blob: 745c219c4fbaee2adf41436780b0f8f5aeeba35d [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000027#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000029#include "llvm/Target/TargetMachine.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattner44827152003-12-28 09:47:19 +000031using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000032
Chris Lattner333b2fa2002-12-13 10:09:43 +000033/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000034/// instruction at as well as a basic block. This is the version for when you
35/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000036inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000037 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000038 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000039 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000040 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000041 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000042 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000043 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
44}
45
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000046/// BMI - A special BuildMI variant that takes an iterator to insert the
47/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000048inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000049 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000050 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000051 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000052 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000053 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000054 return MachineInstrBuilder(MI);
55}
56
Chris Lattner333b2fa2002-12-13 10:09:43 +000057
Chris Lattner72614082002-10-25 22:55:53 +000058namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000059 struct ISel : public FunctionPass, InstVisitor<ISel> {
60 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000061 MachineFunction *F; // The function we are compiling into
62 MachineBasicBlock *BB; // The current MBB we are compiling
63 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000064
Chris Lattner72614082002-10-25 22:55:53 +000065 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
66
Chris Lattner333b2fa2002-12-13 10:09:43 +000067 // MBBMap - Mapping between LLVM BB -> Machine BB
68 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
69
Chris Lattnerf70e0c22003-12-28 21:23:38 +000070 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000071
72 /// runOnFunction - Top level implementation of instruction selection for
73 /// the entire function.
74 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000075 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000076 // First pass over the function, lower any unknown intrinsic functions
77 // with the IntrinsicLowering class.
78 LowerUnknownIntrinsicFunctionCalls(Fn);
79
Chris Lattner36b36032002-10-29 23:40:58 +000080 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000081
Chris Lattner065faeb2002-12-28 20:24:02 +000082 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000083 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
84 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
85
Chris Lattner14aa7fe2002-12-16 22:54:46 +000086 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000087
Chris Lattnerdbd73722003-05-06 21:32:22 +000088 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000089 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000090
Chris Lattner333b2fa2002-12-13 10:09:43 +000091 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000092 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000093
94 // Select the PHI nodes
95 SelectPHINodes();
96
Chris Lattner72614082002-10-25 22:55:53 +000097 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000098 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000099 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000100 // We always build a machine code representation for the function
101 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000102 }
103
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000104 virtual const char *getPassName() const {
105 return "X86 Simple Instruction Selection";
106 }
107
Chris Lattner72614082002-10-25 22:55:53 +0000108 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000109 /// block. This simply creates a new MachineBasicBlock to emit code into
110 /// and adds it to the current MachineFunction. Subsequent visit* for
111 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000112 ///
113 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000114 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000115 }
116
Chris Lattner44827152003-12-28 09:47:19 +0000117 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
118 /// function, lowering any calls to unknown intrinsic functions into the
119 /// equivalent LLVM code.
120 void LowerUnknownIntrinsicFunctionCalls(Function &F);
121
Chris Lattner065faeb2002-12-28 20:24:02 +0000122 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
123 /// from the stack into virtual registers.
124 ///
125 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000126
127 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
128 /// because we have to generate our sources into the source basic blocks,
129 /// not the current one.
130 ///
131 void SelectPHINodes();
132
Chris Lattner72614082002-10-25 22:55:53 +0000133 // Visitation methods for various instructions. These methods simply emit
134 // fixed X86 code for each instruction.
135 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000136
137 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000138 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000139 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000140
141 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000142 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000143 unsigned Reg;
144 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000145 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
146 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000147 };
148 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000149 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000150 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000151 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000152
153 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000154 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000155 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
156 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000157 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000158 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000159 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000160 void doMultiplyConst(MachineBasicBlock *MBB,
161 MachineBasicBlock::iterator &MBBI,
162 unsigned DestReg, const Type *DestTy,
163 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000164 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000165
Chris Lattnerf01729e2002-11-02 20:54:46 +0000166 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
167 void visitRem(BinaryOperator &B) { visitDivRem(B); }
168 void visitDivRem(BinaryOperator &B);
169
Chris Lattnere2954c82002-11-02 20:04:26 +0000170 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000171 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
172 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
173 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000174
Chris Lattner6d40c192003-01-16 16:43:00 +0000175 // Comparison operators...
176 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000177 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
178 MachineBasicBlock *MBB,
179 MachineBasicBlock::iterator &MBBI);
180
Chris Lattner6fc3c522002-11-17 21:11:55 +0000181 // Memory Instructions
182 void visitLoadInst(LoadInst &I);
183 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000184 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000185 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000186 void visitMallocInst(MallocInst &I);
187 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000188
Chris Lattnere2954c82002-11-02 20:04:26 +0000189 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000190 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000191 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000192 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000193 void visitVANextInst(VANextInst &I);
194 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000195
196 void visitInstruction(Instruction &I) {
197 std::cerr << "Cannot instruction select: " << I;
198 abort();
199 }
200
Brian Gaeke95780cc2002-12-13 07:56:18 +0000201 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000202 ///
203 void promote32(unsigned targetReg, const ValueRecord &VR);
204
Chris Lattner3e130a22003-01-13 00:32:26 +0000205 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
206 /// constant expression GEP support.
207 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000208 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000209 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000210 User::op_iterator IdxEnd, unsigned TargetReg);
211
Chris Lattner548f61d2003-04-23 17:22:12 +0000212 /// emitCastOperation - Common code shared between visitCastInst and
213 /// constant expression cast support.
214 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
215 Value *Src, const Type *DestTy, unsigned TargetReg);
216
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000217 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
218 /// and constant expression support.
219 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
220 MachineBasicBlock::iterator &IP,
221 Value *Op0, Value *Op1,
222 unsigned OperatorClass, unsigned TargetReg);
223
Chris Lattnercadff442003-10-23 17:21:43 +0000224 void emitDivRemOperation(MachineBasicBlock *BB,
225 MachineBasicBlock::iterator &IP,
226 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
227 const Type *Ty, unsigned TargetReg);
228
Chris Lattner58c41fe2003-08-24 19:19:47 +0000229 /// emitSetCCOperation - Common code shared between visitSetCondInst and
230 /// constant expression support.
231 void emitSetCCOperation(MachineBasicBlock *BB,
232 MachineBasicBlock::iterator &IP,
233 Value *Op0, Value *Op1, unsigned Opcode,
234 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000235
236 /// emitShiftOperation - Common code shared between visitShiftInst and
237 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000238 void emitShiftOperation(MachineBasicBlock *MBB,
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000239 MachineBasicBlock::iterator &IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000240 Value *Op, Value *ShiftAmount, bool isLeftShift,
241 const Type *ResultTy, unsigned DestReg);
242
Chris Lattner58c41fe2003-08-24 19:19:47 +0000243
Chris Lattnerc5291f52002-10-27 21:16:59 +0000244 /// copyConstantToRegister - Output the instructions required to put the
245 /// specified constant into the specified register.
246 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000247 void copyConstantToRegister(MachineBasicBlock *MBB,
248 MachineBasicBlock::iterator &MBBI,
249 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000250
Chris Lattner3e130a22003-01-13 00:32:26 +0000251 /// makeAnotherReg - This method returns the next register number we haven't
252 /// yet used.
253 ///
254 /// Long values are handled somewhat specially. They are always allocated
255 /// as pairs of 32 bit integer values. The register number returned is the
256 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
257 /// of the long value.
258 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000259 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000260 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
261 "Current target doesn't have X86 reg info??");
262 const X86RegisterInfo *MRI =
263 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000264 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000265 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
266 // Create the lower part
267 F->getSSARegMap()->createVirtualRegister(RC);
268 // Create the upper part.
269 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000270 }
271
Chris Lattnerc0812d82002-12-13 06:56:29 +0000272 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000273 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000274 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000275 }
276
Chris Lattner72614082002-10-25 22:55:53 +0000277 /// getReg - This method turns an LLVM value into a register number. This
278 /// is guaranteed to produce the same register number for a particular value
279 /// every time it is queried.
280 ///
281 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000282 unsigned getReg(Value *V) {
283 // Just append to the end of the current bb.
284 MachineBasicBlock::iterator It = BB->end();
285 return getReg(V, BB, It);
286 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000287 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000288 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000289 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000290 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000291 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000292 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000293 }
Chris Lattner72614082002-10-25 22:55:53 +0000294
Chris Lattner6f8fd252002-10-27 21:23:43 +0000295 // If this operand is a constant, emit the code to copy the constant into
296 // the register here...
297 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000298 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000299 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000300 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000301 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
302 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000303 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000304 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000305 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000306
Chris Lattner72614082002-10-25 22:55:53 +0000307 return Reg;
308 }
Chris Lattner72614082002-10-25 22:55:53 +0000309 };
310}
311
Chris Lattner43189d12002-11-17 20:07:45 +0000312/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
313/// Representation.
314///
315enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000316 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000317};
318
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000319/// getClass - Turn a primitive type into a "class" number which is based on the
320/// size of the type, and whether or not it is floating point.
321///
Chris Lattner43189d12002-11-17 20:07:45 +0000322static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000323 switch (Ty->getPrimitiveID()) {
324 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000325 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000326 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000327 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000328 case Type::IntTyID:
329 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000330 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000331
Chris Lattner94af4142002-12-25 05:13:53 +0000332 case Type::FloatTyID:
333 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000334
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000335 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000336 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000337 default:
338 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000339 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000340 }
341}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000342
Chris Lattner6b993cc2002-12-15 08:02:15 +0000343// getClassB - Just like getClass, but treat boolean values as bytes.
344static inline TypeClass getClassB(const Type *Ty) {
345 if (Ty == Type::BoolTy) return cByte;
346 return getClass(Ty);
347}
348
Chris Lattner06925362002-11-17 21:56:38 +0000349
Chris Lattnerc5291f52002-10-27 21:16:59 +0000350/// copyConstantToRegister - Output the instructions required to put the
351/// specified constant into the specified register.
352///
Chris Lattner8a307e82002-12-16 19:32:50 +0000353void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
354 MachineBasicBlock::iterator &IP,
355 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000356 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000357 unsigned Class = 0;
358 switch (CE->getOpcode()) {
359 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000360 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000361 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000362 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000363 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000364 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000365 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000366
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000367 case Instruction::Xor: ++Class; // FALL THROUGH
368 case Instruction::Or: ++Class; // FALL THROUGH
369 case Instruction::And: ++Class; // FALL THROUGH
370 case Instruction::Sub: ++Class; // FALL THROUGH
371 case Instruction::Add:
372 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
373 Class, R);
374 return;
375
Chris Lattnercadff442003-10-23 17:21:43 +0000376 case Instruction::Mul: {
377 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
378 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
379 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
380 return;
381 }
382 case Instruction::Div:
383 case Instruction::Rem: {
384 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
385 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
386 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
387 CE->getOpcode() == Instruction::Div,
388 CE->getType(), R);
389 return;
390 }
391
Chris Lattner58c41fe2003-08-24 19:19:47 +0000392 case Instruction::SetNE:
393 case Instruction::SetEQ:
394 case Instruction::SetLT:
395 case Instruction::SetGT:
396 case Instruction::SetLE:
397 case Instruction::SetGE:
398 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
399 CE->getOpcode(), R);
400 return;
401
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000402 case Instruction::Shl:
403 case Instruction::Shr:
404 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000405 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
406 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000407
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000408 default:
409 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000410 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000411 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000412 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000413
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000414 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000415 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000416
417 if (Class == cLong) {
418 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000419 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000420 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
421 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
422 return;
423 }
424
Chris Lattner94af4142002-12-25 05:13:53 +0000425 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000426
427 static const unsigned IntegralOpcodeTab[] = {
428 X86::MOVir8, X86::MOVir16, X86::MOVir32
429 };
430
Chris Lattner6b993cc2002-12-15 08:02:15 +0000431 if (C->getType() == Type::BoolTy) {
432 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000433 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000434 ConstantInt *CI = cast<ConstantInt>(C);
435 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000436 }
Chris Lattner94af4142002-12-25 05:13:53 +0000437 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
438 double Value = CFP->getValue();
439 if (Value == +0.0)
440 BMI(MBB, IP, X86::FLD0, 0, R);
441 else if (Value == +1.0)
442 BMI(MBB, IP, X86::FLD1, 0, R);
443 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000444 // Otherwise we need to spill the constant to memory...
445 MachineConstantPool *CP = F->getConstantPool();
446 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000447 const Type *Ty = CFP->getType();
448
449 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
450 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
451 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000452 }
453
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000454 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000455 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000456 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000457 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000458 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000459 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000460 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000461 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000462 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000463 }
464}
465
Chris Lattner065faeb2002-12-28 20:24:02 +0000466/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
467/// the stack into virtual registers.
468///
469void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
470 // Emit instructions to load the arguments... On entry to a function on the
471 // X86, the stack frame looks like this:
472 //
473 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000474 // [ESP + 4] -- first argument (leftmost lexically)
475 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000476 // ...
477 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000478 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000479 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000480
481 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
482 unsigned Reg = getReg(*I);
483
Chris Lattner065faeb2002-12-28 20:24:02 +0000484 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000485 switch (getClassB(I->getType())) {
486 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000487 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000488 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
489 break;
490 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000491 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000492 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
493 break;
494 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000495 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000496 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
497 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000498 case cLong:
499 FI = MFI->CreateFixedObject(8, ArgOffset);
500 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
501 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
502 ArgOffset += 4; // longs require 4 additional bytes
503 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000504 case cFP:
505 unsigned Opcode;
506 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000507 Opcode = X86::FLDr32;
508 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000509 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000510 Opcode = X86::FLDr64;
511 FI = MFI->CreateFixedObject(8, ArgOffset);
512 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000513 }
514 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
515 break;
516 default:
517 assert(0 && "Unhandled argument type!");
518 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000519 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000520 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000521
522 // If the function takes variable number of arguments, add a frame offset for
523 // the start of the first vararg value... this is used to expand
524 // llvm.va_start.
525 if (Fn.getFunctionType()->isVarArg())
526 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000527}
528
529
Chris Lattner333b2fa2002-12-13 10:09:43 +0000530/// SelectPHINodes - Insert machine code to generate phis. This is tricky
531/// because we have to generate our sources into the source basic blocks, not
532/// the current one.
533///
534void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000535 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000536 const Function &LF = *F->getFunction(); // The LLVM function...
537 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
538 const BasicBlock *BB = I;
539 MachineBasicBlock *MBB = MBBMap[I];
540
541 // Loop over all of the PHI nodes in the LLVM basic block...
542 unsigned NumPHIs = 0;
543 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000544 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000545
Chris Lattner333b2fa2002-12-13 10:09:43 +0000546 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000547 unsigned PHIReg = getReg(*PN);
548 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
549 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
550
551 MachineInstr *LongPhiMI = 0;
552 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000553 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
554 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000555 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000556
Chris Lattnera6e73f12003-05-12 14:22:21 +0000557 // PHIValues - Map of blocks to incoming virtual registers. We use this
558 // so that we only initialize one incoming value for a particular block,
559 // even if the block has multiple entries in the PHI node.
560 //
561 std::map<MachineBasicBlock*, unsigned> PHIValues;
562
Chris Lattner333b2fa2002-12-13 10:09:43 +0000563 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
564 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000565 unsigned ValReg;
566 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
567 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000568
Chris Lattnera6e73f12003-05-12 14:22:21 +0000569 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
570 // We already inserted an initialization of the register for this
571 // predecessor. Recycle it.
572 ValReg = EntryIt->second;
573
574 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000575 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000576 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000577 Value *Val = PN->getIncomingValue(i);
578
579 // If this is a constant or GlobalValue, we may have to insert code
580 // into the basic block to compute it into a virtual register.
581 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
582 // Because we don't want to clobber any values which might be in
583 // physical registers with the computation of this constant (which
584 // might be arbitrarily complex if it is a constant expression),
585 // just insert the computation at the top of the basic block.
586 MachineBasicBlock::iterator PI = PredMBB->begin();
587
588 // Skip over any PHI nodes though!
589 while (PI != PredMBB->end() && (*PI)->getOpcode() == X86::PHI)
590 ++PI;
591
592 ValReg = getReg(Val, PredMBB, PI);
593 } else {
594 ValReg = getReg(Val);
595 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000596
597 // Remember that we inserted a value for this PHI for this predecessor
598 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
599 }
600
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000601 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000602 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000603 if (LongPhiMI) {
604 LongPhiMI->addRegOperand(ValReg+1);
605 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
606 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000607 }
608 }
609 }
610}
611
Chris Lattner6d40c192003-01-16 16:43:00 +0000612// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
613// the conditional branch instruction which is the only user of the cc
614// instruction. This is the case if the conditional branch is the only user of
615// the setcc, and if the setcc is in the same basic block as the conditional
616// branch. We also don't handle long arguments below, so we reject them here as
617// well.
618//
619static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
620 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000621 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000622 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
623 const Type *Ty = SCI->getOperand(0)->getType();
624 if (Ty != Type::LongTy && Ty != Type::ULongTy)
625 return SCI;
626 }
627 return 0;
628}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000629
Chris Lattner6d40c192003-01-16 16:43:00 +0000630// Return a fixed numbering for setcc instructions which does not depend on the
631// order of the opcodes.
632//
633static unsigned getSetCCNumber(unsigned Opcode) {
634 switch(Opcode) {
635 default: assert(0 && "Unknown setcc instruction!");
636 case Instruction::SetEQ: return 0;
637 case Instruction::SetNE: return 1;
638 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000639 case Instruction::SetGE: return 3;
640 case Instruction::SetGT: return 4;
641 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000642 }
643}
Chris Lattner06925362002-11-17 21:56:38 +0000644
Chris Lattner6d40c192003-01-16 16:43:00 +0000645// LLVM -> X86 signed X86 unsigned
646// ----- ---------- ------------
647// seteq -> sete sete
648// setne -> setne setne
649// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000650// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000651// setgt -> setg seta
652// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000653// ----
654// sets // Used by comparison with 0 optimization
655// setns
656static const unsigned SetCCOpcodeTab[2][8] = {
657 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
658 0, 0 },
659 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
660 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000661};
662
Chris Lattnerb2acc512003-10-19 21:09:10 +0000663// EmitComparison - This function emits a comparison of the two operands,
664// returning the extended setcc code to use.
665unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
666 MachineBasicBlock *MBB,
667 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000668 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000669 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000670 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000671 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000672
673 // Special case handling of: cmp R, i
674 if (Class == cByte || Class == cShort || Class == cInt)
675 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000676 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
677
Chris Lattner333864d2003-06-05 19:30:30 +0000678 // Mask off any upper bits of the constant, if there are any...
679 Op1v &= (1ULL << (8 << Class)) - 1;
680
Chris Lattnerb2acc512003-10-19 21:09:10 +0000681 // If this is a comparison against zero, emit more efficient code. We
682 // can't handle unsigned comparisons against zero unless they are == or
683 // !=. These should have been strength reduced already anyway.
684 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
685 static const unsigned TESTTab[] = {
686 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
687 };
688 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
689
690 if (OpNum == 2) return 6; // Map jl -> js
691 if (OpNum == 3) return 7; // Map jg -> jns
692 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000693 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000694
695 static const unsigned CMPTab[] = {
696 X86::CMPri8, X86::CMPri16, X86::CMPri32
697 };
698
699 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
700 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000701 }
702
Chris Lattner58c41fe2003-08-24 19:19:47 +0000703 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000704 switch (Class) {
705 default: assert(0 && "Unknown type class!");
706 // Emit: cmp <var1>, <var2> (do the comparison). We can
707 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
708 // 32-bit.
709 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000710 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000711 break;
712 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000713 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000714 break;
715 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000716 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000717 break;
718 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000719 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
720 BMI(MBB, IP, X86::FNSTSWr8, 0);
721 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000722 break;
723
724 case cLong:
725 if (OpNum < 2) { // seteq, setne
726 unsigned LoTmp = makeAnotherReg(Type::IntTy);
727 unsigned HiTmp = makeAnotherReg(Type::IntTy);
728 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000729 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
730 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
731 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000732 break; // Allow the sete or setne to be generated from flags set by OR
733 } else {
734 // Emit a sequence of code which compares the high and low parts once
735 // each, then uses a conditional move to handle the overflow case. For
736 // example, a setlt for long would generate code like this:
737 //
738 // AL = lo(op1) < lo(op2) // Signedness depends on operands
739 // BL = hi(op1) < hi(op2) // Always unsigned comparison
740 // dest = hi(op1) == hi(op2) ? AL : BL;
741 //
742
Chris Lattner6d40c192003-01-16 16:43:00 +0000743 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000744 // classes! Until then, hardcode registers so that we can deal with their
745 // aliases (because we don't have conditional byte moves).
746 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000747 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
748 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
749 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000750 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000751 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
752 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
753 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000754 // NOTE: visitSetCondInst knows that the value is dumped into the BL
755 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000756 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000757 }
758 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000759 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000760}
Chris Lattner3e130a22003-01-13 00:32:26 +0000761
Chris Lattner6d40c192003-01-16 16:43:00 +0000762
763/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
764/// register, then move it to wherever the result should be.
765///
766void ISel::visitSetCondInst(SetCondInst &I) {
767 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
768
Chris Lattner6d40c192003-01-16 16:43:00 +0000769 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000770 MachineBasicBlock::iterator MII = BB->end();
771 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
772 DestReg);
773}
Chris Lattner6d40c192003-01-16 16:43:00 +0000774
Chris Lattner58c41fe2003-08-24 19:19:47 +0000775/// emitSetCCOperation - Common code shared between visitSetCondInst and
776/// constant expression support.
777void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
778 MachineBasicBlock::iterator &IP,
779 Value *Op0, Value *Op1, unsigned Opcode,
780 unsigned TargetReg) {
781 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000782 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000783
Chris Lattnerb2acc512003-10-19 21:09:10 +0000784 const Type *CompTy = Op0->getType();
785 unsigned CompClass = getClassB(CompTy);
786 bool isSigned = CompTy->isSigned() && CompClass != cFP;
787
788 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000789 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000790 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000791 } else {
792 // Handle long comparisons by copying the value which is already in BL into
793 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000794 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000795 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000796}
Chris Lattner51b49a92002-11-02 19:45:49 +0000797
Chris Lattner58c41fe2003-08-24 19:19:47 +0000798
799
800
Brian Gaekec2505982002-11-30 11:57:28 +0000801/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
802/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000803void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
804 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000805
806 // Make sure we have the register number for this value...
807 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
808
Chris Lattner3e130a22003-01-13 00:32:26 +0000809 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000810 case cByte:
811 // Extend value into target register (8->32)
812 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000813 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000814 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000815 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000816 break;
817 case cShort:
818 // Extend value into target register (16->32)
819 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000820 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000821 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000822 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000823 break;
824 case cInt:
825 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000826 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000827 break;
828 default:
829 assert(0 && "Unpromotable operand class in promote32");
830 }
Brian Gaekec2505982002-11-30 11:57:28 +0000831}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000832
Chris Lattner72614082002-10-25 22:55:53 +0000833/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
834/// we have the following possibilities:
835///
836/// ret void: No return value, simply emit a 'ret' instruction
837/// ret sbyte, ubyte : Extend value into EAX and return
838/// ret short, ushort: Extend value into EAX and return
839/// ret int, uint : Move value into EAX and return
840/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000841/// ret long, ulong : Move value into EAX/EDX and return
842/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000843///
Chris Lattner3e130a22003-01-13 00:32:26 +0000844void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000845 if (I.getNumOperands() == 0) {
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000846 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner94af4142002-12-25 05:13:53 +0000847 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
848 return;
849 }
850
851 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000852 unsigned RetReg = getReg(RetVal);
853 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000854 case cByte: // integral return values: extend or move into EAX and return
855 case cShort:
856 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000857 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000858 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000859 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000860 break;
861 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000862 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000863 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000864 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000865 break;
866 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000867 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
868 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000869 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000870 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
871 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000872 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000873 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000874 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000875 }
Chris Lattner43189d12002-11-17 20:07:45 +0000876 // Emit a 'ret' instruction
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000877 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner94af4142002-12-25 05:13:53 +0000878 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000879}
880
Chris Lattner55f6fab2003-01-16 18:07:23 +0000881// getBlockAfter - Return the basic block which occurs lexically after the
882// specified one.
883static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
884 Function::iterator I = BB; ++I; // Get iterator to next block
885 return I != BB->getParent()->end() ? &*I : 0;
886}
887
Chris Lattner51b49a92002-11-02 19:45:49 +0000888/// visitBranchInst - Handle conditional and unconditional branches here. Note
889/// that since code layout is frozen at this point, that if we are trying to
890/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000891/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000892///
Chris Lattner94af4142002-12-25 05:13:53 +0000893void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000894 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
895
896 if (!BI.isConditional()) { // Unconditional branch?
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000897 if (BI.getSuccessor(0) != NextBB) {
898 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000899 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000900 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000901 return;
902 }
903
904 // See if we can fold the setcc into the branch itself...
905 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
906 if (SCI == 0) {
907 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
908 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000909 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000910 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000911 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000912 if (BI.getSuccessor(1) == NextBB) {
913 if (BI.getSuccessor(0) != NextBB)
914 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
915 } else {
916 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
917
918 if (BI.getSuccessor(0) != NextBB)
919 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
920 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000921 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000922 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000923
924 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000925 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000926 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000927
928 const Type *CompTy = SCI->getOperand(0)->getType();
929 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000930
Chris Lattnerb2acc512003-10-19 21:09:10 +0000931
Chris Lattner6d40c192003-01-16 16:43:00 +0000932 // LLVM -> X86 signed X86 unsigned
933 // ----- ---------- ------------
934 // seteq -> je je
935 // setne -> jne jne
936 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000937 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000938 // setgt -> jg ja
939 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000940 // ----
941 // js // Used by comparison with 0 optimization
942 // jns
943
944 static const unsigned OpcodeTab[2][8] = {
945 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
946 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
947 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +0000948 };
949
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000950 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000951 if (BI.getSuccessor(0) != NextBB) {
952 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
953 if (BI.getSuccessor(1) != NextBB)
954 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
955 } else {
956 // Change to the inverse condition...
957 if (BI.getSuccessor(1) != NextBB) {
958 OpNum ^= 1;
959 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
960 }
961 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000962}
963
Chris Lattner3e130a22003-01-13 00:32:26 +0000964
965/// doCall - This emits an abstract call instruction, setting up the arguments
966/// and the return value as appropriate. For the actual function call itself,
967/// it inserts the specified CallMI instruction into the stream.
968///
969void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000970 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000971
Chris Lattner065faeb2002-12-28 20:24:02 +0000972 // Count how many bytes are to be pushed on the stack...
973 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000974
Chris Lattner3e130a22003-01-13 00:32:26 +0000975 if (!Args.empty()) {
976 for (unsigned i = 0, e = Args.size(); i != e; ++i)
977 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000978 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000979 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000980 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000981 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000982 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000983 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
984 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000985 default: assert(0 && "Unknown class!");
986 }
987
988 // Adjust the stack pointer for the new arguments...
989 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
990
991 // Arguments go on the stack in reverse order, as specified by the ABI.
992 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000993 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000994 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +0000995 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000996 case cByte:
997 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000998 // Promote arg to 32 bits wide into a temporary register...
999 unsigned R = makeAnotherReg(Type::UIntTy);
1000 promote32(R, Args[i]);
1001 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1002 X86::ESP, ArgOffset).addReg(R);
1003 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001004 }
1005 case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001006 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1007 X86::ESP, ArgOffset).addReg(ArgReg);
1008 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001009 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001010 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1011 X86::ESP, ArgOffset).addReg(ArgReg);
1012 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1013 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1014 ArgOffset += 4; // 8 byte entry, not 4.
1015 break;
1016
Chris Lattner065faeb2002-12-28 20:24:02 +00001017 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001018 if (Args[i].Ty == Type::FloatTy) {
1019 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1020 X86::ESP, ArgOffset).addReg(ArgReg);
1021 } else {
1022 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1023 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1024 X86::ESP, ArgOffset).addReg(ArgReg);
1025 ArgOffset += 4; // 8 byte entry, not 4.
1026 }
1027 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001028
Chris Lattner3e130a22003-01-13 00:32:26 +00001029 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001030 }
1031 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001032 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001033 } else {
1034 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001035 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001036
Chris Lattner3e130a22003-01-13 00:32:26 +00001037 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001038
Chris Lattner065faeb2002-12-28 20:24:02 +00001039 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001040
1041 // If there is a return value, scavenge the result from the location the call
1042 // leaves it in...
1043 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001044 if (Ret.Ty != Type::VoidTy) {
1045 unsigned DestClass = getClassB(Ret.Ty);
1046 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001047 case cByte:
1048 case cShort:
1049 case cInt: {
1050 // Integral results are in %eax, or the appropriate portion
1051 // thereof.
1052 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001053 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001054 };
1055 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001056 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001057 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001058 }
Chris Lattner94af4142002-12-25 05:13:53 +00001059 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001060 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001061 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001062 case cLong: // Long values are left in EDX:EAX
1063 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1064 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1065 break;
1066 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001067 }
Chris Lattnera3243642002-12-04 23:45:28 +00001068 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001069}
Chris Lattner2df035b2002-11-02 19:27:56 +00001070
Chris Lattner3e130a22003-01-13 00:32:26 +00001071
1072/// visitCallInst - Push args on stack and do a procedure call instruction.
1073void ISel::visitCallInst(CallInst &CI) {
1074 MachineInstr *TheCall;
1075 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001076 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001077 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001078 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1079 return;
1080 }
1081
Chris Lattner3e130a22003-01-13 00:32:26 +00001082 // Emit a CALL instruction with PC-relative displacement.
1083 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1084 } else { // Emit an indirect call...
1085 unsigned Reg = getReg(CI.getCalledValue());
1086 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1087 }
1088
1089 std::vector<ValueRecord> Args;
1090 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001091 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001092
1093 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1094 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001095}
Chris Lattner3e130a22003-01-13 00:32:26 +00001096
Chris Lattneraeb54b82003-08-28 21:23:43 +00001097
Chris Lattner44827152003-12-28 09:47:19 +00001098/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1099/// function, lowering any calls to unknown intrinsic functions into the
1100/// equivalent LLVM code.
1101void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1102 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1103 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1104 if (CallInst *CI = dyn_cast<CallInst>(I++))
1105 if (Function *F = CI->getCalledFunction())
1106 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001107 case Intrinsic::not_intrinsic:
Chris Lattner44827152003-12-28 09:47:19 +00001108 case Intrinsic::va_start:
1109 case Intrinsic::va_copy:
1110 case Intrinsic::va_end:
1111 // We directly implement these intrinsics
1112 break;
1113 default:
1114 // All other intrinsic calls we must lower.
1115 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001116 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001117 if (Before) { // Move iterator to instruction after call
1118 I = Before; ++I;
1119 } else {
1120 I = BB->begin();
1121 }
1122 }
1123
1124}
1125
Brian Gaeked0fde302003-11-11 22:41:34 +00001126void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001127 unsigned TmpReg1, TmpReg2;
1128 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001129 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001130 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001131 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001132 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001133 return;
1134
Brian Gaeked0fde302003-11-11 22:41:34 +00001135 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001136 TmpReg1 = getReg(CI);
1137 TmpReg2 = getReg(CI.getOperand(1));
1138 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001139 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001140 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001141
Chris Lattner44827152003-12-28 09:47:19 +00001142 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001143 }
1144}
1145
1146
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001147/// visitSimpleBinary - Implement simple binary operators for integral types...
1148/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1149/// Xor.
1150void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1151 unsigned DestReg = getReg(B);
1152 MachineBasicBlock::iterator MI = BB->end();
1153 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1154 OperatorClass, DestReg);
1155}
Chris Lattner3e130a22003-01-13 00:32:26 +00001156
Chris Lattnerb2acc512003-10-19 21:09:10 +00001157/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1158/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1159/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001160///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001161/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1162/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001163///
1164void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001165 MachineBasicBlock::iterator &IP,
1166 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001167 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001168 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001169
1170 // sub 0, X -> neg X
1171 if (OperatorClass == 1 && Class != cLong)
1172 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1173 if (CI->isNullValue()) {
1174 unsigned op1Reg = getReg(Op1, MBB, IP);
1175 switch (Class) {
1176 default: assert(0 && "Unknown class for this function!");
1177 case cByte:
1178 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1179 return;
1180 case cShort:
1181 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1182 return;
1183 case cInt:
1184 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1185 return;
1186 }
1187 }
1188
Chris Lattner35333e12003-06-05 18:28:55 +00001189 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1190 static const unsigned OpcodeTab[][4] = {
1191 // Arithmetic operators
1192 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1193 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1194
1195 // Bitwise operators
1196 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1197 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1198 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001199 };
Chris Lattner35333e12003-06-05 18:28:55 +00001200
1201 bool isLong = false;
1202 if (Class == cLong) {
1203 isLong = true;
1204 Class = cInt; // Bottom 32 bits are handled just like ints
1205 }
1206
1207 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1208 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001209 unsigned Op0r = getReg(Op0, MBB, IP);
1210 unsigned Op1r = getReg(Op1, MBB, IP);
1211 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001212
1213 if (isLong) { // Handle the upper 32 bits of long values...
1214 static const unsigned TopTab[] = {
1215 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1216 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001217 BMI(MBB, IP, TopTab[OperatorClass], 2,
1218 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001219 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001220 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001221 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001222
1223 // Special case: op Reg, <const>
1224 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1225 unsigned Op0r = getReg(Op0, MBB, IP);
1226
1227 // xor X, -1 -> not X
1228 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1229 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1230 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1231 return;
1232 }
1233
1234 // add X, -1 -> dec X
1235 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1236 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1237 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1238 return;
1239 }
1240
1241 // add X, 1 -> inc X
1242 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1243 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1244 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1245 return;
1246 }
1247
1248 static const unsigned OpcodeTab[][3] = {
1249 // Arithmetic operators
1250 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1251 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1252
1253 // Bitwise operators
1254 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1255 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1256 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1257 };
1258
1259 assert(Class < 3 && "General code handles 64-bit integer types!");
1260 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1261 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1262
1263 // Mask off any upper bits of the constant, if there are any...
1264 Op1v &= (1ULL << (8 << Class)) - 1;
1265 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001266}
1267
Chris Lattner3e130a22003-01-13 00:32:26 +00001268/// doMultiply - Emit appropriate instructions to multiply together the
1269/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1270/// result should be given as DestTy.
1271///
Chris Lattner8a307e82002-12-16 19:32:50 +00001272void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001273 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001274 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001275 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001276 switch (Class) {
1277 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001278 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001279 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001280 case cInt:
1281 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001282 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001283 .addReg(op0Reg).addReg(op1Reg);
1284 return;
1285 case cByte:
1286 // Must use the MUL instruction, which forces use of AL...
1287 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1288 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1289 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1290 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001291 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001292 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001293 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001294}
1295
Chris Lattnerb2acc512003-10-19 21:09:10 +00001296// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1297// returns zero when the input is not exactly a power of two.
1298static unsigned ExactLog2(unsigned Val) {
1299 if (Val == 0) return 0;
1300 unsigned Count = 0;
1301 while (Val != 1) {
1302 if (Val & 1) return 0;
1303 Val >>= 1;
1304 ++Count;
1305 }
1306 return Count+1;
1307}
1308
1309void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1310 MachineBasicBlock::iterator &IP,
1311 unsigned DestReg, const Type *DestTy,
1312 unsigned op0Reg, unsigned ConstRHS) {
1313 unsigned Class = getClass(DestTy);
1314
1315 // If the element size is exactly a power of 2, use a shift to get it.
1316 if (unsigned Shift = ExactLog2(ConstRHS)) {
1317 switch (Class) {
1318 default: assert(0 && "Unknown class for this function!");
1319 case cByte:
1320 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1321 return;
1322 case cShort:
1323 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1324 return;
1325 case cInt:
1326 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1327 return;
1328 }
1329 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001330
1331 if (Class == cShort) {
1332 BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1333 return;
1334 } else if (Class == cInt) {
1335 BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1336 return;
1337 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001338
1339 // Most general case, emit a normal multiply...
1340 static const unsigned MOVirTab[] = {
1341 X86::MOVir8, X86::MOVir16, X86::MOVir32
1342 };
1343
1344 unsigned TmpReg = makeAnotherReg(DestTy);
1345 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1346
1347 // Emit a MUL to multiply the register holding the index by
1348 // elementSize, putting the result in OffsetReg.
1349 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1350}
1351
Chris Lattnerca9671d2002-11-02 20:28:58 +00001352/// visitMul - Multiplies are not simple binary operators because they must deal
1353/// with the EAX register explicitly.
1354///
1355void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001356 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001357 unsigned DestReg = getReg(I);
1358
1359 // Simple scalar multiply?
1360 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001361 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1362 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1363 MachineBasicBlock::iterator MBBI = BB->end();
1364 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1365 } else {
1366 unsigned Op1Reg = getReg(I.getOperand(1));
1367 MachineBasicBlock::iterator MBBI = BB->end();
1368 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1369 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001370 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001371 unsigned Op1Reg = getReg(I.getOperand(1));
1372
Chris Lattner3e130a22003-01-13 00:32:26 +00001373 // Long value. We have to do things the hard way...
1374 // Multiply the two low parts... capturing carry into EDX
1375 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1376 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1377
1378 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1379 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1380 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1381
1382 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001383 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001384 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001385
1386 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1387 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001388 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001389
1390 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001391 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001392 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001393
1394 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001395 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001396 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001397}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001398
Chris Lattner06925362002-11-17 21:56:38 +00001399
Chris Lattnerf01729e2002-11-02 20:54:46 +00001400/// visitDivRem - Handle division and remainder instructions... these
1401/// instruction both require the same instructions to be generated, they just
1402/// select the result from a different register. Note that both of these
1403/// instructions work differently for signed and unsigned operands.
1404///
1405void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001406 unsigned Op0Reg = getReg(I.getOperand(0));
1407 unsigned Op1Reg = getReg(I.getOperand(1));
1408 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001409
Chris Lattnercadff442003-10-23 17:21:43 +00001410 MachineBasicBlock::iterator IP = BB->end();
1411 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1412 I.getType(), ResultReg);
1413}
1414
1415void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1416 MachineBasicBlock::iterator &IP,
1417 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1418 const Type *Ty, unsigned ResultReg) {
1419 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001420 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001421 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001422 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001423 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001424 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001425 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001426 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001427 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001428 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1429 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001430 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1431 }
Chris Lattner94af4142002-12-25 05:13:53 +00001432 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001433 case cLong: {
1434 static const char *FnName[] =
1435 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1436
Chris Lattnercadff442003-10-23 17:21:43 +00001437 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001438 MachineInstr *TheCall =
1439 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1440
1441 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001442 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1443 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001444 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1445 return;
1446 }
1447 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001448 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001449 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001450 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001451
1452 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1453 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001454 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001455 static const unsigned ClrOpcode[]={ X86::MOVir8, X86::MOVir16, X86::MOVir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001456 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1457
1458 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001459 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1460 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001461 };
1462
Chris Lattnercadff442003-10-23 17:21:43 +00001463 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001464 unsigned Reg = Regs[Class];
1465 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001466
1467 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001468 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001469
1470 if (isSigned) {
1471 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001472 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001473 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1474 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001475 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001476 // If unsigned, emit a zeroing instruction... (reg = 0)
1477 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addZImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001478 }
1479
Chris Lattner06925362002-11-17 21:56:38 +00001480 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001481 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001482
Chris Lattnerf01729e2002-11-02 20:54:46 +00001483 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001484 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001485
Chris Lattnerf01729e2002-11-02 20:54:46 +00001486 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001487 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001488}
Chris Lattnere2954c82002-11-02 20:04:26 +00001489
Chris Lattner06925362002-11-17 21:56:38 +00001490
Brian Gaekea1719c92002-10-31 23:03:59 +00001491/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1492/// for constant immediate shift values, and for constant immediate
1493/// shift values equal to 1. Even the general case is sort of special,
1494/// because the shift amount has to be in CL, not just any old register.
1495///
Chris Lattner3e130a22003-01-13 00:32:26 +00001496void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001497 MachineBasicBlock::iterator IP = BB->end ();
1498 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1499 I.getOpcode () == Instruction::Shl, I.getType (),
1500 getReg (I));
1501}
1502
1503/// emitShiftOperation - Common code shared between visitShiftInst and
1504/// constant expression support.
1505void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1506 MachineBasicBlock::iterator &IP,
1507 Value *Op, Value *ShiftAmount, bool isLeftShift,
1508 const Type *ResultTy, unsigned DestReg) {
1509 unsigned SrcReg = getReg (Op, MBB, IP);
1510 bool isSigned = ResultTy->isSigned ();
1511 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001512
1513 static const unsigned ConstantOperand[][4] = {
1514 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1515 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1516 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1517 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1518 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001519
Chris Lattner3e130a22003-01-13 00:32:26 +00001520 static const unsigned NonConstantOperand[][4] = {
1521 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1522 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1523 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1524 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1525 };
Chris Lattner796df732002-11-02 00:44:25 +00001526
Chris Lattner3e130a22003-01-13 00:32:26 +00001527 // Longs, as usual, are handled specially...
1528 if (Class == cLong) {
1529 // If we have a constant shift, we can generate much more efficient code
1530 // than otherwise...
1531 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001532 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001533 unsigned Amount = CUI->getValue();
1534 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001535 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1536 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001537 BMI(MBB, IP, Opc[3], 3,
1538 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1539 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001540 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001541 BMI(MBB, IP, Opc[3], 3,
1542 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1543 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001544 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001545 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001546 Amount -= 32;
1547 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001548 BMI(MBB, IP, X86::SHLir32, 2,
1549 DestReg + 1).addReg(SrcReg).addZImm(Amount);
1550 BMI(MBB, IP, X86::MOVir32, 1,
1551 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001552 } else {
1553 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001554 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1555 BMI(MBB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001556 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001557 }
1558 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001559 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1560
1561 if (!isLeftShift && isSigned) {
1562 // If this is a SHR of a Long, then we need to do funny sign extension
1563 // stuff. TmpReg gets the value to use as the high-part if we are
1564 // shifting more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001565 BMI(MBB, IP, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001566 } else {
1567 // Other shifts use a fixed zero value if the shift is more than 32
1568 // bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001569 BMI(MBB, IP, X86::MOVir32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001570 }
1571
1572 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001573 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1574 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001575
1576 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1577 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1578 if (isLeftShift) {
1579 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001580 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001581 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001582 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001583
1584 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001585 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001586
1587 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001588 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001589 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1590 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001591 BMI(MBB, IP, X86::CMOVNErr32, 2,
1592 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001593 } else {
1594 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001595 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001596 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001597 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001598 .addReg(SrcReg+1);
1599
1600 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001601 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001602
1603 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001604 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001605 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1606
1607 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001608 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001609 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1610 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001611 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001612 return;
1613 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001614
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001615 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001616 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1617 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001618
Chris Lattner3e130a22003-01-13 00:32:26 +00001619 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001620 BMI(MBB, IP, Opc[Class], 2,
1621 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001622 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001623 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1624 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001625
Chris Lattner3e130a22003-01-13 00:32:26 +00001626 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001627 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001628 }
1629}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001630
Chris Lattner3e130a22003-01-13 00:32:26 +00001631
Chris Lattner6fc3c522002-11-17 21:11:55 +00001632/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001633/// instruction. The load and store instructions are the only place where we
1634/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001635///
1636void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001637 unsigned SrcAddrReg = getReg(I.getOperand(0));
1638 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001639
Brian Gaekebfedb912003-07-17 21:30:06 +00001640 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001641
1642 if (Class == cLong) {
1643 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
1644 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001645 return;
1646 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001647
Chris Lattner6ac1d712003-10-20 04:48:06 +00001648 static const unsigned Opcodes[] = {
1649 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001650 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001651 unsigned Opcode = Opcodes[Class];
1652 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1653 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001654}
1655
Chris Lattner6fc3c522002-11-17 21:11:55 +00001656/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1657/// instruction.
1658///
1659void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001660 unsigned ValReg = getReg(I.getOperand(0));
1661 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001662
1663 const Type *ValTy = I.getOperand(0)->getType();
1664 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001665
1666 if (Class == cLong) {
Chris Lattner6c09db22003-10-20 04:11:23 +00001667 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1668 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001669 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001670 }
1671
Chris Lattner6ac1d712003-10-20 04:48:06 +00001672 static const unsigned Opcodes[] = {
1673 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
1674 };
1675 unsigned Opcode = Opcodes[Class];
1676 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1677 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001678}
1679
1680
Brian Gaekec11232a2002-11-26 10:43:30 +00001681/// visitCastInst - Here we have various kinds of copying with or without
1682/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001683void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001684 Value *Op = CI.getOperand(0);
1685 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1686 // of the case are GEP instructions, then the cast does not need to be
1687 // generated explicitly, it will be folded into the GEP.
1688 if (CI.getType() == Type::LongTy &&
1689 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1690 bool AllUsesAreGEPs = true;
1691 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1692 if (!isa<GetElementPtrInst>(*I)) {
1693 AllUsesAreGEPs = false;
1694 break;
1695 }
1696
1697 // No need to codegen this cast if all users are getelementptr instrs...
1698 if (AllUsesAreGEPs) return;
1699 }
1700
Chris Lattner548f61d2003-04-23 17:22:12 +00001701 unsigned DestReg = getReg(CI);
1702 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001703 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001704}
1705
1706/// emitCastOperation - Common code shared between visitCastInst and
1707/// constant expression cast support.
1708void ISel::emitCastOperation(MachineBasicBlock *BB,
1709 MachineBasicBlock::iterator &IP,
1710 Value *Src, const Type *DestTy,
1711 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001712 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001713 const Type *SrcTy = Src->getType();
1714 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001715 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001716
Chris Lattner3e130a22003-01-13 00:32:26 +00001717 // Implement casts to bool by using compare on the operand followed by set if
1718 // not zero on the result.
1719 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001720 switch (SrcClass) {
1721 case cByte:
1722 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1723 break;
1724 case cShort:
1725 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1726 break;
1727 case cInt:
1728 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1729 break;
1730 case cLong: {
1731 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1732 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1733 break;
1734 }
1735 case cFP:
1736 assert(0 && "FIXME: implement cast FP to bool");
1737 abort();
1738 }
1739
1740 // If the zero flag is not set, then the value is true, set the byte to
1741 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001742 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001743 return;
1744 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001745
1746 static const unsigned RegRegMove[] = {
1747 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1748 };
1749
1750 // Implement casts between values of the same type class (as determined by
1751 // getClass) by using a register-to-register move.
1752 if (SrcClass == DestClass) {
1753 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001754 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001755 } else if (SrcClass == cFP) {
1756 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001757 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1758 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001759 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001760 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1761 "Unknown cFP member!");
1762 // Truncate from double to float by storing to memory as short, then
1763 // reading it back.
1764 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001765 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001766 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1767 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001768 }
1769 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001770 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1771 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001772 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001773 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001774 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001775 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001776 return;
1777 }
1778
1779 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1780 // or zero extension, depending on whether the source type was signed.
1781 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1782 SrcClass < DestClass) {
1783 bool isLong = DestClass == cLong;
1784 if (isLong) DestClass = cInt;
1785
1786 static const unsigned Opc[][4] = {
1787 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1788 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1789 };
1790
1791 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001792 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1793 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001794
1795 if (isLong) { // Handle upper 32 bits as appropriate...
1796 if (isUnsigned) // Zero out top bits...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001797 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001798 else // Sign extend bottom half...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001799 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001800 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001801 return;
1802 }
1803
1804 // Special case long -> int ...
1805 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001806 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001807 return;
1808 }
1809
1810 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1811 // move out of AX or AL.
1812 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1813 && SrcClass > DestClass) {
1814 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001815 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1816 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001817 return;
1818 }
1819
1820 // Handle casts from integer to floating point now...
1821 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001822 // Promote the integer to a type supported by FLD. We do this because there
1823 // are no unsigned FLD instructions, so we must promote an unsigned value to
1824 // a larger signed value, then use FLD on the larger value.
1825 //
1826 const Type *PromoteType = 0;
1827 unsigned PromoteOpcode;
1828 switch (SrcTy->getPrimitiveID()) {
1829 case Type::BoolTyID:
1830 case Type::SByteTyID:
1831 // We don't have the facilities for directly loading byte sized data from
1832 // memory (even signed). Promote it to 16 bits.
1833 PromoteType = Type::ShortTy;
1834 PromoteOpcode = X86::MOVSXr16r8;
1835 break;
1836 case Type::UByteTyID:
1837 PromoteType = Type::ShortTy;
1838 PromoteOpcode = X86::MOVZXr16r8;
1839 break;
1840 case Type::UShortTyID:
1841 PromoteType = Type::IntTy;
1842 PromoteOpcode = X86::MOVZXr32r16;
1843 break;
1844 case Type::UIntTyID: {
1845 // Make a 64 bit temporary... and zero out the top of it...
1846 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1847 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1848 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1849 SrcTy = Type::LongTy;
1850 SrcClass = cLong;
1851 SrcReg = TmpReg;
1852 break;
1853 }
1854 case Type::ULongTyID:
1855 assert("FIXME: not implemented: cast ulong X to fp type!");
1856 default: // No promotion needed...
1857 break;
1858 }
1859
1860 if (PromoteType) {
1861 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001862 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1863 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001864 SrcTy = PromoteType;
1865 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001866 SrcReg = TmpReg;
1867 }
1868
1869 // Spill the integer to memory and reload it from there...
1870 int FrameIdx =
1871 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1872
1873 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001874 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1875 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001876 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001877 } else {
1878 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001879 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001880 }
1881
1882 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001883 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001884 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001885 return;
1886 }
1887
1888 // Handle casts from floating point to integer now...
1889 if (SrcClass == cFP) {
1890 // Change the floating point control register to use "round towards zero"
1891 // mode when truncating to an integer value.
1892 //
1893 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001894 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001895
1896 // Load the old value of the high byte of the control word...
1897 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001898 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001899
1900 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001901 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001902
1903 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001904 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001905
1906 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001907 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001908 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00001909
1910 // We don't have the facilities for directly storing byte sized data to
1911 // memory. Promote it to 16 bits. We also must promote unsigned values to
1912 // larger classes because we only have signed FP stores.
1913 unsigned StoreClass = DestClass;
1914 const Type *StoreTy = DestTy;
1915 if (StoreClass == cByte || DestTy->isUnsigned())
1916 switch (StoreClass) {
1917 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1918 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1919 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001920 // The following treatment of cLong may not be perfectly right,
1921 // but it survives chains of casts of the form
1922 // double->ulong->double.
1923 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001924 default: assert(0 && "Unknown store class!");
1925 }
1926
1927 // Spill the integer to memory and reload it from there...
1928 int FrameIdx =
1929 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1930
1931 static const unsigned Op1[] =
1932 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001933 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001934
1935 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001936 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1937 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001938 } else {
1939 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001940 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001941 }
1942
1943 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001944 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001945 return;
1946 }
1947
Brian Gaeked474e9c2002-12-06 10:49:33 +00001948 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001949 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001950 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001951}
Brian Gaekea1719c92002-10-31 23:03:59 +00001952
Chris Lattner73815062003-10-18 05:56:40 +00001953/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00001954///
Chris Lattner73815062003-10-18 05:56:40 +00001955void ISel::visitVANextInst(VANextInst &I) {
1956 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00001957 unsigned DestReg = getReg(I);
1958
Chris Lattnereca195e2003-05-08 19:44:13 +00001959 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00001960 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001961 default:
1962 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00001963 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001964 return;
1965 case Type::PointerTyID:
1966 case Type::UIntTyID:
1967 case Type::IntTyID:
1968 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00001969 break;
1970 case Type::ULongTyID:
1971 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00001972 case Type::DoubleTyID:
1973 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00001974 break;
1975 }
1976
1977 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00001978 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
1979}
Chris Lattnereca195e2003-05-08 19:44:13 +00001980
Chris Lattner73815062003-10-18 05:56:40 +00001981void ISel::visitVAArgInst(VAArgInst &I) {
1982 unsigned VAList = getReg(I.getOperand(0));
1983 unsigned DestReg = getReg(I);
1984
1985 switch (I.getType()->getPrimitiveID()) {
1986 default:
1987 std::cerr << I;
1988 assert(0 && "Error: bad type for va_next instruction!");
1989 return;
1990 case Type::PointerTyID:
1991 case Type::UIntTyID:
1992 case Type::IntTyID:
1993 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1994 break;
1995 case Type::ULongTyID:
1996 case Type::LongTyID:
1997 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1998 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1999 break;
2000 case Type::DoubleTyID:
2001 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2002 break;
2003 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002004}
2005
2006
Chris Lattner3e130a22003-01-13 00:32:26 +00002007void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2008 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002009 MachineBasicBlock::iterator MI = BB->end();
2010 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002011 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002012}
2013
Brian Gaeke71794c02002-12-13 11:22:48 +00002014void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002015 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00002016 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00002017 User::op_iterator IdxEnd, unsigned TargetReg) {
2018 const TargetData &TD = TM.getTargetData();
2019 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00002020 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002021
Brian Gaeke20244b72002-12-12 15:33:40 +00002022 // GEPs have zero or more indices; we must perform a struct access
2023 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00002024 for (GetElementPtrInst::op_iterator oi = IdxBegin,
2025 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002026 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00002027 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00002028 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002029 // It's a struct access. idx is the index into the structure,
2030 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00002031 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2032 assert(CUI->getType() == Type::UByteTy
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002033 && "Funny-looking structure index in GEP");
Brian Gaeke20244b72002-12-12 15:33:40 +00002034 // Use the TargetData structure to pick out what the layout of
2035 // the structure is in memory. Since the structure index must
2036 // be constant, we can get its value and use it to find the
2037 // right byte offset from the StructLayout class's list of
2038 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002039 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002040 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2041 if (FieldOff) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002042 NextReg = makeAnotherReg(Type::UIntTy);
2043 // Emit an ADD to add FieldOff to the basePtr.
2044 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
Chris Lattner3e130a22003-01-13 00:32:26 +00002045 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002046 // The next type is the member of the structure selected by the
2047 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00002048 Ty = StTy->getElementTypes()[idxValue];
2049 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002050 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002051
Brian Gaeke20244b72002-12-12 15:33:40 +00002052 // idx is the index into the array. Unlike with structure
2053 // indices, we may not know its actual value at code-generation
2054 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002055 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2056
Chris Lattnerf5854472003-06-21 16:01:24 +00002057 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2058 // operand on X86. Handle this case directly now...
2059 if (CastInst *CI = dyn_cast<CastInst>(idx))
2060 if (CI->getOperand(0)->getType() == Type::IntTy ||
2061 CI->getOperand(0)->getType() == Type::UIntTy)
2062 idx = CI->getOperand(0);
2063
Chris Lattner3e130a22003-01-13 00:32:26 +00002064 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002065 // must find the size of the pointed-to type (Not coincidentally, the next
2066 // type is the type of the elements in the array).
2067 Ty = SqTy->getElementType();
2068 unsigned elementSize = TD.getTypeSize(Ty);
2069
2070 // If idxReg is a constant, we don't need to perform the multiply!
2071 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002072 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002073 unsigned Offset = elementSize*CSI->getValue();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002074 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002075 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002076 }
2077 } else if (elementSize == 1) {
2078 // If the element size is 1, we don't have to multiply, just add
2079 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002080 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002081 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002082 } else {
2083 unsigned idxReg = getReg(idx, MBB, IP);
2084 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002085
2086 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2087
Chris Lattner8a307e82002-12-16 19:32:50 +00002088 // Emit an ADD to add OffsetReg to the basePtr.
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002089 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002090 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002091 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002092 }
2093 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002094 // one, so we don't need to worry about BaseReg itself, anymore.
2095 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002096 }
2097 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002098 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002099 // put the answer. A 32-bit move should do it, because we are in
2100 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002101 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002102}
2103
2104
Chris Lattner065faeb2002-12-28 20:24:02 +00002105/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2106/// frame manager, otherwise do it the hard way.
2107///
2108void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002109 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002110 const Type *Ty = I.getAllocatedType();
2111 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2112
2113 // If this is a fixed size alloca in the entry block for the function,
2114 // statically stack allocate the space.
2115 //
2116 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2117 if (I.getParent() == I.getParent()->getParent()->begin()) {
2118 TySize *= CUI->getValue(); // Get total allocated size...
2119 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2120
2121 // Create a new stack object using the frame manager...
2122 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2123 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2124 return;
2125 }
2126 }
2127
2128 // Create a register to hold the temporary result of multiplying the type size
2129 // constant by the variable amount.
2130 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2131 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002132
2133 // TotalSizeReg = mul <numelements>, <TypeSize>
2134 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002135 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002136
2137 // AddedSize = add <TotalSizeReg>, 15
2138 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2139 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2140
2141 // AlignedSize = and <AddedSize>, ~15
2142 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2143 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2144
Brian Gaekee48ec012002-12-13 06:46:31 +00002145 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002146 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002147
Brian Gaekee48ec012002-12-13 06:46:31 +00002148 // Put a pointer to the space into the result register, by copying
2149 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002150 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2151
Misha Brukman48196b32003-05-03 02:18:17 +00002152 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002153 // object.
2154 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002155}
Chris Lattner3e130a22003-01-13 00:32:26 +00002156
2157/// visitMallocInst - Malloc instructions are code generated into direct calls
2158/// to the library malloc.
2159///
2160void ISel::visitMallocInst(MallocInst &I) {
2161 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2162 unsigned Arg;
2163
2164 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2165 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2166 } else {
2167 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002168 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002169 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002170 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002171 }
2172
2173 std::vector<ValueRecord> Args;
2174 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2175 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002176 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002177 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2178}
2179
2180
2181/// visitFreeInst - Free instructions are code gen'd to call the free libc
2182/// function.
2183///
2184void ISel::visitFreeInst(FreeInst &I) {
2185 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002186 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002187 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002188 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002189 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2190}
2191
Chris Lattnerd281de22003-07-26 23:49:58 +00002192/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002193/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002194/// generated code sucks but the implementation is nice and simple.
2195///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00002196FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
2197 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002198}