blob: c959f56ef1168c3b85b26a0222c7a50de9dee5c9 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _namedtypes:
444
Nico Rieck7157bb72014-01-14 15:22:47 +0000445DLL Storage Classes
446-------------------
447
448All Global Variables, Functions and Aliases can have one of the following
449DLL storage class:
450
451``dllimport``
452 "``dllimport``" causes the compiler to reference a function or variable via
453 a global pointer to a pointer that is set up by the DLL exporting the
454 symbol. On Microsoft Windows targets, the pointer name is formed by
455 combining ``__imp_`` and the function or variable name.
456``dllexport``
457 "``dllexport``" causes the compiler to provide a global pointer to a pointer
458 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
459 Microsoft Windows targets, the pointer name is formed by combining
460 ``__imp_`` and the function or variable name. Since this storage class
461 exists for defining a dll interface, the compiler, assembler and linker know
462 it is externally referenced and must refrain from deleting the symbol.
463
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000464Structure Types
465---------------
Sean Silvab084af42012-12-07 10:36:55 +0000466
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000467LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
468types <t_struct>`. Literal types are uniqued structurally, but identified types
469are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
470to forward declare a type which is not yet available.
471
472An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000473
474.. code-block:: llvm
475
476 %mytype = type { %mytype*, i32 }
477
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000478Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
479literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000480
481.. _globalvars:
482
483Global Variables
484----------------
485
486Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000487instead of run-time.
488
489Global variables definitions must be initialized, may have an explicit section
490to be placed in, and may have an optional explicit alignment specified.
491
492Global variables in other translation units can also be declared, in which
493case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507The models correspond to the ELF TLS models; see `ELF Handling For
508Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
509more information on under which circumstances the different models may
510be used. The target may choose a different TLS model if the specified
511model is not supported, or if a better choice of model can be made.
512
Michael Gottesman006039c2013-01-31 05:48:48 +0000513A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000514the contents of the variable will **never** be modified (enabling better
515optimization, allowing the global data to be placed in the read-only
516section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000517initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000518variable.
519
520LLVM explicitly allows *declarations* of global variables to be marked
521constant, even if the final definition of the global is not. This
522capability can be used to enable slightly better optimization of the
523program, but requires the language definition to guarantee that
524optimizations based on the 'constantness' are valid for the translation
525units that do not include the definition.
526
527As SSA values, global variables define pointer values that are in scope
528(i.e. they dominate) all basic blocks in the program. Global variables
529always define a pointer to their "content" type because they describe a
530region of memory, and all memory objects in LLVM are accessed through
531pointers.
532
533Global variables can be marked with ``unnamed_addr`` which indicates
534that the address is not significant, only the content. Constants marked
535like this can be merged with other constants if they have the same
536initializer. Note that a constant with significant address *can* be
537merged with a ``unnamed_addr`` constant, the result being a constant
538whose address is significant.
539
540A global variable may be declared to reside in a target-specific
541numbered address space. For targets that support them, address spaces
542may affect how optimizations are performed and/or what target
543instructions are used to access the variable. The default address space
544is zero. The address space qualifier must precede any other attributes.
545
546LLVM allows an explicit section to be specified for globals. If the
547target supports it, it will emit globals to the section specified.
548
Michael Gottesmane743a302013-02-04 03:22:00 +0000549By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000550variables defined within the module are not modified from their
551initial values before the start of the global initializer. This is
552true even for variables potentially accessible from outside the
553module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000554``@llvm.used`` or dllexported variables. This assumption may be suppressed
555by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000556
Sean Silvab084af42012-12-07 10:36:55 +0000557An explicit alignment may be specified for a global, which must be a
558power of 2. If not present, or if the alignment is set to zero, the
559alignment of the global is set by the target to whatever it feels
560convenient. If an explicit alignment is specified, the global is forced
561to have exactly that alignment. Targets and optimizers are not allowed
562to over-align the global if the global has an assigned section. In this
563case, the extra alignment could be observable: for example, code could
564assume that the globals are densely packed in their section and try to
565iterate over them as an array, alignment padding would break this
566iteration.
567
Nico Rieck7157bb72014-01-14 15:22:47 +0000568Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
569
570Syntax::
571
572 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
573 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
574 <global | constant> <Type>
575 [, section "name"] [, align <Alignment>]
576
Sean Silvab084af42012-12-07 10:36:55 +0000577For example, the following defines a global in a numbered address space
578with an initializer, section, and alignment:
579
580.. code-block:: llvm
581
582 @G = addrspace(5) constant float 1.0, section "foo", align 4
583
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000584The following example just declares a global variable
585
586.. code-block:: llvm
587
588 @G = external global i32
589
Sean Silvab084af42012-12-07 10:36:55 +0000590The following example defines a thread-local global with the
591``initialexec`` TLS model:
592
593.. code-block:: llvm
594
595 @G = thread_local(initialexec) global i32 0, align 4
596
597.. _functionstructure:
598
599Functions
600---------
601
602LLVM function definitions consist of the "``define``" keyword, an
603optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000604style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
605an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000606an optional ``unnamed_addr`` attribute, a return type, an optional
607:ref:`parameter attribute <paramattrs>` for the return type, a function
608name, a (possibly empty) argument list (each with optional :ref:`parameter
609attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
610an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000611collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
612curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000613
614LLVM function declarations consist of the "``declare``" keyword, an
615optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000616style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
617an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000618an optional ``unnamed_addr`` attribute, a return type, an optional
619:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000620name, a possibly empty list of arguments, an optional alignment, an optional
621:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000622
Bill Wendling6822ecb2013-10-27 05:09:12 +0000623A function definition contains a list of basic blocks, forming the CFG (Control
624Flow Graph) for the function. Each basic block may optionally start with a label
625(giving the basic block a symbol table entry), contains a list of instructions,
626and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
627function return). If an explicit label is not provided, a block is assigned an
628implicit numbered label, using the next value from the same counter as used for
629unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
630entry block does not have an explicit label, it will be assigned label "%0",
631then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000632
633The first basic block in a function is special in two ways: it is
634immediately executed on entrance to the function, and it is not allowed
635to have predecessor basic blocks (i.e. there can not be any branches to
636the entry block of a function). Because the block can have no
637predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
638
639LLVM allows an explicit section to be specified for functions. If the
640target supports it, it will emit functions to the section specified.
641
642An explicit alignment may be specified for a function. If not present,
643or if the alignment is set to zero, the alignment of the function is set
644by the target to whatever it feels convenient. If an explicit alignment
645is specified, the function is forced to have at least that much
646alignment. All alignments must be a power of 2.
647
648If the ``unnamed_addr`` attribute is given, the address is know to not
649be significant and two identical functions can be merged.
650
651Syntax::
652
Nico Rieck7157bb72014-01-14 15:22:47 +0000653 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000654 [cconv] [ret attrs]
655 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000656 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000657 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000658
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000659.. _langref_aliases:
660
Sean Silvab084af42012-12-07 10:36:55 +0000661Aliases
662-------
663
664Aliases act as "second name" for the aliasee value (which can be either
665function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000666Aliases may have an optional :ref:`linkage type <linkage>`, an optional
667:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
668<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000669
670Syntax::
671
Nico Rieck7157bb72014-01-14 15:22:47 +0000672 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000673
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000674The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000675``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000676might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000677alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000678
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000679Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
680the aliasee.
681
682The aliasee must be a definition.
683
Sean Silvab084af42012-12-07 10:36:55 +0000684.. _namedmetadatastructure:
685
686Named Metadata
687--------------
688
689Named metadata is a collection of metadata. :ref:`Metadata
690nodes <metadata>` (but not metadata strings) are the only valid
691operands for a named metadata.
692
693Syntax::
694
695 ; Some unnamed metadata nodes, which are referenced by the named metadata.
696 !0 = metadata !{metadata !"zero"}
697 !1 = metadata !{metadata !"one"}
698 !2 = metadata !{metadata !"two"}
699 ; A named metadata.
700 !name = !{!0, !1, !2}
701
702.. _paramattrs:
703
704Parameter Attributes
705--------------------
706
707The return type and each parameter of a function type may have a set of
708*parameter attributes* associated with them. Parameter attributes are
709used to communicate additional information about the result or
710parameters of a function. Parameter attributes are considered to be part
711of the function, not of the function type, so functions with different
712parameter attributes can have the same function type.
713
714Parameter attributes are simple keywords that follow the type specified.
715If multiple parameter attributes are needed, they are space separated.
716For example:
717
718.. code-block:: llvm
719
720 declare i32 @printf(i8* noalias nocapture, ...)
721 declare i32 @atoi(i8 zeroext)
722 declare signext i8 @returns_signed_char()
723
724Note that any attributes for the function result (``nounwind``,
725``readonly``) come immediately after the argument list.
726
727Currently, only the following parameter attributes are defined:
728
729``zeroext``
730 This indicates to the code generator that the parameter or return
731 value should be zero-extended to the extent required by the target's
732 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
733 the caller (for a parameter) or the callee (for a return value).
734``signext``
735 This indicates to the code generator that the parameter or return
736 value should be sign-extended to the extent required by the target's
737 ABI (which is usually 32-bits) by the caller (for a parameter) or
738 the callee (for a return value).
739``inreg``
740 This indicates that this parameter or return value should be treated
741 in a special target-dependent fashion during while emitting code for
742 a function call or return (usually, by putting it in a register as
743 opposed to memory, though some targets use it to distinguish between
744 two different kinds of registers). Use of this attribute is
745 target-specific.
746``byval``
747 This indicates that the pointer parameter should really be passed by
748 value to the function. The attribute implies that a hidden copy of
749 the pointee is made between the caller and the callee, so the callee
750 is unable to modify the value in the caller. This attribute is only
751 valid on LLVM pointer arguments. It is generally used to pass
752 structs and arrays by value, but is also valid on pointers to
753 scalars. The copy is considered to belong to the caller not the
754 callee (for example, ``readonly`` functions should not write to
755 ``byval`` parameters). This is not a valid attribute for return
756 values.
757
758 The byval attribute also supports specifying an alignment with the
759 align attribute. It indicates the alignment of the stack slot to
760 form and the known alignment of the pointer specified to the call
761 site. If the alignment is not specified, then the code generator
762 makes a target-specific assumption.
763
Reid Klecknera534a382013-12-19 02:14:12 +0000764.. _attr_inalloca:
765
766``inalloca``
767
768.. Warning:: This feature is unstable and not fully implemented.
769
Reid Kleckner60d3a832014-01-16 22:59:24 +0000770 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000771 address of outgoing stack arguments. An ``inalloca`` argument must
772 be a pointer to stack memory produced by an ``alloca`` instruction.
773 The alloca, or argument allocation, must also be tagged with the
774 inalloca keyword. Only the past argument may have the ``inalloca``
775 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000776
Reid Kleckner436c42e2014-01-17 23:58:17 +0000777 An argument allocation may be used by a call at most once because
778 the call may deallocate it. The ``inalloca`` attribute cannot be
779 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000780 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
781 ``inalloca`` attribute also disables LLVM's implicit lowering of
782 large aggregate return values, which means that frontend authors
783 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000784
Reid Kleckner60d3a832014-01-16 22:59:24 +0000785 When the call site is reached, the argument allocation must have
786 been the most recent stack allocation that is still live, or the
787 results are undefined. It is possible to allocate additional stack
788 space after an argument allocation and before its call site, but it
789 must be cleared off with :ref:`llvm.stackrestore
790 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000791
792 See :doc:`InAlloca` for more information on how to use this
793 attribute.
794
Sean Silvab084af42012-12-07 10:36:55 +0000795``sret``
796 This indicates that the pointer parameter specifies the address of a
797 structure that is the return value of the function in the source
798 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000799 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000800 not to trap and to be properly aligned. This may only be applied to
801 the first parameter. This is not a valid attribute for return
802 values.
803``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000804 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000805 the argument or return value do not alias pointer values which are
806 not *based* on it, ignoring certain "irrelevant" dependencies. For a
807 call to the parent function, dependencies between memory references
808 from before or after the call and from those during the call are
809 "irrelevant" to the ``noalias`` keyword for the arguments and return
810 value used in that call. The caller shares the responsibility with
811 the callee for ensuring that these requirements are met. For further
812 details, please see the discussion of the NoAlias response in `alias
813 analysis <AliasAnalysis.html#MustMayNo>`_.
814
815 Note that this definition of ``noalias`` is intentionally similar
816 to the definition of ``restrict`` in C99 for function arguments,
817 though it is slightly weaker.
818
819 For function return values, C99's ``restrict`` is not meaningful,
820 while LLVM's ``noalias`` is.
821``nocapture``
822 This indicates that the callee does not make any copies of the
823 pointer that outlive the callee itself. This is not a valid
824 attribute for return values.
825
826.. _nest:
827
828``nest``
829 This indicates that the pointer parameter can be excised using the
830 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000831 attribute for return values and can only be applied to one parameter.
832
833``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000834 This indicates that the function always returns the argument as its return
835 value. This is an optimization hint to the code generator when generating
836 the caller, allowing tail call optimization and omission of register saves
837 and restores in some cases; it is not checked or enforced when generating
838 the callee. The parameter and the function return type must be valid
839 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
840 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000841
842.. _gc:
843
844Garbage Collector Names
845-----------------------
846
847Each function may specify a garbage collector name, which is simply a
848string:
849
850.. code-block:: llvm
851
852 define void @f() gc "name" { ... }
853
854The compiler declares the supported values of *name*. Specifying a
855collector which will cause the compiler to alter its output in order to
856support the named garbage collection algorithm.
857
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000858.. _prefixdata:
859
860Prefix Data
861-----------
862
863Prefix data is data associated with a function which the code generator
864will emit immediately before the function body. The purpose of this feature
865is to allow frontends to associate language-specific runtime metadata with
866specific functions and make it available through the function pointer while
867still allowing the function pointer to be called. To access the data for a
868given function, a program may bitcast the function pointer to a pointer to
869the constant's type. This implies that the IR symbol points to the start
870of the prefix data.
871
872To maintain the semantics of ordinary function calls, the prefix data must
873have a particular format. Specifically, it must begin with a sequence of
874bytes which decode to a sequence of machine instructions, valid for the
875module's target, which transfer control to the point immediately succeeding
876the prefix data, without performing any other visible action. This allows
877the inliner and other passes to reason about the semantics of the function
878definition without needing to reason about the prefix data. Obviously this
879makes the format of the prefix data highly target dependent.
880
Peter Collingbourne213358a2013-09-23 20:14:21 +0000881Prefix data is laid out as if it were an initializer for a global variable
882of the prefix data's type. No padding is automatically placed between the
883prefix data and the function body. If padding is required, it must be part
884of the prefix data.
885
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000886A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
887which encodes the ``nop`` instruction:
888
889.. code-block:: llvm
890
891 define void @f() prefix i8 144 { ... }
892
893Generally prefix data can be formed by encoding a relative branch instruction
894which skips the metadata, as in this example of valid prefix data for the
895x86_64 architecture, where the first two bytes encode ``jmp .+10``:
896
897.. code-block:: llvm
898
899 %0 = type <{ i8, i8, i8* }>
900
901 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
902
903A function may have prefix data but no body. This has similar semantics
904to the ``available_externally`` linkage in that the data may be used by the
905optimizers but will not be emitted in the object file.
906
Bill Wendling63b88192013-02-06 06:52:58 +0000907.. _attrgrp:
908
909Attribute Groups
910----------------
911
912Attribute groups are groups of attributes that are referenced by objects within
913the IR. They are important for keeping ``.ll`` files readable, because a lot of
914functions will use the same set of attributes. In the degenerative case of a
915``.ll`` file that corresponds to a single ``.c`` file, the single attribute
916group will capture the important command line flags used to build that file.
917
918An attribute group is a module-level object. To use an attribute group, an
919object references the attribute group's ID (e.g. ``#37``). An object may refer
920to more than one attribute group. In that situation, the attributes from the
921different groups are merged.
922
923Here is an example of attribute groups for a function that should always be
924inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
925
926.. code-block:: llvm
927
928 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000929 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000930
931 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000932 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000933
934 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
935 define void @f() #0 #1 { ... }
936
Sean Silvab084af42012-12-07 10:36:55 +0000937.. _fnattrs:
938
939Function Attributes
940-------------------
941
942Function attributes are set to communicate additional information about
943a function. Function attributes are considered to be part of the
944function, not of the function type, so functions with different function
945attributes can have the same function type.
946
947Function attributes are simple keywords that follow the type specified.
948If multiple attributes are needed, they are space separated. For
949example:
950
951.. code-block:: llvm
952
953 define void @f() noinline { ... }
954 define void @f() alwaysinline { ... }
955 define void @f() alwaysinline optsize { ... }
956 define void @f() optsize { ... }
957
Sean Silvab084af42012-12-07 10:36:55 +0000958``alignstack(<n>)``
959 This attribute indicates that, when emitting the prologue and
960 epilogue, the backend should forcibly align the stack pointer.
961 Specify the desired alignment, which must be a power of two, in
962 parentheses.
963``alwaysinline``
964 This attribute indicates that the inliner should attempt to inline
965 this function into callers whenever possible, ignoring any active
966 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000967``builtin``
968 This indicates that the callee function at a call site should be
969 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000970 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000971 direct calls to functions which are declared with the ``nobuiltin``
972 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000973``cold``
974 This attribute indicates that this function is rarely called. When
975 computing edge weights, basic blocks post-dominated by a cold
976 function call are also considered to be cold; and, thus, given low
977 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000978``inlinehint``
979 This attribute indicates that the source code contained a hint that
980 inlining this function is desirable (such as the "inline" keyword in
981 C/C++). It is just a hint; it imposes no requirements on the
982 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000983``minsize``
984 This attribute suggests that optimization passes and code generator
985 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000986 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000987 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000988``naked``
989 This attribute disables prologue / epilogue emission for the
990 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000991``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000992 This indicates that the callee function at a call site is not recognized as
993 a built-in function. LLVM will retain the original call and not replace it
994 with equivalent code based on the semantics of the built-in function, unless
995 the call site uses the ``builtin`` attribute. This is valid at call sites
996 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000997``noduplicate``
998 This attribute indicates that calls to the function cannot be
999 duplicated. A call to a ``noduplicate`` function may be moved
1000 within its parent function, but may not be duplicated within
1001 its parent function.
1002
1003 A function containing a ``noduplicate`` call may still
1004 be an inlining candidate, provided that the call is not
1005 duplicated by inlining. That implies that the function has
1006 internal linkage and only has one call site, so the original
1007 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001008``noimplicitfloat``
1009 This attributes disables implicit floating point instructions.
1010``noinline``
1011 This attribute indicates that the inliner should never inline this
1012 function in any situation. This attribute may not be used together
1013 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001014``nonlazybind``
1015 This attribute suppresses lazy symbol binding for the function. This
1016 may make calls to the function faster, at the cost of extra program
1017 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001018``noredzone``
1019 This attribute indicates that the code generator should not use a
1020 red zone, even if the target-specific ABI normally permits it.
1021``noreturn``
1022 This function attribute indicates that the function never returns
1023 normally. This produces undefined behavior at runtime if the
1024 function ever does dynamically return.
1025``nounwind``
1026 This function attribute indicates that the function never returns
1027 with an unwind or exceptional control flow. If the function does
1028 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001029``optnone``
1030 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001031 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001032 exception of interprocedural optimization passes.
1033 This attribute cannot be used together with the ``alwaysinline``
1034 attribute; this attribute is also incompatible
1035 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001036
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001037 This attribute requires the ``noinline`` attribute to be specified on
1038 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001039 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001040 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001041``optsize``
1042 This attribute suggests that optimization passes and code generator
1043 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001044 and otherwise do optimizations specifically to reduce code size as
1045 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001046``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001047 On a function, this attribute indicates that the function computes its
1048 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001049 without dereferencing any pointer arguments or otherwise accessing
1050 any mutable state (e.g. memory, control registers, etc) visible to
1051 caller functions. It does not write through any pointer arguments
1052 (including ``byval`` arguments) and never changes any state visible
1053 to callers. This means that it cannot unwind exceptions by calling
1054 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001055
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001056 On an argument, this attribute indicates that the function does not
1057 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001058 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001059``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001060 On a function, this attribute indicates that the function does not write
1061 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001062 modify any state (e.g. memory, control registers, etc) visible to
1063 caller functions. It may dereference pointer arguments and read
1064 state that may be set in the caller. A readonly function always
1065 returns the same value (or unwinds an exception identically) when
1066 called with the same set of arguments and global state. It cannot
1067 unwind an exception by calling the ``C++`` exception throwing
1068 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001069
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001070 On an argument, this attribute indicates that the function does not write
1071 through this pointer argument, even though it may write to the memory that
1072 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001073``returns_twice``
1074 This attribute indicates that this function can return twice. The C
1075 ``setjmp`` is an example of such a function. The compiler disables
1076 some optimizations (like tail calls) in the caller of these
1077 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001078``sanitize_address``
1079 This attribute indicates that AddressSanitizer checks
1080 (dynamic address safety analysis) are enabled for this function.
1081``sanitize_memory``
1082 This attribute indicates that MemorySanitizer checks (dynamic detection
1083 of accesses to uninitialized memory) are enabled for this function.
1084``sanitize_thread``
1085 This attribute indicates that ThreadSanitizer checks
1086 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001087``ssp``
1088 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001089 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001090 placed on the stack before the local variables that's checked upon
1091 return from the function to see if it has been overwritten. A
1092 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001093 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001094
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001095 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1096 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1097 - Calls to alloca() with variable sizes or constant sizes greater than
1098 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001099
Josh Magee24c7f062014-02-01 01:36:16 +00001100 Variables that are identified as requiring a protector will be arranged
1101 on the stack such that they are adjacent to the stack protector guard.
1102
Sean Silvab084af42012-12-07 10:36:55 +00001103 If a function that has an ``ssp`` attribute is inlined into a
1104 function that doesn't have an ``ssp`` attribute, then the resulting
1105 function will have an ``ssp`` attribute.
1106``sspreq``
1107 This attribute indicates that the function should *always* emit a
1108 stack smashing protector. This overrides the ``ssp`` function
1109 attribute.
1110
Josh Magee24c7f062014-02-01 01:36:16 +00001111 Variables that are identified as requiring a protector will be arranged
1112 on the stack such that they are adjacent to the stack protector guard.
1113 The specific layout rules are:
1114
1115 #. Large arrays and structures containing large arrays
1116 (``>= ssp-buffer-size``) are closest to the stack protector.
1117 #. Small arrays and structures containing small arrays
1118 (``< ssp-buffer-size``) are 2nd closest to the protector.
1119 #. Variables that have had their address taken are 3rd closest to the
1120 protector.
1121
Sean Silvab084af42012-12-07 10:36:55 +00001122 If a function that has an ``sspreq`` attribute is inlined into a
1123 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001124 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1125 an ``sspreq`` attribute.
1126``sspstrong``
1127 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001128 protector. This attribute causes a strong heuristic to be used when
1129 determining if a function needs stack protectors. The strong heuristic
1130 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001131
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001132 - Arrays of any size and type
1133 - Aggregates containing an array of any size and type.
1134 - Calls to alloca().
1135 - Local variables that have had their address taken.
1136
Josh Magee24c7f062014-02-01 01:36:16 +00001137 Variables that are identified as requiring a protector will be arranged
1138 on the stack such that they are adjacent to the stack protector guard.
1139 The specific layout rules are:
1140
1141 #. Large arrays and structures containing large arrays
1142 (``>= ssp-buffer-size``) are closest to the stack protector.
1143 #. Small arrays and structures containing small arrays
1144 (``< ssp-buffer-size``) are 2nd closest to the protector.
1145 #. Variables that have had their address taken are 3rd closest to the
1146 protector.
1147
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001148 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001149
1150 If a function that has an ``sspstrong`` attribute is inlined into a
1151 function that doesn't have an ``sspstrong`` attribute, then the
1152 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001153``uwtable``
1154 This attribute indicates that the ABI being targeted requires that
1155 an unwind table entry be produce for this function even if we can
1156 show that no exceptions passes by it. This is normally the case for
1157 the ELF x86-64 abi, but it can be disabled for some compilation
1158 units.
Sean Silvab084af42012-12-07 10:36:55 +00001159
1160.. _moduleasm:
1161
1162Module-Level Inline Assembly
1163----------------------------
1164
1165Modules may contain "module-level inline asm" blocks, which corresponds
1166to the GCC "file scope inline asm" blocks. These blocks are internally
1167concatenated by LLVM and treated as a single unit, but may be separated
1168in the ``.ll`` file if desired. The syntax is very simple:
1169
1170.. code-block:: llvm
1171
1172 module asm "inline asm code goes here"
1173 module asm "more can go here"
1174
1175The strings can contain any character by escaping non-printable
1176characters. The escape sequence used is simply "\\xx" where "xx" is the
1177two digit hex code for the number.
1178
1179The inline asm code is simply printed to the machine code .s file when
1180assembly code is generated.
1181
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001182.. _langref_datalayout:
1183
Sean Silvab084af42012-12-07 10:36:55 +00001184Data Layout
1185-----------
1186
1187A module may specify a target specific data layout string that specifies
1188how data is to be laid out in memory. The syntax for the data layout is
1189simply:
1190
1191.. code-block:: llvm
1192
1193 target datalayout = "layout specification"
1194
1195The *layout specification* consists of a list of specifications
1196separated by the minus sign character ('-'). Each specification starts
1197with a letter and may include other information after the letter to
1198define some aspect of the data layout. The specifications accepted are
1199as follows:
1200
1201``E``
1202 Specifies that the target lays out data in big-endian form. That is,
1203 the bits with the most significance have the lowest address
1204 location.
1205``e``
1206 Specifies that the target lays out data in little-endian form. That
1207 is, the bits with the least significance have the lowest address
1208 location.
1209``S<size>``
1210 Specifies the natural alignment of the stack in bits. Alignment
1211 promotion of stack variables is limited to the natural stack
1212 alignment to avoid dynamic stack realignment. The stack alignment
1213 must be a multiple of 8-bits. If omitted, the natural stack
1214 alignment defaults to "unspecified", which does not prevent any
1215 alignment promotions.
1216``p[n]:<size>:<abi>:<pref>``
1217 This specifies the *size* of a pointer and its ``<abi>`` and
1218 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001219 bits. The address space, ``n`` is optional, and if not specified,
1220 denotes the default address space 0. The value of ``n`` must be
1221 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001222``i<size>:<abi>:<pref>``
1223 This specifies the alignment for an integer type of a given bit
1224 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1225``v<size>:<abi>:<pref>``
1226 This specifies the alignment for a vector type of a given bit
1227 ``<size>``.
1228``f<size>:<abi>:<pref>``
1229 This specifies the alignment for a floating point type of a given bit
1230 ``<size>``. Only values of ``<size>`` that are supported by the target
1231 will work. 32 (float) and 64 (double) are supported on all targets; 80
1232 or 128 (different flavors of long double) are also supported on some
1233 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001234``a:<abi>:<pref>``
1235 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001236``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001237 If present, specifies that llvm names are mangled in the output. The
1238 options are
1239
1240 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1241 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1242 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1243 symbols get a ``_`` prefix.
1244 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1245 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001246``n<size1>:<size2>:<size3>...``
1247 This specifies a set of native integer widths for the target CPU in
1248 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1249 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1250 this set are considered to support most general arithmetic operations
1251 efficiently.
1252
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001253On every specification that takes a ``<abi>:<pref>``, specifying the
1254``<pref>`` alignment is optional. If omitted, the preceding ``:``
1255should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1256
Sean Silvab084af42012-12-07 10:36:55 +00001257When constructing the data layout for a given target, LLVM starts with a
1258default set of specifications which are then (possibly) overridden by
1259the specifications in the ``datalayout`` keyword. The default
1260specifications are given in this list:
1261
1262- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001263- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1264- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1265 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001266- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001267- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1268- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1269- ``i16:16:16`` - i16 is 16-bit aligned
1270- ``i32:32:32`` - i32 is 32-bit aligned
1271- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1272 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001273- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001274- ``f32:32:32`` - float is 32-bit aligned
1275- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001276- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001277- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1278- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001279- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001280
1281When LLVM is determining the alignment for a given type, it uses the
1282following rules:
1283
1284#. If the type sought is an exact match for one of the specifications,
1285 that specification is used.
1286#. If no match is found, and the type sought is an integer type, then
1287 the smallest integer type that is larger than the bitwidth of the
1288 sought type is used. If none of the specifications are larger than
1289 the bitwidth then the largest integer type is used. For example,
1290 given the default specifications above, the i7 type will use the
1291 alignment of i8 (next largest) while both i65 and i256 will use the
1292 alignment of i64 (largest specified).
1293#. If no match is found, and the type sought is a vector type, then the
1294 largest vector type that is smaller than the sought vector type will
1295 be used as a fall back. This happens because <128 x double> can be
1296 implemented in terms of 64 <2 x double>, for example.
1297
1298The function of the data layout string may not be what you expect.
1299Notably, this is not a specification from the frontend of what alignment
1300the code generator should use.
1301
1302Instead, if specified, the target data layout is required to match what
1303the ultimate *code generator* expects. This string is used by the
1304mid-level optimizers to improve code, and this only works if it matches
1305what the ultimate code generator uses. If you would like to generate IR
1306that does not embed this target-specific detail into the IR, then you
1307don't have to specify the string. This will disable some optimizations
1308that require precise layout information, but this also prevents those
1309optimizations from introducing target specificity into the IR.
1310
Bill Wendling5cc90842013-10-18 23:41:25 +00001311.. _langref_triple:
1312
1313Target Triple
1314-------------
1315
1316A module may specify a target triple string that describes the target
1317host. The syntax for the target triple is simply:
1318
1319.. code-block:: llvm
1320
1321 target triple = "x86_64-apple-macosx10.7.0"
1322
1323The *target triple* string consists of a series of identifiers delimited
1324by the minus sign character ('-'). The canonical forms are:
1325
1326::
1327
1328 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1329 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1330
1331This information is passed along to the backend so that it generates
1332code for the proper architecture. It's possible to override this on the
1333command line with the ``-mtriple`` command line option.
1334
Sean Silvab084af42012-12-07 10:36:55 +00001335.. _pointeraliasing:
1336
1337Pointer Aliasing Rules
1338----------------------
1339
1340Any memory access must be done through a pointer value associated with
1341an address range of the memory access, otherwise the behavior is
1342undefined. Pointer values are associated with address ranges according
1343to the following rules:
1344
1345- A pointer value is associated with the addresses associated with any
1346 value it is *based* on.
1347- An address of a global variable is associated with the address range
1348 of the variable's storage.
1349- The result value of an allocation instruction is associated with the
1350 address range of the allocated storage.
1351- A null pointer in the default address-space is associated with no
1352 address.
1353- An integer constant other than zero or a pointer value returned from
1354 a function not defined within LLVM may be associated with address
1355 ranges allocated through mechanisms other than those provided by
1356 LLVM. Such ranges shall not overlap with any ranges of addresses
1357 allocated by mechanisms provided by LLVM.
1358
1359A pointer value is *based* on another pointer value according to the
1360following rules:
1361
1362- A pointer value formed from a ``getelementptr`` operation is *based*
1363 on the first operand of the ``getelementptr``.
1364- The result value of a ``bitcast`` is *based* on the operand of the
1365 ``bitcast``.
1366- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1367 values that contribute (directly or indirectly) to the computation of
1368 the pointer's value.
1369- The "*based* on" relationship is transitive.
1370
1371Note that this definition of *"based"* is intentionally similar to the
1372definition of *"based"* in C99, though it is slightly weaker.
1373
1374LLVM IR does not associate types with memory. The result type of a
1375``load`` merely indicates the size and alignment of the memory from
1376which to load, as well as the interpretation of the value. The first
1377operand type of a ``store`` similarly only indicates the size and
1378alignment of the store.
1379
1380Consequently, type-based alias analysis, aka TBAA, aka
1381``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1382:ref:`Metadata <metadata>` may be used to encode additional information
1383which specialized optimization passes may use to implement type-based
1384alias analysis.
1385
1386.. _volatile:
1387
1388Volatile Memory Accesses
1389------------------------
1390
1391Certain memory accesses, such as :ref:`load <i_load>`'s,
1392:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1393marked ``volatile``. The optimizers must not change the number of
1394volatile operations or change their order of execution relative to other
1395volatile operations. The optimizers *may* change the order of volatile
1396operations relative to non-volatile operations. This is not Java's
1397"volatile" and has no cross-thread synchronization behavior.
1398
Andrew Trick89fc5a62013-01-30 21:19:35 +00001399IR-level volatile loads and stores cannot safely be optimized into
1400llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1401flagged volatile. Likewise, the backend should never split or merge
1402target-legal volatile load/store instructions.
1403
Andrew Trick7e6f9282013-01-31 00:49:39 +00001404.. admonition:: Rationale
1405
1406 Platforms may rely on volatile loads and stores of natively supported
1407 data width to be executed as single instruction. For example, in C
1408 this holds for an l-value of volatile primitive type with native
1409 hardware support, but not necessarily for aggregate types. The
1410 frontend upholds these expectations, which are intentionally
1411 unspecified in the IR. The rules above ensure that IR transformation
1412 do not violate the frontend's contract with the language.
1413
Sean Silvab084af42012-12-07 10:36:55 +00001414.. _memmodel:
1415
1416Memory Model for Concurrent Operations
1417--------------------------------------
1418
1419The LLVM IR does not define any way to start parallel threads of
1420execution or to register signal handlers. Nonetheless, there are
1421platform-specific ways to create them, and we define LLVM IR's behavior
1422in their presence. This model is inspired by the C++0x memory model.
1423
1424For a more informal introduction to this model, see the :doc:`Atomics`.
1425
1426We define a *happens-before* partial order as the least partial order
1427that
1428
1429- Is a superset of single-thread program order, and
1430- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1431 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1432 techniques, like pthread locks, thread creation, thread joining,
1433 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1434 Constraints <ordering>`).
1435
1436Note that program order does not introduce *happens-before* edges
1437between a thread and signals executing inside that thread.
1438
1439Every (defined) read operation (load instructions, memcpy, atomic
1440loads/read-modify-writes, etc.) R reads a series of bytes written by
1441(defined) write operations (store instructions, atomic
1442stores/read-modify-writes, memcpy, etc.). For the purposes of this
1443section, initialized globals are considered to have a write of the
1444initializer which is atomic and happens before any other read or write
1445of the memory in question. For each byte of a read R, R\ :sub:`byte`
1446may see any write to the same byte, except:
1447
1448- If write\ :sub:`1` happens before write\ :sub:`2`, and
1449 write\ :sub:`2` happens before R\ :sub:`byte`, then
1450 R\ :sub:`byte` does not see write\ :sub:`1`.
1451- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1452 R\ :sub:`byte` does not see write\ :sub:`3`.
1453
1454Given that definition, R\ :sub:`byte` is defined as follows:
1455
1456- If R is volatile, the result is target-dependent. (Volatile is
1457 supposed to give guarantees which can support ``sig_atomic_t`` in
1458 C/C++, and may be used for accesses to addresses which do not behave
1459 like normal memory. It does not generally provide cross-thread
1460 synchronization.)
1461- Otherwise, if there is no write to the same byte that happens before
1462 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1463- Otherwise, if R\ :sub:`byte` may see exactly one write,
1464 R\ :sub:`byte` returns the value written by that write.
1465- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1466 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1467 Memory Ordering Constraints <ordering>` section for additional
1468 constraints on how the choice is made.
1469- Otherwise R\ :sub:`byte` returns ``undef``.
1470
1471R returns the value composed of the series of bytes it read. This
1472implies that some bytes within the value may be ``undef`` **without**
1473the entire value being ``undef``. Note that this only defines the
1474semantics of the operation; it doesn't mean that targets will emit more
1475than one instruction to read the series of bytes.
1476
1477Note that in cases where none of the atomic intrinsics are used, this
1478model places only one restriction on IR transformations on top of what
1479is required for single-threaded execution: introducing a store to a byte
1480which might not otherwise be stored is not allowed in general.
1481(Specifically, in the case where another thread might write to and read
1482from an address, introducing a store can change a load that may see
1483exactly one write into a load that may see multiple writes.)
1484
1485.. _ordering:
1486
1487Atomic Memory Ordering Constraints
1488----------------------------------
1489
1490Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1491:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1492:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001493ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001494the same address they *synchronize with*. These semantics are borrowed
1495from Java and C++0x, but are somewhat more colloquial. If these
1496descriptions aren't precise enough, check those specs (see spec
1497references in the :doc:`atomics guide <Atomics>`).
1498:ref:`fence <i_fence>` instructions treat these orderings somewhat
1499differently since they don't take an address. See that instruction's
1500documentation for details.
1501
1502For a simpler introduction to the ordering constraints, see the
1503:doc:`Atomics`.
1504
1505``unordered``
1506 The set of values that can be read is governed by the happens-before
1507 partial order. A value cannot be read unless some operation wrote
1508 it. This is intended to provide a guarantee strong enough to model
1509 Java's non-volatile shared variables. This ordering cannot be
1510 specified for read-modify-write operations; it is not strong enough
1511 to make them atomic in any interesting way.
1512``monotonic``
1513 In addition to the guarantees of ``unordered``, there is a single
1514 total order for modifications by ``monotonic`` operations on each
1515 address. All modification orders must be compatible with the
1516 happens-before order. There is no guarantee that the modification
1517 orders can be combined to a global total order for the whole program
1518 (and this often will not be possible). The read in an atomic
1519 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1520 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1521 order immediately before the value it writes. If one atomic read
1522 happens before another atomic read of the same address, the later
1523 read must see the same value or a later value in the address's
1524 modification order. This disallows reordering of ``monotonic`` (or
1525 stronger) operations on the same address. If an address is written
1526 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1527 read that address repeatedly, the other threads must eventually see
1528 the write. This corresponds to the C++0x/C1x
1529 ``memory_order_relaxed``.
1530``acquire``
1531 In addition to the guarantees of ``monotonic``, a
1532 *synchronizes-with* edge may be formed with a ``release`` operation.
1533 This is intended to model C++'s ``memory_order_acquire``.
1534``release``
1535 In addition to the guarantees of ``monotonic``, if this operation
1536 writes a value which is subsequently read by an ``acquire``
1537 operation, it *synchronizes-with* that operation. (This isn't a
1538 complete description; see the C++0x definition of a release
1539 sequence.) This corresponds to the C++0x/C1x
1540 ``memory_order_release``.
1541``acq_rel`` (acquire+release)
1542 Acts as both an ``acquire`` and ``release`` operation on its
1543 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1544``seq_cst`` (sequentially consistent)
1545 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1546 operation which only reads, ``release`` for an operation which only
1547 writes), there is a global total order on all
1548 sequentially-consistent operations on all addresses, which is
1549 consistent with the *happens-before* partial order and with the
1550 modification orders of all the affected addresses. Each
1551 sequentially-consistent read sees the last preceding write to the
1552 same address in this global order. This corresponds to the C++0x/C1x
1553 ``memory_order_seq_cst`` and Java volatile.
1554
1555.. _singlethread:
1556
1557If an atomic operation is marked ``singlethread``, it only *synchronizes
1558with* or participates in modification and seq\_cst total orderings with
1559other operations running in the same thread (for example, in signal
1560handlers).
1561
1562.. _fastmath:
1563
1564Fast-Math Flags
1565---------------
1566
1567LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1568:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1569:ref:`frem <i_frem>`) have the following flags that can set to enable
1570otherwise unsafe floating point operations
1571
1572``nnan``
1573 No NaNs - Allow optimizations to assume the arguments and result are not
1574 NaN. Such optimizations are required to retain defined behavior over
1575 NaNs, but the value of the result is undefined.
1576
1577``ninf``
1578 No Infs - Allow optimizations to assume the arguments and result are not
1579 +/-Inf. Such optimizations are required to retain defined behavior over
1580 +/-Inf, but the value of the result is undefined.
1581
1582``nsz``
1583 No Signed Zeros - Allow optimizations to treat the sign of a zero
1584 argument or result as insignificant.
1585
1586``arcp``
1587 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1588 argument rather than perform division.
1589
1590``fast``
1591 Fast - Allow algebraically equivalent transformations that may
1592 dramatically change results in floating point (e.g. reassociate). This
1593 flag implies all the others.
1594
1595.. _typesystem:
1596
1597Type System
1598===========
1599
1600The LLVM type system is one of the most important features of the
1601intermediate representation. Being typed enables a number of
1602optimizations to be performed on the intermediate representation
1603directly, without having to do extra analyses on the side before the
1604transformation. A strong type system makes it easier to read the
1605generated code and enables novel analyses and transformations that are
1606not feasible to perform on normal three address code representations.
1607
Rafael Espindola08013342013-12-07 19:34:20 +00001608.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001609
Rafael Espindola08013342013-12-07 19:34:20 +00001610Void Type
1611---------
Sean Silvab084af42012-12-07 10:36:55 +00001612
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001613:Overview:
1614
Rafael Espindola08013342013-12-07 19:34:20 +00001615
1616The void type does not represent any value and has no size.
1617
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001618:Syntax:
1619
Rafael Espindola08013342013-12-07 19:34:20 +00001620
1621::
1622
1623 void
Sean Silvab084af42012-12-07 10:36:55 +00001624
1625
Rafael Espindola08013342013-12-07 19:34:20 +00001626.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001627
Rafael Espindola08013342013-12-07 19:34:20 +00001628Function Type
1629-------------
Sean Silvab084af42012-12-07 10:36:55 +00001630
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001631:Overview:
1632
Sean Silvab084af42012-12-07 10:36:55 +00001633
Rafael Espindola08013342013-12-07 19:34:20 +00001634The function type can be thought of as a function signature. It consists of a
1635return type and a list of formal parameter types. The return type of a function
1636type is a void type or first class type --- except for :ref:`label <t_label>`
1637and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001638
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001639:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001640
Rafael Espindola08013342013-12-07 19:34:20 +00001641::
Sean Silvab084af42012-12-07 10:36:55 +00001642
Rafael Espindola08013342013-12-07 19:34:20 +00001643 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001644
Rafael Espindola08013342013-12-07 19:34:20 +00001645...where '``<parameter list>``' is a comma-separated list of type
1646specifiers. Optionally, the parameter list may include a type ``...``, which
1647indicates that the function takes a variable number of arguments. Variable
1648argument functions can access their arguments with the :ref:`variable argument
1649handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1650except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001651
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001652:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001653
Rafael Espindola08013342013-12-07 19:34:20 +00001654+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1655| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1656+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1657| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1658+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1659| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1660+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1661| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1662+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1663
1664.. _t_firstclass:
1665
1666First Class Types
1667-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001668
1669The :ref:`first class <t_firstclass>` types are perhaps the most important.
1670Values of these types are the only ones which can be produced by
1671instructions.
1672
Rafael Espindola08013342013-12-07 19:34:20 +00001673.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001674
Rafael Espindola08013342013-12-07 19:34:20 +00001675Single Value Types
1676^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001677
Rafael Espindola08013342013-12-07 19:34:20 +00001678These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001679
1680.. _t_integer:
1681
1682Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001683""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001684
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001685:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001686
1687The integer type is a very simple type that simply specifies an
1688arbitrary bit width for the integer type desired. Any bit width from 1
1689bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1690
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001691:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001692
1693::
1694
1695 iN
1696
1697The number of bits the integer will occupy is specified by the ``N``
1698value.
1699
1700Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001701*********
Sean Silvab084af42012-12-07 10:36:55 +00001702
1703+----------------+------------------------------------------------+
1704| ``i1`` | a single-bit integer. |
1705+----------------+------------------------------------------------+
1706| ``i32`` | a 32-bit integer. |
1707+----------------+------------------------------------------------+
1708| ``i1942652`` | a really big integer of over 1 million bits. |
1709+----------------+------------------------------------------------+
1710
1711.. _t_floating:
1712
1713Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001714""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001715
1716.. list-table::
1717 :header-rows: 1
1718
1719 * - Type
1720 - Description
1721
1722 * - ``half``
1723 - 16-bit floating point value
1724
1725 * - ``float``
1726 - 32-bit floating point value
1727
1728 * - ``double``
1729 - 64-bit floating point value
1730
1731 * - ``fp128``
1732 - 128-bit floating point value (112-bit mantissa)
1733
1734 * - ``x86_fp80``
1735 - 80-bit floating point value (X87)
1736
1737 * - ``ppc_fp128``
1738 - 128-bit floating point value (two 64-bits)
1739
Reid Kleckner9a16d082014-03-05 02:41:37 +00001740X86_mmx Type
1741""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001742
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001743:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001744
Reid Kleckner9a16d082014-03-05 02:41:37 +00001745The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001746machine. The operations allowed on it are quite limited: parameters and
1747return values, load and store, and bitcast. User-specified MMX
1748instructions are represented as intrinsic or asm calls with arguments
1749and/or results of this type. There are no arrays, vectors or constants
1750of this type.
1751
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001752:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001753
1754::
1755
Reid Kleckner9a16d082014-03-05 02:41:37 +00001756 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001757
Sean Silvab084af42012-12-07 10:36:55 +00001758
Rafael Espindola08013342013-12-07 19:34:20 +00001759.. _t_pointer:
1760
1761Pointer Type
1762""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001763
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001764:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001765
Rafael Espindola08013342013-12-07 19:34:20 +00001766The pointer type is used to specify memory locations. Pointers are
1767commonly used to reference objects in memory.
1768
1769Pointer types may have an optional address space attribute defining the
1770numbered address space where the pointed-to object resides. The default
1771address space is number zero. The semantics of non-zero address spaces
1772are target-specific.
1773
1774Note that LLVM does not permit pointers to void (``void*``) nor does it
1775permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001776
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001777:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001778
1779::
1780
Rafael Espindola08013342013-12-07 19:34:20 +00001781 <type> *
1782
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001783:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001784
1785+-------------------------+--------------------------------------------------------------------------------------------------------------+
1786| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1787+-------------------------+--------------------------------------------------------------------------------------------------------------+
1788| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1789+-------------------------+--------------------------------------------------------------------------------------------------------------+
1790| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1791+-------------------------+--------------------------------------------------------------------------------------------------------------+
1792
1793.. _t_vector:
1794
1795Vector Type
1796"""""""""""
1797
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001798:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001799
1800A vector type is a simple derived type that represents a vector of
1801elements. Vector types are used when multiple primitive data are
1802operated in parallel using a single instruction (SIMD). A vector type
1803requires a size (number of elements) and an underlying primitive data
1804type. Vector types are considered :ref:`first class <t_firstclass>`.
1805
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001806:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001807
1808::
1809
1810 < <# elements> x <elementtype> >
1811
1812The number of elements is a constant integer value larger than 0;
1813elementtype may be any integer or floating point type, or a pointer to
1814these types. Vectors of size zero are not allowed.
1815
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001816:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001817
1818+-------------------+--------------------------------------------------+
1819| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1820+-------------------+--------------------------------------------------+
1821| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1822+-------------------+--------------------------------------------------+
1823| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1824+-------------------+--------------------------------------------------+
1825| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1826+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001827
1828.. _t_label:
1829
1830Label Type
1831^^^^^^^^^^
1832
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001833:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001834
1835The label type represents code labels.
1836
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001837:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001838
1839::
1840
1841 label
1842
1843.. _t_metadata:
1844
1845Metadata Type
1846^^^^^^^^^^^^^
1847
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001848:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001849
1850The metadata type represents embedded metadata. No derived types may be
1851created from metadata except for :ref:`function <t_function>` arguments.
1852
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001853:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001854
1855::
1856
1857 metadata
1858
Sean Silvab084af42012-12-07 10:36:55 +00001859.. _t_aggregate:
1860
1861Aggregate Types
1862^^^^^^^^^^^^^^^
1863
1864Aggregate Types are a subset of derived types that can contain multiple
1865member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1866aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1867aggregate types.
1868
1869.. _t_array:
1870
1871Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001872""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001873
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001874:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001875
1876The array type is a very simple derived type that arranges elements
1877sequentially in memory. The array type requires a size (number of
1878elements) and an underlying data type.
1879
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001880:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001881
1882::
1883
1884 [<# elements> x <elementtype>]
1885
1886The number of elements is a constant integer value; ``elementtype`` may
1887be any type with a size.
1888
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001889:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001890
1891+------------------+--------------------------------------+
1892| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1893+------------------+--------------------------------------+
1894| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1895+------------------+--------------------------------------+
1896| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1897+------------------+--------------------------------------+
1898
1899Here are some examples of multidimensional arrays:
1900
1901+-----------------------------+----------------------------------------------------------+
1902| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1903+-----------------------------+----------------------------------------------------------+
1904| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1905+-----------------------------+----------------------------------------------------------+
1906| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1907+-----------------------------+----------------------------------------------------------+
1908
1909There is no restriction on indexing beyond the end of the array implied
1910by a static type (though there are restrictions on indexing beyond the
1911bounds of an allocated object in some cases). This means that
1912single-dimension 'variable sized array' addressing can be implemented in
1913LLVM with a zero length array type. An implementation of 'pascal style
1914arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1915example.
1916
Sean Silvab084af42012-12-07 10:36:55 +00001917.. _t_struct:
1918
1919Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001920""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001921
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001922:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001923
1924The structure type is used to represent a collection of data members
1925together in memory. The elements of a structure may be any type that has
1926a size.
1927
1928Structures in memory are accessed using '``load``' and '``store``' by
1929getting a pointer to a field with the '``getelementptr``' instruction.
1930Structures in registers are accessed using the '``extractvalue``' and
1931'``insertvalue``' instructions.
1932
1933Structures may optionally be "packed" structures, which indicate that
1934the alignment of the struct is one byte, and that there is no padding
1935between the elements. In non-packed structs, padding between field types
1936is inserted as defined by the DataLayout string in the module, which is
1937required to match what the underlying code generator expects.
1938
1939Structures can either be "literal" or "identified". A literal structure
1940is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1941identified types are always defined at the top level with a name.
1942Literal types are uniqued by their contents and can never be recursive
1943or opaque since there is no way to write one. Identified types can be
1944recursive, can be opaqued, and are never uniqued.
1945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001947
1948::
1949
1950 %T1 = type { <type list> } ; Identified normal struct type
1951 %T2 = type <{ <type list> }> ; Identified packed struct type
1952
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001953:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001954
1955+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1956| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1957+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001958| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001959+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1960| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1961+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1962
1963.. _t_opaque:
1964
1965Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001966""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001967
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001968:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001969
1970Opaque structure types are used to represent named structure types that
1971do not have a body specified. This corresponds (for example) to the C
1972notion of a forward declared structure.
1973
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001974:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001975
1976::
1977
1978 %X = type opaque
1979 %52 = type opaque
1980
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001981:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001982
1983+--------------+-------------------+
1984| ``opaque`` | An opaque type. |
1985+--------------+-------------------+
1986
Sean Silvab084af42012-12-07 10:36:55 +00001987Constants
1988=========
1989
1990LLVM has several different basic types of constants. This section
1991describes them all and their syntax.
1992
1993Simple Constants
1994----------------
1995
1996**Boolean constants**
1997 The two strings '``true``' and '``false``' are both valid constants
1998 of the ``i1`` type.
1999**Integer constants**
2000 Standard integers (such as '4') are constants of the
2001 :ref:`integer <t_integer>` type. Negative numbers may be used with
2002 integer types.
2003**Floating point constants**
2004 Floating point constants use standard decimal notation (e.g.
2005 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2006 hexadecimal notation (see below). The assembler requires the exact
2007 decimal value of a floating-point constant. For example, the
2008 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2009 decimal in binary. Floating point constants must have a :ref:`floating
2010 point <t_floating>` type.
2011**Null pointer constants**
2012 The identifier '``null``' is recognized as a null pointer constant
2013 and must be of :ref:`pointer type <t_pointer>`.
2014
2015The one non-intuitive notation for constants is the hexadecimal form of
2016floating point constants. For example, the form
2017'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2018than) '``double 4.5e+15``'. The only time hexadecimal floating point
2019constants are required (and the only time that they are generated by the
2020disassembler) is when a floating point constant must be emitted but it
2021cannot be represented as a decimal floating point number in a reasonable
2022number of digits. For example, NaN's, infinities, and other special
2023values are represented in their IEEE hexadecimal format so that assembly
2024and disassembly do not cause any bits to change in the constants.
2025
2026When using the hexadecimal form, constants of types half, float, and
2027double are represented using the 16-digit form shown above (which
2028matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002029must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002030precision, respectively. Hexadecimal format is always used for long
2031double, and there are three forms of long double. The 80-bit format used
2032by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2033128-bit format used by PowerPC (two adjacent doubles) is represented by
2034``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002035represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2036will only work if they match the long double format on your target.
2037The IEEE 16-bit format (half precision) is represented by ``0xH``
2038followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2039(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002040
Reid Kleckner9a16d082014-03-05 02:41:37 +00002041There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002042
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002043.. _complexconstants:
2044
Sean Silvab084af42012-12-07 10:36:55 +00002045Complex Constants
2046-----------------
2047
2048Complex constants are a (potentially recursive) combination of simple
2049constants and smaller complex constants.
2050
2051**Structure constants**
2052 Structure constants are represented with notation similar to
2053 structure type definitions (a comma separated list of elements,
2054 surrounded by braces (``{}``)). For example:
2055 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2056 "``@G = external global i32``". Structure constants must have
2057 :ref:`structure type <t_struct>`, and the number and types of elements
2058 must match those specified by the type.
2059**Array constants**
2060 Array constants are represented with notation similar to array type
2061 definitions (a comma separated list of elements, surrounded by
2062 square brackets (``[]``)). For example:
2063 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2064 :ref:`array type <t_array>`, and the number and types of elements must
2065 match those specified by the type.
2066**Vector constants**
2067 Vector constants are represented with notation similar to vector
2068 type definitions (a comma separated list of elements, surrounded by
2069 less-than/greater-than's (``<>``)). For example:
2070 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2071 must have :ref:`vector type <t_vector>`, and the number and types of
2072 elements must match those specified by the type.
2073**Zero initialization**
2074 The string '``zeroinitializer``' can be used to zero initialize a
2075 value to zero of *any* type, including scalar and
2076 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2077 having to print large zero initializers (e.g. for large arrays) and
2078 is always exactly equivalent to using explicit zero initializers.
2079**Metadata node**
2080 A metadata node is a structure-like constant with :ref:`metadata
2081 type <t_metadata>`. For example:
2082 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2083 constants that are meant to be interpreted as part of the
2084 instruction stream, metadata is a place to attach additional
2085 information such as debug info.
2086
2087Global Variable and Function Addresses
2088--------------------------------------
2089
2090The addresses of :ref:`global variables <globalvars>` and
2091:ref:`functions <functionstructure>` are always implicitly valid
2092(link-time) constants. These constants are explicitly referenced when
2093the :ref:`identifier for the global <identifiers>` is used and always have
2094:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2095file:
2096
2097.. code-block:: llvm
2098
2099 @X = global i32 17
2100 @Y = global i32 42
2101 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2102
2103.. _undefvalues:
2104
2105Undefined Values
2106----------------
2107
2108The string '``undef``' can be used anywhere a constant is expected, and
2109indicates that the user of the value may receive an unspecified
2110bit-pattern. Undefined values may be of any type (other than '``label``'
2111or '``void``') and be used anywhere a constant is permitted.
2112
2113Undefined values are useful because they indicate to the compiler that
2114the program is well defined no matter what value is used. This gives the
2115compiler more freedom to optimize. Here are some examples of
2116(potentially surprising) transformations that are valid (in pseudo IR):
2117
2118.. code-block:: llvm
2119
2120 %A = add %X, undef
2121 %B = sub %X, undef
2122 %C = xor %X, undef
2123 Safe:
2124 %A = undef
2125 %B = undef
2126 %C = undef
2127
2128This is safe because all of the output bits are affected by the undef
2129bits. Any output bit can have a zero or one depending on the input bits.
2130
2131.. code-block:: llvm
2132
2133 %A = or %X, undef
2134 %B = and %X, undef
2135 Safe:
2136 %A = -1
2137 %B = 0
2138 Unsafe:
2139 %A = undef
2140 %B = undef
2141
2142These logical operations have bits that are not always affected by the
2143input. For example, if ``%X`` has a zero bit, then the output of the
2144'``and``' operation will always be a zero for that bit, no matter what
2145the corresponding bit from the '``undef``' is. As such, it is unsafe to
2146optimize or assume that the result of the '``and``' is '``undef``'.
2147However, it is safe to assume that all bits of the '``undef``' could be
21480, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2149all the bits of the '``undef``' operand to the '``or``' could be set,
2150allowing the '``or``' to be folded to -1.
2151
2152.. code-block:: llvm
2153
2154 %A = select undef, %X, %Y
2155 %B = select undef, 42, %Y
2156 %C = select %X, %Y, undef
2157 Safe:
2158 %A = %X (or %Y)
2159 %B = 42 (or %Y)
2160 %C = %Y
2161 Unsafe:
2162 %A = undef
2163 %B = undef
2164 %C = undef
2165
2166This set of examples shows that undefined '``select``' (and conditional
2167branch) conditions can go *either way*, but they have to come from one
2168of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2169both known to have a clear low bit, then ``%A`` would have to have a
2170cleared low bit. However, in the ``%C`` example, the optimizer is
2171allowed to assume that the '``undef``' operand could be the same as
2172``%Y``, allowing the whole '``select``' to be eliminated.
2173
2174.. code-block:: llvm
2175
2176 %A = xor undef, undef
2177
2178 %B = undef
2179 %C = xor %B, %B
2180
2181 %D = undef
2182 %E = icmp lt %D, 4
2183 %F = icmp gte %D, 4
2184
2185 Safe:
2186 %A = undef
2187 %B = undef
2188 %C = undef
2189 %D = undef
2190 %E = undef
2191 %F = undef
2192
2193This example points out that two '``undef``' operands are not
2194necessarily the same. This can be surprising to people (and also matches
2195C semantics) where they assume that "``X^X``" is always zero, even if
2196``X`` is undefined. This isn't true for a number of reasons, but the
2197short answer is that an '``undef``' "variable" can arbitrarily change
2198its value over its "live range". This is true because the variable
2199doesn't actually *have a live range*. Instead, the value is logically
2200read from arbitrary registers that happen to be around when needed, so
2201the value is not necessarily consistent over time. In fact, ``%A`` and
2202``%C`` need to have the same semantics or the core LLVM "replace all
2203uses with" concept would not hold.
2204
2205.. code-block:: llvm
2206
2207 %A = fdiv undef, %X
2208 %B = fdiv %X, undef
2209 Safe:
2210 %A = undef
2211 b: unreachable
2212
2213These examples show the crucial difference between an *undefined value*
2214and *undefined behavior*. An undefined value (like '``undef``') is
2215allowed to have an arbitrary bit-pattern. This means that the ``%A``
2216operation can be constant folded to '``undef``', because the '``undef``'
2217could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2218However, in the second example, we can make a more aggressive
2219assumption: because the ``undef`` is allowed to be an arbitrary value,
2220we are allowed to assume that it could be zero. Since a divide by zero
2221has *undefined behavior*, we are allowed to assume that the operation
2222does not execute at all. This allows us to delete the divide and all
2223code after it. Because the undefined operation "can't happen", the
2224optimizer can assume that it occurs in dead code.
2225
2226.. code-block:: llvm
2227
2228 a: store undef -> %X
2229 b: store %X -> undef
2230 Safe:
2231 a: <deleted>
2232 b: unreachable
2233
2234These examples reiterate the ``fdiv`` example: a store *of* an undefined
2235value can be assumed to not have any effect; we can assume that the
2236value is overwritten with bits that happen to match what was already
2237there. However, a store *to* an undefined location could clobber
2238arbitrary memory, therefore, it has undefined behavior.
2239
2240.. _poisonvalues:
2241
2242Poison Values
2243-------------
2244
2245Poison values are similar to :ref:`undef values <undefvalues>`, however
2246they also represent the fact that an instruction or constant expression
2247which cannot evoke side effects has nevertheless detected a condition
2248which results in undefined behavior.
2249
2250There is currently no way of representing a poison value in the IR; they
2251only exist when produced by operations such as :ref:`add <i_add>` with
2252the ``nsw`` flag.
2253
2254Poison value behavior is defined in terms of value *dependence*:
2255
2256- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2257- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2258 their dynamic predecessor basic block.
2259- Function arguments depend on the corresponding actual argument values
2260 in the dynamic callers of their functions.
2261- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2262 instructions that dynamically transfer control back to them.
2263- :ref:`Invoke <i_invoke>` instructions depend on the
2264 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2265 call instructions that dynamically transfer control back to them.
2266- Non-volatile loads and stores depend on the most recent stores to all
2267 of the referenced memory addresses, following the order in the IR
2268 (including loads and stores implied by intrinsics such as
2269 :ref:`@llvm.memcpy <int_memcpy>`.)
2270- An instruction with externally visible side effects depends on the
2271 most recent preceding instruction with externally visible side
2272 effects, following the order in the IR. (This includes :ref:`volatile
2273 operations <volatile>`.)
2274- An instruction *control-depends* on a :ref:`terminator
2275 instruction <terminators>` if the terminator instruction has
2276 multiple successors and the instruction is always executed when
2277 control transfers to one of the successors, and may not be executed
2278 when control is transferred to another.
2279- Additionally, an instruction also *control-depends* on a terminator
2280 instruction if the set of instructions it otherwise depends on would
2281 be different if the terminator had transferred control to a different
2282 successor.
2283- Dependence is transitive.
2284
2285Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2286with the additional affect that any instruction which has a *dependence*
2287on a poison value has undefined behavior.
2288
2289Here are some examples:
2290
2291.. code-block:: llvm
2292
2293 entry:
2294 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2295 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2296 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2297 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2298
2299 store i32 %poison, i32* @g ; Poison value stored to memory.
2300 %poison2 = load i32* @g ; Poison value loaded back from memory.
2301
2302 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2303
2304 %narrowaddr = bitcast i32* @g to i16*
2305 %wideaddr = bitcast i32* @g to i64*
2306 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2307 %poison4 = load i64* %wideaddr ; Returns a poison value.
2308
2309 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2310 br i1 %cmp, label %true, label %end ; Branch to either destination.
2311
2312 true:
2313 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2314 ; it has undefined behavior.
2315 br label %end
2316
2317 end:
2318 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2319 ; Both edges into this PHI are
2320 ; control-dependent on %cmp, so this
2321 ; always results in a poison value.
2322
2323 store volatile i32 0, i32* @g ; This would depend on the store in %true
2324 ; if %cmp is true, or the store in %entry
2325 ; otherwise, so this is undefined behavior.
2326
2327 br i1 %cmp, label %second_true, label %second_end
2328 ; The same branch again, but this time the
2329 ; true block doesn't have side effects.
2330
2331 second_true:
2332 ; No side effects!
2333 ret void
2334
2335 second_end:
2336 store volatile i32 0, i32* @g ; This time, the instruction always depends
2337 ; on the store in %end. Also, it is
2338 ; control-equivalent to %end, so this is
2339 ; well-defined (ignoring earlier undefined
2340 ; behavior in this example).
2341
2342.. _blockaddress:
2343
2344Addresses of Basic Blocks
2345-------------------------
2346
2347``blockaddress(@function, %block)``
2348
2349The '``blockaddress``' constant computes the address of the specified
2350basic block in the specified function, and always has an ``i8*`` type.
2351Taking the address of the entry block is illegal.
2352
2353This value only has defined behavior when used as an operand to the
2354':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2355against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002356undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002357no label is equal to the null pointer. This may be passed around as an
2358opaque pointer sized value as long as the bits are not inspected. This
2359allows ``ptrtoint`` and arithmetic to be performed on these values so
2360long as the original value is reconstituted before the ``indirectbr``
2361instruction.
2362
2363Finally, some targets may provide defined semantics when using the value
2364as the operand to an inline assembly, but that is target specific.
2365
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002366.. _constantexprs:
2367
Sean Silvab084af42012-12-07 10:36:55 +00002368Constant Expressions
2369--------------------
2370
2371Constant expressions are used to allow expressions involving other
2372constants to be used as constants. Constant expressions may be of any
2373:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2374that does not have side effects (e.g. load and call are not supported).
2375The following is the syntax for constant expressions:
2376
2377``trunc (CST to TYPE)``
2378 Truncate a constant to another type. The bit size of CST must be
2379 larger than the bit size of TYPE. Both types must be integers.
2380``zext (CST to TYPE)``
2381 Zero extend a constant to another type. The bit size of CST must be
2382 smaller than the bit size of TYPE. Both types must be integers.
2383``sext (CST to TYPE)``
2384 Sign extend a constant to another type. The bit size of CST must be
2385 smaller than the bit size of TYPE. Both types must be integers.
2386``fptrunc (CST to TYPE)``
2387 Truncate a floating point constant to another floating point type.
2388 The size of CST must be larger than the size of TYPE. Both types
2389 must be floating point.
2390``fpext (CST to TYPE)``
2391 Floating point extend a constant to another type. The size of CST
2392 must be smaller or equal to the size of TYPE. Both types must be
2393 floating point.
2394``fptoui (CST to TYPE)``
2395 Convert a floating point constant to the corresponding unsigned
2396 integer constant. TYPE must be a scalar or vector integer type. CST
2397 must be of scalar or vector floating point type. Both CST and TYPE
2398 must be scalars, or vectors of the same number of elements. If the
2399 value won't fit in the integer type, the results are undefined.
2400``fptosi (CST to TYPE)``
2401 Convert a floating point constant to the corresponding signed
2402 integer constant. TYPE must be a scalar or vector integer type. CST
2403 must be of scalar or vector floating point type. Both CST and TYPE
2404 must be scalars, or vectors of the same number of elements. If the
2405 value won't fit in the integer type, the results are undefined.
2406``uitofp (CST to TYPE)``
2407 Convert an unsigned integer constant to the corresponding floating
2408 point constant. TYPE must be a scalar or vector floating point type.
2409 CST must be of scalar or vector integer type. Both CST and TYPE must
2410 be scalars, or vectors of the same number of elements. If the value
2411 won't fit in the floating point type, the results are undefined.
2412``sitofp (CST to TYPE)``
2413 Convert a signed integer constant to the corresponding floating
2414 point constant. TYPE must be a scalar or vector floating point type.
2415 CST must be of scalar or vector integer type. Both CST and TYPE must
2416 be scalars, or vectors of the same number of elements. If the value
2417 won't fit in the floating point type, the results are undefined.
2418``ptrtoint (CST to TYPE)``
2419 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002420 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002421 pointer type. The ``CST`` value is zero extended, truncated, or
2422 unchanged to make it fit in ``TYPE``.
2423``inttoptr (CST to TYPE)``
2424 Convert an integer constant to a pointer constant. TYPE must be a
2425 pointer type. CST must be of integer type. The CST value is zero
2426 extended, truncated, or unchanged to make it fit in a pointer size.
2427 This one is *really* dangerous!
2428``bitcast (CST to TYPE)``
2429 Convert a constant, CST, to another TYPE. The constraints of the
2430 operands are the same as those for the :ref:`bitcast
2431 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002432``addrspacecast (CST to TYPE)``
2433 Convert a constant pointer or constant vector of pointer, CST, to another
2434 TYPE in a different address space. The constraints of the operands are the
2435 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002436``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2437 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2438 constants. As with the :ref:`getelementptr <i_getelementptr>`
2439 instruction, the index list may have zero or more indexes, which are
2440 required to make sense for the type of "CSTPTR".
2441``select (COND, VAL1, VAL2)``
2442 Perform the :ref:`select operation <i_select>` on constants.
2443``icmp COND (VAL1, VAL2)``
2444 Performs the :ref:`icmp operation <i_icmp>` on constants.
2445``fcmp COND (VAL1, VAL2)``
2446 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2447``extractelement (VAL, IDX)``
2448 Perform the :ref:`extractelement operation <i_extractelement>` on
2449 constants.
2450``insertelement (VAL, ELT, IDX)``
2451 Perform the :ref:`insertelement operation <i_insertelement>` on
2452 constants.
2453``shufflevector (VEC1, VEC2, IDXMASK)``
2454 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2455 constants.
2456``extractvalue (VAL, IDX0, IDX1, ...)``
2457 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2458 constants. The index list is interpreted in a similar manner as
2459 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2460 least one index value must be specified.
2461``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2462 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2463 The index list is interpreted in a similar manner as indices in a
2464 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2465 value must be specified.
2466``OPCODE (LHS, RHS)``
2467 Perform the specified operation of the LHS and RHS constants. OPCODE
2468 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2469 binary <bitwiseops>` operations. The constraints on operands are
2470 the same as those for the corresponding instruction (e.g. no bitwise
2471 operations on floating point values are allowed).
2472
2473Other Values
2474============
2475
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002476.. _inlineasmexprs:
2477
Sean Silvab084af42012-12-07 10:36:55 +00002478Inline Assembler Expressions
2479----------------------------
2480
2481LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2482Inline Assembly <moduleasm>`) through the use of a special value. This
2483value represents the inline assembler as a string (containing the
2484instructions to emit), a list of operand constraints (stored as a
2485string), a flag that indicates whether or not the inline asm expression
2486has side effects, and a flag indicating whether the function containing
2487the asm needs to align its stack conservatively. An example inline
2488assembler expression is:
2489
2490.. code-block:: llvm
2491
2492 i32 (i32) asm "bswap $0", "=r,r"
2493
2494Inline assembler expressions may **only** be used as the callee operand
2495of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2496Thus, typically we have:
2497
2498.. code-block:: llvm
2499
2500 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2501
2502Inline asms with side effects not visible in the constraint list must be
2503marked as having side effects. This is done through the use of the
2504'``sideeffect``' keyword, like so:
2505
2506.. code-block:: llvm
2507
2508 call void asm sideeffect "eieio", ""()
2509
2510In some cases inline asms will contain code that will not work unless
2511the stack is aligned in some way, such as calls or SSE instructions on
2512x86, yet will not contain code that does that alignment within the asm.
2513The compiler should make conservative assumptions about what the asm
2514might contain and should generate its usual stack alignment code in the
2515prologue if the '``alignstack``' keyword is present:
2516
2517.. code-block:: llvm
2518
2519 call void asm alignstack "eieio", ""()
2520
2521Inline asms also support using non-standard assembly dialects. The
2522assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2523the inline asm is using the Intel dialect. Currently, ATT and Intel are
2524the only supported dialects. An example is:
2525
2526.. code-block:: llvm
2527
2528 call void asm inteldialect "eieio", ""()
2529
2530If multiple keywords appear the '``sideeffect``' keyword must come
2531first, the '``alignstack``' keyword second and the '``inteldialect``'
2532keyword last.
2533
2534Inline Asm Metadata
2535^^^^^^^^^^^^^^^^^^^
2536
2537The call instructions that wrap inline asm nodes may have a
2538"``!srcloc``" MDNode attached to it that contains a list of constant
2539integers. If present, the code generator will use the integer as the
2540location cookie value when report errors through the ``LLVMContext``
2541error reporting mechanisms. This allows a front-end to correlate backend
2542errors that occur with inline asm back to the source code that produced
2543it. For example:
2544
2545.. code-block:: llvm
2546
2547 call void asm sideeffect "something bad", ""(), !srcloc !42
2548 ...
2549 !42 = !{ i32 1234567 }
2550
2551It is up to the front-end to make sense of the magic numbers it places
2552in the IR. If the MDNode contains multiple constants, the code generator
2553will use the one that corresponds to the line of the asm that the error
2554occurs on.
2555
2556.. _metadata:
2557
2558Metadata Nodes and Metadata Strings
2559-----------------------------------
2560
2561LLVM IR allows metadata to be attached to instructions in the program
2562that can convey extra information about the code to the optimizers and
2563code generator. One example application of metadata is source-level
2564debug information. There are two metadata primitives: strings and nodes.
2565All metadata has the ``metadata`` type and is identified in syntax by a
2566preceding exclamation point ('``!``').
2567
2568A metadata string is a string surrounded by double quotes. It can
2569contain any character by escaping non-printable characters with
2570"``\xx``" where "``xx``" is the two digit hex code. For example:
2571"``!"test\00"``".
2572
2573Metadata nodes are represented with notation similar to structure
2574constants (a comma separated list of elements, surrounded by braces and
2575preceded by an exclamation point). Metadata nodes can have any values as
2576their operand. For example:
2577
2578.. code-block:: llvm
2579
2580 !{ metadata !"test\00", i32 10}
2581
2582A :ref:`named metadata <namedmetadatastructure>` is a collection of
2583metadata nodes, which can be looked up in the module symbol table. For
2584example:
2585
2586.. code-block:: llvm
2587
2588 !foo = metadata !{!4, !3}
2589
2590Metadata can be used as function arguments. Here ``llvm.dbg.value``
2591function is using two metadata arguments:
2592
2593.. code-block:: llvm
2594
2595 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2596
2597Metadata can be attached with an instruction. Here metadata ``!21`` is
2598attached to the ``add`` instruction using the ``!dbg`` identifier:
2599
2600.. code-block:: llvm
2601
2602 %indvar.next = add i64 %indvar, 1, !dbg !21
2603
2604More information about specific metadata nodes recognized by the
2605optimizers and code generator is found below.
2606
2607'``tbaa``' Metadata
2608^^^^^^^^^^^^^^^^^^^
2609
2610In LLVM IR, memory does not have types, so LLVM's own type system is not
2611suitable for doing TBAA. Instead, metadata is added to the IR to
2612describe a type system of a higher level language. This can be used to
2613implement typical C/C++ TBAA, but it can also be used to implement
2614custom alias analysis behavior for other languages.
2615
2616The current metadata format is very simple. TBAA metadata nodes have up
2617to three fields, e.g.:
2618
2619.. code-block:: llvm
2620
2621 !0 = metadata !{ metadata !"an example type tree" }
2622 !1 = metadata !{ metadata !"int", metadata !0 }
2623 !2 = metadata !{ metadata !"float", metadata !0 }
2624 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2625
2626The first field is an identity field. It can be any value, usually a
2627metadata string, which uniquely identifies the type. The most important
2628name in the tree is the name of the root node. Two trees with different
2629root node names are entirely disjoint, even if they have leaves with
2630common names.
2631
2632The second field identifies the type's parent node in the tree, or is
2633null or omitted for a root node. A type is considered to alias all of
2634its descendants and all of its ancestors in the tree. Also, a type is
2635considered to alias all types in other trees, so that bitcode produced
2636from multiple front-ends is handled conservatively.
2637
2638If the third field is present, it's an integer which if equal to 1
2639indicates that the type is "constant" (meaning
2640``pointsToConstantMemory`` should return true; see `other useful
2641AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2642
2643'``tbaa.struct``' Metadata
2644^^^^^^^^^^^^^^^^^^^^^^^^^^
2645
2646The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2647aggregate assignment operations in C and similar languages, however it
2648is defined to copy a contiguous region of memory, which is more than
2649strictly necessary for aggregate types which contain holes due to
2650padding. Also, it doesn't contain any TBAA information about the fields
2651of the aggregate.
2652
2653``!tbaa.struct`` metadata can describe which memory subregions in a
2654memcpy are padding and what the TBAA tags of the struct are.
2655
2656The current metadata format is very simple. ``!tbaa.struct`` metadata
2657nodes are a list of operands which are in conceptual groups of three.
2658For each group of three, the first operand gives the byte offset of a
2659field in bytes, the second gives its size in bytes, and the third gives
2660its tbaa tag. e.g.:
2661
2662.. code-block:: llvm
2663
2664 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2665
2666This describes a struct with two fields. The first is at offset 0 bytes
2667with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2668and has size 4 bytes and has tbaa tag !2.
2669
2670Note that the fields need not be contiguous. In this example, there is a
26714 byte gap between the two fields. This gap represents padding which
2672does not carry useful data and need not be preserved.
2673
2674'``fpmath``' Metadata
2675^^^^^^^^^^^^^^^^^^^^^
2676
2677``fpmath`` metadata may be attached to any instruction of floating point
2678type. It can be used to express the maximum acceptable error in the
2679result of that instruction, in ULPs, thus potentially allowing the
2680compiler to use a more efficient but less accurate method of computing
2681it. ULP is defined as follows:
2682
2683 If ``x`` is a real number that lies between two finite consecutive
2684 floating-point numbers ``a`` and ``b``, without being equal to one
2685 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2686 distance between the two non-equal finite floating-point numbers
2687 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2688
2689The metadata node shall consist of a single positive floating point
2690number representing the maximum relative error, for example:
2691
2692.. code-block:: llvm
2693
2694 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2695
2696'``range``' Metadata
2697^^^^^^^^^^^^^^^^^^^^
2698
2699``range`` metadata may be attached only to loads of integer types. It
2700expresses the possible ranges the loaded value is in. The ranges are
2701represented with a flattened list of integers. The loaded value is known
2702to be in the union of the ranges defined by each consecutive pair. Each
2703pair has the following properties:
2704
2705- The type must match the type loaded by the instruction.
2706- The pair ``a,b`` represents the range ``[a,b)``.
2707- Both ``a`` and ``b`` are constants.
2708- The range is allowed to wrap.
2709- The range should not represent the full or empty set. That is,
2710 ``a!=b``.
2711
2712In addition, the pairs must be in signed order of the lower bound and
2713they must be non-contiguous.
2714
2715Examples:
2716
2717.. code-block:: llvm
2718
2719 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2720 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2721 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2722 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2723 ...
2724 !0 = metadata !{ i8 0, i8 2 }
2725 !1 = metadata !{ i8 255, i8 2 }
2726 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2727 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2728
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002729'``llvm.loop``'
2730^^^^^^^^^^^^^^^
2731
2732It is sometimes useful to attach information to loop constructs. Currently,
2733loop metadata is implemented as metadata attached to the branch instruction
2734in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002735guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002736specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002737
2738The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002739itself to avoid merging it with any other identifier metadata, e.g.,
2740during module linkage or function inlining. That is, each loop should refer
2741to their own identification metadata even if they reside in separate functions.
2742The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002743constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002744
2745.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002746
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002747 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002748 !1 = metadata !{ metadata !1 }
2749
Paul Redmond5fdf8362013-05-28 20:00:34 +00002750The loop identifier metadata can be used to specify additional per-loop
2751metadata. Any operands after the first operand can be treated as user-defined
2752metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2753by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002754
Paul Redmond5fdf8362013-05-28 20:00:34 +00002755.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002756
Paul Redmond5fdf8362013-05-28 20:00:34 +00002757 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2758 ...
2759 !0 = metadata !{ metadata !0, metadata !1 }
2760 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002761
2762'``llvm.mem``'
2763^^^^^^^^^^^^^^^
2764
2765Metadata types used to annotate memory accesses with information helpful
2766for optimizations are prefixed with ``llvm.mem``.
2767
2768'``llvm.mem.parallel_loop_access``' Metadata
2769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2770
2771For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002772the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002773also all of the memory accessing instructions in the loop body need to be
2774marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2775is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002776the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002777converted to sequential loops due to optimization passes that are unaware of
2778the parallel semantics and that insert new memory instructions to the loop
2779body.
2780
2781Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002782both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002783metadata types that refer to the same loop identifier metadata.
2784
2785.. code-block:: llvm
2786
2787 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002788 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002789 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002790 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002791 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002792 ...
2793 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002794
2795 for.end:
2796 ...
2797 !0 = metadata !{ metadata !0 }
2798
2799It is also possible to have nested parallel loops. In that case the
2800memory accesses refer to a list of loop identifier metadata nodes instead of
2801the loop identifier metadata node directly:
2802
2803.. code-block:: llvm
2804
2805 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002806 ...
2807 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2808 ...
2809 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002810
2811 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002812 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002813 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002814 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002815 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002816 ...
2817 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002818
2819 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002820 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002821 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002822 ...
2823 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002824
2825 outer.for.end: ; preds = %for.body
2826 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002827 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2828 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2829 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002830
Paul Redmond5fdf8362013-05-28 20:00:34 +00002831'``llvm.vectorizer``'
2832^^^^^^^^^^^^^^^^^^^^^
2833
2834Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2835vectorization parameters such as vectorization factor and unroll factor.
2836
2837``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2838loop identification metadata.
2839
2840'``llvm.vectorizer.unroll``' Metadata
2841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2842
2843This metadata instructs the loop vectorizer to unroll the specified
2844loop exactly ``N`` times.
2845
2846The first operand is the string ``llvm.vectorizer.unroll`` and the second
2847operand is an integer specifying the unroll factor. For example:
2848
2849.. code-block:: llvm
2850
2851 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2852
2853Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2854loop.
2855
2856If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2857determined automatically.
2858
2859'``llvm.vectorizer.width``' Metadata
2860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2861
Paul Redmondeccbb322013-05-30 17:22:46 +00002862This metadata sets the target width of the vectorizer to ``N``. Without
2863this metadata, the vectorizer will choose a width automatically.
2864Regardless of this metadata, the vectorizer will only vectorize loops if
2865it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002866
2867The first operand is the string ``llvm.vectorizer.width`` and the second
2868operand is an integer specifying the width. For example:
2869
2870.. code-block:: llvm
2871
2872 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2873
2874Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2875loop.
2876
2877If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2878automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002879
Sean Silvab084af42012-12-07 10:36:55 +00002880Module Flags Metadata
2881=====================
2882
2883Information about the module as a whole is difficult to convey to LLVM's
2884subsystems. The LLVM IR isn't sufficient to transmit this information.
2885The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002886this. These flags are in the form of key / value pairs --- much like a
2887dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002888look it up.
2889
2890The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2891Each triplet has the following form:
2892
2893- The first element is a *behavior* flag, which specifies the behavior
2894 when two (or more) modules are merged together, and it encounters two
2895 (or more) metadata with the same ID. The supported behaviors are
2896 described below.
2897- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002898 metadata. Each module may only have one flag entry for each unique ID (not
2899 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002900- The third element is the value of the flag.
2901
2902When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002903``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2904each unique metadata ID string, there will be exactly one entry in the merged
2905modules ``llvm.module.flags`` metadata table, and the value for that entry will
2906be determined by the merge behavior flag, as described below. The only exception
2907is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002908
2909The following behaviors are supported:
2910
2911.. list-table::
2912 :header-rows: 1
2913 :widths: 10 90
2914
2915 * - Value
2916 - Behavior
2917
2918 * - 1
2919 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002920 Emits an error if two values disagree, otherwise the resulting value
2921 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002922
2923 * - 2
2924 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002925 Emits a warning if two values disagree. The result value will be the
2926 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002927
2928 * - 3
2929 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002930 Adds a requirement that another module flag be present and have a
2931 specified value after linking is performed. The value must be a
2932 metadata pair, where the first element of the pair is the ID of the
2933 module flag to be restricted, and the second element of the pair is
2934 the value the module flag should be restricted to. This behavior can
2935 be used to restrict the allowable results (via triggering of an
2936 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002937
2938 * - 4
2939 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002940 Uses the specified value, regardless of the behavior or value of the
2941 other module. If both modules specify **Override**, but the values
2942 differ, an error will be emitted.
2943
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002944 * - 5
2945 - **Append**
2946 Appends the two values, which are required to be metadata nodes.
2947
2948 * - 6
2949 - **AppendUnique**
2950 Appends the two values, which are required to be metadata
2951 nodes. However, duplicate entries in the second list are dropped
2952 during the append operation.
2953
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002954It is an error for a particular unique flag ID to have multiple behaviors,
2955except in the case of **Require** (which adds restrictions on another metadata
2956value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002957
2958An example of module flags:
2959
2960.. code-block:: llvm
2961
2962 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2963 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2964 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2965 !3 = metadata !{ i32 3, metadata !"qux",
2966 metadata !{
2967 metadata !"foo", i32 1
2968 }
2969 }
2970 !llvm.module.flags = !{ !0, !1, !2, !3 }
2971
2972- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2973 if two or more ``!"foo"`` flags are seen is to emit an error if their
2974 values are not equal.
2975
2976- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2977 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002978 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002979
2980- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2981 behavior if two or more ``!"qux"`` flags are seen is to emit a
2982 warning if their values are not equal.
2983
2984- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2985
2986 ::
2987
2988 metadata !{ metadata !"foo", i32 1 }
2989
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002990 The behavior is to emit an error if the ``llvm.module.flags`` does not
2991 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2992 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002993
2994Objective-C Garbage Collection Module Flags Metadata
2995----------------------------------------------------
2996
2997On the Mach-O platform, Objective-C stores metadata about garbage
2998collection in a special section called "image info". The metadata
2999consists of a version number and a bitmask specifying what types of
3000garbage collection are supported (if any) by the file. If two or more
3001modules are linked together their garbage collection metadata needs to
3002be merged rather than appended together.
3003
3004The Objective-C garbage collection module flags metadata consists of the
3005following key-value pairs:
3006
3007.. list-table::
3008 :header-rows: 1
3009 :widths: 30 70
3010
3011 * - Key
3012 - Value
3013
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003014 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003015 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003016
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003017 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003018 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003019 always 0.
3020
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003021 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003022 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003023 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3024 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3025 Objective-C ABI version 2.
3026
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003027 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003028 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003029 not. Valid values are 0, for no garbage collection, and 2, for garbage
3030 collection supported.
3031
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003032 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003033 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003034 If present, its value must be 6. This flag requires that the
3035 ``Objective-C Garbage Collection`` flag have the value 2.
3036
3037Some important flag interactions:
3038
3039- If a module with ``Objective-C Garbage Collection`` set to 0 is
3040 merged with a module with ``Objective-C Garbage Collection`` set to
3041 2, then the resulting module has the
3042 ``Objective-C Garbage Collection`` flag set to 0.
3043- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3044 merged with a module with ``Objective-C GC Only`` set to 6.
3045
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003046Automatic Linker Flags Module Flags Metadata
3047--------------------------------------------
3048
3049Some targets support embedding flags to the linker inside individual object
3050files. Typically this is used in conjunction with language extensions which
3051allow source files to explicitly declare the libraries they depend on, and have
3052these automatically be transmitted to the linker via object files.
3053
3054These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003055using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003056to be ``AppendUnique``, and the value for the key is expected to be a metadata
3057node which should be a list of other metadata nodes, each of which should be a
3058list of metadata strings defining linker options.
3059
3060For example, the following metadata section specifies two separate sets of
3061linker options, presumably to link against ``libz`` and the ``Cocoa``
3062framework::
3063
Michael Liaoa7699082013-03-06 18:24:34 +00003064 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003065 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003066 metadata !{ metadata !"-lz" },
3067 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003068 !llvm.module.flags = !{ !0 }
3069
3070The metadata encoding as lists of lists of options, as opposed to a collapsed
3071list of options, is chosen so that the IR encoding can use multiple option
3072strings to specify e.g., a single library, while still having that specifier be
3073preserved as an atomic element that can be recognized by a target specific
3074assembly writer or object file emitter.
3075
3076Each individual option is required to be either a valid option for the target's
3077linker, or an option that is reserved by the target specific assembly writer or
3078object file emitter. No other aspect of these options is defined by the IR.
3079
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003080.. _intrinsicglobalvariables:
3081
Sean Silvab084af42012-12-07 10:36:55 +00003082Intrinsic Global Variables
3083==========================
3084
3085LLVM has a number of "magic" global variables that contain data that
3086affect code generation or other IR semantics. These are documented here.
3087All globals of this sort should have a section specified as
3088"``llvm.metadata``". This section and all globals that start with
3089"``llvm.``" are reserved for use by LLVM.
3090
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003091.. _gv_llvmused:
3092
Sean Silvab084af42012-12-07 10:36:55 +00003093The '``llvm.used``' Global Variable
3094-----------------------------------
3095
Rafael Espindola74f2e462013-04-22 14:58:02 +00003096The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003097:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003098pointers to named global variables, functions and aliases which may optionally
3099have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003100use of it is:
3101
3102.. code-block:: llvm
3103
3104 @X = global i8 4
3105 @Y = global i32 123
3106
3107 @llvm.used = appending global [2 x i8*] [
3108 i8* @X,
3109 i8* bitcast (i32* @Y to i8*)
3110 ], section "llvm.metadata"
3111
Rafael Espindola74f2e462013-04-22 14:58:02 +00003112If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3113and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003114symbol that it cannot see (which is why they have to be named). For example, if
3115a variable has internal linkage and no references other than that from the
3116``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3117references from inline asms and other things the compiler cannot "see", and
3118corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003119
3120On some targets, the code generator must emit a directive to the
3121assembler or object file to prevent the assembler and linker from
3122molesting the symbol.
3123
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003124.. _gv_llvmcompilerused:
3125
Sean Silvab084af42012-12-07 10:36:55 +00003126The '``llvm.compiler.used``' Global Variable
3127--------------------------------------------
3128
3129The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3130directive, except that it only prevents the compiler from touching the
3131symbol. On targets that support it, this allows an intelligent linker to
3132optimize references to the symbol without being impeded as it would be
3133by ``@llvm.used``.
3134
3135This is a rare construct that should only be used in rare circumstances,
3136and should not be exposed to source languages.
3137
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003138.. _gv_llvmglobalctors:
3139
Sean Silvab084af42012-12-07 10:36:55 +00003140The '``llvm.global_ctors``' Global Variable
3141-------------------------------------------
3142
3143.. code-block:: llvm
3144
3145 %0 = type { i32, void ()* }
3146 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3147
3148The ``@llvm.global_ctors`` array contains a list of constructor
3149functions and associated priorities. The functions referenced by this
3150array will be called in ascending order of priority (i.e. lowest first)
3151when the module is loaded. The order of functions with the same priority
3152is not defined.
3153
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003154.. _llvmglobaldtors:
3155
Sean Silvab084af42012-12-07 10:36:55 +00003156The '``llvm.global_dtors``' Global Variable
3157-------------------------------------------
3158
3159.. code-block:: llvm
3160
3161 %0 = type { i32, void ()* }
3162 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3163
3164The ``@llvm.global_dtors`` array contains a list of destructor functions
3165and associated priorities. The functions referenced by this array will
3166be called in descending order of priority (i.e. highest first) when the
3167module is loaded. The order of functions with the same priority is not
3168defined.
3169
3170Instruction Reference
3171=====================
3172
3173The LLVM instruction set consists of several different classifications
3174of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3175instructions <binaryops>`, :ref:`bitwise binary
3176instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3177:ref:`other instructions <otherops>`.
3178
3179.. _terminators:
3180
3181Terminator Instructions
3182-----------------------
3183
3184As mentioned :ref:`previously <functionstructure>`, every basic block in a
3185program ends with a "Terminator" instruction, which indicates which
3186block should be executed after the current block is finished. These
3187terminator instructions typically yield a '``void``' value: they produce
3188control flow, not values (the one exception being the
3189':ref:`invoke <i_invoke>`' instruction).
3190
3191The terminator instructions are: ':ref:`ret <i_ret>`',
3192':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3193':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3194':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3195
3196.. _i_ret:
3197
3198'``ret``' Instruction
3199^^^^^^^^^^^^^^^^^^^^^
3200
3201Syntax:
3202"""""""
3203
3204::
3205
3206 ret <type> <value> ; Return a value from a non-void function
3207 ret void ; Return from void function
3208
3209Overview:
3210"""""""""
3211
3212The '``ret``' instruction is used to return control flow (and optionally
3213a value) from a function back to the caller.
3214
3215There are two forms of the '``ret``' instruction: one that returns a
3216value and then causes control flow, and one that just causes control
3217flow to occur.
3218
3219Arguments:
3220""""""""""
3221
3222The '``ret``' instruction optionally accepts a single argument, the
3223return value. The type of the return value must be a ':ref:`first
3224class <t_firstclass>`' type.
3225
3226A function is not :ref:`well formed <wellformed>` if it it has a non-void
3227return type and contains a '``ret``' instruction with no return value or
3228a return value with a type that does not match its type, or if it has a
3229void return type and contains a '``ret``' instruction with a return
3230value.
3231
3232Semantics:
3233""""""""""
3234
3235When the '``ret``' instruction is executed, control flow returns back to
3236the calling function's context. If the caller is a
3237":ref:`call <i_call>`" instruction, execution continues at the
3238instruction after the call. If the caller was an
3239":ref:`invoke <i_invoke>`" instruction, execution continues at the
3240beginning of the "normal" destination block. If the instruction returns
3241a value, that value shall set the call or invoke instruction's return
3242value.
3243
3244Example:
3245""""""""
3246
3247.. code-block:: llvm
3248
3249 ret i32 5 ; Return an integer value of 5
3250 ret void ; Return from a void function
3251 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3252
3253.. _i_br:
3254
3255'``br``' Instruction
3256^^^^^^^^^^^^^^^^^^^^
3257
3258Syntax:
3259"""""""
3260
3261::
3262
3263 br i1 <cond>, label <iftrue>, label <iffalse>
3264 br label <dest> ; Unconditional branch
3265
3266Overview:
3267"""""""""
3268
3269The '``br``' instruction is used to cause control flow to transfer to a
3270different basic block in the current function. There are two forms of
3271this instruction, corresponding to a conditional branch and an
3272unconditional branch.
3273
3274Arguments:
3275""""""""""
3276
3277The conditional branch form of the '``br``' instruction takes a single
3278'``i1``' value and two '``label``' values. The unconditional form of the
3279'``br``' instruction takes a single '``label``' value as a target.
3280
3281Semantics:
3282""""""""""
3283
3284Upon execution of a conditional '``br``' instruction, the '``i1``'
3285argument is evaluated. If the value is ``true``, control flows to the
3286'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3287to the '``iffalse``' ``label`` argument.
3288
3289Example:
3290""""""""
3291
3292.. code-block:: llvm
3293
3294 Test:
3295 %cond = icmp eq i32 %a, %b
3296 br i1 %cond, label %IfEqual, label %IfUnequal
3297 IfEqual:
3298 ret i32 1
3299 IfUnequal:
3300 ret i32 0
3301
3302.. _i_switch:
3303
3304'``switch``' Instruction
3305^^^^^^^^^^^^^^^^^^^^^^^^
3306
3307Syntax:
3308"""""""
3309
3310::
3311
3312 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3313
3314Overview:
3315"""""""""
3316
3317The '``switch``' instruction is used to transfer control flow to one of
3318several different places. It is a generalization of the '``br``'
3319instruction, allowing a branch to occur to one of many possible
3320destinations.
3321
3322Arguments:
3323""""""""""
3324
3325The '``switch``' instruction uses three parameters: an integer
3326comparison value '``value``', a default '``label``' destination, and an
3327array of pairs of comparison value constants and '``label``'s. The table
3328is not allowed to contain duplicate constant entries.
3329
3330Semantics:
3331""""""""""
3332
3333The ``switch`` instruction specifies a table of values and destinations.
3334When the '``switch``' instruction is executed, this table is searched
3335for the given value. If the value is found, control flow is transferred
3336to the corresponding destination; otherwise, control flow is transferred
3337to the default destination.
3338
3339Implementation:
3340"""""""""""""""
3341
3342Depending on properties of the target machine and the particular
3343``switch`` instruction, this instruction may be code generated in
3344different ways. For example, it could be generated as a series of
3345chained conditional branches or with a lookup table.
3346
3347Example:
3348""""""""
3349
3350.. code-block:: llvm
3351
3352 ; Emulate a conditional br instruction
3353 %Val = zext i1 %value to i32
3354 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3355
3356 ; Emulate an unconditional br instruction
3357 switch i32 0, label %dest [ ]
3358
3359 ; Implement a jump table:
3360 switch i32 %val, label %otherwise [ i32 0, label %onzero
3361 i32 1, label %onone
3362 i32 2, label %ontwo ]
3363
3364.. _i_indirectbr:
3365
3366'``indirectbr``' Instruction
3367^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3368
3369Syntax:
3370"""""""
3371
3372::
3373
3374 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3375
3376Overview:
3377"""""""""
3378
3379The '``indirectbr``' instruction implements an indirect branch to a
3380label within the current function, whose address is specified by
3381"``address``". Address must be derived from a
3382:ref:`blockaddress <blockaddress>` constant.
3383
3384Arguments:
3385""""""""""
3386
3387The '``address``' argument is the address of the label to jump to. The
3388rest of the arguments indicate the full set of possible destinations
3389that the address may point to. Blocks are allowed to occur multiple
3390times in the destination list, though this isn't particularly useful.
3391
3392This destination list is required so that dataflow analysis has an
3393accurate understanding of the CFG.
3394
3395Semantics:
3396""""""""""
3397
3398Control transfers to the block specified in the address argument. All
3399possible destination blocks must be listed in the label list, otherwise
3400this instruction has undefined behavior. This implies that jumps to
3401labels defined in other functions have undefined behavior as well.
3402
3403Implementation:
3404"""""""""""""""
3405
3406This is typically implemented with a jump through a register.
3407
3408Example:
3409""""""""
3410
3411.. code-block:: llvm
3412
3413 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3414
3415.. _i_invoke:
3416
3417'``invoke``' Instruction
3418^^^^^^^^^^^^^^^^^^^^^^^^
3419
3420Syntax:
3421"""""""
3422
3423::
3424
3425 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3426 to label <normal label> unwind label <exception label>
3427
3428Overview:
3429"""""""""
3430
3431The '``invoke``' instruction causes control to transfer to a specified
3432function, with the possibility of control flow transfer to either the
3433'``normal``' label or the '``exception``' label. If the callee function
3434returns with the "``ret``" instruction, control flow will return to the
3435"normal" label. If the callee (or any indirect callees) returns via the
3436":ref:`resume <i_resume>`" instruction or other exception handling
3437mechanism, control is interrupted and continued at the dynamically
3438nearest "exception" label.
3439
3440The '``exception``' label is a `landing
3441pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3442'``exception``' label is required to have the
3443":ref:`landingpad <i_landingpad>`" instruction, which contains the
3444information about the behavior of the program after unwinding happens,
3445as its first non-PHI instruction. The restrictions on the
3446"``landingpad``" instruction's tightly couples it to the "``invoke``"
3447instruction, so that the important information contained within the
3448"``landingpad``" instruction can't be lost through normal code motion.
3449
3450Arguments:
3451""""""""""
3452
3453This instruction requires several arguments:
3454
3455#. The optional "cconv" marker indicates which :ref:`calling
3456 convention <callingconv>` the call should use. If none is
3457 specified, the call defaults to using C calling conventions.
3458#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3459 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3460 are valid here.
3461#. '``ptr to function ty``': shall be the signature of the pointer to
3462 function value being invoked. In most cases, this is a direct
3463 function invocation, but indirect ``invoke``'s are just as possible,
3464 branching off an arbitrary pointer to function value.
3465#. '``function ptr val``': An LLVM value containing a pointer to a
3466 function to be invoked.
3467#. '``function args``': argument list whose types match the function
3468 signature argument types and parameter attributes. All arguments must
3469 be of :ref:`first class <t_firstclass>` type. If the function signature
3470 indicates the function accepts a variable number of arguments, the
3471 extra arguments can be specified.
3472#. '``normal label``': the label reached when the called function
3473 executes a '``ret``' instruction.
3474#. '``exception label``': the label reached when a callee returns via
3475 the :ref:`resume <i_resume>` instruction or other exception handling
3476 mechanism.
3477#. The optional :ref:`function attributes <fnattrs>` list. Only
3478 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3479 attributes are valid here.
3480
3481Semantics:
3482""""""""""
3483
3484This instruction is designed to operate as a standard '``call``'
3485instruction in most regards. The primary difference is that it
3486establishes an association with a label, which is used by the runtime
3487library to unwind the stack.
3488
3489This instruction is used in languages with destructors to ensure that
3490proper cleanup is performed in the case of either a ``longjmp`` or a
3491thrown exception. Additionally, this is important for implementation of
3492'``catch``' clauses in high-level languages that support them.
3493
3494For the purposes of the SSA form, the definition of the value returned
3495by the '``invoke``' instruction is deemed to occur on the edge from the
3496current block to the "normal" label. If the callee unwinds then no
3497return value is available.
3498
3499Example:
3500""""""""
3501
3502.. code-block:: llvm
3503
3504 %retval = invoke i32 @Test(i32 15) to label %Continue
3505 unwind label %TestCleanup ; {i32}:retval set
3506 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3507 unwind label %TestCleanup ; {i32}:retval set
3508
3509.. _i_resume:
3510
3511'``resume``' Instruction
3512^^^^^^^^^^^^^^^^^^^^^^^^
3513
3514Syntax:
3515"""""""
3516
3517::
3518
3519 resume <type> <value>
3520
3521Overview:
3522"""""""""
3523
3524The '``resume``' instruction is a terminator instruction that has no
3525successors.
3526
3527Arguments:
3528""""""""""
3529
3530The '``resume``' instruction requires one argument, which must have the
3531same type as the result of any '``landingpad``' instruction in the same
3532function.
3533
3534Semantics:
3535""""""""""
3536
3537The '``resume``' instruction resumes propagation of an existing
3538(in-flight) exception whose unwinding was interrupted with a
3539:ref:`landingpad <i_landingpad>` instruction.
3540
3541Example:
3542""""""""
3543
3544.. code-block:: llvm
3545
3546 resume { i8*, i32 } %exn
3547
3548.. _i_unreachable:
3549
3550'``unreachable``' Instruction
3551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3552
3553Syntax:
3554"""""""
3555
3556::
3557
3558 unreachable
3559
3560Overview:
3561"""""""""
3562
3563The '``unreachable``' instruction has no defined semantics. This
3564instruction is used to inform the optimizer that a particular portion of
3565the code is not reachable. This can be used to indicate that the code
3566after a no-return function cannot be reached, and other facts.
3567
3568Semantics:
3569""""""""""
3570
3571The '``unreachable``' instruction has no defined semantics.
3572
3573.. _binaryops:
3574
3575Binary Operations
3576-----------------
3577
3578Binary operators are used to do most of the computation in a program.
3579They require two operands of the same type, execute an operation on
3580them, and produce a single value. The operands might represent multiple
3581data, as is the case with the :ref:`vector <t_vector>` data type. The
3582result value has the same type as its operands.
3583
3584There are several different binary operators:
3585
3586.. _i_add:
3587
3588'``add``' Instruction
3589^^^^^^^^^^^^^^^^^^^^^
3590
3591Syntax:
3592"""""""
3593
3594::
3595
3596 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3597 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3598 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3599 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3600
3601Overview:
3602"""""""""
3603
3604The '``add``' instruction returns the sum of its two operands.
3605
3606Arguments:
3607""""""""""
3608
3609The two arguments to the '``add``' instruction must be
3610:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3611arguments must have identical types.
3612
3613Semantics:
3614""""""""""
3615
3616The value produced is the integer sum of the two operands.
3617
3618If the sum has unsigned overflow, the result returned is the
3619mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3620the result.
3621
3622Because LLVM integers use a two's complement representation, this
3623instruction is appropriate for both signed and unsigned integers.
3624
3625``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3626respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3627result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3628unsigned and/or signed overflow, respectively, occurs.
3629
3630Example:
3631""""""""
3632
3633.. code-block:: llvm
3634
3635 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3636
3637.. _i_fadd:
3638
3639'``fadd``' Instruction
3640^^^^^^^^^^^^^^^^^^^^^^
3641
3642Syntax:
3643"""""""
3644
3645::
3646
3647 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3648
3649Overview:
3650"""""""""
3651
3652The '``fadd``' instruction returns the sum of its two operands.
3653
3654Arguments:
3655""""""""""
3656
3657The two arguments to the '``fadd``' instruction must be :ref:`floating
3658point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3659Both arguments must have identical types.
3660
3661Semantics:
3662""""""""""
3663
3664The value produced is the floating point sum of the two operands. This
3665instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3666which are optimization hints to enable otherwise unsafe floating point
3667optimizations:
3668
3669Example:
3670""""""""
3671
3672.. code-block:: llvm
3673
3674 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3675
3676'``sub``' Instruction
3677^^^^^^^^^^^^^^^^^^^^^
3678
3679Syntax:
3680"""""""
3681
3682::
3683
3684 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3685 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3686 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3687 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3688
3689Overview:
3690"""""""""
3691
3692The '``sub``' instruction returns the difference of its two operands.
3693
3694Note that the '``sub``' instruction is used to represent the '``neg``'
3695instruction present in most other intermediate representations.
3696
3697Arguments:
3698""""""""""
3699
3700The two arguments to the '``sub``' instruction must be
3701:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3702arguments must have identical types.
3703
3704Semantics:
3705""""""""""
3706
3707The value produced is the integer difference of the two operands.
3708
3709If the difference has unsigned overflow, the result returned is the
3710mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3711the result.
3712
3713Because LLVM integers use a two's complement representation, this
3714instruction is appropriate for both signed and unsigned integers.
3715
3716``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3717respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3718result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3719unsigned and/or signed overflow, respectively, occurs.
3720
3721Example:
3722""""""""
3723
3724.. code-block:: llvm
3725
3726 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3727 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3728
3729.. _i_fsub:
3730
3731'``fsub``' Instruction
3732^^^^^^^^^^^^^^^^^^^^^^
3733
3734Syntax:
3735"""""""
3736
3737::
3738
3739 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3740
3741Overview:
3742"""""""""
3743
3744The '``fsub``' instruction returns the difference of its two operands.
3745
3746Note that the '``fsub``' instruction is used to represent the '``fneg``'
3747instruction present in most other intermediate representations.
3748
3749Arguments:
3750""""""""""
3751
3752The two arguments to the '``fsub``' instruction must be :ref:`floating
3753point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3754Both arguments must have identical types.
3755
3756Semantics:
3757""""""""""
3758
3759The value produced is the floating point difference of the two operands.
3760This instruction can also take any number of :ref:`fast-math
3761flags <fastmath>`, which are optimization hints to enable otherwise
3762unsafe floating point optimizations:
3763
3764Example:
3765""""""""
3766
3767.. code-block:: llvm
3768
3769 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3770 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3771
3772'``mul``' Instruction
3773^^^^^^^^^^^^^^^^^^^^^
3774
3775Syntax:
3776"""""""
3777
3778::
3779
3780 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3781 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3782 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3783 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3784
3785Overview:
3786"""""""""
3787
3788The '``mul``' instruction returns the product of its two operands.
3789
3790Arguments:
3791""""""""""
3792
3793The two arguments to the '``mul``' instruction must be
3794:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3795arguments must have identical types.
3796
3797Semantics:
3798""""""""""
3799
3800The value produced is the integer product of the two operands.
3801
3802If the result of the multiplication has unsigned overflow, the result
3803returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3804bit width of the result.
3805
3806Because LLVM integers use a two's complement representation, and the
3807result is the same width as the operands, this instruction returns the
3808correct result for both signed and unsigned integers. If a full product
3809(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3810sign-extended or zero-extended as appropriate to the width of the full
3811product.
3812
3813``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3814respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3815result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3816unsigned and/or signed overflow, respectively, occurs.
3817
3818Example:
3819""""""""
3820
3821.. code-block:: llvm
3822
3823 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3824
3825.. _i_fmul:
3826
3827'``fmul``' Instruction
3828^^^^^^^^^^^^^^^^^^^^^^
3829
3830Syntax:
3831"""""""
3832
3833::
3834
3835 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3836
3837Overview:
3838"""""""""
3839
3840The '``fmul``' instruction returns the product of its two operands.
3841
3842Arguments:
3843""""""""""
3844
3845The two arguments to the '``fmul``' instruction must be :ref:`floating
3846point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3847Both arguments must have identical types.
3848
3849Semantics:
3850""""""""""
3851
3852The value produced is the floating point product of the two operands.
3853This instruction can also take any number of :ref:`fast-math
3854flags <fastmath>`, which are optimization hints to enable otherwise
3855unsafe floating point optimizations:
3856
3857Example:
3858""""""""
3859
3860.. code-block:: llvm
3861
3862 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3863
3864'``udiv``' Instruction
3865^^^^^^^^^^^^^^^^^^^^^^
3866
3867Syntax:
3868"""""""
3869
3870::
3871
3872 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3873 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3874
3875Overview:
3876"""""""""
3877
3878The '``udiv``' instruction returns the quotient of its two operands.
3879
3880Arguments:
3881""""""""""
3882
3883The two arguments to the '``udiv``' instruction must be
3884:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3885arguments must have identical types.
3886
3887Semantics:
3888""""""""""
3889
3890The value produced is the unsigned integer quotient of the two operands.
3891
3892Note that unsigned integer division and signed integer division are
3893distinct operations; for signed integer division, use '``sdiv``'.
3894
3895Division by zero leads to undefined behavior.
3896
3897If the ``exact`` keyword is present, the result value of the ``udiv`` is
3898a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3899such, "((a udiv exact b) mul b) == a").
3900
3901Example:
3902""""""""
3903
3904.. code-block:: llvm
3905
3906 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3907
3908'``sdiv``' Instruction
3909^^^^^^^^^^^^^^^^^^^^^^
3910
3911Syntax:
3912"""""""
3913
3914::
3915
3916 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3917 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3918
3919Overview:
3920"""""""""
3921
3922The '``sdiv``' instruction returns the quotient of its two operands.
3923
3924Arguments:
3925""""""""""
3926
3927The two arguments to the '``sdiv``' instruction must be
3928:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3929arguments must have identical types.
3930
3931Semantics:
3932""""""""""
3933
3934The value produced is the signed integer quotient of the two operands
3935rounded towards zero.
3936
3937Note that signed integer division and unsigned integer division are
3938distinct operations; for unsigned integer division, use '``udiv``'.
3939
3940Division by zero leads to undefined behavior. Overflow also leads to
3941undefined behavior; this is a rare case, but can occur, for example, by
3942doing a 32-bit division of -2147483648 by -1.
3943
3944If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3945a :ref:`poison value <poisonvalues>` if the result would be rounded.
3946
3947Example:
3948""""""""
3949
3950.. code-block:: llvm
3951
3952 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3953
3954.. _i_fdiv:
3955
3956'``fdiv``' Instruction
3957^^^^^^^^^^^^^^^^^^^^^^
3958
3959Syntax:
3960"""""""
3961
3962::
3963
3964 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3965
3966Overview:
3967"""""""""
3968
3969The '``fdiv``' instruction returns the quotient of its two operands.
3970
3971Arguments:
3972""""""""""
3973
3974The two arguments to the '``fdiv``' instruction must be :ref:`floating
3975point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3976Both arguments must have identical types.
3977
3978Semantics:
3979""""""""""
3980
3981The value produced is the floating point quotient of the two operands.
3982This instruction can also take any number of :ref:`fast-math
3983flags <fastmath>`, which are optimization hints to enable otherwise
3984unsafe floating point optimizations:
3985
3986Example:
3987""""""""
3988
3989.. code-block:: llvm
3990
3991 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3992
3993'``urem``' Instruction
3994^^^^^^^^^^^^^^^^^^^^^^
3995
3996Syntax:
3997"""""""
3998
3999::
4000
4001 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4002
4003Overview:
4004"""""""""
4005
4006The '``urem``' instruction returns the remainder from the unsigned
4007division of its two arguments.
4008
4009Arguments:
4010""""""""""
4011
4012The two arguments to the '``urem``' instruction must be
4013:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4014arguments must have identical types.
4015
4016Semantics:
4017""""""""""
4018
4019This instruction returns the unsigned integer *remainder* of a division.
4020This instruction always performs an unsigned division to get the
4021remainder.
4022
4023Note that unsigned integer remainder and signed integer remainder are
4024distinct operations; for signed integer remainder, use '``srem``'.
4025
4026Taking the remainder of a division by zero leads to undefined behavior.
4027
4028Example:
4029""""""""
4030
4031.. code-block:: llvm
4032
4033 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4034
4035'``srem``' Instruction
4036^^^^^^^^^^^^^^^^^^^^^^
4037
4038Syntax:
4039"""""""
4040
4041::
4042
4043 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4044
4045Overview:
4046"""""""""
4047
4048The '``srem``' instruction returns the remainder from the signed
4049division of its two operands. This instruction can also take
4050:ref:`vector <t_vector>` versions of the values in which case the elements
4051must be integers.
4052
4053Arguments:
4054""""""""""
4055
4056The two arguments to the '``srem``' instruction must be
4057:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4058arguments must have identical types.
4059
4060Semantics:
4061""""""""""
4062
4063This instruction returns the *remainder* of a division (where the result
4064is either zero or has the same sign as the dividend, ``op1``), not the
4065*modulo* operator (where the result is either zero or has the same sign
4066as the divisor, ``op2``) of a value. For more information about the
4067difference, see `The Math
4068Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4069table of how this is implemented in various languages, please see
4070`Wikipedia: modulo
4071operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4072
4073Note that signed integer remainder and unsigned integer remainder are
4074distinct operations; for unsigned integer remainder, use '``urem``'.
4075
4076Taking the remainder of a division by zero leads to undefined behavior.
4077Overflow also leads to undefined behavior; this is a rare case, but can
4078occur, for example, by taking the remainder of a 32-bit division of
4079-2147483648 by -1. (The remainder doesn't actually overflow, but this
4080rule lets srem be implemented using instructions that return both the
4081result of the division and the remainder.)
4082
4083Example:
4084""""""""
4085
4086.. code-block:: llvm
4087
4088 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4089
4090.. _i_frem:
4091
4092'``frem``' Instruction
4093^^^^^^^^^^^^^^^^^^^^^^
4094
4095Syntax:
4096"""""""
4097
4098::
4099
4100 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4101
4102Overview:
4103"""""""""
4104
4105The '``frem``' instruction returns the remainder from the division of
4106its two operands.
4107
4108Arguments:
4109""""""""""
4110
4111The two arguments to the '``frem``' instruction must be :ref:`floating
4112point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4113Both arguments must have identical types.
4114
4115Semantics:
4116""""""""""
4117
4118This instruction returns the *remainder* of a division. The remainder
4119has the same sign as the dividend. This instruction can also take any
4120number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4121to enable otherwise unsafe floating point optimizations:
4122
4123Example:
4124""""""""
4125
4126.. code-block:: llvm
4127
4128 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4129
4130.. _bitwiseops:
4131
4132Bitwise Binary Operations
4133-------------------------
4134
4135Bitwise binary operators are used to do various forms of bit-twiddling
4136in a program. They are generally very efficient instructions and can
4137commonly be strength reduced from other instructions. They require two
4138operands of the same type, execute an operation on them, and produce a
4139single value. The resulting value is the same type as its operands.
4140
4141'``shl``' Instruction
4142^^^^^^^^^^^^^^^^^^^^^
4143
4144Syntax:
4145"""""""
4146
4147::
4148
4149 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4150 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4151 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4152 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4153
4154Overview:
4155"""""""""
4156
4157The '``shl``' instruction returns the first operand shifted to the left
4158a specified number of bits.
4159
4160Arguments:
4161""""""""""
4162
4163Both arguments to the '``shl``' instruction must be the same
4164:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4165'``op2``' is treated as an unsigned value.
4166
4167Semantics:
4168""""""""""
4169
4170The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4171where ``n`` is the width of the result. If ``op2`` is (statically or
4172dynamically) negative or equal to or larger than the number of bits in
4173``op1``, the result is undefined. If the arguments are vectors, each
4174vector element of ``op1`` is shifted by the corresponding shift amount
4175in ``op2``.
4176
4177If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4178value <poisonvalues>` if it shifts out any non-zero bits. If the
4179``nsw`` keyword is present, then the shift produces a :ref:`poison
4180value <poisonvalues>` if it shifts out any bits that disagree with the
4181resultant sign bit. As such, NUW/NSW have the same semantics as they
4182would if the shift were expressed as a mul instruction with the same
4183nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4184
4185Example:
4186""""""""
4187
4188.. code-block:: llvm
4189
4190 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4191 <result> = shl i32 4, 2 ; yields {i32}: 16
4192 <result> = shl i32 1, 10 ; yields {i32}: 1024
4193 <result> = shl i32 1, 32 ; undefined
4194 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4195
4196'``lshr``' Instruction
4197^^^^^^^^^^^^^^^^^^^^^^
4198
4199Syntax:
4200"""""""
4201
4202::
4203
4204 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4205 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4206
4207Overview:
4208"""""""""
4209
4210The '``lshr``' instruction (logical shift right) returns the first
4211operand shifted to the right a specified number of bits with zero fill.
4212
4213Arguments:
4214""""""""""
4215
4216Both arguments to the '``lshr``' instruction must be the same
4217:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4218'``op2``' is treated as an unsigned value.
4219
4220Semantics:
4221""""""""""
4222
4223This instruction always performs a logical shift right operation. The
4224most significant bits of the result will be filled with zero bits after
4225the shift. If ``op2`` is (statically or dynamically) equal to or larger
4226than the number of bits in ``op1``, the result is undefined. If the
4227arguments are vectors, each vector element of ``op1`` is shifted by the
4228corresponding shift amount in ``op2``.
4229
4230If the ``exact`` keyword is present, the result value of the ``lshr`` is
4231a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4232non-zero.
4233
4234Example:
4235""""""""
4236
4237.. code-block:: llvm
4238
4239 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4240 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4241 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004242 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004243 <result> = lshr i32 1, 32 ; undefined
4244 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4245
4246'``ashr``' Instruction
4247^^^^^^^^^^^^^^^^^^^^^^
4248
4249Syntax:
4250"""""""
4251
4252::
4253
4254 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4255 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4256
4257Overview:
4258"""""""""
4259
4260The '``ashr``' instruction (arithmetic shift right) returns the first
4261operand shifted to the right a specified number of bits with sign
4262extension.
4263
4264Arguments:
4265""""""""""
4266
4267Both arguments to the '``ashr``' instruction must be the same
4268:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4269'``op2``' is treated as an unsigned value.
4270
4271Semantics:
4272""""""""""
4273
4274This instruction always performs an arithmetic shift right operation,
4275The most significant bits of the result will be filled with the sign bit
4276of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4277than the number of bits in ``op1``, the result is undefined. If the
4278arguments are vectors, each vector element of ``op1`` is shifted by the
4279corresponding shift amount in ``op2``.
4280
4281If the ``exact`` keyword is present, the result value of the ``ashr`` is
4282a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4283non-zero.
4284
4285Example:
4286""""""""
4287
4288.. code-block:: llvm
4289
4290 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4291 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4292 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4293 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4294 <result> = ashr i32 1, 32 ; undefined
4295 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4296
4297'``and``' Instruction
4298^^^^^^^^^^^^^^^^^^^^^
4299
4300Syntax:
4301"""""""
4302
4303::
4304
4305 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4306
4307Overview:
4308"""""""""
4309
4310The '``and``' instruction returns the bitwise logical and of its two
4311operands.
4312
4313Arguments:
4314""""""""""
4315
4316The two arguments to the '``and``' instruction must be
4317:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4318arguments must have identical types.
4319
4320Semantics:
4321""""""""""
4322
4323The truth table used for the '``and``' instruction is:
4324
4325+-----+-----+-----+
4326| In0 | In1 | Out |
4327+-----+-----+-----+
4328| 0 | 0 | 0 |
4329+-----+-----+-----+
4330| 0 | 1 | 0 |
4331+-----+-----+-----+
4332| 1 | 0 | 0 |
4333+-----+-----+-----+
4334| 1 | 1 | 1 |
4335+-----+-----+-----+
4336
4337Example:
4338""""""""
4339
4340.. code-block:: llvm
4341
4342 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4343 <result> = and i32 15, 40 ; yields {i32}:result = 8
4344 <result> = and i32 4, 8 ; yields {i32}:result = 0
4345
4346'``or``' Instruction
4347^^^^^^^^^^^^^^^^^^^^
4348
4349Syntax:
4350"""""""
4351
4352::
4353
4354 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4355
4356Overview:
4357"""""""""
4358
4359The '``or``' instruction returns the bitwise logical inclusive or of its
4360two operands.
4361
4362Arguments:
4363""""""""""
4364
4365The two arguments to the '``or``' instruction must be
4366:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4367arguments must have identical types.
4368
4369Semantics:
4370""""""""""
4371
4372The truth table used for the '``or``' instruction is:
4373
4374+-----+-----+-----+
4375| In0 | In1 | Out |
4376+-----+-----+-----+
4377| 0 | 0 | 0 |
4378+-----+-----+-----+
4379| 0 | 1 | 1 |
4380+-----+-----+-----+
4381| 1 | 0 | 1 |
4382+-----+-----+-----+
4383| 1 | 1 | 1 |
4384+-----+-----+-----+
4385
4386Example:
4387""""""""
4388
4389::
4390
4391 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4392 <result> = or i32 15, 40 ; yields {i32}:result = 47
4393 <result> = or i32 4, 8 ; yields {i32}:result = 12
4394
4395'``xor``' Instruction
4396^^^^^^^^^^^^^^^^^^^^^
4397
4398Syntax:
4399"""""""
4400
4401::
4402
4403 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4404
4405Overview:
4406"""""""""
4407
4408The '``xor``' instruction returns the bitwise logical exclusive or of
4409its two operands. The ``xor`` is used to implement the "one's
4410complement" operation, which is the "~" operator in C.
4411
4412Arguments:
4413""""""""""
4414
4415The two arguments to the '``xor``' instruction must be
4416:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4417arguments must have identical types.
4418
4419Semantics:
4420""""""""""
4421
4422The truth table used for the '``xor``' instruction is:
4423
4424+-----+-----+-----+
4425| In0 | In1 | Out |
4426+-----+-----+-----+
4427| 0 | 0 | 0 |
4428+-----+-----+-----+
4429| 0 | 1 | 1 |
4430+-----+-----+-----+
4431| 1 | 0 | 1 |
4432+-----+-----+-----+
4433| 1 | 1 | 0 |
4434+-----+-----+-----+
4435
4436Example:
4437""""""""
4438
4439.. code-block:: llvm
4440
4441 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4442 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4443 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4444 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4445
4446Vector Operations
4447-----------------
4448
4449LLVM supports several instructions to represent vector operations in a
4450target-independent manner. These instructions cover the element-access
4451and vector-specific operations needed to process vectors effectively.
4452While LLVM does directly support these vector operations, many
4453sophisticated algorithms will want to use target-specific intrinsics to
4454take full advantage of a specific target.
4455
4456.. _i_extractelement:
4457
4458'``extractelement``' Instruction
4459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4460
4461Syntax:
4462"""""""
4463
4464::
4465
4466 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4467
4468Overview:
4469"""""""""
4470
4471The '``extractelement``' instruction extracts a single scalar element
4472from a vector at a specified index.
4473
4474Arguments:
4475""""""""""
4476
4477The first operand of an '``extractelement``' instruction is a value of
4478:ref:`vector <t_vector>` type. The second operand is an index indicating
4479the position from which to extract the element. The index may be a
4480variable.
4481
4482Semantics:
4483""""""""""
4484
4485The result is a scalar of the same type as the element type of ``val``.
4486Its value is the value at position ``idx`` of ``val``. If ``idx``
4487exceeds the length of ``val``, the results are undefined.
4488
4489Example:
4490""""""""
4491
4492.. code-block:: llvm
4493
4494 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4495
4496.. _i_insertelement:
4497
4498'``insertelement``' Instruction
4499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4500
4501Syntax:
4502"""""""
4503
4504::
4505
4506 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4507
4508Overview:
4509"""""""""
4510
4511The '``insertelement``' instruction inserts a scalar element into a
4512vector at a specified index.
4513
4514Arguments:
4515""""""""""
4516
4517The first operand of an '``insertelement``' instruction is a value of
4518:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4519type must equal the element type of the first operand. The third operand
4520is an index indicating the position at which to insert the value. The
4521index may be a variable.
4522
4523Semantics:
4524""""""""""
4525
4526The result is a vector of the same type as ``val``. Its element values
4527are those of ``val`` except at position ``idx``, where it gets the value
4528``elt``. If ``idx`` exceeds the length of ``val``, the results are
4529undefined.
4530
4531Example:
4532""""""""
4533
4534.. code-block:: llvm
4535
4536 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4537
4538.. _i_shufflevector:
4539
4540'``shufflevector``' Instruction
4541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4542
4543Syntax:
4544"""""""
4545
4546::
4547
4548 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4549
4550Overview:
4551"""""""""
4552
4553The '``shufflevector``' instruction constructs a permutation of elements
4554from two input vectors, returning a vector with the same element type as
4555the input and length that is the same as the shuffle mask.
4556
4557Arguments:
4558""""""""""
4559
4560The first two operands of a '``shufflevector``' instruction are vectors
4561with the same type. The third argument is a shuffle mask whose element
4562type is always 'i32'. The result of the instruction is a vector whose
4563length is the same as the shuffle mask and whose element type is the
4564same as the element type of the first two operands.
4565
4566The shuffle mask operand is required to be a constant vector with either
4567constant integer or undef values.
4568
4569Semantics:
4570""""""""""
4571
4572The elements of the two input vectors are numbered from left to right
4573across both of the vectors. The shuffle mask operand specifies, for each
4574element of the result vector, which element of the two input vectors the
4575result element gets. The element selector may be undef (meaning "don't
4576care") and the second operand may be undef if performing a shuffle from
4577only one vector.
4578
4579Example:
4580""""""""
4581
4582.. code-block:: llvm
4583
4584 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4585 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4586 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4587 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4588 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4589 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4590 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4591 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4592
4593Aggregate Operations
4594--------------------
4595
4596LLVM supports several instructions for working with
4597:ref:`aggregate <t_aggregate>` values.
4598
4599.. _i_extractvalue:
4600
4601'``extractvalue``' Instruction
4602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4603
4604Syntax:
4605"""""""
4606
4607::
4608
4609 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4610
4611Overview:
4612"""""""""
4613
4614The '``extractvalue``' instruction extracts the value of a member field
4615from an :ref:`aggregate <t_aggregate>` value.
4616
4617Arguments:
4618""""""""""
4619
4620The first operand of an '``extractvalue``' instruction is a value of
4621:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4622constant indices to specify which value to extract in a similar manner
4623as indices in a '``getelementptr``' instruction.
4624
4625The major differences to ``getelementptr`` indexing are:
4626
4627- Since the value being indexed is not a pointer, the first index is
4628 omitted and assumed to be zero.
4629- At least one index must be specified.
4630- Not only struct indices but also array indices must be in bounds.
4631
4632Semantics:
4633""""""""""
4634
4635The result is the value at the position in the aggregate specified by
4636the index operands.
4637
4638Example:
4639""""""""
4640
4641.. code-block:: llvm
4642
4643 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4644
4645.. _i_insertvalue:
4646
4647'``insertvalue``' Instruction
4648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4649
4650Syntax:
4651"""""""
4652
4653::
4654
4655 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4656
4657Overview:
4658"""""""""
4659
4660The '``insertvalue``' instruction inserts a value into a member field in
4661an :ref:`aggregate <t_aggregate>` value.
4662
4663Arguments:
4664""""""""""
4665
4666The first operand of an '``insertvalue``' instruction is a value of
4667:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4668a first-class value to insert. The following operands are constant
4669indices indicating the position at which to insert the value in a
4670similar manner as indices in a '``extractvalue``' instruction. The value
4671to insert must have the same type as the value identified by the
4672indices.
4673
4674Semantics:
4675""""""""""
4676
4677The result is an aggregate of the same type as ``val``. Its value is
4678that of ``val`` except that the value at the position specified by the
4679indices is that of ``elt``.
4680
4681Example:
4682""""""""
4683
4684.. code-block:: llvm
4685
4686 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4687 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4688 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4689
4690.. _memoryops:
4691
4692Memory Access and Addressing Operations
4693---------------------------------------
4694
4695A key design point of an SSA-based representation is how it represents
4696memory. In LLVM, no memory locations are in SSA form, which makes things
4697very simple. This section describes how to read, write, and allocate
4698memory in LLVM.
4699
4700.. _i_alloca:
4701
4702'``alloca``' Instruction
4703^^^^^^^^^^^^^^^^^^^^^^^^
4704
4705Syntax:
4706"""""""
4707
4708::
4709
David Majnemerc4ab61c2014-03-09 06:41:58 +00004710 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004711
4712Overview:
4713"""""""""
4714
4715The '``alloca``' instruction allocates memory on the stack frame of the
4716currently executing function, to be automatically released when this
4717function returns to its caller. The object is always allocated in the
4718generic address space (address space zero).
4719
4720Arguments:
4721""""""""""
4722
4723The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4724bytes of memory on the runtime stack, returning a pointer of the
4725appropriate type to the program. If "NumElements" is specified, it is
4726the number of elements allocated, otherwise "NumElements" is defaulted
4727to be one. If a constant alignment is specified, the value result of the
4728allocation is guaranteed to be aligned to at least that boundary. If not
4729specified, or if zero, the target can choose to align the allocation on
4730any convenient boundary compatible with the type.
4731
4732'``type``' may be any sized type.
4733
4734Semantics:
4735""""""""""
4736
4737Memory is allocated; a pointer is returned. The operation is undefined
4738if there is insufficient stack space for the allocation. '``alloca``'d
4739memory is automatically released when the function returns. The
4740'``alloca``' instruction is commonly used to represent automatic
4741variables that must have an address available. When the function returns
4742(either with the ``ret`` or ``resume`` instructions), the memory is
4743reclaimed. Allocating zero bytes is legal, but the result is undefined.
4744The order in which memory is allocated (ie., which way the stack grows)
4745is not specified.
4746
4747Example:
4748""""""""
4749
4750.. code-block:: llvm
4751
4752 %ptr = alloca i32 ; yields {i32*}:ptr
4753 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4754 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4755 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4756
4757.. _i_load:
4758
4759'``load``' Instruction
4760^^^^^^^^^^^^^^^^^^^^^^
4761
4762Syntax:
4763"""""""
4764
4765::
4766
4767 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4768 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4769 !<index> = !{ i32 1 }
4770
4771Overview:
4772"""""""""
4773
4774The '``load``' instruction is used to read from memory.
4775
4776Arguments:
4777""""""""""
4778
Eli Bendersky239a78b2013-04-17 20:17:08 +00004779The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004780from which to load. The pointer must point to a :ref:`first
4781class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4782then the optimizer is not allowed to modify the number or order of
4783execution of this ``load`` with other :ref:`volatile
4784operations <volatile>`.
4785
4786If the ``load`` is marked as ``atomic``, it takes an extra
4787:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4788``release`` and ``acq_rel`` orderings are not valid on ``load``
4789instructions. Atomic loads produce :ref:`defined <memmodel>` results
4790when they may see multiple atomic stores. The type of the pointee must
4791be an integer type whose bit width is a power of two greater than or
4792equal to eight and less than or equal to a target-specific size limit.
4793``align`` must be explicitly specified on atomic loads, and the load has
4794undefined behavior if the alignment is not set to a value which is at
4795least the size in bytes of the pointee. ``!nontemporal`` does not have
4796any defined semantics for atomic loads.
4797
4798The optional constant ``align`` argument specifies the alignment of the
4799operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004800or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004801alignment for the target. It is the responsibility of the code emitter
4802to ensure that the alignment information is correct. Overestimating the
4803alignment results in undefined behavior. Underestimating the alignment
4804may produce less efficient code. An alignment of 1 is always safe.
4805
4806The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004807metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004808``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004809metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004810that this load is not expected to be reused in the cache. The code
4811generator may select special instructions to save cache bandwidth, such
4812as the ``MOVNT`` instruction on x86.
4813
4814The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004815metadata name ``<index>`` corresponding to a metadata node with no
4816entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004817instruction tells the optimizer and code generator that this load
4818address points to memory which does not change value during program
4819execution. The optimizer may then move this load around, for example, by
4820hoisting it out of loops using loop invariant code motion.
4821
4822Semantics:
4823""""""""""
4824
4825The location of memory pointed to is loaded. If the value being loaded
4826is of scalar type then the number of bytes read does not exceed the
4827minimum number of bytes needed to hold all bits of the type. For
4828example, loading an ``i24`` reads at most three bytes. When loading a
4829value of a type like ``i20`` with a size that is not an integral number
4830of bytes, the result is undefined if the value was not originally
4831written using a store of the same type.
4832
4833Examples:
4834"""""""""
4835
4836.. code-block:: llvm
4837
4838 %ptr = alloca i32 ; yields {i32*}:ptr
4839 store i32 3, i32* %ptr ; yields {void}
4840 %val = load i32* %ptr ; yields {i32}:val = i32 3
4841
4842.. _i_store:
4843
4844'``store``' Instruction
4845^^^^^^^^^^^^^^^^^^^^^^^
4846
4847Syntax:
4848"""""""
4849
4850::
4851
4852 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4853 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4854
4855Overview:
4856"""""""""
4857
4858The '``store``' instruction is used to write to memory.
4859
4860Arguments:
4861""""""""""
4862
Eli Benderskyca380842013-04-17 17:17:20 +00004863There are two arguments to the ``store`` instruction: a value to store
4864and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004865operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004866the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004867then the optimizer is not allowed to modify the number or order of
4868execution of this ``store`` with other :ref:`volatile
4869operations <volatile>`.
4870
4871If the ``store`` is marked as ``atomic``, it takes an extra
4872:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4873``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4874instructions. Atomic loads produce :ref:`defined <memmodel>` results
4875when they may see multiple atomic stores. The type of the pointee must
4876be an integer type whose bit width is a power of two greater than or
4877equal to eight and less than or equal to a target-specific size limit.
4878``align`` must be explicitly specified on atomic stores, and the store
4879has undefined behavior if the alignment is not set to a value which is
4880at least the size in bytes of the pointee. ``!nontemporal`` does not
4881have any defined semantics for atomic stores.
4882
Eli Benderskyca380842013-04-17 17:17:20 +00004883The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004884operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004885or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004886alignment for the target. It is the responsibility of the code emitter
4887to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004888alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004889alignment may produce less efficient code. An alignment of 1 is always
4890safe.
4891
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004892The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004893name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004894value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004895tells the optimizer and code generator that this load is not expected to
4896be reused in the cache. The code generator may select special
4897instructions to save cache bandwidth, such as the MOVNT instruction on
4898x86.
4899
4900Semantics:
4901""""""""""
4902
Eli Benderskyca380842013-04-17 17:17:20 +00004903The contents of memory are updated to contain ``<value>`` at the
4904location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004905of scalar type then the number of bytes written does not exceed the
4906minimum number of bytes needed to hold all bits of the type. For
4907example, storing an ``i24`` writes at most three bytes. When writing a
4908value of a type like ``i20`` with a size that is not an integral number
4909of bytes, it is unspecified what happens to the extra bits that do not
4910belong to the type, but they will typically be overwritten.
4911
4912Example:
4913""""""""
4914
4915.. code-block:: llvm
4916
4917 %ptr = alloca i32 ; yields {i32*}:ptr
4918 store i32 3, i32* %ptr ; yields {void}
4919 %val = load i32* %ptr ; yields {i32}:val = i32 3
4920
4921.. _i_fence:
4922
4923'``fence``' Instruction
4924^^^^^^^^^^^^^^^^^^^^^^^
4925
4926Syntax:
4927"""""""
4928
4929::
4930
4931 fence [singlethread] <ordering> ; yields {void}
4932
4933Overview:
4934"""""""""
4935
4936The '``fence``' instruction is used to introduce happens-before edges
4937between operations.
4938
4939Arguments:
4940""""""""""
4941
4942'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4943defines what *synchronizes-with* edges they add. They can only be given
4944``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4945
4946Semantics:
4947""""""""""
4948
4949A fence A which has (at least) ``release`` ordering semantics
4950*synchronizes with* a fence B with (at least) ``acquire`` ordering
4951semantics if and only if there exist atomic operations X and Y, both
4952operating on some atomic object M, such that A is sequenced before X, X
4953modifies M (either directly or through some side effect of a sequence
4954headed by X), Y is sequenced before B, and Y observes M. This provides a
4955*happens-before* dependency between A and B. Rather than an explicit
4956``fence``, one (but not both) of the atomic operations X or Y might
4957provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4958still *synchronize-with* the explicit ``fence`` and establish the
4959*happens-before* edge.
4960
4961A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4962``acquire`` and ``release`` semantics specified above, participates in
4963the global program order of other ``seq_cst`` operations and/or fences.
4964
4965The optional ":ref:`singlethread <singlethread>`" argument specifies
4966that the fence only synchronizes with other fences in the same thread.
4967(This is useful for interacting with signal handlers.)
4968
4969Example:
4970""""""""
4971
4972.. code-block:: llvm
4973
4974 fence acquire ; yields {void}
4975 fence singlethread seq_cst ; yields {void}
4976
4977.. _i_cmpxchg:
4978
4979'``cmpxchg``' Instruction
4980^^^^^^^^^^^^^^^^^^^^^^^^^
4981
4982Syntax:
4983"""""""
4984
4985::
4986
Tim Northovere94a5182014-03-11 10:48:52 +00004987 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00004988
4989Overview:
4990"""""""""
4991
4992The '``cmpxchg``' instruction is used to atomically modify memory. It
4993loads a value in memory and compares it to a given value. If they are
4994equal, it stores a new value into the memory.
4995
4996Arguments:
4997""""""""""
4998
4999There are three arguments to the '``cmpxchg``' instruction: an address
5000to operate on, a value to compare to the value currently be at that
5001address, and a new value to place at that address if the compared values
5002are equal. The type of '<cmp>' must be an integer type whose bit width
5003is a power of two greater than or equal to eight and less than or equal
5004to a target-specific size limit. '<cmp>' and '<new>' must have the same
5005type, and the type of '<pointer>' must be a pointer to that type. If the
5006``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5007to modify the number or order of execution of this ``cmpxchg`` with
5008other :ref:`volatile operations <volatile>`.
5009
Tim Northovere94a5182014-03-11 10:48:52 +00005010The success and failure :ref:`ordering <ordering>` arguments specify how this
5011``cmpxchg`` synchronizes with other atomic operations. The both ordering
5012parameters must be at least ``monotonic``, the ordering constraint on failure
5013must be no stronger than that on success, and the failure ordering cannot be
5014either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005015
5016The optional "``singlethread``" argument declares that the ``cmpxchg``
5017is only atomic with respect to code (usually signal handlers) running in
5018the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5019respect to all other code in the system.
5020
5021The pointer passed into cmpxchg must have alignment greater than or
5022equal to the size in memory of the operand.
5023
5024Semantics:
5025""""""""""
5026
5027The contents of memory at the location specified by the '``<pointer>``'
5028operand is read and compared to '``<cmp>``'; if the read value is the
5029equal, '``<new>``' is written. The original value at the location is
5030returned.
5031
Tim Northovere94a5182014-03-11 10:48:52 +00005032A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5033identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5034load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005035
5036Example:
5037""""""""
5038
5039.. code-block:: llvm
5040
5041 entry:
5042 %orig = atomic load i32* %ptr unordered ; yields {i32}
5043 br label %loop
5044
5045 loop:
5046 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5047 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005048 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005049 %success = icmp eq i32 %cmp, %old
5050 br i1 %success, label %done, label %loop
5051
5052 done:
5053 ...
5054
5055.. _i_atomicrmw:
5056
5057'``atomicrmw``' Instruction
5058^^^^^^^^^^^^^^^^^^^^^^^^^^^
5059
5060Syntax:
5061"""""""
5062
5063::
5064
5065 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5066
5067Overview:
5068"""""""""
5069
5070The '``atomicrmw``' instruction is used to atomically modify memory.
5071
5072Arguments:
5073""""""""""
5074
5075There are three arguments to the '``atomicrmw``' instruction: an
5076operation to apply, an address whose value to modify, an argument to the
5077operation. The operation must be one of the following keywords:
5078
5079- xchg
5080- add
5081- sub
5082- and
5083- nand
5084- or
5085- xor
5086- max
5087- min
5088- umax
5089- umin
5090
5091The type of '<value>' must be an integer type whose bit width is a power
5092of two greater than or equal to eight and less than or equal to a
5093target-specific size limit. The type of the '``<pointer>``' operand must
5094be a pointer to that type. If the ``atomicrmw`` is marked as
5095``volatile``, then the optimizer is not allowed to modify the number or
5096order of execution of this ``atomicrmw`` with other :ref:`volatile
5097operations <volatile>`.
5098
5099Semantics:
5100""""""""""
5101
5102The contents of memory at the location specified by the '``<pointer>``'
5103operand are atomically read, modified, and written back. The original
5104value at the location is returned. The modification is specified by the
5105operation argument:
5106
5107- xchg: ``*ptr = val``
5108- add: ``*ptr = *ptr + val``
5109- sub: ``*ptr = *ptr - val``
5110- and: ``*ptr = *ptr & val``
5111- nand: ``*ptr = ~(*ptr & val)``
5112- or: ``*ptr = *ptr | val``
5113- xor: ``*ptr = *ptr ^ val``
5114- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5115- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5116- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5117 comparison)
5118- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5119 comparison)
5120
5121Example:
5122""""""""
5123
5124.. code-block:: llvm
5125
5126 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5127
5128.. _i_getelementptr:
5129
5130'``getelementptr``' Instruction
5131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5132
5133Syntax:
5134"""""""
5135
5136::
5137
5138 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5139 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5140 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5141
5142Overview:
5143"""""""""
5144
5145The '``getelementptr``' instruction is used to get the address of a
5146subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5147address calculation only and does not access memory.
5148
5149Arguments:
5150""""""""""
5151
5152The first argument is always a pointer or a vector of pointers, and
5153forms the basis of the calculation. The remaining arguments are indices
5154that indicate which of the elements of the aggregate object are indexed.
5155The interpretation of each index is dependent on the type being indexed
5156into. The first index always indexes the pointer value given as the
5157first argument, the second index indexes a value of the type pointed to
5158(not necessarily the value directly pointed to, since the first index
5159can be non-zero), etc. The first type indexed into must be a pointer
5160value, subsequent types can be arrays, vectors, and structs. Note that
5161subsequent types being indexed into can never be pointers, since that
5162would require loading the pointer before continuing calculation.
5163
5164The type of each index argument depends on the type it is indexing into.
5165When indexing into a (optionally packed) structure, only ``i32`` integer
5166**constants** are allowed (when using a vector of indices they must all
5167be the **same** ``i32`` integer constant). When indexing into an array,
5168pointer or vector, integers of any width are allowed, and they are not
5169required to be constant. These integers are treated as signed values
5170where relevant.
5171
5172For example, let's consider a C code fragment and how it gets compiled
5173to LLVM:
5174
5175.. code-block:: c
5176
5177 struct RT {
5178 char A;
5179 int B[10][20];
5180 char C;
5181 };
5182 struct ST {
5183 int X;
5184 double Y;
5185 struct RT Z;
5186 };
5187
5188 int *foo(struct ST *s) {
5189 return &s[1].Z.B[5][13];
5190 }
5191
5192The LLVM code generated by Clang is:
5193
5194.. code-block:: llvm
5195
5196 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5197 %struct.ST = type { i32, double, %struct.RT }
5198
5199 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5200 entry:
5201 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5202 ret i32* %arrayidx
5203 }
5204
5205Semantics:
5206""""""""""
5207
5208In the example above, the first index is indexing into the
5209'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5210= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5211indexes into the third element of the structure, yielding a
5212'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5213structure. The third index indexes into the second element of the
5214structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5215dimensions of the array are subscripted into, yielding an '``i32``'
5216type. The '``getelementptr``' instruction returns a pointer to this
5217element, thus computing a value of '``i32*``' type.
5218
5219Note that it is perfectly legal to index partially through a structure,
5220returning a pointer to an inner element. Because of this, the LLVM code
5221for the given testcase is equivalent to:
5222
5223.. code-block:: llvm
5224
5225 define i32* @foo(%struct.ST* %s) {
5226 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5227 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5228 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5229 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5230 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5231 ret i32* %t5
5232 }
5233
5234If the ``inbounds`` keyword is present, the result value of the
5235``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5236pointer is not an *in bounds* address of an allocated object, or if any
5237of the addresses that would be formed by successive addition of the
5238offsets implied by the indices to the base address with infinitely
5239precise signed arithmetic are not an *in bounds* address of that
5240allocated object. The *in bounds* addresses for an allocated object are
5241all the addresses that point into the object, plus the address one byte
5242past the end. In cases where the base is a vector of pointers the
5243``inbounds`` keyword applies to each of the computations element-wise.
5244
5245If the ``inbounds`` keyword is not present, the offsets are added to the
5246base address with silently-wrapping two's complement arithmetic. If the
5247offsets have a different width from the pointer, they are sign-extended
5248or truncated to the width of the pointer. The result value of the
5249``getelementptr`` may be outside the object pointed to by the base
5250pointer. The result value may not necessarily be used to access memory
5251though, even if it happens to point into allocated storage. See the
5252:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5253information.
5254
5255The getelementptr instruction is often confusing. For some more insight
5256into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5257
5258Example:
5259""""""""
5260
5261.. code-block:: llvm
5262
5263 ; yields [12 x i8]*:aptr
5264 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5265 ; yields i8*:vptr
5266 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5267 ; yields i8*:eptr
5268 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5269 ; yields i32*:iptr
5270 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5271
5272In cases where the pointer argument is a vector of pointers, each index
5273must be a vector with the same number of elements. For example:
5274
5275.. code-block:: llvm
5276
5277 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5278
5279Conversion Operations
5280---------------------
5281
5282The instructions in this category are the conversion instructions
5283(casting) which all take a single operand and a type. They perform
5284various bit conversions on the operand.
5285
5286'``trunc .. to``' Instruction
5287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5288
5289Syntax:
5290"""""""
5291
5292::
5293
5294 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5295
5296Overview:
5297"""""""""
5298
5299The '``trunc``' instruction truncates its operand to the type ``ty2``.
5300
5301Arguments:
5302""""""""""
5303
5304The '``trunc``' instruction takes a value to trunc, and a type to trunc
5305it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5306of the same number of integers. The bit size of the ``value`` must be
5307larger than the bit size of the destination type, ``ty2``. Equal sized
5308types are not allowed.
5309
5310Semantics:
5311""""""""""
5312
5313The '``trunc``' instruction truncates the high order bits in ``value``
5314and converts the remaining bits to ``ty2``. Since the source size must
5315be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5316It will always truncate bits.
5317
5318Example:
5319""""""""
5320
5321.. code-block:: llvm
5322
5323 %X = trunc i32 257 to i8 ; yields i8:1
5324 %Y = trunc i32 123 to i1 ; yields i1:true
5325 %Z = trunc i32 122 to i1 ; yields i1:false
5326 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5327
5328'``zext .. to``' Instruction
5329^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5330
5331Syntax:
5332"""""""
5333
5334::
5335
5336 <result> = zext <ty> <value> to <ty2> ; yields ty2
5337
5338Overview:
5339"""""""""
5340
5341The '``zext``' instruction zero extends its operand to type ``ty2``.
5342
5343Arguments:
5344""""""""""
5345
5346The '``zext``' instruction takes a value to cast, and a type to cast it
5347to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5348the same number of integers. The bit size of the ``value`` must be
5349smaller than the bit size of the destination type, ``ty2``.
5350
5351Semantics:
5352""""""""""
5353
5354The ``zext`` fills the high order bits of the ``value`` with zero bits
5355until it reaches the size of the destination type, ``ty2``.
5356
5357When zero extending from i1, the result will always be either 0 or 1.
5358
5359Example:
5360""""""""
5361
5362.. code-block:: llvm
5363
5364 %X = zext i32 257 to i64 ; yields i64:257
5365 %Y = zext i1 true to i32 ; yields i32:1
5366 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5367
5368'``sext .. to``' Instruction
5369^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5370
5371Syntax:
5372"""""""
5373
5374::
5375
5376 <result> = sext <ty> <value> to <ty2> ; yields ty2
5377
5378Overview:
5379"""""""""
5380
5381The '``sext``' sign extends ``value`` to the type ``ty2``.
5382
5383Arguments:
5384""""""""""
5385
5386The '``sext``' instruction takes a value to cast, and a type to cast it
5387to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5388the same number of integers. The bit size of the ``value`` must be
5389smaller than the bit size of the destination type, ``ty2``.
5390
5391Semantics:
5392""""""""""
5393
5394The '``sext``' instruction performs a sign extension by copying the sign
5395bit (highest order bit) of the ``value`` until it reaches the bit size
5396of the type ``ty2``.
5397
5398When sign extending from i1, the extension always results in -1 or 0.
5399
5400Example:
5401""""""""
5402
5403.. code-block:: llvm
5404
5405 %X = sext i8 -1 to i16 ; yields i16 :65535
5406 %Y = sext i1 true to i32 ; yields i32:-1
5407 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5408
5409'``fptrunc .. to``' Instruction
5410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5411
5412Syntax:
5413"""""""
5414
5415::
5416
5417 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5418
5419Overview:
5420"""""""""
5421
5422The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5423
5424Arguments:
5425""""""""""
5426
5427The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5428value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5429The size of ``value`` must be larger than the size of ``ty2``. This
5430implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5431
5432Semantics:
5433""""""""""
5434
5435The '``fptrunc``' instruction truncates a ``value`` from a larger
5436:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5437point <t_floating>` type. If the value cannot fit within the
5438destination type, ``ty2``, then the results are undefined.
5439
5440Example:
5441""""""""
5442
5443.. code-block:: llvm
5444
5445 %X = fptrunc double 123.0 to float ; yields float:123.0
5446 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5447
5448'``fpext .. to``' Instruction
5449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5450
5451Syntax:
5452"""""""
5453
5454::
5455
5456 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5457
5458Overview:
5459"""""""""
5460
5461The '``fpext``' extends a floating point ``value`` to a larger floating
5462point value.
5463
5464Arguments:
5465""""""""""
5466
5467The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5468``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5469to. The source type must be smaller than the destination type.
5470
5471Semantics:
5472""""""""""
5473
5474The '``fpext``' instruction extends the ``value`` from a smaller
5475:ref:`floating point <t_floating>` type to a larger :ref:`floating
5476point <t_floating>` type. The ``fpext`` cannot be used to make a
5477*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5478*no-op cast* for a floating point cast.
5479
5480Example:
5481""""""""
5482
5483.. code-block:: llvm
5484
5485 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5486 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5487
5488'``fptoui .. to``' Instruction
5489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5490
5491Syntax:
5492"""""""
5493
5494::
5495
5496 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5497
5498Overview:
5499"""""""""
5500
5501The '``fptoui``' converts a floating point ``value`` to its unsigned
5502integer equivalent of type ``ty2``.
5503
5504Arguments:
5505""""""""""
5506
5507The '``fptoui``' instruction takes a value to cast, which must be a
5508scalar or vector :ref:`floating point <t_floating>` value, and a type to
5509cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5510``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5511type with the same number of elements as ``ty``
5512
5513Semantics:
5514""""""""""
5515
5516The '``fptoui``' instruction converts its :ref:`floating
5517point <t_floating>` operand into the nearest (rounding towards zero)
5518unsigned integer value. If the value cannot fit in ``ty2``, the results
5519are undefined.
5520
5521Example:
5522""""""""
5523
5524.. code-block:: llvm
5525
5526 %X = fptoui double 123.0 to i32 ; yields i32:123
5527 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5528 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5529
5530'``fptosi .. to``' Instruction
5531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5532
5533Syntax:
5534"""""""
5535
5536::
5537
5538 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5539
5540Overview:
5541"""""""""
5542
5543The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5544``value`` to type ``ty2``.
5545
5546Arguments:
5547""""""""""
5548
5549The '``fptosi``' instruction takes a value to cast, which must be a
5550scalar or vector :ref:`floating point <t_floating>` value, and a type to
5551cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5552``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5553type with the same number of elements as ``ty``
5554
5555Semantics:
5556""""""""""
5557
5558The '``fptosi``' instruction converts its :ref:`floating
5559point <t_floating>` operand into the nearest (rounding towards zero)
5560signed integer value. If the value cannot fit in ``ty2``, the results
5561are undefined.
5562
5563Example:
5564""""""""
5565
5566.. code-block:: llvm
5567
5568 %X = fptosi double -123.0 to i32 ; yields i32:-123
5569 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5570 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5571
5572'``uitofp .. to``' Instruction
5573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5574
5575Syntax:
5576"""""""
5577
5578::
5579
5580 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5581
5582Overview:
5583"""""""""
5584
5585The '``uitofp``' instruction regards ``value`` as an unsigned integer
5586and converts that value to the ``ty2`` type.
5587
5588Arguments:
5589""""""""""
5590
5591The '``uitofp``' instruction takes a value to cast, which must be a
5592scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5593``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5594``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5595type with the same number of elements as ``ty``
5596
5597Semantics:
5598""""""""""
5599
5600The '``uitofp``' instruction interprets its operand as an unsigned
5601integer quantity and converts it to the corresponding floating point
5602value. If the value cannot fit in the floating point value, the results
5603are undefined.
5604
5605Example:
5606""""""""
5607
5608.. code-block:: llvm
5609
5610 %X = uitofp i32 257 to float ; yields float:257.0
5611 %Y = uitofp i8 -1 to double ; yields double:255.0
5612
5613'``sitofp .. to``' Instruction
5614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5615
5616Syntax:
5617"""""""
5618
5619::
5620
5621 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5622
5623Overview:
5624"""""""""
5625
5626The '``sitofp``' instruction regards ``value`` as a signed integer and
5627converts that value to the ``ty2`` type.
5628
5629Arguments:
5630""""""""""
5631
5632The '``sitofp``' instruction takes a value to cast, which must be a
5633scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5634``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5635``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5636type with the same number of elements as ``ty``
5637
5638Semantics:
5639""""""""""
5640
5641The '``sitofp``' instruction interprets its operand as a signed integer
5642quantity and converts it to the corresponding floating point value. If
5643the value cannot fit in the floating point value, the results are
5644undefined.
5645
5646Example:
5647""""""""
5648
5649.. code-block:: llvm
5650
5651 %X = sitofp i32 257 to float ; yields float:257.0
5652 %Y = sitofp i8 -1 to double ; yields double:-1.0
5653
5654.. _i_ptrtoint:
5655
5656'``ptrtoint .. to``' Instruction
5657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5658
5659Syntax:
5660"""""""
5661
5662::
5663
5664 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5665
5666Overview:
5667"""""""""
5668
5669The '``ptrtoint``' instruction converts the pointer or a vector of
5670pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5671
5672Arguments:
5673""""""""""
5674
5675The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5676a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5677type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5678a vector of integers type.
5679
5680Semantics:
5681""""""""""
5682
5683The '``ptrtoint``' instruction converts ``value`` to integer type
5684``ty2`` by interpreting the pointer value as an integer and either
5685truncating or zero extending that value to the size of the integer type.
5686If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5687``value`` is larger than ``ty2`` then a truncation is done. If they are
5688the same size, then nothing is done (*no-op cast*) other than a type
5689change.
5690
5691Example:
5692""""""""
5693
5694.. code-block:: llvm
5695
5696 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5697 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5698 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5699
5700.. _i_inttoptr:
5701
5702'``inttoptr .. to``' Instruction
5703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5704
5705Syntax:
5706"""""""
5707
5708::
5709
5710 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5711
5712Overview:
5713"""""""""
5714
5715The '``inttoptr``' instruction converts an integer ``value`` to a
5716pointer type, ``ty2``.
5717
5718Arguments:
5719""""""""""
5720
5721The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5722cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5723type.
5724
5725Semantics:
5726""""""""""
5727
5728The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5729applying either a zero extension or a truncation depending on the size
5730of the integer ``value``. If ``value`` is larger than the size of a
5731pointer then a truncation is done. If ``value`` is smaller than the size
5732of a pointer then a zero extension is done. If they are the same size,
5733nothing is done (*no-op cast*).
5734
5735Example:
5736""""""""
5737
5738.. code-block:: llvm
5739
5740 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5741 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5742 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5743 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5744
5745.. _i_bitcast:
5746
5747'``bitcast .. to``' Instruction
5748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5749
5750Syntax:
5751"""""""
5752
5753::
5754
5755 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5756
5757Overview:
5758"""""""""
5759
5760The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5761changing any bits.
5762
5763Arguments:
5764""""""""""
5765
5766The '``bitcast``' instruction takes a value to cast, which must be a
5767non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005768also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5769bit sizes of ``value`` and the destination type, ``ty2``, must be
5770identical. If the source type is a pointer, the destination type must
5771also be a pointer of the same size. This instruction supports bitwise
5772conversion of vectors to integers and to vectors of other types (as
5773long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005774
5775Semantics:
5776""""""""""
5777
Matt Arsenault24b49c42013-07-31 17:49:08 +00005778The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5779is always a *no-op cast* because no bits change with this
5780conversion. The conversion is done as if the ``value`` had been stored
5781to memory and read back as type ``ty2``. Pointer (or vector of
5782pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005783pointers) types with the same address space through this instruction.
5784To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5785or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005786
5787Example:
5788""""""""
5789
5790.. code-block:: llvm
5791
5792 %X = bitcast i8 255 to i8 ; yields i8 :-1
5793 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5794 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5795 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5796
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005797.. _i_addrspacecast:
5798
5799'``addrspacecast .. to``' Instruction
5800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5801
5802Syntax:
5803"""""""
5804
5805::
5806
5807 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5808
5809Overview:
5810"""""""""
5811
5812The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5813address space ``n`` to type ``pty2`` in address space ``m``.
5814
5815Arguments:
5816""""""""""
5817
5818The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5819to cast and a pointer type to cast it to, which must have a different
5820address space.
5821
5822Semantics:
5823""""""""""
5824
5825The '``addrspacecast``' instruction converts the pointer value
5826``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005827value modification, depending on the target and the address space
5828pair. Pointer conversions within the same address space must be
5829performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005830conversion is legal then both result and operand refer to the same memory
5831location.
5832
5833Example:
5834""""""""
5835
5836.. code-block:: llvm
5837
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005838 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5839 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5840 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005841
Sean Silvab084af42012-12-07 10:36:55 +00005842.. _otherops:
5843
5844Other Operations
5845----------------
5846
5847The instructions in this category are the "miscellaneous" instructions,
5848which defy better classification.
5849
5850.. _i_icmp:
5851
5852'``icmp``' Instruction
5853^^^^^^^^^^^^^^^^^^^^^^
5854
5855Syntax:
5856"""""""
5857
5858::
5859
5860 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5861
5862Overview:
5863"""""""""
5864
5865The '``icmp``' instruction returns a boolean value or a vector of
5866boolean values based on comparison of its two integer, integer vector,
5867pointer, or pointer vector operands.
5868
5869Arguments:
5870""""""""""
5871
5872The '``icmp``' instruction takes three operands. The first operand is
5873the condition code indicating the kind of comparison to perform. It is
5874not a value, just a keyword. The possible condition code are:
5875
5876#. ``eq``: equal
5877#. ``ne``: not equal
5878#. ``ugt``: unsigned greater than
5879#. ``uge``: unsigned greater or equal
5880#. ``ult``: unsigned less than
5881#. ``ule``: unsigned less or equal
5882#. ``sgt``: signed greater than
5883#. ``sge``: signed greater or equal
5884#. ``slt``: signed less than
5885#. ``sle``: signed less or equal
5886
5887The remaining two arguments must be :ref:`integer <t_integer>` or
5888:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5889must also be identical types.
5890
5891Semantics:
5892""""""""""
5893
5894The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5895code given as ``cond``. The comparison performed always yields either an
5896:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5897
5898#. ``eq``: yields ``true`` if the operands are equal, ``false``
5899 otherwise. No sign interpretation is necessary or performed.
5900#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5901 otherwise. No sign interpretation is necessary or performed.
5902#. ``ugt``: interprets the operands as unsigned values and yields
5903 ``true`` if ``op1`` is greater than ``op2``.
5904#. ``uge``: interprets the operands as unsigned values and yields
5905 ``true`` if ``op1`` is greater than or equal to ``op2``.
5906#. ``ult``: interprets the operands as unsigned values and yields
5907 ``true`` if ``op1`` is less than ``op2``.
5908#. ``ule``: interprets the operands as unsigned values and yields
5909 ``true`` if ``op1`` is less than or equal to ``op2``.
5910#. ``sgt``: interprets the operands as signed values and yields ``true``
5911 if ``op1`` is greater than ``op2``.
5912#. ``sge``: interprets the operands as signed values and yields ``true``
5913 if ``op1`` is greater than or equal to ``op2``.
5914#. ``slt``: interprets the operands as signed values and yields ``true``
5915 if ``op1`` is less than ``op2``.
5916#. ``sle``: interprets the operands as signed values and yields ``true``
5917 if ``op1`` is less than or equal to ``op2``.
5918
5919If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5920are compared as if they were integers.
5921
5922If the operands are integer vectors, then they are compared element by
5923element. The result is an ``i1`` vector with the same number of elements
5924as the values being compared. Otherwise, the result is an ``i1``.
5925
5926Example:
5927""""""""
5928
5929.. code-block:: llvm
5930
5931 <result> = icmp eq i32 4, 5 ; yields: result=false
5932 <result> = icmp ne float* %X, %X ; yields: result=false
5933 <result> = icmp ult i16 4, 5 ; yields: result=true
5934 <result> = icmp sgt i16 4, 5 ; yields: result=false
5935 <result> = icmp ule i16 -4, 5 ; yields: result=false
5936 <result> = icmp sge i16 4, 5 ; yields: result=false
5937
5938Note that the code generator does not yet support vector types with the
5939``icmp`` instruction.
5940
5941.. _i_fcmp:
5942
5943'``fcmp``' Instruction
5944^^^^^^^^^^^^^^^^^^^^^^
5945
5946Syntax:
5947"""""""
5948
5949::
5950
5951 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5952
5953Overview:
5954"""""""""
5955
5956The '``fcmp``' instruction returns a boolean value or vector of boolean
5957values based on comparison of its operands.
5958
5959If the operands are floating point scalars, then the result type is a
5960boolean (:ref:`i1 <t_integer>`).
5961
5962If the operands are floating point vectors, then the result type is a
5963vector of boolean with the same number of elements as the operands being
5964compared.
5965
5966Arguments:
5967""""""""""
5968
5969The '``fcmp``' instruction takes three operands. The first operand is
5970the condition code indicating the kind of comparison to perform. It is
5971not a value, just a keyword. The possible condition code are:
5972
5973#. ``false``: no comparison, always returns false
5974#. ``oeq``: ordered and equal
5975#. ``ogt``: ordered and greater than
5976#. ``oge``: ordered and greater than or equal
5977#. ``olt``: ordered and less than
5978#. ``ole``: ordered and less than or equal
5979#. ``one``: ordered and not equal
5980#. ``ord``: ordered (no nans)
5981#. ``ueq``: unordered or equal
5982#. ``ugt``: unordered or greater than
5983#. ``uge``: unordered or greater than or equal
5984#. ``ult``: unordered or less than
5985#. ``ule``: unordered or less than or equal
5986#. ``une``: unordered or not equal
5987#. ``uno``: unordered (either nans)
5988#. ``true``: no comparison, always returns true
5989
5990*Ordered* means that neither operand is a QNAN while *unordered* means
5991that either operand may be a QNAN.
5992
5993Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5994point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5995type. They must have identical types.
5996
5997Semantics:
5998""""""""""
5999
6000The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6001condition code given as ``cond``. If the operands are vectors, then the
6002vectors are compared element by element. Each comparison performed
6003always yields an :ref:`i1 <t_integer>` result, as follows:
6004
6005#. ``false``: always yields ``false``, regardless of operands.
6006#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6007 is equal to ``op2``.
6008#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6009 is greater than ``op2``.
6010#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6011 is greater than or equal to ``op2``.
6012#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6013 is less than ``op2``.
6014#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6015 is less than or equal to ``op2``.
6016#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6017 is not equal to ``op2``.
6018#. ``ord``: yields ``true`` if both operands are not a QNAN.
6019#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6020 equal to ``op2``.
6021#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6022 greater than ``op2``.
6023#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6024 greater than or equal to ``op2``.
6025#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6026 less than ``op2``.
6027#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6028 less than or equal to ``op2``.
6029#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6030 not equal to ``op2``.
6031#. ``uno``: yields ``true`` if either operand is a QNAN.
6032#. ``true``: always yields ``true``, regardless of operands.
6033
6034Example:
6035""""""""
6036
6037.. code-block:: llvm
6038
6039 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6040 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6041 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6042 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6043
6044Note that the code generator does not yet support vector types with the
6045``fcmp`` instruction.
6046
6047.. _i_phi:
6048
6049'``phi``' Instruction
6050^^^^^^^^^^^^^^^^^^^^^
6051
6052Syntax:
6053"""""""
6054
6055::
6056
6057 <result> = phi <ty> [ <val0>, <label0>], ...
6058
6059Overview:
6060"""""""""
6061
6062The '``phi``' instruction is used to implement the φ node in the SSA
6063graph representing the function.
6064
6065Arguments:
6066""""""""""
6067
6068The type of the incoming values is specified with the first type field.
6069After this, the '``phi``' instruction takes a list of pairs as
6070arguments, with one pair for each predecessor basic block of the current
6071block. Only values of :ref:`first class <t_firstclass>` type may be used as
6072the value arguments to the PHI node. Only labels may be used as the
6073label arguments.
6074
6075There must be no non-phi instructions between the start of a basic block
6076and the PHI instructions: i.e. PHI instructions must be first in a basic
6077block.
6078
6079For the purposes of the SSA form, the use of each incoming value is
6080deemed to occur on the edge from the corresponding predecessor block to
6081the current block (but after any definition of an '``invoke``'
6082instruction's return value on the same edge).
6083
6084Semantics:
6085""""""""""
6086
6087At runtime, the '``phi``' instruction logically takes on the value
6088specified by the pair corresponding to the predecessor basic block that
6089executed just prior to the current block.
6090
6091Example:
6092""""""""
6093
6094.. code-block:: llvm
6095
6096 Loop: ; Infinite loop that counts from 0 on up...
6097 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6098 %nextindvar = add i32 %indvar, 1
6099 br label %Loop
6100
6101.. _i_select:
6102
6103'``select``' Instruction
6104^^^^^^^^^^^^^^^^^^^^^^^^
6105
6106Syntax:
6107"""""""
6108
6109::
6110
6111 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6112
6113 selty is either i1 or {<N x i1>}
6114
6115Overview:
6116"""""""""
6117
6118The '``select``' instruction is used to choose one value based on a
6119condition, without branching.
6120
6121Arguments:
6122""""""""""
6123
6124The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6125values indicating the condition, and two values of the same :ref:`first
6126class <t_firstclass>` type. If the val1/val2 are vectors and the
6127condition is a scalar, then entire vectors are selected, not individual
6128elements.
6129
6130Semantics:
6131""""""""""
6132
6133If the condition is an i1 and it evaluates to 1, the instruction returns
6134the first value argument; otherwise, it returns the second value
6135argument.
6136
6137If the condition is a vector of i1, then the value arguments must be
6138vectors of the same size, and the selection is done element by element.
6139
6140Example:
6141""""""""
6142
6143.. code-block:: llvm
6144
6145 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6146
6147.. _i_call:
6148
6149'``call``' Instruction
6150^^^^^^^^^^^^^^^^^^^^^^
6151
6152Syntax:
6153"""""""
6154
6155::
6156
6157 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6158
6159Overview:
6160"""""""""
6161
6162The '``call``' instruction represents a simple function call.
6163
6164Arguments:
6165""""""""""
6166
6167This instruction requires several arguments:
6168
6169#. The optional "tail" marker indicates that the callee function does
6170 not access any allocas or varargs in the caller. Note that calls may
6171 be marked "tail" even if they do not occur before a
6172 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6173 function call is eligible for tail call optimization, but `might not
6174 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6175 The code generator may optimize calls marked "tail" with either 1)
6176 automatic `sibling call
6177 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6178 callee have matching signatures, or 2) forced tail call optimization
6179 when the following extra requirements are met:
6180
6181 - Caller and callee both have the calling convention ``fastcc``.
6182 - The call is in tail position (ret immediately follows call and ret
6183 uses value of call or is void).
6184 - Option ``-tailcallopt`` is enabled, or
6185 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6186 - `Platform specific constraints are
6187 met. <CodeGenerator.html#tailcallopt>`_
6188
6189#. The optional "cconv" marker indicates which :ref:`calling
6190 convention <callingconv>` the call should use. If none is
6191 specified, the call defaults to using C calling conventions. The
6192 calling convention of the call must match the calling convention of
6193 the target function, or else the behavior is undefined.
6194#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6195 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6196 are valid here.
6197#. '``ty``': the type of the call instruction itself which is also the
6198 type of the return value. Functions that return no value are marked
6199 ``void``.
6200#. '``fnty``': shall be the signature of the pointer to function value
6201 being invoked. The argument types must match the types implied by
6202 this signature. This type can be omitted if the function is not
6203 varargs and if the function type does not return a pointer to a
6204 function.
6205#. '``fnptrval``': An LLVM value containing a pointer to a function to
6206 be invoked. In most cases, this is a direct function invocation, but
6207 indirect ``call``'s are just as possible, calling an arbitrary pointer
6208 to function value.
6209#. '``function args``': argument list whose types match the function
6210 signature argument types and parameter attributes. All arguments must
6211 be of :ref:`first class <t_firstclass>` type. If the function signature
6212 indicates the function accepts a variable number of arguments, the
6213 extra arguments can be specified.
6214#. The optional :ref:`function attributes <fnattrs>` list. Only
6215 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6216 attributes are valid here.
6217
6218Semantics:
6219""""""""""
6220
6221The '``call``' instruction is used to cause control flow to transfer to
6222a specified function, with its incoming arguments bound to the specified
6223values. Upon a '``ret``' instruction in the called function, control
6224flow continues with the instruction after the function call, and the
6225return value of the function is bound to the result argument.
6226
6227Example:
6228""""""""
6229
6230.. code-block:: llvm
6231
6232 %retval = call i32 @test(i32 %argc)
6233 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6234 %X = tail call i32 @foo() ; yields i32
6235 %Y = tail call fastcc i32 @foo() ; yields i32
6236 call void %foo(i8 97 signext)
6237
6238 %struct.A = type { i32, i8 }
6239 %r = call %struct.A @foo() ; yields { 32, i8 }
6240 %gr = extractvalue %struct.A %r, 0 ; yields i32
6241 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6242 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6243 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6244
6245llvm treats calls to some functions with names and arguments that match
6246the standard C99 library as being the C99 library functions, and may
6247perform optimizations or generate code for them under that assumption.
6248This is something we'd like to change in the future to provide better
6249support for freestanding environments and non-C-based languages.
6250
6251.. _i_va_arg:
6252
6253'``va_arg``' Instruction
6254^^^^^^^^^^^^^^^^^^^^^^^^
6255
6256Syntax:
6257"""""""
6258
6259::
6260
6261 <resultval> = va_arg <va_list*> <arglist>, <argty>
6262
6263Overview:
6264"""""""""
6265
6266The '``va_arg``' instruction is used to access arguments passed through
6267the "variable argument" area of a function call. It is used to implement
6268the ``va_arg`` macro in C.
6269
6270Arguments:
6271""""""""""
6272
6273This instruction takes a ``va_list*`` value and the type of the
6274argument. It returns a value of the specified argument type and
6275increments the ``va_list`` to point to the next argument. The actual
6276type of ``va_list`` is target specific.
6277
6278Semantics:
6279""""""""""
6280
6281The '``va_arg``' instruction loads an argument of the specified type
6282from the specified ``va_list`` and causes the ``va_list`` to point to
6283the next argument. For more information, see the variable argument
6284handling :ref:`Intrinsic Functions <int_varargs>`.
6285
6286It is legal for this instruction to be called in a function which does
6287not take a variable number of arguments, for example, the ``vfprintf``
6288function.
6289
6290``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6291function <intrinsics>` because it takes a type as an argument.
6292
6293Example:
6294""""""""
6295
6296See the :ref:`variable argument processing <int_varargs>` section.
6297
6298Note that the code generator does not yet fully support va\_arg on many
6299targets. Also, it does not currently support va\_arg with aggregate
6300types on any target.
6301
6302.. _i_landingpad:
6303
6304'``landingpad``' Instruction
6305^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6306
6307Syntax:
6308"""""""
6309
6310::
6311
6312 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6313 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6314
6315 <clause> := catch <type> <value>
6316 <clause> := filter <array constant type> <array constant>
6317
6318Overview:
6319"""""""""
6320
6321The '``landingpad``' instruction is used by `LLVM's exception handling
6322system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006323is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006324code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6325defines values supplied by the personality function (``pers_fn``) upon
6326re-entry to the function. The ``resultval`` has the type ``resultty``.
6327
6328Arguments:
6329""""""""""
6330
6331This instruction takes a ``pers_fn`` value. This is the personality
6332function associated with the unwinding mechanism. The optional
6333``cleanup`` flag indicates that the landing pad block is a cleanup.
6334
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006335A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006336contains the global variable representing the "type" that may be caught
6337or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6338clause takes an array constant as its argument. Use
6339"``[0 x i8**] undef``" for a filter which cannot throw. The
6340'``landingpad``' instruction must contain *at least* one ``clause`` or
6341the ``cleanup`` flag.
6342
6343Semantics:
6344""""""""""
6345
6346The '``landingpad``' instruction defines the values which are set by the
6347personality function (``pers_fn``) upon re-entry to the function, and
6348therefore the "result type" of the ``landingpad`` instruction. As with
6349calling conventions, how the personality function results are
6350represented in LLVM IR is target specific.
6351
6352The clauses are applied in order from top to bottom. If two
6353``landingpad`` instructions are merged together through inlining, the
6354clauses from the calling function are appended to the list of clauses.
6355When the call stack is being unwound due to an exception being thrown,
6356the exception is compared against each ``clause`` in turn. If it doesn't
6357match any of the clauses, and the ``cleanup`` flag is not set, then
6358unwinding continues further up the call stack.
6359
6360The ``landingpad`` instruction has several restrictions:
6361
6362- A landing pad block is a basic block which is the unwind destination
6363 of an '``invoke``' instruction.
6364- A landing pad block must have a '``landingpad``' instruction as its
6365 first non-PHI instruction.
6366- There can be only one '``landingpad``' instruction within the landing
6367 pad block.
6368- A basic block that is not a landing pad block may not include a
6369 '``landingpad``' instruction.
6370- All '``landingpad``' instructions in a function must have the same
6371 personality function.
6372
6373Example:
6374""""""""
6375
6376.. code-block:: llvm
6377
6378 ;; A landing pad which can catch an integer.
6379 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6380 catch i8** @_ZTIi
6381 ;; A landing pad that is a cleanup.
6382 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6383 cleanup
6384 ;; A landing pad which can catch an integer and can only throw a double.
6385 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6386 catch i8** @_ZTIi
6387 filter [1 x i8**] [@_ZTId]
6388
6389.. _intrinsics:
6390
6391Intrinsic Functions
6392===================
6393
6394LLVM supports the notion of an "intrinsic function". These functions
6395have well known names and semantics and are required to follow certain
6396restrictions. Overall, these intrinsics represent an extension mechanism
6397for the LLVM language that does not require changing all of the
6398transformations in LLVM when adding to the language (or the bitcode
6399reader/writer, the parser, etc...).
6400
6401Intrinsic function names must all start with an "``llvm.``" prefix. This
6402prefix is reserved in LLVM for intrinsic names; thus, function names may
6403not begin with this prefix. Intrinsic functions must always be external
6404functions: you cannot define the body of intrinsic functions. Intrinsic
6405functions may only be used in call or invoke instructions: it is illegal
6406to take the address of an intrinsic function. Additionally, because
6407intrinsic functions are part of the LLVM language, it is required if any
6408are added that they be documented here.
6409
6410Some intrinsic functions can be overloaded, i.e., the intrinsic
6411represents a family of functions that perform the same operation but on
6412different data types. Because LLVM can represent over 8 million
6413different integer types, overloading is used commonly to allow an
6414intrinsic function to operate on any integer type. One or more of the
6415argument types or the result type can be overloaded to accept any
6416integer type. Argument types may also be defined as exactly matching a
6417previous argument's type or the result type. This allows an intrinsic
6418function which accepts multiple arguments, but needs all of them to be
6419of the same type, to only be overloaded with respect to a single
6420argument or the result.
6421
6422Overloaded intrinsics will have the names of its overloaded argument
6423types encoded into its function name, each preceded by a period. Only
6424those types which are overloaded result in a name suffix. Arguments
6425whose type is matched against another type do not. For example, the
6426``llvm.ctpop`` function can take an integer of any width and returns an
6427integer of exactly the same integer width. This leads to a family of
6428functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6429``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6430overloaded, and only one type suffix is required. Because the argument's
6431type is matched against the return type, it does not require its own
6432name suffix.
6433
6434To learn how to add an intrinsic function, please see the `Extending
6435LLVM Guide <ExtendingLLVM.html>`_.
6436
6437.. _int_varargs:
6438
6439Variable Argument Handling Intrinsics
6440-------------------------------------
6441
6442Variable argument support is defined in LLVM with the
6443:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6444functions. These functions are related to the similarly named macros
6445defined in the ``<stdarg.h>`` header file.
6446
6447All of these functions operate on arguments that use a target-specific
6448value type "``va_list``". The LLVM assembly language reference manual
6449does not define what this type is, so all transformations should be
6450prepared to handle these functions regardless of the type used.
6451
6452This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6453variable argument handling intrinsic functions are used.
6454
6455.. code-block:: llvm
6456
6457 define i32 @test(i32 %X, ...) {
6458 ; Initialize variable argument processing
6459 %ap = alloca i8*
6460 %ap2 = bitcast i8** %ap to i8*
6461 call void @llvm.va_start(i8* %ap2)
6462
6463 ; Read a single integer argument
6464 %tmp = va_arg i8** %ap, i32
6465
6466 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6467 %aq = alloca i8*
6468 %aq2 = bitcast i8** %aq to i8*
6469 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6470 call void @llvm.va_end(i8* %aq2)
6471
6472 ; Stop processing of arguments.
6473 call void @llvm.va_end(i8* %ap2)
6474 ret i32 %tmp
6475 }
6476
6477 declare void @llvm.va_start(i8*)
6478 declare void @llvm.va_copy(i8*, i8*)
6479 declare void @llvm.va_end(i8*)
6480
6481.. _int_va_start:
6482
6483'``llvm.va_start``' Intrinsic
6484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6485
6486Syntax:
6487"""""""
6488
6489::
6490
Nick Lewycky04f6de02013-09-11 22:04:52 +00006491 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006492
6493Overview:
6494"""""""""
6495
6496The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6497subsequent use by ``va_arg``.
6498
6499Arguments:
6500""""""""""
6501
6502The argument is a pointer to a ``va_list`` element to initialize.
6503
6504Semantics:
6505""""""""""
6506
6507The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6508available in C. In a target-dependent way, it initializes the
6509``va_list`` element to which the argument points, so that the next call
6510to ``va_arg`` will produce the first variable argument passed to the
6511function. Unlike the C ``va_start`` macro, this intrinsic does not need
6512to know the last argument of the function as the compiler can figure
6513that out.
6514
6515'``llvm.va_end``' Intrinsic
6516^^^^^^^^^^^^^^^^^^^^^^^^^^^
6517
6518Syntax:
6519"""""""
6520
6521::
6522
6523 declare void @llvm.va_end(i8* <arglist>)
6524
6525Overview:
6526"""""""""
6527
6528The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6529initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6530
6531Arguments:
6532""""""""""
6533
6534The argument is a pointer to a ``va_list`` to destroy.
6535
6536Semantics:
6537""""""""""
6538
6539The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6540available in C. In a target-dependent way, it destroys the ``va_list``
6541element to which the argument points. Calls to
6542:ref:`llvm.va_start <int_va_start>` and
6543:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6544``llvm.va_end``.
6545
6546.. _int_va_copy:
6547
6548'``llvm.va_copy``' Intrinsic
6549^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6550
6551Syntax:
6552"""""""
6553
6554::
6555
6556 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6557
6558Overview:
6559"""""""""
6560
6561The '``llvm.va_copy``' intrinsic copies the current argument position
6562from the source argument list to the destination argument list.
6563
6564Arguments:
6565""""""""""
6566
6567The first argument is a pointer to a ``va_list`` element to initialize.
6568The second argument is a pointer to a ``va_list`` element to copy from.
6569
6570Semantics:
6571""""""""""
6572
6573The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6574available in C. In a target-dependent way, it copies the source
6575``va_list`` element into the destination ``va_list`` element. This
6576intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6577arbitrarily complex and require, for example, memory allocation.
6578
6579Accurate Garbage Collection Intrinsics
6580--------------------------------------
6581
6582LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6583(GC) requires the implementation and generation of these intrinsics.
6584These intrinsics allow identification of :ref:`GC roots on the
6585stack <int_gcroot>`, as well as garbage collector implementations that
6586require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6587Front-ends for type-safe garbage collected languages should generate
6588these intrinsics to make use of the LLVM garbage collectors. For more
6589details, see `Accurate Garbage Collection with
6590LLVM <GarbageCollection.html>`_.
6591
6592The garbage collection intrinsics only operate on objects in the generic
6593address space (address space zero).
6594
6595.. _int_gcroot:
6596
6597'``llvm.gcroot``' Intrinsic
6598^^^^^^^^^^^^^^^^^^^^^^^^^^^
6599
6600Syntax:
6601"""""""
6602
6603::
6604
6605 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6606
6607Overview:
6608"""""""""
6609
6610The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6611the code generator, and allows some metadata to be associated with it.
6612
6613Arguments:
6614""""""""""
6615
6616The first argument specifies the address of a stack object that contains
6617the root pointer. The second pointer (which must be either a constant or
6618a global value address) contains the meta-data to be associated with the
6619root.
6620
6621Semantics:
6622""""""""""
6623
6624At runtime, a call to this intrinsic stores a null pointer into the
6625"ptrloc" location. At compile-time, the code generator generates
6626information to allow the runtime to find the pointer at GC safe points.
6627The '``llvm.gcroot``' intrinsic may only be used in a function which
6628:ref:`specifies a GC algorithm <gc>`.
6629
6630.. _int_gcread:
6631
6632'``llvm.gcread``' Intrinsic
6633^^^^^^^^^^^^^^^^^^^^^^^^^^^
6634
6635Syntax:
6636"""""""
6637
6638::
6639
6640 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6641
6642Overview:
6643"""""""""
6644
6645The '``llvm.gcread``' intrinsic identifies reads of references from heap
6646locations, allowing garbage collector implementations that require read
6647barriers.
6648
6649Arguments:
6650""""""""""
6651
6652The second argument is the address to read from, which should be an
6653address allocated from the garbage collector. The first object is a
6654pointer to the start of the referenced object, if needed by the language
6655runtime (otherwise null).
6656
6657Semantics:
6658""""""""""
6659
6660The '``llvm.gcread``' intrinsic has the same semantics as a load
6661instruction, but may be replaced with substantially more complex code by
6662the garbage collector runtime, as needed. The '``llvm.gcread``'
6663intrinsic may only be used in a function which :ref:`specifies a GC
6664algorithm <gc>`.
6665
6666.. _int_gcwrite:
6667
6668'``llvm.gcwrite``' Intrinsic
6669^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6670
6671Syntax:
6672"""""""
6673
6674::
6675
6676 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6677
6678Overview:
6679"""""""""
6680
6681The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6682locations, allowing garbage collector implementations that require write
6683barriers (such as generational or reference counting collectors).
6684
6685Arguments:
6686""""""""""
6687
6688The first argument is the reference to store, the second is the start of
6689the object to store it to, and the third is the address of the field of
6690Obj to store to. If the runtime does not require a pointer to the
6691object, Obj may be null.
6692
6693Semantics:
6694""""""""""
6695
6696The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6697instruction, but may be replaced with substantially more complex code by
6698the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6699intrinsic may only be used in a function which :ref:`specifies a GC
6700algorithm <gc>`.
6701
6702Code Generator Intrinsics
6703-------------------------
6704
6705These intrinsics are provided by LLVM to expose special features that
6706may only be implemented with code generator support.
6707
6708'``llvm.returnaddress``' Intrinsic
6709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6710
6711Syntax:
6712"""""""
6713
6714::
6715
6716 declare i8 *@llvm.returnaddress(i32 <level>)
6717
6718Overview:
6719"""""""""
6720
6721The '``llvm.returnaddress``' intrinsic attempts to compute a
6722target-specific value indicating the return address of the current
6723function or one of its callers.
6724
6725Arguments:
6726""""""""""
6727
6728The argument to this intrinsic indicates which function to return the
6729address for. Zero indicates the calling function, one indicates its
6730caller, etc. The argument is **required** to be a constant integer
6731value.
6732
6733Semantics:
6734""""""""""
6735
6736The '``llvm.returnaddress``' intrinsic either returns a pointer
6737indicating the return address of the specified call frame, or zero if it
6738cannot be identified. The value returned by this intrinsic is likely to
6739be incorrect or 0 for arguments other than zero, so it should only be
6740used for debugging purposes.
6741
6742Note that calling this intrinsic does not prevent function inlining or
6743other aggressive transformations, so the value returned may not be that
6744of the obvious source-language caller.
6745
6746'``llvm.frameaddress``' Intrinsic
6747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6748
6749Syntax:
6750"""""""
6751
6752::
6753
6754 declare i8* @llvm.frameaddress(i32 <level>)
6755
6756Overview:
6757"""""""""
6758
6759The '``llvm.frameaddress``' intrinsic attempts to return the
6760target-specific frame pointer value for the specified stack frame.
6761
6762Arguments:
6763""""""""""
6764
6765The argument to this intrinsic indicates which function to return the
6766frame pointer for. Zero indicates the calling function, one indicates
6767its caller, etc. The argument is **required** to be a constant integer
6768value.
6769
6770Semantics:
6771""""""""""
6772
6773The '``llvm.frameaddress``' intrinsic either returns a pointer
6774indicating the frame address of the specified call frame, or zero if it
6775cannot be identified. The value returned by this intrinsic is likely to
6776be incorrect or 0 for arguments other than zero, so it should only be
6777used for debugging purposes.
6778
6779Note that calling this intrinsic does not prevent function inlining or
6780other aggressive transformations, so the value returned may not be that
6781of the obvious source-language caller.
6782
6783.. _int_stacksave:
6784
6785'``llvm.stacksave``' Intrinsic
6786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6787
6788Syntax:
6789"""""""
6790
6791::
6792
6793 declare i8* @llvm.stacksave()
6794
6795Overview:
6796"""""""""
6797
6798The '``llvm.stacksave``' intrinsic is used to remember the current state
6799of the function stack, for use with
6800:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6801implementing language features like scoped automatic variable sized
6802arrays in C99.
6803
6804Semantics:
6805""""""""""
6806
6807This intrinsic returns a opaque pointer value that can be passed to
6808:ref:`llvm.stackrestore <int_stackrestore>`. When an
6809``llvm.stackrestore`` intrinsic is executed with a value saved from
6810``llvm.stacksave``, it effectively restores the state of the stack to
6811the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6812practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6813were allocated after the ``llvm.stacksave`` was executed.
6814
6815.. _int_stackrestore:
6816
6817'``llvm.stackrestore``' Intrinsic
6818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6819
6820Syntax:
6821"""""""
6822
6823::
6824
6825 declare void @llvm.stackrestore(i8* %ptr)
6826
6827Overview:
6828"""""""""
6829
6830The '``llvm.stackrestore``' intrinsic is used to restore the state of
6831the function stack to the state it was in when the corresponding
6832:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6833useful for implementing language features like scoped automatic variable
6834sized arrays in C99.
6835
6836Semantics:
6837""""""""""
6838
6839See the description for :ref:`llvm.stacksave <int_stacksave>`.
6840
6841'``llvm.prefetch``' Intrinsic
6842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6843
6844Syntax:
6845"""""""
6846
6847::
6848
6849 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6850
6851Overview:
6852"""""""""
6853
6854The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6855insert a prefetch instruction if supported; otherwise, it is a noop.
6856Prefetches have no effect on the behavior of the program but can change
6857its performance characteristics.
6858
6859Arguments:
6860""""""""""
6861
6862``address`` is the address to be prefetched, ``rw`` is the specifier
6863determining if the fetch should be for a read (0) or write (1), and
6864``locality`` is a temporal locality specifier ranging from (0) - no
6865locality, to (3) - extremely local keep in cache. The ``cache type``
6866specifies whether the prefetch is performed on the data (1) or
6867instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6868arguments must be constant integers.
6869
6870Semantics:
6871""""""""""
6872
6873This intrinsic does not modify the behavior of the program. In
6874particular, prefetches cannot trap and do not produce a value. On
6875targets that support this intrinsic, the prefetch can provide hints to
6876the processor cache for better performance.
6877
6878'``llvm.pcmarker``' Intrinsic
6879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6880
6881Syntax:
6882"""""""
6883
6884::
6885
6886 declare void @llvm.pcmarker(i32 <id>)
6887
6888Overview:
6889"""""""""
6890
6891The '``llvm.pcmarker``' intrinsic is a method to export a Program
6892Counter (PC) in a region of code to simulators and other tools. The
6893method is target specific, but it is expected that the marker will use
6894exported symbols to transmit the PC of the marker. The marker makes no
6895guarantees that it will remain with any specific instruction after
6896optimizations. It is possible that the presence of a marker will inhibit
6897optimizations. The intended use is to be inserted after optimizations to
6898allow correlations of simulation runs.
6899
6900Arguments:
6901""""""""""
6902
6903``id`` is a numerical id identifying the marker.
6904
6905Semantics:
6906""""""""""
6907
6908This intrinsic does not modify the behavior of the program. Backends
6909that do not support this intrinsic may ignore it.
6910
6911'``llvm.readcyclecounter``' Intrinsic
6912^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6913
6914Syntax:
6915"""""""
6916
6917::
6918
6919 declare i64 @llvm.readcyclecounter()
6920
6921Overview:
6922"""""""""
6923
6924The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6925counter register (or similar low latency, high accuracy clocks) on those
6926targets that support it. On X86, it should map to RDTSC. On Alpha, it
6927should map to RPCC. As the backing counters overflow quickly (on the
6928order of 9 seconds on alpha), this should only be used for small
6929timings.
6930
6931Semantics:
6932""""""""""
6933
6934When directly supported, reading the cycle counter should not modify any
6935memory. Implementations are allowed to either return a application
6936specific value or a system wide value. On backends without support, this
6937is lowered to a constant 0.
6938
Tim Northoverbc933082013-05-23 19:11:20 +00006939Note that runtime support may be conditional on the privilege-level code is
6940running at and the host platform.
6941
Sean Silvab084af42012-12-07 10:36:55 +00006942Standard C Library Intrinsics
6943-----------------------------
6944
6945LLVM provides intrinsics for a few important standard C library
6946functions. These intrinsics allow source-language front-ends to pass
6947information about the alignment of the pointer arguments to the code
6948generator, providing opportunity for more efficient code generation.
6949
6950.. _int_memcpy:
6951
6952'``llvm.memcpy``' Intrinsic
6953^^^^^^^^^^^^^^^^^^^^^^^^^^^
6954
6955Syntax:
6956"""""""
6957
6958This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6959integer bit width and for different address spaces. Not all targets
6960support all bit widths however.
6961
6962::
6963
6964 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6965 i32 <len>, i32 <align>, i1 <isvolatile>)
6966 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6967 i64 <len>, i32 <align>, i1 <isvolatile>)
6968
6969Overview:
6970"""""""""
6971
6972The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6973source location to the destination location.
6974
6975Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6976intrinsics do not return a value, takes extra alignment/isvolatile
6977arguments and the pointers can be in specified address spaces.
6978
6979Arguments:
6980""""""""""
6981
6982The first argument is a pointer to the destination, the second is a
6983pointer to the source. The third argument is an integer argument
6984specifying the number of bytes to copy, the fourth argument is the
6985alignment of the source and destination locations, and the fifth is a
6986boolean indicating a volatile access.
6987
6988If the call to this intrinsic has an alignment value that is not 0 or 1,
6989then the caller guarantees that both the source and destination pointers
6990are aligned to that boundary.
6991
6992If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6993a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6994very cleanly specified and it is unwise to depend on it.
6995
6996Semantics:
6997""""""""""
6998
6999The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7000source location to the destination location, which are not allowed to
7001overlap. It copies "len" bytes of memory over. If the argument is known
7002to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007003argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007004
7005'``llvm.memmove``' Intrinsic
7006^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7007
7008Syntax:
7009"""""""
7010
7011This is an overloaded intrinsic. You can use llvm.memmove on any integer
7012bit width and for different address space. Not all targets support all
7013bit widths however.
7014
7015::
7016
7017 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7018 i32 <len>, i32 <align>, i1 <isvolatile>)
7019 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7020 i64 <len>, i32 <align>, i1 <isvolatile>)
7021
7022Overview:
7023"""""""""
7024
7025The '``llvm.memmove.*``' intrinsics move a block of memory from the
7026source location to the destination location. It is similar to the
7027'``llvm.memcpy``' intrinsic but allows the two memory locations to
7028overlap.
7029
7030Note that, unlike the standard libc function, the ``llvm.memmove.*``
7031intrinsics do not return a value, takes extra alignment/isvolatile
7032arguments and the pointers can be in specified address spaces.
7033
7034Arguments:
7035""""""""""
7036
7037The first argument is a pointer to the destination, the second is a
7038pointer to the source. The third argument is an integer argument
7039specifying the number of bytes to copy, the fourth argument is the
7040alignment of the source and destination locations, and the fifth is a
7041boolean indicating a volatile access.
7042
7043If the call to this intrinsic has an alignment value that is not 0 or 1,
7044then the caller guarantees that the source and destination pointers are
7045aligned to that boundary.
7046
7047If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7048is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7049not very cleanly specified and it is unwise to depend on it.
7050
7051Semantics:
7052""""""""""
7053
7054The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7055source location to the destination location, which may overlap. It
7056copies "len" bytes of memory over. If the argument is known to be
7057aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007058otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007059
7060'``llvm.memset.*``' Intrinsics
7061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7062
7063Syntax:
7064"""""""
7065
7066This is an overloaded intrinsic. You can use llvm.memset on any integer
7067bit width and for different address spaces. However, not all targets
7068support all bit widths.
7069
7070::
7071
7072 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7073 i32 <len>, i32 <align>, i1 <isvolatile>)
7074 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7075 i64 <len>, i32 <align>, i1 <isvolatile>)
7076
7077Overview:
7078"""""""""
7079
7080The '``llvm.memset.*``' intrinsics fill a block of memory with a
7081particular byte value.
7082
7083Note that, unlike the standard libc function, the ``llvm.memset``
7084intrinsic does not return a value and takes extra alignment/volatile
7085arguments. Also, the destination can be in an arbitrary address space.
7086
7087Arguments:
7088""""""""""
7089
7090The first argument is a pointer to the destination to fill, the second
7091is the byte value with which to fill it, the third argument is an
7092integer argument specifying the number of bytes to fill, and the fourth
7093argument is the known alignment of the destination location.
7094
7095If the call to this intrinsic has an alignment value that is not 0 or 1,
7096then the caller guarantees that the destination pointer is aligned to
7097that boundary.
7098
7099If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7100a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7101very cleanly specified and it is unwise to depend on it.
7102
7103Semantics:
7104""""""""""
7105
7106The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7107at the destination location. If the argument is known to be aligned to
7108some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007109it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007110
7111'``llvm.sqrt.*``' Intrinsic
7112^^^^^^^^^^^^^^^^^^^^^^^^^^^
7113
7114Syntax:
7115"""""""
7116
7117This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7118floating point or vector of floating point type. Not all targets support
7119all types however.
7120
7121::
7122
7123 declare float @llvm.sqrt.f32(float %Val)
7124 declare double @llvm.sqrt.f64(double %Val)
7125 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7126 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7127 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7128
7129Overview:
7130"""""""""
7131
7132The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7133returning the same value as the libm '``sqrt``' functions would. Unlike
7134``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7135negative numbers other than -0.0 (which allows for better optimization,
7136because there is no need to worry about errno being set).
7137``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7138
7139Arguments:
7140""""""""""
7141
7142The argument and return value are floating point numbers of the same
7143type.
7144
7145Semantics:
7146""""""""""
7147
7148This function returns the sqrt of the specified operand if it is a
7149nonnegative floating point number.
7150
7151'``llvm.powi.*``' Intrinsic
7152^^^^^^^^^^^^^^^^^^^^^^^^^^^
7153
7154Syntax:
7155"""""""
7156
7157This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7158floating point or vector of floating point type. Not all targets support
7159all types however.
7160
7161::
7162
7163 declare float @llvm.powi.f32(float %Val, i32 %power)
7164 declare double @llvm.powi.f64(double %Val, i32 %power)
7165 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7166 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7167 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7168
7169Overview:
7170"""""""""
7171
7172The '``llvm.powi.*``' intrinsics return the first operand raised to the
7173specified (positive or negative) power. The order of evaluation of
7174multiplications is not defined. When a vector of floating point type is
7175used, the second argument remains a scalar integer value.
7176
7177Arguments:
7178""""""""""
7179
7180The second argument is an integer power, and the first is a value to
7181raise to that power.
7182
7183Semantics:
7184""""""""""
7185
7186This function returns the first value raised to the second power with an
7187unspecified sequence of rounding operations.
7188
7189'``llvm.sin.*``' Intrinsic
7190^^^^^^^^^^^^^^^^^^^^^^^^^^
7191
7192Syntax:
7193"""""""
7194
7195This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7196floating point or vector of floating point type. Not all targets support
7197all types however.
7198
7199::
7200
7201 declare float @llvm.sin.f32(float %Val)
7202 declare double @llvm.sin.f64(double %Val)
7203 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7204 declare fp128 @llvm.sin.f128(fp128 %Val)
7205 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7206
7207Overview:
7208"""""""""
7209
7210The '``llvm.sin.*``' intrinsics return the sine of the operand.
7211
7212Arguments:
7213""""""""""
7214
7215The argument and return value are floating point numbers of the same
7216type.
7217
7218Semantics:
7219""""""""""
7220
7221This function returns the sine of the specified operand, returning the
7222same values as the libm ``sin`` functions would, and handles error
7223conditions in the same way.
7224
7225'``llvm.cos.*``' Intrinsic
7226^^^^^^^^^^^^^^^^^^^^^^^^^^
7227
7228Syntax:
7229"""""""
7230
7231This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7232floating point or vector of floating point type. Not all targets support
7233all types however.
7234
7235::
7236
7237 declare float @llvm.cos.f32(float %Val)
7238 declare double @llvm.cos.f64(double %Val)
7239 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7240 declare fp128 @llvm.cos.f128(fp128 %Val)
7241 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7242
7243Overview:
7244"""""""""
7245
7246The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7247
7248Arguments:
7249""""""""""
7250
7251The argument and return value are floating point numbers of the same
7252type.
7253
7254Semantics:
7255""""""""""
7256
7257This function returns the cosine of the specified operand, returning the
7258same values as the libm ``cos`` functions would, and handles error
7259conditions in the same way.
7260
7261'``llvm.pow.*``' Intrinsic
7262^^^^^^^^^^^^^^^^^^^^^^^^^^
7263
7264Syntax:
7265"""""""
7266
7267This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7268floating point or vector of floating point type. Not all targets support
7269all types however.
7270
7271::
7272
7273 declare float @llvm.pow.f32(float %Val, float %Power)
7274 declare double @llvm.pow.f64(double %Val, double %Power)
7275 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7276 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7277 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7278
7279Overview:
7280"""""""""
7281
7282The '``llvm.pow.*``' intrinsics return the first operand raised to the
7283specified (positive or negative) power.
7284
7285Arguments:
7286""""""""""
7287
7288The second argument is a floating point power, and the first is a value
7289to raise to that power.
7290
7291Semantics:
7292""""""""""
7293
7294This function returns the first value raised to the second power,
7295returning the same values as the libm ``pow`` functions would, and
7296handles error conditions in the same way.
7297
7298'``llvm.exp.*``' Intrinsic
7299^^^^^^^^^^^^^^^^^^^^^^^^^^
7300
7301Syntax:
7302"""""""
7303
7304This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7305floating point or vector of floating point type. Not all targets support
7306all types however.
7307
7308::
7309
7310 declare float @llvm.exp.f32(float %Val)
7311 declare double @llvm.exp.f64(double %Val)
7312 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7313 declare fp128 @llvm.exp.f128(fp128 %Val)
7314 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7315
7316Overview:
7317"""""""""
7318
7319The '``llvm.exp.*``' intrinsics perform the exp function.
7320
7321Arguments:
7322""""""""""
7323
7324The argument and return value are floating point numbers of the same
7325type.
7326
7327Semantics:
7328""""""""""
7329
7330This function returns the same values as the libm ``exp`` functions
7331would, and handles error conditions in the same way.
7332
7333'``llvm.exp2.*``' Intrinsic
7334^^^^^^^^^^^^^^^^^^^^^^^^^^^
7335
7336Syntax:
7337"""""""
7338
7339This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7340floating point or vector of floating point type. Not all targets support
7341all types however.
7342
7343::
7344
7345 declare float @llvm.exp2.f32(float %Val)
7346 declare double @llvm.exp2.f64(double %Val)
7347 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7348 declare fp128 @llvm.exp2.f128(fp128 %Val)
7349 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7350
7351Overview:
7352"""""""""
7353
7354The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7355
7356Arguments:
7357""""""""""
7358
7359The argument and return value are floating point numbers of the same
7360type.
7361
7362Semantics:
7363""""""""""
7364
7365This function returns the same values as the libm ``exp2`` functions
7366would, and handles error conditions in the same way.
7367
7368'``llvm.log.*``' Intrinsic
7369^^^^^^^^^^^^^^^^^^^^^^^^^^
7370
7371Syntax:
7372"""""""
7373
7374This is an overloaded intrinsic. You can use ``llvm.log`` on any
7375floating point or vector of floating point type. Not all targets support
7376all types however.
7377
7378::
7379
7380 declare float @llvm.log.f32(float %Val)
7381 declare double @llvm.log.f64(double %Val)
7382 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7383 declare fp128 @llvm.log.f128(fp128 %Val)
7384 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7385
7386Overview:
7387"""""""""
7388
7389The '``llvm.log.*``' intrinsics perform the log function.
7390
7391Arguments:
7392""""""""""
7393
7394The argument and return value are floating point numbers of the same
7395type.
7396
7397Semantics:
7398""""""""""
7399
7400This function returns the same values as the libm ``log`` functions
7401would, and handles error conditions in the same way.
7402
7403'``llvm.log10.*``' Intrinsic
7404^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7405
7406Syntax:
7407"""""""
7408
7409This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7410floating point or vector of floating point type. Not all targets support
7411all types however.
7412
7413::
7414
7415 declare float @llvm.log10.f32(float %Val)
7416 declare double @llvm.log10.f64(double %Val)
7417 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7418 declare fp128 @llvm.log10.f128(fp128 %Val)
7419 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7420
7421Overview:
7422"""""""""
7423
7424The '``llvm.log10.*``' intrinsics perform the log10 function.
7425
7426Arguments:
7427""""""""""
7428
7429The argument and return value are floating point numbers of the same
7430type.
7431
7432Semantics:
7433""""""""""
7434
7435This function returns the same values as the libm ``log10`` functions
7436would, and handles error conditions in the same way.
7437
7438'``llvm.log2.*``' Intrinsic
7439^^^^^^^^^^^^^^^^^^^^^^^^^^^
7440
7441Syntax:
7442"""""""
7443
7444This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7445floating point or vector of floating point type. Not all targets support
7446all types however.
7447
7448::
7449
7450 declare float @llvm.log2.f32(float %Val)
7451 declare double @llvm.log2.f64(double %Val)
7452 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7453 declare fp128 @llvm.log2.f128(fp128 %Val)
7454 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7455
7456Overview:
7457"""""""""
7458
7459The '``llvm.log2.*``' intrinsics perform the log2 function.
7460
7461Arguments:
7462""""""""""
7463
7464The argument and return value are floating point numbers of the same
7465type.
7466
7467Semantics:
7468""""""""""
7469
7470This function returns the same values as the libm ``log2`` functions
7471would, and handles error conditions in the same way.
7472
7473'``llvm.fma.*``' Intrinsic
7474^^^^^^^^^^^^^^^^^^^^^^^^^^
7475
7476Syntax:
7477"""""""
7478
7479This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7480floating point or vector of floating point type. Not all targets support
7481all types however.
7482
7483::
7484
7485 declare float @llvm.fma.f32(float %a, float %b, float %c)
7486 declare double @llvm.fma.f64(double %a, double %b, double %c)
7487 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7488 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7489 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7490
7491Overview:
7492"""""""""
7493
7494The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7495operation.
7496
7497Arguments:
7498""""""""""
7499
7500The argument and return value are floating point numbers of the same
7501type.
7502
7503Semantics:
7504""""""""""
7505
7506This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007507would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007508
7509'``llvm.fabs.*``' Intrinsic
7510^^^^^^^^^^^^^^^^^^^^^^^^^^^
7511
7512Syntax:
7513"""""""
7514
7515This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7516floating point or vector of floating point type. Not all targets support
7517all types however.
7518
7519::
7520
7521 declare float @llvm.fabs.f32(float %Val)
7522 declare double @llvm.fabs.f64(double %Val)
7523 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7524 declare fp128 @llvm.fabs.f128(fp128 %Val)
7525 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7526
7527Overview:
7528"""""""""
7529
7530The '``llvm.fabs.*``' intrinsics return the absolute value of the
7531operand.
7532
7533Arguments:
7534""""""""""
7535
7536The argument and return value are floating point numbers of the same
7537type.
7538
7539Semantics:
7540""""""""""
7541
7542This function returns the same values as the libm ``fabs`` functions
7543would, and handles error conditions in the same way.
7544
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007545'``llvm.copysign.*``' Intrinsic
7546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7547
7548Syntax:
7549"""""""
7550
7551This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7552floating point or vector of floating point type. Not all targets support
7553all types however.
7554
7555::
7556
7557 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7558 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7559 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7560 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7561 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7562
7563Overview:
7564"""""""""
7565
7566The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7567first operand and the sign of the second operand.
7568
7569Arguments:
7570""""""""""
7571
7572The arguments and return value are floating point numbers of the same
7573type.
7574
7575Semantics:
7576""""""""""
7577
7578This function returns the same values as the libm ``copysign``
7579functions would, and handles error conditions in the same way.
7580
Sean Silvab084af42012-12-07 10:36:55 +00007581'``llvm.floor.*``' Intrinsic
7582^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7583
7584Syntax:
7585"""""""
7586
7587This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7588floating point or vector of floating point type. Not all targets support
7589all types however.
7590
7591::
7592
7593 declare float @llvm.floor.f32(float %Val)
7594 declare double @llvm.floor.f64(double %Val)
7595 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7596 declare fp128 @llvm.floor.f128(fp128 %Val)
7597 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7598
7599Overview:
7600"""""""""
7601
7602The '``llvm.floor.*``' intrinsics return the floor of the operand.
7603
7604Arguments:
7605""""""""""
7606
7607The argument and return value are floating point numbers of the same
7608type.
7609
7610Semantics:
7611""""""""""
7612
7613This function returns the same values as the libm ``floor`` functions
7614would, and handles error conditions in the same way.
7615
7616'``llvm.ceil.*``' Intrinsic
7617^^^^^^^^^^^^^^^^^^^^^^^^^^^
7618
7619Syntax:
7620"""""""
7621
7622This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7623floating point or vector of floating point type. Not all targets support
7624all types however.
7625
7626::
7627
7628 declare float @llvm.ceil.f32(float %Val)
7629 declare double @llvm.ceil.f64(double %Val)
7630 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7631 declare fp128 @llvm.ceil.f128(fp128 %Val)
7632 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7633
7634Overview:
7635"""""""""
7636
7637The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7638
7639Arguments:
7640""""""""""
7641
7642The argument and return value are floating point numbers of the same
7643type.
7644
7645Semantics:
7646""""""""""
7647
7648This function returns the same values as the libm ``ceil`` functions
7649would, and handles error conditions in the same way.
7650
7651'``llvm.trunc.*``' Intrinsic
7652^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7653
7654Syntax:
7655"""""""
7656
7657This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7658floating point or vector of floating point type. Not all targets support
7659all types however.
7660
7661::
7662
7663 declare float @llvm.trunc.f32(float %Val)
7664 declare double @llvm.trunc.f64(double %Val)
7665 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7666 declare fp128 @llvm.trunc.f128(fp128 %Val)
7667 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7668
7669Overview:
7670"""""""""
7671
7672The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7673nearest integer not larger in magnitude than the operand.
7674
7675Arguments:
7676""""""""""
7677
7678The argument and return value are floating point numbers of the same
7679type.
7680
7681Semantics:
7682""""""""""
7683
7684This function returns the same values as the libm ``trunc`` functions
7685would, and handles error conditions in the same way.
7686
7687'``llvm.rint.*``' Intrinsic
7688^^^^^^^^^^^^^^^^^^^^^^^^^^^
7689
7690Syntax:
7691"""""""
7692
7693This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7694floating point or vector of floating point type. Not all targets support
7695all types however.
7696
7697::
7698
7699 declare float @llvm.rint.f32(float %Val)
7700 declare double @llvm.rint.f64(double %Val)
7701 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7702 declare fp128 @llvm.rint.f128(fp128 %Val)
7703 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7704
7705Overview:
7706"""""""""
7707
7708The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7709nearest integer. It may raise an inexact floating-point exception if the
7710operand isn't an integer.
7711
7712Arguments:
7713""""""""""
7714
7715The argument and return value are floating point numbers of the same
7716type.
7717
7718Semantics:
7719""""""""""
7720
7721This function returns the same values as the libm ``rint`` functions
7722would, and handles error conditions in the same way.
7723
7724'``llvm.nearbyint.*``' Intrinsic
7725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7726
7727Syntax:
7728"""""""
7729
7730This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7731floating point or vector of floating point type. Not all targets support
7732all types however.
7733
7734::
7735
7736 declare float @llvm.nearbyint.f32(float %Val)
7737 declare double @llvm.nearbyint.f64(double %Val)
7738 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7739 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7740 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7741
7742Overview:
7743"""""""""
7744
7745The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7746nearest integer.
7747
7748Arguments:
7749""""""""""
7750
7751The argument and return value are floating point numbers of the same
7752type.
7753
7754Semantics:
7755""""""""""
7756
7757This function returns the same values as the libm ``nearbyint``
7758functions would, and handles error conditions in the same way.
7759
Hal Finkel171817e2013-08-07 22:49:12 +00007760'``llvm.round.*``' Intrinsic
7761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7762
7763Syntax:
7764"""""""
7765
7766This is an overloaded intrinsic. You can use ``llvm.round`` on any
7767floating point or vector of floating point type. Not all targets support
7768all types however.
7769
7770::
7771
7772 declare float @llvm.round.f32(float %Val)
7773 declare double @llvm.round.f64(double %Val)
7774 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7775 declare fp128 @llvm.round.f128(fp128 %Val)
7776 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7777
7778Overview:
7779"""""""""
7780
7781The '``llvm.round.*``' intrinsics returns the operand rounded to the
7782nearest integer.
7783
7784Arguments:
7785""""""""""
7786
7787The argument and return value are floating point numbers of the same
7788type.
7789
7790Semantics:
7791""""""""""
7792
7793This function returns the same values as the libm ``round``
7794functions would, and handles error conditions in the same way.
7795
Sean Silvab084af42012-12-07 10:36:55 +00007796Bit Manipulation Intrinsics
7797---------------------------
7798
7799LLVM provides intrinsics for a few important bit manipulation
7800operations. These allow efficient code generation for some algorithms.
7801
7802'``llvm.bswap.*``' Intrinsics
7803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7804
7805Syntax:
7806"""""""
7807
7808This is an overloaded intrinsic function. You can use bswap on any
7809integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7810
7811::
7812
7813 declare i16 @llvm.bswap.i16(i16 <id>)
7814 declare i32 @llvm.bswap.i32(i32 <id>)
7815 declare i64 @llvm.bswap.i64(i64 <id>)
7816
7817Overview:
7818"""""""""
7819
7820The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7821values with an even number of bytes (positive multiple of 16 bits).
7822These are useful for performing operations on data that is not in the
7823target's native byte order.
7824
7825Semantics:
7826""""""""""
7827
7828The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7829and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7830intrinsic returns an i32 value that has the four bytes of the input i32
7831swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7832returned i32 will have its bytes in 3, 2, 1, 0 order. The
7833``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7834concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7835respectively).
7836
7837'``llvm.ctpop.*``' Intrinsic
7838^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7839
7840Syntax:
7841"""""""
7842
7843This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7844bit width, or on any vector with integer elements. Not all targets
7845support all bit widths or vector types, however.
7846
7847::
7848
7849 declare i8 @llvm.ctpop.i8(i8 <src>)
7850 declare i16 @llvm.ctpop.i16(i16 <src>)
7851 declare i32 @llvm.ctpop.i32(i32 <src>)
7852 declare i64 @llvm.ctpop.i64(i64 <src>)
7853 declare i256 @llvm.ctpop.i256(i256 <src>)
7854 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7855
7856Overview:
7857"""""""""
7858
7859The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7860in a value.
7861
7862Arguments:
7863""""""""""
7864
7865The only argument is the value to be counted. The argument may be of any
7866integer type, or a vector with integer elements. The return type must
7867match the argument type.
7868
7869Semantics:
7870""""""""""
7871
7872The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7873each element of a vector.
7874
7875'``llvm.ctlz.*``' Intrinsic
7876^^^^^^^^^^^^^^^^^^^^^^^^^^^
7877
7878Syntax:
7879"""""""
7880
7881This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7882integer bit width, or any vector whose elements are integers. Not all
7883targets support all bit widths or vector types, however.
7884
7885::
7886
7887 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7888 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7889 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7890 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7891 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7892 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7893
7894Overview:
7895"""""""""
7896
7897The '``llvm.ctlz``' family of intrinsic functions counts the number of
7898leading zeros in a variable.
7899
7900Arguments:
7901""""""""""
7902
7903The first argument is the value to be counted. This argument may be of
7904any integer type, or a vectory with integer element type. The return
7905type must match the first argument type.
7906
7907The second argument must be a constant and is a flag to indicate whether
7908the intrinsic should ensure that a zero as the first argument produces a
7909defined result. Historically some architectures did not provide a
7910defined result for zero values as efficiently, and many algorithms are
7911now predicated on avoiding zero-value inputs.
7912
7913Semantics:
7914""""""""""
7915
7916The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7917zeros in a variable, or within each element of the vector. If
7918``src == 0`` then the result is the size in bits of the type of ``src``
7919if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7920``llvm.ctlz(i32 2) = 30``.
7921
7922'``llvm.cttz.*``' Intrinsic
7923^^^^^^^^^^^^^^^^^^^^^^^^^^^
7924
7925Syntax:
7926"""""""
7927
7928This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7929integer bit width, or any vector of integer elements. Not all targets
7930support all bit widths or vector types, however.
7931
7932::
7933
7934 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7935 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7936 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7937 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7938 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7939 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7940
7941Overview:
7942"""""""""
7943
7944The '``llvm.cttz``' family of intrinsic functions counts the number of
7945trailing zeros.
7946
7947Arguments:
7948""""""""""
7949
7950The first argument is the value to be counted. This argument may be of
7951any integer type, or a vectory with integer element type. The return
7952type must match the first argument type.
7953
7954The second argument must be a constant and is a flag to indicate whether
7955the intrinsic should ensure that a zero as the first argument produces a
7956defined result. Historically some architectures did not provide a
7957defined result for zero values as efficiently, and many algorithms are
7958now predicated on avoiding zero-value inputs.
7959
7960Semantics:
7961""""""""""
7962
7963The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7964zeros in a variable, or within each element of a vector. If ``src == 0``
7965then the result is the size in bits of the type of ``src`` if
7966``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7967``llvm.cttz(2) = 1``.
7968
7969Arithmetic with Overflow Intrinsics
7970-----------------------------------
7971
7972LLVM provides intrinsics for some arithmetic with overflow operations.
7973
7974'``llvm.sadd.with.overflow.*``' Intrinsics
7975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7976
7977Syntax:
7978"""""""
7979
7980This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7981on any integer bit width.
7982
7983::
7984
7985 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7986 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7987 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7988
7989Overview:
7990"""""""""
7991
7992The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7993a signed addition of the two arguments, and indicate whether an overflow
7994occurred during the signed summation.
7995
7996Arguments:
7997""""""""""
7998
7999The arguments (%a and %b) and the first element of the result structure
8000may be of integer types of any bit width, but they must have the same
8001bit width. The second element of the result structure must be of type
8002``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8003addition.
8004
8005Semantics:
8006""""""""""
8007
8008The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008009a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008010first element of which is the signed summation, and the second element
8011of which is a bit specifying if the signed summation resulted in an
8012overflow.
8013
8014Examples:
8015"""""""""
8016
8017.. code-block:: llvm
8018
8019 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8020 %sum = extractvalue {i32, i1} %res, 0
8021 %obit = extractvalue {i32, i1} %res, 1
8022 br i1 %obit, label %overflow, label %normal
8023
8024'``llvm.uadd.with.overflow.*``' Intrinsics
8025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8026
8027Syntax:
8028"""""""
8029
8030This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8031on any integer bit width.
8032
8033::
8034
8035 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8036 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8037 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8038
8039Overview:
8040"""""""""
8041
8042The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8043an unsigned addition of the two arguments, and indicate whether a carry
8044occurred during the unsigned summation.
8045
8046Arguments:
8047""""""""""
8048
8049The arguments (%a and %b) and the first element of the result structure
8050may be of integer types of any bit width, but they must have the same
8051bit width. The second element of the result structure must be of type
8052``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8053addition.
8054
8055Semantics:
8056""""""""""
8057
8058The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008059an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008060first element of which is the sum, and the second element of which is a
8061bit specifying if the unsigned summation resulted in a carry.
8062
8063Examples:
8064"""""""""
8065
8066.. code-block:: llvm
8067
8068 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8069 %sum = extractvalue {i32, i1} %res, 0
8070 %obit = extractvalue {i32, i1} %res, 1
8071 br i1 %obit, label %carry, label %normal
8072
8073'``llvm.ssub.with.overflow.*``' Intrinsics
8074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8075
8076Syntax:
8077"""""""
8078
8079This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8080on any integer bit width.
8081
8082::
8083
8084 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8085 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8086 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8087
8088Overview:
8089"""""""""
8090
8091The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8092a signed subtraction of the two arguments, and indicate whether an
8093overflow occurred during the signed subtraction.
8094
8095Arguments:
8096""""""""""
8097
8098The arguments (%a and %b) and the first element of the result structure
8099may be of integer types of any bit width, but they must have the same
8100bit width. The second element of the result structure must be of type
8101``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8102subtraction.
8103
8104Semantics:
8105""""""""""
8106
8107The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008108a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008109first element of which is the subtraction, and the second element of
8110which is a bit specifying if the signed subtraction resulted in an
8111overflow.
8112
8113Examples:
8114"""""""""
8115
8116.. code-block:: llvm
8117
8118 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8119 %sum = extractvalue {i32, i1} %res, 0
8120 %obit = extractvalue {i32, i1} %res, 1
8121 br i1 %obit, label %overflow, label %normal
8122
8123'``llvm.usub.with.overflow.*``' Intrinsics
8124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8125
8126Syntax:
8127"""""""
8128
8129This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8130on any integer bit width.
8131
8132::
8133
8134 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8135 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8136 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8137
8138Overview:
8139"""""""""
8140
8141The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8142an unsigned subtraction of the two arguments, and indicate whether an
8143overflow occurred during the unsigned subtraction.
8144
8145Arguments:
8146""""""""""
8147
8148The arguments (%a and %b) and the first element of the result structure
8149may be of integer types of any bit width, but they must have the same
8150bit width. The second element of the result structure must be of type
8151``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8152subtraction.
8153
8154Semantics:
8155""""""""""
8156
8157The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008158an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008159the first element of which is the subtraction, and the second element of
8160which is a bit specifying if the unsigned subtraction resulted in an
8161overflow.
8162
8163Examples:
8164"""""""""
8165
8166.. code-block:: llvm
8167
8168 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8169 %sum = extractvalue {i32, i1} %res, 0
8170 %obit = extractvalue {i32, i1} %res, 1
8171 br i1 %obit, label %overflow, label %normal
8172
8173'``llvm.smul.with.overflow.*``' Intrinsics
8174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8175
8176Syntax:
8177"""""""
8178
8179This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8180on any integer bit width.
8181
8182::
8183
8184 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8185 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8186 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8187
8188Overview:
8189"""""""""
8190
8191The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8192a signed multiplication of the two arguments, and indicate whether an
8193overflow occurred during the signed multiplication.
8194
8195Arguments:
8196""""""""""
8197
8198The arguments (%a and %b) and the first element of the result structure
8199may be of integer types of any bit width, but they must have the same
8200bit width. The second element of the result structure must be of type
8201``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8202multiplication.
8203
8204Semantics:
8205""""""""""
8206
8207The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008208a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008209the first element of which is the multiplication, and the second element
8210of which is a bit specifying if the signed multiplication resulted in an
8211overflow.
8212
8213Examples:
8214"""""""""
8215
8216.. code-block:: llvm
8217
8218 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8219 %sum = extractvalue {i32, i1} %res, 0
8220 %obit = extractvalue {i32, i1} %res, 1
8221 br i1 %obit, label %overflow, label %normal
8222
8223'``llvm.umul.with.overflow.*``' Intrinsics
8224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8225
8226Syntax:
8227"""""""
8228
8229This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8230on any integer bit width.
8231
8232::
8233
8234 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8235 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8236 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8237
8238Overview:
8239"""""""""
8240
8241The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8242a unsigned multiplication of the two arguments, and indicate whether an
8243overflow occurred during the unsigned multiplication.
8244
8245Arguments:
8246""""""""""
8247
8248The arguments (%a and %b) and the first element of the result structure
8249may be of integer types of any bit width, but they must have the same
8250bit width. The second element of the result structure must be of type
8251``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8252multiplication.
8253
8254Semantics:
8255""""""""""
8256
8257The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008258an unsigned multiplication of the two arguments. They return a structure ---
8259the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008260element of which is a bit specifying if the unsigned multiplication
8261resulted in an overflow.
8262
8263Examples:
8264"""""""""
8265
8266.. code-block:: llvm
8267
8268 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8269 %sum = extractvalue {i32, i1} %res, 0
8270 %obit = extractvalue {i32, i1} %res, 1
8271 br i1 %obit, label %overflow, label %normal
8272
8273Specialised Arithmetic Intrinsics
8274---------------------------------
8275
8276'``llvm.fmuladd.*``' Intrinsic
8277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8278
8279Syntax:
8280"""""""
8281
8282::
8283
8284 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8285 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8286
8287Overview:
8288"""""""""
8289
8290The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008291expressions that can be fused if the code generator determines that (a) the
8292target instruction set has support for a fused operation, and (b) that the
8293fused operation is more efficient than the equivalent, separate pair of mul
8294and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008295
8296Arguments:
8297""""""""""
8298
8299The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8300multiplicands, a and b, and an addend c.
8301
8302Semantics:
8303""""""""""
8304
8305The expression:
8306
8307::
8308
8309 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8310
8311is equivalent to the expression a \* b + c, except that rounding will
8312not be performed between the multiplication and addition steps if the
8313code generator fuses the operations. Fusion is not guaranteed, even if
8314the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008315corresponding llvm.fma.\* intrinsic function should be used
8316instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008317
8318Examples:
8319"""""""""
8320
8321.. code-block:: llvm
8322
8323 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8324
8325Half Precision Floating Point Intrinsics
8326----------------------------------------
8327
8328For most target platforms, half precision floating point is a
8329storage-only format. This means that it is a dense encoding (in memory)
8330but does not support computation in the format.
8331
8332This means that code must first load the half-precision floating point
8333value as an i16, then convert it to float with
8334:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8335then be performed on the float value (including extending to double
8336etc). To store the value back to memory, it is first converted to float
8337if needed, then converted to i16 with
8338:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8339i16 value.
8340
8341.. _int_convert_to_fp16:
8342
8343'``llvm.convert.to.fp16``' Intrinsic
8344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8345
8346Syntax:
8347"""""""
8348
8349::
8350
8351 declare i16 @llvm.convert.to.fp16(f32 %a)
8352
8353Overview:
8354"""""""""
8355
8356The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8357from single precision floating point format to half precision floating
8358point format.
8359
8360Arguments:
8361""""""""""
8362
8363The intrinsic function contains single argument - the value to be
8364converted.
8365
8366Semantics:
8367""""""""""
8368
8369The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8370from single precision floating point format to half precision floating
8371point format. The return value is an ``i16`` which contains the
8372converted number.
8373
8374Examples:
8375"""""""""
8376
8377.. code-block:: llvm
8378
8379 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8380 store i16 %res, i16* @x, align 2
8381
8382.. _int_convert_from_fp16:
8383
8384'``llvm.convert.from.fp16``' Intrinsic
8385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8386
8387Syntax:
8388"""""""
8389
8390::
8391
8392 declare f32 @llvm.convert.from.fp16(i16 %a)
8393
8394Overview:
8395"""""""""
8396
8397The '``llvm.convert.from.fp16``' intrinsic function performs a
8398conversion from half precision floating point format to single precision
8399floating point format.
8400
8401Arguments:
8402""""""""""
8403
8404The intrinsic function contains single argument - the value to be
8405converted.
8406
8407Semantics:
8408""""""""""
8409
8410The '``llvm.convert.from.fp16``' intrinsic function performs a
8411conversion from half single precision floating point format to single
8412precision floating point format. The input half-float value is
8413represented by an ``i16`` value.
8414
8415Examples:
8416"""""""""
8417
8418.. code-block:: llvm
8419
8420 %a = load i16* @x, align 2
8421 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8422
8423Debugger Intrinsics
8424-------------------
8425
8426The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8427prefix), are described in the `LLVM Source Level
8428Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8429document.
8430
8431Exception Handling Intrinsics
8432-----------------------------
8433
8434The LLVM exception handling intrinsics (which all start with
8435``llvm.eh.`` prefix), are described in the `LLVM Exception
8436Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8437
8438.. _int_trampoline:
8439
8440Trampoline Intrinsics
8441---------------------
8442
8443These intrinsics make it possible to excise one parameter, marked with
8444the :ref:`nest <nest>` attribute, from a function. The result is a
8445callable function pointer lacking the nest parameter - the caller does
8446not need to provide a value for it. Instead, the value to use is stored
8447in advance in a "trampoline", a block of memory usually allocated on the
8448stack, which also contains code to splice the nest value into the
8449argument list. This is used to implement the GCC nested function address
8450extension.
8451
8452For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8453then the resulting function pointer has signature ``i32 (i32, i32)*``.
8454It can be created as follows:
8455
8456.. code-block:: llvm
8457
8458 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8459 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8460 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8461 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8462 %fp = bitcast i8* %p to i32 (i32, i32)*
8463
8464The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8465``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8466
8467.. _int_it:
8468
8469'``llvm.init.trampoline``' Intrinsic
8470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8471
8472Syntax:
8473"""""""
8474
8475::
8476
8477 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8478
8479Overview:
8480"""""""""
8481
8482This fills the memory pointed to by ``tramp`` with executable code,
8483turning it into a trampoline.
8484
8485Arguments:
8486""""""""""
8487
8488The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8489pointers. The ``tramp`` argument must point to a sufficiently large and
8490sufficiently aligned block of memory; this memory is written to by the
8491intrinsic. Note that the size and the alignment are target-specific -
8492LLVM currently provides no portable way of determining them, so a
8493front-end that generates this intrinsic needs to have some
8494target-specific knowledge. The ``func`` argument must hold a function
8495bitcast to an ``i8*``.
8496
8497Semantics:
8498""""""""""
8499
8500The block of memory pointed to by ``tramp`` is filled with target
8501dependent code, turning it into a function. Then ``tramp`` needs to be
8502passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8503be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8504function's signature is the same as that of ``func`` with any arguments
8505marked with the ``nest`` attribute removed. At most one such ``nest``
8506argument is allowed, and it must be of pointer type. Calling the new
8507function is equivalent to calling ``func`` with the same argument list,
8508but with ``nval`` used for the missing ``nest`` argument. If, after
8509calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8510modified, then the effect of any later call to the returned function
8511pointer is undefined.
8512
8513.. _int_at:
8514
8515'``llvm.adjust.trampoline``' Intrinsic
8516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8517
8518Syntax:
8519"""""""
8520
8521::
8522
8523 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8524
8525Overview:
8526"""""""""
8527
8528This performs any required machine-specific adjustment to the address of
8529a trampoline (passed as ``tramp``).
8530
8531Arguments:
8532""""""""""
8533
8534``tramp`` must point to a block of memory which already has trampoline
8535code filled in by a previous call to
8536:ref:`llvm.init.trampoline <int_it>`.
8537
8538Semantics:
8539""""""""""
8540
8541On some architectures the address of the code to be executed needs to be
8542different to the address where the trampoline is actually stored. This
8543intrinsic returns the executable address corresponding to ``tramp``
8544after performing the required machine specific adjustments. The pointer
8545returned can then be :ref:`bitcast and executed <int_trampoline>`.
8546
8547Memory Use Markers
8548------------------
8549
8550This class of intrinsics exists to information about the lifetime of
8551memory objects and ranges where variables are immutable.
8552
Reid Klecknera534a382013-12-19 02:14:12 +00008553.. _int_lifestart:
8554
Sean Silvab084af42012-12-07 10:36:55 +00008555'``llvm.lifetime.start``' Intrinsic
8556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8557
8558Syntax:
8559"""""""
8560
8561::
8562
8563 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8564
8565Overview:
8566"""""""""
8567
8568The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8569object's lifetime.
8570
8571Arguments:
8572""""""""""
8573
8574The first argument is a constant integer representing the size of the
8575object, or -1 if it is variable sized. The second argument is a pointer
8576to the object.
8577
8578Semantics:
8579""""""""""
8580
8581This intrinsic indicates that before this point in the code, the value
8582of the memory pointed to by ``ptr`` is dead. This means that it is known
8583to never be used and has an undefined value. A load from the pointer
8584that precedes this intrinsic can be replaced with ``'undef'``.
8585
Reid Klecknera534a382013-12-19 02:14:12 +00008586.. _int_lifeend:
8587
Sean Silvab084af42012-12-07 10:36:55 +00008588'``llvm.lifetime.end``' Intrinsic
8589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8590
8591Syntax:
8592"""""""
8593
8594::
8595
8596 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8597
8598Overview:
8599"""""""""
8600
8601The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8602object's lifetime.
8603
8604Arguments:
8605""""""""""
8606
8607The first argument is a constant integer representing the size of the
8608object, or -1 if it is variable sized. The second argument is a pointer
8609to the object.
8610
8611Semantics:
8612""""""""""
8613
8614This intrinsic indicates that after this point in the code, the value of
8615the memory pointed to by ``ptr`` is dead. This means that it is known to
8616never be used and has an undefined value. Any stores into the memory
8617object following this intrinsic may be removed as dead.
8618
8619'``llvm.invariant.start``' Intrinsic
8620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8621
8622Syntax:
8623"""""""
8624
8625::
8626
8627 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8628
8629Overview:
8630"""""""""
8631
8632The '``llvm.invariant.start``' intrinsic specifies that the contents of
8633a memory object will not change.
8634
8635Arguments:
8636""""""""""
8637
8638The first argument is a constant integer representing the size of the
8639object, or -1 if it is variable sized. The second argument is a pointer
8640to the object.
8641
8642Semantics:
8643""""""""""
8644
8645This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8646the return value, the referenced memory location is constant and
8647unchanging.
8648
8649'``llvm.invariant.end``' Intrinsic
8650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8651
8652Syntax:
8653"""""""
8654
8655::
8656
8657 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8658
8659Overview:
8660"""""""""
8661
8662The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8663memory object are mutable.
8664
8665Arguments:
8666""""""""""
8667
8668The first argument is the matching ``llvm.invariant.start`` intrinsic.
8669The second argument is a constant integer representing the size of the
8670object, or -1 if it is variable sized and the third argument is a
8671pointer to the object.
8672
8673Semantics:
8674""""""""""
8675
8676This intrinsic indicates that the memory is mutable again.
8677
8678General Intrinsics
8679------------------
8680
8681This class of intrinsics is designed to be generic and has no specific
8682purpose.
8683
8684'``llvm.var.annotation``' Intrinsic
8685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8686
8687Syntax:
8688"""""""
8689
8690::
8691
8692 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8693
8694Overview:
8695"""""""""
8696
8697The '``llvm.var.annotation``' intrinsic.
8698
8699Arguments:
8700""""""""""
8701
8702The first argument is a pointer to a value, the second is a pointer to a
8703global string, the third is a pointer to a global string which is the
8704source file name, and the last argument is the line number.
8705
8706Semantics:
8707""""""""""
8708
8709This intrinsic allows annotation of local variables with arbitrary
8710strings. This can be useful for special purpose optimizations that want
8711to look for these annotations. These have no other defined use; they are
8712ignored by code generation and optimization.
8713
Michael Gottesman88d18832013-03-26 00:34:27 +00008714'``llvm.ptr.annotation.*``' Intrinsic
8715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8716
8717Syntax:
8718"""""""
8719
8720This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8721pointer to an integer of any width. *NOTE* you must specify an address space for
8722the pointer. The identifier for the default address space is the integer
8723'``0``'.
8724
8725::
8726
8727 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8728 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8729 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8730 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8731 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8732
8733Overview:
8734"""""""""
8735
8736The '``llvm.ptr.annotation``' intrinsic.
8737
8738Arguments:
8739""""""""""
8740
8741The first argument is a pointer to an integer value of arbitrary bitwidth
8742(result of some expression), the second is a pointer to a global string, the
8743third is a pointer to a global string which is the source file name, and the
8744last argument is the line number. It returns the value of the first argument.
8745
8746Semantics:
8747""""""""""
8748
8749This intrinsic allows annotation of a pointer to an integer with arbitrary
8750strings. This can be useful for special purpose optimizations that want to look
8751for these annotations. These have no other defined use; they are ignored by code
8752generation and optimization.
8753
Sean Silvab084af42012-12-07 10:36:55 +00008754'``llvm.annotation.*``' Intrinsic
8755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8756
8757Syntax:
8758"""""""
8759
8760This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8761any integer bit width.
8762
8763::
8764
8765 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8766 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8767 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8768 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8769 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8770
8771Overview:
8772"""""""""
8773
8774The '``llvm.annotation``' intrinsic.
8775
8776Arguments:
8777""""""""""
8778
8779The first argument is an integer value (result of some expression), the
8780second is a pointer to a global string, the third is a pointer to a
8781global string which is the source file name, and the last argument is
8782the line number. It returns the value of the first argument.
8783
8784Semantics:
8785""""""""""
8786
8787This intrinsic allows annotations to be put on arbitrary expressions
8788with arbitrary strings. This can be useful for special purpose
8789optimizations that want to look for these annotations. These have no
8790other defined use; they are ignored by code generation and optimization.
8791
8792'``llvm.trap``' Intrinsic
8793^^^^^^^^^^^^^^^^^^^^^^^^^
8794
8795Syntax:
8796"""""""
8797
8798::
8799
8800 declare void @llvm.trap() noreturn nounwind
8801
8802Overview:
8803"""""""""
8804
8805The '``llvm.trap``' intrinsic.
8806
8807Arguments:
8808""""""""""
8809
8810None.
8811
8812Semantics:
8813""""""""""
8814
8815This intrinsic is lowered to the target dependent trap instruction. If
8816the target does not have a trap instruction, this intrinsic will be
8817lowered to a call of the ``abort()`` function.
8818
8819'``llvm.debugtrap``' Intrinsic
8820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8821
8822Syntax:
8823"""""""
8824
8825::
8826
8827 declare void @llvm.debugtrap() nounwind
8828
8829Overview:
8830"""""""""
8831
8832The '``llvm.debugtrap``' intrinsic.
8833
8834Arguments:
8835""""""""""
8836
8837None.
8838
8839Semantics:
8840""""""""""
8841
8842This intrinsic is lowered to code which is intended to cause an
8843execution trap with the intention of requesting the attention of a
8844debugger.
8845
8846'``llvm.stackprotector``' Intrinsic
8847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8848
8849Syntax:
8850"""""""
8851
8852::
8853
8854 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8855
8856Overview:
8857"""""""""
8858
8859The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8860onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8861is placed on the stack before local variables.
8862
8863Arguments:
8864""""""""""
8865
8866The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8867The first argument is the value loaded from the stack guard
8868``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8869enough space to hold the value of the guard.
8870
8871Semantics:
8872""""""""""
8873
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008874This intrinsic causes the prologue/epilogue inserter to force the position of
8875the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8876to ensure that if a local variable on the stack is overwritten, it will destroy
8877the value of the guard. When the function exits, the guard on the stack is
8878checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8879different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8880calling the ``__stack_chk_fail()`` function.
8881
8882'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008884
8885Syntax:
8886"""""""
8887
8888::
8889
8890 declare void @llvm.stackprotectorcheck(i8** <guard>)
8891
8892Overview:
8893"""""""""
8894
8895The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008896created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008897``__stack_chk_fail()`` function.
8898
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008899Arguments:
8900""""""""""
8901
8902The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8903the variable ``@__stack_chk_guard``.
8904
8905Semantics:
8906""""""""""
8907
8908This intrinsic is provided to perform the stack protector check by comparing
8909``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8910values do not match call the ``__stack_chk_fail()`` function.
8911
8912The reason to provide this as an IR level intrinsic instead of implementing it
8913via other IR operations is that in order to perform this operation at the IR
8914level without an intrinsic, one would need to create additional basic blocks to
8915handle the success/failure cases. This makes it difficult to stop the stack
8916protector check from disrupting sibling tail calls in Codegen. With this
8917intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008918codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008919
Sean Silvab084af42012-12-07 10:36:55 +00008920'``llvm.objectsize``' Intrinsic
8921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8922
8923Syntax:
8924"""""""
8925
8926::
8927
8928 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8929 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8930
8931Overview:
8932"""""""""
8933
8934The ``llvm.objectsize`` intrinsic is designed to provide information to
8935the optimizers to determine at compile time whether a) an operation
8936(like memcpy) will overflow a buffer that corresponds to an object, or
8937b) that a runtime check for overflow isn't necessary. An object in this
8938context means an allocation of a specific class, structure, array, or
8939other object.
8940
8941Arguments:
8942""""""""""
8943
8944The ``llvm.objectsize`` intrinsic takes two arguments. The first
8945argument is a pointer to or into the ``object``. The second argument is
8946a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8947or -1 (if false) when the object size is unknown. The second argument
8948only accepts constants.
8949
8950Semantics:
8951""""""""""
8952
8953The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8954the size of the object concerned. If the size cannot be determined at
8955compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8956on the ``min`` argument).
8957
8958'``llvm.expect``' Intrinsic
8959^^^^^^^^^^^^^^^^^^^^^^^^^^^
8960
8961Syntax:
8962"""""""
8963
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00008964This is an overloaded intrinsic. You can use ``llvm.expect`` on any
8965integer bit width.
8966
Sean Silvab084af42012-12-07 10:36:55 +00008967::
8968
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00008969 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00008970 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8971 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8972
8973Overview:
8974"""""""""
8975
8976The ``llvm.expect`` intrinsic provides information about expected (the
8977most probable) value of ``val``, which can be used by optimizers.
8978
8979Arguments:
8980""""""""""
8981
8982The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8983a value. The second argument is an expected value, this needs to be a
8984constant value, variables are not allowed.
8985
8986Semantics:
8987""""""""""
8988
8989This intrinsic is lowered to the ``val``.
8990
8991'``llvm.donothing``' Intrinsic
8992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8993
8994Syntax:
8995"""""""
8996
8997::
8998
8999 declare void @llvm.donothing() nounwind readnone
9000
9001Overview:
9002"""""""""
9003
9004The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9005only intrinsic that can be called with an invoke instruction.
9006
9007Arguments:
9008""""""""""
9009
9010None.
9011
9012Semantics:
9013""""""""""
9014
9015This intrinsic does nothing, and it's removed by optimizers and ignored
9016by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009017
9018Stack Map Intrinsics
9019--------------------
9020
9021LLVM provides experimental intrinsics to support runtime patching
9022mechanisms commonly desired in dynamic language JITs. These intrinsics
9023are described in :doc:`StackMaps`.