }
5664
5665 // The only time we can solve this is when we have all constant indices.
5666 // Otherwise, we cannot determine the overflow conditions.
5667 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5668 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005669 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005670
5671
5672 // Okay at this point we know that all elements of the chrec are constants and
5673 // that the start element is zero.
5674
5675 // First check to see if the range contains zero. If not, the first
5676 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005677 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005678 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005679 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005680
Chris Lattner53e677a2004-04-02 20:23:17 +00005681 if (isAffine()) {
5682 // If this is an affine expression then we have this situation:
5683 // Solve {0,+,A} in Range === Ax in Range
5684
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005685 // We know that zero is in the range. If A is positive then we know that
5686 // the upper value of the range must be the first possible exit value.
5687 // If A is negative then the lower of the range is the last possible loop
5688 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005689 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005690 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5691 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005692
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005693 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005694 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005695 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005696
5697 // Evaluate at the exit value. If we really did fall out of the valid
5698 // range, then we computed our trip count, otherwise wrap around or other
5699 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005700 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005701 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005702 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005703
5704 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005705 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005706 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005707 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005708 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005709 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005710 } else if (isQuadratic()) {
5711 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5712 // quadratic equation to solve it. To do this, we must frame our problem in
5713 // terms of figuring out when zero is crossed, instead of when
5714 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005715 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005716 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005717 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005718
5719 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005720 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005721 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005722 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5723 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005724 if (R1) {
5725 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005726 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005727 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005728 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005729 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005730 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005731
Chris Lattner53e677a2004-04-02 20:23:17 +00005732 // Make sure the root is not off by one. The returned iteration should
5733 // not be in the range, but the previous one should be. When solving
5734 // for "X*X < 5", for example, we should not return a root of 2.
5735 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005736 R1->getValue(),
5737 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005738 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005739 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005740 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005741 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005742
Dan Gohman246b2562007-10-22 18:31:58 +00005743 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005744 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005745 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005746 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005747 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005748
Chris Lattner53e677a2004-04-02 20:23:17 +00005749 // If R1 was not in the range, then it is a good return value. Make
5750 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005751 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005752 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005753 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005754 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005755 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005756 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005757 }
5758 }
5759 }
5760
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005761 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005762}
5763
5764
5765
5766//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005767// SCEVCallbackVH Class Implementation
5768//===----------------------------------------------------------------------===//
5769
Dan Gohman1959b752009-05-19 19:22:47 +00005770void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005771 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005772 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5773 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005774 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005775 // this now dangles!
5776}
5777
Dan Gohman81f91212010-07-28 01:09:07 +00005778void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005779 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005780
Dan Gohman35738ac2009-05-04 22:30:44 +00005781 // Forget all the expressions associated with users of the old value,
5782 // so that future queries will recompute the expressions using the new
5783 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005784 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005785 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005786 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005787 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5788 UI != UE; ++UI)
5789 Worklist.push_back(*UI);
5790 while (!Worklist.empty()) {
5791 User *U = Worklist.pop_back_val();
5792 // Deleting the Old value will cause this to dangle. Postpone
5793 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005794 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005795 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005796 if (!Visited.insert(U))
5797 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005798 if (PHINode *PN = dyn_cast<PHINode>(U))
5799 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005800 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005801 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5802 UI != UE; ++UI)
5803 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005804 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005805 // Delete the Old value.
5806 if (PHINode *PN = dyn_cast<PHINode>(Old))
5807 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005808 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005809 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005810}
5811
Dan Gohman1959b752009-05-19 19:22:47 +00005812ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005813 : CallbackVH(V), SE(se) {}
5814
5815//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005816// ScalarEvolution Class Implementation
5817//===----------------------------------------------------------------------===//
5818
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005819ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005820 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005821 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005822}
5823
Chris Lattner53e677a2004-04-02 20:23:17 +00005824bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005825 this->F = &F;
5826 LI = &getAnalysis<LoopInfo>();
5827 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005828 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005829 return false;
5830}
5831
5832void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005833 // Iterate through all the SCEVUnknown instances and call their
5834 // destructors, so that they release their references to their values.
5835 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5836 U->~SCEVUnknown();
5837 FirstUnknown = 0;
5838
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005839 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005840 BackedgeTakenCounts.clear();
5841 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005842 ValuesAtScopes.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005843 UnsignedRanges.clear();
5844 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005845 UniqueSCEVs.clear();
5846 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005847}
5848
5849void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5850 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005851 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005852 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005853}
5854
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005855bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005856 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005857}
5858
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005859static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005860 const Loop *L) {
5861 // Print all inner loops first
5862 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5863 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005864
Dan Gohman30733292010-01-09 18:17:45 +00005865 OS << "Loop ";
5866 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5867 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005868
Dan Gohman5d984912009-12-18 01:14:11 +00005869 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005870 L->getExitBlocks(ExitBlocks);
5871 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005872 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005873
Dan Gohman46bdfb02009-02-24 18:55:53 +00005874 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5875 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005876 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005877 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005878 }
5879
Dan Gohman30733292010-01-09 18:17:45 +00005880 OS << "\n"
5881 "Loop ";
5882 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5883 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005884
5885 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5886 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5887 } else {
5888 OS << "Unpredictable max backedge-taken count. ";
5889 }
5890
5891 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005892}
5893
Dan Gohman5d984912009-12-18 01:14:11 +00005894void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005895 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005896 // out SCEV values of all instructions that are interesting. Doing
5897 // this potentially causes it to create new SCEV objects though,
5898 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005899 // observable from outside the class though, so casting away the
5900 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005901 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005902
Dan Gohman30733292010-01-09 18:17:45 +00005903 OS << "Classifying expressions for: ";
5904 WriteAsOperand(OS, F, /*PrintType=*/false);
5905 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005906 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005907 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005908 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005909 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005910 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005911 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005912
Dan Gohman0c689c52009-06-19 17:49:54 +00005913 const Loop *L = LI->getLoopFor((*I).getParent());
5914
Dan Gohman0bba49c2009-07-07 17:06:11 +00005915 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005916 if (AtUse != SV) {
5917 OS << " --> ";
5918 AtUse->print(OS);
5919 }
5920
5921 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005922 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005923 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00005924 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005925 OS << "<<Unknown>>";
5926 } else {
5927 OS << *ExitValue;
5928 }
5929 }
5930
Chris Lattner53e677a2004-04-02 20:23:17 +00005931 OS << "\n";
5932 }
5933
Dan Gohman30733292010-01-09 18:17:45 +00005934 OS << "Determining loop execution counts for: ";
5935 WriteAsOperand(OS, F, /*PrintType=*/false);
5936 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005937 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5938 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005939}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005940
Dan Gohman17ead4f2010-11-17 21:23:15 +00005941bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
5942 switch (S->getSCEVType()) {
5943 case scConstant:
5944 return true;
5945 case scTruncate:
5946 case scZeroExtend:
5947 case scSignExtend:
5948 return isLoopInvariant(cast<SCEVCastExpr>(S)->getOperand(), L);
5949 case scAddRecExpr: {
5950 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
5951
5952 // Add recurrences are never invariant in the function-body (null loop).
5953 if (!L)
5954 return false;
5955
5956 // This recurrence is variant w.r.t. L if L contains AR's loop.
5957 if (L->contains(AR->getLoop()))
5958 return false;
5959
5960 // This recurrence is invariant w.r.t. L if AR's loop contains L.
5961 if (AR->getLoop()->contains(L))
5962 return true;
5963
5964 // This recurrence is variant w.r.t. L if any of its operands
5965 // are variant.
5966 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
5967 I != E; ++I)
5968 if (!isLoopInvariant(*I, L))
5969 return false;
5970
5971 // Otherwise it's loop-invariant.
5972 return true;
5973 }
5974 case scAddExpr:
5975 case scMulExpr:
5976 case scUMaxExpr:
5977 case scSMaxExpr: {
5978 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
5979 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
5980 I != E; ++I)
5981 if (!isLoopInvariant(*I, L))
5982 return false;
5983 return true;
5984 }
5985 case scUDivExpr: {
5986 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
5987 return isLoopInvariant(UDiv->getLHS(), L) &&
5988 isLoopInvariant(UDiv->getRHS(), L);
5989 }
5990 case scUnknown:
5991 // All non-instruction values are loop invariant. All instructions are loop
5992 // invariant if they are not contained in the specified loop.
5993 // Instructions are never considered invariant in the function body
5994 // (null loop) because they are defined within the "loop".
5995 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
5996 return L && !L->contains(I);
5997 return true;
5998 case scCouldNotCompute:
5999 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6000 return false;
6001 default: break;
6002 }
6003 llvm_unreachable("Unknown SCEV kind!");
6004 return false;
6005}
6006
6007bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6008 switch (S->getSCEVType()) {
6009 case scConstant:
6010 return false;
6011 case scTruncate:
6012 case scZeroExtend:
6013 case scSignExtend:
6014 return hasComputableLoopEvolution(cast<SCEVCastExpr>(S)->getOperand(), L);
6015 case scAddRecExpr:
6016 return cast<SCEVAddRecExpr>(S)->getLoop() == L;
6017 case scAddExpr:
6018 case scMulExpr:
6019 case scUMaxExpr:
6020 case scSMaxExpr: {
6021 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6022 bool HasVarying = false;
6023 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6024 I != E; ++I) {
6025 const SCEV *Op = *I;
6026 if (!isLoopInvariant(Op, L)) {
6027 if (hasComputableLoopEvolution(Op, L))
6028 HasVarying = true;
6029 else
6030 return false;
6031 }
6032 }
6033 return HasVarying;
6034 }
6035 case scUDivExpr: {
6036 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6037 bool HasVarying = false;
6038 if (!isLoopInvariant(UDiv->getLHS(), L)) {
6039 if (hasComputableLoopEvolution(UDiv->getLHS(), L))
6040 HasVarying = true;
6041 else
6042 return false;
6043 }
6044 if (!isLoopInvariant(UDiv->getRHS(), L)) {
6045 if (hasComputableLoopEvolution(UDiv->getRHS(), L))
6046 HasVarying = true;
6047 else
6048 return false;
6049 }
6050 return HasVarying;
6051 }
6052 case scUnknown:
6053 return false;
6054 case scCouldNotCompute:
6055 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6056 return false;
6057 default: break;
6058 }
6059 llvm_unreachable("Unknown SCEV kind!");
6060 return false;
6061}