blob: 4d73aaafe8d1a851a9f466a6ab202837cd23270e [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000030 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000031 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000032 </ol>
33 </li>
Chris Lattner00950542001-06-06 20:29:01 +000034 <li><a href="#typesystem">Type System</a>
35 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000036 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000037 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000038 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000039 <li><a href="#t_floating">Floating Point Types</a></li>
40 <li><a href="#t_void">Void Type</a></li>
41 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000042 </ol>
43 </li>
Chris Lattner00950542001-06-06 20:29:01 +000044 <li><a href="#t_derived">Derived Types</a>
45 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000046 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000047 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000048 <li><a href="#t_function">Function Type</a></li>
49 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000051 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000052 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000053 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000054 </ol>
55 </li>
56 </ol>
57 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000058 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000059 <ol>
60 <li><a href="#simpleconstants">Simple Constants</a>
61 <li><a href="#aggregateconstants">Aggregate Constants</a>
62 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
63 <li><a href="#undefvalues">Undefined Values</a>
64 <li><a href="#constantexprs">Constant Expressions</a>
65 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000066 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000067 <li><a href="#othervalues">Other Values</a>
68 <ol>
69 <li><a href="#inlineasm">Inline Assembler Expressions</a>
70 </ol>
71 </li>
Chris Lattner00950542001-06-06 20:29:01 +000072 <li><a href="#instref">Instruction Reference</a>
73 <ol>
74 <li><a href="#terminators">Terminator Instructions</a>
75 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000076 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
77 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000078 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
79 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000080 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000081 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000082 </ol>
83 </li>
Chris Lattner00950542001-06-06 20:29:01 +000084 <li><a href="#binaryops">Binary Operations</a>
85 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000086 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
87 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
88 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000089 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
90 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
91 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000092 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
93 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
94 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 </ol>
96 </li>
Chris Lattner00950542001-06-06 20:29:01 +000097 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
98 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000099 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
100 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
101 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000102 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000104 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000105 </ol>
106 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000107 <li><a href="#vectorops">Vector Operations</a>
108 <ol>
109 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
110 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
111 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000112 </ol>
113 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000114 <li><a href="#aggregateops">Aggregate Operations</a>
115 <ol>
116 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
117 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
118 </ol>
119 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000120 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000121 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000122 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
123 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
124 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000125 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
126 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
127 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000128 </ol>
129 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000130 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000131 <ol>
132 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
133 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
134 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000137 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
138 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
139 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
140 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000141 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
142 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000143 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000144 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000145 <li><a href="#otherops">Other Operations</a>
146 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000147 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
148 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000149 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
150 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000151 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000152 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000154 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patelc3fc6df2008-03-10 20:49:15 +0000155 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000156 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000158 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000160 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
163 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000164 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
165 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </ol>
168 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000169 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
170 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000171 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
172 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000174 </ol>
175 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000176 <li><a href="#int_codegen">Code Generator Intrinsics</a>
177 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000178 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
179 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
181 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
182 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
183 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
184 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000185 </ol>
186 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000187 <li><a href="#int_libc">Standard C Library Intrinsics</a>
188 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000189 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
190 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000194 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000197 </ol>
198 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000199 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000200 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000201 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000202 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
203 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000205 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000207 </ol>
208 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000209 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000210 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000211 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000212 <ol>
213 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000214 </ol>
215 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000216 <li><a href="#int_atomics">Atomic intrinsics</a>
217 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000218 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000219 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000220 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000221 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
222 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
223 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
224 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
225 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
226 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
227 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
228 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
229 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
230 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000231 </ol>
232 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000233 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000234 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000235 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000236 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000237 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000238 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000239 <li><a href="#int_trap">
240 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000241 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000242 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000243 </ol>
244 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000245</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000246
247<div class="doc_author">
248 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
249 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000250</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000251
Chris Lattner00950542001-06-06 20:29:01 +0000252<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000253<div class="doc_section"> <a name="abstract">Abstract </a></div>
254<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000255
Misha Brukman9d0919f2003-11-08 01:05:38 +0000256<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000257<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000258LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000259type safety, low-level operations, flexibility, and the capability of
260representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000261representation used throughout all phases of the LLVM compilation
262strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000263</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000264
Chris Lattner00950542001-06-06 20:29:01 +0000265<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000266<div class="doc_section"> <a name="introduction">Introduction</a> </div>
267<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000268
Misha Brukman9d0919f2003-11-08 01:05:38 +0000269<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Chris Lattner261efe92003-11-25 01:02:51 +0000271<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000272different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000273representation (suitable for fast loading by a Just-In-Time compiler),
274and as a human readable assembly language representation. This allows
275LLVM to provide a powerful intermediate representation for efficient
276compiler transformations and analysis, while providing a natural means
277to debug and visualize the transformations. The three different forms
278of LLVM are all equivalent. This document describes the human readable
279representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000280
John Criswellc1f786c2005-05-13 22:25:59 +0000281<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000282while being expressive, typed, and extensible at the same time. It
283aims to be a "universal IR" of sorts, by being at a low enough level
284that high-level ideas may be cleanly mapped to it (similar to how
285microprocessors are "universal IR's", allowing many source languages to
286be mapped to them). By providing type information, LLVM can be used as
287the target of optimizations: for example, through pointer analysis, it
288can be proven that a C automatic variable is never accessed outside of
289the current function... allowing it to be promoted to a simple SSA
290value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000291
Misha Brukman9d0919f2003-11-08 01:05:38 +0000292</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000293
Chris Lattner00950542001-06-06 20:29:01 +0000294<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000295<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
Misha Brukman9d0919f2003-11-08 01:05:38 +0000297<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000298
Chris Lattner261efe92003-11-25 01:02:51 +0000299<p>It is important to note that this document describes 'well formed'
300LLVM assembly language. There is a difference between what the parser
301accepts and what is considered 'well formed'. For example, the
302following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000303
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000304<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000305<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000306%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000307</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000308</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000309
Chris Lattner261efe92003-11-25 01:02:51 +0000310<p>...because the definition of <tt>%x</tt> does not dominate all of
311its uses. The LLVM infrastructure provides a verification pass that may
312be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000313automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000314the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000315by the verifier pass indicate bugs in transformation passes or input to
316the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000317</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Chris Lattnercc689392007-10-03 17:34:29 +0000319<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000320
Chris Lattner00950542001-06-06 20:29:01 +0000321<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000322<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000323<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000324
Misha Brukman9d0919f2003-11-08 01:05:38 +0000325<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000326
Reid Spencer2c452282007-08-07 14:34:28 +0000327 <p>LLVM identifiers come in two basic types: global and local. Global
328 identifiers (functions, global variables) begin with the @ character. Local
329 identifiers (register names, types) begin with the % character. Additionally,
330 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000331
Chris Lattner00950542001-06-06 20:29:01 +0000332<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000333 <li>Named values are represented as a string of characters with their prefix.
334 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
335 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000336 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000337 with quotes. In this way, anything except a <tt>&quot;</tt> character can
338 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339
Reid Spencer2c452282007-08-07 14:34:28 +0000340 <li>Unnamed values are represented as an unsigned numeric value with their
341 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000342
Reid Spencercc16dc32004-12-09 18:02:53 +0000343 <li>Constants, which are described in a <a href="#constants">section about
344 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000345</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346
Reid Spencer2c452282007-08-07 14:34:28 +0000347<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000348don't need to worry about name clashes with reserved words, and the set of
349reserved words may be expanded in the future without penalty. Additionally,
350unnamed identifiers allow a compiler to quickly come up with a temporary
351variable without having to avoid symbol table conflicts.</p>
352
Chris Lattner261efe92003-11-25 01:02:51 +0000353<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000354languages. There are keywords for different opcodes
355('<tt><a href="#i_add">add</a></tt>',
356 '<tt><a href="#i_bitcast">bitcast</a></tt>',
357 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000358href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000359and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000360none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000361
362<p>Here is an example of LLVM code to multiply the integer variable
363'<tt>%X</tt>' by 8:</p>
364
Misha Brukman9d0919f2003-11-08 01:05:38 +0000365<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000366
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000367<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000368<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000369%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000370</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000371</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000372
Misha Brukman9d0919f2003-11-08 01:05:38 +0000373<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000374
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000375<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000377%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000379</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380
Misha Brukman9d0919f2003-11-08 01:05:38 +0000381<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000383<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000385<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
386<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
387%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000389</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000390
Chris Lattner261efe92003-11-25 01:02:51 +0000391<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
392important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393
Chris Lattner00950542001-06-06 20:29:01 +0000394<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
396 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
397 line.</li>
398
399 <li>Unnamed temporaries are created when the result of a computation is not
400 assigned to a named value.</li>
401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000403
Misha Brukman9d0919f2003-11-08 01:05:38 +0000404</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405
John Criswelle4c57cc2005-05-12 16:52:32 +0000406<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407demonstrating instructions, we will follow an instruction with a comment that
408defines the type and name of value produced. Comments are shown in italic
409text.</p>
410
Misha Brukman9d0919f2003-11-08 01:05:38 +0000411</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000412
413<!-- *********************************************************************** -->
414<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
415<!-- *********************************************************************** -->
416
417<!-- ======================================================================= -->
418<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
419</div>
420
421<div class="doc_text">
422
423<p>LLVM programs are composed of "Module"s, each of which is a
424translation unit of the input programs. Each module consists of
425functions, global variables, and symbol table entries. Modules may be
426combined together with the LLVM linker, which merges function (and
427global variable) definitions, resolves forward declarations, and merges
428symbol table entries. Here is an example of the "hello world" module:</p>
429
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000430<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000431<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000432<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
433 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000434
435<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000436<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000437
438<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000439define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000440 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000441 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000442 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000443
444 <i>; Call puts function to write out the string to stdout...</i>
445 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000446 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000447 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000448 href="#i_ret">ret</a> i32 0<br>}<br>
449</pre>
450</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000451
452<p>This example is made up of a <a href="#globalvars">global variable</a>
453named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
454function, and a <a href="#functionstructure">function definition</a>
455for "<tt>main</tt>".</p>
456
Chris Lattnere5d947b2004-12-09 16:36:40 +0000457<p>In general, a module is made up of a list of global values,
458where both functions and global variables are global values. Global values are
459represented by a pointer to a memory location (in this case, a pointer to an
460array of char, and a pointer to a function), and have one of the following <a
461href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000462
Chris Lattnere5d947b2004-12-09 16:36:40 +0000463</div>
464
465<!-- ======================================================================= -->
466<div class="doc_subsection">
467 <a name="linkage">Linkage Types</a>
468</div>
469
470<div class="doc_text">
471
472<p>
473All Global Variables and Functions have one of the following types of linkage:
474</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000475
476<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000477
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000478 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000479
480 <dd>Global values with internal linkage are only directly accessible by
481 objects in the current module. In particular, linking code into a module with
482 an internal global value may cause the internal to be renamed as necessary to
483 avoid collisions. Because the symbol is internal to the module, all
484 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000485 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000486 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000487
Chris Lattnerfa730212004-12-09 16:11:40 +0000488 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000489
Chris Lattner4887bd82007-01-14 06:51:48 +0000490 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
491 the same name when linkage occurs. This is typically used to implement
492 inline functions, templates, or other code which must be generated in each
493 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
494 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000495 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000496
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000497 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
498
499 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
500 linkage, except that unreferenced <tt>common</tt> globals may not be
501 discarded. This is used for globals that may be emitted in multiple
502 translation units, but that are not guaranteed to be emitted into every
503 translation unit that uses them. One example of this is tentative
504 definitions in C, such as "<tt>int X;</tt>" at global scope.
505 </dd>
506
Chris Lattnerfa730212004-12-09 16:11:40 +0000507 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000508
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000509 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
510 that some targets may choose to emit different assembly sequences for them
511 for target-dependent reasons. This is used for globals that are declared
512 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000513 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000514
Chris Lattnerfa730212004-12-09 16:11:40 +0000515 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000516
517 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
518 pointer to array type. When two global variables with appending linkage are
519 linked together, the two global arrays are appended together. This is the
520 LLVM, typesafe, equivalent of having the system linker append together
521 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000522 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000523
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000524 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000525 <dd>The semantics of this linkage follow the ELF object file model: the
526 symbol is weak until linked, if not linked, the symbol becomes null instead
527 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000528 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000529
Chris Lattnerfa730212004-12-09 16:11:40 +0000530 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000531
532 <dd>If none of the above identifiers are used, the global is externally
533 visible, meaning that it participates in linkage and can be used to resolve
534 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000535 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000536</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000537
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000538 <p>
539 The next two types of linkage are targeted for Microsoft Windows platform
540 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000541 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000542 </p>
543
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000544 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000545 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
546
547 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
548 or variable via a global pointer to a pointer that is set up by the DLL
549 exporting the symbol. On Microsoft Windows targets, the pointer name is
550 formed by combining <code>_imp__</code> and the function or variable name.
551 </dd>
552
553 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
554
555 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
556 pointer to a pointer in a DLL, so that it can be referenced with the
557 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
558 name is formed by combining <code>_imp__</code> and the function or variable
559 name.
560 </dd>
561
Chris Lattnerfa730212004-12-09 16:11:40 +0000562</dl>
563
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000564<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000565variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
566variable and was linked with this one, one of the two would be renamed,
567preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
568external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000569outside of the current module.</p>
570<p>It is illegal for a function <i>declaration</i>
571to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000572or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000573<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
574linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000575</div>
576
577<!-- ======================================================================= -->
578<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000579 <a name="callingconv">Calling Conventions</a>
580</div>
581
582<div class="doc_text">
583
584<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
585and <a href="#i_invoke">invokes</a> can all have an optional calling convention
586specified for the call. The calling convention of any pair of dynamic
587caller/callee must match, or the behavior of the program is undefined. The
588following calling conventions are supported by LLVM, and more may be added in
589the future:</p>
590
591<dl>
592 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
593
594 <dd>This calling convention (the default if no other calling convention is
595 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000596 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000597 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000598 </dd>
599
600 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
601
602 <dd>This calling convention attempts to make calls as fast as possible
603 (e.g. by passing things in registers). This calling convention allows the
604 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000605 without having to conform to an externally specified ABI (Application Binary
606 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000607 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
608 supported. This calling convention does not support varargs and requires the
609 prototype of all callees to exactly match the prototype of the function
610 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000611 </dd>
612
613 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
614
615 <dd>This calling convention attempts to make code in the caller as efficient
616 as possible under the assumption that the call is not commonly executed. As
617 such, these calls often preserve all registers so that the call does not break
618 any live ranges in the caller side. This calling convention does not support
619 varargs and requires the prototype of all callees to exactly match the
620 prototype of the function definition.
621 </dd>
622
Chris Lattnercfe6b372005-05-07 01:46:40 +0000623 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000624
625 <dd>Any calling convention may be specified by number, allowing
626 target-specific calling conventions to be used. Target specific calling
627 conventions start at 64.
628 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000629</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000630
631<p>More calling conventions can be added/defined on an as-needed basis, to
632support pascal conventions or any other well-known target-independent
633convention.</p>
634
635</div>
636
637<!-- ======================================================================= -->
638<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000639 <a name="visibility">Visibility Styles</a>
640</div>
641
642<div class="doc_text">
643
644<p>
645All Global Variables and Functions have one of the following visibility styles:
646</p>
647
648<dl>
649 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
650
Chris Lattnerd3eda892008-08-05 18:29:16 +0000651 <dd>On targets that use the ELF object file format, default visibility means
652 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000653 modules and, in shared libraries, means that the declared entity may be
654 overridden. On Darwin, default visibility means that the declaration is
655 visible to other modules. Default visibility corresponds to "external
656 linkage" in the language.
657 </dd>
658
659 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
660
661 <dd>Two declarations of an object with hidden visibility refer to the same
662 object if they are in the same shared object. Usually, hidden visibility
663 indicates that the symbol will not be placed into the dynamic symbol table,
664 so no other module (executable or shared library) can reference it
665 directly.
666 </dd>
667
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000668 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
669
670 <dd>On ELF, protected visibility indicates that the symbol will be placed in
671 the dynamic symbol table, but that references within the defining module will
672 bind to the local symbol. That is, the symbol cannot be overridden by another
673 module.
674 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000675</dl>
676
677</div>
678
679<!-- ======================================================================= -->
680<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000681 <a name="globalvars">Global Variables</a>
682</div>
683
684<div class="doc_text">
685
Chris Lattner3689a342005-02-12 19:30:21 +0000686<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000687instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000688an explicit section to be placed in, and may have an optional explicit alignment
689specified. A variable may be defined as "thread_local", which means that it
690will not be shared by threads (each thread will have a separated copy of the
691variable). A variable may be defined as a global "constant," which indicates
692that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000693optimization, allowing the global data to be placed in the read-only section of
694an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000695cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000696
697<p>
698LLVM explicitly allows <em>declarations</em> of global variables to be marked
699constant, even if the final definition of the global is not. This capability
700can be used to enable slightly better optimization of the program, but requires
701the language definition to guarantee that optimizations based on the
702'constantness' are valid for the translation units that do not include the
703definition.
704</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000705
706<p>As SSA values, global variables define pointer values that are in
707scope (i.e. they dominate) all basic blocks in the program. Global
708variables always define a pointer to their "content" type because they
709describe a region of memory, and all memory objects in LLVM are
710accessed through pointers.</p>
711
Christopher Lamb284d9922007-12-11 09:31:00 +0000712<p>A global variable may be declared to reside in a target-specifc numbered
713address space. For targets that support them, address spaces may affect how
714optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000715the variable. The default address space is zero. The address space qualifier
716must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000717
Chris Lattner88f6c462005-11-12 00:45:07 +0000718<p>LLVM allows an explicit section to be specified for globals. If the target
719supports it, it will emit globals to the section specified.</p>
720
Chris Lattner2cbdc452005-11-06 08:02:57 +0000721<p>An explicit alignment may be specified for a global. If not present, or if
722the alignment is set to zero, the alignment of the global is set by the target
723to whatever it feels convenient. If an explicit alignment is specified, the
724global is forced to have at least that much alignment. All alignments must be
725a power of 2.</p>
726
Christopher Lamb284d9922007-12-11 09:31:00 +0000727<p>For example, the following defines a global in a numbered address space with
728an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000729
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000730<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000731<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000732@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000733</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000734</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000735
Chris Lattnerfa730212004-12-09 16:11:40 +0000736</div>
737
738
739<!-- ======================================================================= -->
740<div class="doc_subsection">
741 <a name="functionstructure">Functions</a>
742</div>
743
744<div class="doc_text">
745
Reid Spencerca86e162006-12-31 07:07:53 +0000746<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
747an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000748<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000749<a href="#callingconv">calling convention</a>, a return type, an optional
750<a href="#paramattrs">parameter attribute</a> for the return type, a function
751name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000752<a href="#paramattrs">parameter attributes</a>), an optional section, an
Gordon Henriksene754abe2007-12-10 03:30:21 +0000753optional alignment, an optional <a href="#gc">garbage collector name</a>, an
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000754opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000755
756LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
757optional <a href="#linkage">linkage type</a>, an optional
758<a href="#visibility">visibility style</a>, an optional
759<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000760<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000761name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000762<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000763
Chris Lattnerd3eda892008-08-05 18:29:16 +0000764<p>A function definition contains a list of basic blocks, forming the CFG
765(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000766the function. Each basic block may optionally start with a label (giving the
767basic block a symbol table entry), contains a list of instructions, and ends
768with a <a href="#terminators">terminator</a> instruction (such as a branch or
769function return).</p>
770
Chris Lattner4a3c9012007-06-08 16:52:14 +0000771<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000772executed on entrance to the function, and it is not allowed to have predecessor
773basic blocks (i.e. there can not be any branches to the entry block of a
774function). Because the block can have no predecessors, it also cannot have any
775<a href="#i_phi">PHI nodes</a>.</p>
776
Chris Lattner88f6c462005-11-12 00:45:07 +0000777<p>LLVM allows an explicit section to be specified for functions. If the target
778supports it, it will emit functions to the section specified.</p>
779
Chris Lattner2cbdc452005-11-06 08:02:57 +0000780<p>An explicit alignment may be specified for a function. If not present, or if
781the alignment is set to zero, the alignment of the function is set by the target
782to whatever it feels convenient. If an explicit alignment is specified, the
783function is forced to have at least that much alignment. All alignments must be
784a power of 2.</p>
785
Chris Lattnerfa730212004-12-09 16:11:40 +0000786</div>
787
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000788
789<!-- ======================================================================= -->
790<div class="doc_subsection">
791 <a name="aliasstructure">Aliases</a>
792</div>
793<div class="doc_text">
794 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000795 function, global variable, another alias or bitcast of global value). Aliases
796 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000797 optional <a href="#visibility">visibility style</a>.</p>
798
799 <h5>Syntax:</h5>
800
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000801<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000802<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000803@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000804</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000805</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000806
807</div>
808
809
810
Chris Lattner4e9aba72006-01-23 23:23:47 +0000811<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000812<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
813<div class="doc_text">
814 <p>The return type and each parameter of a function type may have a set of
815 <i>parameter attributes</i> associated with them. Parameter attributes are
816 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000817 a function. Parameter attributes are considered to be part of the function,
818 not of the function type, so functions with different parameter attributes
819 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000820
Reid Spencer950e9f82007-01-15 18:27:39 +0000821 <p>Parameter attributes are simple keywords that follow the type specified. If
822 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000823 example:</p>
824
825<div class="doc_code">
826<pre>
Duncan Sandsdc024672007-11-27 13:23:08 +0000827declare i32 @printf(i8* noalias , ...) nounwind
828declare i32 @atoi(i8*) nounwind readonly
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000829</pre>
830</div>
831
Duncan Sandsdc024672007-11-27 13:23:08 +0000832 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
833 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000834
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000835 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000836 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000837 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000838 <dd>This indicates that the parameter should be zero extended just before
839 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000840
Reid Spencer9445e9a2007-07-19 23:13:04 +0000841 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000842 <dd>This indicates that the parameter should be sign extended just before
843 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000844
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000845 <dt><tt>inreg</tt></dt>
846 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000847 possible) during assembling function call. Support for this attribute is
848 target-specific</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000849
850 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000851 <dd>This indicates that the pointer parameter should really be passed by
852 value to the function. The attribute implies that a hidden copy of the
853 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000854 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000855 pointer arguments. It is generally used to pass structs and arrays by
856 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000857
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000858 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000859 <dd>This indicates that the pointer parameter specifies the address of a
860 structure that is the return value of the function in the source program.
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000861 Loads and stores to the structure are assumed not to trap.
Duncan Sandse26dec62008-02-18 04:19:38 +0000862 May only be applied to the first parameter.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000863
Zhou Shengfebca342007-06-05 05:28:26 +0000864 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000865 <dd>This indicates that the parameter does not alias any global or any other
866 parameter. The caller is responsible for ensuring that this is the case,
867 usually by placing the value in a stack allocation.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000868
Reid Spencer2dc52012007-03-22 02:18:56 +0000869 <dt><tt>noreturn</tt></dt>
870 <dd>This function attribute indicates that the function never returns. This
871 indicates to LLVM that every call to this function should be treated as if
872 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000873
Reid Spencer67606122007-03-22 02:02:11 +0000874 <dt><tt>nounwind</tt></dt>
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000875 <dd>This function attribute indicates that no exceptions unwind out of the
876 function. Usually this is because the function makes no use of exceptions,
877 but it may also be that the function catches any exceptions thrown when
878 executing it.</dd>
879
Duncan Sands50f19f52007-07-27 19:57:41 +0000880 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000881 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands50f19f52007-07-27 19:57:41 +0000882 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000883 <dt><tt>readonly</tt></dt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000884 <dd>This function attribute indicates that the function has no side-effects
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000885 except for producing a return value or throwing an exception. The value
886 returned must only depend on the function arguments and/or global variables.
887 It may use values obtained by dereferencing pointers.</dd>
888 <dt><tt>readnone</tt></dt>
889 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000890 function, but in addition it is not allowed to dereference any pointer arguments
891 or global variables.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000892 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000893
Reid Spencerca86e162006-12-31 07:07:53 +0000894</div>
895
896<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000897<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000898 <a name="gc">Garbage Collector Names</a>
899</div>
900
901<div class="doc_text">
902<p>Each function may specify a garbage collector name, which is simply a
903string.</p>
904
905<div class="doc_code"><pre
906>define void @f() gc "name" { ...</pre></div>
907
908<p>The compiler declares the supported values of <i>name</i>. Specifying a
909collector which will cause the compiler to alter its output in order to support
910the named garbage collection algorithm.</p>
911</div>
912
913<!-- ======================================================================= -->
914<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000915 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000916</div>
917
918<div class="doc_text">
919<p>
920Modules may contain "module-level inline asm" blocks, which corresponds to the
921GCC "file scope inline asm" blocks. These blocks are internally concatenated by
922LLVM and treated as a single unit, but may be separated in the .ll file if
923desired. The syntax is very simple:
924</p>
925
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000926<div class="doc_code">
927<pre>
928module asm "inline asm code goes here"
929module asm "more can go here"
930</pre>
931</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000932
933<p>The strings can contain any character by escaping non-printable characters.
934 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
935 for the number.
936</p>
937
938<p>
939 The inline asm code is simply printed to the machine code .s file when
940 assembly code is generated.
941</p>
942</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000943
Reid Spencerde151942007-02-19 23:54:10 +0000944<!-- ======================================================================= -->
945<div class="doc_subsection">
946 <a name="datalayout">Data Layout</a>
947</div>
948
949<div class="doc_text">
950<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000951data is to be laid out in memory. The syntax for the data layout is simply:</p>
952<pre> target datalayout = "<i>layout specification</i>"</pre>
953<p>The <i>layout specification</i> consists of a list of specifications
954separated by the minus sign character ('-'). Each specification starts with a
955letter and may include other information after the letter to define some
956aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000957<dl>
958 <dt><tt>E</tt></dt>
959 <dd>Specifies that the target lays out data in big-endian form. That is, the
960 bits with the most significance have the lowest address location.</dd>
961 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000962 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +0000963 the bits with the least significance have the lowest address location.</dd>
964 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
965 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
966 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
967 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
968 too.</dd>
969 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
970 <dd>This specifies the alignment for an integer type of a given bit
971 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
972 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
973 <dd>This specifies the alignment for a vector type of a given bit
974 <i>size</i>.</dd>
975 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
976 <dd>This specifies the alignment for a floating point type of a given bit
977 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
978 (double).</dd>
979 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
980 <dd>This specifies the alignment for an aggregate type of a given bit
981 <i>size</i>.</dd>
982</dl>
983<p>When constructing the data layout for a given target, LLVM starts with a
984default set of specifications which are then (possibly) overriden by the
985specifications in the <tt>datalayout</tt> keyword. The default specifications
986are given in this list:</p>
987<ul>
988 <li><tt>E</tt> - big endian</li>
989 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
990 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
991 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
992 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
993 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000994 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +0000995 alignment of 64-bits</li>
996 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
997 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
998 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
999 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1000 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1001</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001002<p>When LLVM is determining the alignment for a given type, it uses the
Reid Spencerde151942007-02-19 23:54:10 +00001003following rules:
1004<ol>
1005 <li>If the type sought is an exact match for one of the specifications, that
1006 specification is used.</li>
1007 <li>If no match is found, and the type sought is an integer type, then the
1008 smallest integer type that is larger than the bitwidth of the sought type is
1009 used. If none of the specifications are larger than the bitwidth then the the
1010 largest integer type is used. For example, given the default specifications
1011 above, the i7 type will use the alignment of i8 (next largest) while both
1012 i65 and i256 will use the alignment of i64 (largest specified).</li>
1013 <li>If no match is found, and the type sought is a vector type, then the
1014 largest vector type that is smaller than the sought vector type will be used
1015 as a fall back. This happens because <128 x double> can be implemented in
1016 terms of 64 <2 x double>, for example.</li>
1017</ol>
1018</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001019
Chris Lattner00950542001-06-06 20:29:01 +00001020<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001021<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1022<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001023
Misha Brukman9d0919f2003-11-08 01:05:38 +00001024<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001025
Misha Brukman9d0919f2003-11-08 01:05:38 +00001026<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001027intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001028optimizations to be performed on the intermediate representation directly,
1029without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001030extra analyses on the side before the transformation. A strong type
1031system makes it easier to read the generated code and enables novel
1032analyses and transformations that are not feasible to perform on normal
1033three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001034
1035</div>
1036
Chris Lattner00950542001-06-06 20:29:01 +00001037<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001038<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001039Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001040<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001041<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001042classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001043
1044<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001045 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001046 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001047 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001048 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001049 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001050 </tr>
1051 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001052 <td><a href="#t_floating">floating point</a></td>
1053 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001054 </tr>
1055 <tr>
1056 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001057 <td><a href="#t_integer">integer</a>,
1058 <a href="#t_floating">floating point</a>,
1059 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001060 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001061 <a href="#t_struct">structure</a>,
1062 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001063 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001064 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001065 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001066 <tr>
1067 <td><a href="#t_primitive">primitive</a></td>
1068 <td><a href="#t_label">label</a>,
1069 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001070 <a href="#t_floating">floating point</a>.</td>
1071 </tr>
1072 <tr>
1073 <td><a href="#t_derived">derived</a></td>
1074 <td><a href="#t_integer">integer</a>,
1075 <a href="#t_array">array</a>,
1076 <a href="#t_function">function</a>,
1077 <a href="#t_pointer">pointer</a>,
1078 <a href="#t_struct">structure</a>,
1079 <a href="#t_pstruct">packed structure</a>,
1080 <a href="#t_vector">vector</a>,
1081 <a href="#t_opaque">opaque</a>.
1082 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001083 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001084</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001085
Chris Lattner261efe92003-11-25 01:02:51 +00001086<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1087most important. Values of these types are the only ones which can be
1088produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001089instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001090</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001091
Chris Lattner00950542001-06-06 20:29:01 +00001092<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001093<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001094
Chris Lattner4f69f462008-01-04 04:32:38 +00001095<div class="doc_text">
1096<p>The primitive types are the fundamental building blocks of the LLVM
1097system.</p>
1098
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001099</div>
1100
Chris Lattner4f69f462008-01-04 04:32:38 +00001101<!-- _______________________________________________________________________ -->
1102<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1103
1104<div class="doc_text">
1105 <table>
1106 <tbody>
1107 <tr><th>Type</th><th>Description</th></tr>
1108 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1109 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1110 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1111 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1112 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1113 </tbody>
1114 </table>
1115</div>
1116
1117<!-- _______________________________________________________________________ -->
1118<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1119
1120<div class="doc_text">
1121<h5>Overview:</h5>
1122<p>The void type does not represent any value and has no size.</p>
1123
1124<h5>Syntax:</h5>
1125
1126<pre>
1127 void
1128</pre>
1129</div>
1130
1131<!-- _______________________________________________________________________ -->
1132<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1133
1134<div class="doc_text">
1135<h5>Overview:</h5>
1136<p>The label type represents code labels.</p>
1137
1138<h5>Syntax:</h5>
1139
1140<pre>
1141 label
1142</pre>
1143</div>
1144
1145
1146<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001147<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001148
Misha Brukman9d0919f2003-11-08 01:05:38 +00001149<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001150
Chris Lattner261efe92003-11-25 01:02:51 +00001151<p>The real power in LLVM comes from the derived types in the system.
1152This is what allows a programmer to represent arrays, functions,
1153pointers, and other useful types. Note that these derived types may be
1154recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001155
Misha Brukman9d0919f2003-11-08 01:05:38 +00001156</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001157
Chris Lattner00950542001-06-06 20:29:01 +00001158<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001159<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1160
1161<div class="doc_text">
1162
1163<h5>Overview:</h5>
1164<p>The integer type is a very simple derived type that simply specifies an
1165arbitrary bit width for the integer type desired. Any bit width from 1 bit to
11662^23-1 (about 8 million) can be specified.</p>
1167
1168<h5>Syntax:</h5>
1169
1170<pre>
1171 iN
1172</pre>
1173
1174<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1175value.</p>
1176
1177<h5>Examples:</h5>
1178<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001179 <tbody>
1180 <tr>
1181 <td><tt>i1</tt></td>
1182 <td>a single-bit integer.</td>
1183 </tr><tr>
1184 <td><tt>i32</tt></td>
1185 <td>a 32-bit integer.</td>
1186 </tr><tr>
1187 <td><tt>i1942652</tt></td>
1188 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001189 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001190 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001191</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001192</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001193
1194<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001195<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001196
Misha Brukman9d0919f2003-11-08 01:05:38 +00001197<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001198
Chris Lattner00950542001-06-06 20:29:01 +00001199<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001200
Misha Brukman9d0919f2003-11-08 01:05:38 +00001201<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001202sequentially in memory. The array type requires a size (number of
1203elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001204
Chris Lattner7faa8832002-04-14 06:13:44 +00001205<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001206
1207<pre>
1208 [&lt;# elements&gt; x &lt;elementtype&gt;]
1209</pre>
1210
John Criswelle4c57cc2005-05-12 16:52:32 +00001211<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001212be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001213
Chris Lattner7faa8832002-04-14 06:13:44 +00001214<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001215<table class="layout">
1216 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001217 <td class="left"><tt>[40 x i32]</tt></td>
1218 <td class="left">Array of 40 32-bit integer values.</td>
1219 </tr>
1220 <tr class="layout">
1221 <td class="left"><tt>[41 x i32]</tt></td>
1222 <td class="left">Array of 41 32-bit integer values.</td>
1223 </tr>
1224 <tr class="layout">
1225 <td class="left"><tt>[4 x i8]</tt></td>
1226 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001227 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001228</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001229<p>Here are some examples of multidimensional arrays:</p>
1230<table class="layout">
1231 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001232 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1233 <td class="left">3x4 array of 32-bit integer values.</td>
1234 </tr>
1235 <tr class="layout">
1236 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1237 <td class="left">12x10 array of single precision floating point values.</td>
1238 </tr>
1239 <tr class="layout">
1240 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1241 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001242 </tr>
1243</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001244
John Criswell0ec250c2005-10-24 16:17:18 +00001245<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1246length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001247LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1248As a special case, however, zero length arrays are recognized to be variable
1249length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001250type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001251
Misha Brukman9d0919f2003-11-08 01:05:38 +00001252</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001253
Chris Lattner00950542001-06-06 20:29:01 +00001254<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001255<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001256<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001257
Chris Lattner00950542001-06-06 20:29:01 +00001258<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001259
Chris Lattner261efe92003-11-25 01:02:51 +00001260<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001261consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001262return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001263If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001264class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001265
Chris Lattner00950542001-06-06 20:29:01 +00001266<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001267
1268<pre>
1269 &lt;returntype list&gt; (&lt;parameter list&gt;)
1270</pre>
1271
John Criswell0ec250c2005-10-24 16:17:18 +00001272<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001273specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001274which indicates that the function takes a variable number of arguments.
1275Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001276 href="#int_varargs">variable argument handling intrinsic</a> functions.
1277'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1278<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001279
Chris Lattner00950542001-06-06 20:29:01 +00001280<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001281<table class="layout">
1282 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001283 <td class="left"><tt>i32 (i32)</tt></td>
1284 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001285 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001286 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001287 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001288 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001289 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1290 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001291 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001292 <tt>float</tt>.
1293 </td>
1294 </tr><tr class="layout">
1295 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1296 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001297 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001298 which returns an integer. This is the signature for <tt>printf</tt> in
1299 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001300 </td>
Devang Patela582f402008-03-24 05:35:41 +00001301 </tr><tr class="layout">
1302 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001303 <td class="left">A function taking an <tt>i32></tt>, returning two
1304 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001305 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001306 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001307</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001308
Misha Brukman9d0919f2003-11-08 01:05:38 +00001309</div>
Chris Lattner00950542001-06-06 20:29:01 +00001310<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001311<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001312<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001313<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001314<p>The structure type is used to represent a collection of data members
1315together in memory. The packing of the field types is defined to match
1316the ABI of the underlying processor. The elements of a structure may
1317be any type that has a size.</p>
1318<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1319and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1320field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1321instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001322<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001323<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001324<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001325<table class="layout">
1326 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001327 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1328 <td class="left">A triple of three <tt>i32</tt> values</td>
1329 </tr><tr class="layout">
1330 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1331 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1332 second element is a <a href="#t_pointer">pointer</a> to a
1333 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1334 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001335 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001336</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001337</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001338
Chris Lattner00950542001-06-06 20:29:01 +00001339<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001340<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1341</div>
1342<div class="doc_text">
1343<h5>Overview:</h5>
1344<p>The packed structure type is used to represent a collection of data members
1345together in memory. There is no padding between fields. Further, the alignment
1346of a packed structure is 1 byte. The elements of a packed structure may
1347be any type that has a size.</p>
1348<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1349and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1350field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1351instruction.</p>
1352<h5>Syntax:</h5>
1353<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1354<h5>Examples:</h5>
1355<table class="layout">
1356 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001357 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1358 <td class="left">A triple of three <tt>i32</tt> values</td>
1359 </tr><tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001360 <td class="left"><tt>&lt; { float, i32 (i32)* } &gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001361 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1362 second element is a <a href="#t_pointer">pointer</a> to a
1363 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1364 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001365 </tr>
1366</table>
1367</div>
1368
1369<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001370<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001371<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001372<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001373<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001374reference to another object, which must live in memory. Pointer types may have
1375an optional address space attribute defining the target-specific numbered
1376address space where the pointed-to object resides. The default address space is
1377zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001378<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001379<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001380<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001381<table class="layout">
1382 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001383 <td class="left"><tt>[4x i32]*</tt></td>
1384 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1385 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1386 </tr>
1387 <tr class="layout">
1388 <td class="left"><tt>i32 (i32 *) *</tt></td>
1389 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001390 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001391 <tt>i32</tt>.</td>
1392 </tr>
1393 <tr class="layout">
1394 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1395 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1396 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001397 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001398</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001399</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001400
Chris Lattnera58561b2004-08-12 19:12:28 +00001401<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001402<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001403<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001404
Chris Lattnera58561b2004-08-12 19:12:28 +00001405<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001406
Reid Spencer485bad12007-02-15 03:07:05 +00001407<p>A vector type is a simple derived type that represents a vector
1408of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001409are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001410A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001411elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001412of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001413considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001414
Chris Lattnera58561b2004-08-12 19:12:28 +00001415<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001416
1417<pre>
1418 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1419</pre>
1420
John Criswellc1f786c2005-05-13 22:25:59 +00001421<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001422be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001423
Chris Lattnera58561b2004-08-12 19:12:28 +00001424<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001425
Reid Spencerd3f876c2004-11-01 08:19:36 +00001426<table class="layout">
1427 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001428 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1429 <td class="left">Vector of 4 32-bit integer values.</td>
1430 </tr>
1431 <tr class="layout">
1432 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1433 <td class="left">Vector of 8 32-bit floating-point values.</td>
1434 </tr>
1435 <tr class="layout">
1436 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1437 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001438 </tr>
1439</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001440</div>
1441
Chris Lattner69c11bb2005-04-25 17:34:15 +00001442<!-- _______________________________________________________________________ -->
1443<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1444<div class="doc_text">
1445
1446<h5>Overview:</h5>
1447
1448<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001449corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001450In LLVM, opaque types can eventually be resolved to any type (not just a
1451structure type).</p>
1452
1453<h5>Syntax:</h5>
1454
1455<pre>
1456 opaque
1457</pre>
1458
1459<h5>Examples:</h5>
1460
1461<table class="layout">
1462 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001463 <td class="left"><tt>opaque</tt></td>
1464 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001465 </tr>
1466</table>
1467</div>
1468
1469
Chris Lattnerc3f59762004-12-09 17:30:23 +00001470<!-- *********************************************************************** -->
1471<div class="doc_section"> <a name="constants">Constants</a> </div>
1472<!-- *********************************************************************** -->
1473
1474<div class="doc_text">
1475
1476<p>LLVM has several different basic types of constants. This section describes
1477them all and their syntax.</p>
1478
1479</div>
1480
1481<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001482<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001483
1484<div class="doc_text">
1485
1486<dl>
1487 <dt><b>Boolean constants</b></dt>
1488
1489 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001490 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001491 </dd>
1492
1493 <dt><b>Integer constants</b></dt>
1494
Reid Spencercc16dc32004-12-09 18:02:53 +00001495 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001496 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001497 integer types.
1498 </dd>
1499
1500 <dt><b>Floating point constants</b></dt>
1501
1502 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1503 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001504 notation (see below). The assembler requires the exact decimal value of
1505 a floating-point constant. For example, the assembler accepts 1.25 but
1506 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1507 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001508
1509 <dt><b>Null pointer constants</b></dt>
1510
John Criswell9e2485c2004-12-10 15:51:16 +00001511 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001512 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1513
1514</dl>
1515
John Criswell9e2485c2004-12-10 15:51:16 +00001516<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001517of floating point constants. For example, the form '<tt>double
15180x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15194.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001520(and the only time that they are generated by the disassembler) is when a
1521floating point constant must be emitted but it cannot be represented as a
1522decimal floating point number. For example, NaN's, infinities, and other
1523special values are represented in their IEEE hexadecimal format so that
1524assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001525
1526</div>
1527
1528<!-- ======================================================================= -->
1529<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1530</div>
1531
1532<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001533<p>Aggregate constants arise from aggregation of simple constants
1534and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001535
1536<dl>
1537 <dt><b>Structure constants</b></dt>
1538
1539 <dd>Structure constants are represented with notation similar to structure
1540 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001541 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1542 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001543 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001544 types of elements must match those specified by the type.
1545 </dd>
1546
1547 <dt><b>Array constants</b></dt>
1548
1549 <dd>Array constants are represented with notation similar to array type
1550 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001551 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001552 constants must have <a href="#t_array">array type</a>, and the number and
1553 types of elements must match those specified by the type.
1554 </dd>
1555
Reid Spencer485bad12007-02-15 03:07:05 +00001556 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001557
Reid Spencer485bad12007-02-15 03:07:05 +00001558 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001559 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001560 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001561 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001562 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001563 match those specified by the type.
1564 </dd>
1565
1566 <dt><b>Zero initialization</b></dt>
1567
1568 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1569 value to zero of <em>any</em> type, including scalar and aggregate types.
1570 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001571 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001572 initializers.
1573 </dd>
1574</dl>
1575
1576</div>
1577
1578<!-- ======================================================================= -->
1579<div class="doc_subsection">
1580 <a name="globalconstants">Global Variable and Function Addresses</a>
1581</div>
1582
1583<div class="doc_text">
1584
1585<p>The addresses of <a href="#globalvars">global variables</a> and <a
1586href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001587constants. These constants are explicitly referenced when the <a
1588href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001589href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1590file:</p>
1591
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001592<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001593<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001594@X = global i32 17
1595@Y = global i32 42
1596@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001597</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001598</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001599
1600</div>
1601
1602<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001603<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001604<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001605 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001606 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001607 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001608
Reid Spencer2dc45b82004-12-09 18:13:12 +00001609 <p>Undefined values indicate to the compiler that the program is well defined
1610 no matter what value is used, giving the compiler more freedom to optimize.
1611 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001612</div>
1613
1614<!-- ======================================================================= -->
1615<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1616</div>
1617
1618<div class="doc_text">
1619
1620<p>Constant expressions are used to allow expressions involving other constants
1621to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001622href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001623that does not have side effects (e.g. load and call are not supported). The
1624following is the syntax for constant expressions:</p>
1625
1626<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001627 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1628 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001629 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001630
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001631 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1632 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001633 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001634
1635 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1636 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001637 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001638
1639 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1640 <dd>Truncate a floating point constant to another floating point type. The
1641 size of CST must be larger than the size of TYPE. Both types must be
1642 floating point.</dd>
1643
1644 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1645 <dd>Floating point extend a constant to another type. The size of CST must be
1646 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1647
Reid Spencer1539a1c2007-07-31 14:40:14 +00001648 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001649 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001650 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1651 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1652 of the same number of elements. If the value won't fit in the integer type,
1653 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001654
Reid Spencerd4448792006-11-09 23:03:26 +00001655 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001656 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001657 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1658 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1659 of the same number of elements. If the value won't fit in the integer type,
1660 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001661
Reid Spencerd4448792006-11-09 23:03:26 +00001662 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001663 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001664 constant. TYPE must be a scalar or vector floating point type. CST must be of
1665 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1666 of the same number of elements. If the value won't fit in the floating point
1667 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001668
Reid Spencerd4448792006-11-09 23:03:26 +00001669 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001670 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001671 constant. TYPE must be a scalar or vector floating point type. CST must be of
1672 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1673 of the same number of elements. If the value won't fit in the floating point
1674 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001675
Reid Spencer5c0ef472006-11-11 23:08:07 +00001676 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1677 <dd>Convert a pointer typed constant to the corresponding integer constant
1678 TYPE must be an integer type. CST must be of pointer type. The CST value is
1679 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1680
1681 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1682 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1683 pointer type. CST must be of integer type. The CST value is zero extended,
1684 truncated, or unchanged to make it fit in a pointer size. This one is
1685 <i>really</i> dangerous!</dd>
1686
1687 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001688 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1689 identical (same number of bits). The conversion is done as if the CST value
1690 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001691 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001692 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001693 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001694 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001695
1696 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1697
1698 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1699 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1700 instruction, the index list may have zero or more indexes, which are required
1701 to make sense for the type of "CSTPTR".</dd>
1702
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001703 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1704
1705 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001706 constants.</dd>
1707
1708 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1709 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1710
1711 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1712 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001713
Nate Begemanac80ade2008-05-12 19:01:56 +00001714 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1715 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1716
1717 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1718 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1719
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001720 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1721
1722 <dd>Perform the <a href="#i_extractelement">extractelement
1723 operation</a> on constants.
1724
Robert Bocchino05ccd702006-01-15 20:48:27 +00001725 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1726
1727 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001728 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001729
Chris Lattnerc1989542006-04-08 00:13:41 +00001730
1731 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1732
1733 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001734 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001735
Chris Lattnerc3f59762004-12-09 17:30:23 +00001736 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1737
Reid Spencer2dc45b82004-12-09 18:13:12 +00001738 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1739 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001740 binary</a> operations. The constraints on operands are the same as those for
1741 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001742 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001743</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001744</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001745
Chris Lattner00950542001-06-06 20:29:01 +00001746<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001747<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1748<!-- *********************************************************************** -->
1749
1750<!-- ======================================================================= -->
1751<div class="doc_subsection">
1752<a name="inlineasm">Inline Assembler Expressions</a>
1753</div>
1754
1755<div class="doc_text">
1756
1757<p>
1758LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1759Module-Level Inline Assembly</a>) through the use of a special value. This
1760value represents the inline assembler as a string (containing the instructions
1761to emit), a list of operand constraints (stored as a string), and a flag that
1762indicates whether or not the inline asm expression has side effects. An example
1763inline assembler expression is:
1764</p>
1765
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001766<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001767<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001768i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001769</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001770</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001771
1772<p>
1773Inline assembler expressions may <b>only</b> be used as the callee operand of
1774a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1775</p>
1776
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001777<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001778<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001779%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001780</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001781</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001782
1783<p>
1784Inline asms with side effects not visible in the constraint list must be marked
1785as having side effects. This is done through the use of the
1786'<tt>sideeffect</tt>' keyword, like so:
1787</p>
1788
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001789<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001790<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001791call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001792</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001793</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001794
1795<p>TODO: The format of the asm and constraints string still need to be
1796documented here. Constraints on what can be done (e.g. duplication, moving, etc
1797need to be documented).
1798</p>
1799
1800</div>
1801
1802<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001803<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1804<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001805
Misha Brukman9d0919f2003-11-08 01:05:38 +00001806<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001807
Chris Lattner261efe92003-11-25 01:02:51 +00001808<p>The LLVM instruction set consists of several different
1809classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001810instructions</a>, <a href="#binaryops">binary instructions</a>,
1811<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001812 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1813instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001814
Misha Brukman9d0919f2003-11-08 01:05:38 +00001815</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001816
Chris Lattner00950542001-06-06 20:29:01 +00001817<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001818<div class="doc_subsection"> <a name="terminators">Terminator
1819Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001820
Misha Brukman9d0919f2003-11-08 01:05:38 +00001821<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001822
Chris Lattner261efe92003-11-25 01:02:51 +00001823<p>As mentioned <a href="#functionstructure">previously</a>, every
1824basic block in a program ends with a "Terminator" instruction, which
1825indicates which block should be executed after the current block is
1826finished. These terminator instructions typically yield a '<tt>void</tt>'
1827value: they produce control flow, not values (the one exception being
1828the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001829<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001830 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1831instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001832the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1833 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1834 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001835
Misha Brukman9d0919f2003-11-08 01:05:38 +00001836</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001837
Chris Lattner00950542001-06-06 20:29:01 +00001838<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001839<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1840Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001841<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001842<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001843<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001844 ret void <i>; Return from void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001845 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Chris Lattner00950542001-06-06 20:29:01 +00001846</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001847
Chris Lattner00950542001-06-06 20:29:01 +00001848<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001849
Chris Lattner261efe92003-11-25 01:02:51 +00001850<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001851value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001852<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001853returns value(s) and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001854control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001855
Chris Lattner00950542001-06-06 20:29:01 +00001856<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001857
1858<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1859The type of each return value must be a '<a href="#t_firstclass">first
1860class</a>' type. Note that a function is not <a href="#wellformed">well
1861formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1862function that returns values that do not match the return type of the
1863function.</p>
1864
Chris Lattner00950542001-06-06 20:29:01 +00001865<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001866
Chris Lattner261efe92003-11-25 01:02:51 +00001867<p>When the '<tt>ret</tt>' instruction is executed, control flow
1868returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001869 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001870the instruction after the call. If the caller was an "<a
1871 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001872at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001873returns a value, that value shall set the call or invoke instruction's
Devang Patelc3fc6df2008-03-10 20:49:15 +00001874return value. If the instruction returns multiple values then these
Devang Patel0dbb4a12008-03-11 05:51:59 +00001875values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1876</a>' instruction.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001877
Chris Lattner00950542001-06-06 20:29:01 +00001878<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001879
1880<pre>
1881 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001882 ret void <i>; Return from a void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001883 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Chris Lattner00950542001-06-06 20:29:01 +00001884</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001885</div>
Chris Lattner00950542001-06-06 20:29:01 +00001886<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001887<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001888<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001889<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001890<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001891</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001892<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001893<p>The '<tt>br</tt>' instruction is used to cause control flow to
1894transfer to a different basic block in the current function. There are
1895two forms of this instruction, corresponding to a conditional branch
1896and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001897<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001898<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001899single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001900unconditional form of the '<tt>br</tt>' instruction takes a single
1901'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001902<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001903<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001904argument is evaluated. If the value is <tt>true</tt>, control flows
1905to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1906control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001907<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001908<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001909 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001910</div>
Chris Lattner00950542001-06-06 20:29:01 +00001911<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001912<div class="doc_subsubsection">
1913 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1914</div>
1915
Misha Brukman9d0919f2003-11-08 01:05:38 +00001916<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001917<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001918
1919<pre>
1920 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1921</pre>
1922
Chris Lattner00950542001-06-06 20:29:01 +00001923<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001924
1925<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1926several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001927instruction, allowing a branch to occur to one of many possible
1928destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001929
1930
Chris Lattner00950542001-06-06 20:29:01 +00001931<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001932
1933<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1934comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1935an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1936table is not allowed to contain duplicate constant entries.</p>
1937
Chris Lattner00950542001-06-06 20:29:01 +00001938<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001939
Chris Lattner261efe92003-11-25 01:02:51 +00001940<p>The <tt>switch</tt> instruction specifies a table of values and
1941destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001942table is searched for the given value. If the value is found, control flow is
1943transfered to the corresponding destination; otherwise, control flow is
1944transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001945
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001946<h5>Implementation:</h5>
1947
1948<p>Depending on properties of the target machine and the particular
1949<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001950ways. For example, it could be generated as a series of chained conditional
1951branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001952
1953<h5>Example:</h5>
1954
1955<pre>
1956 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001957 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001958 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001959
1960 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001961 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001962
1963 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001964 switch i32 %val, label %otherwise [ i32 0, label %onzero
1965 i32 1, label %onone
1966 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001967</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001968</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001969
Chris Lattner00950542001-06-06 20:29:01 +00001970<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001971<div class="doc_subsubsection">
1972 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1973</div>
1974
Misha Brukman9d0919f2003-11-08 01:05:38 +00001975<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001976
Chris Lattner00950542001-06-06 20:29:01 +00001977<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001978
1979<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00001980 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001981 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001982</pre>
1983
Chris Lattner6536cfe2002-05-06 22:08:29 +00001984<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001985
1986<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1987function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001988'<tt>normal</tt>' label or the
1989'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001990"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1991"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001992href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patelc3fc6df2008-03-10 20:49:15 +00001993continued at the dynamically nearest "exception" label. If the callee function
Devang Patel0dbb4a12008-03-11 05:51:59 +00001994returns multiple values then individual return values are only accessible through
1995a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001996
Chris Lattner00950542001-06-06 20:29:01 +00001997<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001998
Misha Brukman9d0919f2003-11-08 01:05:38 +00001999<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002000
Chris Lattner00950542001-06-06 20:29:01 +00002001<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002002 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002003 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002004 convention</a> the call should use. If none is specified, the call defaults
2005 to using C calling conventions.
2006 </li>
2007 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2008 function value being invoked. In most cases, this is a direct function
2009 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2010 an arbitrary pointer to function value.
2011 </li>
2012
2013 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2014 function to be invoked. </li>
2015
2016 <li>'<tt>function args</tt>': argument list whose types match the function
2017 signature argument types. If the function signature indicates the function
2018 accepts a variable number of arguments, the extra arguments can be
2019 specified. </li>
2020
2021 <li>'<tt>normal label</tt>': the label reached when the called function
2022 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2023
2024 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2025 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2026
Chris Lattner00950542001-06-06 20:29:01 +00002027</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002028
Chris Lattner00950542001-06-06 20:29:01 +00002029<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002030
Misha Brukman9d0919f2003-11-08 01:05:38 +00002031<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002032href="#i_call">call</a></tt>' instruction in most regards. The primary
2033difference is that it establishes an association with a label, which is used by
2034the runtime library to unwind the stack.</p>
2035
2036<p>This instruction is used in languages with destructors to ensure that proper
2037cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2038exception. Additionally, this is important for implementation of
2039'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2040
Chris Lattner00950542001-06-06 20:29:01 +00002041<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002042<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002043 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002044 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002045 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002046 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002047</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002048</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002049
2050
Chris Lattner27f71f22003-09-03 00:41:47 +00002051<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002052
Chris Lattner261efe92003-11-25 01:02:51 +00002053<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2054Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002055
Misha Brukman9d0919f2003-11-08 01:05:38 +00002056<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002057
Chris Lattner27f71f22003-09-03 00:41:47 +00002058<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002059<pre>
2060 unwind
2061</pre>
2062
Chris Lattner27f71f22003-09-03 00:41:47 +00002063<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002064
2065<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2066at the first callee in the dynamic call stack which used an <a
2067href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2068primarily used to implement exception handling.</p>
2069
Chris Lattner27f71f22003-09-03 00:41:47 +00002070<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002071
Chris Lattner72ed2002008-04-19 21:01:16 +00002072<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002073immediately halt. The dynamic call stack is then searched for the first <a
2074href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2075execution continues at the "exceptional" destination block specified by the
2076<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2077dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002078</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002079
2080<!-- _______________________________________________________________________ -->
2081
2082<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2083Instruction</a> </div>
2084
2085<div class="doc_text">
2086
2087<h5>Syntax:</h5>
2088<pre>
2089 unreachable
2090</pre>
2091
2092<h5>Overview:</h5>
2093
2094<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2095instruction is used to inform the optimizer that a particular portion of the
2096code is not reachable. This can be used to indicate that the code after a
2097no-return function cannot be reached, and other facts.</p>
2098
2099<h5>Semantics:</h5>
2100
2101<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2102</div>
2103
2104
2105
Chris Lattner00950542001-06-06 20:29:01 +00002106<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002107<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002108<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002109<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002110program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002111produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002112multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002113The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002114<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002115</div>
Chris Lattner00950542001-06-06 20:29:01 +00002116<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002117<div class="doc_subsubsection">
2118 <a name="i_add">'<tt>add</tt>' Instruction</a>
2119</div>
2120
Misha Brukman9d0919f2003-11-08 01:05:38 +00002121<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002122
Chris Lattner00950542001-06-06 20:29:01 +00002123<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002124
2125<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002126 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002127</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002128
Chris Lattner00950542001-06-06 20:29:01 +00002129<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002130
Misha Brukman9d0919f2003-11-08 01:05:38 +00002131<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002132
Chris Lattner00950542001-06-06 20:29:01 +00002133<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002134
2135<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2136 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2137 <a href="#t_vector">vector</a> values. Both arguments must have identical
2138 types.</p>
2139
Chris Lattner00950542001-06-06 20:29:01 +00002140<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002141
Misha Brukman9d0919f2003-11-08 01:05:38 +00002142<p>The value produced is the integer or floating point sum of the two
2143operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002144
Chris Lattner5ec89832008-01-28 00:36:27 +00002145<p>If an integer sum has unsigned overflow, the result returned is the
2146mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2147the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002148
Chris Lattner5ec89832008-01-28 00:36:27 +00002149<p>Because LLVM integers use a two's complement representation, this
2150instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002151
Chris Lattner00950542001-06-06 20:29:01 +00002152<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002153
2154<pre>
2155 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002156</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002157</div>
Chris Lattner00950542001-06-06 20:29:01 +00002158<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002159<div class="doc_subsubsection">
2160 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2161</div>
2162
Misha Brukman9d0919f2003-11-08 01:05:38 +00002163<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002164
Chris Lattner00950542001-06-06 20:29:01 +00002165<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002166
2167<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002168 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002169</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002170
Chris Lattner00950542001-06-06 20:29:01 +00002171<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002172
Misha Brukman9d0919f2003-11-08 01:05:38 +00002173<p>The '<tt>sub</tt>' instruction returns the difference of its two
2174operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002175
2176<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2177'<tt>neg</tt>' instruction present in most other intermediate
2178representations.</p>
2179
Chris Lattner00950542001-06-06 20:29:01 +00002180<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002181
2182<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2183 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2184 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2185 types.</p>
2186
Chris Lattner00950542001-06-06 20:29:01 +00002187<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002188
Chris Lattner261efe92003-11-25 01:02:51 +00002189<p>The value produced is the integer or floating point difference of
2190the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002191
Chris Lattner5ec89832008-01-28 00:36:27 +00002192<p>If an integer difference has unsigned overflow, the result returned is the
2193mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2194the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002195
Chris Lattner5ec89832008-01-28 00:36:27 +00002196<p>Because LLVM integers use a two's complement representation, this
2197instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002198
Chris Lattner00950542001-06-06 20:29:01 +00002199<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002200<pre>
2201 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002202 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002203</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002204</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002205
Chris Lattner00950542001-06-06 20:29:01 +00002206<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002207<div class="doc_subsubsection">
2208 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2209</div>
2210
Misha Brukman9d0919f2003-11-08 01:05:38 +00002211<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002212
Chris Lattner00950542001-06-06 20:29:01 +00002213<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002214<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002215</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002216<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002217<p>The '<tt>mul</tt>' instruction returns the product of its two
2218operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002219
Chris Lattner00950542001-06-06 20:29:01 +00002220<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002221
2222<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2223href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2224or <a href="#t_vector">vector</a> values. Both arguments must have identical
2225types.</p>
2226
Chris Lattner00950542001-06-06 20:29:01 +00002227<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002228
Chris Lattner261efe92003-11-25 01:02:51 +00002229<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002230two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002231
Chris Lattner5ec89832008-01-28 00:36:27 +00002232<p>If the result of an integer multiplication has unsigned overflow,
2233the result returned is the mathematical result modulo
22342<sup>n</sup>, where n is the bit width of the result.</p>
2235<p>Because LLVM integers use a two's complement representation, and the
2236result is the same width as the operands, this instruction returns the
2237correct result for both signed and unsigned integers. If a full product
2238(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2239should be sign-extended or zero-extended as appropriate to the
2240width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002241<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002242<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002243</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002244</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002245
Chris Lattner00950542001-06-06 20:29:01 +00002246<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002247<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2248</a></div>
2249<div class="doc_text">
2250<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002251<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002252</pre>
2253<h5>Overview:</h5>
2254<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2255operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002256
Reid Spencer1628cec2006-10-26 06:15:43 +00002257<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002258
Reid Spencer1628cec2006-10-26 06:15:43 +00002259<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002260<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2261values. Both arguments must have identical types.</p>
2262
Reid Spencer1628cec2006-10-26 06:15:43 +00002263<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002264
Chris Lattner5ec89832008-01-28 00:36:27 +00002265<p>The value produced is the unsigned integer quotient of the two operands.</p>
2266<p>Note that unsigned integer division and signed integer division are distinct
2267operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2268<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002269<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002270<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002271</pre>
2272</div>
2273<!-- _______________________________________________________________________ -->
2274<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2275</a> </div>
2276<div class="doc_text">
2277<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002278<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002279 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002280</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002281
Reid Spencer1628cec2006-10-26 06:15:43 +00002282<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002283
Reid Spencer1628cec2006-10-26 06:15:43 +00002284<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2285operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002286
Reid Spencer1628cec2006-10-26 06:15:43 +00002287<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002288
2289<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2290<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2291values. Both arguments must have identical types.</p>
2292
Reid Spencer1628cec2006-10-26 06:15:43 +00002293<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002294<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002295<p>Note that signed integer division and unsigned integer division are distinct
2296operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2297<p>Division by zero leads to undefined behavior. Overflow also leads to
2298undefined behavior; this is a rare case, but can occur, for example,
2299by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002300<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002301<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002302</pre>
2303</div>
2304<!-- _______________________________________________________________________ -->
2305<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002306Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002307<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002308<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002309<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002310 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002311</pre>
2312<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002313
Reid Spencer1628cec2006-10-26 06:15:43 +00002314<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002315operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002316
Chris Lattner261efe92003-11-25 01:02:51 +00002317<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002318
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002319<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002320<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2321of floating point values. Both arguments must have identical types.</p>
2322
Chris Lattner261efe92003-11-25 01:02:51 +00002323<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002324
Reid Spencer1628cec2006-10-26 06:15:43 +00002325<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002326
Chris Lattner261efe92003-11-25 01:02:51 +00002327<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002328
2329<pre>
2330 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002331</pre>
2332</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002333
Chris Lattner261efe92003-11-25 01:02:51 +00002334<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002335<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2336</div>
2337<div class="doc_text">
2338<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002339<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002340</pre>
2341<h5>Overview:</h5>
2342<p>The '<tt>urem</tt>' instruction returns the remainder from the
2343unsigned division of its two arguments.</p>
2344<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002345<p>The two arguments to the '<tt>urem</tt>' instruction must be
2346<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2347values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002348<h5>Semantics:</h5>
2349<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002350This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002351<p>Note that unsigned integer remainder and signed integer remainder are
2352distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2353<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002354<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002355<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002356</pre>
2357
2358</div>
2359<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002360<div class="doc_subsubsection">
2361 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2362</div>
2363
Chris Lattner261efe92003-11-25 01:02:51 +00002364<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002365
Chris Lattner261efe92003-11-25 01:02:51 +00002366<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002367
2368<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002369 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002370</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002371
Chris Lattner261efe92003-11-25 01:02:51 +00002372<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002373
Reid Spencer0a783f72006-11-02 01:53:59 +00002374<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002375signed division of its two operands. This instruction can also take
2376<a href="#t_vector">vector</a> versions of the values in which case
2377the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002378
Chris Lattner261efe92003-11-25 01:02:51 +00002379<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002380
Reid Spencer0a783f72006-11-02 01:53:59 +00002381<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002382<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2383values. Both arguments must have identical types.</p>
2384
Chris Lattner261efe92003-11-25 01:02:51 +00002385<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002386
Reid Spencer0a783f72006-11-02 01:53:59 +00002387<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002388has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2389operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002390a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002391 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002392Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002393please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002394Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002395<p>Note that signed integer remainder and unsigned integer remainder are
2396distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2397<p>Taking the remainder of a division by zero leads to undefined behavior.
2398Overflow also leads to undefined behavior; this is a rare case, but can occur,
2399for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2400(The remainder doesn't actually overflow, but this rule lets srem be
2401implemented using instructions that return both the result of the division
2402and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002403<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002404<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002405</pre>
2406
2407</div>
2408<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002409<div class="doc_subsubsection">
2410 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2411
Reid Spencer0a783f72006-11-02 01:53:59 +00002412<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002413
Reid Spencer0a783f72006-11-02 01:53:59 +00002414<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002415<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002416</pre>
2417<h5>Overview:</h5>
2418<p>The '<tt>frem</tt>' instruction returns the remainder from the
2419division of its two operands.</p>
2420<h5>Arguments:</h5>
2421<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002422<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2423of floating point values. Both arguments must have identical types.</p>
2424
Reid Spencer0a783f72006-11-02 01:53:59 +00002425<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002426
Chris Lattnera73afe02008-04-01 18:45:27 +00002427<p>This instruction returns the <i>remainder</i> of a division.
2428The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002429
Reid Spencer0a783f72006-11-02 01:53:59 +00002430<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002431
2432<pre>
2433 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002434</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002435</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002436
Reid Spencer8e11bf82007-02-02 13:57:07 +00002437<!-- ======================================================================= -->
2438<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2439Operations</a> </div>
2440<div class="doc_text">
2441<p>Bitwise binary operators are used to do various forms of
2442bit-twiddling in a program. They are generally very efficient
2443instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002444instructions. They require two operands of the same type, execute an operation on them,
2445and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002446</div>
2447
Reid Spencer569f2fa2007-01-31 21:39:12 +00002448<!-- _______________________________________________________________________ -->
2449<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2450Instruction</a> </div>
2451<div class="doc_text">
2452<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002453<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002454</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002455
Reid Spencer569f2fa2007-01-31 21:39:12 +00002456<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002457
Reid Spencer569f2fa2007-01-31 21:39:12 +00002458<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2459the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002460
Reid Spencer569f2fa2007-01-31 21:39:12 +00002461<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002462
Reid Spencer569f2fa2007-01-31 21:39:12 +00002463<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002464 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002465type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002466
Reid Spencer569f2fa2007-01-31 21:39:12 +00002467<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002468
Gabor Greiffb224a22008-08-07 21:46:00 +00002469<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2470where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2471equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002472
Reid Spencer569f2fa2007-01-31 21:39:12 +00002473<h5>Example:</h5><pre>
2474 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2475 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2476 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002477 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002478</pre>
2479</div>
2480<!-- _______________________________________________________________________ -->
2481<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2482Instruction</a> </div>
2483<div class="doc_text">
2484<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002485<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002486</pre>
2487
2488<h5>Overview:</h5>
2489<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002490operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002491
2492<h5>Arguments:</h5>
2493<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002494<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002495type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002496
2497<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002498
Reid Spencer569f2fa2007-01-31 21:39:12 +00002499<p>This instruction always performs a logical shift right operation. The most
2500significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002501shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2502the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002503
2504<h5>Example:</h5>
2505<pre>
2506 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2507 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2508 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2509 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002510 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002511</pre>
2512</div>
2513
Reid Spencer8e11bf82007-02-02 13:57:07 +00002514<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002515<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2516Instruction</a> </div>
2517<div class="doc_text">
2518
2519<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002520<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002521</pre>
2522
2523<h5>Overview:</h5>
2524<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002525operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002526
2527<h5>Arguments:</h5>
2528<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002529<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002530type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002531
2532<h5>Semantics:</h5>
2533<p>This instruction always performs an arithmetic shift right operation,
2534The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002535of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2536larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002537</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002538
2539<h5>Example:</h5>
2540<pre>
2541 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2542 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2543 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2544 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002545 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002546</pre>
2547</div>
2548
Chris Lattner00950542001-06-06 20:29:01 +00002549<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002550<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2551Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002552
Misha Brukman9d0919f2003-11-08 01:05:38 +00002553<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002554
Chris Lattner00950542001-06-06 20:29:01 +00002555<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002556
2557<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002558 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002559</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002560
Chris Lattner00950542001-06-06 20:29:01 +00002561<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002562
Chris Lattner261efe92003-11-25 01:02:51 +00002563<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2564its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002565
Chris Lattner00950542001-06-06 20:29:01 +00002566<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002567
2568<p>The two arguments to the '<tt>and</tt>' instruction must be
2569<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2570values. Both arguments must have identical types.</p>
2571
Chris Lattner00950542001-06-06 20:29:01 +00002572<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002573<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002574<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002575<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002576<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002577 <tbody>
2578 <tr>
2579 <td>In0</td>
2580 <td>In1</td>
2581 <td>Out</td>
2582 </tr>
2583 <tr>
2584 <td>0</td>
2585 <td>0</td>
2586 <td>0</td>
2587 </tr>
2588 <tr>
2589 <td>0</td>
2590 <td>1</td>
2591 <td>0</td>
2592 </tr>
2593 <tr>
2594 <td>1</td>
2595 <td>0</td>
2596 <td>0</td>
2597 </tr>
2598 <tr>
2599 <td>1</td>
2600 <td>1</td>
2601 <td>1</td>
2602 </tr>
2603 </tbody>
2604</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002605</div>
Chris Lattner00950542001-06-06 20:29:01 +00002606<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002607<pre>
2608 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002609 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2610 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002611</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002612</div>
Chris Lattner00950542001-06-06 20:29:01 +00002613<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002614<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002615<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002616<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002617<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002618</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002619<h5>Overview:</h5>
2620<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2621or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002622<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002623
2624<p>The two arguments to the '<tt>or</tt>' instruction must be
2625<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2626values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002627<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002628<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002629<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002630<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002631<table border="1" cellspacing="0" cellpadding="4">
2632 <tbody>
2633 <tr>
2634 <td>In0</td>
2635 <td>In1</td>
2636 <td>Out</td>
2637 </tr>
2638 <tr>
2639 <td>0</td>
2640 <td>0</td>
2641 <td>0</td>
2642 </tr>
2643 <tr>
2644 <td>0</td>
2645 <td>1</td>
2646 <td>1</td>
2647 </tr>
2648 <tr>
2649 <td>1</td>
2650 <td>0</td>
2651 <td>1</td>
2652 </tr>
2653 <tr>
2654 <td>1</td>
2655 <td>1</td>
2656 <td>1</td>
2657 </tr>
2658 </tbody>
2659</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002660</div>
Chris Lattner00950542001-06-06 20:29:01 +00002661<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002662<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2663 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2664 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002665</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002666</div>
Chris Lattner00950542001-06-06 20:29:01 +00002667<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002668<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2669Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002670<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002671<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002672<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002673</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002674<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002675<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2676or of its two operands. The <tt>xor</tt> is used to implement the
2677"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002678<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002679<p>The two arguments to the '<tt>xor</tt>' instruction must be
2680<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2681values. Both arguments must have identical types.</p>
2682
Chris Lattner00950542001-06-06 20:29:01 +00002683<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002684
Misha Brukman9d0919f2003-11-08 01:05:38 +00002685<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002686<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002687<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002688<table border="1" cellspacing="0" cellpadding="4">
2689 <tbody>
2690 <tr>
2691 <td>In0</td>
2692 <td>In1</td>
2693 <td>Out</td>
2694 </tr>
2695 <tr>
2696 <td>0</td>
2697 <td>0</td>
2698 <td>0</td>
2699 </tr>
2700 <tr>
2701 <td>0</td>
2702 <td>1</td>
2703 <td>1</td>
2704 </tr>
2705 <tr>
2706 <td>1</td>
2707 <td>0</td>
2708 <td>1</td>
2709 </tr>
2710 <tr>
2711 <td>1</td>
2712 <td>1</td>
2713 <td>0</td>
2714 </tr>
2715 </tbody>
2716</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002717</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002718<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002719<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002720<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2721 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2722 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2723 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002724</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002725</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002726
Chris Lattner00950542001-06-06 20:29:01 +00002727<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002728<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002729 <a name="vectorops">Vector Operations</a>
2730</div>
2731
2732<div class="doc_text">
2733
2734<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002735target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002736vector-specific operations needed to process vectors effectively. While LLVM
2737does directly support these vector operations, many sophisticated algorithms
2738will want to use target-specific intrinsics to take full advantage of a specific
2739target.</p>
2740
2741</div>
2742
2743<!-- _______________________________________________________________________ -->
2744<div class="doc_subsubsection">
2745 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2746</div>
2747
2748<div class="doc_text">
2749
2750<h5>Syntax:</h5>
2751
2752<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002753 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002754</pre>
2755
2756<h5>Overview:</h5>
2757
2758<p>
2759The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002760element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002761</p>
2762
2763
2764<h5>Arguments:</h5>
2765
2766<p>
2767The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002768value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002769an index indicating the position from which to extract the element.
2770The index may be a variable.</p>
2771
2772<h5>Semantics:</h5>
2773
2774<p>
2775The result is a scalar of the same type as the element type of
2776<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2777<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2778results are undefined.
2779</p>
2780
2781<h5>Example:</h5>
2782
2783<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002784 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002785</pre>
2786</div>
2787
2788
2789<!-- _______________________________________________________________________ -->
2790<div class="doc_subsubsection">
2791 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2792</div>
2793
2794<div class="doc_text">
2795
2796<h5>Syntax:</h5>
2797
2798<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002799 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002800</pre>
2801
2802<h5>Overview:</h5>
2803
2804<p>
2805The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002806element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002807</p>
2808
2809
2810<h5>Arguments:</h5>
2811
2812<p>
2813The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002814value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002815scalar value whose type must equal the element type of the first
2816operand. The third operand is an index indicating the position at
2817which to insert the value. The index may be a variable.</p>
2818
2819<h5>Semantics:</h5>
2820
2821<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002822The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002823element values are those of <tt>val</tt> except at position
2824<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2825exceeds the length of <tt>val</tt>, the results are undefined.
2826</p>
2827
2828<h5>Example:</h5>
2829
2830<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002831 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002832</pre>
2833</div>
2834
2835<!-- _______________________________________________________________________ -->
2836<div class="doc_subsubsection">
2837 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2838</div>
2839
2840<div class="doc_text">
2841
2842<h5>Syntax:</h5>
2843
2844<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002845 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002846</pre>
2847
2848<h5>Overview:</h5>
2849
2850<p>
2851The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2852from two input vectors, returning a vector of the same type.
2853</p>
2854
2855<h5>Arguments:</h5>
2856
2857<p>
2858The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2859with types that match each other and types that match the result of the
2860instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002861of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002862</p>
2863
2864<p>
2865The shuffle mask operand is required to be a constant vector with either
2866constant integer or undef values.
2867</p>
2868
2869<h5>Semantics:</h5>
2870
2871<p>
2872The elements of the two input vectors are numbered from left to right across
2873both of the vectors. The shuffle mask operand specifies, for each element of
2874the result vector, which element of the two input registers the result element
2875gets. The element selector may be undef (meaning "don't care") and the second
2876operand may be undef if performing a shuffle from only one vector.
2877</p>
2878
2879<h5>Example:</h5>
2880
2881<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002882 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002883 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002884 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2885 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002886</pre>
2887</div>
2888
Tanya Lattner09474292006-04-14 19:24:33 +00002889
Chris Lattner3df241e2006-04-08 23:07:04 +00002890<!-- ======================================================================= -->
2891<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002892 <a name="aggregateops">Aggregate Operations</a>
2893</div>
2894
2895<div class="doc_text">
2896
2897<p>LLVM supports several instructions for working with aggregate values.
2898</p>
2899
2900</div>
2901
2902<!-- _______________________________________________________________________ -->
2903<div class="doc_subsubsection">
2904 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2905</div>
2906
2907<div class="doc_text">
2908
2909<h5>Syntax:</h5>
2910
2911<pre>
2912 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2913</pre>
2914
2915<h5>Overview:</h5>
2916
2917<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002918The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2919or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002920</p>
2921
2922
2923<h5>Arguments:</h5>
2924
2925<p>
2926The first operand of an '<tt>extractvalue</tt>' instruction is a
2927value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002928type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002929in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002930'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2931</p>
2932
2933<h5>Semantics:</h5>
2934
2935<p>
2936The result is the value at the position in the aggregate specified by
2937the index operands.
2938</p>
2939
2940<h5>Example:</h5>
2941
2942<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002943 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00002944</pre>
2945</div>
2946
2947
2948<!-- _______________________________________________________________________ -->
2949<div class="doc_subsubsection">
2950 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2951</div>
2952
2953<div class="doc_text">
2954
2955<h5>Syntax:</h5>
2956
2957<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002958 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00002959</pre>
2960
2961<h5>Overview:</h5>
2962
2963<p>
2964The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002965into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002966</p>
2967
2968
2969<h5>Arguments:</h5>
2970
2971<p>
2972The first operand of an '<tt>insertvalue</tt>' instruction is a
2973value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
2974The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00002975The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002976indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002977indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002978'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2979The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002980by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002981
2982<h5>Semantics:</h5>
2983
2984<p>
2985The result is an aggregate of the same type as <tt>val</tt>. Its
2986value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002987specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002988</p>
2989
2990<h5>Example:</h5>
2991
2992<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00002993 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00002994</pre>
2995</div>
2996
2997
2998<!-- ======================================================================= -->
2999<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003000 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003001</div>
3002
Misha Brukman9d0919f2003-11-08 01:05:38 +00003003<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003004
Chris Lattner261efe92003-11-25 01:02:51 +00003005<p>A key design point of an SSA-based representation is how it
3006represents memory. In LLVM, no memory locations are in SSA form, which
3007makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003008allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003009
Misha Brukman9d0919f2003-11-08 01:05:38 +00003010</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003011
Chris Lattner00950542001-06-06 20:29:01 +00003012<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003013<div class="doc_subsubsection">
3014 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3015</div>
3016
Misha Brukman9d0919f2003-11-08 01:05:38 +00003017<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003018
Chris Lattner00950542001-06-06 20:29:01 +00003019<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003020
3021<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003022 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003023</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003024
Chris Lattner00950542001-06-06 20:29:01 +00003025<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003026
Chris Lattner261efe92003-11-25 01:02:51 +00003027<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003028heap and returns a pointer to it. The object is always allocated in the generic
3029address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003030
Chris Lattner00950542001-06-06 20:29:01 +00003031<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003032
3033<p>The '<tt>malloc</tt>' instruction allocates
3034<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003035bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003036appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003037number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003038If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003039be aligned to at least that boundary. If not specified, or if zero, the target can
3040choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003041
Misha Brukman9d0919f2003-11-08 01:05:38 +00003042<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003043
Chris Lattner00950542001-06-06 20:29:01 +00003044<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003045
Chris Lattner261efe92003-11-25 01:02:51 +00003046<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003047a pointer is returned. The result of a zero byte allocattion is undefined. The
3048result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003049
Chris Lattner2cbdc452005-11-06 08:02:57 +00003050<h5>Example:</h5>
3051
3052<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003053 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003054
Bill Wendlingaac388b2007-05-29 09:42:13 +00003055 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3056 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3057 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3058 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3059 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003060</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003061</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003062
Chris Lattner00950542001-06-06 20:29:01 +00003063<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003064<div class="doc_subsubsection">
3065 <a name="i_free">'<tt>free</tt>' Instruction</a>
3066</div>
3067
Misha Brukman9d0919f2003-11-08 01:05:38 +00003068<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003069
Chris Lattner00950542001-06-06 20:29:01 +00003070<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003071
3072<pre>
3073 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003074</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003075
Chris Lattner00950542001-06-06 20:29:01 +00003076<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003077
Chris Lattner261efe92003-11-25 01:02:51 +00003078<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003079memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003080
Chris Lattner00950542001-06-06 20:29:01 +00003081<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003082
Chris Lattner261efe92003-11-25 01:02:51 +00003083<p>'<tt>value</tt>' shall be a pointer value that points to a value
3084that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3085instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003086
Chris Lattner00950542001-06-06 20:29:01 +00003087<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003088
John Criswell9e2485c2004-12-10 15:51:16 +00003089<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003090after this instruction executes. If the pointer is null, the operation
3091is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003092
Chris Lattner00950542001-06-06 20:29:01 +00003093<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003094
3095<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003096 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3097 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003098</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003099</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003100
Chris Lattner00950542001-06-06 20:29:01 +00003101<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003102<div class="doc_subsubsection">
3103 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3104</div>
3105
Misha Brukman9d0919f2003-11-08 01:05:38 +00003106<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003107
Chris Lattner00950542001-06-06 20:29:01 +00003108<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003109
3110<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003111 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003112</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003113
Chris Lattner00950542001-06-06 20:29:01 +00003114<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003115
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003116<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3117currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003118returns to its caller. The object is always allocated in the generic address
3119space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003120
Chris Lattner00950542001-06-06 20:29:01 +00003121<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003122
John Criswell9e2485c2004-12-10 15:51:16 +00003123<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003124bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003125appropriate type to the program. If "NumElements" is specified, it is the
3126number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003127If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003128to be aligned to at least that boundary. If not specified, or if zero, the target
3129can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003130
Misha Brukman9d0919f2003-11-08 01:05:38 +00003131<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003132
Chris Lattner00950542001-06-06 20:29:01 +00003133<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003134
Chris Lattner72ed2002008-04-19 21:01:16 +00003135<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3136there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003137memory is automatically released when the function returns. The '<tt>alloca</tt>'
3138instruction is commonly used to represent automatic variables that must
3139have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003140 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003141instructions), the memory is reclaimed. Allocating zero bytes
3142is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003143
Chris Lattner00950542001-06-06 20:29:01 +00003144<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003145
3146<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003147 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003148 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3149 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003150 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003151</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003152</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003153
Chris Lattner00950542001-06-06 20:29:01 +00003154<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003155<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3156Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003157<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003158<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003159<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003160<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003161<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003162<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003163<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003164address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003165 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003166marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003167the number or order of execution of this <tt>load</tt> with other
3168volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3169instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003170<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003171The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003172(that is, the alignment of the memory address). A value of 0 or an
3173omitted "align" argument means that the operation has the preferential
3174alignment for the target. It is the responsibility of the code emitter
3175to ensure that the alignment information is correct. Overestimating
3176the alignment results in an undefined behavior. Underestimating the
3177alignment may produce less efficient code. An alignment of 1 is always
3178safe.
3179</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003180<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003181<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003182<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003183<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003184 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003185 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3186 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003187</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003188</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003189<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003190<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3191Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003192<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003193<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003194<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3195 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003196</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003197<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003198<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003199<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003200<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003201to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003202operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3203of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003204operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003205optimizer is not allowed to modify the number or order of execution of
3206this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3207 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003208<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003209The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003210(that is, the alignment of the memory address). A value of 0 or an
3211omitted "align" argument means that the operation has the preferential
3212alignment for the target. It is the responsibility of the code emitter
3213to ensure that the alignment information is correct. Overestimating
3214the alignment results in an undefined behavior. Underestimating the
3215alignment may produce less efficient code. An alignment of 1 is always
3216safe.
3217</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003218<h5>Semantics:</h5>
3219<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3220at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003221<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003222<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003223 store i32 3, i32* %ptr <i>; yields {void}</i>
3224 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003225</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003226</div>
3227
Chris Lattner2b7d3202002-05-06 03:03:22 +00003228<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003229<div class="doc_subsubsection">
3230 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3231</div>
3232
Misha Brukman9d0919f2003-11-08 01:05:38 +00003233<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003234<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003235<pre>
3236 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3237</pre>
3238
Chris Lattner7faa8832002-04-14 06:13:44 +00003239<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003240
3241<p>
3242The '<tt>getelementptr</tt>' instruction is used to get the address of a
3243subelement of an aggregate data structure.</p>
3244
Chris Lattner7faa8832002-04-14 06:13:44 +00003245<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003246
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003247<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003248elements of the aggregate object to index to. The actual types of the arguments
3249provided depend on the type of the first pointer argument. The
3250'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003251levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003252structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003253into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3254values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003255
Chris Lattner261efe92003-11-25 01:02:51 +00003256<p>For example, let's consider a C code fragment and how it gets
3257compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003258
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003259<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003260<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003261struct RT {
3262 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003263 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003264 char C;
3265};
3266struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003267 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003268 double Y;
3269 struct RT Z;
3270};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003271
Chris Lattnercabc8462007-05-29 15:43:56 +00003272int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003273 return &amp;s[1].Z.B[5][13];
3274}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003275</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003276</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003277
Misha Brukman9d0919f2003-11-08 01:05:38 +00003278<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003279
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003280<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003281<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003282%RT = type { i8 , [10 x [20 x i32]], i8 }
3283%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003284
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003285define i32* %foo(%ST* %s) {
3286entry:
3287 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3288 ret i32* %reg
3289}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003290</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003291</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003292
Chris Lattner7faa8832002-04-14 06:13:44 +00003293<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003294
3295<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003296on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003297and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003298<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003299to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3300structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003301
Misha Brukman9d0919f2003-11-08 01:05:38 +00003302<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003303type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003304}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003305the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3306i8 }</tt>' type, another structure. The third index indexes into the second
3307element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003308array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003309'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3310to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003311
Chris Lattner261efe92003-11-25 01:02:51 +00003312<p>Note that it is perfectly legal to index partially through a
3313structure, returning a pointer to an inner element. Because of this,
3314the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003315
3316<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003317 define i32* %foo(%ST* %s) {
3318 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003319 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3320 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003321 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3322 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3323 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003324 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003325</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003326
3327<p>Note that it is undefined to access an array out of bounds: array and
3328pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003329The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003330defined to be accessible as variable length arrays, which requires access
3331beyond the zero'th element.</p>
3332
Chris Lattner884a9702006-08-15 00:45:58 +00003333<p>The getelementptr instruction is often confusing. For some more insight
3334into how it works, see <a href="GetElementPtr.html">the getelementptr
3335FAQ</a>.</p>
3336
Chris Lattner7faa8832002-04-14 06:13:44 +00003337<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003338
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003339<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003340 <i>; yields [12 x i8]*:aptr</i>
3341 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003342</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003343</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003344
Chris Lattner00950542001-06-06 20:29:01 +00003345<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003346<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003347</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003348<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003349<p>The instructions in this category are the conversion instructions (casting)
3350which all take a single operand and a type. They perform various bit conversions
3351on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003352</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003353
Chris Lattner6536cfe2002-05-06 22:08:29 +00003354<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003355<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003356 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3357</div>
3358<div class="doc_text">
3359
3360<h5>Syntax:</h5>
3361<pre>
3362 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3363</pre>
3364
3365<h5>Overview:</h5>
3366<p>
3367The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3368</p>
3369
3370<h5>Arguments:</h5>
3371<p>
3372The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3373be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003374and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003375type. The bit size of <tt>value</tt> must be larger than the bit size of
3376<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003377
3378<h5>Semantics:</h5>
3379<p>
3380The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003381and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3382larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3383It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003384
3385<h5>Example:</h5>
3386<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003387 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003388 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3389 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003390</pre>
3391</div>
3392
3393<!-- _______________________________________________________________________ -->
3394<div class="doc_subsubsection">
3395 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3396</div>
3397<div class="doc_text">
3398
3399<h5>Syntax:</h5>
3400<pre>
3401 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3402</pre>
3403
3404<h5>Overview:</h5>
3405<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3406<tt>ty2</tt>.</p>
3407
3408
3409<h5>Arguments:</h5>
3410<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003411<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3412also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003413<tt>value</tt> must be smaller than the bit size of the destination type,
3414<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003415
3416<h5>Semantics:</h5>
3417<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003418bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003419
Reid Spencerb5929522007-01-12 15:46:11 +00003420<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003421
3422<h5>Example:</h5>
3423<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003424 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003425 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003426</pre>
3427</div>
3428
3429<!-- _______________________________________________________________________ -->
3430<div class="doc_subsubsection">
3431 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3432</div>
3433<div class="doc_text">
3434
3435<h5>Syntax:</h5>
3436<pre>
3437 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3438</pre>
3439
3440<h5>Overview:</h5>
3441<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3442
3443<h5>Arguments:</h5>
3444<p>
3445The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003446<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3447also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003448<tt>value</tt> must be smaller than the bit size of the destination type,
3449<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003450
3451<h5>Semantics:</h5>
3452<p>
3453The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3454bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003455the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003456
Reid Spencerc78f3372007-01-12 03:35:51 +00003457<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003458
3459<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003460<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003461 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003462 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003463</pre>
3464</div>
3465
3466<!-- _______________________________________________________________________ -->
3467<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003468 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3469</div>
3470
3471<div class="doc_text">
3472
3473<h5>Syntax:</h5>
3474
3475<pre>
3476 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3477</pre>
3478
3479<h5>Overview:</h5>
3480<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3481<tt>ty2</tt>.</p>
3482
3483
3484<h5>Arguments:</h5>
3485<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3486 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3487cast it to. The size of <tt>value</tt> must be larger than the size of
3488<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3489<i>no-op cast</i>.</p>
3490
3491<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003492<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3493<a href="#t_floating">floating point</a> type to a smaller
3494<a href="#t_floating">floating point</a> type. If the value cannot fit within
3495the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003496
3497<h5>Example:</h5>
3498<pre>
3499 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3500 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3501</pre>
3502</div>
3503
3504<!-- _______________________________________________________________________ -->
3505<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003506 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3507</div>
3508<div class="doc_text">
3509
3510<h5>Syntax:</h5>
3511<pre>
3512 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3513</pre>
3514
3515<h5>Overview:</h5>
3516<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3517floating point value.</p>
3518
3519<h5>Arguments:</h5>
3520<p>The '<tt>fpext</tt>' instruction takes a
3521<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003522and a <a href="#t_floating">floating point</a> type to cast it to. The source
3523type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003524
3525<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003526<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003527<a href="#t_floating">floating point</a> type to a larger
3528<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003529used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003530<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003531
3532<h5>Example:</h5>
3533<pre>
3534 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3535 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3536</pre>
3537</div>
3538
3539<!-- _______________________________________________________________________ -->
3540<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003541 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003542</div>
3543<div class="doc_text">
3544
3545<h5>Syntax:</h5>
3546<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003547 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003548</pre>
3549
3550<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003551<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003552unsigned integer equivalent of type <tt>ty2</tt>.
3553</p>
3554
3555<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003556<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003557scalar or vector <a href="#t_floating">floating point</a> value, and a type
3558to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3559type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3560vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003561
3562<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003563<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003564<a href="#t_floating">floating point</a> operand into the nearest (rounding
3565towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3566the results are undefined.</p>
3567
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003568<h5>Example:</h5>
3569<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003570 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003571 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003572 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003573</pre>
3574</div>
3575
3576<!-- _______________________________________________________________________ -->
3577<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003578 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003579</div>
3580<div class="doc_text">
3581
3582<h5>Syntax:</h5>
3583<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003584 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003585</pre>
3586
3587<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003588<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003589<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003590</p>
3591
Chris Lattner6536cfe2002-05-06 22:08:29 +00003592<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003593<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003594scalar or vector <a href="#t_floating">floating point</a> value, and a type
3595to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3596type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3597vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003598
Chris Lattner6536cfe2002-05-06 22:08:29 +00003599<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003600<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003601<a href="#t_floating">floating point</a> operand into the nearest (rounding
3602towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3603the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003604
Chris Lattner33ba0d92001-07-09 00:26:23 +00003605<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003606<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003607 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003608 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003609 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003610</pre>
3611</div>
3612
3613<!-- _______________________________________________________________________ -->
3614<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003615 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003616</div>
3617<div class="doc_text">
3618
3619<h5>Syntax:</h5>
3620<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003621 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003622</pre>
3623
3624<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003625<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003626integer and converts that value to the <tt>ty2</tt> type.</p>
3627
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003628<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003629<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3630scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3631to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3632type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3633floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003634
3635<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003636<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003637integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003638the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003639
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003640<h5>Example:</h5>
3641<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003642 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003643 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003644</pre>
3645</div>
3646
3647<!-- _______________________________________________________________________ -->
3648<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003649 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003650</div>
3651<div class="doc_text">
3652
3653<h5>Syntax:</h5>
3654<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003655 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003656</pre>
3657
3658<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003659<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003660integer and converts that value to the <tt>ty2</tt> type.</p>
3661
3662<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003663<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3664scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3665to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3666type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3667floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003668
3669<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003670<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003671integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003672the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003673
3674<h5>Example:</h5>
3675<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003676 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003677 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003678</pre>
3679</div>
3680
3681<!-- _______________________________________________________________________ -->
3682<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003683 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3684</div>
3685<div class="doc_text">
3686
3687<h5>Syntax:</h5>
3688<pre>
3689 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3690</pre>
3691
3692<h5>Overview:</h5>
3693<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3694the integer type <tt>ty2</tt>.</p>
3695
3696<h5>Arguments:</h5>
3697<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003698must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003699<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3700
3701<h5>Semantics:</h5>
3702<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3703<tt>ty2</tt> by interpreting the pointer value as an integer and either
3704truncating or zero extending that value to the size of the integer type. If
3705<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3706<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003707are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3708change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003709
3710<h5>Example:</h5>
3711<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003712 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3713 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003714</pre>
3715</div>
3716
3717<!-- _______________________________________________________________________ -->
3718<div class="doc_subsubsection">
3719 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3720</div>
3721<div class="doc_text">
3722
3723<h5>Syntax:</h5>
3724<pre>
3725 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3726</pre>
3727
3728<h5>Overview:</h5>
3729<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3730a pointer type, <tt>ty2</tt>.</p>
3731
3732<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003733<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003734value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003735<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003736
3737<h5>Semantics:</h5>
3738<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3739<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3740the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3741size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3742the size of a pointer then a zero extension is done. If they are the same size,
3743nothing is done (<i>no-op cast</i>).</p>
3744
3745<h5>Example:</h5>
3746<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003747 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3748 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3749 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003750</pre>
3751</div>
3752
3753<!-- _______________________________________________________________________ -->
3754<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003755 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003756</div>
3757<div class="doc_text">
3758
3759<h5>Syntax:</h5>
3760<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003761 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003762</pre>
3763
3764<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003765
Reid Spencer5c0ef472006-11-11 23:08:07 +00003766<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003767<tt>ty2</tt> without changing any bits.</p>
3768
3769<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003770
Reid Spencer5c0ef472006-11-11 23:08:07 +00003771<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003772a first class value, and a type to cast it to, which must also be a <a
3773 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003774and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003775type is a pointer, the destination type must also be a pointer. This
3776instruction supports bitwise conversion of vectors to integers and to vectors
3777of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003778
3779<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003780<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003781<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3782this conversion. The conversion is done as if the <tt>value</tt> had been
3783stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3784converted to other pointer types with this instruction. To convert pointers to
3785other types, use the <a href="#i_inttoptr">inttoptr</a> or
3786<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003787
3788<h5>Example:</h5>
3789<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003790 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003791 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3792 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003793</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003794</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003795
Reid Spencer2fd21e62006-11-08 01:18:52 +00003796<!-- ======================================================================= -->
3797<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3798<div class="doc_text">
3799<p>The instructions in this category are the "miscellaneous"
3800instructions, which defy better classification.</p>
3801</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003802
3803<!-- _______________________________________________________________________ -->
3804<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3805</div>
3806<div class="doc_text">
3807<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003808<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003809</pre>
3810<h5>Overview:</h5>
3811<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
Chris Lattner4316dec2008-04-02 00:38:26 +00003812of its two integer or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003813<h5>Arguments:</h5>
3814<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003815the condition code indicating the kind of comparison to perform. It is not
3816a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003817<ol>
3818 <li><tt>eq</tt>: equal</li>
3819 <li><tt>ne</tt>: not equal </li>
3820 <li><tt>ugt</tt>: unsigned greater than</li>
3821 <li><tt>uge</tt>: unsigned greater or equal</li>
3822 <li><tt>ult</tt>: unsigned less than</li>
3823 <li><tt>ule</tt>: unsigned less or equal</li>
3824 <li><tt>sgt</tt>: signed greater than</li>
3825 <li><tt>sge</tt>: signed greater or equal</li>
3826 <li><tt>slt</tt>: signed less than</li>
3827 <li><tt>sle</tt>: signed less or equal</li>
3828</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003829<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003830<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003831<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003832<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003833the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003834yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003835<ol>
3836 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3837 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3838 </li>
3839 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3840 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3841 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003842 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003843 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003844 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003845 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003846 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003847 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003848 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003849 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003850 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003851 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003852 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003853 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003854 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003855 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003856 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003857</ol>
3858<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003859values are compared as if they were integers.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003860
3861<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003862<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3863 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3864 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3865 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3866 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3867 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003868</pre>
3869</div>
3870
3871<!-- _______________________________________________________________________ -->
3872<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3873</div>
3874<div class="doc_text">
3875<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003876<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003877</pre>
3878<h5>Overview:</h5>
3879<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3880of its floating point operands.</p>
3881<h5>Arguments:</h5>
3882<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003883the condition code indicating the kind of comparison to perform. It is not
3884a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003885<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003886 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003887 <li><tt>oeq</tt>: ordered and equal</li>
3888 <li><tt>ogt</tt>: ordered and greater than </li>
3889 <li><tt>oge</tt>: ordered and greater than or equal</li>
3890 <li><tt>olt</tt>: ordered and less than </li>
3891 <li><tt>ole</tt>: ordered and less than or equal</li>
3892 <li><tt>one</tt>: ordered and not equal</li>
3893 <li><tt>ord</tt>: ordered (no nans)</li>
3894 <li><tt>ueq</tt>: unordered or equal</li>
3895 <li><tt>ugt</tt>: unordered or greater than </li>
3896 <li><tt>uge</tt>: unordered or greater than or equal</li>
3897 <li><tt>ult</tt>: unordered or less than </li>
3898 <li><tt>ule</tt>: unordered or less than or equal</li>
3899 <li><tt>une</tt>: unordered or not equal</li>
3900 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003901 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003902</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003903<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003904<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003905<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3906<a href="#t_floating">floating point</a> typed. They must have identical
3907types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003908<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003909<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00003910according to the condition code given as <tt>cond</tt>. The comparison performed
3911always yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003912<ol>
3913 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003914 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003915 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003916 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003917 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003918 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003919 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003920 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003921 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003922 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003923 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003924 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003925 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003926 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3927 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003928 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003929 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003930 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003931 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003932 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003933 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003934 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003935 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003936 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003937 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003938 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003939 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003940 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3941</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003942
3943<h5>Example:</h5>
3944<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3945 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3946 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3947 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3948</pre>
3949</div>
3950
Reid Spencer2fd21e62006-11-08 01:18:52 +00003951<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00003952<div class="doc_subsubsection">
3953 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
3954</div>
3955<div class="doc_text">
3956<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003957<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00003958</pre>
3959<h5>Overview:</h5>
3960<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
3961element-wise comparison of its two integer vector operands.</p>
3962<h5>Arguments:</h5>
3963<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
3964the condition code indicating the kind of comparison to perform. It is not
3965a value, just a keyword. The possible condition code are:
3966<ol>
3967 <li><tt>eq</tt>: equal</li>
3968 <li><tt>ne</tt>: not equal </li>
3969 <li><tt>ugt</tt>: unsigned greater than</li>
3970 <li><tt>uge</tt>: unsigned greater or equal</li>
3971 <li><tt>ult</tt>: unsigned less than</li>
3972 <li><tt>ule</tt>: unsigned less or equal</li>
3973 <li><tt>sgt</tt>: signed greater than</li>
3974 <li><tt>sge</tt>: signed greater or equal</li>
3975 <li><tt>slt</tt>: signed less than</li>
3976 <li><tt>sle</tt>: signed less or equal</li>
3977</ol>
3978<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
3979<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
3980<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003981<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00003982according to the condition code given as <tt>cond</tt>. The comparison yields a
3983<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
3984identical type as the values being compared. The most significant bit in each
3985element is 1 if the element-wise comparison evaluates to true, and is 0
3986otherwise. All other bits of the result are undefined. The condition codes
3987are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
3988instruction</a>.
3989
3990<h5>Example:</h5>
3991<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003992 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
3993 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00003994</pre>
3995</div>
3996
3997<!-- _______________________________________________________________________ -->
3998<div class="doc_subsubsection">
3999 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4000</div>
4001<div class="doc_text">
4002<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004003<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004004<h5>Overview:</h5>
4005<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4006element-wise comparison of its two floating point vector operands. The output
4007elements have the same width as the input elements.</p>
4008<h5>Arguments:</h5>
4009<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4010the condition code indicating the kind of comparison to perform. It is not
4011a value, just a keyword. The possible condition code are:
4012<ol>
4013 <li><tt>false</tt>: no comparison, always returns false</li>
4014 <li><tt>oeq</tt>: ordered and equal</li>
4015 <li><tt>ogt</tt>: ordered and greater than </li>
4016 <li><tt>oge</tt>: ordered and greater than or equal</li>
4017 <li><tt>olt</tt>: ordered and less than </li>
4018 <li><tt>ole</tt>: ordered and less than or equal</li>
4019 <li><tt>one</tt>: ordered and not equal</li>
4020 <li><tt>ord</tt>: ordered (no nans)</li>
4021 <li><tt>ueq</tt>: unordered or equal</li>
4022 <li><tt>ugt</tt>: unordered or greater than </li>
4023 <li><tt>uge</tt>: unordered or greater than or equal</li>
4024 <li><tt>ult</tt>: unordered or less than </li>
4025 <li><tt>ule</tt>: unordered or less than or equal</li>
4026 <li><tt>une</tt>: unordered or not equal</li>
4027 <li><tt>uno</tt>: unordered (either nans)</li>
4028 <li><tt>true</tt>: no comparison, always returns true</li>
4029</ol>
4030<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4031<a href="#t_floating">floating point</a> typed. They must also be identical
4032types.</p>
4033<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004034<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004035according to the condition code given as <tt>cond</tt>. The comparison yields a
4036<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4037an identical number of elements as the values being compared, and each element
4038having identical with to the width of the floating point elements. The most
4039significant bit in each element is 1 if the element-wise comparison evaluates to
4040true, and is 0 otherwise. All other bits of the result are undefined. The
4041condition codes are evaluated identically to the
4042<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4043
4044<h5>Example:</h5>
4045<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004046 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4047 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004048</pre>
4049</div>
4050
4051<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004052<div class="doc_subsubsection">
4053 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4054</div>
4055
Reid Spencer2fd21e62006-11-08 01:18:52 +00004056<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004057
Reid Spencer2fd21e62006-11-08 01:18:52 +00004058<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004059
Reid Spencer2fd21e62006-11-08 01:18:52 +00004060<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4061<h5>Overview:</h5>
4062<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4063the SSA graph representing the function.</p>
4064<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004065
Jeff Cohenb627eab2007-04-29 01:07:00 +00004066<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004067field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4068as arguments, with one pair for each predecessor basic block of the
4069current block. Only values of <a href="#t_firstclass">first class</a>
4070type may be used as the value arguments to the PHI node. Only labels
4071may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004072
Reid Spencer2fd21e62006-11-08 01:18:52 +00004073<p>There must be no non-phi instructions between the start of a basic
4074block and the PHI instructions: i.e. PHI instructions must be first in
4075a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004076
Reid Spencer2fd21e62006-11-08 01:18:52 +00004077<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004078
Jeff Cohenb627eab2007-04-29 01:07:00 +00004079<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4080specified by the pair corresponding to the predecessor basic block that executed
4081just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004082
Reid Spencer2fd21e62006-11-08 01:18:52 +00004083<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004084<pre>
4085Loop: ; Infinite loop that counts from 0 on up...
4086 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4087 %nextindvar = add i32 %indvar, 1
4088 br label %Loop
4089</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004090</div>
4091
Chris Lattnercc37aae2004-03-12 05:50:16 +00004092<!-- _______________________________________________________________________ -->
4093<div class="doc_subsubsection">
4094 <a name="i_select">'<tt>select</tt>' Instruction</a>
4095</div>
4096
4097<div class="doc_text">
4098
4099<h5>Syntax:</h5>
4100
4101<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004102 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004103</pre>
4104
4105<h5>Overview:</h5>
4106
4107<p>
4108The '<tt>select</tt>' instruction is used to choose one value based on a
4109condition, without branching.
4110</p>
4111
4112
4113<h5>Arguments:</h5>
4114
4115<p>
Chris Lattner5568e942008-05-20 20:48:21 +00004116The '<tt>select</tt>' instruction requires an 'i1' value indicating the
4117condition, and two values of the same <a href="#t_firstclass">first class</a>
4118type. If the val1/val2 are vectors, the entire vectors are selected, not
4119individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004120</p>
4121
4122<h5>Semantics:</h5>
4123
4124<p>
Chris Lattner5568e942008-05-20 20:48:21 +00004125If the i1 condition evaluates is 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004126value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004127</p>
4128
4129<h5>Example:</h5>
4130
4131<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004132 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004133</pre>
4134</div>
4135
Robert Bocchino05ccd702006-01-15 20:48:27 +00004136
4137<!-- _______________________________________________________________________ -->
4138<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004139 <a name="i_call">'<tt>call</tt>' Instruction</a>
4140</div>
4141
Misha Brukman9d0919f2003-11-08 01:05:38 +00004142<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004143
Chris Lattner00950542001-06-06 20:29:01 +00004144<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004145<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004146 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004147</pre>
4148
Chris Lattner00950542001-06-06 20:29:01 +00004149<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004150
Misha Brukman9d0919f2003-11-08 01:05:38 +00004151<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004152
Chris Lattner00950542001-06-06 20:29:01 +00004153<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004154
Misha Brukman9d0919f2003-11-08 01:05:38 +00004155<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004156
Chris Lattner6536cfe2002-05-06 22:08:29 +00004157<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004158 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004159 <p>The optional "tail" marker indicates whether the callee function accesses
4160 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004161 function call is eligible for tail call optimization. Note that calls may
4162 be marked "tail" even if they do not occur before a <a
4163 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004164 </li>
4165 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004166 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004167 convention</a> the call should use. If none is specified, the call defaults
4168 to using C calling conventions.
4169 </li>
4170 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004171 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4172 the type of the return value. Functions that return no value are marked
4173 <tt><a href="#t_void">void</a></tt>.</p>
4174 </li>
4175 <li>
4176 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4177 value being invoked. The argument types must match the types implied by
4178 this signature. This type can be omitted if the function is not varargs
4179 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004180 </li>
4181 <li>
4182 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4183 be invoked. In most cases, this is a direct function invocation, but
4184 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004185 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004186 </li>
4187 <li>
4188 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004189 function signature argument types. All arguments must be of
4190 <a href="#t_firstclass">first class</a> type. If the function signature
4191 indicates the function accepts a variable number of arguments, the extra
4192 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004193 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004194</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004195
Chris Lattner00950542001-06-06 20:29:01 +00004196<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004197
Chris Lattner261efe92003-11-25 01:02:51 +00004198<p>The '<tt>call</tt>' instruction is used to cause control flow to
4199transfer to a specified function, with its incoming arguments bound to
4200the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4201instruction in the called function, control flow continues with the
4202instruction after the function call, and the return value of the
Chris Lattner772fccf2008-03-21 17:24:17 +00004203function is bound to the result argument. If the callee returns multiple
4204values then the return values of the function are only accessible through
4205the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004206
Chris Lattner00950542001-06-06 20:29:01 +00004207<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004208
4209<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004210 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004211 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4212 %X = tail call i32 @foo() <i>; yields i32</i>
4213 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4214 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004215
4216 %struct.A = type { i32, i8 }
Chris Lattner772fccf2008-03-21 17:24:17 +00004217 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4218 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4219 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004220</pre>
4221
Misha Brukman9d0919f2003-11-08 01:05:38 +00004222</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004223
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004224<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004225<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004226 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004227</div>
4228
Misha Brukman9d0919f2003-11-08 01:05:38 +00004229<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004230
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004231<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004232
4233<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004234 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004235</pre>
4236
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004237<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004238
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004239<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004240the "variable argument" area of a function call. It is used to implement the
4241<tt>va_arg</tt> macro in C.</p>
4242
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004243<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004244
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004245<p>This instruction takes a <tt>va_list*</tt> value and the type of
4246the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004247increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004248actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004249
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004250<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004251
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004252<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4253type from the specified <tt>va_list</tt> and causes the
4254<tt>va_list</tt> to point to the next argument. For more information,
4255see the variable argument handling <a href="#int_varargs">Intrinsic
4256Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004257
4258<p>It is legal for this instruction to be called in a function which does not
4259take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004260function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004261
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004262<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004263href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004264argument.</p>
4265
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004266<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004267
4268<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4269
Misha Brukman9d0919f2003-11-08 01:05:38 +00004270</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004271
Devang Patelc3fc6df2008-03-10 20:49:15 +00004272<!-- _______________________________________________________________________ -->
4273<div class="doc_subsubsection">
4274 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4275</div>
4276
4277<div class="doc_text">
4278
4279<h5>Syntax:</h5>
4280<pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004281 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patelc3fc6df2008-03-10 20:49:15 +00004282</pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004283
Devang Patelc3fc6df2008-03-10 20:49:15 +00004284<h5>Overview:</h5>
4285
4286<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004287from a '<tt><a href="#i_call">call</a></tt>'
4288or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4289results.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004290
4291<h5>Arguments:</h5>
4292
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004293<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattner1c406d72008-04-23 04:06:52 +00004294first argument, or an undef value. The value must have <a
4295href="#t_struct">structure type</a>. The second argument is a constant
4296unsigned index value which must be in range for the number of values returned
4297by the call.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004298
4299<h5>Semantics:</h5>
4300
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004301<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4302'<tt>index</tt>' from the aggregate value.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004303
4304<h5>Example:</h5>
4305
4306<pre>
4307 %struct.A = type { i32, i8 }
4308
4309 %r = call %struct.A @foo()
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004310 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4311 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004312 add i32 %gr, 42
4313 add i8 %gr1, 41
4314</pre>
4315
4316</div>
4317
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004318<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004319<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4320<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004321
Misha Brukman9d0919f2003-11-08 01:05:38 +00004322<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004323
4324<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004325well known names and semantics and are required to follow certain restrictions.
4326Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004327language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004328adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004329
John Criswellfc6b8952005-05-16 16:17:45 +00004330<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004331prefix is reserved in LLVM for intrinsic names; thus, function names may not
4332begin with this prefix. Intrinsic functions must always be external functions:
4333you cannot define the body of intrinsic functions. Intrinsic functions may
4334only be used in call or invoke instructions: it is illegal to take the address
4335of an intrinsic function. Additionally, because intrinsic functions are part
4336of the LLVM language, it is required if any are added that they be documented
4337here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004338
Chandler Carruth69940402007-08-04 01:51:18 +00004339<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4340a family of functions that perform the same operation but on different data
4341types. Because LLVM can represent over 8 million different integer types,
4342overloading is used commonly to allow an intrinsic function to operate on any
4343integer type. One or more of the argument types or the result type can be
4344overloaded to accept any integer type. Argument types may also be defined as
4345exactly matching a previous argument's type or the result type. This allows an
4346intrinsic function which accepts multiple arguments, but needs all of them to
4347be of the same type, to only be overloaded with respect to a single argument or
4348the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004349
Chandler Carruth69940402007-08-04 01:51:18 +00004350<p>Overloaded intrinsics will have the names of its overloaded argument types
4351encoded into its function name, each preceded by a period. Only those types
4352which are overloaded result in a name suffix. Arguments whose type is matched
4353against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4354take an integer of any width and returns an integer of exactly the same integer
4355width. This leads to a family of functions such as
4356<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4357Only one type, the return type, is overloaded, and only one type suffix is
4358required. Because the argument's type is matched against the return type, it
4359does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004360
4361<p>To learn how to add an intrinsic function, please see the
4362<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004363</p>
4364
Misha Brukman9d0919f2003-11-08 01:05:38 +00004365</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004366
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004367<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004368<div class="doc_subsection">
4369 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4370</div>
4371
Misha Brukman9d0919f2003-11-08 01:05:38 +00004372<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004373
Misha Brukman9d0919f2003-11-08 01:05:38 +00004374<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004375 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004376intrinsic functions. These functions are related to the similarly
4377named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004378
Chris Lattner261efe92003-11-25 01:02:51 +00004379<p>All of these functions operate on arguments that use a
4380target-specific value type "<tt>va_list</tt>". The LLVM assembly
4381language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004382transformations should be prepared to handle these functions regardless of
4383the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004384
Chris Lattner374ab302006-05-15 17:26:46 +00004385<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004386instruction and the variable argument handling intrinsic functions are
4387used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004388
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004389<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004390<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004391define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004392 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004393 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004394 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004395 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004396
4397 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004398 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004399
4400 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004401 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004402 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004403 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004404 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004405
4406 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004407 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004408 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004409}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004410
4411declare void @llvm.va_start(i8*)
4412declare void @llvm.va_copy(i8*, i8*)
4413declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004414</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004415</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004416
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004417</div>
4418
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004419<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004420<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004421 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004422</div>
4423
4424
Misha Brukman9d0919f2003-11-08 01:05:38 +00004425<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004426<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004427<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004428<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004429<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4430<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4431href="#i_va_arg">va_arg</a></tt>.</p>
4432
4433<h5>Arguments:</h5>
4434
4435<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4436
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004437<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004438
4439<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4440macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004441<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004442<tt>va_arg</tt> will produce the first variable argument passed to the function.
4443Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004444last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004445
Misha Brukman9d0919f2003-11-08 01:05:38 +00004446</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004447
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004448<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004449<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004450 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004451</div>
4452
Misha Brukman9d0919f2003-11-08 01:05:38 +00004453<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004454<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004455<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004456<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004457
Jeff Cohenb627eab2007-04-29 01:07:00 +00004458<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004459which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004460or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004461
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004462<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004463
Jeff Cohenb627eab2007-04-29 01:07:00 +00004464<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004465
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004466<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004467
Misha Brukman9d0919f2003-11-08 01:05:38 +00004468<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004469macro available in C. In a target-dependent way, it destroys the
4470<tt>va_list</tt> element to which the argument points. Calls to <a
4471href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4472<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4473<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004474
Misha Brukman9d0919f2003-11-08 01:05:38 +00004475</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004476
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004477<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004478<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004479 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004480</div>
4481
Misha Brukman9d0919f2003-11-08 01:05:38 +00004482<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004483
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004484<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004485
4486<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004487 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004488</pre>
4489
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004490<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004491
Jeff Cohenb627eab2007-04-29 01:07:00 +00004492<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4493from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004494
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004495<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004496
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004497<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004498The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004499
Chris Lattnerd7923912004-05-23 21:06:01 +00004500
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004501<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004502
Jeff Cohenb627eab2007-04-29 01:07:00 +00004503<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4504macro available in C. In a target-dependent way, it copies the source
4505<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4506intrinsic is necessary because the <tt><a href="#int_va_start">
4507llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4508example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004509
Misha Brukman9d0919f2003-11-08 01:05:38 +00004510</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004511
Chris Lattner33aec9e2004-02-12 17:01:32 +00004512<!-- ======================================================================= -->
4513<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004514 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4515</div>
4516
4517<div class="doc_text">
4518
4519<p>
4520LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004521Collection</a> (GC) requires the implementation and generation of these
4522intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004523These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004524stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004525href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004526Front-ends for type-safe garbage collected languages should generate these
4527intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4528href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4529</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004530
4531<p>The garbage collection intrinsics only operate on objects in the generic
4532 address space (address space zero).</p>
4533
Chris Lattnerd7923912004-05-23 21:06:01 +00004534</div>
4535
4536<!-- _______________________________________________________________________ -->
4537<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004538 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004539</div>
4540
4541<div class="doc_text">
4542
4543<h5>Syntax:</h5>
4544
4545<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004546 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004547</pre>
4548
4549<h5>Overview:</h5>
4550
John Criswell9e2485c2004-12-10 15:51:16 +00004551<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004552the code generator, and allows some metadata to be associated with it.</p>
4553
4554<h5>Arguments:</h5>
4555
4556<p>The first argument specifies the address of a stack object that contains the
4557root pointer. The second pointer (which must be either a constant or a global
4558value address) contains the meta-data to be associated with the root.</p>
4559
4560<h5>Semantics:</h5>
4561
Chris Lattner05d67092008-04-24 05:59:56 +00004562<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004563location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004564the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4565intrinsic may only be used in a function which <a href="#gc">specifies a GC
4566algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004567
4568</div>
4569
4570
4571<!-- _______________________________________________________________________ -->
4572<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004573 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004574</div>
4575
4576<div class="doc_text">
4577
4578<h5>Syntax:</h5>
4579
4580<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004581 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004582</pre>
4583
4584<h5>Overview:</h5>
4585
4586<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4587locations, allowing garbage collector implementations that require read
4588barriers.</p>
4589
4590<h5>Arguments:</h5>
4591
Chris Lattner80626e92006-03-14 20:02:51 +00004592<p>The second argument is the address to read from, which should be an address
4593allocated from the garbage collector. The first object is a pointer to the
4594start of the referenced object, if needed by the language runtime (otherwise
4595null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004596
4597<h5>Semantics:</h5>
4598
4599<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4600instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004601garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4602may only be used in a function which <a href="#gc">specifies a GC
4603algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004604
4605</div>
4606
4607
4608<!-- _______________________________________________________________________ -->
4609<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004610 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004611</div>
4612
4613<div class="doc_text">
4614
4615<h5>Syntax:</h5>
4616
4617<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004618 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004619</pre>
4620
4621<h5>Overview:</h5>
4622
4623<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4624locations, allowing garbage collector implementations that require write
4625barriers (such as generational or reference counting collectors).</p>
4626
4627<h5>Arguments:</h5>
4628
Chris Lattner80626e92006-03-14 20:02:51 +00004629<p>The first argument is the reference to store, the second is the start of the
4630object to store it to, and the third is the address of the field of Obj to
4631store to. If the runtime does not require a pointer to the object, Obj may be
4632null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004633
4634<h5>Semantics:</h5>
4635
4636<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4637instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004638garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4639may only be used in a function which <a href="#gc">specifies a GC
4640algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004641
4642</div>
4643
4644
4645
4646<!-- ======================================================================= -->
4647<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004648 <a name="int_codegen">Code Generator Intrinsics</a>
4649</div>
4650
4651<div class="doc_text">
4652<p>
4653These intrinsics are provided by LLVM to expose special features that may only
4654be implemented with code generator support.
4655</p>
4656
4657</div>
4658
4659<!-- _______________________________________________________________________ -->
4660<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004661 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004662</div>
4663
4664<div class="doc_text">
4665
4666<h5>Syntax:</h5>
4667<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004668 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004669</pre>
4670
4671<h5>Overview:</h5>
4672
4673<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004674The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4675target-specific value indicating the return address of the current function
4676or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004677</p>
4678
4679<h5>Arguments:</h5>
4680
4681<p>
4682The argument to this intrinsic indicates which function to return the address
4683for. Zero indicates the calling function, one indicates its caller, etc. The
4684argument is <b>required</b> to be a constant integer value.
4685</p>
4686
4687<h5>Semantics:</h5>
4688
4689<p>
4690The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4691the return address of the specified call frame, or zero if it cannot be
4692identified. The value returned by this intrinsic is likely to be incorrect or 0
4693for arguments other than zero, so it should only be used for debugging purposes.
4694</p>
4695
4696<p>
4697Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004698aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004699source-language caller.
4700</p>
4701</div>
4702
4703
4704<!-- _______________________________________________________________________ -->
4705<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004706 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004707</div>
4708
4709<div class="doc_text">
4710
4711<h5>Syntax:</h5>
4712<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004713 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004714</pre>
4715
4716<h5>Overview:</h5>
4717
4718<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004719The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4720target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004721</p>
4722
4723<h5>Arguments:</h5>
4724
4725<p>
4726The argument to this intrinsic indicates which function to return the frame
4727pointer for. Zero indicates the calling function, one indicates its caller,
4728etc. The argument is <b>required</b> to be a constant integer value.
4729</p>
4730
4731<h5>Semantics:</h5>
4732
4733<p>
4734The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4735the frame address of the specified call frame, or zero if it cannot be
4736identified. The value returned by this intrinsic is likely to be incorrect or 0
4737for arguments other than zero, so it should only be used for debugging purposes.
4738</p>
4739
4740<p>
4741Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004742aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004743source-language caller.
4744</p>
4745</div>
4746
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004747<!-- _______________________________________________________________________ -->
4748<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004749 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004750</div>
4751
4752<div class="doc_text">
4753
4754<h5>Syntax:</h5>
4755<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004756 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004757</pre>
4758
4759<h5>Overview:</h5>
4760
4761<p>
4762The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004763the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004764<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4765features like scoped automatic variable sized arrays in C99.
4766</p>
4767
4768<h5>Semantics:</h5>
4769
4770<p>
4771This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004772href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004773<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4774<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4775state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4776practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4777that were allocated after the <tt>llvm.stacksave</tt> was executed.
4778</p>
4779
4780</div>
4781
4782<!-- _______________________________________________________________________ -->
4783<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004784 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004785</div>
4786
4787<div class="doc_text">
4788
4789<h5>Syntax:</h5>
4790<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004791 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004792</pre>
4793
4794<h5>Overview:</h5>
4795
4796<p>
4797The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4798the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004799href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004800useful for implementing language features like scoped automatic variable sized
4801arrays in C99.
4802</p>
4803
4804<h5>Semantics:</h5>
4805
4806<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004807See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004808</p>
4809
4810</div>
4811
4812
4813<!-- _______________________________________________________________________ -->
4814<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004815 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004816</div>
4817
4818<div class="doc_text">
4819
4820<h5>Syntax:</h5>
4821<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004822 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004823</pre>
4824
4825<h5>Overview:</h5>
4826
4827
4828<p>
4829The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004830a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4831no
4832effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004833characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004834</p>
4835
4836<h5>Arguments:</h5>
4837
4838<p>
4839<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4840determining if the fetch should be for a read (0) or write (1), and
4841<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004842locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004843<tt>locality</tt> arguments must be constant integers.
4844</p>
4845
4846<h5>Semantics:</h5>
4847
4848<p>
4849This intrinsic does not modify the behavior of the program. In particular,
4850prefetches cannot trap and do not produce a value. On targets that support this
4851intrinsic, the prefetch can provide hints to the processor cache for better
4852performance.
4853</p>
4854
4855</div>
4856
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004857<!-- _______________________________________________________________________ -->
4858<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004859 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004860</div>
4861
4862<div class="doc_text">
4863
4864<h5>Syntax:</h5>
4865<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004866 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004867</pre>
4868
4869<h5>Overview:</h5>
4870
4871
4872<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004873The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00004874(PC) in a region of
4875code to simulators and other tools. The method is target specific, but it is
4876expected that the marker will use exported symbols to transmit the PC of the
4877marker.
4878The marker makes no guarantees that it will remain with any specific instruction
4879after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004880optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004881correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004882</p>
4883
4884<h5>Arguments:</h5>
4885
4886<p>
4887<tt>id</tt> is a numerical id identifying the marker.
4888</p>
4889
4890<h5>Semantics:</h5>
4891
4892<p>
4893This intrinsic does not modify the behavior of the program. Backends that do not
4894support this intrinisic may ignore it.
4895</p>
4896
4897</div>
4898
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004899<!-- _______________________________________________________________________ -->
4900<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004901 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004902</div>
4903
4904<div class="doc_text">
4905
4906<h5>Syntax:</h5>
4907<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004908 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004909</pre>
4910
4911<h5>Overview:</h5>
4912
4913
4914<p>
4915The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4916counter register (or similar low latency, high accuracy clocks) on those targets
4917that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4918As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4919should only be used for small timings.
4920</p>
4921
4922<h5>Semantics:</h5>
4923
4924<p>
4925When directly supported, reading the cycle counter should not modify any memory.
4926Implementations are allowed to either return a application specific value or a
4927system wide value. On backends without support, this is lowered to a constant 0.
4928</p>
4929
4930</div>
4931
Chris Lattner10610642004-02-14 04:08:35 +00004932<!-- ======================================================================= -->
4933<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004934 <a name="int_libc">Standard C Library Intrinsics</a>
4935</div>
4936
4937<div class="doc_text">
4938<p>
Chris Lattner10610642004-02-14 04:08:35 +00004939LLVM provides intrinsics for a few important standard C library functions.
4940These intrinsics allow source-language front-ends to pass information about the
4941alignment of the pointer arguments to the code generator, providing opportunity
4942for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004943</p>
4944
4945</div>
4946
4947<!-- _______________________________________________________________________ -->
4948<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004949 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004950</div>
4951
4952<div class="doc_text">
4953
4954<h5>Syntax:</h5>
4955<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004956 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004957 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004958 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004959 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004960</pre>
4961
4962<h5>Overview:</h5>
4963
4964<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004965The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004966location to the destination location.
4967</p>
4968
4969<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004970Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4971intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004972</p>
4973
4974<h5>Arguments:</h5>
4975
4976<p>
4977The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004978the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004979specifying the number of bytes to copy, and the fourth argument is the alignment
4980of the source and destination locations.
4981</p>
4982
Chris Lattner3301ced2004-02-12 21:18:15 +00004983<p>
4984If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004985the caller guarantees that both the source and destination pointers are aligned
4986to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004987</p>
4988
Chris Lattner33aec9e2004-02-12 17:01:32 +00004989<h5>Semantics:</h5>
4990
4991<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004992The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004993location to the destination location, which are not allowed to overlap. It
4994copies "len" bytes of memory over. If the argument is known to be aligned to
4995some boundary, this can be specified as the fourth argument, otherwise it should
4996be set to 0 or 1.
4997</p>
4998</div>
4999
5000
Chris Lattner0eb51b42004-02-12 18:10:10 +00005001<!-- _______________________________________________________________________ -->
5002<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005003 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005004</div>
5005
5006<div class="doc_text">
5007
5008<h5>Syntax:</h5>
5009<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005010 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005011 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005012 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005013 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005014</pre>
5015
5016<h5>Overview:</h5>
5017
5018<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005019The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5020location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005021'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005022</p>
5023
5024<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005025Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5026intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005027</p>
5028
5029<h5>Arguments:</h5>
5030
5031<p>
5032The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005033the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005034specifying the number of bytes to copy, and the fourth argument is the alignment
5035of the source and destination locations.
5036</p>
5037
Chris Lattner3301ced2004-02-12 21:18:15 +00005038<p>
5039If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005040the caller guarantees that the source and destination pointers are aligned to
5041that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005042</p>
5043
Chris Lattner0eb51b42004-02-12 18:10:10 +00005044<h5>Semantics:</h5>
5045
5046<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005047The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005048location to the destination location, which may overlap. It
5049copies "len" bytes of memory over. If the argument is known to be aligned to
5050some boundary, this can be specified as the fourth argument, otherwise it should
5051be set to 0 or 1.
5052</p>
5053</div>
5054
Chris Lattner8ff75902004-01-06 05:31:32 +00005055
Chris Lattner10610642004-02-14 04:08:35 +00005056<!-- _______________________________________________________________________ -->
5057<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005058 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005059</div>
5060
5061<div class="doc_text">
5062
5063<h5>Syntax:</h5>
5064<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005065 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005066 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005067 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005068 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005069</pre>
5070
5071<h5>Overview:</h5>
5072
5073<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005074The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005075byte value.
5076</p>
5077
5078<p>
5079Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5080does not return a value, and takes an extra alignment argument.
5081</p>
5082
5083<h5>Arguments:</h5>
5084
5085<p>
5086The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005087byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005088argument specifying the number of bytes to fill, and the fourth argument is the
5089known alignment of destination location.
5090</p>
5091
5092<p>
5093If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005094the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005095</p>
5096
5097<h5>Semantics:</h5>
5098
5099<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005100The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5101the
Chris Lattner10610642004-02-14 04:08:35 +00005102destination location. If the argument is known to be aligned to some boundary,
5103this can be specified as the fourth argument, otherwise it should be set to 0 or
51041.
5105</p>
5106</div>
5107
5108
Chris Lattner32006282004-06-11 02:28:03 +00005109<!-- _______________________________________________________________________ -->
5110<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005111 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005112</div>
5113
5114<div class="doc_text">
5115
5116<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005117<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005118floating point or vector of floating point type. Not all targets support all
5119types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00005120<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005121 declare float @llvm.sqrt.f32(float %Val)
5122 declare double @llvm.sqrt.f64(double %Val)
5123 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5124 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5125 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005126</pre>
5127
5128<h5>Overview:</h5>
5129
5130<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005131The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005132returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005133<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005134negative numbers other than -0.0 (which allows for better optimization, because
5135there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5136defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005137</p>
5138
5139<h5>Arguments:</h5>
5140
5141<p>
5142The argument and return value are floating point numbers of the same type.
5143</p>
5144
5145<h5>Semantics:</h5>
5146
5147<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005148This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005149floating point number.
5150</p>
5151</div>
5152
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005153<!-- _______________________________________________________________________ -->
5154<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005155 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005156</div>
5157
5158<div class="doc_text">
5159
5160<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005161<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005162floating point or vector of floating point type. Not all targets support all
5163types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005164<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005165 declare float @llvm.powi.f32(float %Val, i32 %power)
5166 declare double @llvm.powi.f64(double %Val, i32 %power)
5167 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5168 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5169 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005170</pre>
5171
5172<h5>Overview:</h5>
5173
5174<p>
5175The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5176specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005177multiplications is not defined. When a vector of floating point type is
5178used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005179</p>
5180
5181<h5>Arguments:</h5>
5182
5183<p>
5184The second argument is an integer power, and the first is a value to raise to
5185that power.
5186</p>
5187
5188<h5>Semantics:</h5>
5189
5190<p>
5191This function returns the first value raised to the second power with an
5192unspecified sequence of rounding operations.</p>
5193</div>
5194
Dan Gohman91c284c2007-10-15 20:30:11 +00005195<!-- _______________________________________________________________________ -->
5196<div class="doc_subsubsection">
5197 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5198</div>
5199
5200<div class="doc_text">
5201
5202<h5>Syntax:</h5>
5203<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5204floating point or vector of floating point type. Not all targets support all
5205types however.
5206<pre>
5207 declare float @llvm.sin.f32(float %Val)
5208 declare double @llvm.sin.f64(double %Val)
5209 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5210 declare fp128 @llvm.sin.f128(fp128 %Val)
5211 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5212</pre>
5213
5214<h5>Overview:</h5>
5215
5216<p>
5217The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5218</p>
5219
5220<h5>Arguments:</h5>
5221
5222<p>
5223The argument and return value are floating point numbers of the same type.
5224</p>
5225
5226<h5>Semantics:</h5>
5227
5228<p>
5229This function returns the sine of the specified operand, returning the
5230same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005231conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005232</div>
5233
5234<!-- _______________________________________________________________________ -->
5235<div class="doc_subsubsection">
5236 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5237</div>
5238
5239<div class="doc_text">
5240
5241<h5>Syntax:</h5>
5242<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5243floating point or vector of floating point type. Not all targets support all
5244types however.
5245<pre>
5246 declare float @llvm.cos.f32(float %Val)
5247 declare double @llvm.cos.f64(double %Val)
5248 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5249 declare fp128 @llvm.cos.f128(fp128 %Val)
5250 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5251</pre>
5252
5253<h5>Overview:</h5>
5254
5255<p>
5256The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5257</p>
5258
5259<h5>Arguments:</h5>
5260
5261<p>
5262The argument and return value are floating point numbers of the same type.
5263</p>
5264
5265<h5>Semantics:</h5>
5266
5267<p>
5268This function returns the cosine of the specified operand, returning the
5269same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005270conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005271</div>
5272
5273<!-- _______________________________________________________________________ -->
5274<div class="doc_subsubsection">
5275 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5276</div>
5277
5278<div class="doc_text">
5279
5280<h5>Syntax:</h5>
5281<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5282floating point or vector of floating point type. Not all targets support all
5283types however.
5284<pre>
5285 declare float @llvm.pow.f32(float %Val, float %Power)
5286 declare double @llvm.pow.f64(double %Val, double %Power)
5287 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5288 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5289 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5290</pre>
5291
5292<h5>Overview:</h5>
5293
5294<p>
5295The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5296specified (positive or negative) power.
5297</p>
5298
5299<h5>Arguments:</h5>
5300
5301<p>
5302The second argument is a floating point power, and the first is a value to
5303raise to that power.
5304</p>
5305
5306<h5>Semantics:</h5>
5307
5308<p>
5309This function returns the first value raised to the second power,
5310returning the
5311same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005312conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005313</div>
5314
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005315
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005316<!-- ======================================================================= -->
5317<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005318 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005319</div>
5320
5321<div class="doc_text">
5322<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005323LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005324These allow efficient code generation for some algorithms.
5325</p>
5326
5327</div>
5328
5329<!-- _______________________________________________________________________ -->
5330<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005331 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005332</div>
5333
5334<div class="doc_text">
5335
5336<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005337<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005338type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005339<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005340 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5341 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5342 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005343</pre>
5344
5345<h5>Overview:</h5>
5346
5347<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005348The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005349values with an even number of bytes (positive multiple of 16 bits). These are
5350useful for performing operations on data that is not in the target's native
5351byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005352</p>
5353
5354<h5>Semantics:</h5>
5355
5356<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005357The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005358and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5359intrinsic returns an i32 value that has the four bytes of the input i32
5360swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005361i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5362<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005363additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005364</p>
5365
5366</div>
5367
5368<!-- _______________________________________________________________________ -->
5369<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005370 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005371</div>
5372
5373<div class="doc_text">
5374
5375<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005376<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5377width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005378<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005379 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5380 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005381 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005382 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5383 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005384</pre>
5385
5386<h5>Overview:</h5>
5387
5388<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005389The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5390value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005391</p>
5392
5393<h5>Arguments:</h5>
5394
5395<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005396The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005397integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005398</p>
5399
5400<h5>Semantics:</h5>
5401
5402<p>
5403The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5404</p>
5405</div>
5406
5407<!-- _______________________________________________________________________ -->
5408<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005409 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005410</div>
5411
5412<div class="doc_text">
5413
5414<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005415<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5416integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005417<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005418 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5419 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005420 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005421 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5422 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005423</pre>
5424
5425<h5>Overview:</h5>
5426
5427<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005428The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5429leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005430</p>
5431
5432<h5>Arguments:</h5>
5433
5434<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005435The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005436integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005437</p>
5438
5439<h5>Semantics:</h5>
5440
5441<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005442The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5443in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005444of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005445</p>
5446</div>
Chris Lattner32006282004-06-11 02:28:03 +00005447
5448
Chris Lattnereff29ab2005-05-15 19:39:26 +00005449
5450<!-- _______________________________________________________________________ -->
5451<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005452 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005453</div>
5454
5455<div class="doc_text">
5456
5457<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005458<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5459integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005460<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005461 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5462 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005463 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005464 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5465 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005466</pre>
5467
5468<h5>Overview:</h5>
5469
5470<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005471The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5472trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005473</p>
5474
5475<h5>Arguments:</h5>
5476
5477<p>
5478The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005479integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005480</p>
5481
5482<h5>Semantics:</h5>
5483
5484<p>
5485The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5486in a variable. If the src == 0 then the result is the size in bits of the type
5487of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5488</p>
5489</div>
5490
Reid Spencer497d93e2007-04-01 08:27:01 +00005491<!-- _______________________________________________________________________ -->
5492<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005493 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005494</div>
5495
5496<div class="doc_text">
5497
5498<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005499<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005500on any integer bit width.
5501<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005502 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5503 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005504</pre>
5505
5506<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005507<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005508range of bits from an integer value and returns them in the same bit width as
5509the original value.</p>
5510
5511<h5>Arguments:</h5>
5512<p>The first argument, <tt>%val</tt> and the result may be integer types of
5513any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005514arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005515
5516<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005517<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005518of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5519<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5520operates in forward mode.</p>
5521<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5522right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005523only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5524<ol>
5525 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5526 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5527 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5528 to determine the number of bits to retain.</li>
5529 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5530 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5531</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005532<p>In reverse mode, a similar computation is made except that the bits are
5533returned in the reverse order. So, for example, if <tt>X</tt> has the value
5534<tt>i16 0x0ACF (101011001111)</tt> and we apply
5535<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5536<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005537</div>
5538
Reid Spencerf86037f2007-04-11 23:23:49 +00005539<div class="doc_subsubsection">
5540 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5541</div>
5542
5543<div class="doc_text">
5544
5545<h5>Syntax:</h5>
5546<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5547on any integer bit width.
5548<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005549 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5550 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005551</pre>
5552
5553<h5>Overview:</h5>
5554<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5555of bits in an integer value with another integer value. It returns the integer
5556with the replaced bits.</p>
5557
5558<h5>Arguments:</h5>
5559<p>The first argument, <tt>%val</tt> and the result may be integer types of
5560any bit width but they must have the same bit width. <tt>%val</tt> is the value
5561whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5562integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5563type since they specify only a bit index.</p>
5564
5565<h5>Semantics:</h5>
5566<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5567of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5568<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5569operates in forward mode.</p>
5570<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5571truncating it down to the size of the replacement area or zero extending it
5572up to that size.</p>
5573<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5574are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5575in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5576to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005577<p>In reverse mode, a similar computation is made except that the bits are
5578reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5579<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005580<h5>Examples:</h5>
5581<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005582 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005583 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5584 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5585 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005586 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005587</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005588</div>
5589
Chris Lattner8ff75902004-01-06 05:31:32 +00005590<!-- ======================================================================= -->
5591<div class="doc_subsection">
5592 <a name="int_debugger">Debugger Intrinsics</a>
5593</div>
5594
5595<div class="doc_text">
5596<p>
5597The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5598are described in the <a
5599href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5600Debugging</a> document.
5601</p>
5602</div>
5603
5604
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005605<!-- ======================================================================= -->
5606<div class="doc_subsection">
5607 <a name="int_eh">Exception Handling Intrinsics</a>
5608</div>
5609
5610<div class="doc_text">
5611<p> The LLVM exception handling intrinsics (which all start with
5612<tt>llvm.eh.</tt> prefix), are described in the <a
5613href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5614Handling</a> document. </p>
5615</div>
5616
Tanya Lattner6d806e92007-06-15 20:50:54 +00005617<!-- ======================================================================= -->
5618<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005619 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005620</div>
5621
5622<div class="doc_text">
5623<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005624 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005625 the <tt>nest</tt> attribute, from a function. The result is a callable
5626 function pointer lacking the nest parameter - the caller does not need
5627 to provide a value for it. Instead, the value to use is stored in
5628 advance in a "trampoline", a block of memory usually allocated
5629 on the stack, which also contains code to splice the nest value into the
5630 argument list. This is used to implement the GCC nested function address
5631 extension.
5632</p>
5633<p>
5634 For example, if the function is
5635 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005636 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005637<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005638 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5639 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5640 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5641 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005642</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005643 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5644 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005645</div>
5646
5647<!-- _______________________________________________________________________ -->
5648<div class="doc_subsubsection">
5649 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5650</div>
5651<div class="doc_text">
5652<h5>Syntax:</h5>
5653<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005654declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005655</pre>
5656<h5>Overview:</h5>
5657<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005658 This fills the memory pointed to by <tt>tramp</tt> with code
5659 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005660</p>
5661<h5>Arguments:</h5>
5662<p>
5663 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5664 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5665 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005666 intrinsic. Note that the size and the alignment are target-specific - LLVM
5667 currently provides no portable way of determining them, so a front-end that
5668 generates this intrinsic needs to have some target-specific knowledge.
5669 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005670</p>
5671<h5>Semantics:</h5>
5672<p>
5673 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005674 dependent code, turning it into a function. A pointer to this function is
5675 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005676 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005677 before being called. The new function's signature is the same as that of
5678 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5679 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5680 of pointer type. Calling the new function is equivalent to calling
5681 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5682 missing <tt>nest</tt> argument. If, after calling
5683 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5684 modified, then the effect of any later call to the returned function pointer is
5685 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005686</p>
5687</div>
5688
5689<!-- ======================================================================= -->
5690<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005691 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5692</div>
5693
5694<div class="doc_text">
5695<p>
5696 These intrinsic functions expand the "universal IR" of LLVM to represent
5697 hardware constructs for atomic operations and memory synchronization. This
5698 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005699 is aimed at a low enough level to allow any programming models or APIs
5700 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005701 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5702 hardware behavior. Just as hardware provides a "universal IR" for source
5703 languages, it also provides a starting point for developing a "universal"
5704 atomic operation and synchronization IR.
5705</p>
5706<p>
5707 These do <em>not</em> form an API such as high-level threading libraries,
5708 software transaction memory systems, atomic primitives, and intrinsic
5709 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5710 application libraries. The hardware interface provided by LLVM should allow
5711 a clean implementation of all of these APIs and parallel programming models.
5712 No one model or paradigm should be selected above others unless the hardware
5713 itself ubiquitously does so.
5714
5715</p>
5716</div>
5717
5718<!-- _______________________________________________________________________ -->
5719<div class="doc_subsubsection">
5720 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5721</div>
5722<div class="doc_text">
5723<h5>Syntax:</h5>
5724<pre>
5725declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5726i1 &lt;device&gt; )
5727
5728</pre>
5729<h5>Overview:</h5>
5730<p>
5731 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5732 specific pairs of memory access types.
5733</p>
5734<h5>Arguments:</h5>
5735<p>
5736 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5737 The first four arguments enables a specific barrier as listed below. The fith
5738 argument specifies that the barrier applies to io or device or uncached memory.
5739
5740</p>
5741 <ul>
5742 <li><tt>ll</tt>: load-load barrier</li>
5743 <li><tt>ls</tt>: load-store barrier</li>
5744 <li><tt>sl</tt>: store-load barrier</li>
5745 <li><tt>ss</tt>: store-store barrier</li>
5746 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5747 </ul>
5748<h5>Semantics:</h5>
5749<p>
5750 This intrinsic causes the system to enforce some ordering constraints upon
5751 the loads and stores of the program. This barrier does not indicate
5752 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5753 which they occur. For any of the specified pairs of load and store operations
5754 (f.ex. load-load, or store-load), all of the first operations preceding the
5755 barrier will complete before any of the second operations succeeding the
5756 barrier begin. Specifically the semantics for each pairing is as follows:
5757</p>
5758 <ul>
5759 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5760 after the barrier begins.</li>
5761
5762 <li><tt>ls</tt>: All loads before the barrier must complete before any
5763 store after the barrier begins.</li>
5764 <li><tt>ss</tt>: All stores before the barrier must complete before any
5765 store after the barrier begins.</li>
5766 <li><tt>sl</tt>: All stores before the barrier must complete before any
5767 load after the barrier begins.</li>
5768 </ul>
5769<p>
5770 These semantics are applied with a logical "and" behavior when more than one
5771 is enabled in a single memory barrier intrinsic.
5772</p>
5773<p>
5774 Backends may implement stronger barriers than those requested when they do not
5775 support as fine grained a barrier as requested. Some architectures do not
5776 need all types of barriers and on such architectures, these become noops.
5777</p>
5778<h5>Example:</h5>
5779<pre>
5780%ptr = malloc i32
5781 store i32 4, %ptr
5782
5783%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5784 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5785 <i>; guarantee the above finishes</i>
5786 store i32 8, %ptr <i>; before this begins</i>
5787</pre>
5788</div>
5789
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005790<!-- _______________________________________________________________________ -->
5791<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005792 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005793</div>
5794<div class="doc_text">
5795<h5>Syntax:</h5>
5796<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005797 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5798 any integer bit width and for different address spaces. Not all targets
5799 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005800
5801<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005802declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5803declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5804declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5805declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005806
5807</pre>
5808<h5>Overview:</h5>
5809<p>
5810 This loads a value in memory and compares it to a given value. If they are
5811 equal, it stores a new value into the memory.
5812</p>
5813<h5>Arguments:</h5>
5814<p>
Mon P Wang28873102008-06-25 08:15:39 +00005815 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005816 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5817 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5818 this integer type. While any bit width integer may be used, targets may only
5819 lower representations they support in hardware.
5820
5821</p>
5822<h5>Semantics:</h5>
5823<p>
5824 This entire intrinsic must be executed atomically. It first loads the value
5825 in memory pointed to by <tt>ptr</tt> and compares it with the value
5826 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5827 loaded value is yielded in all cases. This provides the equivalent of an
5828 atomic compare-and-swap operation within the SSA framework.
5829</p>
5830<h5>Examples:</h5>
5831
5832<pre>
5833%ptr = malloc i32
5834 store i32 4, %ptr
5835
5836%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005837%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005838 <i>; yields {i32}:result1 = 4</i>
5839%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5840%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5841
5842%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005843%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005844 <i>; yields {i32}:result2 = 8</i>
5845%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5846
5847%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5848</pre>
5849</div>
5850
5851<!-- _______________________________________________________________________ -->
5852<div class="doc_subsubsection">
5853 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5854</div>
5855<div class="doc_text">
5856<h5>Syntax:</h5>
5857
5858<p>
5859 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5860 integer bit width. Not all targets support all bit widths however.</p>
5861<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005862declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5863declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5864declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5865declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005866
5867</pre>
5868<h5>Overview:</h5>
5869<p>
5870 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5871 the value from memory. It then stores the value in <tt>val</tt> in the memory
5872 at <tt>ptr</tt>.
5873</p>
5874<h5>Arguments:</h5>
5875
5876<p>
Mon P Wang28873102008-06-25 08:15:39 +00005877 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005878 <tt>val</tt> argument and the result must be integers of the same bit width.
5879 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5880 integer type. The targets may only lower integer representations they
5881 support.
5882</p>
5883<h5>Semantics:</h5>
5884<p>
5885 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5886 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5887 equivalent of an atomic swap operation within the SSA framework.
5888
5889</p>
5890<h5>Examples:</h5>
5891<pre>
5892%ptr = malloc i32
5893 store i32 4, %ptr
5894
5895%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005896%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005897 <i>; yields {i32}:result1 = 4</i>
5898%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5899%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5900
5901%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005902%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005903 <i>; yields {i32}:result2 = 8</i>
5904
5905%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5906%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5907</pre>
5908</div>
5909
5910<!-- _______________________________________________________________________ -->
5911<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005912 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005913
5914</div>
5915<div class="doc_text">
5916<h5>Syntax:</h5>
5917<p>
Mon P Wang28873102008-06-25 08:15:39 +00005918 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005919 integer bit width. Not all targets support all bit widths however.</p>
5920<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005921declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5922declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5923declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5924declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005925
5926</pre>
5927<h5>Overview:</h5>
5928<p>
5929 This intrinsic adds <tt>delta</tt> to the value stored in memory at
5930 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5931</p>
5932<h5>Arguments:</h5>
5933<p>
5934
5935 The intrinsic takes two arguments, the first a pointer to an integer value
5936 and the second an integer value. The result is also an integer value. These
5937 integer types can have any bit width, but they must all have the same bit
5938 width. The targets may only lower integer representations they support.
5939</p>
5940<h5>Semantics:</h5>
5941<p>
5942 This intrinsic does a series of operations atomically. It first loads the
5943 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5944 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5945</p>
5946
5947<h5>Examples:</h5>
5948<pre>
5949%ptr = malloc i32
5950 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00005951%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005952 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00005953%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005954 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00005955%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005956 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00005957%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005958</pre>
5959</div>
5960
Mon P Wang28873102008-06-25 08:15:39 +00005961<!-- _______________________________________________________________________ -->
5962<div class="doc_subsubsection">
5963 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
5964
5965</div>
5966<div class="doc_text">
5967<h5>Syntax:</h5>
5968<p>
5969 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00005970 any integer bit width and for different address spaces. Not all targets
5971 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00005972<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005973declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5974declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5975declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5976declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00005977
5978</pre>
5979<h5>Overview:</h5>
5980<p>
5981 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
5982 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5983</p>
5984<h5>Arguments:</h5>
5985<p>
5986
5987 The intrinsic takes two arguments, the first a pointer to an integer value
5988 and the second an integer value. The result is also an integer value. These
5989 integer types can have any bit width, but they must all have the same bit
5990 width. The targets may only lower integer representations they support.
5991</p>
5992<h5>Semantics:</h5>
5993<p>
5994 This intrinsic does a series of operations atomically. It first loads the
5995 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
5996 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5997</p>
5998
5999<h5>Examples:</h5>
6000<pre>
6001%ptr = malloc i32
6002 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006003%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006004 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006005%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006006 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006007%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006008 <i>; yields {i32}:result3 = 2</i>
6009%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6010</pre>
6011</div>
6012
6013<!-- _______________________________________________________________________ -->
6014<div class="doc_subsubsection">
6015 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6016 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6017 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6018 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6019
6020</div>
6021<div class="doc_text">
6022<h5>Syntax:</h5>
6023<p>
6024 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6025 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006026 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6027 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006028<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006029declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6030declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6031declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6032declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006033
6034</pre>
6035
6036<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006037declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6038declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6039declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6040declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006041
6042</pre>
6043
6044<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006045declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6046declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6047declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6048declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006049
6050</pre>
6051
6052<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006053declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6054declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6055declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6056declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006057
6058</pre>
6059<h5>Overview:</h5>
6060<p>
6061 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6062 the value stored in memory at <tt>ptr</tt>. It yields the original value
6063 at <tt>ptr</tt>.
6064</p>
6065<h5>Arguments:</h5>
6066<p>
6067
6068 These intrinsics take two arguments, the first a pointer to an integer value
6069 and the second an integer value. The result is also an integer value. These
6070 integer types can have any bit width, but they must all have the same bit
6071 width. The targets may only lower integer representations they support.
6072</p>
6073<h5>Semantics:</h5>
6074<p>
6075 These intrinsics does a series of operations atomically. They first load the
6076 value stored at <tt>ptr</tt>. They then do the bitwise operation
6077 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6078 value stored at <tt>ptr</tt>.
6079</p>
6080
6081<h5>Examples:</h5>
6082<pre>
6083%ptr = malloc i32
6084 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006085%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006086 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006087%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006088 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006089%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006090 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006091%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006092 <i>; yields {i32}:result3 = FF</i>
6093%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6094</pre>
6095</div>
6096
6097
6098<!-- _______________________________________________________________________ -->
6099<div class="doc_subsubsection">
6100 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6101 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6102 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6103 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6104
6105</div>
6106<div class="doc_text">
6107<h5>Syntax:</h5>
6108<p>
6109 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6110 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006111 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6112 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006113 support all bit widths however.</p>
6114<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006115declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6116declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6117declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6118declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006119
6120</pre>
6121
6122<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006123declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6124declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6125declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6126declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006127
6128</pre>
6129
6130<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006131declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6132declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6133declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6134declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006135
6136</pre>
6137
6138<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006139declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6140declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6141declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6142declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006143
6144</pre>
6145<h5>Overview:</h5>
6146<p>
6147 These intrinsics takes the signed or unsigned minimum or maximum of
6148 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6149 original value at <tt>ptr</tt>.
6150</p>
6151<h5>Arguments:</h5>
6152<p>
6153
6154 These intrinsics take two arguments, the first a pointer to an integer value
6155 and the second an integer value. The result is also an integer value. These
6156 integer types can have any bit width, but they must all have the same bit
6157 width. The targets may only lower integer representations they support.
6158</p>
6159<h5>Semantics:</h5>
6160<p>
6161 These intrinsics does a series of operations atomically. They first load the
6162 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6163 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6164 the original value stored at <tt>ptr</tt>.
6165</p>
6166
6167<h5>Examples:</h5>
6168<pre>
6169%ptr = malloc i32
6170 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006171%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006172 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006173%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006174 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006175%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006176 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006177%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006178 <i>; yields {i32}:result3 = 8</i>
6179%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6180</pre>
6181</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006182
6183<!-- ======================================================================= -->
6184<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006185 <a name="int_general">General Intrinsics</a>
6186</div>
6187
6188<div class="doc_text">
6189<p> This class of intrinsics is designed to be generic and has
6190no specific purpose. </p>
6191</div>
6192
6193<!-- _______________________________________________________________________ -->
6194<div class="doc_subsubsection">
6195 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6196</div>
6197
6198<div class="doc_text">
6199
6200<h5>Syntax:</h5>
6201<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006202 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006203</pre>
6204
6205<h5>Overview:</h5>
6206
6207<p>
6208The '<tt>llvm.var.annotation</tt>' intrinsic
6209</p>
6210
6211<h5>Arguments:</h5>
6212
6213<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006214The first argument is a pointer to a value, the second is a pointer to a
6215global string, the third is a pointer to a global string which is the source
6216file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006217</p>
6218
6219<h5>Semantics:</h5>
6220
6221<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006222This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006223This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006224annotations. These have no other defined use, they are ignored by code
6225generation and optimization.
6226</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006227</div>
6228
Tanya Lattnerb6367882007-09-21 22:59:12 +00006229<!-- _______________________________________________________________________ -->
6230<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006231 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006232</div>
6233
6234<div class="doc_text">
6235
6236<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006237<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6238any integer bit width.
6239</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006240<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006241 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6242 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6243 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6244 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6245 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006246</pre>
6247
6248<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006249
6250<p>
6251The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006252</p>
6253
6254<h5>Arguments:</h5>
6255
6256<p>
6257The first argument is an integer value (result of some expression),
6258the second is a pointer to a global string, the third is a pointer to a global
6259string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006260It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006261</p>
6262
6263<h5>Semantics:</h5>
6264
6265<p>
6266This intrinsic allows annotations to be put on arbitrary expressions
6267with arbitrary strings. This can be useful for special purpose optimizations
6268that want to look for these annotations. These have no other defined use, they
6269are ignored by code generation and optimization.
6270</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006271
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006272<!-- _______________________________________________________________________ -->
6273<div class="doc_subsubsection">
6274 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6275</div>
6276
6277<div class="doc_text">
6278
6279<h5>Syntax:</h5>
6280<pre>
6281 declare void @llvm.trap()
6282</pre>
6283
6284<h5>Overview:</h5>
6285
6286<p>
6287The '<tt>llvm.trap</tt>' intrinsic
6288</p>
6289
6290<h5>Arguments:</h5>
6291
6292<p>
6293None
6294</p>
6295
6296<h5>Semantics:</h5>
6297
6298<p>
6299This intrinsics is lowered to the target dependent trap instruction. If the
6300target does not have a trap instruction, this intrinsic will be lowered to the
6301call of the abort() function.
6302</p>
6303</div>
6304
Chris Lattner00950542001-06-06 20:29:01 +00006305<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006306<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006307<address>
6308 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6309 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6310 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006311 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006312
6313 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006314 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006315 Last modified: $Date$
6316</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006317
Misha Brukman9d0919f2003-11-08 01:05:38 +00006318</body>
6319</html>