blob: 9715d83fd10b885b71253ddf46b13f09ed259571 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000091#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000092#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000093using namespace llvm;
94
Chandler Carruthf1221bd2014-04-22 02:48:03 +000095#define DEBUG_TYPE "scalar-evolution"
96
Chris Lattner57ef9422006-12-19 22:30:33 +000097STATISTIC(NumArrayLenItCounts,
98 "Number of trip counts computed with array length");
99STATISTIC(NumTripCountsComputed,
100 "Number of loops with predictable loop counts");
101STATISTIC(NumTripCountsNotComputed,
102 "Number of loops without predictable loop counts");
103STATISTIC(NumBruteForceTripCountsComputed,
104 "Number of loops with trip counts computed by force");
105
Dan Gohmand78c4002008-05-13 00:00:25 +0000106static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000107MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
108 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000109 "symbolically execute a constant "
110 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000111 cl::init(100));
112
Benjamin Kramer214935e2012-10-26 17:31:32 +0000113// FIXME: Enable this with XDEBUG when the test suite is clean.
114static cl::opt<bool>
115VerifySCEV("verify-scev",
116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
117
Chris Lattnerd934c702004-04-02 20:23:17 +0000118//===----------------------------------------------------------------------===//
119// SCEV class definitions
120//===----------------------------------------------------------------------===//
121
122//===----------------------------------------------------------------------===//
123// Implementation of the SCEV class.
124//
Dan Gohman3423e722009-06-30 20:13:32 +0000125
Manman Ren49d684e2012-09-12 05:06:18 +0000126#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000127void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000128 print(dbgs());
129 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000130}
Manman Renc3366cc2012-09-06 19:55:56 +0000131#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000132
Dan Gohman534749b2010-11-17 22:27:42 +0000133void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000134 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000135 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000137 return;
138 case scTruncate: {
139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140 const SCEV *Op = Trunc->getOperand();
141 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142 << *Trunc->getType() << ")";
143 return;
144 }
145 case scZeroExtend: {
146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147 const SCEV *Op = ZExt->getOperand();
148 OS << "(zext " << *Op->getType() << " " << *Op << " to "
149 << *ZExt->getType() << ")";
150 return;
151 }
152 case scSignExtend: {
153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154 const SCEV *Op = SExt->getOperand();
155 OS << "(sext " << *Op->getType() << " " << *Op << " to "
156 << *SExt->getType() << ")";
157 return;
158 }
159 case scAddRecExpr: {
160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161 OS << "{" << *AR->getOperand(0);
162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163 OS << ",+," << *AR->getOperand(i);
164 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000165 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000166 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000167 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000168 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNW) &&
170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000173 OS << ">";
174 return;
175 }
176 case scAddExpr:
177 case scMulExpr:
178 case scUMaxExpr:
179 case scSMaxExpr: {
180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000181 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000182 switch (NAry->getSCEVType()) {
183 case scAddExpr: OpStr = " + "; break;
184 case scMulExpr: OpStr = " * "; break;
185 case scUMaxExpr: OpStr = " umax "; break;
186 case scSMaxExpr: OpStr = " smax "; break;
187 }
188 OS << "(";
189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190 I != E; ++I) {
191 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000192 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000193 OS << OpStr;
194 }
195 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000196 switch (NAry->getSCEVType()) {
197 case scAddExpr:
198 case scMulExpr:
199 if (NAry->getNoWrapFlags(FlagNUW))
200 OS << "<nuw>";
201 if (NAry->getNoWrapFlags(FlagNSW))
202 OS << "<nsw>";
203 }
Dan Gohman534749b2010-11-17 22:27:42 +0000204 return;
205 }
206 case scUDivExpr: {
207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209 return;
210 }
211 case scUnknown: {
212 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000213 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000214 if (U->isSizeOf(AllocTy)) {
215 OS << "sizeof(" << *AllocTy << ")";
216 return;
217 }
218 if (U->isAlignOf(AllocTy)) {
219 OS << "alignof(" << *AllocTy << ")";
220 return;
221 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000222
Chris Lattner229907c2011-07-18 04:54:35 +0000223 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000224 Constant *FieldNo;
225 if (U->isOffsetOf(CTy, FieldNo)) {
226 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000227 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000228 OS << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Dan Gohman534749b2010-11-17 22:27:42 +0000232 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000233 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000234 return;
235 }
236 case scCouldNotCompute:
237 OS << "***COULDNOTCOMPUTE***";
238 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattner229907c2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000244 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000264 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000266}
267
Dan Gohmanbe928e32008-06-18 16:23:07 +0000268bool SCEV::isZero() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isZero();
271 return false;
272}
273
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000274bool SCEV::isOne() const {
275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276 return SC->getValue()->isOne();
277 return false;
278}
Chris Lattnerd934c702004-04-02 20:23:17 +0000279
Dan Gohman18a96bb2009-06-24 00:30:26 +0000280bool SCEV::isAllOnesValue() const {
281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282 return SC->getValue()->isAllOnesValue();
283 return false;
284}
285
Andrew Trick881a7762012-01-07 00:27:31 +0000286/// isNonConstantNegative - Return true if the specified scev is negated, but
287/// not a constant.
288bool SCEV::isNonConstantNegative() const {
289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290 if (!Mul) return false;
291
292 // If there is a constant factor, it will be first.
293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294 if (!SC) return false;
295
296 // Return true if the value is negative, this matches things like (-42 * V).
297 return SC->getValue()->getValue().isNegative();
298}
299
Owen Anderson04052ec2009-06-22 21:57:23 +0000300SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000302
Chris Lattnerd934c702004-04-02 20:23:17 +0000303bool SCEVCouldNotCompute::classof(const SCEV *S) {
304 return S->getSCEVType() == scCouldNotCompute;
305}
306
Dan Gohmanaf752342009-07-07 17:06:11 +0000307const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000308 FoldingSetNodeID ID;
309 ID.AddInteger(scConstant);
310 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000311 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000314 UniqueSCEVs.InsertNode(S, IP);
315 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000316}
Chris Lattnerd934c702004-04-02 20:23:17 +0000317
Nick Lewycky31eaca52014-01-27 10:04:03 +0000318const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000319 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000320}
321
Dan Gohmanaf752342009-07-07 17:06:11 +0000322const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000323ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000325 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000326}
327
Dan Gohman24ceda82010-06-18 19:54:20 +0000328SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000329 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000338}
Chris Lattnerd934c702004-04-02 20:23:17 +0000339
Dan Gohman24ceda82010-06-18 19:54:20 +0000340SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000341 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000342 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346}
347
Dan Gohman24ceda82010-06-18 19:54:20 +0000348SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000349 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000350 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000354}
355
Dan Gohman7cac9572010-08-02 23:49:30 +0000356void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000357 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000358 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000359
360 // Remove this SCEVUnknown from the uniquing map.
361 SE->UniqueSCEVs.RemoveNode(this);
362
363 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000364 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000365}
366
367void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000368 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000369 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370
371 // Remove this SCEVUnknown from the uniquing map.
372 SE->UniqueSCEVs.RemoveNode(this);
373
374 // Update this SCEVUnknown to point to the new value. This is needed
375 // because there may still be outstanding SCEVs which still point to
376 // this SCEVUnknown.
377 setValPtr(New);
378}
379
Chris Lattner229907c2011-07-18 04:54:35 +0000380bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000382 if (VCE->getOpcode() == Instruction::PtrToInt)
383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000384 if (CE->getOpcode() == Instruction::GetElementPtr &&
385 CE->getOperand(0)->isNullValue() &&
386 CE->getNumOperands() == 2)
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388 if (CI->isOne()) {
389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390 ->getElementType();
391 return true;
392 }
Dan Gohmancf913832010-01-28 02:15:55 +0000393
394 return false;
395}
396
Chris Lattner229907c2011-07-18 04:54:35 +0000397bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000399 if (VCE->getOpcode() == Instruction::PtrToInt)
400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000401 if (CE->getOpcode() == Instruction::GetElementPtr &&
402 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000403 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000405 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (!STy->isPacked() &&
407 CE->getNumOperands() == 3 &&
408 CE->getOperand(1)->isNullValue()) {
409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410 if (CI->isOne() &&
411 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000412 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 AllocTy = STy->getElementType(1);
414 return true;
415 }
416 }
417 }
Dan Gohmancf913832010-01-28 02:15:55 +0000418
419 return false;
420}
421
Chris Lattner229907c2011-07-18 04:54:35 +0000422bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000424 if (VCE->getOpcode() == Instruction::PtrToInt)
425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426 if (CE->getOpcode() == Instruction::GetElementPtr &&
427 CE->getNumOperands() == 3 &&
428 CE->getOperand(0)->isNullValue() &&
429 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000430 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432 // Ignore vector types here so that ScalarEvolutionExpander doesn't
433 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000434 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 CTy = Ty;
436 FieldNo = CE->getOperand(2);
437 return true;
438 }
439 }
440
441 return false;
442}
443
Chris Lattnereb3e8402004-06-20 06:23:15 +0000444//===----------------------------------------------------------------------===//
445// SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
451 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000452 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000453 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000454 public:
Dan Gohman992db002010-07-23 21:18:55 +0000455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000456
Dan Gohman27065672010-08-27 15:26:01 +0000457 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000458 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000459 return compare(LHS, RHS) < 0;
460 }
461
462 // Return negative, zero, or positive, if LHS is less than, equal to, or
463 // greater than RHS, respectively. A three-way result allows recursive
464 // comparisons to be more efficient.
465 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000466 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000468 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000469
Dan Gohman9ba542c2009-05-07 14:39:04 +0000470 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000473 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474
Dan Gohman24ceda82010-06-18 19:54:20 +0000475 // Aside from the getSCEVType() ordering, the particular ordering
476 // isn't very important except that it's beneficial to be consistent,
477 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000478 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000479 case scUnknown: {
480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000482
483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000485 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000486
487 // Order pointer values after integer values. This helps SCEVExpander
488 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000489 bool LIsPointer = LV->getType()->isPointerTy(),
490 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000491 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000492 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
494 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000495 unsigned LID = LV->getValueID(),
496 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000497 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000498 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000499
500 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000501 if (const Argument *LA = dyn_cast<Argument>(LV)) {
502 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000505 }
506
Dan Gohman27065672010-08-27 15:26:01 +0000507 // For instructions, compare their loop depth, and their operand
508 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000511
512 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000513 const BasicBlock *LParent = LInst->getParent(),
514 *RParent = RInst->getParent();
515 if (LParent != RParent) {
516 unsigned LDepth = LI->getLoopDepth(LParent),
517 RDepth = LI->getLoopDepth(RParent);
518 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000519 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000521
522 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000523 unsigned LNumOps = LInst->getNumOperands(),
524 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000525 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000526 }
527
Dan Gohman27065672010-08-27 15:26:01 +0000528 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000529 }
530
Dan Gohman27065672010-08-27 15:26:01 +0000531 case scConstant: {
532 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000534
535 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000536 const APInt &LA = LC->getValue()->getValue();
537 const APInt &RA = RC->getValue()->getValue();
538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000539 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000540 return (int)LBitWidth - (int)RBitWidth;
541 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 }
543
Dan Gohman27065672010-08-27 15:26:01 +0000544 case scAddRecExpr: {
545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000547
548 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550 if (LLoop != RLoop) {
551 unsigned LDepth = LLoop->getLoopDepth(),
552 RDepth = RLoop->getLoopDepth();
553 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000554 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000555 }
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Addrec complexity grows with operand count.
558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559 if (LNumOps != RNumOps)
560 return (int)LNumOps - (int)RNumOps;
561
562 // Lexicographically compare.
563 for (unsigned i = 0; i != LNumOps; ++i) {
564 long X = compare(LA->getOperand(i), RA->getOperand(i));
565 if (X != 0)
566 return X;
567 }
568
569 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000570 }
571
Dan Gohman27065672010-08-27 15:26:01 +0000572 case scAddExpr:
573 case scMulExpr:
574 case scSMaxExpr:
575 case scUMaxExpr: {
576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000578
579 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000581 if (LNumOps != RNumOps)
582 return (int)LNumOps - (int)RNumOps;
583
Dan Gohman5ae31022010-07-23 21:20:52 +0000584 for (unsigned i = 0; i != LNumOps; ++i) {
585 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000586 return 1;
587 long X = compare(LC->getOperand(i), RC->getOperand(i));
588 if (X != 0)
589 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000590 }
Dan Gohman27065672010-08-27 15:26:01 +0000591 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000592 }
593
Dan Gohman27065672010-08-27 15:26:01 +0000594 case scUDivExpr: {
595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000597
598 // Lexicographically compare udiv expressions.
599 long X = compare(LC->getLHS(), RC->getLHS());
600 if (X != 0)
601 return X;
602 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000603 }
604
Dan Gohman27065672010-08-27 15:26:01 +0000605 case scTruncate:
606 case scZeroExtend:
607 case scSignExtend: {
608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000610
611 // Compare cast expressions by operand.
612 return compare(LC->getOperand(), RC->getOperand());
613 }
614
Benjamin Kramer987b8502014-02-11 19:02:55 +0000615 case scCouldNotCompute:
616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000617 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000618 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000619 }
620 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000621}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000628/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000629/// results from this routine. In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
Dan Gohmanaf752342009-07-07 17:06:11 +0000633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000634 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000635 if (Ops.size() < 2) return; // Noop
636 if (Ops.size() == 2) {
637 // This is the common case, which also happens to be trivially simple.
638 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640 if (SCEVComplexityCompare(LI)(RHS, LHS))
641 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 return;
643 }
644
Dan Gohman24ceda82010-06-18 19:54:20 +0000645 // Do the rough sort by complexity.
646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648 // Now that we are sorted by complexity, group elements of the same
649 // complexity. Note that this is, at worst, N^2, but the vector is likely to
650 // be extremely short in practice. Note that we take this approach because we
651 // do not want to depend on the addresses of the objects we are grouping.
652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653 const SCEV *S = Ops[i];
654 unsigned Complexity = S->getSCEVType();
655
656 // If there are any objects of the same complexity and same value as this
657 // one, group them.
658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659 if (Ops[j] == S) { // Found a duplicate.
660 // Move it to immediately after i'th element.
661 std::swap(Ops[i+1], Ops[j]);
662 ++i; // no need to rescan it.
663 if (i == e-2) return; // Done!
664 }
665 }
666 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000667}
668
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000669namespace {
670struct FindSCEVSize {
671 int Size;
672 FindSCEVSize() : Size(0) {}
673
674 bool follow(const SCEV *S) {
675 ++Size;
676 // Keep looking at all operands of S.
677 return true;
678 }
679 bool isDone() const {
680 return false;
681 }
682};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000683}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000684
685// Returns the size of the SCEV S.
686static inline int sizeOfSCEV(const SCEV *S) {
687 FindSCEVSize F;
688 SCEVTraversal<FindSCEVSize> ST(F);
689 ST.visitAll(S);
690 return F.Size;
691}
692
693namespace {
694
David Majnemer4e879362014-12-14 09:12:33 +0000695struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000696public:
697 // Computes the Quotient and Remainder of the division of Numerator by
698 // Denominator.
699 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700 const SCEV *Denominator, const SCEV **Quotient,
701 const SCEV **Remainder) {
702 assert(Numerator && Denominator && "Uninitialized SCEV");
703
David Majnemer4e879362014-12-14 09:12:33 +0000704 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705
706 // Check for the trivial case here to avoid having to check for it in the
707 // rest of the code.
708 if (Numerator == Denominator) {
709 *Quotient = D.One;
710 *Remainder = D.Zero;
711 return;
712 }
713
714 if (Numerator->isZero()) {
715 *Quotient = D.Zero;
716 *Remainder = D.Zero;
717 return;
718 }
719
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000720 // A simple case when N/1. The quotient is N.
721 if (Denominator->isOne()) {
722 *Quotient = Numerator;
723 *Remainder = D.Zero;
724 return;
725 }
726
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000727 // Split the Denominator when it is a product.
728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
729 const SCEV *Q, *R;
730 *Quotient = Numerator;
731 for (const SCEV *Op : T->operands()) {
732 divide(SE, *Quotient, Op, &Q, &R);
733 *Quotient = Q;
734
735 // Bail out when the Numerator is not divisible by one of the terms of
736 // the Denominator.
737 if (!R->isZero()) {
738 *Quotient = D.Zero;
739 *Remainder = Numerator;
740 return;
741 }
742 }
743 *Remainder = D.Zero;
744 return;
745 }
746
747 D.visit(Numerator);
748 *Quotient = D.Quotient;
749 *Remainder = D.Remainder;
750 }
751
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000752 // Except in the trivial case described above, we do not know how to divide
753 // Expr by Denominator for the following functions with empty implementation.
754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760 void visitUnknown(const SCEVUnknown *Numerator) {}
761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762
David Majnemer4e879362014-12-14 09:12:33 +0000763 void visitConstant(const SCEVConstant *Numerator) {
764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765 APInt NumeratorVal = Numerator->getValue()->getValue();
766 APInt DenominatorVal = D->getValue()->getValue();
767 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769
770 if (NumeratorBW > DenominatorBW)
771 DenominatorVal = DenominatorVal.sext(NumeratorBW);
772 else if (NumeratorBW < DenominatorBW)
773 NumeratorVal = NumeratorVal.sext(DenominatorBW);
774
775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778 Quotient = SE.getConstant(QuotientVal);
779 Remainder = SE.getConstant(RemainderVal);
780 return;
781 }
782 }
783
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000786 if (!Numerator->isAffine())
787 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000790 // Bail out if the types do not match.
791 Type *Ty = Denominator->getType();
792 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000793 Ty != StepQ->getType() || Ty != StepR->getType())
794 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 }
800
801 void visitAddExpr(const SCEVAddExpr *Numerator) {
802 SmallVector<const SCEV *, 2> Qs, Rs;
803 Type *Ty = Denominator->getType();
804
805 for (const SCEV *Op : Numerator->operands()) {
806 const SCEV *Q, *R;
807 divide(SE, Op, Denominator, &Q, &R);
808
809 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000810 if (Ty != Q->getType() || Ty != R->getType())
811 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000812
813 Qs.push_back(Q);
814 Rs.push_back(R);
815 }
816
817 if (Qs.size() == 1) {
818 Quotient = Qs[0];
819 Remainder = Rs[0];
820 return;
821 }
822
823 Quotient = SE.getAddExpr(Qs);
824 Remainder = SE.getAddExpr(Rs);
825 }
826
827 void visitMulExpr(const SCEVMulExpr *Numerator) {
828 SmallVector<const SCEV *, 2> Qs;
829 Type *Ty = Denominator->getType();
830
831 bool FoundDenominatorTerm = false;
832 for (const SCEV *Op : Numerator->operands()) {
833 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000834 if (Ty != Op->getType())
835 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000836
837 if (FoundDenominatorTerm) {
838 Qs.push_back(Op);
839 continue;
840 }
841
842 // Check whether Denominator divides one of the product operands.
843 const SCEV *Q, *R;
844 divide(SE, Op, Denominator, &Q, &R);
845 if (!R->isZero()) {
846 Qs.push_back(Op);
847 continue;
848 }
849
850 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000851 if (Ty != Q->getType())
852 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000853
854 FoundDenominatorTerm = true;
855 Qs.push_back(Q);
856 }
857
858 if (FoundDenominatorTerm) {
859 Remainder = Zero;
860 if (Qs.size() == 1)
861 Quotient = Qs[0];
862 else
863 Quotient = SE.getMulExpr(Qs);
864 return;
865 }
866
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000867 if (!isa<SCEVUnknown>(Denominator))
868 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000869
870 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871 ValueToValueMap RewriteMap;
872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873 cast<SCEVConstant>(Zero)->getValue();
874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875
876 if (Remainder->isZero()) {
877 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879 cast<SCEVConstant>(One)->getValue();
880 Quotient =
881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882 return;
883 }
884
885 // Quotient is (Numerator - Remainder) divided by Denominator.
886 const SCEV *Q, *R;
887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000888 // This SCEV does not seem to simplify: fail the division here.
889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000891 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000892 if (R != Zero)
893 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000894 Quotient = Q;
895 }
896
897private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899 const SCEV *Denominator)
900 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000901 Zero = SE.getZero(Denominator->getType());
902 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000903
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000904 // We generally do not know how to divide Expr by Denominator. We
905 // initialize the division to a "cannot divide" state to simplify the rest
906 // of the code.
907 cannotDivide(Numerator);
908 }
909
910 // Convenience function for giving up on the division. We set the quotient to
911 // be equal to zero and the remainder to be equal to the numerator.
912 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000913 Quotient = Zero;
914 Remainder = Numerator;
915 }
916
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000917 ScalarEvolution &SE;
918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000919};
920
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000921}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000922
Chris Lattnerd934c702004-04-02 20:23:17 +0000923//===----------------------------------------------------------------------===//
924// Simple SCEV method implementations
925//===----------------------------------------------------------------------===//
926
Eli Friedman61f67622008-08-04 23:49:06 +0000927/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000928/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000929static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000930 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000931 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000932 // Handle the simplest case efficiently.
933 if (K == 1)
934 return SE.getTruncateOrZeroExtend(It, ResultTy);
935
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000936 // We are using the following formula for BC(It, K):
937 //
938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
939 //
Eli Friedman61f67622008-08-04 23:49:06 +0000940 // Suppose, W is the bitwidth of the return value. We must be prepared for
941 // overflow. Hence, we must assure that the result of our computation is
942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
943 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000944 //
Eli Friedman61f67622008-08-04 23:49:06 +0000945 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000946 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
948 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000949 //
Eli Friedman61f67622008-08-04 23:49:06 +0000950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000951 //
Eli Friedman61f67622008-08-04 23:49:06 +0000952 // This formula is trivially equivalent to the previous formula. However,
953 // this formula can be implemented much more efficiently. The trick is that
954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
955 // arithmetic. To do exact division in modular arithmetic, all we have
956 // to do is multiply by the inverse. Therefore, this step can be done at
957 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000958 //
Eli Friedman61f67622008-08-04 23:49:06 +0000959 // The next issue is how to safely do the division by 2^T. The way this
960 // is done is by doing the multiplication step at a width of at least W + T
961 // bits. This way, the bottom W+T bits of the product are accurate. Then,
962 // when we perform the division by 2^T (which is equivalent to a right shift
963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
964 // truncated out after the division by 2^T.
965 //
966 // In comparison to just directly using the first formula, this technique
967 // is much more efficient; using the first formula requires W * K bits,
968 // but this formula less than W + K bits. Also, the first formula requires
969 // a division step, whereas this formula only requires multiplies and shifts.
970 //
971 // It doesn't matter whether the subtraction step is done in the calculation
972 // width or the input iteration count's width; if the subtraction overflows,
973 // the result must be zero anyway. We prefer here to do it in the width of
974 // the induction variable because it helps a lot for certain cases; CodeGen
975 // isn't smart enough to ignore the overflow, which leads to much less
976 // efficient code if the width of the subtraction is wider than the native
977 // register width.
978 //
979 // (It's possible to not widen at all by pulling out factors of 2 before
980 // the multiplication; for example, K=2 can be calculated as
981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
982 // extra arithmetic, so it's not an obvious win, and it gets
983 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000984
Eli Friedman61f67622008-08-04 23:49:06 +0000985 // Protection from insane SCEVs; this bound is conservative,
986 // but it probably doesn't matter.
987 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000988 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000989
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000990 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000991
Eli Friedman61f67622008-08-04 23:49:06 +0000992 // Calculate K! / 2^T and T; we divide out the factors of two before
993 // multiplying for calculating K! / 2^T to avoid overflow.
994 // Other overflow doesn't matter because we only care about the bottom
995 // W bits of the result.
996 APInt OddFactorial(W, 1);
997 unsigned T = 1;
998 for (unsigned i = 3; i <= K; ++i) {
999 APInt Mult(W, i);
1000 unsigned TwoFactors = Mult.countTrailingZeros();
1001 T += TwoFactors;
1002 Mult = Mult.lshr(TwoFactors);
1003 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001004 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001005
Eli Friedman61f67622008-08-04 23:49:06 +00001006 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001007 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001008
Dan Gohman8b0a4192010-03-01 17:49:51 +00001009 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001011
1012 // Calculate the multiplicative inverse of K! / 2^T;
1013 // this multiplication factor will perform the exact division by
1014 // K! / 2^T.
1015 APInt Mod = APInt::getSignedMinValue(W+1);
1016 APInt MultiplyFactor = OddFactorial.zext(W+1);
1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1018 MultiplyFactor = MultiplyFactor.trunc(W);
1019
1020 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001022 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001024 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001026 Dividend = SE.getMulExpr(Dividend,
1027 SE.getTruncateOrZeroExtend(S, CalculationTy));
1028 }
1029
1030 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001032
1033 // Truncate the result, and divide by K! / 2^T.
1034
1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001037}
1038
Chris Lattnerd934c702004-04-02 20:23:17 +00001039/// evaluateAtIteration - Return the value of this chain of recurrences at
1040/// the specified iteration number. We can evaluate this recurrence by
1041/// multiplying each element in the chain by the binomial coefficient
1042/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1043///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001044/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001045///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001047///
Dan Gohmanaf752342009-07-07 17:06:11 +00001048const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001049 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001050 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001052 // The computation is correct in the face of overflow provided that the
1053 // multiplication is performed _after_ the evaluation of the binomial
1054 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001056 if (isa<SCEVCouldNotCompute>(Coeff))
1057 return Coeff;
1058
1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001060 }
1061 return Result;
1062}
1063
Chris Lattnerd934c702004-04-02 20:23:17 +00001064//===----------------------------------------------------------------------===//
1065// SCEV Expression folder implementations
1066//===----------------------------------------------------------------------===//
1067
Dan Gohmanaf752342009-07-07 17:06:11 +00001068const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001069 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001071 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001072 assert(isSCEVable(Ty) &&
1073 "This is not a conversion to a SCEVable type!");
1074 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001075
Dan Gohman3a302cb2009-07-13 20:50:19 +00001076 FoldingSetNodeID ID;
1077 ID.AddInteger(scTruncate);
1078 ID.AddPointer(Op);
1079 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001080 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1082
Dan Gohman3423e722009-06-30 20:13:32 +00001083 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001085 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001087
Dan Gohman79af8542009-04-22 16:20:48 +00001088 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001090 return getTruncateExpr(ST->getOperand(), Ty);
1091
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001094 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1095
1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1099
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001101 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1103 SmallVector<const SCEV *, 4> Operands;
1104 bool hasTrunc = false;
1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001107 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1108 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001109 Operands.push_back(S);
1110 }
1111 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001112 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001114 }
1115
Nick Lewycky5c901f32011-01-19 18:56:00 +00001116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001117 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1119 SmallVector<const SCEV *, 4> Operands;
1120 bool hasTrunc = false;
1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001123 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1124 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001125 Operands.push_back(S);
1126 }
1127 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001128 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001130 }
1131
Dan Gohman5a728c92009-06-18 16:24:47 +00001132 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001134 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001135 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001136 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001138 }
1139
Dan Gohman89dd42a2010-06-25 18:47:08 +00001140 // The cast wasn't folded; create an explicit cast node. We can reuse
1141 // the existing insert position since if we get here, we won't have
1142 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1144 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001145 UniqueSCEVs.InsertNode(S, IP);
1146 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001147}
1148
Sanjoy Das4153f472015-02-18 01:47:07 +00001149// Get the limit of a recurrence such that incrementing by Step cannot cause
1150// signed overflow as long as the value of the recurrence within the
1151// loop does not exceed this limit before incrementing.
1152static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1153 ICmpInst::Predicate *Pred,
1154 ScalarEvolution *SE) {
1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1156 if (SE->isKnownPositive(Step)) {
1157 *Pred = ICmpInst::ICMP_SLT;
1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1159 SE->getSignedRange(Step).getSignedMax());
1160 }
1161 if (SE->isKnownNegative(Step)) {
1162 *Pred = ICmpInst::ICMP_SGT;
1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1164 SE->getSignedRange(Step).getSignedMin());
1165 }
1166 return nullptr;
1167}
1168
1169// Get the limit of a recurrence such that incrementing by Step cannot cause
1170// unsigned overflow as long as the value of the recurrence within the loop does
1171// not exceed this limit before incrementing.
1172static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1173 ICmpInst::Predicate *Pred,
1174 ScalarEvolution *SE) {
1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1176 *Pred = ICmpInst::ICMP_ULT;
1177
1178 return SE->getConstant(APInt::getMinValue(BitWidth) -
1179 SE->getUnsignedRange(Step).getUnsignedMax());
1180}
1181
1182namespace {
1183
1184struct ExtendOpTraitsBase {
1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1186};
1187
1188// Used to make code generic over signed and unsigned overflow.
1189template <typename ExtendOp> struct ExtendOpTraits {
1190 // Members present:
1191 //
1192 // static const SCEV::NoWrapFlags WrapType;
1193 //
1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1195 //
1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1197 // ICmpInst::Predicate *Pred,
1198 // ScalarEvolution *SE);
1199};
1200
1201template <>
1202struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1204
1205 static const GetExtendExprTy GetExtendExpr;
1206
1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1208 ICmpInst::Predicate *Pred,
1209 ScalarEvolution *SE) {
1210 return getSignedOverflowLimitForStep(Step, Pred, SE);
1211 }
1212};
1213
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001214const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1216
1217template <>
1218struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1220
1221 static const GetExtendExprTy GetExtendExpr;
1222
1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1224 ICmpInst::Predicate *Pred,
1225 ScalarEvolution *SE) {
1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1227 }
1228};
1229
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001230const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001232}
Sanjoy Das4153f472015-02-18 01:47:07 +00001233
1234// The recurrence AR has been shown to have no signed/unsigned wrap or something
1235// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1236// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1237// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1238// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1239// expression "Step + sext/zext(PreIncAR)" is congruent with
1240// "sext/zext(PostIncAR)"
1241template <typename ExtendOpTy>
1242static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1243 ScalarEvolution *SE) {
1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1246
1247 const Loop *L = AR->getLoop();
1248 const SCEV *Start = AR->getStart();
1249 const SCEV *Step = AR->getStepRecurrence(*SE);
1250
1251 // Check for a simple looking step prior to loop entry.
1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1253 if (!SA)
1254 return nullptr;
1255
1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1257 // subtraction is expensive. For this purpose, perform a quick and dirty
1258 // difference, by checking for Step in the operand list.
1259 SmallVector<const SCEV *, 4> DiffOps;
1260 for (const SCEV *Op : SA->operands())
1261 if (Op != Step)
1262 DiffOps.push_back(Op);
1263
1264 if (DiffOps.size() == SA->getNumOperands())
1265 return nullptr;
1266
1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1268 // `Step`:
1269
1270 // 1. NSW/NUW flags on the step increment.
1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1274
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1276 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001277 //
1278
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001279 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001282 return PreStart;
1283
1284 // 2. Direct overflow check on the step operation's expression.
1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1287 const SCEV *OperandExtendedStart =
1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1289 (SE->*GetExtendExpr)(Step, WideTy));
1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1291 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1296 }
1297 return PreStart;
1298 }
1299
1300 // 3. Loop precondition.
1301 ICmpInst::Predicate Pred;
1302 const SCEV *OverflowLimit =
1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1304
1305 if (OverflowLimit &&
1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1307 return PreStart;
1308 }
1309 return nullptr;
1310}
1311
1312// Get the normalized zero or sign extended expression for this AddRec's Start.
1313template <typename ExtendOpTy>
1314static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1315 ScalarEvolution *SE) {
1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1317
1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1319 if (!PreStart)
1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1321
1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1323 (SE->*GetExtendExpr)(PreStart, Ty));
1324}
1325
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001326// Try to prove away overflow by looking at "nearby" add recurrences. A
1327// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1328// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1329//
1330// Formally:
1331//
1332// {S,+,X} == {S-T,+,X} + T
1333// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1334//
1335// If ({S-T,+,X} + T) does not overflow ... (1)
1336//
1337// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1338//
1339// If {S-T,+,X} does not overflow ... (2)
1340//
1341// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1342// == {Ext(S-T)+Ext(T),+,Ext(X)}
1343//
1344// If (S-T)+T does not overflow ... (3)
1345//
1346// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1347// == {Ext(S),+,Ext(X)} == LHS
1348//
1349// Thus, if (1), (2) and (3) are true for some T, then
1350// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1351//
1352// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1353// does not overflow" restricted to the 0th iteration. Therefore we only need
1354// to check for (1) and (2).
1355//
1356// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1357// is `Delta` (defined below).
1358//
1359template <typename ExtendOpTy>
1360bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1361 const SCEV *Step,
1362 const Loop *L) {
1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1364
1365 // We restrict `Start` to a constant to prevent SCEV from spending too much
1366 // time here. It is correct (but more expensive) to continue with a
1367 // non-constant `Start` and do a general SCEV subtraction to compute
1368 // `PreStart` below.
1369 //
1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1371 if (!StartC)
1372 return false;
1373
1374 APInt StartAI = StartC->getValue()->getValue();
1375
1376 for (unsigned Delta : {-2, -1, 1, 2}) {
1377 const SCEV *PreStart = getConstant(StartAI - Delta);
1378
1379 // Give up if we don't already have the add recurrence we need because
1380 // actually constructing an add recurrence is relatively expensive.
1381 const SCEVAddRecExpr *PreAR = [&]() {
1382 FoldingSetNodeID ID;
1383 ID.AddInteger(scAddRecExpr);
1384 ID.AddPointer(PreStart);
1385 ID.AddPointer(Step);
1386 ID.AddPointer(L);
1387 void *IP = nullptr;
1388 return static_cast<SCEVAddRecExpr *>(
NAKAMURA Takumi8f49dd32015-03-05 01:02:45 +00001389 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001390 }();
1391
1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1396 DeltaS, &Pred, this);
1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1398 return true;
1399 }
1400 }
1401
1402 return false;
1403}
1404
Dan Gohmanaf752342009-07-07 17:06:11 +00001405const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001406 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001408 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001409 assert(isSCEVable(Ty) &&
1410 "This is not a conversion to a SCEVable type!");
1411 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001412
Dan Gohman3423e722009-06-30 20:13:32 +00001413 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1415 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001417
Dan Gohman79af8542009-04-22 16:20:48 +00001418 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001420 return getZeroExtendExpr(SZ->getOperand(), Ty);
1421
Dan Gohman74a0ba12009-07-13 20:55:53 +00001422 // Before doing any expensive analysis, check to see if we've already
1423 // computed a SCEV for this Op and Ty.
1424 FoldingSetNodeID ID;
1425 ID.AddInteger(scZeroExtend);
1426 ID.AddPointer(Op);
1427 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001428 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1430
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001431 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1433 // It's possible the bits taken off by the truncate were all zero bits. If
1434 // so, we should be able to simplify this further.
1435 const SCEV *X = ST->getOperand();
1436 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001437 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1438 unsigned NewBits = getTypeSizeInBits(Ty);
1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001440 CR.zextOrTrunc(NewBits)))
1441 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001442 }
1443
Dan Gohman76466372009-04-27 20:16:15 +00001444 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001445 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001446 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001449 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001450 const SCEV *Start = AR->getStart();
1451 const SCEV *Step = AR->getStepRecurrence(*this);
1452 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1453 const Loop *L = AR->getLoop();
1454
Dan Gohman62ef6a72009-07-25 01:22:26 +00001455 // If we have special knowledge that this addrec won't overflow,
1456 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001457 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001458 return getAddRecExpr(
1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001461
Dan Gohman76466372009-04-27 20:16:15 +00001462 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1463 // Note that this serves two purposes: It filters out loops that are
1464 // simply not analyzable, and it covers the case where this code is
1465 // being called from within backedge-taken count analysis, such that
1466 // attempting to ask for the backedge-taken count would likely result
1467 // in infinite recursion. In the later case, the analysis code will
1468 // cope with a conservative value, and it will take care to purge
1469 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001472 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001473 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001474
1475 // Check whether the backedge-taken count can be losslessly casted to
1476 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001477 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001478 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001479 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1481 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001483 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1487 const SCEV *WideMaxBECount =
1488 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001489 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001490 getAddExpr(WideStart,
1491 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001492 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001493 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001494 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001496 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001497 return getAddRecExpr(
1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001500 }
Dan Gohman76466372009-04-27 20:16:15 +00001501 // Similar to above, only this time treat the step value as signed.
1502 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001503 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001504 getAddExpr(WideStart,
1505 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001506 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001507 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001508 // Cache knowledge of AR NW, which is propagated to this AddRec.
1509 // Negative step causes unsigned wrap, but it still can't self-wrap.
1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001511 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001512 return getAddRecExpr(
1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001515 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001516 }
1517
1518 // If the backedge is guarded by a comparison with the pre-inc value
1519 // the addrec is safe. Also, if the entry is guarded by a comparison
1520 // with the start value and the backedge is guarded by a comparison
1521 // with the post-inc value, the addrec is safe.
1522 if (isKnownPositive(Step)) {
1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1524 getUnsignedRange(Step).getUnsignedMax());
1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001528 AR->getPostIncExpr(*this), N))) {
1529 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001531 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001532 return getAddRecExpr(
1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001535 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001536 } else if (isKnownNegative(Step)) {
1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1538 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001542 AR->getPostIncExpr(*this), N))) {
1543 // Cache knowledge of AR NW, which is propagated to this AddRec.
1544 // Negative step causes unsigned wrap, but it still can't self-wrap.
1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1546 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001547 return getAddRecExpr(
1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001550 }
Dan Gohman76466372009-04-27 20:16:15 +00001551 }
1552 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001553
1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1556 return getAddRecExpr(
1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1559 }
Dan Gohman76466372009-04-27 20:16:15 +00001560 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001561
Dan Gohman74a0ba12009-07-13 20:55:53 +00001562 // The cast wasn't folded; create an explicit cast node.
1563 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001565 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1566 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001567 UniqueSCEVs.InsertNode(S, IP);
1568 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001569}
1570
Dan Gohmanaf752342009-07-07 17:06:11 +00001571const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001572 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001573 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001574 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001575 assert(isSCEVable(Ty) &&
1576 "This is not a conversion to a SCEVable type!");
1577 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001578
Dan Gohman3423e722009-06-30 20:13:32 +00001579 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001580 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1581 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001582 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001583
Dan Gohman79af8542009-04-22 16:20:48 +00001584 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001585 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001586 return getSignExtendExpr(SS->getOperand(), Ty);
1587
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001588 // sext(zext(x)) --> zext(x)
1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1590 return getZeroExtendExpr(SZ->getOperand(), Ty);
1591
Dan Gohman74a0ba12009-07-13 20:55:53 +00001592 // Before doing any expensive analysis, check to see if we've already
1593 // computed a SCEV for this Op and Ty.
1594 FoldingSetNodeID ID;
1595 ID.AddInteger(scSignExtend);
1596 ID.AddPointer(Op);
1597 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001598 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1600
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001601 // If the input value is provably positive, build a zext instead.
1602 if (isKnownNonNegative(Op))
1603 return getZeroExtendExpr(Op, Ty);
1604
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001605 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1606 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1607 // It's possible the bits taken off by the truncate were all sign bits. If
1608 // so, we should be able to simplify this further.
1609 const SCEV *X = ST->getOperand();
1610 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001611 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1612 unsigned NewBits = getTypeSizeInBits(Ty);
1613 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001614 CR.sextOrTrunc(NewBits)))
1615 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001616 }
1617
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001618 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1619 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1620 if (SA->getNumOperands() == 2) {
1621 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1622 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1623 if (SMul && SC1) {
1624 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001625 const APInt &C1 = SC1->getValue()->getValue();
1626 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001627 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001628 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001629 return getAddExpr(getSignExtendExpr(SC1, Ty),
1630 getSignExtendExpr(SMul, Ty));
1631 }
1632 }
1633 }
1634 }
Dan Gohman76466372009-04-27 20:16:15 +00001635 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001636 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001637 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001638 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001640 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001641 const SCEV *Start = AR->getStart();
1642 const SCEV *Step = AR->getStepRecurrence(*this);
1643 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1644 const Loop *L = AR->getLoop();
1645
Dan Gohman62ef6a72009-07-25 01:22:26 +00001646 // If we have special knowledge that this addrec won't overflow,
1647 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001648 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001649 return getAddRecExpr(
1650 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1651 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001652
Dan Gohman76466372009-04-27 20:16:15 +00001653 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1654 // Note that this serves two purposes: It filters out loops that are
1655 // simply not analyzable, and it covers the case where this code is
1656 // being called from within backedge-taken count analysis, such that
1657 // attempting to ask for the backedge-taken count would likely result
1658 // in infinite recursion. In the later case, the analysis code will
1659 // cope with a conservative value, and it will take care to purge
1660 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001661 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001662 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001663 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001664 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001665
1666 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001667 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001668 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001669 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001670 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001671 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1672 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001673 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001674 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001675 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001676 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1677 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1678 const SCEV *WideMaxBECount =
1679 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001680 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001681 getAddExpr(WideStart,
1682 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001683 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001684 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001685 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1686 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001687 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001688 return getAddRecExpr(
1689 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1690 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001691 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001692 // Similar to above, only this time treat the step value as unsigned.
1693 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001694 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001695 getAddExpr(WideStart,
1696 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001697 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001698 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001699 // If AR wraps around then
1700 //
1701 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1702 // => SAdd != OperandExtendedAdd
1703 //
1704 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1705 // (SAdd == OperandExtendedAdd => AR is NW)
1706
1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1708
Dan Gohman8c129d72009-07-16 17:34:36 +00001709 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001710 return getAddRecExpr(
1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1712 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001713 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001714 }
1715
1716 // If the backedge is guarded by a comparison with the pre-inc value
1717 // the addrec is safe. Also, if the entry is guarded by a comparison
1718 // with the start value and the backedge is guarded by a comparison
1719 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001720 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001721 const SCEV *OverflowLimit =
1722 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001723 if (OverflowLimit &&
1724 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1725 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1726 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1727 OverflowLimit)))) {
1728 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001730 return getAddRecExpr(
1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1732 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001733 }
1734 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001735 // If Start and Step are constants, check if we can apply this
1736 // transformation:
1737 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1738 auto SC1 = dyn_cast<SCEVConstant>(Start);
1739 auto SC2 = dyn_cast<SCEVConstant>(Step);
1740 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001741 const APInt &C1 = SC1->getValue()->getValue();
1742 const APInt &C2 = SC2->getValue()->getValue();
1743 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1744 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001745 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001746 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1747 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001748 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1749 }
1750 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001751
1752 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1754 return getAddRecExpr(
1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1757 }
Dan Gohman76466372009-04-27 20:16:15 +00001758 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001759
Dan Gohman74a0ba12009-07-13 20:55:53 +00001760 // The cast wasn't folded; create an explicit cast node.
1761 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001762 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001763 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1764 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001765 UniqueSCEVs.InsertNode(S, IP);
1766 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001767}
1768
Dan Gohman8db2edc2009-06-13 15:56:47 +00001769/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1770/// unspecified bits out to the given type.
1771///
Dan Gohmanaf752342009-07-07 17:06:11 +00001772const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001773 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001774 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1775 "This is not an extending conversion!");
1776 assert(isSCEVable(Ty) &&
1777 "This is not a conversion to a SCEVable type!");
1778 Ty = getEffectiveSCEVType(Ty);
1779
1780 // Sign-extend negative constants.
1781 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1782 if (SC->getValue()->getValue().isNegative())
1783 return getSignExtendExpr(Op, Ty);
1784
1785 // Peel off a truncate cast.
1786 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001787 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001788 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1789 return getAnyExtendExpr(NewOp, Ty);
1790 return getTruncateOrNoop(NewOp, Ty);
1791 }
1792
1793 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001794 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001795 if (!isa<SCEVZeroExtendExpr>(ZExt))
1796 return ZExt;
1797
1798 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001799 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001800 if (!isa<SCEVSignExtendExpr>(SExt))
1801 return SExt;
1802
Dan Gohman51ad99d2010-01-21 02:09:26 +00001803 // Force the cast to be folded into the operands of an addrec.
1804 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1805 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001806 for (const SCEV *Op : AR->operands())
1807 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001808 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001809 }
1810
Dan Gohman8db2edc2009-06-13 15:56:47 +00001811 // If the expression is obviously signed, use the sext cast value.
1812 if (isa<SCEVSMaxExpr>(Op))
1813 return SExt;
1814
1815 // Absent any other information, use the zext cast value.
1816 return ZExt;
1817}
1818
Dan Gohman038d02e2009-06-14 22:58:51 +00001819/// CollectAddOperandsWithScales - Process the given Ops list, which is
1820/// a list of operands to be added under the given scale, update the given
1821/// map. This is a helper function for getAddRecExpr. As an example of
1822/// what it does, given a sequence of operands that would form an add
1823/// expression like this:
1824///
Tobias Grosserba49e422014-03-05 10:37:17 +00001825/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001826///
1827/// where A and B are constants, update the map with these values:
1828///
1829/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1830///
1831/// and add 13 + A*B*29 to AccumulatedConstant.
1832/// This will allow getAddRecExpr to produce this:
1833///
1834/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1835///
1836/// This form often exposes folding opportunities that are hidden in
1837/// the original operand list.
1838///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001839/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001840/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1841/// the common case where no interesting opportunities are present, and
1842/// is also used as a check to avoid infinite recursion.
1843///
1844static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001845CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001846 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001847 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001848 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001849 const APInt &Scale,
1850 ScalarEvolution &SE) {
1851 bool Interesting = false;
1852
Dan Gohman45073042010-06-18 19:12:32 +00001853 // Iterate over the add operands. They are sorted, with constants first.
1854 unsigned i = 0;
1855 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1856 ++i;
1857 // Pull a buried constant out to the outside.
1858 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1859 Interesting = true;
1860 AccumulatedConstant += Scale * C->getValue()->getValue();
1861 }
1862
1863 // Next comes everything else. We're especially interested in multiplies
1864 // here, but they're in the middle, so just visit the rest with one loop.
1865 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001866 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1867 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1868 APInt NewScale =
1869 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1870 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1871 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001872 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001873 Interesting |=
1874 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001875 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001876 NewScale, SE);
1877 } else {
1878 // A multiplication of a constant with some other value. Update
1879 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001880 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1881 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Das7a9f8bb2015-09-17 19:04:09 +00001882 auto Pair = M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001883 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001884 NewOps.push_back(Pair.first->first);
1885 } else {
1886 Pair.first->second += NewScale;
1887 // The map already had an entry for this value, which may indicate
1888 // a folding opportunity.
1889 Interesting = true;
1890 }
1891 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001892 } else {
1893 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001894 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001895 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001896 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001897 NewOps.push_back(Pair.first->first);
1898 } else {
1899 Pair.first->second += Scale;
1900 // The map already had an entry for this value, which may indicate
1901 // a folding opportunity.
1902 Interesting = true;
1903 }
1904 }
1905 }
1906
1907 return Interesting;
1908}
1909
1910namespace {
1911 struct APIntCompare {
1912 bool operator()(const APInt &LHS, const APInt &RHS) const {
1913 return LHS.ult(RHS);
1914 }
1915 };
1916}
1917
Sanjoy Das81401d42015-01-10 23:41:24 +00001918// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1919// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1920// can't-overflow flags for the operation if possible.
1921static SCEV::NoWrapFlags
1922StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1923 const SmallVectorImpl<const SCEV *> &Ops,
1924 SCEV::NoWrapFlags OldFlags) {
1925 using namespace std::placeholders;
1926
1927 bool CanAnalyze =
1928 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1929 (void)CanAnalyze;
1930 assert(CanAnalyze && "don't call from other places!");
1931
1932 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1933 SCEV::NoWrapFlags SignOrUnsignWrap =
1934 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1935
1936 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1937 auto IsKnownNonNegative =
1938 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1939
1940 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1941 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1942 return ScalarEvolution::setFlags(OldFlags,
1943 (SCEV::NoWrapFlags)SignOrUnsignMask);
1944
1945 return OldFlags;
1946}
1947
Dan Gohman4d5435d2009-05-24 23:45:28 +00001948/// getAddExpr - Get a canonical add expression, or something simpler if
1949/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001950const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001951 SCEV::NoWrapFlags Flags) {
1952 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1953 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001954 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001955 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001956#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001957 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001958 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001959 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001960 "SCEVAddExpr operand types don't match!");
1961#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001962
Sanjoy Das81401d42015-01-10 23:41:24 +00001963 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001964
Chris Lattnerd934c702004-04-02 20:23:17 +00001965 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001966 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001967
1968 // If there are any constants, fold them together.
1969 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001970 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001971 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001972 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001973 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001974 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001975 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1976 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001977 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001978 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001979 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001980 }
1981
1982 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001983 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001984 Ops.erase(Ops.begin());
1985 --Idx;
1986 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001987
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001988 if (Ops.size() == 1) return Ops[0];
1989 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001990
Dan Gohman15871f22010-08-27 21:39:59 +00001991 // Okay, check to see if the same value occurs in the operand list more than
1992 // once. If so, merge them together into an multiply expression. Since we
1993 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001994 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001995 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001996 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001997 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001998 // Scan ahead to count how many equal operands there are.
1999 unsigned Count = 2;
2000 while (i+Count != e && Ops[i+Count] == Ops[i])
2001 ++Count;
2002 // Merge the values into a multiply.
2003 const SCEV *Scale = getConstant(Ty, Count);
2004 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2005 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002006 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002007 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002008 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002009 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002010 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002012 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002013 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002014
Dan Gohman2e55cc52009-05-08 21:03:19 +00002015 // Check for truncates. If all the operands are truncated from the same
2016 // type, see if factoring out the truncate would permit the result to be
2017 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2018 // if the contents of the resulting outer trunc fold to something simple.
2019 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2020 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002021 Type *DstType = Trunc->getType();
2022 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002023 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002024 bool Ok = true;
2025 // Check all the operands to see if they can be represented in the
2026 // source type of the truncate.
2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2028 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2029 if (T->getOperand()->getType() != SrcType) {
2030 Ok = false;
2031 break;
2032 }
2033 LargeOps.push_back(T->getOperand());
2034 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002035 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002036 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002037 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002038 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2039 if (const SCEVTruncateExpr *T =
2040 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2041 if (T->getOperand()->getType() != SrcType) {
2042 Ok = false;
2043 break;
2044 }
2045 LargeMulOps.push_back(T->getOperand());
2046 } else if (const SCEVConstant *C =
2047 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002048 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002049 } else {
2050 Ok = false;
2051 break;
2052 }
2053 }
2054 if (Ok)
2055 LargeOps.push_back(getMulExpr(LargeMulOps));
2056 } else {
2057 Ok = false;
2058 break;
2059 }
2060 }
2061 if (Ok) {
2062 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002063 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002064 // If it folds to something simple, use it. Otherwise, don't.
2065 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2066 return getTruncateExpr(Fold, DstType);
2067 }
2068 }
2069
2070 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002071 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2072 ++Idx;
2073
2074 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002075 if (Idx < Ops.size()) {
2076 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002077 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002078 // If we have an add, expand the add operands onto the end of the operands
2079 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002080 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002081 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002082 DeletedAdd = true;
2083 }
2084
2085 // If we deleted at least one add, we added operands to the end of the list,
2086 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002087 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002088 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002089 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002090 }
2091
2092 // Skip over the add expression until we get to a multiply.
2093 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2094 ++Idx;
2095
Dan Gohman038d02e2009-06-14 22:58:51 +00002096 // Check to see if there are any folding opportunities present with
2097 // operands multiplied by constant values.
2098 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2099 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002100 DenseMap<const SCEV *, APInt> M;
2101 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002102 APInt AccumulatedConstant(BitWidth, 0);
2103 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002104 Ops.data(), Ops.size(),
2105 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002106 // Some interesting folding opportunity is present, so its worthwhile to
2107 // re-generate the operands list. Group the operands by constant scale,
2108 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002109 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002110 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002111 E = NewOps.end(); I != E; ++I)
2112 MulOpLists[M.find(*I)->second].push_back(*I);
2113 // Re-generate the operands list.
2114 Ops.clear();
2115 if (AccumulatedConstant != 0)
2116 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002117 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2118 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002119 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002120 Ops.push_back(getMulExpr(getConstant(I->first),
2121 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002122 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002123 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002124 if (Ops.size() == 1)
2125 return Ops[0];
2126 return getAddExpr(Ops);
2127 }
2128 }
2129
Chris Lattnerd934c702004-04-02 20:23:17 +00002130 // If we are adding something to a multiply expression, make sure the
2131 // something is not already an operand of the multiply. If so, merge it into
2132 // the multiply.
2133 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002134 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002135 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002136 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002137 if (isa<SCEVConstant>(MulOpSCEV))
2138 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002139 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002140 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002141 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002142 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002143 if (Mul->getNumOperands() != 2) {
2144 // If the multiply has more than two operands, we must get the
2145 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002146 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2147 Mul->op_begin()+MulOp);
2148 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002149 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002150 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002151 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002152 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002153 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002154 if (Ops.size() == 2) return OuterMul;
2155 if (AddOp < Idx) {
2156 Ops.erase(Ops.begin()+AddOp);
2157 Ops.erase(Ops.begin()+Idx-1);
2158 } else {
2159 Ops.erase(Ops.begin()+Idx);
2160 Ops.erase(Ops.begin()+AddOp-1);
2161 }
2162 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002163 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002164 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002165
Chris Lattnerd934c702004-04-02 20:23:17 +00002166 // Check this multiply against other multiplies being added together.
2167 for (unsigned OtherMulIdx = Idx+1;
2168 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2169 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002170 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002171 // If MulOp occurs in OtherMul, we can fold the two multiplies
2172 // together.
2173 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2174 OMulOp != e; ++OMulOp)
2175 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2176 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002177 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002178 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002179 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002180 Mul->op_begin()+MulOp);
2181 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002182 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002183 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002184 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002185 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002186 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002187 OtherMul->op_begin()+OMulOp);
2188 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002189 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002190 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002191 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2192 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002193 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002194 Ops.erase(Ops.begin()+Idx);
2195 Ops.erase(Ops.begin()+OtherMulIdx-1);
2196 Ops.push_back(OuterMul);
2197 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002198 }
2199 }
2200 }
2201 }
2202
2203 // If there are any add recurrences in the operands list, see if any other
2204 // added values are loop invariant. If so, we can fold them into the
2205 // recurrence.
2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2207 ++Idx;
2208
2209 // Scan over all recurrences, trying to fold loop invariants into them.
2210 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2211 // Scan all of the other operands to this add and add them to the vector if
2212 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002213 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002214 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002215 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002216 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002217 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002218 LIOps.push_back(Ops[i]);
2219 Ops.erase(Ops.begin()+i);
2220 --i; --e;
2221 }
2222
2223 // If we found some loop invariants, fold them into the recurrence.
2224 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002225 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002226 LIOps.push_back(AddRec->getStart());
2227
Dan Gohmanaf752342009-07-07 17:06:11 +00002228 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002229 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002230 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002231
Dan Gohman16206132010-06-30 07:16:37 +00002232 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002233 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002234 // Always propagate NW.
2235 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002236 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002237
Chris Lattnerd934c702004-04-02 20:23:17 +00002238 // If all of the other operands were loop invariant, we are done.
2239 if (Ops.size() == 1) return NewRec;
2240
Nick Lewyckydb66b822011-09-06 05:08:09 +00002241 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002242 for (unsigned i = 0;; ++i)
2243 if (Ops[i] == AddRec) {
2244 Ops[i] = NewRec;
2245 break;
2246 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002247 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002248 }
2249
2250 // Okay, if there weren't any loop invariants to be folded, check to see if
2251 // there are multiple AddRec's with the same loop induction variable being
2252 // added together. If so, we can fold them.
2253 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002254 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2255 ++OtherIdx)
2256 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2257 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2258 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2259 AddRec->op_end());
2260 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2261 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002262 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002263 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002264 if (OtherAddRec->getLoop() == AddRecLoop) {
2265 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2266 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002267 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002268 AddRecOps.append(OtherAddRec->op_begin()+i,
2269 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002270 break;
2271 }
Dan Gohman028c1812010-08-29 14:53:34 +00002272 AddRecOps[i] = getAddExpr(AddRecOps[i],
2273 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002274 }
2275 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002276 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002277 // Step size has changed, so we cannot guarantee no self-wraparound.
2278 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002279 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002280 }
2281
2282 // Otherwise couldn't fold anything into this recurrence. Move onto the
2283 // next one.
2284 }
2285
2286 // Okay, it looks like we really DO need an add expr. Check to see if we
2287 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002288 FoldingSetNodeID ID;
2289 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002290 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2291 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002292 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002293 SCEVAddExpr *S =
2294 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2295 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002296 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2297 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002298 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2299 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002300 UniqueSCEVs.InsertNode(S, IP);
2301 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002302 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002303 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002304}
2305
Nick Lewycky287682e2011-10-04 06:51:26 +00002306static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2307 uint64_t k = i*j;
2308 if (j > 1 && k / j != i) Overflow = true;
2309 return k;
2310}
2311
2312/// Compute the result of "n choose k", the binomial coefficient. If an
2313/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002314/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002315static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2316 // We use the multiplicative formula:
2317 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2318 // At each iteration, we take the n-th term of the numeral and divide by the
2319 // (k-n)th term of the denominator. This division will always produce an
2320 // integral result, and helps reduce the chance of overflow in the
2321 // intermediate computations. However, we can still overflow even when the
2322 // final result would fit.
2323
2324 if (n == 0 || n == k) return 1;
2325 if (k > n) return 0;
2326
2327 if (k > n/2)
2328 k = n-k;
2329
2330 uint64_t r = 1;
2331 for (uint64_t i = 1; i <= k; ++i) {
2332 r = umul_ov(r, n-(i-1), Overflow);
2333 r /= i;
2334 }
2335 return r;
2336}
2337
Nick Lewycky05044c22014-12-06 00:45:50 +00002338/// Determine if any of the operands in this SCEV are a constant or if
2339/// any of the add or multiply expressions in this SCEV contain a constant.
2340static bool containsConstantSomewhere(const SCEV *StartExpr) {
2341 SmallVector<const SCEV *, 4> Ops;
2342 Ops.push_back(StartExpr);
2343 while (!Ops.empty()) {
2344 const SCEV *CurrentExpr = Ops.pop_back_val();
2345 if (isa<SCEVConstant>(*CurrentExpr))
2346 return true;
2347
2348 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2349 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002350 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002351 }
2352 }
2353 return false;
2354}
2355
Dan Gohman4d5435d2009-05-24 23:45:28 +00002356/// getMulExpr - Get a canonical multiply expression, or something simpler if
2357/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002358const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002359 SCEV::NoWrapFlags Flags) {
2360 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2361 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002362 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002363 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002364#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002365 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002366 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002367 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002368 "SCEVMulExpr operand types don't match!");
2369#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002370
Sanjoy Das81401d42015-01-10 23:41:24 +00002371 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002372
Chris Lattnerd934c702004-04-02 20:23:17 +00002373 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002374 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002375
2376 // If there are any constants, fold them together.
2377 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002378 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002379
2380 // C1*(C2+V) -> C1*C2 + C1*V
2381 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002382 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2383 // If any of Add's ops are Adds or Muls with a constant,
2384 // apply this transformation as well.
2385 if (Add->getNumOperands() == 2)
2386 if (containsConstantSomewhere(Add))
2387 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2388 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002389
Chris Lattnerd934c702004-04-02 20:23:17 +00002390 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002392 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002393 ConstantInt *Fold = ConstantInt::get(getContext(),
2394 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002395 RHSC->getValue()->getValue());
2396 Ops[0] = getConstant(Fold);
2397 Ops.erase(Ops.begin()+1); // Erase the folded element
2398 if (Ops.size() == 1) return Ops[0];
2399 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002400 }
2401
2402 // If we are left with a constant one being multiplied, strip it off.
2403 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2404 Ops.erase(Ops.begin());
2405 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002407 // If we have a multiply of zero, it will always be zero.
2408 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002409 } else if (Ops[0]->isAllOnesValue()) {
2410 // If we have a mul by -1 of an add, try distributing the -1 among the
2411 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002412 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002413 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2414 SmallVector<const SCEV *, 4> NewOps;
2415 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002416 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2417 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002418 const SCEV *Mul = getMulExpr(Ops[0], *I);
2419 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2420 NewOps.push_back(Mul);
2421 }
2422 if (AnyFolded)
2423 return getAddExpr(NewOps);
2424 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002425 else if (const SCEVAddRecExpr *
2426 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2427 // Negation preserves a recurrence's no self-wrap property.
2428 SmallVector<const SCEV *, 4> Operands;
2429 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2430 E = AddRec->op_end(); I != E; ++I) {
2431 Operands.push_back(getMulExpr(Ops[0], *I));
2432 }
2433 return getAddRecExpr(Operands, AddRec->getLoop(),
2434 AddRec->getNoWrapFlags(SCEV::FlagNW));
2435 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002436 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002437 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002438
2439 if (Ops.size() == 1)
2440 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002441 }
2442
2443 // Skip over the add expression until we get to a multiply.
2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2445 ++Idx;
2446
Chris Lattnerd934c702004-04-02 20:23:17 +00002447 // If there are mul operands inline them all into this expression.
2448 if (Idx < Ops.size()) {
2449 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002450 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002451 // If we have an mul, expand the mul operands onto the end of the operands
2452 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002453 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002454 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002455 DeletedMul = true;
2456 }
2457
2458 // If we deleted at least one mul, we added operands to the end of the list,
2459 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002460 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002461 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002462 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002463 }
2464
2465 // If there are any add recurrences in the operands list, see if any other
2466 // added values are loop invariant. If so, we can fold them into the
2467 // recurrence.
2468 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2469 ++Idx;
2470
2471 // Scan over all recurrences, trying to fold loop invariants into them.
2472 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2473 // Scan all of the other operands to this mul and add them to the vector if
2474 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002475 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002476 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002477 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002478 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002479 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002480 LIOps.push_back(Ops[i]);
2481 Ops.erase(Ops.begin()+i);
2482 --i; --e;
2483 }
2484
2485 // If we found some loop invariants, fold them into the recurrence.
2486 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002487 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002488 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002489 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002490 const SCEV *Scale = getMulExpr(LIOps);
2491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2492 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002493
Dan Gohman16206132010-06-30 07:16:37 +00002494 // Build the new addrec. Propagate the NUW and NSW flags if both the
2495 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002496 //
2497 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002498 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002499 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2500 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002501
2502 // If all of the other operands were loop invariant, we are done.
2503 if (Ops.size() == 1) return NewRec;
2504
Nick Lewyckydb66b822011-09-06 05:08:09 +00002505 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002506 for (unsigned i = 0;; ++i)
2507 if (Ops[i] == AddRec) {
2508 Ops[i] = NewRec;
2509 break;
2510 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002511 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002512 }
2513
2514 // Okay, if there weren't any loop invariants to be folded, check to see if
2515 // there are multiple AddRec's with the same loop induction variable being
2516 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002517
2518 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2519 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2520 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2521 // ]]],+,...up to x=2n}.
2522 // Note that the arguments to choose() are always integers with values
2523 // known at compile time, never SCEV objects.
2524 //
2525 // The implementation avoids pointless extra computations when the two
2526 // addrec's are of different length (mathematically, it's equivalent to
2527 // an infinite stream of zeros on the right).
2528 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002529 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002530 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002531 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002532 const SCEVAddRecExpr *OtherAddRec =
2533 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2534 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002535 continue;
2536
Nick Lewycky97756402014-09-01 05:17:15 +00002537 bool Overflow = false;
2538 Type *Ty = AddRec->getType();
2539 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2540 SmallVector<const SCEV*, 7> AddRecOps;
2541 for (int x = 0, xe = AddRec->getNumOperands() +
2542 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002543 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002544 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2545 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2546 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2547 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2548 z < ze && !Overflow; ++z) {
2549 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2550 uint64_t Coeff;
2551 if (LargerThan64Bits)
2552 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2553 else
2554 Coeff = Coeff1*Coeff2;
2555 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2556 const SCEV *Term1 = AddRec->getOperand(y-z);
2557 const SCEV *Term2 = OtherAddRec->getOperand(z);
2558 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002559 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002560 }
Nick Lewycky97756402014-09-01 05:17:15 +00002561 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002562 }
Nick Lewycky97756402014-09-01 05:17:15 +00002563 if (!Overflow) {
2564 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2565 SCEV::FlagAnyWrap);
2566 if (Ops.size() == 2) return NewAddRec;
2567 Ops[Idx] = NewAddRec;
2568 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2569 OpsModified = true;
2570 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2571 if (!AddRec)
2572 break;
2573 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002574 }
Nick Lewycky97756402014-09-01 05:17:15 +00002575 if (OpsModified)
2576 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002577
2578 // Otherwise couldn't fold anything into this recurrence. Move onto the
2579 // next one.
2580 }
2581
2582 // Okay, it looks like we really DO need an mul expr. Check to see if we
2583 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002584 FoldingSetNodeID ID;
2585 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002586 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2587 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002588 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002589 SCEVMulExpr *S =
2590 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2591 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002592 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2593 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002594 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2595 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002596 UniqueSCEVs.InsertNode(S, IP);
2597 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002598 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002599 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002600}
2601
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002602/// getUDivExpr - Get a canonical unsigned division expression, or something
2603/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002604const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2605 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002606 assert(getEffectiveSCEVType(LHS->getType()) ==
2607 getEffectiveSCEVType(RHS->getType()) &&
2608 "SCEVUDivExpr operand types don't match!");
2609
Dan Gohmana30370b2009-05-04 22:02:23 +00002610 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002611 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002612 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002613 // If the denominator is zero, the result of the udiv is undefined. Don't
2614 // try to analyze it, because the resolution chosen here may differ from
2615 // the resolution chosen in other parts of the compiler.
2616 if (!RHSC->getValue()->isZero()) {
2617 // Determine if the division can be folded into the operands of
2618 // its operands.
2619 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002620 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002621 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002622 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002623 // For non-power-of-two values, effectively round the value up to the
2624 // nearest power of two.
2625 if (!RHSC->getValue()->getValue().isPowerOf2())
2626 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002627 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002628 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002629 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2630 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002631 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2632 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2633 const APInt &StepInt = Step->getValue()->getValue();
2634 const APInt &DivInt = RHSC->getValue()->getValue();
2635 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002636 getZeroExtendExpr(AR, ExtTy) ==
2637 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2638 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002639 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002640 SmallVector<const SCEV *, 4> Operands;
2641 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2642 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002643 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002644 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002645 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002646 /// Get a canonical UDivExpr for a recurrence.
2647 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2648 // We can currently only fold X%N if X is constant.
2649 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2650 if (StartC && !DivInt.urem(StepInt) &&
2651 getZeroExtendExpr(AR, ExtTy) ==
2652 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2653 getZeroExtendExpr(Step, ExtTy),
2654 AR->getLoop(), SCEV::FlagAnyWrap)) {
2655 const APInt &StartInt = StartC->getValue()->getValue();
2656 const APInt &StartRem = StartInt.urem(StepInt);
2657 if (StartRem != 0)
2658 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2659 AR->getLoop(), SCEV::FlagNW);
2660 }
2661 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002662 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2663 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2664 SmallVector<const SCEV *, 4> Operands;
2665 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2666 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2667 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2668 // Find an operand that's safely divisible.
2669 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2670 const SCEV *Op = M->getOperand(i);
2671 const SCEV *Div = getUDivExpr(Op, RHSC);
2672 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2673 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2674 M->op_end());
2675 Operands[i] = Div;
2676 return getMulExpr(Operands);
2677 }
2678 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002679 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002680 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002681 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002682 SmallVector<const SCEV *, 4> Operands;
2683 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2684 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2685 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2686 Operands.clear();
2687 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2688 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2689 if (isa<SCEVUDivExpr>(Op) ||
2690 getMulExpr(Op, RHS) != A->getOperand(i))
2691 break;
2692 Operands.push_back(Op);
2693 }
2694 if (Operands.size() == A->getNumOperands())
2695 return getAddExpr(Operands);
2696 }
2697 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002698
Dan Gohmanacd700a2010-04-22 01:35:11 +00002699 // Fold if both operands are constant.
2700 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2701 Constant *LHSCV = LHSC->getValue();
2702 Constant *RHSCV = RHSC->getValue();
2703 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2704 RHSCV)));
2705 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002706 }
2707 }
2708
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002709 FoldingSetNodeID ID;
2710 ID.AddInteger(scUDivExpr);
2711 ID.AddPointer(LHS);
2712 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002713 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002714 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002715 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2716 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002717 UniqueSCEVs.InsertNode(S, IP);
2718 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002719}
2720
Nick Lewycky31eaca52014-01-27 10:04:03 +00002721static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2722 APInt A = C1->getValue()->getValue().abs();
2723 APInt B = C2->getValue()->getValue().abs();
2724 uint32_t ABW = A.getBitWidth();
2725 uint32_t BBW = B.getBitWidth();
2726
2727 if (ABW > BBW)
2728 B = B.zext(ABW);
2729 else if (ABW < BBW)
2730 A = A.zext(BBW);
2731
2732 return APIntOps::GreatestCommonDivisor(A, B);
2733}
2734
2735/// getUDivExactExpr - Get a canonical unsigned division expression, or
2736/// something simpler if possible. There is no representation for an exact udiv
2737/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2738/// We can't do this when it's not exact because the udiv may be clearing bits.
2739const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2740 const SCEV *RHS) {
2741 // TODO: we could try to find factors in all sorts of things, but for now we
2742 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2743 // end of this file for inspiration.
2744
2745 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2746 if (!Mul)
2747 return getUDivExpr(LHS, RHS);
2748
2749 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2750 // If the mulexpr multiplies by a constant, then that constant must be the
2751 // first element of the mulexpr.
2752 if (const SCEVConstant *LHSCst =
2753 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2754 if (LHSCst == RHSCst) {
2755 SmallVector<const SCEV *, 2> Operands;
2756 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2757 return getMulExpr(Operands);
2758 }
2759
2760 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2761 // that there's a factor provided by one of the other terms. We need to
2762 // check.
2763 APInt Factor = gcd(LHSCst, RHSCst);
2764 if (!Factor.isIntN(1)) {
2765 LHSCst = cast<SCEVConstant>(
2766 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2767 RHSCst = cast<SCEVConstant>(
2768 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2769 SmallVector<const SCEV *, 2> Operands;
2770 Operands.push_back(LHSCst);
2771 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2772 LHS = getMulExpr(Operands);
2773 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002774 Mul = dyn_cast<SCEVMulExpr>(LHS);
2775 if (!Mul)
2776 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002777 }
2778 }
2779 }
2780
2781 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2782 if (Mul->getOperand(i) == RHS) {
2783 SmallVector<const SCEV *, 2> Operands;
2784 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2785 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2786 return getMulExpr(Operands);
2787 }
2788 }
2789
2790 return getUDivExpr(LHS, RHS);
2791}
Chris Lattnerd934c702004-04-02 20:23:17 +00002792
Dan Gohman4d5435d2009-05-24 23:45:28 +00002793/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2794/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002795const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2796 const Loop *L,
2797 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002798 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002799 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002800 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002801 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002802 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002803 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002804 }
2805
2806 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002807 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002808}
2809
Dan Gohman4d5435d2009-05-24 23:45:28 +00002810/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2811/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002812const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002813ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002814 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002815 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002816#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002817 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002818 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002819 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002820 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002821 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002822 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002823 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002824#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002825
Dan Gohmanbe928e32008-06-18 16:23:07 +00002826 if (Operands.back()->isZero()) {
2827 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002828 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002829 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002830
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002831 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2832 // use that information to infer NUW and NSW flags. However, computing a
2833 // BE count requires calling getAddRecExpr, so we may not yet have a
2834 // meaningful BE count at this point (and if we don't, we'd be stuck
2835 // with a SCEVCouldNotCompute as the cached BE count).
2836
Sanjoy Das81401d42015-01-10 23:41:24 +00002837 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002838
Dan Gohman223a5d22008-08-08 18:33:12 +00002839 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002840 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002841 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002842 if (L->contains(NestedLoop)
2843 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2844 : (!NestedLoop->contains(L) &&
2845 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002846 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002847 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002848 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002849 // AddRecs require their operands be loop-invariant with respect to their
2850 // loops. Don't perform this transformation if it would break this
2851 // requirement.
2852 bool AllInvariant = true;
2853 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002854 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002855 AllInvariant = false;
2856 break;
2857 }
2858 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002859 // Create a recurrence for the outer loop with the same step size.
2860 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002861 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2862 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002863 SCEV::NoWrapFlags OuterFlags =
2864 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002865
2866 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002867 AllInvariant = true;
2868 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002869 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002870 AllInvariant = false;
2871 break;
2872 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002873 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002874 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002875 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002876 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2877 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002878 SCEV::NoWrapFlags InnerFlags =
2879 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002880 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2881 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002882 }
2883 // Reset Operands to its original state.
2884 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002885 }
2886 }
2887
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002888 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2889 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002890 FoldingSetNodeID ID;
2891 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002892 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2893 ID.AddPointer(Operands[i]);
2894 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002895 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002896 SCEVAddRecExpr *S =
2897 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2898 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002899 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2900 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002901 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2902 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002903 UniqueSCEVs.InsertNode(S, IP);
2904 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002905 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002906 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002907}
2908
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002909const SCEV *
2910ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2911 const SmallVectorImpl<const SCEV *> &IndexExprs,
2912 bool InBounds) {
2913 // getSCEV(Base)->getType() has the same address space as Base->getType()
2914 // because SCEV::getType() preserves the address space.
2915 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2916 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2917 // instruction to its SCEV, because the Instruction may be guarded by control
2918 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002919 // context. This can be fixed similarly to how these flags are handled for
2920 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002921 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2922
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002923 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002924 // The address space is unimportant. The first thing we do on CurTy is getting
2925 // its element type.
2926 Type *CurTy = PointerType::getUnqual(PointeeType);
2927 for (const SCEV *IndexExpr : IndexExprs) {
2928 // Compute the (potentially symbolic) offset in bytes for this index.
2929 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2930 // For a struct, add the member offset.
2931 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2932 unsigned FieldNo = Index->getZExtValue();
2933 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2934
2935 // Add the field offset to the running total offset.
2936 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2937
2938 // Update CurTy to the type of the field at Index.
2939 CurTy = STy->getTypeAtIndex(Index);
2940 } else {
2941 // Update CurTy to its element type.
2942 CurTy = cast<SequentialType>(CurTy)->getElementType();
2943 // For an array, add the element offset, explicitly scaled.
2944 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2945 // Getelementptr indices are signed.
2946 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2947
2948 // Multiply the index by the element size to compute the element offset.
2949 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2950
2951 // Add the element offset to the running total offset.
2952 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2953 }
2954 }
2955
2956 // Add the total offset from all the GEP indices to the base.
2957 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2958}
2959
Dan Gohmanabd17092009-06-24 14:49:00 +00002960const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2961 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002962 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002963 Ops.push_back(LHS);
2964 Ops.push_back(RHS);
2965 return getSMaxExpr(Ops);
2966}
2967
Dan Gohmanaf752342009-07-07 17:06:11 +00002968const SCEV *
2969ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002970 assert(!Ops.empty() && "Cannot get empty smax!");
2971 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002972#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002973 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002974 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002975 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002976 "SCEVSMaxExpr operand types don't match!");
2977#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002978
2979 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002980 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002981
2982 // If there are any constants, fold them together.
2983 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002984 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002985 ++Idx;
2986 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002987 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002988 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002989 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002990 APIntOps::smax(LHSC->getValue()->getValue(),
2991 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002992 Ops[0] = getConstant(Fold);
2993 Ops.erase(Ops.begin()+1); // Erase the folded element
2994 if (Ops.size() == 1) return Ops[0];
2995 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002996 }
2997
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002998 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002999 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3000 Ops.erase(Ops.begin());
3001 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003002 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3003 // If we have an smax with a constant maximum-int, it will always be
3004 // maximum-int.
3005 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003006 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003007
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003008 if (Ops.size() == 1) return Ops[0];
3009 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003010
3011 // Find the first SMax
3012 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3013 ++Idx;
3014
3015 // Check to see if one of the operands is an SMax. If so, expand its operands
3016 // onto our operand list, and recurse to simplify.
3017 if (Idx < Ops.size()) {
3018 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003019 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003020 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003021 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003022 DeletedSMax = true;
3023 }
3024
3025 if (DeletedSMax)
3026 return getSMaxExpr(Ops);
3027 }
3028
3029 // Okay, check to see if the same value occurs in the operand list twice. If
3030 // so, delete one. Since we sorted the list, these values are required to
3031 // be adjacent.
3032 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003033 // X smax Y smax Y --> X smax Y
3034 // X smax Y --> X, if X is always greater than Y
3035 if (Ops[i] == Ops[i+1] ||
3036 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3037 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3038 --i; --e;
3039 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003040 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3041 --i; --e;
3042 }
3043
3044 if (Ops.size() == 1) return Ops[0];
3045
3046 assert(!Ops.empty() && "Reduced smax down to nothing!");
3047
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003048 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003049 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003050 FoldingSetNodeID ID;
3051 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003052 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3053 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003054 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003055 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003056 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3057 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003058 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3059 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003060 UniqueSCEVs.InsertNode(S, IP);
3061 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003062}
3063
Dan Gohmanabd17092009-06-24 14:49:00 +00003064const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3065 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003066 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003067 Ops.push_back(LHS);
3068 Ops.push_back(RHS);
3069 return getUMaxExpr(Ops);
3070}
3071
Dan Gohmanaf752342009-07-07 17:06:11 +00003072const SCEV *
3073ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003074 assert(!Ops.empty() && "Cannot get empty umax!");
3075 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003076#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003077 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003078 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003079 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003080 "SCEVUMaxExpr operand types don't match!");
3081#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003082
3083 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003084 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003085
3086 // If there are any constants, fold them together.
3087 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003088 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003089 ++Idx;
3090 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003091 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003092 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003093 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003094 APIntOps::umax(LHSC->getValue()->getValue(),
3095 RHSC->getValue()->getValue()));
3096 Ops[0] = getConstant(Fold);
3097 Ops.erase(Ops.begin()+1); // Erase the folded element
3098 if (Ops.size() == 1) return Ops[0];
3099 LHSC = cast<SCEVConstant>(Ops[0]);
3100 }
3101
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003102 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003103 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3104 Ops.erase(Ops.begin());
3105 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003106 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3107 // If we have an umax with a constant maximum-int, it will always be
3108 // maximum-int.
3109 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003110 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003111
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003112 if (Ops.size() == 1) return Ops[0];
3113 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003114
3115 // Find the first UMax
3116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3117 ++Idx;
3118
3119 // Check to see if one of the operands is a UMax. If so, expand its operands
3120 // onto our operand list, and recurse to simplify.
3121 if (Idx < Ops.size()) {
3122 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003123 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003124 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003125 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003126 DeletedUMax = true;
3127 }
3128
3129 if (DeletedUMax)
3130 return getUMaxExpr(Ops);
3131 }
3132
3133 // Okay, check to see if the same value occurs in the operand list twice. If
3134 // so, delete one. Since we sorted the list, these values are required to
3135 // be adjacent.
3136 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003137 // X umax Y umax Y --> X umax Y
3138 // X umax Y --> X, if X is always greater than Y
3139 if (Ops[i] == Ops[i+1] ||
3140 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3141 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3142 --i; --e;
3143 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003144 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3145 --i; --e;
3146 }
3147
3148 if (Ops.size() == 1) return Ops[0];
3149
3150 assert(!Ops.empty() && "Reduced umax down to nothing!");
3151
3152 // Okay, it looks like we really DO need a umax expr. Check to see if we
3153 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003154 FoldingSetNodeID ID;
3155 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003156 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3157 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003158 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003159 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003160 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3161 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003162 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3163 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003164 UniqueSCEVs.InsertNode(S, IP);
3165 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003166}
3167
Dan Gohmanabd17092009-06-24 14:49:00 +00003168const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3169 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003170 // ~smax(~x, ~y) == smin(x, y).
3171 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3172}
3173
Dan Gohmanabd17092009-06-24 14:49:00 +00003174const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3175 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003176 // ~umax(~x, ~y) == umin(x, y)
3177 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3178}
3179
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003180const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003181 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003182 // constant expression and then folding it back into a ConstantInt.
3183 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003184 return getConstant(IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003185 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003186}
3187
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003188const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3189 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003190 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003191 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003192 // constant expression and then folding it back into a ConstantInt.
3193 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003194 return getConstant(
3195 IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003196 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003197 FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003198}
3199
Dan Gohmanaf752342009-07-07 17:06:11 +00003200const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003201 // Don't attempt to do anything other than create a SCEVUnknown object
3202 // here. createSCEV only calls getUnknown after checking for all other
3203 // interesting possibilities, and any other code that calls getUnknown
3204 // is doing so in order to hide a value from SCEV canonicalization.
3205
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003206 FoldingSetNodeID ID;
3207 ID.AddInteger(scUnknown);
3208 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003209 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003210 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3211 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3212 "Stale SCEVUnknown in uniquing map!");
3213 return S;
3214 }
3215 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3216 FirstUnknown);
3217 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003218 UniqueSCEVs.InsertNode(S, IP);
3219 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003220}
3221
Chris Lattnerd934c702004-04-02 20:23:17 +00003222//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003223// Basic SCEV Analysis and PHI Idiom Recognition Code
3224//
3225
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003226/// isSCEVable - Test if values of the given type are analyzable within
3227/// the SCEV framework. This primarily includes integer types, and it
3228/// can optionally include pointer types if the ScalarEvolution class
3229/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003230bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003231 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003232 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003233}
3234
3235/// getTypeSizeInBits - Return the size in bits of the specified type,
3236/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003237uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003238 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003239 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003240}
3241
3242/// getEffectiveSCEVType - Return a type with the same bitwidth as
3243/// the given type and which represents how SCEV will treat the given
3244/// type, for which isSCEVable must return true. For pointer types,
3245/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003246Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003247 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3248
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003249 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003250 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003251 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003252
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003253 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003254 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003255 return F.getParent()->getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003256}
Chris Lattnerd934c702004-04-02 20:23:17 +00003257
Dan Gohmanaf752342009-07-07 17:06:11 +00003258const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003259 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003260}
3261
Shuxin Yangefc4c012013-07-08 17:33:13 +00003262namespace {
3263 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3264 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3265 // is set iff if find such SCEVUnknown.
3266 //
3267 struct FindInvalidSCEVUnknown {
3268 bool FindOne;
3269 FindInvalidSCEVUnknown() { FindOne = false; }
3270 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003271 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003272 case scConstant:
3273 return false;
3274 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003275 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003276 FindOne = true;
3277 return false;
3278 default:
3279 return true;
3280 }
3281 }
3282 bool isDone() const { return FindOne; }
3283 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003284}
Shuxin Yangefc4c012013-07-08 17:33:13 +00003285
3286bool ScalarEvolution::checkValidity(const SCEV *S) const {
3287 FindInvalidSCEVUnknown F;
3288 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3289 ST.visitAll(S);
3290
3291 return !F.FindOne;
3292}
3293
Chris Lattnerd934c702004-04-02 20:23:17 +00003294/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3295/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003296const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003297 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003298
Jingyue Wu42f1d672015-07-28 18:22:40 +00003299 const SCEV *S = getExistingSCEV(V);
3300 if (S == nullptr) {
3301 S = createSCEV(V);
3302 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3303 }
3304 return S;
3305}
3306
3307const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3308 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3309
Shuxin Yangefc4c012013-07-08 17:33:13 +00003310 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3311 if (I != ValueExprMap.end()) {
3312 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003313 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003314 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003315 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003316 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003317 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003318}
3319
Dan Gohman0a40ad92009-04-16 03:18:22 +00003320/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3321///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003322const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3323 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003324 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003325 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003326 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003327
Chris Lattner229907c2011-07-18 04:54:35 +00003328 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003329 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003330 return getMulExpr(
3331 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003332}
3333
3334/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003335const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003336 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003337 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003338 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003339
Chris Lattner229907c2011-07-18 04:54:35 +00003340 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003341 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003342 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003343 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003344 return getMinusSCEV(AllOnes, V);
3345}
3346
Andrew Trick8b55b732011-03-14 16:50:06 +00003347/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003348const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003349 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003350 // Fast path: X - X --> 0.
3351 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003352 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003353
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003354 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3355 // makes it so that we cannot make much use of NUW.
3356 auto AddFlags = SCEV::FlagAnyWrap;
3357 const bool RHSIsNotMinSigned =
3358 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3359 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3360 // Let M be the minimum representable signed value. Then (-1)*RHS
3361 // signed-wraps if and only if RHS is M. That can happen even for
3362 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3363 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3364 // (-1)*RHS, we need to prove that RHS != M.
3365 //
3366 // If LHS is non-negative and we know that LHS - RHS does not
3367 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3368 // either by proving that RHS > M or that LHS >= 0.
3369 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3370 AddFlags = SCEV::FlagNSW;
3371 }
3372 }
3373
3374 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3375 // RHS is NSW and LHS >= 0.
3376 //
3377 // The difficulty here is that the NSW flag may have been proven
3378 // relative to a loop that is to be found in a recurrence in LHS and
3379 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3380 // larger scope than intended.
3381 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3382
3383 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003384}
3385
3386/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3387/// input value to the specified type. If the type must be extended, it is zero
3388/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003389const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003390ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3391 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003392 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3393 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003394 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003395 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003396 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003397 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003398 return getTruncateExpr(V, Ty);
3399 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003400}
3401
3402/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3403/// input value to the specified type. If the type must be extended, it is sign
3404/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003405const SCEV *
3406ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003407 Type *Ty) {
3408 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003409 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3410 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003411 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003412 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003413 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003414 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003415 return getTruncateExpr(V, Ty);
3416 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003417}
3418
Dan Gohmane712a2f2009-05-13 03:46:30 +00003419/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3420/// input value to the specified type. If the type must be extended, it is zero
3421/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003422const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003423ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3424 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003425 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3426 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003427 "Cannot noop or zero extend with non-integer arguments!");
3428 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3429 "getNoopOrZeroExtend cannot truncate!");
3430 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3431 return V; // No conversion
3432 return getZeroExtendExpr(V, Ty);
3433}
3434
3435/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3436/// input value to the specified type. If the type must be extended, it is sign
3437/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003438const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003439ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3440 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003441 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3442 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003443 "Cannot noop or sign extend with non-integer arguments!");
3444 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3445 "getNoopOrSignExtend cannot truncate!");
3446 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3447 return V; // No conversion
3448 return getSignExtendExpr(V, Ty);
3449}
3450
Dan Gohman8db2edc2009-06-13 15:56:47 +00003451/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3452/// the input value to the specified type. If the type must be extended,
3453/// it is extended with unspecified bits. The conversion must not be
3454/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003455const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003456ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3457 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003458 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3459 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003460 "Cannot noop or any extend with non-integer arguments!");
3461 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3462 "getNoopOrAnyExtend cannot truncate!");
3463 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3464 return V; // No conversion
3465 return getAnyExtendExpr(V, Ty);
3466}
3467
Dan Gohmane712a2f2009-05-13 03:46:30 +00003468/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3469/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003470const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003471ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3472 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3474 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003475 "Cannot truncate or noop with non-integer arguments!");
3476 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3477 "getTruncateOrNoop cannot extend!");
3478 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3479 return V; // No conversion
3480 return getTruncateExpr(V, Ty);
3481}
3482
Dan Gohman96212b62009-06-22 00:31:57 +00003483/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3484/// the types using zero-extension, and then perform a umax operation
3485/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003486const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3487 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003488 const SCEV *PromotedLHS = LHS;
3489 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003490
3491 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3492 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3493 else
3494 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3495
3496 return getUMaxExpr(PromotedLHS, PromotedRHS);
3497}
3498
Dan Gohman2bc22302009-06-22 15:03:27 +00003499/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3500/// the types using zero-extension, and then perform a umin operation
3501/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003502const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3503 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003504 const SCEV *PromotedLHS = LHS;
3505 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003506
3507 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3508 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3509 else
3510 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3511
3512 return getUMinExpr(PromotedLHS, PromotedRHS);
3513}
3514
Andrew Trick87716c92011-03-17 23:51:11 +00003515/// getPointerBase - Transitively follow the chain of pointer-type operands
3516/// until reaching a SCEV that does not have a single pointer operand. This
3517/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3518/// but corner cases do exist.
3519const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3520 // A pointer operand may evaluate to a nonpointer expression, such as null.
3521 if (!V->getType()->isPointerTy())
3522 return V;
3523
3524 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3525 return getPointerBase(Cast->getOperand());
3526 }
3527 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003528 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003529 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3530 I != E; ++I) {
3531 if ((*I)->getType()->isPointerTy()) {
3532 // Cannot find the base of an expression with multiple pointer operands.
3533 if (PtrOp)
3534 return V;
3535 PtrOp = *I;
3536 }
3537 }
3538 if (!PtrOp)
3539 return V;
3540 return getPointerBase(PtrOp);
3541 }
3542 return V;
3543}
3544
Dan Gohman0b89dff2009-07-25 01:13:03 +00003545/// PushDefUseChildren - Push users of the given Instruction
3546/// onto the given Worklist.
3547static void
3548PushDefUseChildren(Instruction *I,
3549 SmallVectorImpl<Instruction *> &Worklist) {
3550 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003551 for (User *U : I->users())
3552 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003553}
3554
3555/// ForgetSymbolicValue - This looks up computed SCEV values for all
3556/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003557/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003558/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003559void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003560ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003561 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003562 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003563
Dan Gohman0b89dff2009-07-25 01:13:03 +00003564 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003565 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003566 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003567 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003568 if (!Visited.insert(I).second)
3569 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003570
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003571 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003572 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003573 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003574 const SCEV *Old = It->second;
3575
Dan Gohman0b89dff2009-07-25 01:13:03 +00003576 // Short-circuit the def-use traversal if the symbolic name
3577 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003578 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003579 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003580
Dan Gohman0b89dff2009-07-25 01:13:03 +00003581 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003582 // structure, it's a PHI that's in the progress of being computed
3583 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3584 // additional loop trip count information isn't going to change anything.
3585 // In the second case, createNodeForPHI will perform the necessary
3586 // updates on its own when it gets to that point. In the third, we do
3587 // want to forget the SCEVUnknown.
3588 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003589 !isa<SCEVUnknown>(Old) ||
3590 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003591 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003592 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003593 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003594 }
3595
3596 PushDefUseChildren(I, Worklist);
3597 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003598}
Chris Lattnerd934c702004-04-02 20:23:17 +00003599
Sanjoy Das55015d22015-10-02 23:09:44 +00003600const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3601 const Loop *L = LI.getLoopFor(PN->getParent());
3602 if (!L || L->getHeader() != PN->getParent())
3603 return nullptr;
3604
3605 // The loop may have multiple entrances or multiple exits; we can analyze
3606 // this phi as an addrec if it has a unique entry value and a unique
3607 // backedge value.
3608 Value *BEValueV = nullptr, *StartValueV = nullptr;
3609 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3610 Value *V = PN->getIncomingValue(i);
3611 if (L->contains(PN->getIncomingBlock(i))) {
3612 if (!BEValueV) {
3613 BEValueV = V;
3614 } else if (BEValueV != V) {
3615 BEValueV = nullptr;
3616 break;
3617 }
3618 } else if (!StartValueV) {
3619 StartValueV = V;
3620 } else if (StartValueV != V) {
3621 StartValueV = nullptr;
3622 break;
3623 }
3624 }
3625 if (BEValueV && StartValueV) {
3626 // While we are analyzing this PHI node, handle its value symbolically.
3627 const SCEV *SymbolicName = getUnknown(PN);
3628 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3629 "PHI node already processed?");
3630 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3631
3632 // Using this symbolic name for the PHI, analyze the value coming around
3633 // the back-edge.
3634 const SCEV *BEValue = getSCEV(BEValueV);
3635
3636 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3637 // has a special value for the first iteration of the loop.
3638
3639 // If the value coming around the backedge is an add with the symbolic
3640 // value we just inserted, then we found a simple induction variable!
3641 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3642 // If there is a single occurrence of the symbolic value, replace it
3643 // with a recurrence.
3644 unsigned FoundIndex = Add->getNumOperands();
3645 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3646 if (Add->getOperand(i) == SymbolicName)
3647 if (FoundIndex == e) {
3648 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003649 break;
3650 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003651
3652 if (FoundIndex != Add->getNumOperands()) {
3653 // Create an add with everything but the specified operand.
3654 SmallVector<const SCEV *, 8> Ops;
3655 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3656 if (i != FoundIndex)
3657 Ops.push_back(Add->getOperand(i));
3658 const SCEV *Accum = getAddExpr(Ops);
3659
3660 // This is not a valid addrec if the step amount is varying each
3661 // loop iteration, but is not itself an addrec in this loop.
3662 if (isLoopInvariant(Accum, L) ||
3663 (isa<SCEVAddRecExpr>(Accum) &&
3664 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3665 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3666
3667 // If the increment doesn't overflow, then neither the addrec nor
3668 // the post-increment will overflow.
3669 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3670 if (OBO->getOperand(0) == PN) {
3671 if (OBO->hasNoUnsignedWrap())
3672 Flags = setFlags(Flags, SCEV::FlagNUW);
3673 if (OBO->hasNoSignedWrap())
3674 Flags = setFlags(Flags, SCEV::FlagNSW);
3675 }
3676 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3677 // If the increment is an inbounds GEP, then we know the address
3678 // space cannot be wrapped around. We cannot make any guarantee
3679 // about signed or unsigned overflow because pointers are
3680 // unsigned but we may have a negative index from the base
3681 // pointer. We can guarantee that no unsigned wrap occurs if the
3682 // indices form a positive value.
3683 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3684 Flags = setFlags(Flags, SCEV::FlagNW);
3685
3686 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3687 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3688 Flags = setFlags(Flags, SCEV::FlagNUW);
3689 }
3690
3691 // We cannot transfer nuw and nsw flags from subtraction
3692 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3693 // for instance.
3694 }
3695
3696 const SCEV *StartVal = getSCEV(StartValueV);
3697 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3698
3699 // Since the no-wrap flags are on the increment, they apply to the
3700 // post-incremented value as well.
3701 if (isLoopInvariant(Accum, L))
3702 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3703
3704 // Okay, for the entire analysis of this edge we assumed the PHI
3705 // to be symbolic. We now need to go back and purge all of the
3706 // entries for the scalars that use the symbolic expression.
3707 ForgetSymbolicName(PN, SymbolicName);
3708 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3709 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003710 }
3711 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003712 } else if (const SCEVAddRecExpr *AddRec =
3713 dyn_cast<SCEVAddRecExpr>(BEValue)) {
3714 // Otherwise, this could be a loop like this:
3715 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3716 // In this case, j = {1,+,1} and BEValue is j.
3717 // Because the other in-value of i (0) fits the evolution of BEValue
3718 // i really is an addrec evolution.
3719 if (AddRec->getLoop() == L && AddRec->isAffine()) {
3720 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003721
Sanjoy Das55015d22015-10-02 23:09:44 +00003722 // If StartVal = j.start - j.stride, we can use StartVal as the
3723 // initial step of the addrec evolution.
3724 if (StartVal ==
3725 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) {
3726 // FIXME: For constant StartVal, we should be able to infer
3727 // no-wrap flags.
3728 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1),
3729 L, SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00003730
Sanjoy Das55015d22015-10-02 23:09:44 +00003731 // Okay, for the entire analysis of this edge we assumed the PHI
3732 // to be symbolic. We now need to go back and purge all of the
3733 // entries for the scalars that use the symbolic expression.
3734 ForgetSymbolicName(PN, SymbolicName);
3735 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3736 return PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003737 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003738 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003739 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003740 }
3741
3742 return nullptr;
3743}
3744
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003745// Checks if the SCEV S is available at BB. S is considered available at BB
3746// if S can be materialized at BB without introducing a fault.
3747static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3748 BasicBlock *BB) {
3749 struct CheckAvailable {
3750 bool TraversalDone = false;
3751 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003752
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003753 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
3754 BasicBlock *BB = nullptr;
3755 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00003756
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003757 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3758 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00003759
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003760 bool setUnavailable() {
3761 TraversalDone = true;
3762 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003763 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003764 }
3765
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003766 bool follow(const SCEV *S) {
3767 switch (S->getSCEVType()) {
3768 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3769 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
3770 // These expressions are available if their operand(s) is/are.
Sanjoy Das55015d22015-10-02 23:09:44 +00003771 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003772
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003773 case scAddRecExpr: {
3774 // We allow add recurrences that are on the loop BB is in, or some
3775 // outer loop. This guarantees availability because the value of the
3776 // add recurrence at BB is simply the "current" value of the induction
3777 // variable. We can relax this in the future; for instance an add
3778 // recurrence on a sibling dominating loop is also available at BB.
3779 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3780 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00003781 return true;
3782
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003783 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00003784 }
3785
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003786 case scUnknown: {
3787 // For SCEVUnknown, we check for simple dominance.
3788 const auto *SU = cast<SCEVUnknown>(S);
3789 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00003790
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003791 if (isa<Argument>(V))
3792 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003793
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003794 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3795 return false;
3796
3797 return setUnavailable();
3798 }
3799
3800 case scUDivExpr:
3801 case scCouldNotCompute:
3802 // We do not try to smart about these at all.
3803 return setUnavailable();
3804 }
3805 llvm_unreachable("switch should be fully covered!");
3806 }
3807
3808 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00003809 };
3810
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003811 CheckAvailable CA(L, BB, DT);
3812 SCEVTraversal<CheckAvailable> ST(CA);
3813
3814 ST.visitAll(S);
3815 return CA.Available;
3816}
3817
3818// Try to match a control flow sequence that branches out at BI and merges back
3819// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
3820// match.
3821static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3822 Value *&C, Value *&LHS, Value *&RHS) {
3823 C = BI->getCondition();
3824
3825 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3826 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3827
3828 if (!LeftEdge.isSingleEdge())
3829 return false;
3830
3831 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3832
3833 Use &LeftUse = Merge->getOperandUse(0);
3834 Use &RightUse = Merge->getOperandUse(1);
3835
3836 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3837 LHS = LeftUse;
3838 RHS = RightUse;
3839 return true;
3840 }
3841
3842 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3843 LHS = RightUse;
3844 RHS = LeftUse;
3845 return true;
3846 }
3847
3848 return false;
3849}
3850
3851const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003852 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003853 const Loop *L = LI.getLoopFor(PN->getParent());
3854
Sanjoy Das55015d22015-10-02 23:09:44 +00003855 // Try to match
3856 //
3857 // br %cond, label %left, label %right
3858 // left:
3859 // br label %merge
3860 // right:
3861 // br label %merge
3862 // merge:
3863 // V = phi [ %x, %left ], [ %y, %right ]
3864 //
3865 // as "select %cond, %x, %y"
3866
3867 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3868 assert(IDom && "At least the entry block should dominate PN");
3869
3870 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3871 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3872
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003873 if (BI && BI->isConditional() &&
3874 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3875 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3876 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00003877 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3878 }
3879
3880 return nullptr;
3881}
3882
3883const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3884 if (const SCEV *S = createAddRecFromPHI(PN))
3885 return S;
3886
3887 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3888 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00003889
Dan Gohmana9c205c2010-02-25 06:57:05 +00003890 // If the PHI has a single incoming value, follow that value, unless the
3891 // PHI's incoming blocks are in a different loop, in which case doing so
3892 // risks breaking LCSSA form. Instcombine would normally zap these, but
3893 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003894 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI,
3895 &DT, &AC))
3896 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003897 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003898
Chris Lattnerd934c702004-04-02 20:23:17 +00003899 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003900 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003901}
3902
Sanjoy Das55015d22015-10-02 23:09:44 +00003903const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
3904 Value *Cond,
3905 Value *TrueVal,
3906 Value *FalseVal) {
Sanjoy Dasd0671342015-10-02 19:39:59 +00003907 // Try to match some simple smax or umax patterns.
3908 auto *ICI = dyn_cast<ICmpInst>(Cond);
3909 if (!ICI)
3910 return getUnknown(I);
3911
3912 Value *LHS = ICI->getOperand(0);
3913 Value *RHS = ICI->getOperand(1);
3914
3915 switch (ICI->getPredicate()) {
3916 case ICmpInst::ICMP_SLT:
3917 case ICmpInst::ICMP_SLE:
3918 std::swap(LHS, RHS);
3919 // fall through
3920 case ICmpInst::ICMP_SGT:
3921 case ICmpInst::ICMP_SGE:
3922 // a >s b ? a+x : b+x -> smax(a, b)+x
3923 // a >s b ? b+x : a+x -> smin(a, b)+x
3924 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
3925 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
3926 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
3927 const SCEV *LA = getSCEV(TrueVal);
3928 const SCEV *RA = getSCEV(FalseVal);
3929 const SCEV *LDiff = getMinusSCEV(LA, LS);
3930 const SCEV *RDiff = getMinusSCEV(RA, RS);
3931 if (LDiff == RDiff)
3932 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3933 LDiff = getMinusSCEV(LA, RS);
3934 RDiff = getMinusSCEV(RA, LS);
3935 if (LDiff == RDiff)
3936 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3937 }
3938 break;
3939 case ICmpInst::ICMP_ULT:
3940 case ICmpInst::ICMP_ULE:
3941 std::swap(LHS, RHS);
3942 // fall through
3943 case ICmpInst::ICMP_UGT:
3944 case ICmpInst::ICMP_UGE:
3945 // a >u b ? a+x : b+x -> umax(a, b)+x
3946 // a >u b ? b+x : a+x -> umin(a, b)+x
3947 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
3948 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
3949 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
3950 const SCEV *LA = getSCEV(TrueVal);
3951 const SCEV *RA = getSCEV(FalseVal);
3952 const SCEV *LDiff = getMinusSCEV(LA, LS);
3953 const SCEV *RDiff = getMinusSCEV(RA, RS);
3954 if (LDiff == RDiff)
3955 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3956 LDiff = getMinusSCEV(LA, RS);
3957 RDiff = getMinusSCEV(RA, LS);
3958 if (LDiff == RDiff)
3959 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3960 }
3961 break;
3962 case ICmpInst::ICMP_NE:
3963 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3964 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
3965 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
3966 const SCEV *One = getOne(I->getType());
3967 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
3968 const SCEV *LA = getSCEV(TrueVal);
3969 const SCEV *RA = getSCEV(FalseVal);
3970 const SCEV *LDiff = getMinusSCEV(LA, LS);
3971 const SCEV *RDiff = getMinusSCEV(RA, One);
3972 if (LDiff == RDiff)
3973 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3974 }
3975 break;
3976 case ICmpInst::ICMP_EQ:
3977 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3978 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
3979 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
3980 const SCEV *One = getOne(I->getType());
3981 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
3982 const SCEV *LA = getSCEV(TrueVal);
3983 const SCEV *RA = getSCEV(FalseVal);
3984 const SCEV *LDiff = getMinusSCEV(LA, One);
3985 const SCEV *RDiff = getMinusSCEV(RA, LS);
3986 if (LDiff == RDiff)
3987 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3988 }
3989 break;
3990 default:
3991 break;
3992 }
3993
3994 return getUnknown(I);
3995}
3996
Dan Gohmanee750d12009-05-08 20:26:55 +00003997/// createNodeForGEP - Expand GEP instructions into add and multiply
3998/// operations. This allows them to be analyzed by regular SCEV code.
3999///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004000const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00004001 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00004002 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00004003 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004004 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004005
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004006 SmallVector<const SCEV *, 4> IndexExprs;
4007 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4008 IndexExprs.push_back(getSCEV(*Index));
4009 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
4010 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004011}
4012
Nick Lewycky3783b462007-11-22 07:59:40 +00004013/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4014/// guaranteed to end in (at every loop iteration). It is, at the same time,
4015/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4016/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004017uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004018ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004019 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00004020 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004021
Dan Gohmana30370b2009-05-04 22:02:23 +00004022 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004023 return std::min(GetMinTrailingZeros(T->getOperand()),
4024 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004025
Dan Gohmana30370b2009-05-04 22:02:23 +00004026 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004027 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4028 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4029 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004030 }
4031
Dan Gohmana30370b2009-05-04 22:02:23 +00004032 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004033 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4034 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4035 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004036 }
4037
Dan Gohmana30370b2009-05-04 22:02:23 +00004038 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004039 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004040 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004041 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004042 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004043 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004044 }
4045
Dan Gohmana30370b2009-05-04 22:02:23 +00004046 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004047 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004048 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4049 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004050 for (unsigned i = 1, e = M->getNumOperands();
4051 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004052 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004053 BitWidth);
4054 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004055 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004056
Dan Gohmana30370b2009-05-04 22:02:23 +00004057 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004058 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004059 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004060 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004061 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004062 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004063 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004064
Dan Gohmana30370b2009-05-04 22:02:23 +00004065 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004066 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004067 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004068 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004069 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004070 return MinOpRes;
4071 }
4072
Dan Gohmana30370b2009-05-04 22:02:23 +00004073 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004074 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004075 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004076 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004077 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004078 return MinOpRes;
4079 }
4080
Dan Gohmanc702fc02009-06-19 23:29:04 +00004081 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4082 // For a SCEVUnknown, ask ValueTracking.
4083 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004084 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004085 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(),
4086 0, &AC, nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004087 return Zeros.countTrailingOnes();
4088 }
4089
4090 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004091 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004092}
Chris Lattnerd934c702004-04-02 20:23:17 +00004093
Sanjoy Das1f05c512014-10-10 21:22:34 +00004094/// GetRangeFromMetadata - Helper method to assign a range to V from
4095/// metadata present in the IR.
4096static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4097 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00004098 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004099 ConstantRange TotalRange(
4100 cast<IntegerType>(I->getType())->getBitWidth(), false);
4101
4102 unsigned NumRanges = MD->getNumOperands() / 2;
4103 assert(NumRanges >= 1);
4104
4105 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00004106 ConstantInt *Lower =
4107 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
4108 ConstantInt *Upper =
4109 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00004110 ConstantRange Range(Lower->getValue(), Upper->getValue());
4111 TotalRange = TotalRange.unionWith(Range);
4112 }
4113
4114 return TotalRange;
4115 }
4116 }
4117
4118 return None;
4119}
4120
Sanjoy Das91b54772015-03-09 21:43:43 +00004121/// getRange - Determine the range for a particular SCEV. If SignHint is
4122/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4123/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004124///
4125ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004126ScalarEvolution::getRange(const SCEV *S,
4127 ScalarEvolution::RangeSignHint SignHint) {
4128 DenseMap<const SCEV *, ConstantRange> &Cache =
4129 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4130 : SignedRanges;
4131
Dan Gohman761065e2010-11-17 02:44:44 +00004132 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004133 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4134 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004135 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004136
4137 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00004138 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004139
Dan Gohman85be4332010-01-26 19:19:05 +00004140 unsigned BitWidth = getTypeSizeInBits(S->getType());
4141 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4142
Sanjoy Das91b54772015-03-09 21:43:43 +00004143 // If the value has known zeros, the maximum value will have those known zeros
4144 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004145 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004146 if (TZ != 0) {
4147 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4148 ConservativeResult =
4149 ConstantRange(APInt::getMinValue(BitWidth),
4150 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4151 else
4152 ConservativeResult = ConstantRange(
4153 APInt::getSignedMinValue(BitWidth),
4154 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4155 }
Dan Gohman85be4332010-01-26 19:19:05 +00004156
Dan Gohmane65c9172009-07-13 21:35:55 +00004157 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004158 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004159 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004160 X = X.add(getRange(Add->getOperand(i), SignHint));
4161 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004162 }
4163
4164 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004165 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004166 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004167 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4168 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004169 }
4170
4171 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004172 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004173 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004174 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4175 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004176 }
4177
4178 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004179 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004180 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004181 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4182 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004183 }
4184
4185 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004186 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4187 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4188 return setRange(UDiv, SignHint,
4189 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004190 }
4191
4192 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004193 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4194 return setRange(ZExt, SignHint,
4195 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004196 }
4197
4198 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004199 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4200 return setRange(SExt, SignHint,
4201 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004202 }
4203
4204 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004205 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4206 return setRange(Trunc, SignHint,
4207 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004208 }
4209
Dan Gohmane65c9172009-07-13 21:35:55 +00004210 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004211 // If there's no unsigned wrap, the value will never be less than its
4212 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00004213 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00004214 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004215 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00004216 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00004217 ConservativeResult.intersectWith(
4218 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004219
Dan Gohman51ad99d2010-01-21 02:09:26 +00004220 // If there's no signed wrap, and all the operands have the same sign or
4221 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00004222 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004223 bool AllNonNeg = true;
4224 bool AllNonPos = true;
4225 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4226 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4227 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4228 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004229 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004230 ConservativeResult = ConservativeResult.intersectWith(
4231 ConstantRange(APInt(BitWidth, 0),
4232 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004233 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004234 ConservativeResult = ConservativeResult.intersectWith(
4235 ConstantRange(APInt::getSignedMinValue(BitWidth),
4236 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004237 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004238
4239 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004240 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004241 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004242 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004243 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4244 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004245
4246 // Check for overflow. This must be done with ConstantRange arithmetic
4247 // because we could be called from within the ScalarEvolution overflow
4248 // checking code.
4249
Dan Gohmane65c9172009-07-13 21:35:55 +00004250 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004251 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4252 ConstantRange ZExtMaxBECountRange =
4253 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004254
4255 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004256 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004257 ConstantRange StepSRange = getSignedRange(Step);
4258 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004259
Sanjoy Das91b54772015-03-09 21:43:43 +00004260 ConstantRange StartURange = getUnsignedRange(Start);
4261 ConstantRange EndURange =
4262 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004263
Sanjoy Das91b54772015-03-09 21:43:43 +00004264 // Check for unsigned overflow.
4265 ConstantRange ZExtStartURange =
4266 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4267 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4268 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4269 ZExtEndURange) {
4270 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4271 EndURange.getUnsignedMin());
4272 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4273 EndURange.getUnsignedMax());
4274 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4275 if (!IsFullRange)
4276 ConservativeResult =
4277 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4278 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004279
Sanjoy Das91b54772015-03-09 21:43:43 +00004280 ConstantRange StartSRange = getSignedRange(Start);
4281 ConstantRange EndSRange =
4282 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4283
4284 // Check for signed overflow. This must be done with ConstantRange
4285 // arithmetic because we could be called from within the ScalarEvolution
4286 // overflow checking code.
4287 ConstantRange SExtStartSRange =
4288 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4289 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4290 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4291 SExtEndSRange) {
4292 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4293 EndSRange.getSignedMin());
4294 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4295 EndSRange.getSignedMax());
4296 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4297 if (!IsFullRange)
4298 ConservativeResult =
4299 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4300 }
Dan Gohmand261d272009-06-24 01:05:09 +00004301 }
Dan Gohmand261d272009-06-24 01:05:09 +00004302 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004303
Sanjoy Das91b54772015-03-09 21:43:43 +00004304 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004305 }
4306
Dan Gohmanc702fc02009-06-19 23:29:04 +00004307 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004308 // Check if the IR explicitly contains !range metadata.
4309 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4310 if (MDRange.hasValue())
4311 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4312
Sanjoy Das91b54772015-03-09 21:43:43 +00004313 // Split here to avoid paying the compile-time cost of calling both
4314 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4315 // if needed.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004316 const DataLayout &DL = F.getParent()->getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004317 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4318 // For a SCEVUnknown, ask ValueTracking.
4319 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004320 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004321 if (Ones != ~Zeros + 1)
4322 ConservativeResult =
4323 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4324 } else {
4325 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4326 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004327 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004328 if (NS > 1)
4329 ConservativeResult = ConservativeResult.intersectWith(
4330 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4331 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004332 }
4333
4334 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004335 }
4336
Sanjoy Das91b54772015-03-09 21:43:43 +00004337 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004338}
4339
Jingyue Wu42f1d672015-07-28 18:22:40 +00004340SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004341 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004342 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4343
4344 // Return early if there are no flags to propagate to the SCEV.
4345 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4346 if (BinOp->hasNoUnsignedWrap())
4347 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4348 if (BinOp->hasNoSignedWrap())
4349 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4350 if (Flags == SCEV::FlagAnyWrap) {
4351 return SCEV::FlagAnyWrap;
4352 }
4353
4354 // Here we check that BinOp is in the header of the innermost loop
4355 // containing BinOp, since we only deal with instructions in the loop
4356 // header. The actual loop we need to check later will come from an add
4357 // recurrence, but getting that requires computing the SCEV of the operands,
4358 // which can be expensive. This check we can do cheaply to rule out some
4359 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004360 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004361 if (innermostContainingLoop == nullptr ||
4362 innermostContainingLoop->getHeader() != BinOp->getParent())
4363 return SCEV::FlagAnyWrap;
4364
4365 // Only proceed if we can prove that BinOp does not yield poison.
4366 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4367
4368 // At this point we know that if V is executed, then it does not wrap
4369 // according to at least one of NSW or NUW. If V is not executed, then we do
4370 // not know if the calculation that V represents would wrap. Multiple
4371 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4372 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4373 // derived from other instructions that map to the same SCEV. We cannot make
4374 // that guarantee for cases where V is not executed. So we need to find the
4375 // loop that V is considered in relation to and prove that V is executed for
4376 // every iteration of that loop. That implies that the value that V
4377 // calculates does not wrap anywhere in the loop, so then we can apply the
4378 // flags to the SCEV.
4379 //
4380 // We check isLoopInvariant to disambiguate in case we are adding two
4381 // recurrences from different loops, so that we know which loop to prove
4382 // that V is executed in.
4383 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4384 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4385 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4386 const int OtherOpIndex = 1 - OpIndex;
4387 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4388 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4389 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4390 return Flags;
4391 }
4392 }
4393 return SCEV::FlagAnyWrap;
4394}
4395
4396/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4397/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004398///
Dan Gohmanaf752342009-07-07 17:06:11 +00004399const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004400 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004401 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004402
Dan Gohman05e89732008-06-22 19:56:46 +00004403 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004404 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004405 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004406
4407 // Don't attempt to analyze instructions in blocks that aren't
4408 // reachable. Such instructions don't matter, and they aren't required
4409 // to obey basic rules for definitions dominating uses which this
4410 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004411 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004412 return getUnknown(V);
4413 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004414 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004415 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4416 return getConstant(CI);
4417 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004418 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004419 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4420 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004421 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004422 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004423
Dan Gohman80ca01c2009-07-17 20:47:02 +00004424 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004425 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004426 case Instruction::Add: {
4427 // The simple thing to do would be to just call getSCEV on both operands
4428 // and call getAddExpr with the result. However if we're looking at a
4429 // bunch of things all added together, this can be quite inefficient,
4430 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4431 // Instead, gather up all the operands and make a single getAddExpr call.
4432 // LLVM IR canonical form means we need only traverse the left operands.
4433 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004434 for (Value *Op = U;; Op = U->getOperand(0)) {
4435 U = dyn_cast<Operator>(Op);
4436 unsigned Opcode = U ? U->getOpcode() : 0;
4437 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4438 assert(Op != V && "V should be an add");
4439 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004440 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004441 }
4442
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004443 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004444 AddOps.push_back(OpSCEV);
4445 break;
4446 }
4447
4448 // If a NUW or NSW flag can be applied to the SCEV for this
4449 // addition, then compute the SCEV for this addition by itself
4450 // with a separate call to getAddExpr. We need to do that
4451 // instead of pushing the operands of the addition onto AddOps,
4452 // since the flags are only known to apply to this particular
4453 // addition - they may not apply to other additions that can be
4454 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004455 const SCEV *RHS = getSCEV(U->getOperand(1));
4456 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4457 if (Flags != SCEV::FlagAnyWrap) {
4458 const SCEV *LHS = getSCEV(U->getOperand(0));
4459 if (Opcode == Instruction::Sub)
4460 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4461 else
4462 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4463 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004464 }
4465
Dan Gohman47308d52010-08-31 22:53:17 +00004466 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004467 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004468 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004469 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004470 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004471 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004472 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004473
Dan Gohmane5fb1032010-08-16 16:03:49 +00004474 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004475 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004476 for (Value *Op = U;; Op = U->getOperand(0)) {
4477 U = dyn_cast<Operator>(Op);
4478 if (!U || U->getOpcode() != Instruction::Mul) {
4479 assert(Op != V && "V should be a mul");
4480 MulOps.push_back(getSCEV(Op));
4481 break;
4482 }
4483
4484 if (auto *OpSCEV = getExistingSCEV(U)) {
4485 MulOps.push_back(OpSCEV);
4486 break;
4487 }
4488
4489 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4490 if (Flags != SCEV::FlagAnyWrap) {
4491 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4492 getSCEV(U->getOperand(1)), Flags));
4493 break;
4494 }
4495
Dan Gohmane5fb1032010-08-16 16:03:49 +00004496 MulOps.push_back(getSCEV(U->getOperand(1)));
4497 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004498 return getMulExpr(MulOps);
4499 }
Dan Gohman05e89732008-06-22 19:56:46 +00004500 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004501 return getUDivExpr(getSCEV(U->getOperand(0)),
4502 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004503 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004504 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4505 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004506 case Instruction::And:
4507 // For an expression like x&255 that merely masks off the high bits,
4508 // use zext(trunc(x)) as the SCEV expression.
4509 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004510 if (CI->isNullValue())
4511 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004512 if (CI->isAllOnesValue())
4513 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004514 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004515
4516 // Instcombine's ShrinkDemandedConstant may strip bits out of
4517 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004518 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004519 // knew about to reconstruct a low-bits mask value.
4520 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004521 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004522 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004523 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004524 computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004525 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004526
Nick Lewycky31eaca52014-01-27 10:04:03 +00004527 APInt EffectiveMask =
4528 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4529 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4530 const SCEV *MulCount = getConstant(
4531 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4532 return getMulExpr(
4533 getZeroExtendExpr(
4534 getTruncateExpr(
4535 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4536 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4537 U->getType()),
4538 MulCount);
4539 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004540 }
4541 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004542
Dan Gohman05e89732008-06-22 19:56:46 +00004543 case Instruction::Or:
4544 // If the RHS of the Or is a constant, we may have something like:
4545 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4546 // optimizations will transparently handle this case.
4547 //
4548 // In order for this transformation to be safe, the LHS must be of the
4549 // form X*(2^n) and the Or constant must be less than 2^n.
4550 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004551 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004552 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004553 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004554 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4555 // Build a plain add SCEV.
4556 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4557 // If the LHS of the add was an addrec and it has no-wrap flags,
4558 // transfer the no-wrap flags, since an or won't introduce a wrap.
4559 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4560 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004561 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4562 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004563 }
4564 return S;
4565 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004566 }
Dan Gohman05e89732008-06-22 19:56:46 +00004567 break;
4568 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004569 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004570 // If the RHS of the xor is a signbit, then this is just an add.
4571 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004572 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004573 return getAddExpr(getSCEV(U->getOperand(0)),
4574 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004575
4576 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004577 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004578 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004579
4580 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4581 // This is a variant of the check for xor with -1, and it handles
4582 // the case where instcombine has trimmed non-demanded bits out
4583 // of an xor with -1.
4584 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4585 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4586 if (BO->getOpcode() == Instruction::And &&
4587 LCI->getValue() == CI->getValue())
4588 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004589 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004590 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004591 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004592 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004593 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4594
Dan Gohman8b0a4192010-03-01 17:49:51 +00004595 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004596 // mask off the high bits. Complement the operand and
4597 // re-apply the zext.
4598 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4599 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4600
4601 // If C is a single bit, it may be in the sign-bit position
4602 // before the zero-extend. In this case, represent the xor
4603 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004604 APInt Trunc = CI->getValue().trunc(Z0TySize);
4605 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004606 Trunc.isSignBit())
4607 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4608 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004609 }
Dan Gohman05e89732008-06-22 19:56:46 +00004610 }
4611 break;
4612
4613 case Instruction::Shl:
4614 // Turn shift left of a constant amount into a multiply.
4615 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004616 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004617
4618 // If the shift count is not less than the bitwidth, the result of
4619 // the shift is undefined. Don't try to analyze it, because the
4620 // resolution chosen here may differ from the resolution chosen in
4621 // other parts of the compiler.
4622 if (SA->getValue().uge(BitWidth))
4623 break;
4624
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004625 // It is currently not resolved how to interpret NSW for left
4626 // shift by BitWidth - 1, so we avoid applying flags in that
4627 // case. Remove this check (or this comment) once the situation
4628 // is resolved. See
4629 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4630 // and http://reviews.llvm.org/D8890 .
4631 auto Flags = SCEV::FlagAnyWrap;
4632 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4633
Owen Andersonedb4a702009-07-24 23:12:02 +00004634 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004635 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004636 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004637 }
4638 break;
4639
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004640 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004641 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004642 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004643 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004644
4645 // If the shift count is not less than the bitwidth, the result of
4646 // the shift is undefined. Don't try to analyze it, because the
4647 // resolution chosen here may differ from the resolution chosen in
4648 // other parts of the compiler.
4649 if (SA->getValue().uge(BitWidth))
4650 break;
4651
Owen Andersonedb4a702009-07-24 23:12:02 +00004652 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004653 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004654 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004655 }
4656 break;
4657
Dan Gohman0ec05372009-04-21 02:26:00 +00004658 case Instruction::AShr:
4659 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4660 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004661 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004662 if (L->getOpcode() == Instruction::Shl &&
4663 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004664 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4665
4666 // If the shift count is not less than the bitwidth, the result of
4667 // the shift is undefined. Don't try to analyze it, because the
4668 // resolution chosen here may differ from the resolution chosen in
4669 // other parts of the compiler.
4670 if (CI->getValue().uge(BitWidth))
4671 break;
4672
Dan Gohmandf199482009-04-25 17:05:40 +00004673 uint64_t Amt = BitWidth - CI->getZExtValue();
4674 if (Amt == BitWidth)
4675 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004676 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004677 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004678 IntegerType::get(getContext(),
4679 Amt)),
4680 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004681 }
4682 break;
4683
Dan Gohman05e89732008-06-22 19:56:46 +00004684 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004685 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004686
4687 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004688 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004689
4690 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004691 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004692
4693 case Instruction::BitCast:
4694 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004695 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004696 return getSCEV(U->getOperand(0));
4697 break;
4698
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004699 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4700 // lead to pointer expressions which cannot safely be expanded to GEPs,
4701 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4702 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004703
Dan Gohmanee750d12009-05-08 20:26:55 +00004704 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004705 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004706
Dan Gohman05e89732008-06-22 19:56:46 +00004707 case Instruction::PHI:
4708 return createNodeForPHI(cast<PHINode>(U));
4709
4710 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00004711 // U can also be a select constant expr, which let fall through. Since
4712 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4713 // constant expressions cannot have instructions as operands, we'd have
4714 // returned getUnknown for a select constant expressions anyway.
4715 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00004716 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4717 U->getOperand(1), U->getOperand(2));
Dan Gohman05e89732008-06-22 19:56:46 +00004718
4719 default: // We cannot analyze this expression.
4720 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004721 }
4722
Dan Gohmanc8e23622009-04-21 23:15:49 +00004723 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004724}
4725
4726
4727
4728//===----------------------------------------------------------------------===//
4729// Iteration Count Computation Code
4730//
4731
Chandler Carruth6666c272014-10-11 00:12:11 +00004732unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4733 if (BasicBlock *ExitingBB = L->getExitingBlock())
4734 return getSmallConstantTripCount(L, ExitingBB);
4735
4736 // No trip count information for multiple exits.
4737 return 0;
4738}
4739
Andrew Trick2b6860f2011-08-11 23:36:16 +00004740/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004741/// normal unsigned value. Returns 0 if the trip count is unknown or not
4742/// constant. Will also return 0 if the maximum trip count is very large (>=
4743/// 2^32).
4744///
4745/// This "trip count" assumes that control exits via ExitingBlock. More
4746/// precisely, it is the number of times that control may reach ExitingBlock
4747/// before taking the branch. For loops with multiple exits, it may not be the
4748/// number times that the loop header executes because the loop may exit
4749/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004750unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4751 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004752 assert(ExitingBlock && "Must pass a non-null exiting block!");
4753 assert(L->isLoopExiting(ExitingBlock) &&
4754 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004755 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004756 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004757 if (!ExitCount)
4758 return 0;
4759
4760 ConstantInt *ExitConst = ExitCount->getValue();
4761
4762 // Guard against huge trip counts.
4763 if (ExitConst->getValue().getActiveBits() > 32)
4764 return 0;
4765
4766 // In case of integer overflow, this returns 0, which is correct.
4767 return ((unsigned)ExitConst->getZExtValue()) + 1;
4768}
4769
Chandler Carruth6666c272014-10-11 00:12:11 +00004770unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4771 if (BasicBlock *ExitingBB = L->getExitingBlock())
4772 return getSmallConstantTripMultiple(L, ExitingBB);
4773
4774 // No trip multiple information for multiple exits.
4775 return 0;
4776}
4777
Andrew Trick2b6860f2011-08-11 23:36:16 +00004778/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4779/// trip count of this loop as a normal unsigned value, if possible. This
4780/// means that the actual trip count is always a multiple of the returned
4781/// value (don't forget the trip count could very well be zero as well!).
4782///
4783/// Returns 1 if the trip count is unknown or not guaranteed to be the
4784/// multiple of a constant (which is also the case if the trip count is simply
4785/// constant, use getSmallConstantTripCount for that case), Will also return 1
4786/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004787///
4788/// As explained in the comments for getSmallConstantTripCount, this assumes
4789/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004790unsigned
4791ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4792 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004793 assert(ExitingBlock && "Must pass a non-null exiting block!");
4794 assert(L->isLoopExiting(ExitingBlock) &&
4795 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004796 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004797 if (ExitCount == getCouldNotCompute())
4798 return 1;
4799
4800 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004801 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004802 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4803 // to factor simple cases.
4804 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4805 TCMul = Mul->getOperand(0);
4806
4807 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4808 if (!MulC)
4809 return 1;
4810
4811 ConstantInt *Result = MulC->getValue();
4812
Hal Finkel30bd9342012-10-24 19:46:44 +00004813 // Guard against huge trip counts (this requires checking
4814 // for zero to handle the case where the trip count == -1 and the
4815 // addition wraps).
4816 if (!Result || Result->getValue().getActiveBits() > 32 ||
4817 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004818 return 1;
4819
4820 return (unsigned)Result->getZExtValue();
4821}
4822
Andrew Trick3ca3f982011-07-26 17:19:55 +00004823// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004824// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004825// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004826const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4827 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004828}
4829
Dan Gohman0bddac12009-02-24 18:55:53 +00004830/// getBackedgeTakenCount - If the specified loop has a predictable
4831/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4832/// object. The backedge-taken count is the number of times the loop header
4833/// will be branched to from within the loop. This is one less than the
4834/// trip count of the loop, since it doesn't count the first iteration,
4835/// when the header is branched to from outside the loop.
4836///
4837/// Note that it is not valid to call this method on a loop without a
4838/// loop-invariant backedge-taken count (see
4839/// hasLoopInvariantBackedgeTakenCount).
4840///
Dan Gohmanaf752342009-07-07 17:06:11 +00004841const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004842 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004843}
4844
4845/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4846/// return the least SCEV value that is known never to be less than the
4847/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004848const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004849 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004850}
4851
Dan Gohmandc191042009-07-08 19:23:34 +00004852/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4853/// onto the given Worklist.
4854static void
4855PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4856 BasicBlock *Header = L->getHeader();
4857
4858 // Push all Loop-header PHIs onto the Worklist stack.
4859 for (BasicBlock::iterator I = Header->begin();
4860 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4861 Worklist.push_back(PN);
4862}
4863
Dan Gohman2b8da352009-04-30 20:47:05 +00004864const ScalarEvolution::BackedgeTakenInfo &
4865ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004866 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004867 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004868 // update the value. The temporary CouldNotCompute value tells SCEV
4869 // code elsewhere that it shouldn't attempt to request a new
4870 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004871 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004872 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004873 if (!Pair.second)
4874 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004875
Andrew Trick3ca3f982011-07-26 17:19:55 +00004876 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4877 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4878 // must be cleared in this scope.
4879 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4880
4881 if (Result.getExact(this) != getCouldNotCompute()) {
4882 assert(isLoopInvariant(Result.getExact(this), L) &&
4883 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004884 "Computed backedge-taken count isn't loop invariant for loop!");
4885 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004886 }
4887 else if (Result.getMax(this) == getCouldNotCompute() &&
4888 isa<PHINode>(L->getHeader()->begin())) {
4889 // Only count loops that have phi nodes as not being computable.
4890 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004891 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004892
Chris Lattnera337f5e2011-01-09 02:16:18 +00004893 // Now that we know more about the trip count for this loop, forget any
4894 // existing SCEV values for PHI nodes in this loop since they are only
4895 // conservative estimates made without the benefit of trip count
4896 // information. This is similar to the code in forgetLoop, except that
4897 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004898 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004899 SmallVector<Instruction *, 16> Worklist;
4900 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004901
Chris Lattnera337f5e2011-01-09 02:16:18 +00004902 SmallPtrSet<Instruction *, 8> Visited;
4903 while (!Worklist.empty()) {
4904 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004905 if (!Visited.insert(I).second)
4906 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004907
Chris Lattnera337f5e2011-01-09 02:16:18 +00004908 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004909 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004910 if (It != ValueExprMap.end()) {
4911 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004912
Chris Lattnera337f5e2011-01-09 02:16:18 +00004913 // SCEVUnknown for a PHI either means that it has an unrecognized
4914 // structure, or it's a PHI that's in the progress of being computed
4915 // by createNodeForPHI. In the former case, additional loop trip
4916 // count information isn't going to change anything. In the later
4917 // case, createNodeForPHI will perform the necessary updates on its
4918 // own when it gets to that point.
4919 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4920 forgetMemoizedResults(Old);
4921 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004922 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004923 if (PHINode *PN = dyn_cast<PHINode>(I))
4924 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004925 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004926
4927 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004928 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004929 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004930
4931 // Re-lookup the insert position, since the call to
4932 // ComputeBackedgeTakenCount above could result in a
4933 // recusive call to getBackedgeTakenInfo (on a different
4934 // loop), which would invalidate the iterator computed
4935 // earlier.
4936 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004937}
4938
Dan Gohman880c92a2009-10-31 15:04:55 +00004939/// forgetLoop - This method should be called by the client when it has
4940/// changed a loop in a way that may effect ScalarEvolution's ability to
4941/// compute a trip count, or if the loop is deleted.
4942void ScalarEvolution::forgetLoop(const Loop *L) {
4943 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004944 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4945 BackedgeTakenCounts.find(L);
4946 if (BTCPos != BackedgeTakenCounts.end()) {
4947 BTCPos->second.clear();
4948 BackedgeTakenCounts.erase(BTCPos);
4949 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004950
Dan Gohman880c92a2009-10-31 15:04:55 +00004951 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004952 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004953 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004954
Dan Gohmandc191042009-07-08 19:23:34 +00004955 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004956 while (!Worklist.empty()) {
4957 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004958 if (!Visited.insert(I).second)
4959 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004960
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004961 ValueExprMapType::iterator It =
4962 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004963 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004964 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004965 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004966 if (PHINode *PN = dyn_cast<PHINode>(I))
4967 ConstantEvolutionLoopExitValue.erase(PN);
4968 }
4969
4970 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004971 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004972
4973 // Forget all contained loops too, to avoid dangling entries in the
4974 // ValuesAtScopes map.
4975 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4976 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004977}
4978
Eric Christopheref6d5932010-07-29 01:25:38 +00004979/// forgetValue - This method should be called by the client when it has
4980/// changed a value in a way that may effect its value, or which may
4981/// disconnect it from a def-use chain linking it to a loop.
4982void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004983 Instruction *I = dyn_cast<Instruction>(V);
4984 if (!I) return;
4985
4986 // Drop information about expressions based on loop-header PHIs.
4987 SmallVector<Instruction *, 16> Worklist;
4988 Worklist.push_back(I);
4989
4990 SmallPtrSet<Instruction *, 8> Visited;
4991 while (!Worklist.empty()) {
4992 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004993 if (!Visited.insert(I).second)
4994 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004995
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004996 ValueExprMapType::iterator It =
4997 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004998 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004999 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005000 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005001 if (PHINode *PN = dyn_cast<PHINode>(I))
5002 ConstantEvolutionLoopExitValue.erase(PN);
5003 }
5004
5005 PushDefUseChildren(I, Worklist);
5006 }
5007}
5008
Andrew Trick3ca3f982011-07-26 17:19:55 +00005009/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005010/// exits. A computable result can only be returned for loops with a single
5011/// exit. Returning the minimum taken count among all exits is incorrect
5012/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5013/// assumes that the limit of each loop test is never skipped. This is a valid
5014/// assumption as long as the loop exits via that test. For precise results, it
5015/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005016/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005017const SCEV *
5018ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5019 // If any exits were not computable, the loop is not computable.
5020 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5021
Andrew Trick90c7a102011-11-16 00:52:40 +00005022 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005023 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005024 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5025
Craig Topper9f008862014-04-15 04:59:12 +00005026 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005027 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005028 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005029
5030 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5031
5032 if (!BECount)
5033 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00005034 else if (BECount != ENT->ExactNotTaken)
5035 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005036 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00005037 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005038 return BECount;
5039}
5040
5041/// getExact - Get the exact not taken count for this loop exit.
5042const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005043ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005044 ScalarEvolution *SE) const {
5045 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005046 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005047
Andrew Trick77c55422011-08-02 04:23:35 +00005048 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005049 return ENT->ExactNotTaken;
5050 }
5051 return SE->getCouldNotCompute();
5052}
5053
5054/// getMax - Get the max backedge taken count for the loop.
5055const SCEV *
5056ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5057 return Max ? Max : SE->getCouldNotCompute();
5058}
5059
Andrew Trick9093e152013-03-26 03:14:53 +00005060bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5061 ScalarEvolution *SE) const {
5062 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5063 return true;
5064
5065 if (!ExitNotTaken.ExitingBlock)
5066 return false;
5067
5068 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005069 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00005070
5071 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5072 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5073 return true;
5074 }
5075 }
5076 return false;
5077}
5078
Andrew Trick3ca3f982011-07-26 17:19:55 +00005079/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5080/// computable exit into a persistent ExitNotTakenInfo array.
5081ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5082 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5083 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5084
5085 if (!Complete)
5086 ExitNotTaken.setIncomplete();
5087
5088 unsigned NumExits = ExitCounts.size();
5089 if (NumExits == 0) return;
5090
Andrew Trick77c55422011-08-02 04:23:35 +00005091 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005092 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5093 if (NumExits == 1) return;
5094
5095 // Handle the rare case of multiple computable exits.
5096 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5097
5098 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5099 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5100 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00005101 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005102 ENT->ExactNotTaken = ExitCounts[i].second;
5103 }
5104}
5105
5106/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5107void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005108 ExitNotTaken.ExitingBlock = nullptr;
5109 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005110 delete[] ExitNotTaken.getNextExit();
5111}
5112
Dan Gohman0bddac12009-02-24 18:55:53 +00005113/// ComputeBackedgeTakenCount - Compute the number of times the backedge
5114/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005115ScalarEvolution::BackedgeTakenInfo
5116ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005117 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005118 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005119
Andrew Trick839e30b2014-05-23 19:47:13 +00005120 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005121 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005122 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005123 const SCEV *MustExitMaxBECount = nullptr;
5124 const SCEV *MayExitMaxBECount = nullptr;
5125
5126 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5127 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00005128 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005129 BasicBlock *ExitBB = ExitingBlocks[i];
5130 ExitLimit EL = ComputeExitLimit(L, ExitBB);
5131
5132 // 1. For each exit that can be computed, add an entry to ExitCounts.
5133 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005134 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005135 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005136 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005137 CouldComputeBECount = false;
5138 else
Andrew Trick839e30b2014-05-23 19:47:13 +00005139 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005140
Andrew Trick839e30b2014-05-23 19:47:13 +00005141 // 2. Derive the loop's MaxBECount from each exit's max number of
5142 // non-exiting iterations. Partition the loop exits into two kinds:
5143 // LoopMustExits and LoopMayExits.
5144 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005145 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5146 // is a LoopMayExit. If any computable LoopMustExit is found, then
5147 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5148 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5149 // considered greater than any computable EL.Max.
5150 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005151 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005152 if (!MustExitMaxBECount)
5153 MustExitMaxBECount = EL.Max;
5154 else {
5155 MustExitMaxBECount =
5156 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005157 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005158 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5159 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5160 MayExitMaxBECount = EL.Max;
5161 else {
5162 MayExitMaxBECount =
5163 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5164 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005165 }
Dan Gohman96212b62009-06-22 00:31:57 +00005166 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005167 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5168 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005169 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005170}
5171
Andrew Trick3ca3f982011-07-26 17:19:55 +00005172/// ComputeExitLimit - Compute the number of times the backedge of the specified
5173/// loop will execute if it exits via the specified block.
5174ScalarEvolution::ExitLimit
5175ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005176
5177 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00005178 // exit at this block and remember the exit block and whether all other targets
5179 // lead to the loop header.
5180 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005181 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005182 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5183 SI != SE; ++SI)
5184 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005185 if (Exit) // Multiple exit successors.
5186 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005187 Exit = *SI;
5188 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005189 MustExecuteLoopHeader = false;
5190 }
Dan Gohmance973df2009-06-24 04:48:43 +00005191
Chris Lattner18954852007-01-07 02:24:26 +00005192 // At this point, we know we have a conditional branch that determines whether
5193 // the loop is exited. However, we don't know if the branch is executed each
5194 // time through the loop. If not, then the execution count of the branch will
5195 // not be equal to the trip count of the loop.
5196 //
5197 // Currently we check for this by checking to see if the Exit branch goes to
5198 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005199 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005200 // loop header. This is common for un-rotated loops.
5201 //
5202 // If both of those tests fail, walk up the unique predecessor chain to the
5203 // header, stopping if there is an edge that doesn't exit the loop. If the
5204 // header is reached, the execution count of the branch will be equal to the
5205 // trip count of the loop.
5206 //
5207 // More extensive analysis could be done to handle more cases here.
5208 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005209 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005210 // The simple checks failed, try climbing the unique predecessor chain
5211 // up to the header.
5212 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005213 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005214 BasicBlock *Pred = BB->getUniquePredecessor();
5215 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005216 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005217 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005218 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005219 if (PredSucc == BB)
5220 continue;
5221 // If the predecessor has a successor that isn't BB and isn't
5222 // outside the loop, assume the worst.
5223 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005224 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005225 }
5226 if (Pred == L->getHeader()) {
5227 Ok = true;
5228 break;
5229 }
5230 BB = Pred;
5231 }
5232 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005233 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005234 }
5235
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005236 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005237 TerminatorInst *Term = ExitingBlock->getTerminator();
5238 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5239 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5240 // Proceed to the next level to examine the exit condition expression.
5241 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5242 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005243 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005244 }
5245
5246 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5247 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005248 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005249
5250 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005251}
5252
Andrew Trick3ca3f982011-07-26 17:19:55 +00005253/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005254/// backedge of the specified loop will execute if its exit condition
5255/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005256///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005257/// @param ControlsExit is true if ExitCond directly controls the exit
5258/// branch. In this case, we can assume that the loop exits only if the
5259/// condition is true and can infer that failing to meet the condition prior to
5260/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005261ScalarEvolution::ExitLimit
5262ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
5263 Value *ExitCond,
5264 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005265 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005266 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005267 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005268 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5269 if (BO->getOpcode() == Instruction::And) {
5270 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005271 bool EitherMayExit = L->contains(TBB);
5272 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005273 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005274 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005275 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005276 const SCEV *BECount = getCouldNotCompute();
5277 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005278 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005279 // Both conditions must be true for the loop to continue executing.
5280 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005281 if (EL0.Exact == getCouldNotCompute() ||
5282 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005283 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005284 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005285 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5286 if (EL0.Max == getCouldNotCompute())
5287 MaxBECount = EL1.Max;
5288 else if (EL1.Max == getCouldNotCompute())
5289 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005290 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005291 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005292 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005293 // Both conditions must be true at the same time for the loop to exit.
5294 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005295 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005296 if (EL0.Max == EL1.Max)
5297 MaxBECount = EL0.Max;
5298 if (EL0.Exact == EL1.Exact)
5299 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005300 }
5301
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005302 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005303 }
5304 if (BO->getOpcode() == Instruction::Or) {
5305 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005306 bool EitherMayExit = L->contains(FBB);
5307 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005308 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005309 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005310 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005311 const SCEV *BECount = getCouldNotCompute();
5312 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005313 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005314 // Both conditions must be false for the loop to continue executing.
5315 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005316 if (EL0.Exact == getCouldNotCompute() ||
5317 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005318 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005319 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005320 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5321 if (EL0.Max == getCouldNotCompute())
5322 MaxBECount = EL1.Max;
5323 else if (EL1.Max == getCouldNotCompute())
5324 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005325 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005326 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005327 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005328 // Both conditions must be false at the same time for the loop to exit.
5329 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005330 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005331 if (EL0.Max == EL1.Max)
5332 MaxBECount = EL0.Max;
5333 if (EL0.Exact == EL1.Exact)
5334 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005335 }
5336
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005337 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005338 }
5339 }
5340
5341 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005342 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005343 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005344 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005345
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005346 // Check for a constant condition. These are normally stripped out by
5347 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5348 // preserve the CFG and is temporarily leaving constant conditions
5349 // in place.
5350 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5351 if (L->contains(FBB) == !CI->getZExtValue())
5352 // The backedge is always taken.
5353 return getCouldNotCompute();
5354 else
5355 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005356 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005357 }
5358
Eli Friedmanebf98b02009-05-09 12:32:42 +00005359 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005360 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005361}
5362
Andrew Trick3ca3f982011-07-26 17:19:55 +00005363/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005364/// backedge of the specified loop will execute if its exit condition
5365/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005366ScalarEvolution::ExitLimit
5367ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5368 ICmpInst *ExitCond,
5369 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005370 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005371 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005372
Reid Spencer266e42b2006-12-23 06:05:41 +00005373 // If the condition was exit on true, convert the condition to exit on false
5374 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005375 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005376 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005377 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005378 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005379
5380 // Handle common loops like: for (X = "string"; *X; ++X)
5381 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5382 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005383 ExitLimit ItCnt =
5384 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005385 if (ItCnt.hasAnyInfo())
5386 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005387 }
5388
Dan Gohmanaf752342009-07-07 17:06:11 +00005389 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5390 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005391
5392 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005393 LHS = getSCEVAtScope(LHS, L);
5394 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005395
Dan Gohmance973df2009-06-24 04:48:43 +00005396 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005397 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005398 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005399 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005400 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005401 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005402 }
5403
Dan Gohman81585c12010-05-03 16:35:17 +00005404 // Simplify the operands before analyzing them.
5405 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5406
Chris Lattnerd934c702004-04-02 20:23:17 +00005407 // If we have a comparison of a chrec against a constant, try to use value
5408 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005409 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5410 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005411 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005412 // Form the constant range.
5413 ConstantRange CompRange(
5414 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005415
Dan Gohmanaf752342009-07-07 17:06:11 +00005416 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005417 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005418 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005419
Chris Lattnerd934c702004-04-02 20:23:17 +00005420 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005421 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005422 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005423 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005424 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005425 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005426 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005427 case ICmpInst::ICMP_EQ: { // while (X == Y)
5428 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005429 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5430 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005431 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005432 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005433 case ICmpInst::ICMP_SLT:
5434 case ICmpInst::ICMP_ULT: { // while (X < Y)
5435 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005436 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005437 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005438 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005439 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005440 case ICmpInst::ICMP_SGT:
5441 case ICmpInst::ICMP_UGT: { // while (X > Y)
5442 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005443 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005444 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005445 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005446 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005447 default:
Chris Lattner09169212004-04-02 20:26:46 +00005448#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005449 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005450 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005451 dbgs() << "[unsigned] ";
5452 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005453 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005454 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005455#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005456 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005457 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005458 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005459}
5460
Benjamin Kramer5a188542014-02-11 15:44:32 +00005461ScalarEvolution::ExitLimit
5462ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5463 SwitchInst *Switch,
5464 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005465 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005466 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5467
5468 // Give up if the exit is the default dest of a switch.
5469 if (Switch->getDefaultDest() == ExitingBlock)
5470 return getCouldNotCompute();
5471
5472 assert(L->contains(Switch->getDefaultDest()) &&
5473 "Default case must not exit the loop!");
5474 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5475 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5476
5477 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005478 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005479 if (EL.hasAnyInfo())
5480 return EL;
5481
5482 return getCouldNotCompute();
5483}
5484
Chris Lattnerec901cc2004-10-12 01:49:27 +00005485static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005486EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5487 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005488 const SCEV *InVal = SE.getConstant(C);
5489 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005490 assert(isa<SCEVConstant>(Val) &&
5491 "Evaluation of SCEV at constant didn't fold correctly?");
5492 return cast<SCEVConstant>(Val)->getValue();
5493}
5494
Andrew Trick3ca3f982011-07-26 17:19:55 +00005495/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005496/// 'icmp op load X, cst', try to see if we can compute the backedge
5497/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005498ScalarEvolution::ExitLimit
5499ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5500 LoadInst *LI,
5501 Constant *RHS,
5502 const Loop *L,
5503 ICmpInst::Predicate predicate) {
5504
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005505 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005506
5507 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005508 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005509 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005510 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005511
5512 // Make sure that it is really a constant global we are gepping, with an
5513 // initializer, and make sure the first IDX is really 0.
5514 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005515 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005516 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5517 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005518 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005519
5520 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005521 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005522 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005523 unsigned VarIdxNum = 0;
5524 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5525 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5526 Indexes.push_back(CI);
5527 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005528 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005529 VarIdx = GEP->getOperand(i);
5530 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005531 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005532 }
5533
Andrew Trick7004e4b2012-03-26 22:33:59 +00005534 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5535 if (!VarIdx)
5536 return getCouldNotCompute();
5537
Chris Lattnerec901cc2004-10-12 01:49:27 +00005538 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5539 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005540 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005541 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005542
5543 // We can only recognize very limited forms of loop index expressions, in
5544 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005545 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005546 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005547 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5548 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005549 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005550
5551 unsigned MaxSteps = MaxBruteForceIterations;
5552 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005553 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005554 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005555 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005556
5557 // Form the GEP offset.
5558 Indexes[VarIdxNum] = Val;
5559
Chris Lattnere166a852012-01-24 05:49:24 +00005560 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5561 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005562 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005563
5564 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005565 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005566 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005567 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005568#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005569 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005570 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5571 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005572#endif
5573 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005574 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005575 }
5576 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005577 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005578}
5579
5580
Chris Lattnerdd730472004-04-17 22:58:41 +00005581/// CanConstantFold - Return true if we can constant fold an instruction of the
5582/// specified type, assuming that all operands were constants.
5583static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005584 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005585 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5586 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005587 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005588
Chris Lattnerdd730472004-04-17 22:58:41 +00005589 if (const CallInst *CI = dyn_cast<CallInst>(I))
5590 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005591 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005592 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005593}
5594
Andrew Trick3a86ba72011-10-05 03:25:31 +00005595/// Determine whether this instruction can constant evolve within this loop
5596/// assuming its operands can all constant evolve.
5597static bool canConstantEvolve(Instruction *I, const Loop *L) {
5598 // An instruction outside of the loop can't be derived from a loop PHI.
5599 if (!L->contains(I)) return false;
5600
5601 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005602 // We don't currently keep track of the control flow needed to evaluate
5603 // PHIs, so we cannot handle PHIs inside of loops.
5604 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005605 }
5606
5607 // If we won't be able to constant fold this expression even if the operands
5608 // are constants, bail early.
5609 return CanConstantFold(I);
5610}
5611
5612/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5613/// recursing through each instruction operand until reaching a loop header phi.
5614static PHINode *
5615getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005616 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005617
5618 // Otherwise, we can evaluate this instruction if all of its operands are
5619 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005620 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005621 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5622 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5623
5624 if (isa<Constant>(*OpI)) continue;
5625
5626 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005627 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005628
5629 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005630 if (!P)
5631 // If this operand is already visited, reuse the prior result.
5632 // We may have P != PHI if this is the deepest point at which the
5633 // inconsistent paths meet.
5634 P = PHIMap.lookup(OpInst);
5635 if (!P) {
5636 // Recurse and memoize the results, whether a phi is found or not.
5637 // This recursive call invalidates pointers into PHIMap.
5638 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5639 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005640 }
Craig Topper9f008862014-04-15 04:59:12 +00005641 if (!P)
5642 return nullptr; // Not evolving from PHI
5643 if (PHI && PHI != P)
5644 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005645 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005646 }
5647 // This is a expression evolving from a constant PHI!
5648 return PHI;
5649}
5650
Chris Lattnerdd730472004-04-17 22:58:41 +00005651/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5652/// in the loop that V is derived from. We allow arbitrary operations along the
5653/// way, but the operands of an operation must either be constants or a value
5654/// derived from a constant PHI. If this expression does not fit with these
5655/// constraints, return null.
5656static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005657 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005658 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005659
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005660 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005661 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005662 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005663
Andrew Trick3a86ba72011-10-05 03:25:31 +00005664 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005665 DenseMap<Instruction *, PHINode *> PHIMap;
5666 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005667}
5668
5669/// EvaluateExpression - Given an expression that passes the
5670/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5671/// in the loop has the value PHIVal. If we can't fold this expression for some
5672/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005673static Constant *EvaluateExpression(Value *V, const Loop *L,
5674 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005675 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005676 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005677 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005678 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005679 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005680 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005681
Andrew Trick3a86ba72011-10-05 03:25:31 +00005682 if (Constant *C = Vals.lookup(I)) return C;
5683
Nick Lewyckya6674c72011-10-22 19:58:20 +00005684 // An instruction inside the loop depends on a value outside the loop that we
5685 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005686 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005687
5688 // An unmapped PHI can be due to a branch or another loop inside this loop,
5689 // or due to this not being the initial iteration through a loop where we
5690 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005691 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005692
Dan Gohmanf820bd32010-06-22 13:15:46 +00005693 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005694
5695 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005696 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5697 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005698 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005699 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005700 continue;
5701 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005702 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005703 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005704 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005705 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005706 }
5707
Nick Lewyckya6674c72011-10-22 19:58:20 +00005708 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005709 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005710 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005711 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5712 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005713 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005714 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005715 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005716 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005717}
5718
5719/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5720/// in the header of its containing loop, we know the loop executes a
5721/// constant number of times, and the PHI node is just a recurrence
5722/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005723Constant *
5724ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005725 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005726 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005727 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005728 ConstantEvolutionLoopExitValue.find(PN);
5729 if (I != ConstantEvolutionLoopExitValue.end())
5730 return I->second;
5731
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005732 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005733 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005734
5735 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5736
Andrew Trick3a86ba72011-10-05 03:25:31 +00005737 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005738 BasicBlock *Header = L->getHeader();
5739 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005740
Chris Lattnerdd730472004-04-17 22:58:41 +00005741 // Since the loop is canonicalized, the PHI node must have two entries. One
5742 // entry must be a constant (coming in from outside of the loop), and the
5743 // second must be derived from the same PHI.
5744 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005745 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005746 for (BasicBlock::iterator I = Header->begin();
5747 (PHI = dyn_cast<PHINode>(I)); ++I) {
5748 Constant *StartCST =
5749 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005750 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005751 CurrentIterVals[PHI] = StartCST;
5752 }
5753 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005754 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005755
5756 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005757
5758 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005759 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005760 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005761
Dan Gohman0bddac12009-02-24 18:55:53 +00005762 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005763 unsigned IterationNum = 0;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005764 const DataLayout &DL = F.getParent()->getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005765 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005766 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005767 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005768
Nick Lewyckya6674c72011-10-22 19:58:20 +00005769 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005770 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005771 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005772 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005773 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005774 if (!NextPHI)
5775 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005776 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005777
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005778 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5779
Nick Lewyckya6674c72011-10-22 19:58:20 +00005780 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5781 // cease to be able to evaluate one of them or if they stop evolving,
5782 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005783 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005784 for (DenseMap<Instruction *, Constant *>::const_iterator
5785 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5786 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005787 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005788 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5789 }
5790 // We use two distinct loops because EvaluateExpression may invalidate any
5791 // iterators into CurrentIterVals.
5792 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5793 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5794 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005795 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005796 if (!NextPHI) { // Not already computed.
5797 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005798 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005799 }
5800 if (NextPHI != I->second)
5801 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005802 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005803
5804 // If all entries in CurrentIterVals == NextIterVals then we can stop
5805 // iterating, the loop can't continue to change.
5806 if (StoppedEvolving)
5807 return RetVal = CurrentIterVals[PN];
5808
Andrew Trick3a86ba72011-10-05 03:25:31 +00005809 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005810 }
5811}
5812
Andrew Trick3ca3f982011-07-26 17:19:55 +00005813/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005814/// constant number of times (the condition evolves only from constants),
5815/// try to evaluate a few iterations of the loop until we get the exit
5816/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005817/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005818const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5819 Value *Cond,
5820 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005821 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005822 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005823
Dan Gohman866971e2010-06-19 14:17:24 +00005824 // If the loop is canonicalized, the PHI will have exactly two entries.
5825 // That's the only form we support here.
5826 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5827
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005828 DenseMap<Instruction *, Constant *> CurrentIterVals;
5829 BasicBlock *Header = L->getHeader();
5830 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5831
Dan Gohman866971e2010-06-19 14:17:24 +00005832 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005833 // second must be derived from the same PHI.
5834 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005835 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005836 for (BasicBlock::iterator I = Header->begin();
5837 (PHI = dyn_cast<PHINode>(I)); ++I) {
5838 Constant *StartCST =
5839 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005840 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005841 CurrentIterVals[PHI] = StartCST;
5842 }
5843 if (!CurrentIterVals.count(PN))
5844 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005845
5846 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5847 // the loop symbolically to determine when the condition gets a value of
5848 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00005849 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005850 const DataLayout &DL = F.getParent()->getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005851 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005852 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005853 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005854
Zhou Sheng75b871f2007-01-11 12:24:14 +00005855 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005856 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005857
Reid Spencer983e3b32007-03-01 07:25:48 +00005858 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005859 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005860 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005861 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005862
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005863 // Update all the PHI nodes for the next iteration.
5864 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005865
5866 // Create a list of which PHIs we need to compute. We want to do this before
5867 // calling EvaluateExpression on them because that may invalidate iterators
5868 // into CurrentIterVals.
5869 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005870 for (DenseMap<Instruction *, Constant *>::const_iterator
5871 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5872 PHINode *PHI = dyn_cast<PHINode>(I->first);
5873 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005874 PHIsToCompute.push_back(PHI);
5875 }
5876 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5877 E = PHIsToCompute.end(); I != E; ++I) {
5878 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005879 Constant *&NextPHI = NextIterVals[PHI];
5880 if (NextPHI) continue; // Already computed!
5881
5882 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005883 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005884 }
5885 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005886 }
5887
5888 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005889 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005890}
5891
Dan Gohman237d9e52009-09-03 15:00:26 +00005892/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005893/// at the specified scope in the program. The L value specifies a loop
5894/// nest to evaluate the expression at, where null is the top-level or a
5895/// specified loop is immediately inside of the loop.
5896///
5897/// This method can be used to compute the exit value for a variable defined
5898/// in a loop by querying what the value will hold in the parent loop.
5899///
Dan Gohman8ca08852009-05-24 23:25:42 +00005900/// In the case that a relevant loop exit value cannot be computed, the
5901/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005902const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005903 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005904 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5905 for (unsigned u = 0; u < Values.size(); u++) {
5906 if (Values[u].first == L)
5907 return Values[u].second ? Values[u].second : V;
5908 }
Craig Topper9f008862014-04-15 04:59:12 +00005909 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005910 // Otherwise compute it.
5911 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005912 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5913 for (unsigned u = Values2.size(); u > 0; u--) {
5914 if (Values2[u - 1].first == L) {
5915 Values2[u - 1].second = C;
5916 break;
5917 }
5918 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005919 return C;
5920}
5921
Nick Lewyckya6674c72011-10-22 19:58:20 +00005922/// This builds up a Constant using the ConstantExpr interface. That way, we
5923/// will return Constants for objects which aren't represented by a
5924/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5925/// Returns NULL if the SCEV isn't representable as a Constant.
5926static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005927 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005928 case scCouldNotCompute:
5929 case scAddRecExpr:
5930 break;
5931 case scConstant:
5932 return cast<SCEVConstant>(V)->getValue();
5933 case scUnknown:
5934 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5935 case scSignExtend: {
5936 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5937 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5938 return ConstantExpr::getSExt(CastOp, SS->getType());
5939 break;
5940 }
5941 case scZeroExtend: {
5942 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5943 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5944 return ConstantExpr::getZExt(CastOp, SZ->getType());
5945 break;
5946 }
5947 case scTruncate: {
5948 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5949 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5950 return ConstantExpr::getTrunc(CastOp, ST->getType());
5951 break;
5952 }
5953 case scAddExpr: {
5954 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5955 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005956 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5957 unsigned AS = PTy->getAddressSpace();
5958 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5959 C = ConstantExpr::getBitCast(C, DestPtrTy);
5960 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005961 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5962 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005963 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005964
5965 // First pointer!
5966 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005967 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005968 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005969 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005970 // The offsets have been converted to bytes. We can add bytes to an
5971 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005972 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005973 }
5974
5975 // Don't bother trying to sum two pointers. We probably can't
5976 // statically compute a load that results from it anyway.
5977 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005978 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005979
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005980 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5981 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005982 C2 = ConstantExpr::getIntegerCast(
5983 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00005984 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005985 } else
5986 C = ConstantExpr::getAdd(C, C2);
5987 }
5988 return C;
5989 }
5990 break;
5991 }
5992 case scMulExpr: {
5993 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5994 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5995 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005996 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005997 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5998 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005999 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006000 C = ConstantExpr::getMul(C, C2);
6001 }
6002 return C;
6003 }
6004 break;
6005 }
6006 case scUDivExpr: {
6007 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6008 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6009 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6010 if (LHS->getType() == RHS->getType())
6011 return ConstantExpr::getUDiv(LHS, RHS);
6012 break;
6013 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006014 case scSMaxExpr:
6015 case scUMaxExpr:
6016 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006017 }
Craig Topper9f008862014-04-15 04:59:12 +00006018 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006019}
6020
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006021const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006022 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006023
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006024 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006025 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006026 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006027 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006028 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006029 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6030 if (PHINode *PN = dyn_cast<PHINode>(I))
6031 if (PN->getParent() == LI->getHeader()) {
6032 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006033 // to see if the loop that contains it has a known backedge-taken
6034 // count. If so, we may be able to force computation of the exit
6035 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006036 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006037 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006038 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006039 // Okay, we know how many times the containing loop executes. If
6040 // this is a constant evolving PHI node, get the final value at
6041 // the specified iteration number.
6042 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00006043 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00006044 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006045 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006046 }
6047 }
6048
Reid Spencere6328ca2006-12-04 21:33:23 +00006049 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006050 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006051 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006052 // result. This is particularly useful for computing loop exit values.
6053 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006054 SmallVector<Constant *, 4> Operands;
6055 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00006056 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6057 Value *Op = I->getOperand(i);
6058 if (Constant *C = dyn_cast<Constant>(Op)) {
6059 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006060 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006061 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006062
6063 // If any of the operands is non-constant and if they are
6064 // non-integer and non-pointer, don't even try to analyze them
6065 // with scev techniques.
6066 if (!isSCEVable(Op->getType()))
6067 return V;
6068
6069 const SCEV *OrigV = getSCEV(Op);
6070 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6071 MadeImprovement |= OrigV != OpV;
6072
Nick Lewyckya6674c72011-10-22 19:58:20 +00006073 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006074 if (!C) return V;
6075 if (C->getType() != Op->getType())
6076 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6077 Op->getType(),
6078 false),
6079 C, Op->getType());
6080 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006081 }
Dan Gohmance973df2009-06-24 04:48:43 +00006082
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006083 // Check to see if getSCEVAtScope actually made an improvement.
6084 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006085 Constant *C = nullptr;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006086 const DataLayout &DL = F.getParent()->getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006087 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006088 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006089 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006090 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6091 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006092 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006093 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006094 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006095 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006096 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006097 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006098 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006099 }
6100 }
6101
6102 // This is some other type of SCEVUnknown, just return it.
6103 return V;
6104 }
6105
Dan Gohmana30370b2009-05-04 22:02:23 +00006106 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006107 // Avoid performing the look-up in the common case where the specified
6108 // expression has no loop-variant portions.
6109 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006110 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006111 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006112 // Okay, at least one of these operands is loop variant but might be
6113 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006114 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6115 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006116 NewOps.push_back(OpAtScope);
6117
6118 for (++i; i != e; ++i) {
6119 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006120 NewOps.push_back(OpAtScope);
6121 }
6122 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006123 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006124 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006125 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006126 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006127 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006128 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006129 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006130 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006131 }
6132 }
6133 // If we got here, all operands are loop invariant.
6134 return Comm;
6135 }
6136
Dan Gohmana30370b2009-05-04 22:02:23 +00006137 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006138 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6139 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006140 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6141 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006142 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006143 }
6144
6145 // If this is a loop recurrence for a loop that does not contain L, then we
6146 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006147 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006148 // First, attempt to evaluate each operand.
6149 // Avoid performing the look-up in the common case where the specified
6150 // expression has no loop-variant portions.
6151 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6152 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6153 if (OpAtScope == AddRec->getOperand(i))
6154 continue;
6155
6156 // Okay, at least one of these operands is loop variant but might be
6157 // foldable. Build a new instance of the folded commutative expression.
6158 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6159 AddRec->op_begin()+i);
6160 NewOps.push_back(OpAtScope);
6161 for (++i; i != e; ++i)
6162 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6163
Andrew Trick759ba082011-04-27 01:21:25 +00006164 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006165 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006166 AddRec->getNoWrapFlags(SCEV::FlagNW));
6167 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006168 // The addrec may be folded to a nonrecurrence, for example, if the
6169 // induction variable is multiplied by zero after constant folding. Go
6170 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006171 if (!AddRec)
6172 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006173 break;
6174 }
6175
6176 // If the scope is outside the addrec's loop, evaluate it by using the
6177 // loop exit value of the addrec.
6178 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006179 // To evaluate this recurrence, we need to know how many times the AddRec
6180 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006181 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006182 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006183
Eli Friedman61f67622008-08-04 23:49:06 +00006184 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006185 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006186 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006187
Dan Gohman8ca08852009-05-24 23:25:42 +00006188 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006189 }
6190
Dan Gohmana30370b2009-05-04 22:02:23 +00006191 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006192 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006193 if (Op == Cast->getOperand())
6194 return Cast; // must be loop invariant
6195 return getZeroExtendExpr(Op, Cast->getType());
6196 }
6197
Dan Gohmana30370b2009-05-04 22:02:23 +00006198 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006199 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006200 if (Op == Cast->getOperand())
6201 return Cast; // must be loop invariant
6202 return getSignExtendExpr(Op, Cast->getType());
6203 }
6204
Dan Gohmana30370b2009-05-04 22:02:23 +00006205 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006206 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006207 if (Op == Cast->getOperand())
6208 return Cast; // must be loop invariant
6209 return getTruncateExpr(Op, Cast->getType());
6210 }
6211
Torok Edwinfbcc6632009-07-14 16:55:14 +00006212 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006213}
6214
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006215/// getSCEVAtScope - This is a convenience function which does
6216/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006217const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006218 return getSCEVAtScope(getSCEV(V), L);
6219}
6220
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006221/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6222/// following equation:
6223///
6224/// A * X = B (mod N)
6225///
6226/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6227/// A and B isn't important.
6228///
6229/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006230static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006231 ScalarEvolution &SE) {
6232 uint32_t BW = A.getBitWidth();
6233 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6234 assert(A != 0 && "A must be non-zero.");
6235
6236 // 1. D = gcd(A, N)
6237 //
6238 // The gcd of A and N may have only one prime factor: 2. The number of
6239 // trailing zeros in A is its multiplicity
6240 uint32_t Mult2 = A.countTrailingZeros();
6241 // D = 2^Mult2
6242
6243 // 2. Check if B is divisible by D.
6244 //
6245 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6246 // is not less than multiplicity of this prime factor for D.
6247 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006248 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006249
6250 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6251 // modulo (N / D).
6252 //
6253 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6254 // bit width during computations.
6255 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6256 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006257 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006258 APInt I = AD.multiplicativeInverse(Mod);
6259
6260 // 4. Compute the minimum unsigned root of the equation:
6261 // I * (B / D) mod (N / D)
6262 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6263
6264 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6265 // bits.
6266 return SE.getConstant(Result.trunc(BW));
6267}
Chris Lattnerd934c702004-04-02 20:23:17 +00006268
6269/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6270/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6271/// might be the same) or two SCEVCouldNotCompute objects.
6272///
Dan Gohmanaf752342009-07-07 17:06:11 +00006273static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006274SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006275 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006276 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6277 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6278 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006279
Chris Lattnerd934c702004-04-02 20:23:17 +00006280 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006281 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006282 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006283 return std::make_pair(CNC, CNC);
6284 }
6285
Reid Spencer983e3b32007-03-01 07:25:48 +00006286 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006287 const APInt &L = LC->getValue()->getValue();
6288 const APInt &M = MC->getValue()->getValue();
6289 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006290 APInt Two(BitWidth, 2);
6291 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006292
Dan Gohmance973df2009-06-24 04:48:43 +00006293 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006294 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006295 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006296 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6297 // The B coefficient is M-N/2
6298 APInt B(M);
6299 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006300
Reid Spencer983e3b32007-03-01 07:25:48 +00006301 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006302 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006303
Reid Spencer983e3b32007-03-01 07:25:48 +00006304 // Compute the B^2-4ac term.
6305 APInt SqrtTerm(B);
6306 SqrtTerm *= B;
6307 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006308
Nick Lewyckyfb780832012-08-01 09:14:36 +00006309 if (SqrtTerm.isNegative()) {
6310 // The loop is provably infinite.
6311 const SCEV *CNC = SE.getCouldNotCompute();
6312 return std::make_pair(CNC, CNC);
6313 }
6314
Reid Spencer983e3b32007-03-01 07:25:48 +00006315 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6316 // integer value or else APInt::sqrt() will assert.
6317 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006318
Dan Gohmance973df2009-06-24 04:48:43 +00006319 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006320 // The divisions must be performed as signed divisions.
6321 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006322 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006323 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006324 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006325 return std::make_pair(CNC, CNC);
6326 }
6327
Owen Anderson47db9412009-07-22 00:24:57 +00006328 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006329
6330 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006331 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006332 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006333 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006334
Dan Gohmance973df2009-06-24 04:48:43 +00006335 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006336 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006337 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006338}
6339
6340/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006341/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006342///
6343/// This is only used for loops with a "x != y" exit test. The exit condition is
6344/// now expressed as a single expression, V = x-y. So the exit test is
6345/// effectively V != 0. We know and take advantage of the fact that this
6346/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006347ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006348ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006349 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006350 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006351 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006352 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006353 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006354 }
6355
Dan Gohman48f82222009-05-04 22:30:44 +00006356 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006357 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006358 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006359
Chris Lattnerdff679f2011-01-09 22:39:48 +00006360 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6361 // the quadratic equation to solve it.
6362 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6363 std::pair<const SCEV *,const SCEV *> Roots =
6364 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006365 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6366 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006367 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006368#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006369 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006370 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006371#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006372 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006373 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006374 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6375 R1->getValue(),
6376 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006377 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006378 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006379
Chris Lattnerd934c702004-04-02 20:23:17 +00006380 // We can only use this value if the chrec ends up with an exact zero
6381 // value at this index. When solving for "X*X != 5", for example, we
6382 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006383 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006384 if (Val->isZero())
6385 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006386 }
6387 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006388 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006389 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006390
Chris Lattnerdff679f2011-01-09 22:39:48 +00006391 // Otherwise we can only handle this if it is affine.
6392 if (!AddRec->isAffine())
6393 return getCouldNotCompute();
6394
6395 // If this is an affine expression, the execution count of this branch is
6396 // the minimum unsigned root of the following equation:
6397 //
6398 // Start + Step*N = 0 (mod 2^BW)
6399 //
6400 // equivalent to:
6401 //
6402 // Step*N = -Start (mod 2^BW)
6403 //
6404 // where BW is the common bit width of Start and Step.
6405
6406 // Get the initial value for the loop.
6407 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6408 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6409
6410 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006411 //
6412 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6413 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6414 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6415 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006416 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006417 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006418 return getCouldNotCompute();
6419
Andrew Trick8b55b732011-03-14 16:50:06 +00006420 // For positive steps (counting up until unsigned overflow):
6421 // N = -Start/Step (as unsigned)
6422 // For negative steps (counting down to zero):
6423 // N = Start/-Step
6424 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006425 bool CountDown = StepC->getValue()->getValue().isNegative();
6426 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006427
6428 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006429 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6430 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006431 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6432 ConstantRange CR = getUnsignedRange(Start);
6433 const SCEV *MaxBECount;
6434 if (!CountDown && CR.getUnsignedMin().isMinValue())
6435 // When counting up, the worst starting value is 1, not 0.
6436 MaxBECount = CR.getUnsignedMax().isMinValue()
6437 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6438 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6439 else
6440 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6441 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006442 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006443 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006444
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006445 // As a special case, handle the instance where Step is a positive power of
6446 // two. In this case, determining whether Step divides Distance evenly can be
6447 // done by counting and comparing the number of trailing zeros of Step and
6448 // Distance.
6449 if (!CountDown) {
6450 const APInt &StepV = StepC->getValue()->getValue();
6451 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6452 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6453 // case is not handled as this code is guarded by !CountDown.
6454 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006455 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6456 // Here we've constrained the equation to be of the form
6457 //
6458 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6459 //
6460 // where we're operating on a W bit wide integer domain and k is
6461 // non-negative. The smallest unsigned solution for X is the trip count.
6462 //
6463 // (0) is equivalent to:
6464 //
6465 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6466 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6467 // <=> 2^k * Distance' - X = L * 2^(W - N)
6468 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6469 //
6470 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6471 // by 2^(W - N).
6472 //
6473 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6474 //
6475 // E.g. say we're solving
6476 //
6477 // 2 * Val = 2 * X (in i8) ... (3)
6478 //
6479 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6480 //
6481 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6482 // necessarily the smallest unsigned value of X that satisfies (3).
6483 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6484 // is i8 1, not i8 -127
6485
6486 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6487
6488 // Since SCEV does not have a URem node, we construct one using a truncate
6489 // and a zero extend.
6490
6491 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6492 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6493 auto *WideTy = Distance->getType();
6494
6495 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6496 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006497 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006498
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006499 // If the condition controls loop exit (the loop exits only if the expression
6500 // is true) and the addition is no-wrap we can use unsigned divide to
6501 // compute the backedge count. In this case, the step may not divide the
6502 // distance, but we don't care because if the condition is "missed" the loop
6503 // will have undefined behavior due to wrapping.
6504 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6505 const SCEV *Exact =
6506 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6507 return ExitLimit(Exact, Exact);
6508 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006509
Chris Lattnerdff679f2011-01-09 22:39:48 +00006510 // Then, try to solve the above equation provided that Start is constant.
6511 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6512 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6513 -StartC->getValue()->getValue(),
6514 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006515 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006516}
6517
6518/// HowFarToNonZero - Return the number of times a backedge checking the
6519/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006520/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006521ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006522ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006523 // Loops that look like: while (X == 0) are very strange indeed. We don't
6524 // handle them yet except for the trivial case. This could be expanded in the
6525 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006526
Chris Lattnerd934c702004-04-02 20:23:17 +00006527 // If the value is a constant, check to see if it is known to be non-zero
6528 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006529 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006530 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006531 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006532 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006533 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006534
Chris Lattnerd934c702004-04-02 20:23:17 +00006535 // We could implement others, but I really doubt anyone writes loops like
6536 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006537 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006538}
6539
Dan Gohmanf9081a22008-09-15 22:18:04 +00006540/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6541/// (which may not be an immediate predecessor) which has exactly one
6542/// successor from which BB is reachable, or null if no such block is
6543/// found.
6544///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006545std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006546ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006547 // If the block has a unique predecessor, then there is no path from the
6548 // predecessor to the block that does not go through the direct edge
6549 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006550 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006551 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006552
6553 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006554 // If the header has a unique predecessor outside the loop, it must be
6555 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006556 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006557 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006558
Dan Gohman4e3c1132010-04-15 16:19:08 +00006559 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006560}
6561
Dan Gohman450f4e02009-06-20 00:35:32 +00006562/// HasSameValue - SCEV structural equivalence is usually sufficient for
6563/// testing whether two expressions are equal, however for the purposes of
6564/// looking for a condition guarding a loop, it can be useful to be a little
6565/// more general, since a front-end may have replicated the controlling
6566/// expression.
6567///
Dan Gohmanaf752342009-07-07 17:06:11 +00006568static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006569 // Quick check to see if they are the same SCEV.
6570 if (A == B) return true;
6571
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006572 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6573 // Not all instructions that are "identical" compute the same value. For
6574 // instance, two distinct alloca instructions allocating the same type are
6575 // identical and do not read memory; but compute distinct values.
6576 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6577 };
6578
Dan Gohman450f4e02009-06-20 00:35:32 +00006579 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6580 // two different instructions with the same value. Check for this case.
6581 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6582 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6583 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6584 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006585 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00006586 return true;
6587
6588 // Otherwise assume they may have a different value.
6589 return false;
6590}
6591
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006592/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006593/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006594///
6595bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006596 const SCEV *&LHS, const SCEV *&RHS,
6597 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006598 bool Changed = false;
6599
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006600 // If we hit the max recursion limit bail out.
6601 if (Depth >= 3)
6602 return false;
6603
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006604 // Canonicalize a constant to the right side.
6605 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6606 // Check for both operands constant.
6607 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6608 if (ConstantExpr::getICmp(Pred,
6609 LHSC->getValue(),
6610 RHSC->getValue())->isNullValue())
6611 goto trivially_false;
6612 else
6613 goto trivially_true;
6614 }
6615 // Otherwise swap the operands to put the constant on the right.
6616 std::swap(LHS, RHS);
6617 Pred = ICmpInst::getSwappedPredicate(Pred);
6618 Changed = true;
6619 }
6620
6621 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006622 // addrec's loop, put the addrec on the left. Also make a dominance check,
6623 // as both operands could be addrecs loop-invariant in each other's loop.
6624 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6625 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006626 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006627 std::swap(LHS, RHS);
6628 Pred = ICmpInst::getSwappedPredicate(Pred);
6629 Changed = true;
6630 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006631 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006632
6633 // If there's a constant operand, canonicalize comparisons with boundary
6634 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6635 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6636 const APInt &RA = RC->getValue()->getValue();
6637 switch (Pred) {
6638 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6639 case ICmpInst::ICMP_EQ:
6640 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006641 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6642 if (!RA)
6643 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6644 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006645 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6646 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006647 RHS = AE->getOperand(1);
6648 LHS = ME->getOperand(1);
6649 Changed = true;
6650 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006651 break;
6652 case ICmpInst::ICMP_UGE:
6653 if ((RA - 1).isMinValue()) {
6654 Pred = ICmpInst::ICMP_NE;
6655 RHS = getConstant(RA - 1);
6656 Changed = true;
6657 break;
6658 }
6659 if (RA.isMaxValue()) {
6660 Pred = ICmpInst::ICMP_EQ;
6661 Changed = true;
6662 break;
6663 }
6664 if (RA.isMinValue()) goto trivially_true;
6665
6666 Pred = ICmpInst::ICMP_UGT;
6667 RHS = getConstant(RA - 1);
6668 Changed = true;
6669 break;
6670 case ICmpInst::ICMP_ULE:
6671 if ((RA + 1).isMaxValue()) {
6672 Pred = ICmpInst::ICMP_NE;
6673 RHS = getConstant(RA + 1);
6674 Changed = true;
6675 break;
6676 }
6677 if (RA.isMinValue()) {
6678 Pred = ICmpInst::ICMP_EQ;
6679 Changed = true;
6680 break;
6681 }
6682 if (RA.isMaxValue()) goto trivially_true;
6683
6684 Pred = ICmpInst::ICMP_ULT;
6685 RHS = getConstant(RA + 1);
6686 Changed = true;
6687 break;
6688 case ICmpInst::ICMP_SGE:
6689 if ((RA - 1).isMinSignedValue()) {
6690 Pred = ICmpInst::ICMP_NE;
6691 RHS = getConstant(RA - 1);
6692 Changed = true;
6693 break;
6694 }
6695 if (RA.isMaxSignedValue()) {
6696 Pred = ICmpInst::ICMP_EQ;
6697 Changed = true;
6698 break;
6699 }
6700 if (RA.isMinSignedValue()) goto trivially_true;
6701
6702 Pred = ICmpInst::ICMP_SGT;
6703 RHS = getConstant(RA - 1);
6704 Changed = true;
6705 break;
6706 case ICmpInst::ICMP_SLE:
6707 if ((RA + 1).isMaxSignedValue()) {
6708 Pred = ICmpInst::ICMP_NE;
6709 RHS = getConstant(RA + 1);
6710 Changed = true;
6711 break;
6712 }
6713 if (RA.isMinSignedValue()) {
6714 Pred = ICmpInst::ICMP_EQ;
6715 Changed = true;
6716 break;
6717 }
6718 if (RA.isMaxSignedValue()) goto trivially_true;
6719
6720 Pred = ICmpInst::ICMP_SLT;
6721 RHS = getConstant(RA + 1);
6722 Changed = true;
6723 break;
6724 case ICmpInst::ICMP_UGT:
6725 if (RA.isMinValue()) {
6726 Pred = ICmpInst::ICMP_NE;
6727 Changed = true;
6728 break;
6729 }
6730 if ((RA + 1).isMaxValue()) {
6731 Pred = ICmpInst::ICMP_EQ;
6732 RHS = getConstant(RA + 1);
6733 Changed = true;
6734 break;
6735 }
6736 if (RA.isMaxValue()) goto trivially_false;
6737 break;
6738 case ICmpInst::ICMP_ULT:
6739 if (RA.isMaxValue()) {
6740 Pred = ICmpInst::ICMP_NE;
6741 Changed = true;
6742 break;
6743 }
6744 if ((RA - 1).isMinValue()) {
6745 Pred = ICmpInst::ICMP_EQ;
6746 RHS = getConstant(RA - 1);
6747 Changed = true;
6748 break;
6749 }
6750 if (RA.isMinValue()) goto trivially_false;
6751 break;
6752 case ICmpInst::ICMP_SGT:
6753 if (RA.isMinSignedValue()) {
6754 Pred = ICmpInst::ICMP_NE;
6755 Changed = true;
6756 break;
6757 }
6758 if ((RA + 1).isMaxSignedValue()) {
6759 Pred = ICmpInst::ICMP_EQ;
6760 RHS = getConstant(RA + 1);
6761 Changed = true;
6762 break;
6763 }
6764 if (RA.isMaxSignedValue()) goto trivially_false;
6765 break;
6766 case ICmpInst::ICMP_SLT:
6767 if (RA.isMaxSignedValue()) {
6768 Pred = ICmpInst::ICMP_NE;
6769 Changed = true;
6770 break;
6771 }
6772 if ((RA - 1).isMinSignedValue()) {
6773 Pred = ICmpInst::ICMP_EQ;
6774 RHS = getConstant(RA - 1);
6775 Changed = true;
6776 break;
6777 }
6778 if (RA.isMinSignedValue()) goto trivially_false;
6779 break;
6780 }
6781 }
6782
6783 // Check for obvious equality.
6784 if (HasSameValue(LHS, RHS)) {
6785 if (ICmpInst::isTrueWhenEqual(Pred))
6786 goto trivially_true;
6787 if (ICmpInst::isFalseWhenEqual(Pred))
6788 goto trivially_false;
6789 }
6790
Dan Gohman81585c12010-05-03 16:35:17 +00006791 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6792 // adding or subtracting 1 from one of the operands.
6793 switch (Pred) {
6794 case ICmpInst::ICMP_SLE:
6795 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6796 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006797 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006798 Pred = ICmpInst::ICMP_SLT;
6799 Changed = true;
6800 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006801 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006802 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006803 Pred = ICmpInst::ICMP_SLT;
6804 Changed = true;
6805 }
6806 break;
6807 case ICmpInst::ICMP_SGE:
6808 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006809 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006810 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006811 Pred = ICmpInst::ICMP_SGT;
6812 Changed = true;
6813 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6814 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006815 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006816 Pred = ICmpInst::ICMP_SGT;
6817 Changed = true;
6818 }
6819 break;
6820 case ICmpInst::ICMP_ULE:
6821 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006822 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006823 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006824 Pred = ICmpInst::ICMP_ULT;
6825 Changed = true;
6826 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006827 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006828 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006829 Pred = ICmpInst::ICMP_ULT;
6830 Changed = true;
6831 }
6832 break;
6833 case ICmpInst::ICMP_UGE:
6834 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006835 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006836 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006837 Pred = ICmpInst::ICMP_UGT;
6838 Changed = true;
6839 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006840 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006841 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006842 Pred = ICmpInst::ICMP_UGT;
6843 Changed = true;
6844 }
6845 break;
6846 default:
6847 break;
6848 }
6849
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006850 // TODO: More simplifications are possible here.
6851
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006852 // Recursively simplify until we either hit a recursion limit or nothing
6853 // changes.
6854 if (Changed)
6855 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6856
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006857 return Changed;
6858
6859trivially_true:
6860 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006861 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006862 Pred = ICmpInst::ICMP_EQ;
6863 return true;
6864
6865trivially_false:
6866 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006867 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006868 Pred = ICmpInst::ICMP_NE;
6869 return true;
6870}
6871
Dan Gohmane65c9172009-07-13 21:35:55 +00006872bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6873 return getSignedRange(S).getSignedMax().isNegative();
6874}
6875
6876bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6877 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6878}
6879
6880bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6881 return !getSignedRange(S).getSignedMin().isNegative();
6882}
6883
6884bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6885 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6886}
6887
6888bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6889 return isKnownNegative(S) || isKnownPositive(S);
6890}
6891
6892bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6893 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006894 // Canonicalize the inputs first.
6895 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6896
Dan Gohman07591692010-04-11 22:16:48 +00006897 // If LHS or RHS is an addrec, check to see if the condition is true in
6898 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006899 // If LHS and RHS are both addrec, both conditions must be true in
6900 // every iteration of the loop.
6901 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6902 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6903 bool LeftGuarded = false;
6904 bool RightGuarded = false;
6905 if (LAR) {
6906 const Loop *L = LAR->getLoop();
6907 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6908 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6909 if (!RAR) return true;
6910 LeftGuarded = true;
6911 }
6912 }
6913 if (RAR) {
6914 const Loop *L = RAR->getLoop();
6915 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6916 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6917 if (!LAR) return true;
6918 RightGuarded = true;
6919 }
6920 }
6921 if (LeftGuarded && RightGuarded)
6922 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006923
Sanjoy Das7d910f22015-10-02 18:50:30 +00006924 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
6925 return true;
6926
Dan Gohman07591692010-04-11 22:16:48 +00006927 // Otherwise see what can be done with known constant ranges.
6928 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6929}
6930
Sanjoy Das5dab2052015-07-27 21:42:49 +00006931bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
6932 ICmpInst::Predicate Pred,
6933 bool &Increasing) {
6934 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
6935
6936#ifndef NDEBUG
6937 // Verify an invariant: inverting the predicate should turn a monotonically
6938 // increasing change to a monotonically decreasing one, and vice versa.
6939 bool IncreasingSwapped;
6940 bool ResultSwapped = isMonotonicPredicateImpl(
6941 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
6942
6943 assert(Result == ResultSwapped && "should be able to analyze both!");
6944 if (ResultSwapped)
6945 assert(Increasing == !IncreasingSwapped &&
6946 "monotonicity should flip as we flip the predicate");
6947#endif
6948
6949 return Result;
6950}
6951
6952bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
6953 ICmpInst::Predicate Pred,
6954 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00006955
6956 // A zero step value for LHS means the induction variable is essentially a
6957 // loop invariant value. We don't really depend on the predicate actually
6958 // flipping from false to true (for increasing predicates, and the other way
6959 // around for decreasing predicates), all we care about is that *if* the
6960 // predicate changes then it only changes from false to true.
6961 //
6962 // A zero step value in itself is not very useful, but there may be places
6963 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
6964 // as general as possible.
6965
Sanjoy Das366acc12015-08-06 20:43:41 +00006966 switch (Pred) {
6967 default:
6968 return false; // Conservative answer
6969
6970 case ICmpInst::ICMP_UGT:
6971 case ICmpInst::ICMP_UGE:
6972 case ICmpInst::ICMP_ULT:
6973 case ICmpInst::ICMP_ULE:
6974 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
6975 return false;
6976
6977 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00006978 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00006979
6980 case ICmpInst::ICMP_SGT:
6981 case ICmpInst::ICMP_SGE:
6982 case ICmpInst::ICMP_SLT:
6983 case ICmpInst::ICMP_SLE: {
6984 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
6985 return false;
6986
6987 const SCEV *Step = LHS->getStepRecurrence(*this);
6988
6989 if (isKnownNonNegative(Step)) {
6990 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
6991 return true;
6992 }
6993
6994 if (isKnownNonPositive(Step)) {
6995 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
6996 return true;
6997 }
6998
6999 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007000 }
7001
Sanjoy Das5dab2052015-07-27 21:42:49 +00007002 }
7003
Sanjoy Das366acc12015-08-06 20:43:41 +00007004 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007005}
7006
7007bool ScalarEvolution::isLoopInvariantPredicate(
7008 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7009 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7010 const SCEV *&InvariantRHS) {
7011
7012 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7013 if (!isLoopInvariant(RHS, L)) {
7014 if (!isLoopInvariant(LHS, L))
7015 return false;
7016
7017 std::swap(LHS, RHS);
7018 Pred = ICmpInst::getSwappedPredicate(Pred);
7019 }
7020
7021 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7022 if (!ArLHS || ArLHS->getLoop() != L)
7023 return false;
7024
7025 bool Increasing;
7026 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7027 return false;
7028
7029 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7030 // true as the loop iterates, and the backedge is control dependent on
7031 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7032 //
7033 // * if the predicate was false in the first iteration then the predicate
7034 // is never evaluated again, since the loop exits without taking the
7035 // backedge.
7036 // * if the predicate was true in the first iteration then it will
7037 // continue to be true for all future iterations since it is
7038 // monotonically increasing.
7039 //
7040 // For both the above possibilities, we can replace the loop varying
7041 // predicate with its value on the first iteration of the loop (which is
7042 // loop invariant).
7043 //
7044 // A similar reasoning applies for a monotonically decreasing predicate, by
7045 // replacing true with false and false with true in the above two bullets.
7046
7047 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7048
7049 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7050 return false;
7051
7052 InvariantPred = Pred;
7053 InvariantLHS = ArLHS->getStart();
7054 InvariantRHS = RHS;
7055 return true;
7056}
7057
Dan Gohman07591692010-04-11 22:16:48 +00007058bool
7059ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7060 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007061 if (HasSameValue(LHS, RHS))
7062 return ICmpInst::isTrueWhenEqual(Pred);
7063
Dan Gohman07591692010-04-11 22:16:48 +00007064 // This code is split out from isKnownPredicate because it is called from
7065 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007066 switch (Pred) {
7067 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00007068 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00007069 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007070 std::swap(LHS, RHS);
7071 case ICmpInst::ICMP_SLT: {
7072 ConstantRange LHSRange = getSignedRange(LHS);
7073 ConstantRange RHSRange = getSignedRange(RHS);
7074 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7075 return true;
7076 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7077 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007078 break;
7079 }
7080 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007081 std::swap(LHS, RHS);
7082 case ICmpInst::ICMP_SLE: {
7083 ConstantRange LHSRange = getSignedRange(LHS);
7084 ConstantRange RHSRange = getSignedRange(RHS);
7085 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7086 return true;
7087 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7088 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007089 break;
7090 }
7091 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007092 std::swap(LHS, RHS);
7093 case ICmpInst::ICMP_ULT: {
7094 ConstantRange LHSRange = getUnsignedRange(LHS);
7095 ConstantRange RHSRange = getUnsignedRange(RHS);
7096 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7097 return true;
7098 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7099 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007100 break;
7101 }
7102 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007103 std::swap(LHS, RHS);
7104 case ICmpInst::ICMP_ULE: {
7105 ConstantRange LHSRange = getUnsignedRange(LHS);
7106 ConstantRange RHSRange = getUnsignedRange(RHS);
7107 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7108 return true;
7109 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7110 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007111 break;
7112 }
7113 case ICmpInst::ICMP_NE: {
7114 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7115 return true;
7116 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7117 return true;
7118
7119 const SCEV *Diff = getMinusSCEV(LHS, RHS);
7120 if (isKnownNonZero(Diff))
7121 return true;
7122 break;
7123 }
7124 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00007125 // The check at the top of the function catches the case where
7126 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00007127 break;
7128 }
7129 return false;
7130}
7131
Sanjoy Das7d910f22015-10-02 18:50:30 +00007132bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7133 const SCEV *LHS,
7134 const SCEV *RHS) {
7135 if (ProvingSplitPredicate)
7136 return false;
7137
7138 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7139 // the stack can result in exponential time complexity.
7140 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7141
7142 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7143 //
7144 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7145 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7146 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7147 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7148 // use isKnownPredicate later if needed.
7149 if (Pred == ICmpInst::ICMP_ULT && isKnownNonNegative(RHS) &&
7150 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7151 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS))
7152 return true;
7153
7154 return false;
7155}
7156
Dan Gohmane65c9172009-07-13 21:35:55 +00007157/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7158/// protected by a conditional between LHS and RHS. This is used to
7159/// to eliminate casts.
7160bool
7161ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7162 ICmpInst::Predicate Pred,
7163 const SCEV *LHS, const SCEV *RHS) {
7164 // Interpret a null as meaning no loop, where there is obviously no guard
7165 // (interprocedural conditions notwithstanding).
7166 if (!L) return true;
7167
Sanjoy Das1f05c512014-10-10 21:22:34 +00007168 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7169
Dan Gohmane65c9172009-07-13 21:35:55 +00007170 BasicBlock *Latch = L->getLoopLatch();
7171 if (!Latch)
7172 return false;
7173
7174 BranchInst *LoopContinuePredicate =
7175 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007176 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7177 isImpliedCond(Pred, LHS, RHS,
7178 LoopContinuePredicate->getCondition(),
7179 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7180 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007181
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007182 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007183 // -- that can lead to O(n!) time complexity.
7184 if (WalkingBEDominatingConds)
7185 return false;
7186
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007187 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007188
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007189 // See if we can exploit a trip count to prove the predicate.
7190 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7191 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7192 if (LatchBECount != getCouldNotCompute()) {
7193 // We know that Latch branches back to the loop header exactly
7194 // LatchBECount times. This means the backdege condition at Latch is
7195 // equivalent to "{0,+,1} u< LatchBECount".
7196 Type *Ty = LatchBECount->getType();
7197 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7198 const SCEV *LoopCounter =
7199 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7200 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7201 LatchBECount))
7202 return true;
7203 }
7204
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007205 // Check conditions due to any @llvm.assume intrinsics.
7206 for (auto &AssumeVH : AC.assumptions()) {
7207 if (!AssumeVH)
7208 continue;
7209 auto *CI = cast<CallInst>(AssumeVH);
7210 if (!DT.dominates(CI, Latch->getTerminator()))
7211 continue;
7212
7213 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7214 return true;
7215 }
7216
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007217 // If the loop is not reachable from the entry block, we risk running into an
7218 // infinite loop as we walk up into the dom tree. These loops do not matter
7219 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007220 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007221 return false;
7222
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007223 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7224 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007225
7226 assert(DTN && "should reach the loop header before reaching the root!");
7227
7228 BasicBlock *BB = DTN->getBlock();
7229 BasicBlock *PBB = BB->getSinglePredecessor();
7230 if (!PBB)
7231 continue;
7232
7233 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7234 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7235 continue;
7236
7237 Value *Condition = ContinuePredicate->getCondition();
7238
7239 // If we have an edge `E` within the loop body that dominates the only
7240 // latch, the condition guarding `E` also guards the backedge. This
7241 // reasoning works only for loops with a single latch.
7242
7243 BasicBlockEdge DominatingEdge(PBB, BB);
7244 if (DominatingEdge.isSingleEdge()) {
7245 // We're constructively (and conservatively) enumerating edges within the
7246 // loop body that dominate the latch. The dominator tree better agree
7247 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007248 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007249
7250 if (isImpliedCond(Pred, LHS, RHS, Condition,
7251 BB != ContinuePredicate->getSuccessor(0)))
7252 return true;
7253 }
7254 }
7255
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007256 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007257}
7258
Dan Gohmanb50349a2010-04-11 19:27:13 +00007259/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007260/// by a conditional between LHS and RHS. This is used to help avoid max
7261/// expressions in loop trip counts, and to eliminate casts.
7262bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007263ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7264 ICmpInst::Predicate Pred,
7265 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007266 // Interpret a null as meaning no loop, where there is obviously no guard
7267 // (interprocedural conditions notwithstanding).
7268 if (!L) return false;
7269
Sanjoy Das1f05c512014-10-10 21:22:34 +00007270 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7271
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007272 // Starting at the loop predecessor, climb up the predecessor chain, as long
7273 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007274 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007275 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007276 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007277 Pair.first;
7278 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007279
7280 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007281 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007282 if (!LoopEntryPredicate ||
7283 LoopEntryPredicate->isUnconditional())
7284 continue;
7285
Dan Gohmane18c2d62010-08-10 23:46:30 +00007286 if (isImpliedCond(Pred, LHS, RHS,
7287 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007288 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007289 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007290 }
7291
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007292 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007293 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007294 if (!AssumeVH)
7295 continue;
7296 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007297 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007298 continue;
7299
7300 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7301 return true;
7302 }
7303
Dan Gohman2a62fd92008-08-12 20:17:31 +00007304 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007305}
7306
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007307/// RAII wrapper to prevent recursive application of isImpliedCond.
7308/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7309/// currently evaluating isImpliedCond.
7310struct MarkPendingLoopPredicate {
7311 Value *Cond;
7312 DenseSet<Value*> &LoopPreds;
7313 bool Pending;
7314
7315 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7316 : Cond(C), LoopPreds(LP) {
7317 Pending = !LoopPreds.insert(Cond).second;
7318 }
7319 ~MarkPendingLoopPredicate() {
7320 if (!Pending)
7321 LoopPreds.erase(Cond);
7322 }
7323};
7324
Dan Gohman430f0cc2009-07-21 23:03:19 +00007325/// isImpliedCond - Test whether the condition described by Pred, LHS,
7326/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007327bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007328 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007329 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007330 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007331 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7332 if (Mark.Pending)
7333 return false;
7334
Dan Gohman8b0a4192010-03-01 17:49:51 +00007335 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007336 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007337 if (BO->getOpcode() == Instruction::And) {
7338 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007339 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7340 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007341 } else if (BO->getOpcode() == Instruction::Or) {
7342 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007343 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7344 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007345 }
7346 }
7347
Dan Gohmane18c2d62010-08-10 23:46:30 +00007348 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007349 if (!ICI) return false;
7350
Andrew Trickfa594032012-11-29 18:35:13 +00007351 // Now that we found a conditional branch that dominates the loop or controls
7352 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007353 ICmpInst::Predicate FoundPred;
7354 if (Inverse)
7355 FoundPred = ICI->getInversePredicate();
7356 else
7357 FoundPred = ICI->getPredicate();
7358
7359 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7360 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007361
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007362 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7363}
7364
7365bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7366 const SCEV *RHS,
7367 ICmpInst::Predicate FoundPred,
7368 const SCEV *FoundLHS,
7369 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007370 // Balance the types.
7371 if (getTypeSizeInBits(LHS->getType()) <
7372 getTypeSizeInBits(FoundLHS->getType())) {
7373 if (CmpInst::isSigned(Pred)) {
7374 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7375 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7376 } else {
7377 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7378 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7379 }
7380 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007381 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007382 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007383 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7384 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7385 } else {
7386 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7387 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7388 }
7389 }
7390
Dan Gohman430f0cc2009-07-21 23:03:19 +00007391 // Canonicalize the query to match the way instcombine will have
7392 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007393 if (SimplifyICmpOperands(Pred, LHS, RHS))
7394 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007395 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007396 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7397 if (FoundLHS == FoundRHS)
7398 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007399
7400 // Check to see if we can make the LHS or RHS match.
7401 if (LHS == FoundRHS || RHS == FoundLHS) {
7402 if (isa<SCEVConstant>(RHS)) {
7403 std::swap(FoundLHS, FoundRHS);
7404 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7405 } else {
7406 std::swap(LHS, RHS);
7407 Pred = ICmpInst::getSwappedPredicate(Pred);
7408 }
7409 }
7410
7411 // Check whether the found predicate is the same as the desired predicate.
7412 if (FoundPred == Pred)
7413 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7414
7415 // Check whether swapping the found predicate makes it the same as the
7416 // desired predicate.
7417 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7418 if (isa<SCEVConstant>(RHS))
7419 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7420 else
7421 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7422 RHS, LHS, FoundLHS, FoundRHS);
7423 }
7424
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007425 // Check if we can make progress by sharpening ranges.
7426 if (FoundPred == ICmpInst::ICMP_NE &&
7427 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7428
7429 const SCEVConstant *C = nullptr;
7430 const SCEV *V = nullptr;
7431
7432 if (isa<SCEVConstant>(FoundLHS)) {
7433 C = cast<SCEVConstant>(FoundLHS);
7434 V = FoundRHS;
7435 } else {
7436 C = cast<SCEVConstant>(FoundRHS);
7437 V = FoundLHS;
7438 }
7439
7440 // The guarding predicate tells us that C != V. If the known range
7441 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7442 // range we consider has to correspond to same signedness as the
7443 // predicate we're interested in folding.
7444
7445 APInt Min = ICmpInst::isSigned(Pred) ?
7446 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7447
7448 if (Min == C->getValue()->getValue()) {
7449 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7450 // This is true even if (Min + 1) wraps around -- in case of
7451 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7452
7453 APInt SharperMin = Min + 1;
7454
7455 switch (Pred) {
7456 case ICmpInst::ICMP_SGE:
7457 case ICmpInst::ICMP_UGE:
7458 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7459 // RHS, we're done.
7460 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7461 getConstant(SharperMin)))
7462 return true;
7463
7464 case ICmpInst::ICMP_SGT:
7465 case ICmpInst::ICMP_UGT:
7466 // We know from the range information that (V `Pred` Min ||
7467 // V == Min). We know from the guarding condition that !(V
7468 // == Min). This gives us
7469 //
7470 // V `Pred` Min || V == Min && !(V == Min)
7471 // => V `Pred` Min
7472 //
7473 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7474
7475 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7476 return true;
7477
7478 default:
7479 // No change
7480 break;
7481 }
7482 }
7483 }
7484
Dan Gohman430f0cc2009-07-21 23:03:19 +00007485 // Check whether the actual condition is beyond sufficient.
7486 if (FoundPred == ICmpInst::ICMP_EQ)
7487 if (ICmpInst::isTrueWhenEqual(Pred))
7488 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7489 return true;
7490 if (Pred == ICmpInst::ICMP_NE)
7491 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7492 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7493 return true;
7494
7495 // Otherwise assume the worst.
7496 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007497}
7498
Sanjoy Das96709c42015-09-25 23:53:45 +00007499// Return true if More == (Less + C), where C is a constant.
7500static bool IsConstDiff(ScalarEvolution &SE, const SCEV *Less, const SCEV *More,
7501 APInt &C) {
7502 // We avoid subtracting expressions here because this function is usually
7503 // fairly deep in the call stack (i.e. is called many times).
7504
7505 auto SplitBinaryAdd = [](const SCEV *Expr, const SCEV *&L, const SCEV *&R) {
7506 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7507 if (!AE || AE->getNumOperands() != 2)
7508 return false;
7509
7510 L = AE->getOperand(0);
7511 R = AE->getOperand(1);
7512 return true;
7513 };
7514
7515 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7516 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7517 const auto *MAR = cast<SCEVAddRecExpr>(More);
7518
7519 if (LAR->getLoop() != MAR->getLoop())
7520 return false;
7521
7522 // We look at affine expressions only; not for correctness but to keep
7523 // getStepRecurrence cheap.
7524 if (!LAR->isAffine() || !MAR->isAffine())
7525 return false;
7526
7527 if (LAR->getStepRecurrence(SE) != MAR->getStepRecurrence(SE))
7528 return false;
7529
7530 Less = LAR->getStart();
7531 More = MAR->getStart();
7532
7533 // fall through
7534 }
7535
7536 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7537 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue();
7538 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue();
7539 C = M - L;
7540 return true;
7541 }
7542
7543 const SCEV *L, *R;
7544 if (SplitBinaryAdd(Less, L, R))
7545 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7546 if (R == More) {
7547 C = -(LC->getValue()->getValue());
7548 return true;
7549 }
7550
7551 if (SplitBinaryAdd(More, L, R))
7552 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7553 if (R == Less) {
7554 C = LC->getValue()->getValue();
7555 return true;
7556 }
7557
7558 return false;
7559}
7560
7561bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7562 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7563 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7564 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7565 return false;
7566
7567 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7568 if (!AddRecLHS)
7569 return false;
7570
7571 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7572 if (!AddRecFoundLHS)
7573 return false;
7574
7575 // We'd like to let SCEV reason about control dependencies, so we constrain
7576 // both the inequalities to be about add recurrences on the same loop. This
7577 // way we can use isLoopEntryGuardedByCond later.
7578
7579 const Loop *L = AddRecFoundLHS->getLoop();
7580 if (L != AddRecLHS->getLoop())
7581 return false;
7582
7583 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7584 //
7585 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7586 // ... (2)
7587 //
7588 // Informal proof for (2), assuming (1) [*]:
7589 //
7590 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7591 //
7592 // Then
7593 //
7594 // FoundLHS s< FoundRHS s< INT_MIN - C
7595 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7596 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7597 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7598 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7599 // <=> FoundLHS + C s< FoundRHS + C
7600 //
7601 // [*]: (1) can be proved by ruling out overflow.
7602 //
7603 // [**]: This can be proved by analyzing all the four possibilities:
7604 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7605 // (A s>= 0, B s>= 0).
7606 //
7607 // Note:
7608 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7609 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7610 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7611 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7612 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7613 // C)".
7614
7615 APInt LDiff, RDiff;
7616 if (!IsConstDiff(*this, FoundLHS, LHS, LDiff) ||
7617 !IsConstDiff(*this, FoundRHS, RHS, RDiff) ||
7618 LDiff != RDiff)
7619 return false;
7620
7621 if (LDiff == 0)
7622 return true;
7623
Sanjoy Das96709c42015-09-25 23:53:45 +00007624 APInt FoundRHSLimit;
7625
7626 if (Pred == CmpInst::ICMP_ULT) {
7627 FoundRHSLimit = -RDiff;
7628 } else {
7629 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00007630 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00007631 }
7632
7633 // Try to prove (1) or (2), as needed.
7634 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7635 getConstant(FoundRHSLimit));
7636}
7637
Dan Gohman430f0cc2009-07-21 23:03:19 +00007638/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007639/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007640/// and FoundRHS is true.
7641bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7642 const SCEV *LHS, const SCEV *RHS,
7643 const SCEV *FoundLHS,
7644 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007645 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7646 return true;
7647
Sanjoy Das96709c42015-09-25 23:53:45 +00007648 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7649 return true;
7650
Dan Gohman430f0cc2009-07-21 23:03:19 +00007651 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7652 FoundLHS, FoundRHS) ||
7653 // ~x < ~y --> x > y
7654 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7655 getNotSCEV(FoundRHS),
7656 getNotSCEV(FoundLHS));
7657}
7658
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007659
7660/// If Expr computes ~A, return A else return nullptr
7661static const SCEV *MatchNotExpr(const SCEV *Expr) {
7662 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7663 if (!Add || Add->getNumOperands() != 2) return nullptr;
7664
7665 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
7666 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
7667 return nullptr;
7668
7669 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7670 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
7671
7672 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
7673 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
7674 return nullptr;
7675
7676 return AddRHS->getOperand(1);
7677}
7678
7679
7680/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7681template<typename MaxExprType>
7682static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7683 const SCEV *Candidate) {
7684 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7685 if (!MaxExpr) return false;
7686
7687 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7688 return It != MaxExpr->op_end();
7689}
7690
7691
7692/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7693template<typename MaxExprType>
7694static bool IsMinConsistingOf(ScalarEvolution &SE,
7695 const SCEV *MaybeMinExpr,
7696 const SCEV *Candidate) {
7697 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7698 if (!MaybeMaxExpr)
7699 return false;
7700
7701 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7702}
7703
Hal Finkela8d205f2015-08-19 01:51:51 +00007704static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7705 ICmpInst::Predicate Pred,
7706 const SCEV *LHS, const SCEV *RHS) {
7707
7708 // If both sides are affine addrecs for the same loop, with equal
7709 // steps, and we know the recurrences don't wrap, then we only
7710 // need to check the predicate on the starting values.
7711
7712 if (!ICmpInst::isRelational(Pred))
7713 return false;
7714
7715 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7716 if (!LAR)
7717 return false;
7718 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7719 if (!RAR)
7720 return false;
7721 if (LAR->getLoop() != RAR->getLoop())
7722 return false;
7723 if (!LAR->isAffine() || !RAR->isAffine())
7724 return false;
7725
7726 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
7727 return false;
7728
Hal Finkelff08a2e2015-08-19 17:26:07 +00007729 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
7730 SCEV::FlagNSW : SCEV::FlagNUW;
7731 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00007732 return false;
7733
7734 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
7735}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007736
7737/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7738/// expression?
7739static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7740 ICmpInst::Predicate Pred,
7741 const SCEV *LHS, const SCEV *RHS) {
7742 switch (Pred) {
7743 default:
7744 return false;
7745
7746 case ICmpInst::ICMP_SGE:
7747 std::swap(LHS, RHS);
7748 // fall through
7749 case ICmpInst::ICMP_SLE:
7750 return
7751 // min(A, ...) <= A
7752 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7753 // A <= max(A, ...)
7754 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7755
7756 case ICmpInst::ICMP_UGE:
7757 std::swap(LHS, RHS);
7758 // fall through
7759 case ICmpInst::ICMP_ULE:
7760 return
7761 // min(A, ...) <= A
7762 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7763 // A <= max(A, ...)
7764 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7765 }
7766
7767 llvm_unreachable("covered switch fell through?!");
7768}
7769
Dan Gohman430f0cc2009-07-21 23:03:19 +00007770/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007771/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007772/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007773bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007774ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7775 const SCEV *LHS, const SCEV *RHS,
7776 const SCEV *FoundLHS,
7777 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007778 auto IsKnownPredicateFull =
7779 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7780 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Hal Finkela8d205f2015-08-19 01:51:51 +00007781 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
7782 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007783 };
7784
Dan Gohmane65c9172009-07-13 21:35:55 +00007785 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007786 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7787 case ICmpInst::ICMP_EQ:
7788 case ICmpInst::ICMP_NE:
7789 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7790 return true;
7791 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007792 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007793 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007794 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7795 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007796 return true;
7797 break;
7798 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007799 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007800 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7801 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007802 return true;
7803 break;
7804 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007805 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007806 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7807 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007808 return true;
7809 break;
7810 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007811 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007812 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7813 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007814 return true;
7815 break;
7816 }
7817
7818 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007819}
7820
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007821/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7822/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7823bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7824 const SCEV *LHS,
7825 const SCEV *RHS,
7826 const SCEV *FoundLHS,
7827 const SCEV *FoundRHS) {
7828 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7829 // The restriction on `FoundRHS` be lifted easily -- it exists only to
7830 // reduce the compile time impact of this optimization.
7831 return false;
7832
7833 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7834 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7835 !isa<SCEVConstant>(AddLHS->getOperand(0)))
7836 return false;
7837
7838 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7839
7840 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7841 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7842 ConstantRange FoundLHSRange =
7843 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7844
7845 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7846 // for `LHS`:
7847 APInt Addend =
7848 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7849 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7850
7851 // We can also compute the range of values for `LHS` that satisfy the
7852 // consequent, "`LHS` `Pred` `RHS`":
7853 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7854 ConstantRange SatisfyingLHSRange =
7855 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7856
7857 // The antecedent implies the consequent if every value of `LHS` that
7858 // satisfies the antecedent also satisfies the consequent.
7859 return SatisfyingLHSRange.contains(LHSRange);
7860}
7861
Johannes Doerfert2683e562015-02-09 12:34:23 +00007862// Verify if an linear IV with positive stride can overflow when in a
7863// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007864// stride and the knowledge of NSW/NUW flags on the recurrence.
7865bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7866 bool IsSigned, bool NoWrap) {
7867 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007868
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007869 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007870 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00007871
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007872 if (IsSigned) {
7873 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7874 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7875 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7876 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007877
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007878 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7879 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007880 }
Dan Gohman01048422009-06-21 23:46:38 +00007881
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007882 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7883 APInt MaxValue = APInt::getMaxValue(BitWidth);
7884 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7885 .getUnsignedMax();
7886
7887 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7888 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7889}
7890
Johannes Doerfert2683e562015-02-09 12:34:23 +00007891// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007892// greater-than comparison, knowing the invariant term of the comparison,
7893// the stride and the knowledge of NSW/NUW flags on the recurrence.
7894bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7895 bool IsSigned, bool NoWrap) {
7896 if (NoWrap) return false;
7897
7898 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007899 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007900
7901 if (IsSigned) {
7902 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7903 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7904 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7905 .getSignedMax();
7906
7907 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7908 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7909 }
7910
7911 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7912 APInt MinValue = APInt::getMinValue(BitWidth);
7913 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7914 .getUnsignedMax();
7915
7916 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7917 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7918}
7919
7920// Compute the backedge taken count knowing the interval difference, the
7921// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00007922const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007923 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007924 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007925 Delta = Equality ? getAddExpr(Delta, Step)
7926 : getAddExpr(Delta, getMinusSCEV(Step, One));
7927 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007928}
7929
Chris Lattner587a75b2005-08-15 23:33:51 +00007930/// HowManyLessThans - Return the number of times a backedge containing the
7931/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007932/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007933///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007934/// @param ControlsExit is true when the LHS < RHS condition directly controls
7935/// the branch (loops exits only if condition is true). In this case, we can use
7936/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007937ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007938ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007939 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007940 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007941 // We handle only IV < Invariant
7942 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007943 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007944
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007945 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007946
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007947 // Avoid weird loops
7948 if (!IV || IV->getLoop() != L || !IV->isAffine())
7949 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007950
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007951 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007952 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007953
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007954 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007955
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007956 // Avoid negative or zero stride values
7957 if (!isKnownPositive(Stride))
7958 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007959
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007960 // Avoid proven overflow cases: this will ensure that the backedge taken count
7961 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007962 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007963 // behaviors like the case of C language.
7964 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7965 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007966
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007967 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7968 : ICmpInst::ICMP_ULT;
7969 const SCEV *Start = IV->getStart();
7970 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007971 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7972 const SCEV *Diff = getMinusSCEV(RHS, Start);
7973 // If we have NoWrap set, then we can assume that the increment won't
7974 // overflow, in which case if RHS - Start is a constant, we don't need to
7975 // do a max operation since we can just figure it out statically
7976 if (NoWrap && isa<SCEVConstant>(Diff)) {
7977 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7978 if (D.isNegative())
7979 End = Start;
7980 } else
7981 End = IsSigned ? getSMaxExpr(RHS, Start)
7982 : getUMaxExpr(RHS, Start);
7983 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007984
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007985 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007986
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007987 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7988 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007989
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007990 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7991 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007992
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007993 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7994 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7995 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007996
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007997 // Although End can be a MAX expression we estimate MaxEnd considering only
7998 // the case End = RHS. This is safe because in the other case (End - Start)
7999 // is zero, leading to a zero maximum backedge taken count.
8000 APInt MaxEnd =
8001 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8002 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8003
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008004 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008005 if (isa<SCEVConstant>(BECount))
8006 MaxBECount = BECount;
8007 else
8008 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8009 getConstant(MinStride), false);
8010
8011 if (isa<SCEVCouldNotCompute>(MaxBECount))
8012 MaxBECount = BECount;
8013
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008014 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008015}
8016
8017ScalarEvolution::ExitLimit
8018ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8019 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008020 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008021 // We handle only IV > Invariant
8022 if (!isLoopInvariant(RHS, L))
8023 return getCouldNotCompute();
8024
8025 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8026
8027 // Avoid weird loops
8028 if (!IV || IV->getLoop() != L || !IV->isAffine())
8029 return getCouldNotCompute();
8030
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008031 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008032 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8033
8034 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8035
8036 // Avoid negative or zero stride values
8037 if (!isKnownPositive(Stride))
8038 return getCouldNotCompute();
8039
8040 // Avoid proven overflow cases: this will ensure that the backedge taken count
8041 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008042 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008043 // behaviors like the case of C language.
8044 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8045 return getCouldNotCompute();
8046
8047 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8048 : ICmpInst::ICMP_UGT;
8049
8050 const SCEV *Start = IV->getStart();
8051 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008052 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8053 const SCEV *Diff = getMinusSCEV(RHS, Start);
8054 // If we have NoWrap set, then we can assume that the increment won't
8055 // overflow, in which case if RHS - Start is a constant, we don't need to
8056 // do a max operation since we can just figure it out statically
8057 if (NoWrap && isa<SCEVConstant>(Diff)) {
8058 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8059 if (!D.isNegative())
8060 End = Start;
8061 } else
8062 End = IsSigned ? getSMinExpr(RHS, Start)
8063 : getUMinExpr(RHS, Start);
8064 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008065
8066 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8067
8068 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8069 : getUnsignedRange(Start).getUnsignedMax();
8070
8071 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8072 : getUnsignedRange(Stride).getUnsignedMin();
8073
8074 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8075 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8076 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8077
8078 // Although End can be a MIN expression we estimate MinEnd considering only
8079 // the case End = RHS. This is safe because in the other case (Start - End)
8080 // is zero, leading to a zero maximum backedge taken count.
8081 APInt MinEnd =
8082 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8083 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8084
8085
8086 const SCEV *MaxBECount = getCouldNotCompute();
8087 if (isa<SCEVConstant>(BECount))
8088 MaxBECount = BECount;
8089 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008090 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008091 getConstant(MinStride), false);
8092
8093 if (isa<SCEVCouldNotCompute>(MaxBECount))
8094 MaxBECount = BECount;
8095
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008096 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00008097}
8098
Chris Lattnerd934c702004-04-02 20:23:17 +00008099/// getNumIterationsInRange - Return the number of iterations of this loop that
8100/// produce values in the specified constant range. Another way of looking at
8101/// this is that it returns the first iteration number where the value is not in
8102/// the condition, thus computing the exit count. If the iteration count can't
8103/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008104const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008105 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008106 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008107 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008108
8109 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008110 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008111 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008112 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008113 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008114 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008115 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00008116 if (const SCEVAddRecExpr *ShiftedAddRec =
8117 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008118 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00008119 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008120 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008121 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008122 }
8123
8124 // The only time we can solve this is when we have all constant indices.
8125 // Otherwise, we cannot determine the overflow conditions.
8126 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
8127 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00008128 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008129
8130
8131 // Okay at this point we know that all elements of the chrec are constants and
8132 // that the start element is zero.
8133
8134 // First check to see if the range contains zero. If not, the first
8135 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008136 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008137 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008138 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008139
Chris Lattnerd934c702004-04-02 20:23:17 +00008140 if (isAffine()) {
8141 // If this is an affine expression then we have this situation:
8142 // Solve {0,+,A} in Range === Ax in Range
8143
Nick Lewycky52460262007-07-16 02:08:00 +00008144 // We know that zero is in the range. If A is positive then we know that
8145 // the upper value of the range must be the first possible exit value.
8146 // If A is negative then the lower of the range is the last possible loop
8147 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008148 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00008149 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
8150 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008151
Nick Lewycky52460262007-07-16 02:08:00 +00008152 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008153 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008154 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008155
8156 // Evaluate at the exit value. If we really did fall out of the valid
8157 // range, then we computed our trip count, otherwise wrap around or other
8158 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008159 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008160 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008161 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008162
8163 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008164 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008165 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008166 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008167 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008168 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008169 } else if (isQuadratic()) {
8170 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8171 // quadratic equation to solve it. To do this, we must frame our problem in
8172 // terms of figuring out when zero is crossed, instead of when
8173 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008174 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008175 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008176 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8177 // getNoWrapFlags(FlagNW)
8178 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008179
8180 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00008181 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00008182 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008183 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8184 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008185 if (R1) {
8186 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008187 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00008188 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00008189 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008190 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008191 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008192
Chris Lattnerd934c702004-04-02 20:23:17 +00008193 // Make sure the root is not off by one. The returned iteration should
8194 // not be in the range, but the previous one should be. When solving
8195 // for "X*X < 5", for example, we should not return a root of 2.
8196 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008197 R1->getValue(),
8198 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008199 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008200 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008201 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008202 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008203
Dan Gohmana37eaf22007-10-22 18:31:58 +00008204 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008205 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008206 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008207 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008208 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008209
Chris Lattnerd934c702004-04-02 20:23:17 +00008210 // If R1 was not in the range, then it is a good return value. Make
8211 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008212 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008213 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008214 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008215 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008216 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008217 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008218 }
8219 }
8220 }
8221
Dan Gohman31efa302009-04-18 17:58:19 +00008222 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008223}
8224
Sebastian Pop448712b2014-05-07 18:01:20 +00008225namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008226struct FindUndefs {
8227 bool Found;
8228 FindUndefs() : Found(false) {}
8229
8230 bool follow(const SCEV *S) {
8231 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8232 if (isa<UndefValue>(C->getValue()))
8233 Found = true;
8234 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8235 if (isa<UndefValue>(C->getValue()))
8236 Found = true;
8237 }
8238
8239 // Keep looking if we haven't found it yet.
8240 return !Found;
8241 }
8242 bool isDone() const {
8243 // Stop recursion if we have found an undef.
8244 return Found;
8245 }
8246};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008247}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008248
8249// Return true when S contains at least an undef value.
8250static inline bool
8251containsUndefs(const SCEV *S) {
8252 FindUndefs F;
8253 SCEVTraversal<FindUndefs> ST(F);
8254 ST.visitAll(S);
8255
8256 return F.Found;
8257}
8258
8259namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008260// Collect all steps of SCEV expressions.
8261struct SCEVCollectStrides {
8262 ScalarEvolution &SE;
8263 SmallVectorImpl<const SCEV *> &Strides;
8264
8265 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8266 : SE(SE), Strides(S) {}
8267
8268 bool follow(const SCEV *S) {
8269 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8270 Strides.push_back(AR->getStepRecurrence(SE));
8271 return true;
8272 }
8273 bool isDone() const { return false; }
8274};
8275
8276// Collect all SCEVUnknown and SCEVMulExpr expressions.
8277struct SCEVCollectTerms {
8278 SmallVectorImpl<const SCEV *> &Terms;
8279
8280 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8281 : Terms(T) {}
8282
8283 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008284 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008285 if (!containsUndefs(S))
8286 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008287
8288 // Stop recursion: once we collected a term, do not walk its operands.
8289 return false;
8290 }
8291
8292 // Keep looking.
8293 return true;
8294 }
8295 bool isDone() const { return false; }
8296};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008297}
Sebastian Pop448712b2014-05-07 18:01:20 +00008298
8299/// Find parametric terms in this SCEVAddRecExpr.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008300void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8301 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008302 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008303 SCEVCollectStrides StrideCollector(*this, Strides);
8304 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008305
8306 DEBUG({
8307 dbgs() << "Strides:\n";
8308 for (const SCEV *S : Strides)
8309 dbgs() << *S << "\n";
8310 });
8311
8312 for (const SCEV *S : Strides) {
8313 SCEVCollectTerms TermCollector(Terms);
8314 visitAll(S, TermCollector);
8315 }
8316
8317 DEBUG({
8318 dbgs() << "Terms:\n";
8319 for (const SCEV *T : Terms)
8320 dbgs() << *T << "\n";
8321 });
8322}
8323
Sebastian Popb1a548f2014-05-12 19:01:53 +00008324static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008325 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008326 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008327 int Last = Terms.size() - 1;
8328 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008329
Sebastian Pop448712b2014-05-07 18:01:20 +00008330 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008331 if (Last == 0) {
8332 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008333 SmallVector<const SCEV *, 2> Qs;
8334 for (const SCEV *Op : M->operands())
8335 if (!isa<SCEVConstant>(Op))
8336 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008337
Sebastian Pope30bd352014-05-27 22:41:56 +00008338 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008339 }
8340
Sebastian Pope30bd352014-05-27 22:41:56 +00008341 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008342 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008343 }
8344
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008345 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008346 // Normalize the terms before the next call to findArrayDimensionsRec.
8347 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008348 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008349
8350 // Bail out when GCD does not evenly divide one of the terms.
8351 if (!R->isZero())
8352 return false;
8353
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008354 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008355 }
8356
Tobias Grosser3080cf12014-05-08 07:55:34 +00008357 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008358 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8359 return isa<SCEVConstant>(E);
8360 }),
8361 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008362
Sebastian Pop448712b2014-05-07 18:01:20 +00008363 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008364 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8365 return false;
8366
Sebastian Pope30bd352014-05-27 22:41:56 +00008367 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008368 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008369}
Sebastian Popc62c6792013-11-12 22:47:20 +00008370
Sebastian Pop448712b2014-05-07 18:01:20 +00008371namespace {
8372struct FindParameter {
8373 bool FoundParameter;
8374 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00008375
Sebastian Pop448712b2014-05-07 18:01:20 +00008376 bool follow(const SCEV *S) {
8377 if (isa<SCEVUnknown>(S)) {
8378 FoundParameter = true;
8379 // Stop recursion: we found a parameter.
8380 return false;
8381 }
8382 // Keep looking.
8383 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008384 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008385 bool isDone() const {
8386 // Stop recursion if we have found a parameter.
8387 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00008388 }
Sebastian Popc62c6792013-11-12 22:47:20 +00008389};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008390}
Sebastian Popc62c6792013-11-12 22:47:20 +00008391
Sebastian Pop448712b2014-05-07 18:01:20 +00008392// Returns true when S contains at least a SCEVUnknown parameter.
8393static inline bool
8394containsParameters(const SCEV *S) {
8395 FindParameter F;
8396 SCEVTraversal<FindParameter> ST(F);
8397 ST.visitAll(S);
8398
8399 return F.FoundParameter;
8400}
8401
8402// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8403static inline bool
8404containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8405 for (const SCEV *T : Terms)
8406 if (containsParameters(T))
8407 return true;
8408 return false;
8409}
8410
8411// Return the number of product terms in S.
8412static inline int numberOfTerms(const SCEV *S) {
8413 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8414 return Expr->getNumOperands();
8415 return 1;
8416}
8417
Sebastian Popa6e58602014-05-27 22:41:45 +00008418static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8419 if (isa<SCEVConstant>(T))
8420 return nullptr;
8421
8422 if (isa<SCEVUnknown>(T))
8423 return T;
8424
8425 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8426 SmallVector<const SCEV *, 2> Factors;
8427 for (const SCEV *Op : M->operands())
8428 if (!isa<SCEVConstant>(Op))
8429 Factors.push_back(Op);
8430
8431 return SE.getMulExpr(Factors);
8432 }
8433
8434 return T;
8435}
8436
8437/// Return the size of an element read or written by Inst.
8438const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8439 Type *Ty;
8440 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8441 Ty = Store->getValueOperand()->getType();
8442 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008443 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008444 else
8445 return nullptr;
8446
8447 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8448 return getSizeOfExpr(ETy, Ty);
8449}
8450
Sebastian Pop448712b2014-05-07 18:01:20 +00008451/// Second step of delinearization: compute the array dimensions Sizes from the
8452/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008453void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8454 SmallVectorImpl<const SCEV *> &Sizes,
8455 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008456
Sebastian Pop53524082014-05-29 19:44:05 +00008457 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008458 return;
8459
8460 // Early return when Terms do not contain parameters: we do not delinearize
8461 // non parametric SCEVs.
8462 if (!containsParameters(Terms))
8463 return;
8464
8465 DEBUG({
8466 dbgs() << "Terms:\n";
8467 for (const SCEV *T : Terms)
8468 dbgs() << *T << "\n";
8469 });
8470
8471 // Remove duplicates.
8472 std::sort(Terms.begin(), Terms.end());
8473 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8474
8475 // Put larger terms first.
8476 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8477 return numberOfTerms(LHS) > numberOfTerms(RHS);
8478 });
8479
Sebastian Popa6e58602014-05-27 22:41:45 +00008480 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8481
8482 // Divide all terms by the element size.
8483 for (const SCEV *&Term : Terms) {
8484 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008485 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00008486 Term = Q;
8487 }
8488
8489 SmallVector<const SCEV *, 4> NewTerms;
8490
8491 // Remove constant factors.
8492 for (const SCEV *T : Terms)
8493 if (const SCEV *NewT = removeConstantFactors(SE, T))
8494 NewTerms.push_back(NewT);
8495
Sebastian Pop448712b2014-05-07 18:01:20 +00008496 DEBUG({
8497 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008498 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008499 dbgs() << *T << "\n";
8500 });
8501
Sebastian Popa6e58602014-05-27 22:41:45 +00008502 if (NewTerms.empty() ||
8503 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008504 Sizes.clear();
8505 return;
8506 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008507
Sebastian Popa6e58602014-05-27 22:41:45 +00008508 // The last element to be pushed into Sizes is the size of an element.
8509 Sizes.push_back(ElementSize);
8510
Sebastian Pop448712b2014-05-07 18:01:20 +00008511 DEBUG({
8512 dbgs() << "Sizes:\n";
8513 for (const SCEV *S : Sizes)
8514 dbgs() << *S << "\n";
8515 });
8516}
8517
8518/// Third step of delinearization: compute the access functions for the
8519/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008520void ScalarEvolution::computeAccessFunctions(
8521 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8522 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008523
Sebastian Popb1a548f2014-05-12 19:01:53 +00008524 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008525 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008526 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008527
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008528 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr))
8529 if (!AR->isAffine())
8530 return;
8531
8532 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008533 int Last = Sizes.size() - 1;
8534 for (int i = Last; i >= 0; i--) {
8535 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008536 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008537
8538 DEBUG({
8539 dbgs() << "Res: " << *Res << "\n";
8540 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8541 dbgs() << "Res divided by Sizes[i]:\n";
8542 dbgs() << "Quotient: " << *Q << "\n";
8543 dbgs() << "Remainder: " << *R << "\n";
8544 });
8545
8546 Res = Q;
8547
Sebastian Popa6e58602014-05-27 22:41:45 +00008548 // Do not record the last subscript corresponding to the size of elements in
8549 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008550 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008551
8552 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008553 if (isa<SCEVAddRecExpr>(R)) {
8554 Subscripts.clear();
8555 Sizes.clear();
8556 return;
8557 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008558
Sebastian Pop448712b2014-05-07 18:01:20 +00008559 continue;
8560 }
8561
8562 // Record the access function for the current subscript.
8563 Subscripts.push_back(R);
8564 }
8565
8566 // Also push in last position the remainder of the last division: it will be
8567 // the access function of the innermost dimension.
8568 Subscripts.push_back(Res);
8569
8570 std::reverse(Subscripts.begin(), Subscripts.end());
8571
8572 DEBUG({
8573 dbgs() << "Subscripts:\n";
8574 for (const SCEV *S : Subscripts)
8575 dbgs() << *S << "\n";
8576 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008577}
8578
Sebastian Popc62c6792013-11-12 22:47:20 +00008579/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8580/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008581/// is the offset start of the array. The SCEV->delinearize algorithm computes
8582/// the multiples of SCEV coefficients: that is a pattern matching of sub
8583/// expressions in the stride and base of a SCEV corresponding to the
8584/// computation of a GCD (greatest common divisor) of base and stride. When
8585/// SCEV->delinearize fails, it returns the SCEV unchanged.
8586///
8587/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8588///
8589/// void foo(long n, long m, long o, double A[n][m][o]) {
8590///
8591/// for (long i = 0; i < n; i++)
8592/// for (long j = 0; j < m; j++)
8593/// for (long k = 0; k < o; k++)
8594/// A[i][j][k] = 1.0;
8595/// }
8596///
8597/// the delinearization input is the following AddRec SCEV:
8598///
8599/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8600///
8601/// From this SCEV, we are able to say that the base offset of the access is %A
8602/// because it appears as an offset that does not divide any of the strides in
8603/// the loops:
8604///
8605/// CHECK: Base offset: %A
8606///
8607/// and then SCEV->delinearize determines the size of some of the dimensions of
8608/// the array as these are the multiples by which the strides are happening:
8609///
8610/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8611///
8612/// Note that the outermost dimension remains of UnknownSize because there are
8613/// no strides that would help identifying the size of the last dimension: when
8614/// the array has been statically allocated, one could compute the size of that
8615/// dimension by dividing the overall size of the array by the size of the known
8616/// dimensions: %m * %o * 8.
8617///
8618/// Finally delinearize provides the access functions for the array reference
8619/// that does correspond to A[i][j][k] of the above C testcase:
8620///
8621/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8622///
8623/// The testcases are checking the output of a function pass:
8624/// DelinearizationPass that walks through all loads and stores of a function
8625/// asking for the SCEV of the memory access with respect to all enclosing
8626/// loops, calling SCEV->delinearize on that and printing the results.
8627
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008628void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008629 SmallVectorImpl<const SCEV *> &Subscripts,
8630 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008631 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008632 // First step: collect parametric terms.
8633 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008634 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008635
Sebastian Popb1a548f2014-05-12 19:01:53 +00008636 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008637 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008638
Sebastian Pop448712b2014-05-07 18:01:20 +00008639 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008640 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008641
Sebastian Popb1a548f2014-05-12 19:01:53 +00008642 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008643 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008644
Sebastian Pop448712b2014-05-07 18:01:20 +00008645 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008646 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00008647
Sebastian Pop28e6b972014-05-27 22:41:51 +00008648 if (Subscripts.empty())
8649 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008650
Sebastian Pop448712b2014-05-07 18:01:20 +00008651 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008652 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00008653 dbgs() << "ArrayDecl[UnknownSize]";
8654 for (const SCEV *S : Sizes)
8655 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00008656
Sebastian Pop444621a2014-05-09 22:45:02 +00008657 dbgs() << "\nArrayRef";
8658 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00008659 dbgs() << "[" << *S << "]";
8660 dbgs() << "\n";
8661 });
Sebastian Popc62c6792013-11-12 22:47:20 +00008662}
Chris Lattnerd934c702004-04-02 20:23:17 +00008663
8664//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00008665// SCEVCallbackVH Class Implementation
8666//===----------------------------------------------------------------------===//
8667
Dan Gohmand33a0902009-05-19 19:22:47 +00008668void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00008669 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00008670 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
8671 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008672 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00008673 // this now dangles!
8674}
8675
Dan Gohman7a066722010-07-28 01:09:07 +00008676void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00008677 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00008678
Dan Gohman48f82222009-05-04 22:30:44 +00008679 // Forget all the expressions associated with users of the old value,
8680 // so that future queries will recompute the expressions using the new
8681 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00008682 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00008683 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00008684 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00008685 while (!Worklist.empty()) {
8686 User *U = Worklist.pop_back_val();
8687 // Deleting the Old value will cause this to dangle. Postpone
8688 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008689 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00008690 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00008691 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00008692 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00008693 if (PHINode *PN = dyn_cast<PHINode>(U))
8694 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008695 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00008696 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00008697 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008698 // Delete the Old value.
8699 if (PHINode *PN = dyn_cast<PHINode>(Old))
8700 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008701 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008702 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00008703}
8704
Dan Gohmand33a0902009-05-19 19:22:47 +00008705ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00008706 : CallbackVH(V), SE(se) {}
8707
8708//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00008709// ScalarEvolution Class Implementation
8710//===----------------------------------------------------------------------===//
8711
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008712ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
8713 AssumptionCache &AC, DominatorTree &DT,
8714 LoopInfo &LI)
8715 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
8716 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00008717 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
8718 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
8719 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008720
8721ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
8722 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
8723 CouldNotCompute(std::move(Arg.CouldNotCompute)),
8724 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00008725 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008726 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
8727 ConstantEvolutionLoopExitValue(
8728 std::move(Arg.ConstantEvolutionLoopExitValue)),
8729 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
8730 LoopDispositions(std::move(Arg.LoopDispositions)),
8731 BlockDispositions(std::move(Arg.BlockDispositions)),
8732 UnsignedRanges(std::move(Arg.UnsignedRanges)),
8733 SignedRanges(std::move(Arg.SignedRanges)),
8734 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
8735 SCEVAllocator(std::move(Arg.SCEVAllocator)),
8736 FirstUnknown(Arg.FirstUnknown) {
8737 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00008738}
8739
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008740ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00008741 // Iterate through all the SCEVUnknown instances and call their
8742 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00008743 for (SCEVUnknown *U = FirstUnknown; U;) {
8744 SCEVUnknown *Tmp = U;
8745 U = U->Next;
8746 Tmp->~SCEVUnknown();
8747 }
Craig Topper9f008862014-04-15 04:59:12 +00008748 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00008749
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008750 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008751
8752 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
8753 // that a loop had multiple computable exits.
8754 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8755 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
8756 I != E; ++I) {
8757 I->second.clear();
8758 }
8759
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008760 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00008761 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00008762 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00008763}
8764
Dan Gohmanc8e23622009-04-21 23:15:49 +00008765bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008766 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008767}
8768
Dan Gohmanc8e23622009-04-21 23:15:49 +00008769static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008770 const Loop *L) {
8771 // Print all inner loops first
8772 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8773 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008774
Dan Gohmanbc694912010-01-09 18:17:45 +00008775 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008776 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008777 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008778
Dan Gohmancb0efec2009-12-18 01:14:11 +00008779 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008780 L->getExitBlocks(ExitBlocks);
8781 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008782 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008783
Dan Gohman0bddac12009-02-24 18:55:53 +00008784 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8785 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008786 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008787 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008788 }
8789
Dan Gohmanbc694912010-01-09 18:17:45 +00008790 OS << "\n"
8791 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008792 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008793 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008794
8795 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8796 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8797 } else {
8798 OS << "Unpredictable max backedge-taken count. ";
8799 }
8800
8801 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008802}
8803
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008804void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008805 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008806 // out SCEV values of all instructions that are interesting. Doing
8807 // this potentially causes it to create new SCEV objects though,
8808 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008809 // observable from outside the class though, so casting away the
8810 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008811 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008812
Dan Gohmanbc694912010-01-09 18:17:45 +00008813 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008814 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008815 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008816 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00008817 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00008818 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008819 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008820 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008821 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008822 if (!isa<SCEVCouldNotCompute>(SV)) {
8823 OS << " U: ";
8824 SE.getUnsignedRange(SV).print(OS);
8825 OS << " S: ";
8826 SE.getSignedRange(SV).print(OS);
8827 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008828
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008829 const Loop *L = LI.getLoopFor((*I).getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00008830
Dan Gohmanaf752342009-07-07 17:06:11 +00008831 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008832 if (AtUse != SV) {
8833 OS << " --> ";
8834 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008835 if (!isa<SCEVCouldNotCompute>(AtUse)) {
8836 OS << " U: ";
8837 SE.getUnsignedRange(AtUse).print(OS);
8838 OS << " S: ";
8839 SE.getSignedRange(AtUse).print(OS);
8840 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00008841 }
8842
8843 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00008844 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008845 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00008846 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008847 OS << "<<Unknown>>";
8848 } else {
8849 OS << *ExitValue;
8850 }
8851 }
8852
Chris Lattnerd934c702004-04-02 20:23:17 +00008853 OS << "\n";
8854 }
8855
Dan Gohmanbc694912010-01-09 18:17:45 +00008856 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008857 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008858 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008859 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00008860 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008861}
Dan Gohmane20f8242009-04-21 00:47:46 +00008862
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008863ScalarEvolution::LoopDisposition
8864ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008865 auto &Values = LoopDispositions[S];
8866 for (auto &V : Values) {
8867 if (V.getPointer() == L)
8868 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008869 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008870 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008871 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008872 auto &Values2 = LoopDispositions[S];
8873 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8874 if (V.getPointer() == L) {
8875 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008876 break;
8877 }
8878 }
8879 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008880}
8881
8882ScalarEvolution::LoopDisposition
8883ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008884 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008885 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008886 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008887 case scTruncate:
8888 case scZeroExtend:
8889 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008890 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008891 case scAddRecExpr: {
8892 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8893
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008894 // If L is the addrec's loop, it's computable.
8895 if (AR->getLoop() == L)
8896 return LoopComputable;
8897
Dan Gohmanafd6db92010-11-17 21:23:15 +00008898 // Add recurrences are never invariant in the function-body (null loop).
8899 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008900 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008901
8902 // This recurrence is variant w.r.t. L if L contains AR's loop.
8903 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008904 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008905
8906 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8907 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008908 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008909
8910 // This recurrence is variant w.r.t. L if any of its operands
8911 // are variant.
8912 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8913 I != E; ++I)
8914 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008915 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008916
8917 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008918 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008919 }
8920 case scAddExpr:
8921 case scMulExpr:
8922 case scUMaxExpr:
8923 case scSMaxExpr: {
8924 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008925 bool HasVarying = false;
8926 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8927 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008928 LoopDisposition D = getLoopDisposition(*I, L);
8929 if (D == LoopVariant)
8930 return LoopVariant;
8931 if (D == LoopComputable)
8932 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008933 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008934 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008935 }
8936 case scUDivExpr: {
8937 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008938 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8939 if (LD == LoopVariant)
8940 return LoopVariant;
8941 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8942 if (RD == LoopVariant)
8943 return LoopVariant;
8944 return (LD == LoopInvariant && RD == LoopInvariant) ?
8945 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008946 }
8947 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008948 // All non-instruction values are loop invariant. All instructions are loop
8949 // invariant if they are not contained in the specified loop.
8950 // Instructions are never considered invariant in the function body
8951 // (null loop) because they are defined within the "loop".
8952 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8953 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8954 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008955 case scCouldNotCompute:
8956 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008957 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008958 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008959}
8960
8961bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8962 return getLoopDisposition(S, L) == LoopInvariant;
8963}
8964
8965bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8966 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008967}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008968
Dan Gohman8ea83d82010-11-18 00:34:22 +00008969ScalarEvolution::BlockDisposition
8970ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008971 auto &Values = BlockDispositions[S];
8972 for (auto &V : Values) {
8973 if (V.getPointer() == BB)
8974 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008975 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008976 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008977 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008978 auto &Values2 = BlockDispositions[S];
8979 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8980 if (V.getPointer() == BB) {
8981 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008982 break;
8983 }
8984 }
8985 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008986}
8987
Dan Gohman8ea83d82010-11-18 00:34:22 +00008988ScalarEvolution::BlockDisposition
8989ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008990 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008991 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008992 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008993 case scTruncate:
8994 case scZeroExtend:
8995 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008996 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008997 case scAddRecExpr: {
8998 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008999 // to test for proper dominance too, because the instruction which
9000 // produces the addrec's value is a PHI, and a PHI effectively properly
9001 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009002 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009003 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009004 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009005 }
9006 // FALL THROUGH into SCEVNAryExpr handling.
9007 case scAddExpr:
9008 case scMulExpr:
9009 case scUMaxExpr:
9010 case scSMaxExpr: {
9011 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009012 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009013 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00009014 I != E; ++I) {
9015 BlockDisposition D = getBlockDisposition(*I, BB);
9016 if (D == DoesNotDominateBlock)
9017 return DoesNotDominateBlock;
9018 if (D == DominatesBlock)
9019 Proper = false;
9020 }
9021 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009022 }
9023 case scUDivExpr: {
9024 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009025 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9026 BlockDisposition LD = getBlockDisposition(LHS, BB);
9027 if (LD == DoesNotDominateBlock)
9028 return DoesNotDominateBlock;
9029 BlockDisposition RD = getBlockDisposition(RHS, BB);
9030 if (RD == DoesNotDominateBlock)
9031 return DoesNotDominateBlock;
9032 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9033 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009034 }
9035 case scUnknown:
9036 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009037 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9038 if (I->getParent() == BB)
9039 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009040 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009041 return ProperlyDominatesBlock;
9042 return DoesNotDominateBlock;
9043 }
9044 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009045 case scCouldNotCompute:
9046 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009047 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009048 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009049}
9050
9051bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9052 return getBlockDisposition(S, BB) >= DominatesBlock;
9053}
9054
9055bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9056 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009057}
Dan Gohman534749b2010-11-17 22:27:42 +00009058
Andrew Trick365e31c2012-07-13 23:33:03 +00009059namespace {
9060// Search for a SCEV expression node within an expression tree.
9061// Implements SCEVTraversal::Visitor.
9062struct SCEVSearch {
9063 const SCEV *Node;
9064 bool IsFound;
9065
9066 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9067
9068 bool follow(const SCEV *S) {
9069 IsFound |= (S == Node);
9070 return !IsFound;
9071 }
9072 bool isDone() const { return IsFound; }
9073};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009074}
Andrew Trick365e31c2012-07-13 23:33:03 +00009075
Dan Gohman534749b2010-11-17 22:27:42 +00009076bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00009077 SCEVSearch Search(Op);
9078 visitAll(S, Search);
9079 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009080}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009081
9082void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9083 ValuesAtScopes.erase(S);
9084 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009085 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009086 UnsignedRanges.erase(S);
9087 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009088
9089 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9090 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9091 BackedgeTakenInfo &BEInfo = I->second;
9092 if (BEInfo.hasOperand(S, this)) {
9093 BEInfo.clear();
9094 BackedgeTakenCounts.erase(I++);
9095 }
9096 else
9097 ++I;
9098 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00009099}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009100
9101typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009102
Alp Tokercb402912014-01-24 17:20:08 +00009103/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009104static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9105 size_t Pos = 0;
9106 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9107 Str.replace(Pos, From.size(), To.data(), To.size());
9108 Pos += To.size();
9109 }
9110}
9111
Benjamin Kramer214935e2012-10-26 17:31:32 +00009112/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9113static void
9114getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9115 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
9116 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
9117
9118 std::string &S = Map[L];
9119 if (S.empty()) {
9120 raw_string_ostream OS(S);
9121 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009122
9123 // false and 0 are semantically equivalent. This can happen in dead loops.
9124 replaceSubString(OS.str(), "false", "0");
9125 // Remove wrap flags, their use in SCEV is highly fragile.
9126 // FIXME: Remove this when SCEV gets smarter about them.
9127 replaceSubString(OS.str(), "<nw>", "");
9128 replaceSubString(OS.str(), "<nsw>", "");
9129 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009130 }
9131 }
9132}
9133
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009134void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009135 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9136
9137 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9138 // FIXME: It would be much better to store actual values instead of strings,
9139 // but SCEV pointers will change if we drop the caches.
9140 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009141 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009142 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9143
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009144 // Gather stringified backedge taken counts for all loops using a fresh
9145 // ScalarEvolution object.
9146 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9147 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9148 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009149
9150 // Now compare whether they're the same with and without caches. This allows
9151 // verifying that no pass changed the cache.
9152 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9153 "New loops suddenly appeared!");
9154
9155 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9156 OldE = BackedgeDumpsOld.end(),
9157 NewI = BackedgeDumpsNew.begin();
9158 OldI != OldE; ++OldI, ++NewI) {
9159 assert(OldI->first == NewI->first && "Loop order changed!");
9160
9161 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9162 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009163 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009164 // means that a pass is buggy or SCEV has to learn a new pattern but is
9165 // usually not harmful.
9166 if (OldI->second != NewI->second &&
9167 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009168 NewI->second.find("undef") == std::string::npos &&
9169 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009170 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009171 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009172 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009173 << "' changed from '" << OldI->second
9174 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009175 std::abort();
9176 }
9177 }
9178
9179 // TODO: Verify more things.
9180}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009181
9182char ScalarEvolutionAnalysis::PassID;
9183
9184ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9185 AnalysisManager<Function> *AM) {
9186 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9187 AM->getResult<AssumptionAnalysis>(F),
9188 AM->getResult<DominatorTreeAnalysis>(F),
9189 AM->getResult<LoopAnalysis>(F));
9190}
9191
9192PreservedAnalyses
9193ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9194 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9195 return PreservedAnalyses::all();
9196}
9197
9198INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9199 "Scalar Evolution Analysis", false, true)
9200INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9201INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9202INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9203INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9204INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9205 "Scalar Evolution Analysis", false, true)
9206char ScalarEvolutionWrapperPass::ID = 0;
9207
9208ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9209 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9210}
9211
9212bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9213 SE.reset(new ScalarEvolution(
9214 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9215 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9216 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9217 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9218 return false;
9219}
9220
9221void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9222
9223void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9224 SE->print(OS);
9225}
9226
9227void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9228 if (!VerifySCEV)
9229 return;
9230
9231 SE->verify();
9232}
9233
9234void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9235 AU.setPreservesAll();
9236 AU.addRequiredTransitive<AssumptionCacheTracker>();
9237 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9238 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9239 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9240}