blob: 0a46e8375e2c87165afe95b866eecdc9a62fb40c [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000315 function definition. Furthermore the inliner doesn't consider such function
316 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000317"``cc 10``" - GHC convention
318 This calling convention has been implemented specifically for use by
319 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
320 It passes everything in registers, going to extremes to achieve this
321 by disabling callee save registers. This calling convention should
322 not be used lightly but only for specific situations such as an
323 alternative to the *register pinning* performance technique often
324 used when implementing functional programming languages. At the
325 moment only X86 supports this convention and it has the following
326 limitations:
327
328 - On *X86-32* only supports up to 4 bit type parameters. No
329 floating point types are supported.
330 - On *X86-64* only supports up to 10 bit type parameters and 6
331 floating point parameters.
332
333 This calling convention supports `tail call
334 optimization <CodeGenerator.html#id80>`_ but requires both the
335 caller and callee are using it.
336"``cc 11``" - The HiPE calling convention
337 This calling convention has been implemented specifically for use by
338 the `High-Performance Erlang
339 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
340 native code compiler of the `Ericsson's Open Source Erlang/OTP
341 system <http://www.erlang.org/download.shtml>`_. It uses more
342 registers for argument passing than the ordinary C calling
343 convention and defines no callee-saved registers. The calling
344 convention properly supports `tail call
345 optimization <CodeGenerator.html#id80>`_ but requires that both the
346 caller and the callee use it. It uses a *register pinning*
347 mechanism, similar to GHC's convention, for keeping frequently
348 accessed runtime components pinned to specific hardware registers.
349 At the moment only X86 supports this convention (both 32 and 64
350 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000351"``webkit_jscc``" - WebKit's JavaScript calling convention
352 This calling convention has been implemented for `WebKit FTL JIT
353 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
354 stack right to left (as cdecl does), and returns a value in the
355 platform's customary return register.
356"``anyregcc``" - Dynamic calling convention for code patching
357 This is a special convention that supports patching an arbitrary code
358 sequence in place of a call site. This convention forces the call
359 arguments into registers but allows them to be dynamcially
360 allocated. This can currently only be used with calls to
361 llvm.experimental.patchpoint because only this intrinsic records
362 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363"``preserve_mostcc``" - The `PreserveMost` calling convention
364 This calling convention attempts to make the code in the caller as little
365 intrusive as possible. This calling convention behaves identical to the `C`
366 calling convention on how arguments and return values are passed, but it
367 uses a different set of caller/callee-saved registers. This alleviates the
368 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000369 call in the caller. If the arguments are passed in callee-saved registers,
370 then they will be preserved by the callee across the call. This doesn't
371 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372
373 - On X86-64 the callee preserves all general purpose registers, except for
374 R11. R11 can be used as a scratch register. Floating-point registers
375 (XMMs/YMMs) are not preserved and need to be saved by the caller.
376
377 The idea behind this convention is to support calls to runtime functions
378 that have a hot path and a cold path. The hot path is usually a small piece
379 of code that doesn't many registers. The cold path might need to call out to
380 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000381 registers, which haven't already been saved by the caller. The
382 `PreserveMost` calling convention is very similar to the `cold` calling
383 convention in terms of caller/callee-saved registers, but they are used for
384 different types of function calls. `coldcc` is for function calls that are
385 rarely executed, whereas `preserve_mostcc` function calls are intended to be
386 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
387 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000388
389 This calling convention will be used by a future version of the ObjectiveC
390 runtime and should therefore still be considered experimental at this time.
391 Although this convention was created to optimize certain runtime calls to
392 the ObjectiveC runtime, it is not limited to this runtime and might be used
393 by other runtimes in the future too. The current implementation only
394 supports X86-64, but the intention is to support more architectures in the
395 future.
396"``preserve_allcc``" - The `PreserveAll` calling convention
397 This calling convention attempts to make the code in the caller even less
398 intrusive than the `PreserveMost` calling convention. This calling
399 convention also behaves identical to the `C` calling convention on how
400 arguments and return values are passed, but it uses a different set of
401 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000402 recovering a large register set before and after the call in the caller. If
403 the arguments are passed in callee-saved registers, then they will be
404 preserved by the callee across the call. This doesn't apply for values
405 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000406
407 - On X86-64 the callee preserves all general purpose registers, except for
408 R11. R11 can be used as a scratch register. Furthermore it also preserves
409 all floating-point registers (XMMs/YMMs).
410
411 The idea behind this convention is to support calls to runtime functions
412 that don't need to call out to any other functions.
413
414 This calling convention, like the `PreserveMost` calling convention, will be
415 used by a future version of the ObjectiveC runtime and should be considered
416 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000417"``cc <n>``" - Numbered convention
418 Any calling convention may be specified by number, allowing
419 target-specific calling conventions to be used. Target specific
420 calling conventions start at 64.
421
422More calling conventions can be added/defined on an as-needed basis, to
423support Pascal conventions or any other well-known target-independent
424convention.
425
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000426.. _visibilitystyles:
427
Sean Silvab084af42012-12-07 10:36:55 +0000428Visibility Styles
429-----------------
430
431All Global Variables and Functions have one of the following visibility
432styles:
433
434"``default``" - Default style
435 On targets that use the ELF object file format, default visibility
436 means that the declaration is visible to other modules and, in
437 shared libraries, means that the declared entity may be overridden.
438 On Darwin, default visibility means that the declaration is visible
439 to other modules. Default visibility corresponds to "external
440 linkage" in the language.
441"``hidden``" - Hidden style
442 Two declarations of an object with hidden visibility refer to the
443 same object if they are in the same shared object. Usually, hidden
444 visibility indicates that the symbol will not be placed into the
445 dynamic symbol table, so no other module (executable or shared
446 library) can reference it directly.
447"``protected``" - Protected style
448 On ELF, protected visibility indicates that the symbol will be
449 placed in the dynamic symbol table, but that references within the
450 defining module will bind to the local symbol. That is, the symbol
451 cannot be overridden by another module.
452
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000453.. _namedtypes:
454
Nico Rieck7157bb72014-01-14 15:22:47 +0000455DLL Storage Classes
456-------------------
457
458All Global Variables, Functions and Aliases can have one of the following
459DLL storage class:
460
461``dllimport``
462 "``dllimport``" causes the compiler to reference a function or variable via
463 a global pointer to a pointer that is set up by the DLL exporting the
464 symbol. On Microsoft Windows targets, the pointer name is formed by
465 combining ``__imp_`` and the function or variable name.
466``dllexport``
467 "``dllexport``" causes the compiler to provide a global pointer to a pointer
468 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
469 Microsoft Windows targets, the pointer name is formed by combining
470 ``__imp_`` and the function or variable name. Since this storage class
471 exists for defining a dll interface, the compiler, assembler and linker know
472 it is externally referenced and must refrain from deleting the symbol.
473
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000474Structure Types
475---------------
Sean Silvab084af42012-12-07 10:36:55 +0000476
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000477LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
478types <t_struct>`. Literal types are uniqued structurally, but identified types
479are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
480to forward declare a type which is not yet available.
481
482An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000483
484.. code-block:: llvm
485
486 %mytype = type { %mytype*, i32 }
487
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000488Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
489literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000490
491.. _globalvars:
492
493Global Variables
494----------------
495
496Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000497instead of run-time.
498
499Global variables definitions must be initialized, may have an explicit section
500to be placed in, and may have an optional explicit alignment specified.
501
502Global variables in other translation units can also be declared, in which
503case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000504
505A variable may be defined as ``thread_local``, which means that it will
506not be shared by threads (each thread will have a separated copy of the
507variable). Not all targets support thread-local variables. Optionally, a
508TLS model may be specified:
509
510``localdynamic``
511 For variables that are only used within the current shared library.
512``initialexec``
513 For variables in modules that will not be loaded dynamically.
514``localexec``
515 For variables defined in the executable and only used within it.
516
517The models correspond to the ELF TLS models; see `ELF Handling For
518Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
519more information on under which circumstances the different models may
520be used. The target may choose a different TLS model if the specified
521model is not supported, or if a better choice of model can be made.
522
Michael Gottesman006039c2013-01-31 05:48:48 +0000523A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000524the contents of the variable will **never** be modified (enabling better
525optimization, allowing the global data to be placed in the read-only
526section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000527initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000528variable.
529
530LLVM explicitly allows *declarations* of global variables to be marked
531constant, even if the final definition of the global is not. This
532capability can be used to enable slightly better optimization of the
533program, but requires the language definition to guarantee that
534optimizations based on the 'constantness' are valid for the translation
535units that do not include the definition.
536
537As SSA values, global variables define pointer values that are in scope
538(i.e. they dominate) all basic blocks in the program. Global variables
539always define a pointer to their "content" type because they describe a
540region of memory, and all memory objects in LLVM are accessed through
541pointers.
542
543Global variables can be marked with ``unnamed_addr`` which indicates
544that the address is not significant, only the content. Constants marked
545like this can be merged with other constants if they have the same
546initializer. Note that a constant with significant address *can* be
547merged with a ``unnamed_addr`` constant, the result being a constant
548whose address is significant.
549
550A global variable may be declared to reside in a target-specific
551numbered address space. For targets that support them, address spaces
552may affect how optimizations are performed and/or what target
553instructions are used to access the variable. The default address space
554is zero. The address space qualifier must precede any other attributes.
555
556LLVM allows an explicit section to be specified for globals. If the
557target supports it, it will emit globals to the section specified.
558
Michael Gottesmane743a302013-02-04 03:22:00 +0000559By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000560variables defined within the module are not modified from their
561initial values before the start of the global initializer. This is
562true even for variables potentially accessible from outside the
563module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000564``@llvm.used`` or dllexported variables. This assumption may be suppressed
565by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000566
Sean Silvab084af42012-12-07 10:36:55 +0000567An explicit alignment may be specified for a global, which must be a
568power of 2. If not present, or if the alignment is set to zero, the
569alignment of the global is set by the target to whatever it feels
570convenient. If an explicit alignment is specified, the global is forced
571to have exactly that alignment. Targets and optimizers are not allowed
572to over-align the global if the global has an assigned section. In this
573case, the extra alignment could be observable: for example, code could
574assume that the globals are densely packed in their section and try to
575iterate over them as an array, alignment padding would break this
576iteration.
577
Nico Rieck7157bb72014-01-14 15:22:47 +0000578Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
579
580Syntax::
581
582 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
583 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
584 <global | constant> <Type>
585 [, section "name"] [, align <Alignment>]
586
Sean Silvab084af42012-12-07 10:36:55 +0000587For example, the following defines a global in a numbered address space
588with an initializer, section, and alignment:
589
590.. code-block:: llvm
591
592 @G = addrspace(5) constant float 1.0, section "foo", align 4
593
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000594The following example just declares a global variable
595
596.. code-block:: llvm
597
598 @G = external global i32
599
Sean Silvab084af42012-12-07 10:36:55 +0000600The following example defines a thread-local global with the
601``initialexec`` TLS model:
602
603.. code-block:: llvm
604
605 @G = thread_local(initialexec) global i32 0, align 4
606
607.. _functionstructure:
608
609Functions
610---------
611
612LLVM function definitions consist of the "``define``" keyword, an
613optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000614style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
615an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000616an optional ``unnamed_addr`` attribute, a return type, an optional
617:ref:`parameter attribute <paramattrs>` for the return type, a function
618name, a (possibly empty) argument list (each with optional :ref:`parameter
619attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
620an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000621collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
622curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000623
624LLVM function declarations consist of the "``declare``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000630name, a possibly empty list of arguments, an optional alignment, an optional
631:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000632
Bill Wendling6822ecb2013-10-27 05:09:12 +0000633A function definition contains a list of basic blocks, forming the CFG (Control
634Flow Graph) for the function. Each basic block may optionally start with a label
635(giving the basic block a symbol table entry), contains a list of instructions,
636and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
637function return). If an explicit label is not provided, a block is assigned an
638implicit numbered label, using the next value from the same counter as used for
639unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
640entry block does not have an explicit label, it will be assigned label "%0",
641then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000642
643The first basic block in a function is special in two ways: it is
644immediately executed on entrance to the function, and it is not allowed
645to have predecessor basic blocks (i.e. there can not be any branches to
646the entry block of a function). Because the block can have no
647predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
648
649LLVM allows an explicit section to be specified for functions. If the
650target supports it, it will emit functions to the section specified.
651
652An explicit alignment may be specified for a function. If not present,
653or if the alignment is set to zero, the alignment of the function is set
654by the target to whatever it feels convenient. If an explicit alignment
655is specified, the function is forced to have at least that much
656alignment. All alignments must be a power of 2.
657
658If the ``unnamed_addr`` attribute is given, the address is know to not
659be significant and two identical functions can be merged.
660
661Syntax::
662
Nico Rieck7157bb72014-01-14 15:22:47 +0000663 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000664 [cconv] [ret attrs]
665 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000666 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000667 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000668
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000669.. _langref_aliases:
670
Sean Silvab084af42012-12-07 10:36:55 +0000671Aliases
672-------
673
674Aliases act as "second name" for the aliasee value (which can be either
675function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000676Aliases may have an optional :ref:`linkage type <linkage>`, an optional
677:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
678<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000683
Rafael Espindola65785492013-10-07 13:57:59 +0000684The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000685``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000686``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000687might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000688alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000689
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000690Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
691the aliasee.
692
693The aliasee must be a definition.
694
Sean Silvab084af42012-12-07 10:36:55 +0000695.. _namedmetadatastructure:
696
697Named Metadata
698--------------
699
700Named metadata is a collection of metadata. :ref:`Metadata
701nodes <metadata>` (but not metadata strings) are the only valid
702operands for a named metadata.
703
704Syntax::
705
706 ; Some unnamed metadata nodes, which are referenced by the named metadata.
707 !0 = metadata !{metadata !"zero"}
708 !1 = metadata !{metadata !"one"}
709 !2 = metadata !{metadata !"two"}
710 ; A named metadata.
711 !name = !{!0, !1, !2}
712
713.. _paramattrs:
714
715Parameter Attributes
716--------------------
717
718The return type and each parameter of a function type may have a set of
719*parameter attributes* associated with them. Parameter attributes are
720used to communicate additional information about the result or
721parameters of a function. Parameter attributes are considered to be part
722of the function, not of the function type, so functions with different
723parameter attributes can have the same function type.
724
725Parameter attributes are simple keywords that follow the type specified.
726If multiple parameter attributes are needed, they are space separated.
727For example:
728
729.. code-block:: llvm
730
731 declare i32 @printf(i8* noalias nocapture, ...)
732 declare i32 @atoi(i8 zeroext)
733 declare signext i8 @returns_signed_char()
734
735Note that any attributes for the function result (``nounwind``,
736``readonly``) come immediately after the argument list.
737
738Currently, only the following parameter attributes are defined:
739
740``zeroext``
741 This indicates to the code generator that the parameter or return
742 value should be zero-extended to the extent required by the target's
743 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
744 the caller (for a parameter) or the callee (for a return value).
745``signext``
746 This indicates to the code generator that the parameter or return
747 value should be sign-extended to the extent required by the target's
748 ABI (which is usually 32-bits) by the caller (for a parameter) or
749 the callee (for a return value).
750``inreg``
751 This indicates that this parameter or return value should be treated
752 in a special target-dependent fashion during while emitting code for
753 a function call or return (usually, by putting it in a register as
754 opposed to memory, though some targets use it to distinguish between
755 two different kinds of registers). Use of this attribute is
756 target-specific.
757``byval``
758 This indicates that the pointer parameter should really be passed by
759 value to the function. The attribute implies that a hidden copy of
760 the pointee is made between the caller and the callee, so the callee
761 is unable to modify the value in the caller. This attribute is only
762 valid on LLVM pointer arguments. It is generally used to pass
763 structs and arrays by value, but is also valid on pointers to
764 scalars. The copy is considered to belong to the caller not the
765 callee (for example, ``readonly`` functions should not write to
766 ``byval`` parameters). This is not a valid attribute for return
767 values.
768
769 The byval attribute also supports specifying an alignment with the
770 align attribute. It indicates the alignment of the stack slot to
771 form and the known alignment of the pointer specified to the call
772 site. If the alignment is not specified, then the code generator
773 makes a target-specific assumption.
774
Reid Klecknera534a382013-12-19 02:14:12 +0000775.. _attr_inalloca:
776
777``inalloca``
778
779.. Warning:: This feature is unstable and not fully implemented.
780
Reid Kleckner60d3a832014-01-16 22:59:24 +0000781 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000782 address of outgoing stack arguments. An ``inalloca`` argument must
783 be a pointer to stack memory produced by an ``alloca`` instruction.
784 The alloca, or argument allocation, must also be tagged with the
785 inalloca keyword. Only the past argument may have the ``inalloca``
786 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000787
Reid Kleckner436c42e2014-01-17 23:58:17 +0000788 An argument allocation may be used by a call at most once because
789 the call may deallocate it. The ``inalloca`` attribute cannot be
790 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000791 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
792 ``inalloca`` attribute also disables LLVM's implicit lowering of
793 large aggregate return values, which means that frontend authors
794 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000795
Reid Kleckner60d3a832014-01-16 22:59:24 +0000796 When the call site is reached, the argument allocation must have
797 been the most recent stack allocation that is still live, or the
798 results are undefined. It is possible to allocate additional stack
799 space after an argument allocation and before its call site, but it
800 must be cleared off with :ref:`llvm.stackrestore
801 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000802
803 See :doc:`InAlloca` for more information on how to use this
804 attribute.
805
Sean Silvab084af42012-12-07 10:36:55 +0000806``sret``
807 This indicates that the pointer parameter specifies the address of a
808 structure that is the return value of the function in the source
809 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000810 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000811 not to trap and to be properly aligned. This may only be applied to
812 the first parameter. This is not a valid attribute for return
813 values.
814``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000815 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000816 the argument or return value do not alias pointer values which are
817 not *based* on it, ignoring certain "irrelevant" dependencies. For a
818 call to the parent function, dependencies between memory references
819 from before or after the call and from those during the call are
820 "irrelevant" to the ``noalias`` keyword for the arguments and return
821 value used in that call. The caller shares the responsibility with
822 the callee for ensuring that these requirements are met. For further
823 details, please see the discussion of the NoAlias response in `alias
824 analysis <AliasAnalysis.html#MustMayNo>`_.
825
826 Note that this definition of ``noalias`` is intentionally similar
827 to the definition of ``restrict`` in C99 for function arguments,
828 though it is slightly weaker.
829
830 For function return values, C99's ``restrict`` is not meaningful,
831 while LLVM's ``noalias`` is.
832``nocapture``
833 This indicates that the callee does not make any copies of the
834 pointer that outlive the callee itself. This is not a valid
835 attribute for return values.
836
837.. _nest:
838
839``nest``
840 This indicates that the pointer parameter can be excised using the
841 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000842 attribute for return values and can only be applied to one parameter.
843
844``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000845 This indicates that the function always returns the argument as its return
846 value. This is an optimization hint to the code generator when generating
847 the caller, allowing tail call optimization and omission of register saves
848 and restores in some cases; it is not checked or enforced when generating
849 the callee. The parameter and the function return type must be valid
850 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
851 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000852
853.. _gc:
854
855Garbage Collector Names
856-----------------------
857
858Each function may specify a garbage collector name, which is simply a
859string:
860
861.. code-block:: llvm
862
863 define void @f() gc "name" { ... }
864
865The compiler declares the supported values of *name*. Specifying a
866collector which will cause the compiler to alter its output in order to
867support the named garbage collection algorithm.
868
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000869.. _prefixdata:
870
871Prefix Data
872-----------
873
874Prefix data is data associated with a function which the code generator
875will emit immediately before the function body. The purpose of this feature
876is to allow frontends to associate language-specific runtime metadata with
877specific functions and make it available through the function pointer while
878still allowing the function pointer to be called. To access the data for a
879given function, a program may bitcast the function pointer to a pointer to
880the constant's type. This implies that the IR symbol points to the start
881of the prefix data.
882
883To maintain the semantics of ordinary function calls, the prefix data must
884have a particular format. Specifically, it must begin with a sequence of
885bytes which decode to a sequence of machine instructions, valid for the
886module's target, which transfer control to the point immediately succeeding
887the prefix data, without performing any other visible action. This allows
888the inliner and other passes to reason about the semantics of the function
889definition without needing to reason about the prefix data. Obviously this
890makes the format of the prefix data highly target dependent.
891
Peter Collingbourne213358a2013-09-23 20:14:21 +0000892Prefix data is laid out as if it were an initializer for a global variable
893of the prefix data's type. No padding is automatically placed between the
894prefix data and the function body. If padding is required, it must be part
895of the prefix data.
896
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000897A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
898which encodes the ``nop`` instruction:
899
900.. code-block:: llvm
901
902 define void @f() prefix i8 144 { ... }
903
904Generally prefix data can be formed by encoding a relative branch instruction
905which skips the metadata, as in this example of valid prefix data for the
906x86_64 architecture, where the first two bytes encode ``jmp .+10``:
907
908.. code-block:: llvm
909
910 %0 = type <{ i8, i8, i8* }>
911
912 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
913
914A function may have prefix data but no body. This has similar semantics
915to the ``available_externally`` linkage in that the data may be used by the
916optimizers but will not be emitted in the object file.
917
Bill Wendling63b88192013-02-06 06:52:58 +0000918.. _attrgrp:
919
920Attribute Groups
921----------------
922
923Attribute groups are groups of attributes that are referenced by objects within
924the IR. They are important for keeping ``.ll`` files readable, because a lot of
925functions will use the same set of attributes. In the degenerative case of a
926``.ll`` file that corresponds to a single ``.c`` file, the single attribute
927group will capture the important command line flags used to build that file.
928
929An attribute group is a module-level object. To use an attribute group, an
930object references the attribute group's ID (e.g. ``#37``). An object may refer
931to more than one attribute group. In that situation, the attributes from the
932different groups are merged.
933
934Here is an example of attribute groups for a function that should always be
935inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
936
937.. code-block:: llvm
938
939 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000940 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000941
942 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000943 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000944
945 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
946 define void @f() #0 #1 { ... }
947
Sean Silvab084af42012-12-07 10:36:55 +0000948.. _fnattrs:
949
950Function Attributes
951-------------------
952
953Function attributes are set to communicate additional information about
954a function. Function attributes are considered to be part of the
955function, not of the function type, so functions with different function
956attributes can have the same function type.
957
958Function attributes are simple keywords that follow the type specified.
959If multiple attributes are needed, they are space separated. For
960example:
961
962.. code-block:: llvm
963
964 define void @f() noinline { ... }
965 define void @f() alwaysinline { ... }
966 define void @f() alwaysinline optsize { ... }
967 define void @f() optsize { ... }
968
Sean Silvab084af42012-12-07 10:36:55 +0000969``alignstack(<n>)``
970 This attribute indicates that, when emitting the prologue and
971 epilogue, the backend should forcibly align the stack pointer.
972 Specify the desired alignment, which must be a power of two, in
973 parentheses.
974``alwaysinline``
975 This attribute indicates that the inliner should attempt to inline
976 this function into callers whenever possible, ignoring any active
977 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000978``builtin``
979 This indicates that the callee function at a call site should be
980 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000981 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000982 direct calls to functions which are declared with the ``nobuiltin``
983 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000984``cold``
985 This attribute indicates that this function is rarely called. When
986 computing edge weights, basic blocks post-dominated by a cold
987 function call are also considered to be cold; and, thus, given low
988 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000989``inlinehint``
990 This attribute indicates that the source code contained a hint that
991 inlining this function is desirable (such as the "inline" keyword in
992 C/C++). It is just a hint; it imposes no requirements on the
993 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000994``minsize``
995 This attribute suggests that optimization passes and code generator
996 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000997 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000998 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000999``naked``
1000 This attribute disables prologue / epilogue emission for the
1001 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001002``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001003 This indicates that the callee function at a call site is not recognized as
1004 a built-in function. LLVM will retain the original call and not replace it
1005 with equivalent code based on the semantics of the built-in function, unless
1006 the call site uses the ``builtin`` attribute. This is valid at call sites
1007 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001008``noduplicate``
1009 This attribute indicates that calls to the function cannot be
1010 duplicated. A call to a ``noduplicate`` function may be moved
1011 within its parent function, but may not be duplicated within
1012 its parent function.
1013
1014 A function containing a ``noduplicate`` call may still
1015 be an inlining candidate, provided that the call is not
1016 duplicated by inlining. That implies that the function has
1017 internal linkage and only has one call site, so the original
1018 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001019``noimplicitfloat``
1020 This attributes disables implicit floating point instructions.
1021``noinline``
1022 This attribute indicates that the inliner should never inline this
1023 function in any situation. This attribute may not be used together
1024 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001025``nonlazybind``
1026 This attribute suppresses lazy symbol binding for the function. This
1027 may make calls to the function faster, at the cost of extra program
1028 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001029``noredzone``
1030 This attribute indicates that the code generator should not use a
1031 red zone, even if the target-specific ABI normally permits it.
1032``noreturn``
1033 This function attribute indicates that the function never returns
1034 normally. This produces undefined behavior at runtime if the
1035 function ever does dynamically return.
1036``nounwind``
1037 This function attribute indicates that the function never returns
1038 with an unwind or exceptional control flow. If the function does
1039 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001040``optnone``
1041 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001042 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001043 exception of interprocedural optimization passes.
1044 This attribute cannot be used together with the ``alwaysinline``
1045 attribute; this attribute is also incompatible
1046 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001047
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001048 This attribute requires the ``noinline`` attribute to be specified on
1049 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001050 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001051 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001052``optsize``
1053 This attribute suggests that optimization passes and code generator
1054 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001055 and otherwise do optimizations specifically to reduce code size as
1056 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001057``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001058 On a function, this attribute indicates that the function computes its
1059 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001060 without dereferencing any pointer arguments or otherwise accessing
1061 any mutable state (e.g. memory, control registers, etc) visible to
1062 caller functions. It does not write through any pointer arguments
1063 (including ``byval`` arguments) and never changes any state visible
1064 to callers. This means that it cannot unwind exceptions by calling
1065 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001066
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001067 On an argument, this attribute indicates that the function does not
1068 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001069 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001070``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001071 On a function, this attribute indicates that the function does not write
1072 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001073 modify any state (e.g. memory, control registers, etc) visible to
1074 caller functions. It may dereference pointer arguments and read
1075 state that may be set in the caller. A readonly function always
1076 returns the same value (or unwinds an exception identically) when
1077 called with the same set of arguments and global state. It cannot
1078 unwind an exception by calling the ``C++`` exception throwing
1079 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001080
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001081 On an argument, this attribute indicates that the function does not write
1082 through this pointer argument, even though it may write to the memory that
1083 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001084``returns_twice``
1085 This attribute indicates that this function can return twice. The C
1086 ``setjmp`` is an example of such a function. The compiler disables
1087 some optimizations (like tail calls) in the caller of these
1088 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001089``sanitize_address``
1090 This attribute indicates that AddressSanitizer checks
1091 (dynamic address safety analysis) are enabled for this function.
1092``sanitize_memory``
1093 This attribute indicates that MemorySanitizer checks (dynamic detection
1094 of accesses to uninitialized memory) are enabled for this function.
1095``sanitize_thread``
1096 This attribute indicates that ThreadSanitizer checks
1097 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001098``ssp``
1099 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001100 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001101 placed on the stack before the local variables that's checked upon
1102 return from the function to see if it has been overwritten. A
1103 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001104 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001105
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001106 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1107 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1108 - Calls to alloca() with variable sizes or constant sizes greater than
1109 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001110
Josh Magee24c7f062014-02-01 01:36:16 +00001111 Variables that are identified as requiring a protector will be arranged
1112 on the stack such that they are adjacent to the stack protector guard.
1113
Sean Silvab084af42012-12-07 10:36:55 +00001114 If a function that has an ``ssp`` attribute is inlined into a
1115 function that doesn't have an ``ssp`` attribute, then the resulting
1116 function will have an ``ssp`` attribute.
1117``sspreq``
1118 This attribute indicates that the function should *always* emit a
1119 stack smashing protector. This overrides the ``ssp`` function
1120 attribute.
1121
Josh Magee24c7f062014-02-01 01:36:16 +00001122 Variables that are identified as requiring a protector will be arranged
1123 on the stack such that they are adjacent to the stack protector guard.
1124 The specific layout rules are:
1125
1126 #. Large arrays and structures containing large arrays
1127 (``>= ssp-buffer-size``) are closest to the stack protector.
1128 #. Small arrays and structures containing small arrays
1129 (``< ssp-buffer-size``) are 2nd closest to the protector.
1130 #. Variables that have had their address taken are 3rd closest to the
1131 protector.
1132
Sean Silvab084af42012-12-07 10:36:55 +00001133 If a function that has an ``sspreq`` attribute is inlined into a
1134 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001135 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1136 an ``sspreq`` attribute.
1137``sspstrong``
1138 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001139 protector. This attribute causes a strong heuristic to be used when
1140 determining if a function needs stack protectors. The strong heuristic
1141 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001142
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001143 - Arrays of any size and type
1144 - Aggregates containing an array of any size and type.
1145 - Calls to alloca().
1146 - Local variables that have had their address taken.
1147
Josh Magee24c7f062014-02-01 01:36:16 +00001148 Variables that are identified as requiring a protector will be arranged
1149 on the stack such that they are adjacent to the stack protector guard.
1150 The specific layout rules are:
1151
1152 #. Large arrays and structures containing large arrays
1153 (``>= ssp-buffer-size``) are closest to the stack protector.
1154 #. Small arrays and structures containing small arrays
1155 (``< ssp-buffer-size``) are 2nd closest to the protector.
1156 #. Variables that have had their address taken are 3rd closest to the
1157 protector.
1158
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001159 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001160
1161 If a function that has an ``sspstrong`` attribute is inlined into a
1162 function that doesn't have an ``sspstrong`` attribute, then the
1163 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001164``uwtable``
1165 This attribute indicates that the ABI being targeted requires that
1166 an unwind table entry be produce for this function even if we can
1167 show that no exceptions passes by it. This is normally the case for
1168 the ELF x86-64 abi, but it can be disabled for some compilation
1169 units.
Sean Silvab084af42012-12-07 10:36:55 +00001170
1171.. _moduleasm:
1172
1173Module-Level Inline Assembly
1174----------------------------
1175
1176Modules may contain "module-level inline asm" blocks, which corresponds
1177to the GCC "file scope inline asm" blocks. These blocks are internally
1178concatenated by LLVM and treated as a single unit, but may be separated
1179in the ``.ll`` file if desired. The syntax is very simple:
1180
1181.. code-block:: llvm
1182
1183 module asm "inline asm code goes here"
1184 module asm "more can go here"
1185
1186The strings can contain any character by escaping non-printable
1187characters. The escape sequence used is simply "\\xx" where "xx" is the
1188two digit hex code for the number.
1189
1190The inline asm code is simply printed to the machine code .s file when
1191assembly code is generated.
1192
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001193.. _langref_datalayout:
1194
Sean Silvab084af42012-12-07 10:36:55 +00001195Data Layout
1196-----------
1197
1198A module may specify a target specific data layout string that specifies
1199how data is to be laid out in memory. The syntax for the data layout is
1200simply:
1201
1202.. code-block:: llvm
1203
1204 target datalayout = "layout specification"
1205
1206The *layout specification* consists of a list of specifications
1207separated by the minus sign character ('-'). Each specification starts
1208with a letter and may include other information after the letter to
1209define some aspect of the data layout. The specifications accepted are
1210as follows:
1211
1212``E``
1213 Specifies that the target lays out data in big-endian form. That is,
1214 the bits with the most significance have the lowest address
1215 location.
1216``e``
1217 Specifies that the target lays out data in little-endian form. That
1218 is, the bits with the least significance have the lowest address
1219 location.
1220``S<size>``
1221 Specifies the natural alignment of the stack in bits. Alignment
1222 promotion of stack variables is limited to the natural stack
1223 alignment to avoid dynamic stack realignment. The stack alignment
1224 must be a multiple of 8-bits. If omitted, the natural stack
1225 alignment defaults to "unspecified", which does not prevent any
1226 alignment promotions.
1227``p[n]:<size>:<abi>:<pref>``
1228 This specifies the *size* of a pointer and its ``<abi>`` and
1229 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001230 bits. The address space, ``n`` is optional, and if not specified,
1231 denotes the default address space 0. The value of ``n`` must be
1232 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001233``i<size>:<abi>:<pref>``
1234 This specifies the alignment for an integer type of a given bit
1235 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1236``v<size>:<abi>:<pref>``
1237 This specifies the alignment for a vector type of a given bit
1238 ``<size>``.
1239``f<size>:<abi>:<pref>``
1240 This specifies the alignment for a floating point type of a given bit
1241 ``<size>``. Only values of ``<size>`` that are supported by the target
1242 will work. 32 (float) and 64 (double) are supported on all targets; 80
1243 or 128 (different flavors of long double) are also supported on some
1244 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001245``a:<abi>:<pref>``
1246 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001247``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001248 If present, specifies that llvm names are mangled in the output. The
1249 options are
1250
1251 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1252 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1253 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1254 symbols get a ``_`` prefix.
1255 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1256 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001257``n<size1>:<size2>:<size3>...``
1258 This specifies a set of native integer widths for the target CPU in
1259 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1260 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1261 this set are considered to support most general arithmetic operations
1262 efficiently.
1263
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001264On every specification that takes a ``<abi>:<pref>``, specifying the
1265``<pref>`` alignment is optional. If omitted, the preceding ``:``
1266should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1267
Sean Silvab084af42012-12-07 10:36:55 +00001268When constructing the data layout for a given target, LLVM starts with a
1269default set of specifications which are then (possibly) overridden by
1270the specifications in the ``datalayout`` keyword. The default
1271specifications are given in this list:
1272
1273- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001274- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1275- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1276 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001277- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001278- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1279- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1280- ``i16:16:16`` - i16 is 16-bit aligned
1281- ``i32:32:32`` - i32 is 32-bit aligned
1282- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1283 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001284- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001285- ``f32:32:32`` - float is 32-bit aligned
1286- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001287- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001288- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1289- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001290- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001291
1292When LLVM is determining the alignment for a given type, it uses the
1293following rules:
1294
1295#. If the type sought is an exact match for one of the specifications,
1296 that specification is used.
1297#. If no match is found, and the type sought is an integer type, then
1298 the smallest integer type that is larger than the bitwidth of the
1299 sought type is used. If none of the specifications are larger than
1300 the bitwidth then the largest integer type is used. For example,
1301 given the default specifications above, the i7 type will use the
1302 alignment of i8 (next largest) while both i65 and i256 will use the
1303 alignment of i64 (largest specified).
1304#. If no match is found, and the type sought is a vector type, then the
1305 largest vector type that is smaller than the sought vector type will
1306 be used as a fall back. This happens because <128 x double> can be
1307 implemented in terms of 64 <2 x double>, for example.
1308
1309The function of the data layout string may not be what you expect.
1310Notably, this is not a specification from the frontend of what alignment
1311the code generator should use.
1312
1313Instead, if specified, the target data layout is required to match what
1314the ultimate *code generator* expects. This string is used by the
1315mid-level optimizers to improve code, and this only works if it matches
1316what the ultimate code generator uses. If you would like to generate IR
1317that does not embed this target-specific detail into the IR, then you
1318don't have to specify the string. This will disable some optimizations
1319that require precise layout information, but this also prevents those
1320optimizations from introducing target specificity into the IR.
1321
Bill Wendling5cc90842013-10-18 23:41:25 +00001322.. _langref_triple:
1323
1324Target Triple
1325-------------
1326
1327A module may specify a target triple string that describes the target
1328host. The syntax for the target triple is simply:
1329
1330.. code-block:: llvm
1331
1332 target triple = "x86_64-apple-macosx10.7.0"
1333
1334The *target triple* string consists of a series of identifiers delimited
1335by the minus sign character ('-'). The canonical forms are:
1336
1337::
1338
1339 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1340 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1341
1342This information is passed along to the backend so that it generates
1343code for the proper architecture. It's possible to override this on the
1344command line with the ``-mtriple`` command line option.
1345
Sean Silvab084af42012-12-07 10:36:55 +00001346.. _pointeraliasing:
1347
1348Pointer Aliasing Rules
1349----------------------
1350
1351Any memory access must be done through a pointer value associated with
1352an address range of the memory access, otherwise the behavior is
1353undefined. Pointer values are associated with address ranges according
1354to the following rules:
1355
1356- A pointer value is associated with the addresses associated with any
1357 value it is *based* on.
1358- An address of a global variable is associated with the address range
1359 of the variable's storage.
1360- The result value of an allocation instruction is associated with the
1361 address range of the allocated storage.
1362- A null pointer in the default address-space is associated with no
1363 address.
1364- An integer constant other than zero or a pointer value returned from
1365 a function not defined within LLVM may be associated with address
1366 ranges allocated through mechanisms other than those provided by
1367 LLVM. Such ranges shall not overlap with any ranges of addresses
1368 allocated by mechanisms provided by LLVM.
1369
1370A pointer value is *based* on another pointer value according to the
1371following rules:
1372
1373- A pointer value formed from a ``getelementptr`` operation is *based*
1374 on the first operand of the ``getelementptr``.
1375- The result value of a ``bitcast`` is *based* on the operand of the
1376 ``bitcast``.
1377- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1378 values that contribute (directly or indirectly) to the computation of
1379 the pointer's value.
1380- The "*based* on" relationship is transitive.
1381
1382Note that this definition of *"based"* is intentionally similar to the
1383definition of *"based"* in C99, though it is slightly weaker.
1384
1385LLVM IR does not associate types with memory. The result type of a
1386``load`` merely indicates the size and alignment of the memory from
1387which to load, as well as the interpretation of the value. The first
1388operand type of a ``store`` similarly only indicates the size and
1389alignment of the store.
1390
1391Consequently, type-based alias analysis, aka TBAA, aka
1392``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1393:ref:`Metadata <metadata>` may be used to encode additional information
1394which specialized optimization passes may use to implement type-based
1395alias analysis.
1396
1397.. _volatile:
1398
1399Volatile Memory Accesses
1400------------------------
1401
1402Certain memory accesses, such as :ref:`load <i_load>`'s,
1403:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1404marked ``volatile``. The optimizers must not change the number of
1405volatile operations or change their order of execution relative to other
1406volatile operations. The optimizers *may* change the order of volatile
1407operations relative to non-volatile operations. This is not Java's
1408"volatile" and has no cross-thread synchronization behavior.
1409
Andrew Trick89fc5a62013-01-30 21:19:35 +00001410IR-level volatile loads and stores cannot safely be optimized into
1411llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1412flagged volatile. Likewise, the backend should never split or merge
1413target-legal volatile load/store instructions.
1414
Andrew Trick7e6f9282013-01-31 00:49:39 +00001415.. admonition:: Rationale
1416
1417 Platforms may rely on volatile loads and stores of natively supported
1418 data width to be executed as single instruction. For example, in C
1419 this holds for an l-value of volatile primitive type with native
1420 hardware support, but not necessarily for aggregate types. The
1421 frontend upholds these expectations, which are intentionally
1422 unspecified in the IR. The rules above ensure that IR transformation
1423 do not violate the frontend's contract with the language.
1424
Sean Silvab084af42012-12-07 10:36:55 +00001425.. _memmodel:
1426
1427Memory Model for Concurrent Operations
1428--------------------------------------
1429
1430The LLVM IR does not define any way to start parallel threads of
1431execution or to register signal handlers. Nonetheless, there are
1432platform-specific ways to create them, and we define LLVM IR's behavior
1433in their presence. This model is inspired by the C++0x memory model.
1434
1435For a more informal introduction to this model, see the :doc:`Atomics`.
1436
1437We define a *happens-before* partial order as the least partial order
1438that
1439
1440- Is a superset of single-thread program order, and
1441- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1442 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1443 techniques, like pthread locks, thread creation, thread joining,
1444 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1445 Constraints <ordering>`).
1446
1447Note that program order does not introduce *happens-before* edges
1448between a thread and signals executing inside that thread.
1449
1450Every (defined) read operation (load instructions, memcpy, atomic
1451loads/read-modify-writes, etc.) R reads a series of bytes written by
1452(defined) write operations (store instructions, atomic
1453stores/read-modify-writes, memcpy, etc.). For the purposes of this
1454section, initialized globals are considered to have a write of the
1455initializer which is atomic and happens before any other read or write
1456of the memory in question. For each byte of a read R, R\ :sub:`byte`
1457may see any write to the same byte, except:
1458
1459- If write\ :sub:`1` happens before write\ :sub:`2`, and
1460 write\ :sub:`2` happens before R\ :sub:`byte`, then
1461 R\ :sub:`byte` does not see write\ :sub:`1`.
1462- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1463 R\ :sub:`byte` does not see write\ :sub:`3`.
1464
1465Given that definition, R\ :sub:`byte` is defined as follows:
1466
1467- If R is volatile, the result is target-dependent. (Volatile is
1468 supposed to give guarantees which can support ``sig_atomic_t`` in
1469 C/C++, and may be used for accesses to addresses which do not behave
1470 like normal memory. It does not generally provide cross-thread
1471 synchronization.)
1472- Otherwise, if there is no write to the same byte that happens before
1473 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1474- Otherwise, if R\ :sub:`byte` may see exactly one write,
1475 R\ :sub:`byte` returns the value written by that write.
1476- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1477 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1478 Memory Ordering Constraints <ordering>` section for additional
1479 constraints on how the choice is made.
1480- Otherwise R\ :sub:`byte` returns ``undef``.
1481
1482R returns the value composed of the series of bytes it read. This
1483implies that some bytes within the value may be ``undef`` **without**
1484the entire value being ``undef``. Note that this only defines the
1485semantics of the operation; it doesn't mean that targets will emit more
1486than one instruction to read the series of bytes.
1487
1488Note that in cases where none of the atomic intrinsics are used, this
1489model places only one restriction on IR transformations on top of what
1490is required for single-threaded execution: introducing a store to a byte
1491which might not otherwise be stored is not allowed in general.
1492(Specifically, in the case where another thread might write to and read
1493from an address, introducing a store can change a load that may see
1494exactly one write into a load that may see multiple writes.)
1495
1496.. _ordering:
1497
1498Atomic Memory Ordering Constraints
1499----------------------------------
1500
1501Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1502:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1503:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001504ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001505the same address they *synchronize with*. These semantics are borrowed
1506from Java and C++0x, but are somewhat more colloquial. If these
1507descriptions aren't precise enough, check those specs (see spec
1508references in the :doc:`atomics guide <Atomics>`).
1509:ref:`fence <i_fence>` instructions treat these orderings somewhat
1510differently since they don't take an address. See that instruction's
1511documentation for details.
1512
1513For a simpler introduction to the ordering constraints, see the
1514:doc:`Atomics`.
1515
1516``unordered``
1517 The set of values that can be read is governed by the happens-before
1518 partial order. A value cannot be read unless some operation wrote
1519 it. This is intended to provide a guarantee strong enough to model
1520 Java's non-volatile shared variables. This ordering cannot be
1521 specified for read-modify-write operations; it is not strong enough
1522 to make them atomic in any interesting way.
1523``monotonic``
1524 In addition to the guarantees of ``unordered``, there is a single
1525 total order for modifications by ``monotonic`` operations on each
1526 address. All modification orders must be compatible with the
1527 happens-before order. There is no guarantee that the modification
1528 orders can be combined to a global total order for the whole program
1529 (and this often will not be possible). The read in an atomic
1530 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1531 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1532 order immediately before the value it writes. If one atomic read
1533 happens before another atomic read of the same address, the later
1534 read must see the same value or a later value in the address's
1535 modification order. This disallows reordering of ``monotonic`` (or
1536 stronger) operations on the same address. If an address is written
1537 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1538 read that address repeatedly, the other threads must eventually see
1539 the write. This corresponds to the C++0x/C1x
1540 ``memory_order_relaxed``.
1541``acquire``
1542 In addition to the guarantees of ``monotonic``, a
1543 *synchronizes-with* edge may be formed with a ``release`` operation.
1544 This is intended to model C++'s ``memory_order_acquire``.
1545``release``
1546 In addition to the guarantees of ``monotonic``, if this operation
1547 writes a value which is subsequently read by an ``acquire``
1548 operation, it *synchronizes-with* that operation. (This isn't a
1549 complete description; see the C++0x definition of a release
1550 sequence.) This corresponds to the C++0x/C1x
1551 ``memory_order_release``.
1552``acq_rel`` (acquire+release)
1553 Acts as both an ``acquire`` and ``release`` operation on its
1554 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1555``seq_cst`` (sequentially consistent)
1556 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1557 operation which only reads, ``release`` for an operation which only
1558 writes), there is a global total order on all
1559 sequentially-consistent operations on all addresses, which is
1560 consistent with the *happens-before* partial order and with the
1561 modification orders of all the affected addresses. Each
1562 sequentially-consistent read sees the last preceding write to the
1563 same address in this global order. This corresponds to the C++0x/C1x
1564 ``memory_order_seq_cst`` and Java volatile.
1565
1566.. _singlethread:
1567
1568If an atomic operation is marked ``singlethread``, it only *synchronizes
1569with* or participates in modification and seq\_cst total orderings with
1570other operations running in the same thread (for example, in signal
1571handlers).
1572
1573.. _fastmath:
1574
1575Fast-Math Flags
1576---------------
1577
1578LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1579:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1580:ref:`frem <i_frem>`) have the following flags that can set to enable
1581otherwise unsafe floating point operations
1582
1583``nnan``
1584 No NaNs - Allow optimizations to assume the arguments and result are not
1585 NaN. Such optimizations are required to retain defined behavior over
1586 NaNs, but the value of the result is undefined.
1587
1588``ninf``
1589 No Infs - Allow optimizations to assume the arguments and result are not
1590 +/-Inf. Such optimizations are required to retain defined behavior over
1591 +/-Inf, but the value of the result is undefined.
1592
1593``nsz``
1594 No Signed Zeros - Allow optimizations to treat the sign of a zero
1595 argument or result as insignificant.
1596
1597``arcp``
1598 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1599 argument rather than perform division.
1600
1601``fast``
1602 Fast - Allow algebraically equivalent transformations that may
1603 dramatically change results in floating point (e.g. reassociate). This
1604 flag implies all the others.
1605
1606.. _typesystem:
1607
1608Type System
1609===========
1610
1611The LLVM type system is one of the most important features of the
1612intermediate representation. Being typed enables a number of
1613optimizations to be performed on the intermediate representation
1614directly, without having to do extra analyses on the side before the
1615transformation. A strong type system makes it easier to read the
1616generated code and enables novel analyses and transformations that are
1617not feasible to perform on normal three address code representations.
1618
Rafael Espindola08013342013-12-07 19:34:20 +00001619.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001620
Rafael Espindola08013342013-12-07 19:34:20 +00001621Void Type
1622---------
Sean Silvab084af42012-12-07 10:36:55 +00001623
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001624:Overview:
1625
Rafael Espindola08013342013-12-07 19:34:20 +00001626
1627The void type does not represent any value and has no size.
1628
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001629:Syntax:
1630
Rafael Espindola08013342013-12-07 19:34:20 +00001631
1632::
1633
1634 void
Sean Silvab084af42012-12-07 10:36:55 +00001635
1636
Rafael Espindola08013342013-12-07 19:34:20 +00001637.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001638
Rafael Espindola08013342013-12-07 19:34:20 +00001639Function Type
1640-------------
Sean Silvab084af42012-12-07 10:36:55 +00001641
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001642:Overview:
1643
Sean Silvab084af42012-12-07 10:36:55 +00001644
Rafael Espindola08013342013-12-07 19:34:20 +00001645The function type can be thought of as a function signature. It consists of a
1646return type and a list of formal parameter types. The return type of a function
1647type is a void type or first class type --- except for :ref:`label <t_label>`
1648and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001649
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001650:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001651
Rafael Espindola08013342013-12-07 19:34:20 +00001652::
Sean Silvab084af42012-12-07 10:36:55 +00001653
Rafael Espindola08013342013-12-07 19:34:20 +00001654 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001655
Rafael Espindola08013342013-12-07 19:34:20 +00001656...where '``<parameter list>``' is a comma-separated list of type
1657specifiers. Optionally, the parameter list may include a type ``...``, which
1658indicates that the function takes a variable number of arguments. Variable
1659argument functions can access their arguments with the :ref:`variable argument
1660handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1661except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001662
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001663:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001664
Rafael Espindola08013342013-12-07 19:34:20 +00001665+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1666| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1667+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1668| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1669+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1670| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1671+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1672| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1673+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1674
1675.. _t_firstclass:
1676
1677First Class Types
1678-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001679
1680The :ref:`first class <t_firstclass>` types are perhaps the most important.
1681Values of these types are the only ones which can be produced by
1682instructions.
1683
Rafael Espindola08013342013-12-07 19:34:20 +00001684.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001685
Rafael Espindola08013342013-12-07 19:34:20 +00001686Single Value Types
1687^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001688
Rafael Espindola08013342013-12-07 19:34:20 +00001689These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001690
1691.. _t_integer:
1692
1693Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001694""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001695
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001696:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001697
1698The integer type is a very simple type that simply specifies an
1699arbitrary bit width for the integer type desired. Any bit width from 1
1700bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1701
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001702:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001703
1704::
1705
1706 iN
1707
1708The number of bits the integer will occupy is specified by the ``N``
1709value.
1710
1711Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001712*********
Sean Silvab084af42012-12-07 10:36:55 +00001713
1714+----------------+------------------------------------------------+
1715| ``i1`` | a single-bit integer. |
1716+----------------+------------------------------------------------+
1717| ``i32`` | a 32-bit integer. |
1718+----------------+------------------------------------------------+
1719| ``i1942652`` | a really big integer of over 1 million bits. |
1720+----------------+------------------------------------------------+
1721
1722.. _t_floating:
1723
1724Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001725""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001726
1727.. list-table::
1728 :header-rows: 1
1729
1730 * - Type
1731 - Description
1732
1733 * - ``half``
1734 - 16-bit floating point value
1735
1736 * - ``float``
1737 - 32-bit floating point value
1738
1739 * - ``double``
1740 - 64-bit floating point value
1741
1742 * - ``fp128``
1743 - 128-bit floating point value (112-bit mantissa)
1744
1745 * - ``x86_fp80``
1746 - 80-bit floating point value (X87)
1747
1748 * - ``ppc_fp128``
1749 - 128-bit floating point value (two 64-bits)
1750
Reid Kleckner9a16d082014-03-05 02:41:37 +00001751X86_mmx Type
1752""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001753
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001754:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001755
Reid Kleckner9a16d082014-03-05 02:41:37 +00001756The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001757machine. The operations allowed on it are quite limited: parameters and
1758return values, load and store, and bitcast. User-specified MMX
1759instructions are represented as intrinsic or asm calls with arguments
1760and/or results of this type. There are no arrays, vectors or constants
1761of this type.
1762
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001763:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001764
1765::
1766
Reid Kleckner9a16d082014-03-05 02:41:37 +00001767 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001768
Sean Silvab084af42012-12-07 10:36:55 +00001769
Rafael Espindola08013342013-12-07 19:34:20 +00001770.. _t_pointer:
1771
1772Pointer Type
1773""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001774
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001775:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001776
Rafael Espindola08013342013-12-07 19:34:20 +00001777The pointer type is used to specify memory locations. Pointers are
1778commonly used to reference objects in memory.
1779
1780Pointer types may have an optional address space attribute defining the
1781numbered address space where the pointed-to object resides. The default
1782address space is number zero. The semantics of non-zero address spaces
1783are target-specific.
1784
1785Note that LLVM does not permit pointers to void (``void*``) nor does it
1786permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001787
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001788:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001789
1790::
1791
Rafael Espindola08013342013-12-07 19:34:20 +00001792 <type> *
1793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001794:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001795
1796+-------------------------+--------------------------------------------------------------------------------------------------------------+
1797| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1798+-------------------------+--------------------------------------------------------------------------------------------------------------+
1799| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1800+-------------------------+--------------------------------------------------------------------------------------------------------------+
1801| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1802+-------------------------+--------------------------------------------------------------------------------------------------------------+
1803
1804.. _t_vector:
1805
1806Vector Type
1807"""""""""""
1808
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001809:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001810
1811A vector type is a simple derived type that represents a vector of
1812elements. Vector types are used when multiple primitive data are
1813operated in parallel using a single instruction (SIMD). A vector type
1814requires a size (number of elements) and an underlying primitive data
1815type. Vector types are considered :ref:`first class <t_firstclass>`.
1816
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001817:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001818
1819::
1820
1821 < <# elements> x <elementtype> >
1822
1823The number of elements is a constant integer value larger than 0;
1824elementtype may be any integer or floating point type, or a pointer to
1825these types. Vectors of size zero are not allowed.
1826
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001827:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001828
1829+-------------------+--------------------------------------------------+
1830| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1831+-------------------+--------------------------------------------------+
1832| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1833+-------------------+--------------------------------------------------+
1834| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1835+-------------------+--------------------------------------------------+
1836| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1837+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001838
1839.. _t_label:
1840
1841Label Type
1842^^^^^^^^^^
1843
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001844:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001845
1846The label type represents code labels.
1847
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001848:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001849
1850::
1851
1852 label
1853
1854.. _t_metadata:
1855
1856Metadata Type
1857^^^^^^^^^^^^^
1858
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001859:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001860
1861The metadata type represents embedded metadata. No derived types may be
1862created from metadata except for :ref:`function <t_function>` arguments.
1863
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001864:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001865
1866::
1867
1868 metadata
1869
Sean Silvab084af42012-12-07 10:36:55 +00001870.. _t_aggregate:
1871
1872Aggregate Types
1873^^^^^^^^^^^^^^^
1874
1875Aggregate Types are a subset of derived types that can contain multiple
1876member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1877aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1878aggregate types.
1879
1880.. _t_array:
1881
1882Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001883""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001884
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001885:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001886
1887The array type is a very simple derived type that arranges elements
1888sequentially in memory. The array type requires a size (number of
1889elements) and an underlying data type.
1890
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001891:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001892
1893::
1894
1895 [<# elements> x <elementtype>]
1896
1897The number of elements is a constant integer value; ``elementtype`` may
1898be any type with a size.
1899
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001900:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001901
1902+------------------+--------------------------------------+
1903| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1904+------------------+--------------------------------------+
1905| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1906+------------------+--------------------------------------+
1907| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1908+------------------+--------------------------------------+
1909
1910Here are some examples of multidimensional arrays:
1911
1912+-----------------------------+----------------------------------------------------------+
1913| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1914+-----------------------------+----------------------------------------------------------+
1915| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1916+-----------------------------+----------------------------------------------------------+
1917| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1918+-----------------------------+----------------------------------------------------------+
1919
1920There is no restriction on indexing beyond the end of the array implied
1921by a static type (though there are restrictions on indexing beyond the
1922bounds of an allocated object in some cases). This means that
1923single-dimension 'variable sized array' addressing can be implemented in
1924LLVM with a zero length array type. An implementation of 'pascal style
1925arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1926example.
1927
Sean Silvab084af42012-12-07 10:36:55 +00001928.. _t_struct:
1929
1930Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001931""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001932
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001933:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001934
1935The structure type is used to represent a collection of data members
1936together in memory. The elements of a structure may be any type that has
1937a size.
1938
1939Structures in memory are accessed using '``load``' and '``store``' by
1940getting a pointer to a field with the '``getelementptr``' instruction.
1941Structures in registers are accessed using the '``extractvalue``' and
1942'``insertvalue``' instructions.
1943
1944Structures may optionally be "packed" structures, which indicate that
1945the alignment of the struct is one byte, and that there is no padding
1946between the elements. In non-packed structs, padding between field types
1947is inserted as defined by the DataLayout string in the module, which is
1948required to match what the underlying code generator expects.
1949
1950Structures can either be "literal" or "identified". A literal structure
1951is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1952identified types are always defined at the top level with a name.
1953Literal types are uniqued by their contents and can never be recursive
1954or opaque since there is no way to write one. Identified types can be
1955recursive, can be opaqued, and are never uniqued.
1956
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001957:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001958
1959::
1960
1961 %T1 = type { <type list> } ; Identified normal struct type
1962 %T2 = type <{ <type list> }> ; Identified packed struct type
1963
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001964:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001965
1966+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1967| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1968+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001969| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001970+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1971| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1972+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1973
1974.. _t_opaque:
1975
1976Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001977""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001978
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001979:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001980
1981Opaque structure types are used to represent named structure types that
1982do not have a body specified. This corresponds (for example) to the C
1983notion of a forward declared structure.
1984
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001985:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001986
1987::
1988
1989 %X = type opaque
1990 %52 = type opaque
1991
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001992:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001993
1994+--------------+-------------------+
1995| ``opaque`` | An opaque type. |
1996+--------------+-------------------+
1997
Sean Silvab084af42012-12-07 10:36:55 +00001998Constants
1999=========
2000
2001LLVM has several different basic types of constants. This section
2002describes them all and their syntax.
2003
2004Simple Constants
2005----------------
2006
2007**Boolean constants**
2008 The two strings '``true``' and '``false``' are both valid constants
2009 of the ``i1`` type.
2010**Integer constants**
2011 Standard integers (such as '4') are constants of the
2012 :ref:`integer <t_integer>` type. Negative numbers may be used with
2013 integer types.
2014**Floating point constants**
2015 Floating point constants use standard decimal notation (e.g.
2016 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2017 hexadecimal notation (see below). The assembler requires the exact
2018 decimal value of a floating-point constant. For example, the
2019 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2020 decimal in binary. Floating point constants must have a :ref:`floating
2021 point <t_floating>` type.
2022**Null pointer constants**
2023 The identifier '``null``' is recognized as a null pointer constant
2024 and must be of :ref:`pointer type <t_pointer>`.
2025
2026The one non-intuitive notation for constants is the hexadecimal form of
2027floating point constants. For example, the form
2028'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2029than) '``double 4.5e+15``'. The only time hexadecimal floating point
2030constants are required (and the only time that they are generated by the
2031disassembler) is when a floating point constant must be emitted but it
2032cannot be represented as a decimal floating point number in a reasonable
2033number of digits. For example, NaN's, infinities, and other special
2034values are represented in their IEEE hexadecimal format so that assembly
2035and disassembly do not cause any bits to change in the constants.
2036
2037When using the hexadecimal form, constants of types half, float, and
2038double are represented using the 16-digit form shown above (which
2039matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002040must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002041precision, respectively. Hexadecimal format is always used for long
2042double, and there are three forms of long double. The 80-bit format used
2043by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2044128-bit format used by PowerPC (two adjacent doubles) is represented by
2045``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002046represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2047will only work if they match the long double format on your target.
2048The IEEE 16-bit format (half precision) is represented by ``0xH``
2049followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2050(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002051
Reid Kleckner9a16d082014-03-05 02:41:37 +00002052There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002053
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002054.. _complexconstants:
2055
Sean Silvab084af42012-12-07 10:36:55 +00002056Complex Constants
2057-----------------
2058
2059Complex constants are a (potentially recursive) combination of simple
2060constants and smaller complex constants.
2061
2062**Structure constants**
2063 Structure constants are represented with notation similar to
2064 structure type definitions (a comma separated list of elements,
2065 surrounded by braces (``{}``)). For example:
2066 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2067 "``@G = external global i32``". Structure constants must have
2068 :ref:`structure type <t_struct>`, and the number and types of elements
2069 must match those specified by the type.
2070**Array constants**
2071 Array constants are represented with notation similar to array type
2072 definitions (a comma separated list of elements, surrounded by
2073 square brackets (``[]``)). For example:
2074 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2075 :ref:`array type <t_array>`, and the number and types of elements must
2076 match those specified by the type.
2077**Vector constants**
2078 Vector constants are represented with notation similar to vector
2079 type definitions (a comma separated list of elements, surrounded by
2080 less-than/greater-than's (``<>``)). For example:
2081 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2082 must have :ref:`vector type <t_vector>`, and the number and types of
2083 elements must match those specified by the type.
2084**Zero initialization**
2085 The string '``zeroinitializer``' can be used to zero initialize a
2086 value to zero of *any* type, including scalar and
2087 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2088 having to print large zero initializers (e.g. for large arrays) and
2089 is always exactly equivalent to using explicit zero initializers.
2090**Metadata node**
2091 A metadata node is a structure-like constant with :ref:`metadata
2092 type <t_metadata>`. For example:
2093 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2094 constants that are meant to be interpreted as part of the
2095 instruction stream, metadata is a place to attach additional
2096 information such as debug info.
2097
2098Global Variable and Function Addresses
2099--------------------------------------
2100
2101The addresses of :ref:`global variables <globalvars>` and
2102:ref:`functions <functionstructure>` are always implicitly valid
2103(link-time) constants. These constants are explicitly referenced when
2104the :ref:`identifier for the global <identifiers>` is used and always have
2105:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2106file:
2107
2108.. code-block:: llvm
2109
2110 @X = global i32 17
2111 @Y = global i32 42
2112 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2113
2114.. _undefvalues:
2115
2116Undefined Values
2117----------------
2118
2119The string '``undef``' can be used anywhere a constant is expected, and
2120indicates that the user of the value may receive an unspecified
2121bit-pattern. Undefined values may be of any type (other than '``label``'
2122or '``void``') and be used anywhere a constant is permitted.
2123
2124Undefined values are useful because they indicate to the compiler that
2125the program is well defined no matter what value is used. This gives the
2126compiler more freedom to optimize. Here are some examples of
2127(potentially surprising) transformations that are valid (in pseudo IR):
2128
2129.. code-block:: llvm
2130
2131 %A = add %X, undef
2132 %B = sub %X, undef
2133 %C = xor %X, undef
2134 Safe:
2135 %A = undef
2136 %B = undef
2137 %C = undef
2138
2139This is safe because all of the output bits are affected by the undef
2140bits. Any output bit can have a zero or one depending on the input bits.
2141
2142.. code-block:: llvm
2143
2144 %A = or %X, undef
2145 %B = and %X, undef
2146 Safe:
2147 %A = -1
2148 %B = 0
2149 Unsafe:
2150 %A = undef
2151 %B = undef
2152
2153These logical operations have bits that are not always affected by the
2154input. For example, if ``%X`` has a zero bit, then the output of the
2155'``and``' operation will always be a zero for that bit, no matter what
2156the corresponding bit from the '``undef``' is. As such, it is unsafe to
2157optimize or assume that the result of the '``and``' is '``undef``'.
2158However, it is safe to assume that all bits of the '``undef``' could be
21590, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2160all the bits of the '``undef``' operand to the '``or``' could be set,
2161allowing the '``or``' to be folded to -1.
2162
2163.. code-block:: llvm
2164
2165 %A = select undef, %X, %Y
2166 %B = select undef, 42, %Y
2167 %C = select %X, %Y, undef
2168 Safe:
2169 %A = %X (or %Y)
2170 %B = 42 (or %Y)
2171 %C = %Y
2172 Unsafe:
2173 %A = undef
2174 %B = undef
2175 %C = undef
2176
2177This set of examples shows that undefined '``select``' (and conditional
2178branch) conditions can go *either way*, but they have to come from one
2179of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2180both known to have a clear low bit, then ``%A`` would have to have a
2181cleared low bit. However, in the ``%C`` example, the optimizer is
2182allowed to assume that the '``undef``' operand could be the same as
2183``%Y``, allowing the whole '``select``' to be eliminated.
2184
2185.. code-block:: llvm
2186
2187 %A = xor undef, undef
2188
2189 %B = undef
2190 %C = xor %B, %B
2191
2192 %D = undef
2193 %E = icmp lt %D, 4
2194 %F = icmp gte %D, 4
2195
2196 Safe:
2197 %A = undef
2198 %B = undef
2199 %C = undef
2200 %D = undef
2201 %E = undef
2202 %F = undef
2203
2204This example points out that two '``undef``' operands are not
2205necessarily the same. This can be surprising to people (and also matches
2206C semantics) where they assume that "``X^X``" is always zero, even if
2207``X`` is undefined. This isn't true for a number of reasons, but the
2208short answer is that an '``undef``' "variable" can arbitrarily change
2209its value over its "live range". This is true because the variable
2210doesn't actually *have a live range*. Instead, the value is logically
2211read from arbitrary registers that happen to be around when needed, so
2212the value is not necessarily consistent over time. In fact, ``%A`` and
2213``%C`` need to have the same semantics or the core LLVM "replace all
2214uses with" concept would not hold.
2215
2216.. code-block:: llvm
2217
2218 %A = fdiv undef, %X
2219 %B = fdiv %X, undef
2220 Safe:
2221 %A = undef
2222 b: unreachable
2223
2224These examples show the crucial difference between an *undefined value*
2225and *undefined behavior*. An undefined value (like '``undef``') is
2226allowed to have an arbitrary bit-pattern. This means that the ``%A``
2227operation can be constant folded to '``undef``', because the '``undef``'
2228could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2229However, in the second example, we can make a more aggressive
2230assumption: because the ``undef`` is allowed to be an arbitrary value,
2231we are allowed to assume that it could be zero. Since a divide by zero
2232has *undefined behavior*, we are allowed to assume that the operation
2233does not execute at all. This allows us to delete the divide and all
2234code after it. Because the undefined operation "can't happen", the
2235optimizer can assume that it occurs in dead code.
2236
2237.. code-block:: llvm
2238
2239 a: store undef -> %X
2240 b: store %X -> undef
2241 Safe:
2242 a: <deleted>
2243 b: unreachable
2244
2245These examples reiterate the ``fdiv`` example: a store *of* an undefined
2246value can be assumed to not have any effect; we can assume that the
2247value is overwritten with bits that happen to match what was already
2248there. However, a store *to* an undefined location could clobber
2249arbitrary memory, therefore, it has undefined behavior.
2250
2251.. _poisonvalues:
2252
2253Poison Values
2254-------------
2255
2256Poison values are similar to :ref:`undef values <undefvalues>`, however
2257they also represent the fact that an instruction or constant expression
2258which cannot evoke side effects has nevertheless detected a condition
2259which results in undefined behavior.
2260
2261There is currently no way of representing a poison value in the IR; they
2262only exist when produced by operations such as :ref:`add <i_add>` with
2263the ``nsw`` flag.
2264
2265Poison value behavior is defined in terms of value *dependence*:
2266
2267- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2268- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2269 their dynamic predecessor basic block.
2270- Function arguments depend on the corresponding actual argument values
2271 in the dynamic callers of their functions.
2272- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2273 instructions that dynamically transfer control back to them.
2274- :ref:`Invoke <i_invoke>` instructions depend on the
2275 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2276 call instructions that dynamically transfer control back to them.
2277- Non-volatile loads and stores depend on the most recent stores to all
2278 of the referenced memory addresses, following the order in the IR
2279 (including loads and stores implied by intrinsics such as
2280 :ref:`@llvm.memcpy <int_memcpy>`.)
2281- An instruction with externally visible side effects depends on the
2282 most recent preceding instruction with externally visible side
2283 effects, following the order in the IR. (This includes :ref:`volatile
2284 operations <volatile>`.)
2285- An instruction *control-depends* on a :ref:`terminator
2286 instruction <terminators>` if the terminator instruction has
2287 multiple successors and the instruction is always executed when
2288 control transfers to one of the successors, and may not be executed
2289 when control is transferred to another.
2290- Additionally, an instruction also *control-depends* on a terminator
2291 instruction if the set of instructions it otherwise depends on would
2292 be different if the terminator had transferred control to a different
2293 successor.
2294- Dependence is transitive.
2295
2296Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2297with the additional affect that any instruction which has a *dependence*
2298on a poison value has undefined behavior.
2299
2300Here are some examples:
2301
2302.. code-block:: llvm
2303
2304 entry:
2305 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2306 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2307 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2308 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2309
2310 store i32 %poison, i32* @g ; Poison value stored to memory.
2311 %poison2 = load i32* @g ; Poison value loaded back from memory.
2312
2313 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2314
2315 %narrowaddr = bitcast i32* @g to i16*
2316 %wideaddr = bitcast i32* @g to i64*
2317 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2318 %poison4 = load i64* %wideaddr ; Returns a poison value.
2319
2320 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2321 br i1 %cmp, label %true, label %end ; Branch to either destination.
2322
2323 true:
2324 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2325 ; it has undefined behavior.
2326 br label %end
2327
2328 end:
2329 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2330 ; Both edges into this PHI are
2331 ; control-dependent on %cmp, so this
2332 ; always results in a poison value.
2333
2334 store volatile i32 0, i32* @g ; This would depend on the store in %true
2335 ; if %cmp is true, or the store in %entry
2336 ; otherwise, so this is undefined behavior.
2337
2338 br i1 %cmp, label %second_true, label %second_end
2339 ; The same branch again, but this time the
2340 ; true block doesn't have side effects.
2341
2342 second_true:
2343 ; No side effects!
2344 ret void
2345
2346 second_end:
2347 store volatile i32 0, i32* @g ; This time, the instruction always depends
2348 ; on the store in %end. Also, it is
2349 ; control-equivalent to %end, so this is
2350 ; well-defined (ignoring earlier undefined
2351 ; behavior in this example).
2352
2353.. _blockaddress:
2354
2355Addresses of Basic Blocks
2356-------------------------
2357
2358``blockaddress(@function, %block)``
2359
2360The '``blockaddress``' constant computes the address of the specified
2361basic block in the specified function, and always has an ``i8*`` type.
2362Taking the address of the entry block is illegal.
2363
2364This value only has defined behavior when used as an operand to the
2365':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2366against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002367undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002368no label is equal to the null pointer. This may be passed around as an
2369opaque pointer sized value as long as the bits are not inspected. This
2370allows ``ptrtoint`` and arithmetic to be performed on these values so
2371long as the original value is reconstituted before the ``indirectbr``
2372instruction.
2373
2374Finally, some targets may provide defined semantics when using the value
2375as the operand to an inline assembly, but that is target specific.
2376
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002377.. _constantexprs:
2378
Sean Silvab084af42012-12-07 10:36:55 +00002379Constant Expressions
2380--------------------
2381
2382Constant expressions are used to allow expressions involving other
2383constants to be used as constants. Constant expressions may be of any
2384:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2385that does not have side effects (e.g. load and call are not supported).
2386The following is the syntax for constant expressions:
2387
2388``trunc (CST to TYPE)``
2389 Truncate a constant to another type. The bit size of CST must be
2390 larger than the bit size of TYPE. Both types must be integers.
2391``zext (CST to TYPE)``
2392 Zero extend a constant to another type. The bit size of CST must be
2393 smaller than the bit size of TYPE. Both types must be integers.
2394``sext (CST to TYPE)``
2395 Sign extend a constant to another type. The bit size of CST must be
2396 smaller than the bit size of TYPE. Both types must be integers.
2397``fptrunc (CST to TYPE)``
2398 Truncate a floating point constant to another floating point type.
2399 The size of CST must be larger than the size of TYPE. Both types
2400 must be floating point.
2401``fpext (CST to TYPE)``
2402 Floating point extend a constant to another type. The size of CST
2403 must be smaller or equal to the size of TYPE. Both types must be
2404 floating point.
2405``fptoui (CST to TYPE)``
2406 Convert a floating point constant to the corresponding unsigned
2407 integer constant. TYPE must be a scalar or vector integer type. CST
2408 must be of scalar or vector floating point type. Both CST and TYPE
2409 must be scalars, or vectors of the same number of elements. If the
2410 value won't fit in the integer type, the results are undefined.
2411``fptosi (CST to TYPE)``
2412 Convert a floating point constant to the corresponding signed
2413 integer constant. TYPE must be a scalar or vector integer type. CST
2414 must be of scalar or vector floating point type. Both CST and TYPE
2415 must be scalars, or vectors of the same number of elements. If the
2416 value won't fit in the integer type, the results are undefined.
2417``uitofp (CST to TYPE)``
2418 Convert an unsigned integer constant to the corresponding floating
2419 point constant. TYPE must be a scalar or vector floating point type.
2420 CST must be of scalar or vector integer type. Both CST and TYPE must
2421 be scalars, or vectors of the same number of elements. If the value
2422 won't fit in the floating point type, the results are undefined.
2423``sitofp (CST to TYPE)``
2424 Convert a signed integer constant to the corresponding floating
2425 point constant. TYPE must be a scalar or vector floating point type.
2426 CST must be of scalar or vector integer type. Both CST and TYPE must
2427 be scalars, or vectors of the same number of elements. If the value
2428 won't fit in the floating point type, the results are undefined.
2429``ptrtoint (CST to TYPE)``
2430 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002431 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002432 pointer type. The ``CST`` value is zero extended, truncated, or
2433 unchanged to make it fit in ``TYPE``.
2434``inttoptr (CST to TYPE)``
2435 Convert an integer constant to a pointer constant. TYPE must be a
2436 pointer type. CST must be of integer type. The CST value is zero
2437 extended, truncated, or unchanged to make it fit in a pointer size.
2438 This one is *really* dangerous!
2439``bitcast (CST to TYPE)``
2440 Convert a constant, CST, to another TYPE. The constraints of the
2441 operands are the same as those for the :ref:`bitcast
2442 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002443``addrspacecast (CST to TYPE)``
2444 Convert a constant pointer or constant vector of pointer, CST, to another
2445 TYPE in a different address space. The constraints of the operands are the
2446 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002447``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2448 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2449 constants. As with the :ref:`getelementptr <i_getelementptr>`
2450 instruction, the index list may have zero or more indexes, which are
2451 required to make sense for the type of "CSTPTR".
2452``select (COND, VAL1, VAL2)``
2453 Perform the :ref:`select operation <i_select>` on constants.
2454``icmp COND (VAL1, VAL2)``
2455 Performs the :ref:`icmp operation <i_icmp>` on constants.
2456``fcmp COND (VAL1, VAL2)``
2457 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2458``extractelement (VAL, IDX)``
2459 Perform the :ref:`extractelement operation <i_extractelement>` on
2460 constants.
2461``insertelement (VAL, ELT, IDX)``
2462 Perform the :ref:`insertelement operation <i_insertelement>` on
2463 constants.
2464``shufflevector (VEC1, VEC2, IDXMASK)``
2465 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2466 constants.
2467``extractvalue (VAL, IDX0, IDX1, ...)``
2468 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2469 constants. The index list is interpreted in a similar manner as
2470 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2471 least one index value must be specified.
2472``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2473 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2474 The index list is interpreted in a similar manner as indices in a
2475 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2476 value must be specified.
2477``OPCODE (LHS, RHS)``
2478 Perform the specified operation of the LHS and RHS constants. OPCODE
2479 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2480 binary <bitwiseops>` operations. The constraints on operands are
2481 the same as those for the corresponding instruction (e.g. no bitwise
2482 operations on floating point values are allowed).
2483
2484Other Values
2485============
2486
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002487.. _inlineasmexprs:
2488
Sean Silvab084af42012-12-07 10:36:55 +00002489Inline Assembler Expressions
2490----------------------------
2491
2492LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2493Inline Assembly <moduleasm>`) through the use of a special value. This
2494value represents the inline assembler as a string (containing the
2495instructions to emit), a list of operand constraints (stored as a
2496string), a flag that indicates whether or not the inline asm expression
2497has side effects, and a flag indicating whether the function containing
2498the asm needs to align its stack conservatively. An example inline
2499assembler expression is:
2500
2501.. code-block:: llvm
2502
2503 i32 (i32) asm "bswap $0", "=r,r"
2504
2505Inline assembler expressions may **only** be used as the callee operand
2506of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2507Thus, typically we have:
2508
2509.. code-block:: llvm
2510
2511 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2512
2513Inline asms with side effects not visible in the constraint list must be
2514marked as having side effects. This is done through the use of the
2515'``sideeffect``' keyword, like so:
2516
2517.. code-block:: llvm
2518
2519 call void asm sideeffect "eieio", ""()
2520
2521In some cases inline asms will contain code that will not work unless
2522the stack is aligned in some way, such as calls or SSE instructions on
2523x86, yet will not contain code that does that alignment within the asm.
2524The compiler should make conservative assumptions about what the asm
2525might contain and should generate its usual stack alignment code in the
2526prologue if the '``alignstack``' keyword is present:
2527
2528.. code-block:: llvm
2529
2530 call void asm alignstack "eieio", ""()
2531
2532Inline asms also support using non-standard assembly dialects. The
2533assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2534the inline asm is using the Intel dialect. Currently, ATT and Intel are
2535the only supported dialects. An example is:
2536
2537.. code-block:: llvm
2538
2539 call void asm inteldialect "eieio", ""()
2540
2541If multiple keywords appear the '``sideeffect``' keyword must come
2542first, the '``alignstack``' keyword second and the '``inteldialect``'
2543keyword last.
2544
2545Inline Asm Metadata
2546^^^^^^^^^^^^^^^^^^^
2547
2548The call instructions that wrap inline asm nodes may have a
2549"``!srcloc``" MDNode attached to it that contains a list of constant
2550integers. If present, the code generator will use the integer as the
2551location cookie value when report errors through the ``LLVMContext``
2552error reporting mechanisms. This allows a front-end to correlate backend
2553errors that occur with inline asm back to the source code that produced
2554it. For example:
2555
2556.. code-block:: llvm
2557
2558 call void asm sideeffect "something bad", ""(), !srcloc !42
2559 ...
2560 !42 = !{ i32 1234567 }
2561
2562It is up to the front-end to make sense of the magic numbers it places
2563in the IR. If the MDNode contains multiple constants, the code generator
2564will use the one that corresponds to the line of the asm that the error
2565occurs on.
2566
2567.. _metadata:
2568
2569Metadata Nodes and Metadata Strings
2570-----------------------------------
2571
2572LLVM IR allows metadata to be attached to instructions in the program
2573that can convey extra information about the code to the optimizers and
2574code generator. One example application of metadata is source-level
2575debug information. There are two metadata primitives: strings and nodes.
2576All metadata has the ``metadata`` type and is identified in syntax by a
2577preceding exclamation point ('``!``').
2578
2579A metadata string is a string surrounded by double quotes. It can
2580contain any character by escaping non-printable characters with
2581"``\xx``" where "``xx``" is the two digit hex code. For example:
2582"``!"test\00"``".
2583
2584Metadata nodes are represented with notation similar to structure
2585constants (a comma separated list of elements, surrounded by braces and
2586preceded by an exclamation point). Metadata nodes can have any values as
2587their operand. For example:
2588
2589.. code-block:: llvm
2590
2591 !{ metadata !"test\00", i32 10}
2592
2593A :ref:`named metadata <namedmetadatastructure>` is a collection of
2594metadata nodes, which can be looked up in the module symbol table. For
2595example:
2596
2597.. code-block:: llvm
2598
2599 !foo = metadata !{!4, !3}
2600
2601Metadata can be used as function arguments. Here ``llvm.dbg.value``
2602function is using two metadata arguments:
2603
2604.. code-block:: llvm
2605
2606 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2607
2608Metadata can be attached with an instruction. Here metadata ``!21`` is
2609attached to the ``add`` instruction using the ``!dbg`` identifier:
2610
2611.. code-block:: llvm
2612
2613 %indvar.next = add i64 %indvar, 1, !dbg !21
2614
2615More information about specific metadata nodes recognized by the
2616optimizers and code generator is found below.
2617
2618'``tbaa``' Metadata
2619^^^^^^^^^^^^^^^^^^^
2620
2621In LLVM IR, memory does not have types, so LLVM's own type system is not
2622suitable for doing TBAA. Instead, metadata is added to the IR to
2623describe a type system of a higher level language. This can be used to
2624implement typical C/C++ TBAA, but it can also be used to implement
2625custom alias analysis behavior for other languages.
2626
2627The current metadata format is very simple. TBAA metadata nodes have up
2628to three fields, e.g.:
2629
2630.. code-block:: llvm
2631
2632 !0 = metadata !{ metadata !"an example type tree" }
2633 !1 = metadata !{ metadata !"int", metadata !0 }
2634 !2 = metadata !{ metadata !"float", metadata !0 }
2635 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2636
2637The first field is an identity field. It can be any value, usually a
2638metadata string, which uniquely identifies the type. The most important
2639name in the tree is the name of the root node. Two trees with different
2640root node names are entirely disjoint, even if they have leaves with
2641common names.
2642
2643The second field identifies the type's parent node in the tree, or is
2644null or omitted for a root node. A type is considered to alias all of
2645its descendants and all of its ancestors in the tree. Also, a type is
2646considered to alias all types in other trees, so that bitcode produced
2647from multiple front-ends is handled conservatively.
2648
2649If the third field is present, it's an integer which if equal to 1
2650indicates that the type is "constant" (meaning
2651``pointsToConstantMemory`` should return true; see `other useful
2652AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2653
2654'``tbaa.struct``' Metadata
2655^^^^^^^^^^^^^^^^^^^^^^^^^^
2656
2657The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2658aggregate assignment operations in C and similar languages, however it
2659is defined to copy a contiguous region of memory, which is more than
2660strictly necessary for aggregate types which contain holes due to
2661padding. Also, it doesn't contain any TBAA information about the fields
2662of the aggregate.
2663
2664``!tbaa.struct`` metadata can describe which memory subregions in a
2665memcpy are padding and what the TBAA tags of the struct are.
2666
2667The current metadata format is very simple. ``!tbaa.struct`` metadata
2668nodes are a list of operands which are in conceptual groups of three.
2669For each group of three, the first operand gives the byte offset of a
2670field in bytes, the second gives its size in bytes, and the third gives
2671its tbaa tag. e.g.:
2672
2673.. code-block:: llvm
2674
2675 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2676
2677This describes a struct with two fields. The first is at offset 0 bytes
2678with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2679and has size 4 bytes and has tbaa tag !2.
2680
2681Note that the fields need not be contiguous. In this example, there is a
26824 byte gap between the two fields. This gap represents padding which
2683does not carry useful data and need not be preserved.
2684
2685'``fpmath``' Metadata
2686^^^^^^^^^^^^^^^^^^^^^
2687
2688``fpmath`` metadata may be attached to any instruction of floating point
2689type. It can be used to express the maximum acceptable error in the
2690result of that instruction, in ULPs, thus potentially allowing the
2691compiler to use a more efficient but less accurate method of computing
2692it. ULP is defined as follows:
2693
2694 If ``x`` is a real number that lies between two finite consecutive
2695 floating-point numbers ``a`` and ``b``, without being equal to one
2696 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2697 distance between the two non-equal finite floating-point numbers
2698 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2699
2700The metadata node shall consist of a single positive floating point
2701number representing the maximum relative error, for example:
2702
2703.. code-block:: llvm
2704
2705 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2706
2707'``range``' Metadata
2708^^^^^^^^^^^^^^^^^^^^
2709
2710``range`` metadata may be attached only to loads of integer types. It
2711expresses the possible ranges the loaded value is in. The ranges are
2712represented with a flattened list of integers. The loaded value is known
2713to be in the union of the ranges defined by each consecutive pair. Each
2714pair has the following properties:
2715
2716- The type must match the type loaded by the instruction.
2717- The pair ``a,b`` represents the range ``[a,b)``.
2718- Both ``a`` and ``b`` are constants.
2719- The range is allowed to wrap.
2720- The range should not represent the full or empty set. That is,
2721 ``a!=b``.
2722
2723In addition, the pairs must be in signed order of the lower bound and
2724they must be non-contiguous.
2725
2726Examples:
2727
2728.. code-block:: llvm
2729
2730 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2731 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2732 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2733 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2734 ...
2735 !0 = metadata !{ i8 0, i8 2 }
2736 !1 = metadata !{ i8 255, i8 2 }
2737 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2738 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2739
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002740'``llvm.loop``'
2741^^^^^^^^^^^^^^^
2742
2743It is sometimes useful to attach information to loop constructs. Currently,
2744loop metadata is implemented as metadata attached to the branch instruction
2745in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002746guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002747specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002748
2749The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002750itself to avoid merging it with any other identifier metadata, e.g.,
2751during module linkage or function inlining. That is, each loop should refer
2752to their own identification metadata even if they reside in separate functions.
2753The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002754constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002755
2756.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002757
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002758 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002759 !1 = metadata !{ metadata !1 }
2760
Paul Redmond5fdf8362013-05-28 20:00:34 +00002761The loop identifier metadata can be used to specify additional per-loop
2762metadata. Any operands after the first operand can be treated as user-defined
2763metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2764by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002765
Paul Redmond5fdf8362013-05-28 20:00:34 +00002766.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002767
Paul Redmond5fdf8362013-05-28 20:00:34 +00002768 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2769 ...
2770 !0 = metadata !{ metadata !0, metadata !1 }
2771 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002772
2773'``llvm.mem``'
2774^^^^^^^^^^^^^^^
2775
2776Metadata types used to annotate memory accesses with information helpful
2777for optimizations are prefixed with ``llvm.mem``.
2778
2779'``llvm.mem.parallel_loop_access``' Metadata
2780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2781
2782For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002783the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002784also all of the memory accessing instructions in the loop body need to be
2785marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2786is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002787the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002788converted to sequential loops due to optimization passes that are unaware of
2789the parallel semantics and that insert new memory instructions to the loop
2790body.
2791
2792Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002793both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002794metadata types that refer to the same loop identifier metadata.
2795
2796.. code-block:: llvm
2797
2798 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002799 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002800 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002801 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002802 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002803 ...
2804 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002805
2806 for.end:
2807 ...
2808 !0 = metadata !{ metadata !0 }
2809
2810It is also possible to have nested parallel loops. In that case the
2811memory accesses refer to a list of loop identifier metadata nodes instead of
2812the loop identifier metadata node directly:
2813
2814.. code-block:: llvm
2815
2816 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002817 ...
2818 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2819 ...
2820 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002821
2822 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002823 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002824 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002825 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002826 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002827 ...
2828 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002829
2830 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002831 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002832 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002833 ...
2834 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002835
2836 outer.for.end: ; preds = %for.body
2837 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002838 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2839 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2840 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002841
Paul Redmond5fdf8362013-05-28 20:00:34 +00002842'``llvm.vectorizer``'
2843^^^^^^^^^^^^^^^^^^^^^
2844
2845Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2846vectorization parameters such as vectorization factor and unroll factor.
2847
2848``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2849loop identification metadata.
2850
2851'``llvm.vectorizer.unroll``' Metadata
2852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2853
2854This metadata instructs the loop vectorizer to unroll the specified
2855loop exactly ``N`` times.
2856
2857The first operand is the string ``llvm.vectorizer.unroll`` and the second
2858operand is an integer specifying the unroll factor. For example:
2859
2860.. code-block:: llvm
2861
2862 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2863
2864Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2865loop.
2866
2867If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2868determined automatically.
2869
2870'``llvm.vectorizer.width``' Metadata
2871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2872
Paul Redmondeccbb322013-05-30 17:22:46 +00002873This metadata sets the target width of the vectorizer to ``N``. Without
2874this metadata, the vectorizer will choose a width automatically.
2875Regardless of this metadata, the vectorizer will only vectorize loops if
2876it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002877
2878The first operand is the string ``llvm.vectorizer.width`` and the second
2879operand is an integer specifying the width. For example:
2880
2881.. code-block:: llvm
2882
2883 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2884
2885Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2886loop.
2887
2888If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2889automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002890
Sean Silvab084af42012-12-07 10:36:55 +00002891Module Flags Metadata
2892=====================
2893
2894Information about the module as a whole is difficult to convey to LLVM's
2895subsystems. The LLVM IR isn't sufficient to transmit this information.
2896The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002897this. These flags are in the form of key / value pairs --- much like a
2898dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002899look it up.
2900
2901The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2902Each triplet has the following form:
2903
2904- The first element is a *behavior* flag, which specifies the behavior
2905 when two (or more) modules are merged together, and it encounters two
2906 (or more) metadata with the same ID. The supported behaviors are
2907 described below.
2908- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002909 metadata. Each module may only have one flag entry for each unique ID (not
2910 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002911- The third element is the value of the flag.
2912
2913When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002914``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2915each unique metadata ID string, there will be exactly one entry in the merged
2916modules ``llvm.module.flags`` metadata table, and the value for that entry will
2917be determined by the merge behavior flag, as described below. The only exception
2918is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002919
2920The following behaviors are supported:
2921
2922.. list-table::
2923 :header-rows: 1
2924 :widths: 10 90
2925
2926 * - Value
2927 - Behavior
2928
2929 * - 1
2930 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002931 Emits an error if two values disagree, otherwise the resulting value
2932 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002933
2934 * - 2
2935 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002936 Emits a warning if two values disagree. The result value will be the
2937 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002938
2939 * - 3
2940 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002941 Adds a requirement that another module flag be present and have a
2942 specified value after linking is performed. The value must be a
2943 metadata pair, where the first element of the pair is the ID of the
2944 module flag to be restricted, and the second element of the pair is
2945 the value the module flag should be restricted to. This behavior can
2946 be used to restrict the allowable results (via triggering of an
2947 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002948
2949 * - 4
2950 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002951 Uses the specified value, regardless of the behavior or value of the
2952 other module. If both modules specify **Override**, but the values
2953 differ, an error will be emitted.
2954
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002955 * - 5
2956 - **Append**
2957 Appends the two values, which are required to be metadata nodes.
2958
2959 * - 6
2960 - **AppendUnique**
2961 Appends the two values, which are required to be metadata
2962 nodes. However, duplicate entries in the second list are dropped
2963 during the append operation.
2964
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002965It is an error for a particular unique flag ID to have multiple behaviors,
2966except in the case of **Require** (which adds restrictions on another metadata
2967value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002968
2969An example of module flags:
2970
2971.. code-block:: llvm
2972
2973 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2974 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2975 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2976 !3 = metadata !{ i32 3, metadata !"qux",
2977 metadata !{
2978 metadata !"foo", i32 1
2979 }
2980 }
2981 !llvm.module.flags = !{ !0, !1, !2, !3 }
2982
2983- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2984 if two or more ``!"foo"`` flags are seen is to emit an error if their
2985 values are not equal.
2986
2987- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2988 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002989 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002990
2991- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2992 behavior if two or more ``!"qux"`` flags are seen is to emit a
2993 warning if their values are not equal.
2994
2995- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2996
2997 ::
2998
2999 metadata !{ metadata !"foo", i32 1 }
3000
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003001 The behavior is to emit an error if the ``llvm.module.flags`` does not
3002 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3003 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003004
3005Objective-C Garbage Collection Module Flags Metadata
3006----------------------------------------------------
3007
3008On the Mach-O platform, Objective-C stores metadata about garbage
3009collection in a special section called "image info". The metadata
3010consists of a version number and a bitmask specifying what types of
3011garbage collection are supported (if any) by the file. If two or more
3012modules are linked together their garbage collection metadata needs to
3013be merged rather than appended together.
3014
3015The Objective-C garbage collection module flags metadata consists of the
3016following key-value pairs:
3017
3018.. list-table::
3019 :header-rows: 1
3020 :widths: 30 70
3021
3022 * - Key
3023 - Value
3024
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003025 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003026 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003027
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003028 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003029 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003030 always 0.
3031
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003032 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003033 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003034 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3035 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3036 Objective-C ABI version 2.
3037
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003038 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003039 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003040 not. Valid values are 0, for no garbage collection, and 2, for garbage
3041 collection supported.
3042
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003043 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003044 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003045 If present, its value must be 6. This flag requires that the
3046 ``Objective-C Garbage Collection`` flag have the value 2.
3047
3048Some important flag interactions:
3049
3050- If a module with ``Objective-C Garbage Collection`` set to 0 is
3051 merged with a module with ``Objective-C Garbage Collection`` set to
3052 2, then the resulting module has the
3053 ``Objective-C Garbage Collection`` flag set to 0.
3054- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3055 merged with a module with ``Objective-C GC Only`` set to 6.
3056
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003057Automatic Linker Flags Module Flags Metadata
3058--------------------------------------------
3059
3060Some targets support embedding flags to the linker inside individual object
3061files. Typically this is used in conjunction with language extensions which
3062allow source files to explicitly declare the libraries they depend on, and have
3063these automatically be transmitted to the linker via object files.
3064
3065These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003066using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003067to be ``AppendUnique``, and the value for the key is expected to be a metadata
3068node which should be a list of other metadata nodes, each of which should be a
3069list of metadata strings defining linker options.
3070
3071For example, the following metadata section specifies two separate sets of
3072linker options, presumably to link against ``libz`` and the ``Cocoa``
3073framework::
3074
Michael Liaoa7699082013-03-06 18:24:34 +00003075 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003076 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003077 metadata !{ metadata !"-lz" },
3078 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003079 !llvm.module.flags = !{ !0 }
3080
3081The metadata encoding as lists of lists of options, as opposed to a collapsed
3082list of options, is chosen so that the IR encoding can use multiple option
3083strings to specify e.g., a single library, while still having that specifier be
3084preserved as an atomic element that can be recognized by a target specific
3085assembly writer or object file emitter.
3086
3087Each individual option is required to be either a valid option for the target's
3088linker, or an option that is reserved by the target specific assembly writer or
3089object file emitter. No other aspect of these options is defined by the IR.
3090
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003091.. _intrinsicglobalvariables:
3092
Sean Silvab084af42012-12-07 10:36:55 +00003093Intrinsic Global Variables
3094==========================
3095
3096LLVM has a number of "magic" global variables that contain data that
3097affect code generation or other IR semantics. These are documented here.
3098All globals of this sort should have a section specified as
3099"``llvm.metadata``". This section and all globals that start with
3100"``llvm.``" are reserved for use by LLVM.
3101
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003102.. _gv_llvmused:
3103
Sean Silvab084af42012-12-07 10:36:55 +00003104The '``llvm.used``' Global Variable
3105-----------------------------------
3106
Rafael Espindola74f2e462013-04-22 14:58:02 +00003107The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003108:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003109pointers to named global variables, functions and aliases which may optionally
3110have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003111use of it is:
3112
3113.. code-block:: llvm
3114
3115 @X = global i8 4
3116 @Y = global i32 123
3117
3118 @llvm.used = appending global [2 x i8*] [
3119 i8* @X,
3120 i8* bitcast (i32* @Y to i8*)
3121 ], section "llvm.metadata"
3122
Rafael Espindola74f2e462013-04-22 14:58:02 +00003123If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3124and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003125symbol that it cannot see (which is why they have to be named). For example, if
3126a variable has internal linkage and no references other than that from the
3127``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3128references from inline asms and other things the compiler cannot "see", and
3129corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003130
3131On some targets, the code generator must emit a directive to the
3132assembler or object file to prevent the assembler and linker from
3133molesting the symbol.
3134
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003135.. _gv_llvmcompilerused:
3136
Sean Silvab084af42012-12-07 10:36:55 +00003137The '``llvm.compiler.used``' Global Variable
3138--------------------------------------------
3139
3140The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3141directive, except that it only prevents the compiler from touching the
3142symbol. On targets that support it, this allows an intelligent linker to
3143optimize references to the symbol without being impeded as it would be
3144by ``@llvm.used``.
3145
3146This is a rare construct that should only be used in rare circumstances,
3147and should not be exposed to source languages.
3148
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003149.. _gv_llvmglobalctors:
3150
Sean Silvab084af42012-12-07 10:36:55 +00003151The '``llvm.global_ctors``' Global Variable
3152-------------------------------------------
3153
3154.. code-block:: llvm
3155
3156 %0 = type { i32, void ()* }
3157 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3158
3159The ``@llvm.global_ctors`` array contains a list of constructor
3160functions and associated priorities. The functions referenced by this
3161array will be called in ascending order of priority (i.e. lowest first)
3162when the module is loaded. The order of functions with the same priority
3163is not defined.
3164
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003165.. _llvmglobaldtors:
3166
Sean Silvab084af42012-12-07 10:36:55 +00003167The '``llvm.global_dtors``' Global Variable
3168-------------------------------------------
3169
3170.. code-block:: llvm
3171
3172 %0 = type { i32, void ()* }
3173 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3174
3175The ``@llvm.global_dtors`` array contains a list of destructor functions
3176and associated priorities. The functions referenced by this array will
3177be called in descending order of priority (i.e. highest first) when the
3178module is loaded. The order of functions with the same priority is not
3179defined.
3180
3181Instruction Reference
3182=====================
3183
3184The LLVM instruction set consists of several different classifications
3185of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3186instructions <binaryops>`, :ref:`bitwise binary
3187instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3188:ref:`other instructions <otherops>`.
3189
3190.. _terminators:
3191
3192Terminator Instructions
3193-----------------------
3194
3195As mentioned :ref:`previously <functionstructure>`, every basic block in a
3196program ends with a "Terminator" instruction, which indicates which
3197block should be executed after the current block is finished. These
3198terminator instructions typically yield a '``void``' value: they produce
3199control flow, not values (the one exception being the
3200':ref:`invoke <i_invoke>`' instruction).
3201
3202The terminator instructions are: ':ref:`ret <i_ret>`',
3203':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3204':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3205':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3206
3207.. _i_ret:
3208
3209'``ret``' Instruction
3210^^^^^^^^^^^^^^^^^^^^^
3211
3212Syntax:
3213"""""""
3214
3215::
3216
3217 ret <type> <value> ; Return a value from a non-void function
3218 ret void ; Return from void function
3219
3220Overview:
3221"""""""""
3222
3223The '``ret``' instruction is used to return control flow (and optionally
3224a value) from a function back to the caller.
3225
3226There are two forms of the '``ret``' instruction: one that returns a
3227value and then causes control flow, and one that just causes control
3228flow to occur.
3229
3230Arguments:
3231""""""""""
3232
3233The '``ret``' instruction optionally accepts a single argument, the
3234return value. The type of the return value must be a ':ref:`first
3235class <t_firstclass>`' type.
3236
3237A function is not :ref:`well formed <wellformed>` if it it has a non-void
3238return type and contains a '``ret``' instruction with no return value or
3239a return value with a type that does not match its type, or if it has a
3240void return type and contains a '``ret``' instruction with a return
3241value.
3242
3243Semantics:
3244""""""""""
3245
3246When the '``ret``' instruction is executed, control flow returns back to
3247the calling function's context. If the caller is a
3248":ref:`call <i_call>`" instruction, execution continues at the
3249instruction after the call. If the caller was an
3250":ref:`invoke <i_invoke>`" instruction, execution continues at the
3251beginning of the "normal" destination block. If the instruction returns
3252a value, that value shall set the call or invoke instruction's return
3253value.
3254
3255Example:
3256""""""""
3257
3258.. code-block:: llvm
3259
3260 ret i32 5 ; Return an integer value of 5
3261 ret void ; Return from a void function
3262 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3263
3264.. _i_br:
3265
3266'``br``' Instruction
3267^^^^^^^^^^^^^^^^^^^^
3268
3269Syntax:
3270"""""""
3271
3272::
3273
3274 br i1 <cond>, label <iftrue>, label <iffalse>
3275 br label <dest> ; Unconditional branch
3276
3277Overview:
3278"""""""""
3279
3280The '``br``' instruction is used to cause control flow to transfer to a
3281different basic block in the current function. There are two forms of
3282this instruction, corresponding to a conditional branch and an
3283unconditional branch.
3284
3285Arguments:
3286""""""""""
3287
3288The conditional branch form of the '``br``' instruction takes a single
3289'``i1``' value and two '``label``' values. The unconditional form of the
3290'``br``' instruction takes a single '``label``' value as a target.
3291
3292Semantics:
3293""""""""""
3294
3295Upon execution of a conditional '``br``' instruction, the '``i1``'
3296argument is evaluated. If the value is ``true``, control flows to the
3297'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3298to the '``iffalse``' ``label`` argument.
3299
3300Example:
3301""""""""
3302
3303.. code-block:: llvm
3304
3305 Test:
3306 %cond = icmp eq i32 %a, %b
3307 br i1 %cond, label %IfEqual, label %IfUnequal
3308 IfEqual:
3309 ret i32 1
3310 IfUnequal:
3311 ret i32 0
3312
3313.. _i_switch:
3314
3315'``switch``' Instruction
3316^^^^^^^^^^^^^^^^^^^^^^^^
3317
3318Syntax:
3319"""""""
3320
3321::
3322
3323 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3324
3325Overview:
3326"""""""""
3327
3328The '``switch``' instruction is used to transfer control flow to one of
3329several different places. It is a generalization of the '``br``'
3330instruction, allowing a branch to occur to one of many possible
3331destinations.
3332
3333Arguments:
3334""""""""""
3335
3336The '``switch``' instruction uses three parameters: an integer
3337comparison value '``value``', a default '``label``' destination, and an
3338array of pairs of comparison value constants and '``label``'s. The table
3339is not allowed to contain duplicate constant entries.
3340
3341Semantics:
3342""""""""""
3343
3344The ``switch`` instruction specifies a table of values and destinations.
3345When the '``switch``' instruction is executed, this table is searched
3346for the given value. If the value is found, control flow is transferred
3347to the corresponding destination; otherwise, control flow is transferred
3348to the default destination.
3349
3350Implementation:
3351"""""""""""""""
3352
3353Depending on properties of the target machine and the particular
3354``switch`` instruction, this instruction may be code generated in
3355different ways. For example, it could be generated as a series of
3356chained conditional branches or with a lookup table.
3357
3358Example:
3359""""""""
3360
3361.. code-block:: llvm
3362
3363 ; Emulate a conditional br instruction
3364 %Val = zext i1 %value to i32
3365 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3366
3367 ; Emulate an unconditional br instruction
3368 switch i32 0, label %dest [ ]
3369
3370 ; Implement a jump table:
3371 switch i32 %val, label %otherwise [ i32 0, label %onzero
3372 i32 1, label %onone
3373 i32 2, label %ontwo ]
3374
3375.. _i_indirectbr:
3376
3377'``indirectbr``' Instruction
3378^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3379
3380Syntax:
3381"""""""
3382
3383::
3384
3385 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3386
3387Overview:
3388"""""""""
3389
3390The '``indirectbr``' instruction implements an indirect branch to a
3391label within the current function, whose address is specified by
3392"``address``". Address must be derived from a
3393:ref:`blockaddress <blockaddress>` constant.
3394
3395Arguments:
3396""""""""""
3397
3398The '``address``' argument is the address of the label to jump to. The
3399rest of the arguments indicate the full set of possible destinations
3400that the address may point to. Blocks are allowed to occur multiple
3401times in the destination list, though this isn't particularly useful.
3402
3403This destination list is required so that dataflow analysis has an
3404accurate understanding of the CFG.
3405
3406Semantics:
3407""""""""""
3408
3409Control transfers to the block specified in the address argument. All
3410possible destination blocks must be listed in the label list, otherwise
3411this instruction has undefined behavior. This implies that jumps to
3412labels defined in other functions have undefined behavior as well.
3413
3414Implementation:
3415"""""""""""""""
3416
3417This is typically implemented with a jump through a register.
3418
3419Example:
3420""""""""
3421
3422.. code-block:: llvm
3423
3424 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3425
3426.. _i_invoke:
3427
3428'``invoke``' Instruction
3429^^^^^^^^^^^^^^^^^^^^^^^^
3430
3431Syntax:
3432"""""""
3433
3434::
3435
3436 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3437 to label <normal label> unwind label <exception label>
3438
3439Overview:
3440"""""""""
3441
3442The '``invoke``' instruction causes control to transfer to a specified
3443function, with the possibility of control flow transfer to either the
3444'``normal``' label or the '``exception``' label. If the callee function
3445returns with the "``ret``" instruction, control flow will return to the
3446"normal" label. If the callee (or any indirect callees) returns via the
3447":ref:`resume <i_resume>`" instruction or other exception handling
3448mechanism, control is interrupted and continued at the dynamically
3449nearest "exception" label.
3450
3451The '``exception``' label is a `landing
3452pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3453'``exception``' label is required to have the
3454":ref:`landingpad <i_landingpad>`" instruction, which contains the
3455information about the behavior of the program after unwinding happens,
3456as its first non-PHI instruction. The restrictions on the
3457"``landingpad``" instruction's tightly couples it to the "``invoke``"
3458instruction, so that the important information contained within the
3459"``landingpad``" instruction can't be lost through normal code motion.
3460
3461Arguments:
3462""""""""""
3463
3464This instruction requires several arguments:
3465
3466#. The optional "cconv" marker indicates which :ref:`calling
3467 convention <callingconv>` the call should use. If none is
3468 specified, the call defaults to using C calling conventions.
3469#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3470 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3471 are valid here.
3472#. '``ptr to function ty``': shall be the signature of the pointer to
3473 function value being invoked. In most cases, this is a direct
3474 function invocation, but indirect ``invoke``'s are just as possible,
3475 branching off an arbitrary pointer to function value.
3476#. '``function ptr val``': An LLVM value containing a pointer to a
3477 function to be invoked.
3478#. '``function args``': argument list whose types match the function
3479 signature argument types and parameter attributes. All arguments must
3480 be of :ref:`first class <t_firstclass>` type. If the function signature
3481 indicates the function accepts a variable number of arguments, the
3482 extra arguments can be specified.
3483#. '``normal label``': the label reached when the called function
3484 executes a '``ret``' instruction.
3485#. '``exception label``': the label reached when a callee returns via
3486 the :ref:`resume <i_resume>` instruction or other exception handling
3487 mechanism.
3488#. The optional :ref:`function attributes <fnattrs>` list. Only
3489 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3490 attributes are valid here.
3491
3492Semantics:
3493""""""""""
3494
3495This instruction is designed to operate as a standard '``call``'
3496instruction in most regards. The primary difference is that it
3497establishes an association with a label, which is used by the runtime
3498library to unwind the stack.
3499
3500This instruction is used in languages with destructors to ensure that
3501proper cleanup is performed in the case of either a ``longjmp`` or a
3502thrown exception. Additionally, this is important for implementation of
3503'``catch``' clauses in high-level languages that support them.
3504
3505For the purposes of the SSA form, the definition of the value returned
3506by the '``invoke``' instruction is deemed to occur on the edge from the
3507current block to the "normal" label. If the callee unwinds then no
3508return value is available.
3509
3510Example:
3511""""""""
3512
3513.. code-block:: llvm
3514
3515 %retval = invoke i32 @Test(i32 15) to label %Continue
3516 unwind label %TestCleanup ; {i32}:retval set
3517 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3518 unwind label %TestCleanup ; {i32}:retval set
3519
3520.. _i_resume:
3521
3522'``resume``' Instruction
3523^^^^^^^^^^^^^^^^^^^^^^^^
3524
3525Syntax:
3526"""""""
3527
3528::
3529
3530 resume <type> <value>
3531
3532Overview:
3533"""""""""
3534
3535The '``resume``' instruction is a terminator instruction that has no
3536successors.
3537
3538Arguments:
3539""""""""""
3540
3541The '``resume``' instruction requires one argument, which must have the
3542same type as the result of any '``landingpad``' instruction in the same
3543function.
3544
3545Semantics:
3546""""""""""
3547
3548The '``resume``' instruction resumes propagation of an existing
3549(in-flight) exception whose unwinding was interrupted with a
3550:ref:`landingpad <i_landingpad>` instruction.
3551
3552Example:
3553""""""""
3554
3555.. code-block:: llvm
3556
3557 resume { i8*, i32 } %exn
3558
3559.. _i_unreachable:
3560
3561'``unreachable``' Instruction
3562^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3563
3564Syntax:
3565"""""""
3566
3567::
3568
3569 unreachable
3570
3571Overview:
3572"""""""""
3573
3574The '``unreachable``' instruction has no defined semantics. This
3575instruction is used to inform the optimizer that a particular portion of
3576the code is not reachable. This can be used to indicate that the code
3577after a no-return function cannot be reached, and other facts.
3578
3579Semantics:
3580""""""""""
3581
3582The '``unreachable``' instruction has no defined semantics.
3583
3584.. _binaryops:
3585
3586Binary Operations
3587-----------------
3588
3589Binary operators are used to do most of the computation in a program.
3590They require two operands of the same type, execute an operation on
3591them, and produce a single value. The operands might represent multiple
3592data, as is the case with the :ref:`vector <t_vector>` data type. The
3593result value has the same type as its operands.
3594
3595There are several different binary operators:
3596
3597.. _i_add:
3598
3599'``add``' Instruction
3600^^^^^^^^^^^^^^^^^^^^^
3601
3602Syntax:
3603"""""""
3604
3605::
3606
3607 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3608 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3609 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3610 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3611
3612Overview:
3613"""""""""
3614
3615The '``add``' instruction returns the sum of its two operands.
3616
3617Arguments:
3618""""""""""
3619
3620The two arguments to the '``add``' instruction must be
3621:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3622arguments must have identical types.
3623
3624Semantics:
3625""""""""""
3626
3627The value produced is the integer sum of the two operands.
3628
3629If the sum has unsigned overflow, the result returned is the
3630mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3631the result.
3632
3633Because LLVM integers use a two's complement representation, this
3634instruction is appropriate for both signed and unsigned integers.
3635
3636``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3637respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3638result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3639unsigned and/or signed overflow, respectively, occurs.
3640
3641Example:
3642""""""""
3643
3644.. code-block:: llvm
3645
3646 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3647
3648.. _i_fadd:
3649
3650'``fadd``' Instruction
3651^^^^^^^^^^^^^^^^^^^^^^
3652
3653Syntax:
3654"""""""
3655
3656::
3657
3658 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3659
3660Overview:
3661"""""""""
3662
3663The '``fadd``' instruction returns the sum of its two operands.
3664
3665Arguments:
3666""""""""""
3667
3668The two arguments to the '``fadd``' instruction must be :ref:`floating
3669point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3670Both arguments must have identical types.
3671
3672Semantics:
3673""""""""""
3674
3675The value produced is the floating point sum of the two operands. This
3676instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3677which are optimization hints to enable otherwise unsafe floating point
3678optimizations:
3679
3680Example:
3681""""""""
3682
3683.. code-block:: llvm
3684
3685 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3686
3687'``sub``' Instruction
3688^^^^^^^^^^^^^^^^^^^^^
3689
3690Syntax:
3691"""""""
3692
3693::
3694
3695 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3696 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3697 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3698 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3699
3700Overview:
3701"""""""""
3702
3703The '``sub``' instruction returns the difference of its two operands.
3704
3705Note that the '``sub``' instruction is used to represent the '``neg``'
3706instruction present in most other intermediate representations.
3707
3708Arguments:
3709""""""""""
3710
3711The two arguments to the '``sub``' instruction must be
3712:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3713arguments must have identical types.
3714
3715Semantics:
3716""""""""""
3717
3718The value produced is the integer difference of the two operands.
3719
3720If the difference has unsigned overflow, the result returned is the
3721mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3722the result.
3723
3724Because LLVM integers use a two's complement representation, this
3725instruction is appropriate for both signed and unsigned integers.
3726
3727``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3728respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3729result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3730unsigned and/or signed overflow, respectively, occurs.
3731
3732Example:
3733""""""""
3734
3735.. code-block:: llvm
3736
3737 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3738 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3739
3740.. _i_fsub:
3741
3742'``fsub``' Instruction
3743^^^^^^^^^^^^^^^^^^^^^^
3744
3745Syntax:
3746"""""""
3747
3748::
3749
3750 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3751
3752Overview:
3753"""""""""
3754
3755The '``fsub``' instruction returns the difference of its two operands.
3756
3757Note that the '``fsub``' instruction is used to represent the '``fneg``'
3758instruction present in most other intermediate representations.
3759
3760Arguments:
3761""""""""""
3762
3763The two arguments to the '``fsub``' instruction must be :ref:`floating
3764point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3765Both arguments must have identical types.
3766
3767Semantics:
3768""""""""""
3769
3770The value produced is the floating point difference of the two operands.
3771This instruction can also take any number of :ref:`fast-math
3772flags <fastmath>`, which are optimization hints to enable otherwise
3773unsafe floating point optimizations:
3774
3775Example:
3776""""""""
3777
3778.. code-block:: llvm
3779
3780 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3781 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3782
3783'``mul``' Instruction
3784^^^^^^^^^^^^^^^^^^^^^
3785
3786Syntax:
3787"""""""
3788
3789::
3790
3791 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3792 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3793 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3794 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3795
3796Overview:
3797"""""""""
3798
3799The '``mul``' instruction returns the product of its two operands.
3800
3801Arguments:
3802""""""""""
3803
3804The two arguments to the '``mul``' instruction must be
3805:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3806arguments must have identical types.
3807
3808Semantics:
3809""""""""""
3810
3811The value produced is the integer product of the two operands.
3812
3813If the result of the multiplication has unsigned overflow, the result
3814returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3815bit width of the result.
3816
3817Because LLVM integers use a two's complement representation, and the
3818result is the same width as the operands, this instruction returns the
3819correct result for both signed and unsigned integers. If a full product
3820(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3821sign-extended or zero-extended as appropriate to the width of the full
3822product.
3823
3824``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3825respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3826result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3827unsigned and/or signed overflow, respectively, occurs.
3828
3829Example:
3830""""""""
3831
3832.. code-block:: llvm
3833
3834 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3835
3836.. _i_fmul:
3837
3838'``fmul``' Instruction
3839^^^^^^^^^^^^^^^^^^^^^^
3840
3841Syntax:
3842"""""""
3843
3844::
3845
3846 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3847
3848Overview:
3849"""""""""
3850
3851The '``fmul``' instruction returns the product of its two operands.
3852
3853Arguments:
3854""""""""""
3855
3856The two arguments to the '``fmul``' instruction must be :ref:`floating
3857point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3858Both arguments must have identical types.
3859
3860Semantics:
3861""""""""""
3862
3863The value produced is the floating point product of the two operands.
3864This instruction can also take any number of :ref:`fast-math
3865flags <fastmath>`, which are optimization hints to enable otherwise
3866unsafe floating point optimizations:
3867
3868Example:
3869""""""""
3870
3871.. code-block:: llvm
3872
3873 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3874
3875'``udiv``' Instruction
3876^^^^^^^^^^^^^^^^^^^^^^
3877
3878Syntax:
3879"""""""
3880
3881::
3882
3883 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3884 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3885
3886Overview:
3887"""""""""
3888
3889The '``udiv``' instruction returns the quotient of its two operands.
3890
3891Arguments:
3892""""""""""
3893
3894The two arguments to the '``udiv``' instruction must be
3895:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3896arguments must have identical types.
3897
3898Semantics:
3899""""""""""
3900
3901The value produced is the unsigned integer quotient of the two operands.
3902
3903Note that unsigned integer division and signed integer division are
3904distinct operations; for signed integer division, use '``sdiv``'.
3905
3906Division by zero leads to undefined behavior.
3907
3908If the ``exact`` keyword is present, the result value of the ``udiv`` is
3909a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3910such, "((a udiv exact b) mul b) == a").
3911
3912Example:
3913""""""""
3914
3915.. code-block:: llvm
3916
3917 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3918
3919'``sdiv``' Instruction
3920^^^^^^^^^^^^^^^^^^^^^^
3921
3922Syntax:
3923"""""""
3924
3925::
3926
3927 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3928 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3929
3930Overview:
3931"""""""""
3932
3933The '``sdiv``' instruction returns the quotient of its two operands.
3934
3935Arguments:
3936""""""""""
3937
3938The two arguments to the '``sdiv``' instruction must be
3939:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3940arguments must have identical types.
3941
3942Semantics:
3943""""""""""
3944
3945The value produced is the signed integer quotient of the two operands
3946rounded towards zero.
3947
3948Note that signed integer division and unsigned integer division are
3949distinct operations; for unsigned integer division, use '``udiv``'.
3950
3951Division by zero leads to undefined behavior. Overflow also leads to
3952undefined behavior; this is a rare case, but can occur, for example, by
3953doing a 32-bit division of -2147483648 by -1.
3954
3955If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3956a :ref:`poison value <poisonvalues>` if the result would be rounded.
3957
3958Example:
3959""""""""
3960
3961.. code-block:: llvm
3962
3963 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3964
3965.. _i_fdiv:
3966
3967'``fdiv``' Instruction
3968^^^^^^^^^^^^^^^^^^^^^^
3969
3970Syntax:
3971"""""""
3972
3973::
3974
3975 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3976
3977Overview:
3978"""""""""
3979
3980The '``fdiv``' instruction returns the quotient of its two operands.
3981
3982Arguments:
3983""""""""""
3984
3985The two arguments to the '``fdiv``' instruction must be :ref:`floating
3986point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3987Both arguments must have identical types.
3988
3989Semantics:
3990""""""""""
3991
3992The value produced is the floating point quotient of the two operands.
3993This instruction can also take any number of :ref:`fast-math
3994flags <fastmath>`, which are optimization hints to enable otherwise
3995unsafe floating point optimizations:
3996
3997Example:
3998""""""""
3999
4000.. code-block:: llvm
4001
4002 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4003
4004'``urem``' Instruction
4005^^^^^^^^^^^^^^^^^^^^^^
4006
4007Syntax:
4008"""""""
4009
4010::
4011
4012 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4013
4014Overview:
4015"""""""""
4016
4017The '``urem``' instruction returns the remainder from the unsigned
4018division of its two arguments.
4019
4020Arguments:
4021""""""""""
4022
4023The two arguments to the '``urem``' instruction must be
4024:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4025arguments must have identical types.
4026
4027Semantics:
4028""""""""""
4029
4030This instruction returns the unsigned integer *remainder* of a division.
4031This instruction always performs an unsigned division to get the
4032remainder.
4033
4034Note that unsigned integer remainder and signed integer remainder are
4035distinct operations; for signed integer remainder, use '``srem``'.
4036
4037Taking the remainder of a division by zero leads to undefined behavior.
4038
4039Example:
4040""""""""
4041
4042.. code-block:: llvm
4043
4044 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4045
4046'``srem``' Instruction
4047^^^^^^^^^^^^^^^^^^^^^^
4048
4049Syntax:
4050"""""""
4051
4052::
4053
4054 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4055
4056Overview:
4057"""""""""
4058
4059The '``srem``' instruction returns the remainder from the signed
4060division of its two operands. This instruction can also take
4061:ref:`vector <t_vector>` versions of the values in which case the elements
4062must be integers.
4063
4064Arguments:
4065""""""""""
4066
4067The two arguments to the '``srem``' instruction must be
4068:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4069arguments must have identical types.
4070
4071Semantics:
4072""""""""""
4073
4074This instruction returns the *remainder* of a division (where the result
4075is either zero or has the same sign as the dividend, ``op1``), not the
4076*modulo* operator (where the result is either zero or has the same sign
4077as the divisor, ``op2``) of a value. For more information about the
4078difference, see `The Math
4079Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4080table of how this is implemented in various languages, please see
4081`Wikipedia: modulo
4082operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4083
4084Note that signed integer remainder and unsigned integer remainder are
4085distinct operations; for unsigned integer remainder, use '``urem``'.
4086
4087Taking the remainder of a division by zero leads to undefined behavior.
4088Overflow also leads to undefined behavior; this is a rare case, but can
4089occur, for example, by taking the remainder of a 32-bit division of
4090-2147483648 by -1. (The remainder doesn't actually overflow, but this
4091rule lets srem be implemented using instructions that return both the
4092result of the division and the remainder.)
4093
4094Example:
4095""""""""
4096
4097.. code-block:: llvm
4098
4099 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4100
4101.. _i_frem:
4102
4103'``frem``' Instruction
4104^^^^^^^^^^^^^^^^^^^^^^
4105
4106Syntax:
4107"""""""
4108
4109::
4110
4111 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4112
4113Overview:
4114"""""""""
4115
4116The '``frem``' instruction returns the remainder from the division of
4117its two operands.
4118
4119Arguments:
4120""""""""""
4121
4122The two arguments to the '``frem``' instruction must be :ref:`floating
4123point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4124Both arguments must have identical types.
4125
4126Semantics:
4127""""""""""
4128
4129This instruction returns the *remainder* of a division. The remainder
4130has the same sign as the dividend. This instruction can also take any
4131number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4132to enable otherwise unsafe floating point optimizations:
4133
4134Example:
4135""""""""
4136
4137.. code-block:: llvm
4138
4139 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4140
4141.. _bitwiseops:
4142
4143Bitwise Binary Operations
4144-------------------------
4145
4146Bitwise binary operators are used to do various forms of bit-twiddling
4147in a program. They are generally very efficient instructions and can
4148commonly be strength reduced from other instructions. They require two
4149operands of the same type, execute an operation on them, and produce a
4150single value. The resulting value is the same type as its operands.
4151
4152'``shl``' Instruction
4153^^^^^^^^^^^^^^^^^^^^^
4154
4155Syntax:
4156"""""""
4157
4158::
4159
4160 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4161 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4162 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4163 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4164
4165Overview:
4166"""""""""
4167
4168The '``shl``' instruction returns the first operand shifted to the left
4169a specified number of bits.
4170
4171Arguments:
4172""""""""""
4173
4174Both arguments to the '``shl``' instruction must be the same
4175:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4176'``op2``' is treated as an unsigned value.
4177
4178Semantics:
4179""""""""""
4180
4181The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4182where ``n`` is the width of the result. If ``op2`` is (statically or
4183dynamically) negative or equal to or larger than the number of bits in
4184``op1``, the result is undefined. If the arguments are vectors, each
4185vector element of ``op1`` is shifted by the corresponding shift amount
4186in ``op2``.
4187
4188If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4189value <poisonvalues>` if it shifts out any non-zero bits. If the
4190``nsw`` keyword is present, then the shift produces a :ref:`poison
4191value <poisonvalues>` if it shifts out any bits that disagree with the
4192resultant sign bit. As such, NUW/NSW have the same semantics as they
4193would if the shift were expressed as a mul instruction with the same
4194nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4195
4196Example:
4197""""""""
4198
4199.. code-block:: llvm
4200
4201 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4202 <result> = shl i32 4, 2 ; yields {i32}: 16
4203 <result> = shl i32 1, 10 ; yields {i32}: 1024
4204 <result> = shl i32 1, 32 ; undefined
4205 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4206
4207'``lshr``' Instruction
4208^^^^^^^^^^^^^^^^^^^^^^
4209
4210Syntax:
4211"""""""
4212
4213::
4214
4215 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4216 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4217
4218Overview:
4219"""""""""
4220
4221The '``lshr``' instruction (logical shift right) returns the first
4222operand shifted to the right a specified number of bits with zero fill.
4223
4224Arguments:
4225""""""""""
4226
4227Both arguments to the '``lshr``' instruction must be the same
4228:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4229'``op2``' is treated as an unsigned value.
4230
4231Semantics:
4232""""""""""
4233
4234This instruction always performs a logical shift right operation. The
4235most significant bits of the result will be filled with zero bits after
4236the shift. If ``op2`` is (statically or dynamically) equal to or larger
4237than the number of bits in ``op1``, the result is undefined. If the
4238arguments are vectors, each vector element of ``op1`` is shifted by the
4239corresponding shift amount in ``op2``.
4240
4241If the ``exact`` keyword is present, the result value of the ``lshr`` is
4242a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4243non-zero.
4244
4245Example:
4246""""""""
4247
4248.. code-block:: llvm
4249
4250 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4251 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4252 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004253 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004254 <result> = lshr i32 1, 32 ; undefined
4255 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4256
4257'``ashr``' Instruction
4258^^^^^^^^^^^^^^^^^^^^^^
4259
4260Syntax:
4261"""""""
4262
4263::
4264
4265 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4266 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4267
4268Overview:
4269"""""""""
4270
4271The '``ashr``' instruction (arithmetic shift right) returns the first
4272operand shifted to the right a specified number of bits with sign
4273extension.
4274
4275Arguments:
4276""""""""""
4277
4278Both arguments to the '``ashr``' instruction must be the same
4279:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4280'``op2``' is treated as an unsigned value.
4281
4282Semantics:
4283""""""""""
4284
4285This instruction always performs an arithmetic shift right operation,
4286The most significant bits of the result will be filled with the sign bit
4287of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4288than the number of bits in ``op1``, the result is undefined. If the
4289arguments are vectors, each vector element of ``op1`` is shifted by the
4290corresponding shift amount in ``op2``.
4291
4292If the ``exact`` keyword is present, the result value of the ``ashr`` is
4293a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4294non-zero.
4295
4296Example:
4297""""""""
4298
4299.. code-block:: llvm
4300
4301 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4302 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4303 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4304 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4305 <result> = ashr i32 1, 32 ; undefined
4306 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4307
4308'``and``' Instruction
4309^^^^^^^^^^^^^^^^^^^^^
4310
4311Syntax:
4312"""""""
4313
4314::
4315
4316 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4317
4318Overview:
4319"""""""""
4320
4321The '``and``' instruction returns the bitwise logical and of its two
4322operands.
4323
4324Arguments:
4325""""""""""
4326
4327The two arguments to the '``and``' instruction must be
4328:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4329arguments must have identical types.
4330
4331Semantics:
4332""""""""""
4333
4334The truth table used for the '``and``' instruction is:
4335
4336+-----+-----+-----+
4337| In0 | In1 | Out |
4338+-----+-----+-----+
4339| 0 | 0 | 0 |
4340+-----+-----+-----+
4341| 0 | 1 | 0 |
4342+-----+-----+-----+
4343| 1 | 0 | 0 |
4344+-----+-----+-----+
4345| 1 | 1 | 1 |
4346+-----+-----+-----+
4347
4348Example:
4349""""""""
4350
4351.. code-block:: llvm
4352
4353 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4354 <result> = and i32 15, 40 ; yields {i32}:result = 8
4355 <result> = and i32 4, 8 ; yields {i32}:result = 0
4356
4357'``or``' Instruction
4358^^^^^^^^^^^^^^^^^^^^
4359
4360Syntax:
4361"""""""
4362
4363::
4364
4365 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4366
4367Overview:
4368"""""""""
4369
4370The '``or``' instruction returns the bitwise logical inclusive or of its
4371two operands.
4372
4373Arguments:
4374""""""""""
4375
4376The two arguments to the '``or``' instruction must be
4377:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4378arguments must have identical types.
4379
4380Semantics:
4381""""""""""
4382
4383The truth table used for the '``or``' instruction is:
4384
4385+-----+-----+-----+
4386| In0 | In1 | Out |
4387+-----+-----+-----+
4388| 0 | 0 | 0 |
4389+-----+-----+-----+
4390| 0 | 1 | 1 |
4391+-----+-----+-----+
4392| 1 | 0 | 1 |
4393+-----+-----+-----+
4394| 1 | 1 | 1 |
4395+-----+-----+-----+
4396
4397Example:
4398""""""""
4399
4400::
4401
4402 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4403 <result> = or i32 15, 40 ; yields {i32}:result = 47
4404 <result> = or i32 4, 8 ; yields {i32}:result = 12
4405
4406'``xor``' Instruction
4407^^^^^^^^^^^^^^^^^^^^^
4408
4409Syntax:
4410"""""""
4411
4412::
4413
4414 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4415
4416Overview:
4417"""""""""
4418
4419The '``xor``' instruction returns the bitwise logical exclusive or of
4420its two operands. The ``xor`` is used to implement the "one's
4421complement" operation, which is the "~" operator in C.
4422
4423Arguments:
4424""""""""""
4425
4426The two arguments to the '``xor``' instruction must be
4427:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4428arguments must have identical types.
4429
4430Semantics:
4431""""""""""
4432
4433The truth table used for the '``xor``' instruction is:
4434
4435+-----+-----+-----+
4436| In0 | In1 | Out |
4437+-----+-----+-----+
4438| 0 | 0 | 0 |
4439+-----+-----+-----+
4440| 0 | 1 | 1 |
4441+-----+-----+-----+
4442| 1 | 0 | 1 |
4443+-----+-----+-----+
4444| 1 | 1 | 0 |
4445+-----+-----+-----+
4446
4447Example:
4448""""""""
4449
4450.. code-block:: llvm
4451
4452 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4453 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4454 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4455 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4456
4457Vector Operations
4458-----------------
4459
4460LLVM supports several instructions to represent vector operations in a
4461target-independent manner. These instructions cover the element-access
4462and vector-specific operations needed to process vectors effectively.
4463While LLVM does directly support these vector operations, many
4464sophisticated algorithms will want to use target-specific intrinsics to
4465take full advantage of a specific target.
4466
4467.. _i_extractelement:
4468
4469'``extractelement``' Instruction
4470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4471
4472Syntax:
4473"""""""
4474
4475::
4476
4477 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4478
4479Overview:
4480"""""""""
4481
4482The '``extractelement``' instruction extracts a single scalar element
4483from a vector at a specified index.
4484
4485Arguments:
4486""""""""""
4487
4488The first operand of an '``extractelement``' instruction is a value of
4489:ref:`vector <t_vector>` type. The second operand is an index indicating
4490the position from which to extract the element. The index may be a
4491variable.
4492
4493Semantics:
4494""""""""""
4495
4496The result is a scalar of the same type as the element type of ``val``.
4497Its value is the value at position ``idx`` of ``val``. If ``idx``
4498exceeds the length of ``val``, the results are undefined.
4499
4500Example:
4501""""""""
4502
4503.. code-block:: llvm
4504
4505 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4506
4507.. _i_insertelement:
4508
4509'``insertelement``' Instruction
4510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4511
4512Syntax:
4513"""""""
4514
4515::
4516
4517 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4518
4519Overview:
4520"""""""""
4521
4522The '``insertelement``' instruction inserts a scalar element into a
4523vector at a specified index.
4524
4525Arguments:
4526""""""""""
4527
4528The first operand of an '``insertelement``' instruction is a value of
4529:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4530type must equal the element type of the first operand. The third operand
4531is an index indicating the position at which to insert the value. The
4532index may be a variable.
4533
4534Semantics:
4535""""""""""
4536
4537The result is a vector of the same type as ``val``. Its element values
4538are those of ``val`` except at position ``idx``, where it gets the value
4539``elt``. If ``idx`` exceeds the length of ``val``, the results are
4540undefined.
4541
4542Example:
4543""""""""
4544
4545.. code-block:: llvm
4546
4547 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4548
4549.. _i_shufflevector:
4550
4551'``shufflevector``' Instruction
4552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4553
4554Syntax:
4555"""""""
4556
4557::
4558
4559 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4560
4561Overview:
4562"""""""""
4563
4564The '``shufflevector``' instruction constructs a permutation of elements
4565from two input vectors, returning a vector with the same element type as
4566the input and length that is the same as the shuffle mask.
4567
4568Arguments:
4569""""""""""
4570
4571The first two operands of a '``shufflevector``' instruction are vectors
4572with the same type. The third argument is a shuffle mask whose element
4573type is always 'i32'. The result of the instruction is a vector whose
4574length is the same as the shuffle mask and whose element type is the
4575same as the element type of the first two operands.
4576
4577The shuffle mask operand is required to be a constant vector with either
4578constant integer or undef values.
4579
4580Semantics:
4581""""""""""
4582
4583The elements of the two input vectors are numbered from left to right
4584across both of the vectors. The shuffle mask operand specifies, for each
4585element of the result vector, which element of the two input vectors the
4586result element gets. The element selector may be undef (meaning "don't
4587care") and the second operand may be undef if performing a shuffle from
4588only one vector.
4589
4590Example:
4591""""""""
4592
4593.. code-block:: llvm
4594
4595 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4596 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4597 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4598 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4599 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4600 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4601 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4602 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4603
4604Aggregate Operations
4605--------------------
4606
4607LLVM supports several instructions for working with
4608:ref:`aggregate <t_aggregate>` values.
4609
4610.. _i_extractvalue:
4611
4612'``extractvalue``' Instruction
4613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4614
4615Syntax:
4616"""""""
4617
4618::
4619
4620 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4621
4622Overview:
4623"""""""""
4624
4625The '``extractvalue``' instruction extracts the value of a member field
4626from an :ref:`aggregate <t_aggregate>` value.
4627
4628Arguments:
4629""""""""""
4630
4631The first operand of an '``extractvalue``' instruction is a value of
4632:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4633constant indices to specify which value to extract in a similar manner
4634as indices in a '``getelementptr``' instruction.
4635
4636The major differences to ``getelementptr`` indexing are:
4637
4638- Since the value being indexed is not a pointer, the first index is
4639 omitted and assumed to be zero.
4640- At least one index must be specified.
4641- Not only struct indices but also array indices must be in bounds.
4642
4643Semantics:
4644""""""""""
4645
4646The result is the value at the position in the aggregate specified by
4647the index operands.
4648
4649Example:
4650""""""""
4651
4652.. code-block:: llvm
4653
4654 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4655
4656.. _i_insertvalue:
4657
4658'``insertvalue``' Instruction
4659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4660
4661Syntax:
4662"""""""
4663
4664::
4665
4666 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4667
4668Overview:
4669"""""""""
4670
4671The '``insertvalue``' instruction inserts a value into a member field in
4672an :ref:`aggregate <t_aggregate>` value.
4673
4674Arguments:
4675""""""""""
4676
4677The first operand of an '``insertvalue``' instruction is a value of
4678:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4679a first-class value to insert. The following operands are constant
4680indices indicating the position at which to insert the value in a
4681similar manner as indices in a '``extractvalue``' instruction. The value
4682to insert must have the same type as the value identified by the
4683indices.
4684
4685Semantics:
4686""""""""""
4687
4688The result is an aggregate of the same type as ``val``. Its value is
4689that of ``val`` except that the value at the position specified by the
4690indices is that of ``elt``.
4691
4692Example:
4693""""""""
4694
4695.. code-block:: llvm
4696
4697 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4698 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4699 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4700
4701.. _memoryops:
4702
4703Memory Access and Addressing Operations
4704---------------------------------------
4705
4706A key design point of an SSA-based representation is how it represents
4707memory. In LLVM, no memory locations are in SSA form, which makes things
4708very simple. This section describes how to read, write, and allocate
4709memory in LLVM.
4710
4711.. _i_alloca:
4712
4713'``alloca``' Instruction
4714^^^^^^^^^^^^^^^^^^^^^^^^
4715
4716Syntax:
4717"""""""
4718
4719::
4720
David Majnemerc4ab61c2014-03-09 06:41:58 +00004721 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004722
4723Overview:
4724"""""""""
4725
4726The '``alloca``' instruction allocates memory on the stack frame of the
4727currently executing function, to be automatically released when this
4728function returns to its caller. The object is always allocated in the
4729generic address space (address space zero).
4730
4731Arguments:
4732""""""""""
4733
4734The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4735bytes of memory on the runtime stack, returning a pointer of the
4736appropriate type to the program. If "NumElements" is specified, it is
4737the number of elements allocated, otherwise "NumElements" is defaulted
4738to be one. If a constant alignment is specified, the value result of the
4739allocation is guaranteed to be aligned to at least that boundary. If not
4740specified, or if zero, the target can choose to align the allocation on
4741any convenient boundary compatible with the type.
4742
4743'``type``' may be any sized type.
4744
4745Semantics:
4746""""""""""
4747
4748Memory is allocated; a pointer is returned. The operation is undefined
4749if there is insufficient stack space for the allocation. '``alloca``'d
4750memory is automatically released when the function returns. The
4751'``alloca``' instruction is commonly used to represent automatic
4752variables that must have an address available. When the function returns
4753(either with the ``ret`` or ``resume`` instructions), the memory is
4754reclaimed. Allocating zero bytes is legal, but the result is undefined.
4755The order in which memory is allocated (ie., which way the stack grows)
4756is not specified.
4757
4758Example:
4759""""""""
4760
4761.. code-block:: llvm
4762
4763 %ptr = alloca i32 ; yields {i32*}:ptr
4764 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4765 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4766 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4767
4768.. _i_load:
4769
4770'``load``' Instruction
4771^^^^^^^^^^^^^^^^^^^^^^
4772
4773Syntax:
4774"""""""
4775
4776::
4777
4778 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4779 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4780 !<index> = !{ i32 1 }
4781
4782Overview:
4783"""""""""
4784
4785The '``load``' instruction is used to read from memory.
4786
4787Arguments:
4788""""""""""
4789
Eli Bendersky239a78b2013-04-17 20:17:08 +00004790The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004791from which to load. The pointer must point to a :ref:`first
4792class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4793then the optimizer is not allowed to modify the number or order of
4794execution of this ``load`` with other :ref:`volatile
4795operations <volatile>`.
4796
4797If the ``load`` is marked as ``atomic``, it takes an extra
4798:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4799``release`` and ``acq_rel`` orderings are not valid on ``load``
4800instructions. Atomic loads produce :ref:`defined <memmodel>` results
4801when they may see multiple atomic stores. The type of the pointee must
4802be an integer type whose bit width is a power of two greater than or
4803equal to eight and less than or equal to a target-specific size limit.
4804``align`` must be explicitly specified on atomic loads, and the load has
4805undefined behavior if the alignment is not set to a value which is at
4806least the size in bytes of the pointee. ``!nontemporal`` does not have
4807any defined semantics for atomic loads.
4808
4809The optional constant ``align`` argument specifies the alignment of the
4810operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004811or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004812alignment for the target. It is the responsibility of the code emitter
4813to ensure that the alignment information is correct. Overestimating the
4814alignment results in undefined behavior. Underestimating the alignment
4815may produce less efficient code. An alignment of 1 is always safe.
4816
4817The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004818metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004819``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004820metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004821that this load is not expected to be reused in the cache. The code
4822generator may select special instructions to save cache bandwidth, such
4823as the ``MOVNT`` instruction on x86.
4824
4825The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004826metadata name ``<index>`` corresponding to a metadata node with no
4827entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004828instruction tells the optimizer and code generator that this load
4829address points to memory which does not change value during program
4830execution. The optimizer may then move this load around, for example, by
4831hoisting it out of loops using loop invariant code motion.
4832
4833Semantics:
4834""""""""""
4835
4836The location of memory pointed to is loaded. If the value being loaded
4837is of scalar type then the number of bytes read does not exceed the
4838minimum number of bytes needed to hold all bits of the type. For
4839example, loading an ``i24`` reads at most three bytes. When loading a
4840value of a type like ``i20`` with a size that is not an integral number
4841of bytes, the result is undefined if the value was not originally
4842written using a store of the same type.
4843
4844Examples:
4845"""""""""
4846
4847.. code-block:: llvm
4848
4849 %ptr = alloca i32 ; yields {i32*}:ptr
4850 store i32 3, i32* %ptr ; yields {void}
4851 %val = load i32* %ptr ; yields {i32}:val = i32 3
4852
4853.. _i_store:
4854
4855'``store``' Instruction
4856^^^^^^^^^^^^^^^^^^^^^^^
4857
4858Syntax:
4859"""""""
4860
4861::
4862
4863 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4864 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4865
4866Overview:
4867"""""""""
4868
4869The '``store``' instruction is used to write to memory.
4870
4871Arguments:
4872""""""""""
4873
Eli Benderskyca380842013-04-17 17:17:20 +00004874There are two arguments to the ``store`` instruction: a value to store
4875and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004876operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004877the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004878then the optimizer is not allowed to modify the number or order of
4879execution of this ``store`` with other :ref:`volatile
4880operations <volatile>`.
4881
4882If the ``store`` is marked as ``atomic``, it takes an extra
4883:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4884``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4885instructions. Atomic loads produce :ref:`defined <memmodel>` results
4886when they may see multiple atomic stores. The type of the pointee must
4887be an integer type whose bit width is a power of two greater than or
4888equal to eight and less than or equal to a target-specific size limit.
4889``align`` must be explicitly specified on atomic stores, and the store
4890has undefined behavior if the alignment is not set to a value which is
4891at least the size in bytes of the pointee. ``!nontemporal`` does not
4892have any defined semantics for atomic stores.
4893
Eli Benderskyca380842013-04-17 17:17:20 +00004894The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004895operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004896or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004897alignment for the target. It is the responsibility of the code emitter
4898to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004899alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004900alignment may produce less efficient code. An alignment of 1 is always
4901safe.
4902
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004903The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004904name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004905value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004906tells the optimizer and code generator that this load is not expected to
4907be reused in the cache. The code generator may select special
4908instructions to save cache bandwidth, such as the MOVNT instruction on
4909x86.
4910
4911Semantics:
4912""""""""""
4913
Eli Benderskyca380842013-04-17 17:17:20 +00004914The contents of memory are updated to contain ``<value>`` at the
4915location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004916of scalar type then the number of bytes written does not exceed the
4917minimum number of bytes needed to hold all bits of the type. For
4918example, storing an ``i24`` writes at most three bytes. When writing a
4919value of a type like ``i20`` with a size that is not an integral number
4920of bytes, it is unspecified what happens to the extra bits that do not
4921belong to the type, but they will typically be overwritten.
4922
4923Example:
4924""""""""
4925
4926.. code-block:: llvm
4927
4928 %ptr = alloca i32 ; yields {i32*}:ptr
4929 store i32 3, i32* %ptr ; yields {void}
4930 %val = load i32* %ptr ; yields {i32}:val = i32 3
4931
4932.. _i_fence:
4933
4934'``fence``' Instruction
4935^^^^^^^^^^^^^^^^^^^^^^^
4936
4937Syntax:
4938"""""""
4939
4940::
4941
4942 fence [singlethread] <ordering> ; yields {void}
4943
4944Overview:
4945"""""""""
4946
4947The '``fence``' instruction is used to introduce happens-before edges
4948between operations.
4949
4950Arguments:
4951""""""""""
4952
4953'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4954defines what *synchronizes-with* edges they add. They can only be given
4955``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4956
4957Semantics:
4958""""""""""
4959
4960A fence A which has (at least) ``release`` ordering semantics
4961*synchronizes with* a fence B with (at least) ``acquire`` ordering
4962semantics if and only if there exist atomic operations X and Y, both
4963operating on some atomic object M, such that A is sequenced before X, X
4964modifies M (either directly or through some side effect of a sequence
4965headed by X), Y is sequenced before B, and Y observes M. This provides a
4966*happens-before* dependency between A and B. Rather than an explicit
4967``fence``, one (but not both) of the atomic operations X or Y might
4968provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4969still *synchronize-with* the explicit ``fence`` and establish the
4970*happens-before* edge.
4971
4972A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4973``acquire`` and ``release`` semantics specified above, participates in
4974the global program order of other ``seq_cst`` operations and/or fences.
4975
4976The optional ":ref:`singlethread <singlethread>`" argument specifies
4977that the fence only synchronizes with other fences in the same thread.
4978(This is useful for interacting with signal handlers.)
4979
4980Example:
4981""""""""
4982
4983.. code-block:: llvm
4984
4985 fence acquire ; yields {void}
4986 fence singlethread seq_cst ; yields {void}
4987
4988.. _i_cmpxchg:
4989
4990'``cmpxchg``' Instruction
4991^^^^^^^^^^^^^^^^^^^^^^^^^
4992
4993Syntax:
4994"""""""
4995
4996::
4997
Tim Northovere94a5182014-03-11 10:48:52 +00004998 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00004999
5000Overview:
5001"""""""""
5002
5003The '``cmpxchg``' instruction is used to atomically modify memory. It
5004loads a value in memory and compares it to a given value. If they are
5005equal, it stores a new value into the memory.
5006
5007Arguments:
5008""""""""""
5009
5010There are three arguments to the '``cmpxchg``' instruction: an address
5011to operate on, a value to compare to the value currently be at that
5012address, and a new value to place at that address if the compared values
5013are equal. The type of '<cmp>' must be an integer type whose bit width
5014is a power of two greater than or equal to eight and less than or equal
5015to a target-specific size limit. '<cmp>' and '<new>' must have the same
5016type, and the type of '<pointer>' must be a pointer to that type. If the
5017``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5018to modify the number or order of execution of this ``cmpxchg`` with
5019other :ref:`volatile operations <volatile>`.
5020
Tim Northovere94a5182014-03-11 10:48:52 +00005021The success and failure :ref:`ordering <ordering>` arguments specify how this
5022``cmpxchg`` synchronizes with other atomic operations. The both ordering
5023parameters must be at least ``monotonic``, the ordering constraint on failure
5024must be no stronger than that on success, and the failure ordering cannot be
5025either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005026
5027The optional "``singlethread``" argument declares that the ``cmpxchg``
5028is only atomic with respect to code (usually signal handlers) running in
5029the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5030respect to all other code in the system.
5031
5032The pointer passed into cmpxchg must have alignment greater than or
5033equal to the size in memory of the operand.
5034
5035Semantics:
5036""""""""""
5037
5038The contents of memory at the location specified by the '``<pointer>``'
5039operand is read and compared to '``<cmp>``'; if the read value is the
5040equal, '``<new>``' is written. The original value at the location is
5041returned.
5042
Tim Northovere94a5182014-03-11 10:48:52 +00005043A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5044identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5045load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005046
5047Example:
5048""""""""
5049
5050.. code-block:: llvm
5051
5052 entry:
5053 %orig = atomic load i32* %ptr unordered ; yields {i32}
5054 br label %loop
5055
5056 loop:
5057 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5058 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005059 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005060 %success = icmp eq i32 %cmp, %old
5061 br i1 %success, label %done, label %loop
5062
5063 done:
5064 ...
5065
5066.. _i_atomicrmw:
5067
5068'``atomicrmw``' Instruction
5069^^^^^^^^^^^^^^^^^^^^^^^^^^^
5070
5071Syntax:
5072"""""""
5073
5074::
5075
5076 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5077
5078Overview:
5079"""""""""
5080
5081The '``atomicrmw``' instruction is used to atomically modify memory.
5082
5083Arguments:
5084""""""""""
5085
5086There are three arguments to the '``atomicrmw``' instruction: an
5087operation to apply, an address whose value to modify, an argument to the
5088operation. The operation must be one of the following keywords:
5089
5090- xchg
5091- add
5092- sub
5093- and
5094- nand
5095- or
5096- xor
5097- max
5098- min
5099- umax
5100- umin
5101
5102The type of '<value>' must be an integer type whose bit width is a power
5103of two greater than or equal to eight and less than or equal to a
5104target-specific size limit. The type of the '``<pointer>``' operand must
5105be a pointer to that type. If the ``atomicrmw`` is marked as
5106``volatile``, then the optimizer is not allowed to modify the number or
5107order of execution of this ``atomicrmw`` with other :ref:`volatile
5108operations <volatile>`.
5109
5110Semantics:
5111""""""""""
5112
5113The contents of memory at the location specified by the '``<pointer>``'
5114operand are atomically read, modified, and written back. The original
5115value at the location is returned. The modification is specified by the
5116operation argument:
5117
5118- xchg: ``*ptr = val``
5119- add: ``*ptr = *ptr + val``
5120- sub: ``*ptr = *ptr - val``
5121- and: ``*ptr = *ptr & val``
5122- nand: ``*ptr = ~(*ptr & val)``
5123- or: ``*ptr = *ptr | val``
5124- xor: ``*ptr = *ptr ^ val``
5125- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5126- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5127- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5128 comparison)
5129- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5130 comparison)
5131
5132Example:
5133""""""""
5134
5135.. code-block:: llvm
5136
5137 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5138
5139.. _i_getelementptr:
5140
5141'``getelementptr``' Instruction
5142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5143
5144Syntax:
5145"""""""
5146
5147::
5148
5149 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5150 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5151 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5152
5153Overview:
5154"""""""""
5155
5156The '``getelementptr``' instruction is used to get the address of a
5157subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5158address calculation only and does not access memory.
5159
5160Arguments:
5161""""""""""
5162
5163The first argument is always a pointer or a vector of pointers, and
5164forms the basis of the calculation. The remaining arguments are indices
5165that indicate which of the elements of the aggregate object are indexed.
5166The interpretation of each index is dependent on the type being indexed
5167into. The first index always indexes the pointer value given as the
5168first argument, the second index indexes a value of the type pointed to
5169(not necessarily the value directly pointed to, since the first index
5170can be non-zero), etc. The first type indexed into must be a pointer
5171value, subsequent types can be arrays, vectors, and structs. Note that
5172subsequent types being indexed into can never be pointers, since that
5173would require loading the pointer before continuing calculation.
5174
5175The type of each index argument depends on the type it is indexing into.
5176When indexing into a (optionally packed) structure, only ``i32`` integer
5177**constants** are allowed (when using a vector of indices they must all
5178be the **same** ``i32`` integer constant). When indexing into an array,
5179pointer or vector, integers of any width are allowed, and they are not
5180required to be constant. These integers are treated as signed values
5181where relevant.
5182
5183For example, let's consider a C code fragment and how it gets compiled
5184to LLVM:
5185
5186.. code-block:: c
5187
5188 struct RT {
5189 char A;
5190 int B[10][20];
5191 char C;
5192 };
5193 struct ST {
5194 int X;
5195 double Y;
5196 struct RT Z;
5197 };
5198
5199 int *foo(struct ST *s) {
5200 return &s[1].Z.B[5][13];
5201 }
5202
5203The LLVM code generated by Clang is:
5204
5205.. code-block:: llvm
5206
5207 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5208 %struct.ST = type { i32, double, %struct.RT }
5209
5210 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5211 entry:
5212 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5213 ret i32* %arrayidx
5214 }
5215
5216Semantics:
5217""""""""""
5218
5219In the example above, the first index is indexing into the
5220'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5221= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5222indexes into the third element of the structure, yielding a
5223'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5224structure. The third index indexes into the second element of the
5225structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5226dimensions of the array are subscripted into, yielding an '``i32``'
5227type. The '``getelementptr``' instruction returns a pointer to this
5228element, thus computing a value of '``i32*``' type.
5229
5230Note that it is perfectly legal to index partially through a structure,
5231returning a pointer to an inner element. Because of this, the LLVM code
5232for the given testcase is equivalent to:
5233
5234.. code-block:: llvm
5235
5236 define i32* @foo(%struct.ST* %s) {
5237 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5238 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5239 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5240 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5241 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5242 ret i32* %t5
5243 }
5244
5245If the ``inbounds`` keyword is present, the result value of the
5246``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5247pointer is not an *in bounds* address of an allocated object, or if any
5248of the addresses that would be formed by successive addition of the
5249offsets implied by the indices to the base address with infinitely
5250precise signed arithmetic are not an *in bounds* address of that
5251allocated object. The *in bounds* addresses for an allocated object are
5252all the addresses that point into the object, plus the address one byte
5253past the end. In cases where the base is a vector of pointers the
5254``inbounds`` keyword applies to each of the computations element-wise.
5255
5256If the ``inbounds`` keyword is not present, the offsets are added to the
5257base address with silently-wrapping two's complement arithmetic. If the
5258offsets have a different width from the pointer, they are sign-extended
5259or truncated to the width of the pointer. The result value of the
5260``getelementptr`` may be outside the object pointed to by the base
5261pointer. The result value may not necessarily be used to access memory
5262though, even if it happens to point into allocated storage. See the
5263:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5264information.
5265
5266The getelementptr instruction is often confusing. For some more insight
5267into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5268
5269Example:
5270""""""""
5271
5272.. code-block:: llvm
5273
5274 ; yields [12 x i8]*:aptr
5275 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5276 ; yields i8*:vptr
5277 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5278 ; yields i8*:eptr
5279 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5280 ; yields i32*:iptr
5281 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5282
5283In cases where the pointer argument is a vector of pointers, each index
5284must be a vector with the same number of elements. For example:
5285
5286.. code-block:: llvm
5287
5288 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5289
5290Conversion Operations
5291---------------------
5292
5293The instructions in this category are the conversion instructions
5294(casting) which all take a single operand and a type. They perform
5295various bit conversions on the operand.
5296
5297'``trunc .. to``' Instruction
5298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5299
5300Syntax:
5301"""""""
5302
5303::
5304
5305 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5306
5307Overview:
5308"""""""""
5309
5310The '``trunc``' instruction truncates its operand to the type ``ty2``.
5311
5312Arguments:
5313""""""""""
5314
5315The '``trunc``' instruction takes a value to trunc, and a type to trunc
5316it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5317of the same number of integers. The bit size of the ``value`` must be
5318larger than the bit size of the destination type, ``ty2``. Equal sized
5319types are not allowed.
5320
5321Semantics:
5322""""""""""
5323
5324The '``trunc``' instruction truncates the high order bits in ``value``
5325and converts the remaining bits to ``ty2``. Since the source size must
5326be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5327It will always truncate bits.
5328
5329Example:
5330""""""""
5331
5332.. code-block:: llvm
5333
5334 %X = trunc i32 257 to i8 ; yields i8:1
5335 %Y = trunc i32 123 to i1 ; yields i1:true
5336 %Z = trunc i32 122 to i1 ; yields i1:false
5337 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5338
5339'``zext .. to``' Instruction
5340^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5341
5342Syntax:
5343"""""""
5344
5345::
5346
5347 <result> = zext <ty> <value> to <ty2> ; yields ty2
5348
5349Overview:
5350"""""""""
5351
5352The '``zext``' instruction zero extends its operand to type ``ty2``.
5353
5354Arguments:
5355""""""""""
5356
5357The '``zext``' instruction takes a value to cast, and a type to cast it
5358to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5359the same number of integers. The bit size of the ``value`` must be
5360smaller than the bit size of the destination type, ``ty2``.
5361
5362Semantics:
5363""""""""""
5364
5365The ``zext`` fills the high order bits of the ``value`` with zero bits
5366until it reaches the size of the destination type, ``ty2``.
5367
5368When zero extending from i1, the result will always be either 0 or 1.
5369
5370Example:
5371""""""""
5372
5373.. code-block:: llvm
5374
5375 %X = zext i32 257 to i64 ; yields i64:257
5376 %Y = zext i1 true to i32 ; yields i32:1
5377 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5378
5379'``sext .. to``' Instruction
5380^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5381
5382Syntax:
5383"""""""
5384
5385::
5386
5387 <result> = sext <ty> <value> to <ty2> ; yields ty2
5388
5389Overview:
5390"""""""""
5391
5392The '``sext``' sign extends ``value`` to the type ``ty2``.
5393
5394Arguments:
5395""""""""""
5396
5397The '``sext``' instruction takes a value to cast, and a type to cast it
5398to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5399the same number of integers. The bit size of the ``value`` must be
5400smaller than the bit size of the destination type, ``ty2``.
5401
5402Semantics:
5403""""""""""
5404
5405The '``sext``' instruction performs a sign extension by copying the sign
5406bit (highest order bit) of the ``value`` until it reaches the bit size
5407of the type ``ty2``.
5408
5409When sign extending from i1, the extension always results in -1 or 0.
5410
5411Example:
5412""""""""
5413
5414.. code-block:: llvm
5415
5416 %X = sext i8 -1 to i16 ; yields i16 :65535
5417 %Y = sext i1 true to i32 ; yields i32:-1
5418 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5419
5420'``fptrunc .. to``' Instruction
5421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5422
5423Syntax:
5424"""""""
5425
5426::
5427
5428 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5429
5430Overview:
5431"""""""""
5432
5433The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5434
5435Arguments:
5436""""""""""
5437
5438The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5439value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5440The size of ``value`` must be larger than the size of ``ty2``. This
5441implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5442
5443Semantics:
5444""""""""""
5445
5446The '``fptrunc``' instruction truncates a ``value`` from a larger
5447:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5448point <t_floating>` type. If the value cannot fit within the
5449destination type, ``ty2``, then the results are undefined.
5450
5451Example:
5452""""""""
5453
5454.. code-block:: llvm
5455
5456 %X = fptrunc double 123.0 to float ; yields float:123.0
5457 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5458
5459'``fpext .. to``' Instruction
5460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5461
5462Syntax:
5463"""""""
5464
5465::
5466
5467 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5468
5469Overview:
5470"""""""""
5471
5472The '``fpext``' extends a floating point ``value`` to a larger floating
5473point value.
5474
5475Arguments:
5476""""""""""
5477
5478The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5479``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5480to. The source type must be smaller than the destination type.
5481
5482Semantics:
5483""""""""""
5484
5485The '``fpext``' instruction extends the ``value`` from a smaller
5486:ref:`floating point <t_floating>` type to a larger :ref:`floating
5487point <t_floating>` type. The ``fpext`` cannot be used to make a
5488*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5489*no-op cast* for a floating point cast.
5490
5491Example:
5492""""""""
5493
5494.. code-block:: llvm
5495
5496 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5497 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5498
5499'``fptoui .. to``' Instruction
5500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5501
5502Syntax:
5503"""""""
5504
5505::
5506
5507 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5508
5509Overview:
5510"""""""""
5511
5512The '``fptoui``' converts a floating point ``value`` to its unsigned
5513integer equivalent of type ``ty2``.
5514
5515Arguments:
5516""""""""""
5517
5518The '``fptoui``' instruction takes a value to cast, which must be a
5519scalar or vector :ref:`floating point <t_floating>` value, and a type to
5520cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5521``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5522type with the same number of elements as ``ty``
5523
5524Semantics:
5525""""""""""
5526
5527The '``fptoui``' instruction converts its :ref:`floating
5528point <t_floating>` operand into the nearest (rounding towards zero)
5529unsigned integer value. If the value cannot fit in ``ty2``, the results
5530are undefined.
5531
5532Example:
5533""""""""
5534
5535.. code-block:: llvm
5536
5537 %X = fptoui double 123.0 to i32 ; yields i32:123
5538 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5539 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5540
5541'``fptosi .. to``' Instruction
5542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5543
5544Syntax:
5545"""""""
5546
5547::
5548
5549 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5550
5551Overview:
5552"""""""""
5553
5554The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5555``value`` to type ``ty2``.
5556
5557Arguments:
5558""""""""""
5559
5560The '``fptosi``' instruction takes a value to cast, which must be a
5561scalar or vector :ref:`floating point <t_floating>` value, and a type to
5562cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5563``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5564type with the same number of elements as ``ty``
5565
5566Semantics:
5567""""""""""
5568
5569The '``fptosi``' instruction converts its :ref:`floating
5570point <t_floating>` operand into the nearest (rounding towards zero)
5571signed integer value. If the value cannot fit in ``ty2``, the results
5572are undefined.
5573
5574Example:
5575""""""""
5576
5577.. code-block:: llvm
5578
5579 %X = fptosi double -123.0 to i32 ; yields i32:-123
5580 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5581 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5582
5583'``uitofp .. to``' Instruction
5584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5585
5586Syntax:
5587"""""""
5588
5589::
5590
5591 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5592
5593Overview:
5594"""""""""
5595
5596The '``uitofp``' instruction regards ``value`` as an unsigned integer
5597and converts that value to the ``ty2`` type.
5598
5599Arguments:
5600""""""""""
5601
5602The '``uitofp``' instruction takes a value to cast, which must be a
5603scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5604``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5605``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5606type with the same number of elements as ``ty``
5607
5608Semantics:
5609""""""""""
5610
5611The '``uitofp``' instruction interprets its operand as an unsigned
5612integer quantity and converts it to the corresponding floating point
5613value. If the value cannot fit in the floating point value, the results
5614are undefined.
5615
5616Example:
5617""""""""
5618
5619.. code-block:: llvm
5620
5621 %X = uitofp i32 257 to float ; yields float:257.0
5622 %Y = uitofp i8 -1 to double ; yields double:255.0
5623
5624'``sitofp .. to``' Instruction
5625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5626
5627Syntax:
5628"""""""
5629
5630::
5631
5632 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5633
5634Overview:
5635"""""""""
5636
5637The '``sitofp``' instruction regards ``value`` as a signed integer and
5638converts that value to the ``ty2`` type.
5639
5640Arguments:
5641""""""""""
5642
5643The '``sitofp``' instruction takes a value to cast, which must be a
5644scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5645``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5646``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5647type with the same number of elements as ``ty``
5648
5649Semantics:
5650""""""""""
5651
5652The '``sitofp``' instruction interprets its operand as a signed integer
5653quantity and converts it to the corresponding floating point value. If
5654the value cannot fit in the floating point value, the results are
5655undefined.
5656
5657Example:
5658""""""""
5659
5660.. code-block:: llvm
5661
5662 %X = sitofp i32 257 to float ; yields float:257.0
5663 %Y = sitofp i8 -1 to double ; yields double:-1.0
5664
5665.. _i_ptrtoint:
5666
5667'``ptrtoint .. to``' Instruction
5668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5669
5670Syntax:
5671"""""""
5672
5673::
5674
5675 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5676
5677Overview:
5678"""""""""
5679
5680The '``ptrtoint``' instruction converts the pointer or a vector of
5681pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5682
5683Arguments:
5684""""""""""
5685
5686The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5687a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5688type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5689a vector of integers type.
5690
5691Semantics:
5692""""""""""
5693
5694The '``ptrtoint``' instruction converts ``value`` to integer type
5695``ty2`` by interpreting the pointer value as an integer and either
5696truncating or zero extending that value to the size of the integer type.
5697If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5698``value`` is larger than ``ty2`` then a truncation is done. If they are
5699the same size, then nothing is done (*no-op cast*) other than a type
5700change.
5701
5702Example:
5703""""""""
5704
5705.. code-block:: llvm
5706
5707 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5708 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5709 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5710
5711.. _i_inttoptr:
5712
5713'``inttoptr .. to``' Instruction
5714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5715
5716Syntax:
5717"""""""
5718
5719::
5720
5721 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5722
5723Overview:
5724"""""""""
5725
5726The '``inttoptr``' instruction converts an integer ``value`` to a
5727pointer type, ``ty2``.
5728
5729Arguments:
5730""""""""""
5731
5732The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5733cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5734type.
5735
5736Semantics:
5737""""""""""
5738
5739The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5740applying either a zero extension or a truncation depending on the size
5741of the integer ``value``. If ``value`` is larger than the size of a
5742pointer then a truncation is done. If ``value`` is smaller than the size
5743of a pointer then a zero extension is done. If they are the same size,
5744nothing is done (*no-op cast*).
5745
5746Example:
5747""""""""
5748
5749.. code-block:: llvm
5750
5751 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5752 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5753 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5754 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5755
5756.. _i_bitcast:
5757
5758'``bitcast .. to``' Instruction
5759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5760
5761Syntax:
5762"""""""
5763
5764::
5765
5766 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5767
5768Overview:
5769"""""""""
5770
5771The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5772changing any bits.
5773
5774Arguments:
5775""""""""""
5776
5777The '``bitcast``' instruction takes a value to cast, which must be a
5778non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005779also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5780bit sizes of ``value`` and the destination type, ``ty2``, must be
5781identical. If the source type is a pointer, the destination type must
5782also be a pointer of the same size. This instruction supports bitwise
5783conversion of vectors to integers and to vectors of other types (as
5784long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005785
5786Semantics:
5787""""""""""
5788
Matt Arsenault24b49c42013-07-31 17:49:08 +00005789The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5790is always a *no-op cast* because no bits change with this
5791conversion. The conversion is done as if the ``value`` had been stored
5792to memory and read back as type ``ty2``. Pointer (or vector of
5793pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005794pointers) types with the same address space through this instruction.
5795To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5796or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005797
5798Example:
5799""""""""
5800
5801.. code-block:: llvm
5802
5803 %X = bitcast i8 255 to i8 ; yields i8 :-1
5804 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5805 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5806 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5807
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005808.. _i_addrspacecast:
5809
5810'``addrspacecast .. to``' Instruction
5811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5812
5813Syntax:
5814"""""""
5815
5816::
5817
5818 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5819
5820Overview:
5821"""""""""
5822
5823The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5824address space ``n`` to type ``pty2`` in address space ``m``.
5825
5826Arguments:
5827""""""""""
5828
5829The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5830to cast and a pointer type to cast it to, which must have a different
5831address space.
5832
5833Semantics:
5834""""""""""
5835
5836The '``addrspacecast``' instruction converts the pointer value
5837``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005838value modification, depending on the target and the address space
5839pair. Pointer conversions within the same address space must be
5840performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005841conversion is legal then both result and operand refer to the same memory
5842location.
5843
5844Example:
5845""""""""
5846
5847.. code-block:: llvm
5848
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005849 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5850 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5851 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005852
Sean Silvab084af42012-12-07 10:36:55 +00005853.. _otherops:
5854
5855Other Operations
5856----------------
5857
5858The instructions in this category are the "miscellaneous" instructions,
5859which defy better classification.
5860
5861.. _i_icmp:
5862
5863'``icmp``' Instruction
5864^^^^^^^^^^^^^^^^^^^^^^
5865
5866Syntax:
5867"""""""
5868
5869::
5870
5871 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5872
5873Overview:
5874"""""""""
5875
5876The '``icmp``' instruction returns a boolean value or a vector of
5877boolean values based on comparison of its two integer, integer vector,
5878pointer, or pointer vector operands.
5879
5880Arguments:
5881""""""""""
5882
5883The '``icmp``' instruction takes three operands. The first operand is
5884the condition code indicating the kind of comparison to perform. It is
5885not a value, just a keyword. The possible condition code are:
5886
5887#. ``eq``: equal
5888#. ``ne``: not equal
5889#. ``ugt``: unsigned greater than
5890#. ``uge``: unsigned greater or equal
5891#. ``ult``: unsigned less than
5892#. ``ule``: unsigned less or equal
5893#. ``sgt``: signed greater than
5894#. ``sge``: signed greater or equal
5895#. ``slt``: signed less than
5896#. ``sle``: signed less or equal
5897
5898The remaining two arguments must be :ref:`integer <t_integer>` or
5899:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5900must also be identical types.
5901
5902Semantics:
5903""""""""""
5904
5905The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5906code given as ``cond``. The comparison performed always yields either an
5907:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5908
5909#. ``eq``: yields ``true`` if the operands are equal, ``false``
5910 otherwise. No sign interpretation is necessary or performed.
5911#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5912 otherwise. No sign interpretation is necessary or performed.
5913#. ``ugt``: interprets the operands as unsigned values and yields
5914 ``true`` if ``op1`` is greater than ``op2``.
5915#. ``uge``: interprets the operands as unsigned values and yields
5916 ``true`` if ``op1`` is greater than or equal to ``op2``.
5917#. ``ult``: interprets the operands as unsigned values and yields
5918 ``true`` if ``op1`` is less than ``op2``.
5919#. ``ule``: interprets the operands as unsigned values and yields
5920 ``true`` if ``op1`` is less than or equal to ``op2``.
5921#. ``sgt``: interprets the operands as signed values and yields ``true``
5922 if ``op1`` is greater than ``op2``.
5923#. ``sge``: interprets the operands as signed values and yields ``true``
5924 if ``op1`` is greater than or equal to ``op2``.
5925#. ``slt``: interprets the operands as signed values and yields ``true``
5926 if ``op1`` is less than ``op2``.
5927#. ``sle``: interprets the operands as signed values and yields ``true``
5928 if ``op1`` is less than or equal to ``op2``.
5929
5930If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5931are compared as if they were integers.
5932
5933If the operands are integer vectors, then they are compared element by
5934element. The result is an ``i1`` vector with the same number of elements
5935as the values being compared. Otherwise, the result is an ``i1``.
5936
5937Example:
5938""""""""
5939
5940.. code-block:: llvm
5941
5942 <result> = icmp eq i32 4, 5 ; yields: result=false
5943 <result> = icmp ne float* %X, %X ; yields: result=false
5944 <result> = icmp ult i16 4, 5 ; yields: result=true
5945 <result> = icmp sgt i16 4, 5 ; yields: result=false
5946 <result> = icmp ule i16 -4, 5 ; yields: result=false
5947 <result> = icmp sge i16 4, 5 ; yields: result=false
5948
5949Note that the code generator does not yet support vector types with the
5950``icmp`` instruction.
5951
5952.. _i_fcmp:
5953
5954'``fcmp``' Instruction
5955^^^^^^^^^^^^^^^^^^^^^^
5956
5957Syntax:
5958"""""""
5959
5960::
5961
5962 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5963
5964Overview:
5965"""""""""
5966
5967The '``fcmp``' instruction returns a boolean value or vector of boolean
5968values based on comparison of its operands.
5969
5970If the operands are floating point scalars, then the result type is a
5971boolean (:ref:`i1 <t_integer>`).
5972
5973If the operands are floating point vectors, then the result type is a
5974vector of boolean with the same number of elements as the operands being
5975compared.
5976
5977Arguments:
5978""""""""""
5979
5980The '``fcmp``' instruction takes three operands. The first operand is
5981the condition code indicating the kind of comparison to perform. It is
5982not a value, just a keyword. The possible condition code are:
5983
5984#. ``false``: no comparison, always returns false
5985#. ``oeq``: ordered and equal
5986#. ``ogt``: ordered and greater than
5987#. ``oge``: ordered and greater than or equal
5988#. ``olt``: ordered and less than
5989#. ``ole``: ordered and less than or equal
5990#. ``one``: ordered and not equal
5991#. ``ord``: ordered (no nans)
5992#. ``ueq``: unordered or equal
5993#. ``ugt``: unordered or greater than
5994#. ``uge``: unordered or greater than or equal
5995#. ``ult``: unordered or less than
5996#. ``ule``: unordered or less than or equal
5997#. ``une``: unordered or not equal
5998#. ``uno``: unordered (either nans)
5999#. ``true``: no comparison, always returns true
6000
6001*Ordered* means that neither operand is a QNAN while *unordered* means
6002that either operand may be a QNAN.
6003
6004Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6005point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6006type. They must have identical types.
6007
6008Semantics:
6009""""""""""
6010
6011The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6012condition code given as ``cond``. If the operands are vectors, then the
6013vectors are compared element by element. Each comparison performed
6014always yields an :ref:`i1 <t_integer>` result, as follows:
6015
6016#. ``false``: always yields ``false``, regardless of operands.
6017#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6018 is equal to ``op2``.
6019#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6020 is greater than ``op2``.
6021#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6022 is greater than or equal to ``op2``.
6023#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6024 is less than ``op2``.
6025#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6026 is less than or equal to ``op2``.
6027#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6028 is not equal to ``op2``.
6029#. ``ord``: yields ``true`` if both operands are not a QNAN.
6030#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6031 equal to ``op2``.
6032#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6033 greater than ``op2``.
6034#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6035 greater than or equal to ``op2``.
6036#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6037 less than ``op2``.
6038#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6039 less than or equal to ``op2``.
6040#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6041 not equal to ``op2``.
6042#. ``uno``: yields ``true`` if either operand is a QNAN.
6043#. ``true``: always yields ``true``, regardless of operands.
6044
6045Example:
6046""""""""
6047
6048.. code-block:: llvm
6049
6050 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6051 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6052 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6053 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6054
6055Note that the code generator does not yet support vector types with the
6056``fcmp`` instruction.
6057
6058.. _i_phi:
6059
6060'``phi``' Instruction
6061^^^^^^^^^^^^^^^^^^^^^
6062
6063Syntax:
6064"""""""
6065
6066::
6067
6068 <result> = phi <ty> [ <val0>, <label0>], ...
6069
6070Overview:
6071"""""""""
6072
6073The '``phi``' instruction is used to implement the φ node in the SSA
6074graph representing the function.
6075
6076Arguments:
6077""""""""""
6078
6079The type of the incoming values is specified with the first type field.
6080After this, the '``phi``' instruction takes a list of pairs as
6081arguments, with one pair for each predecessor basic block of the current
6082block. Only values of :ref:`first class <t_firstclass>` type may be used as
6083the value arguments to the PHI node. Only labels may be used as the
6084label arguments.
6085
6086There must be no non-phi instructions between the start of a basic block
6087and the PHI instructions: i.e. PHI instructions must be first in a basic
6088block.
6089
6090For the purposes of the SSA form, the use of each incoming value is
6091deemed to occur on the edge from the corresponding predecessor block to
6092the current block (but after any definition of an '``invoke``'
6093instruction's return value on the same edge).
6094
6095Semantics:
6096""""""""""
6097
6098At runtime, the '``phi``' instruction logically takes on the value
6099specified by the pair corresponding to the predecessor basic block that
6100executed just prior to the current block.
6101
6102Example:
6103""""""""
6104
6105.. code-block:: llvm
6106
6107 Loop: ; Infinite loop that counts from 0 on up...
6108 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6109 %nextindvar = add i32 %indvar, 1
6110 br label %Loop
6111
6112.. _i_select:
6113
6114'``select``' Instruction
6115^^^^^^^^^^^^^^^^^^^^^^^^
6116
6117Syntax:
6118"""""""
6119
6120::
6121
6122 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6123
6124 selty is either i1 or {<N x i1>}
6125
6126Overview:
6127"""""""""
6128
6129The '``select``' instruction is used to choose one value based on a
6130condition, without branching.
6131
6132Arguments:
6133""""""""""
6134
6135The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6136values indicating the condition, and two values of the same :ref:`first
6137class <t_firstclass>` type. If the val1/val2 are vectors and the
6138condition is a scalar, then entire vectors are selected, not individual
6139elements.
6140
6141Semantics:
6142""""""""""
6143
6144If the condition is an i1 and it evaluates to 1, the instruction returns
6145the first value argument; otherwise, it returns the second value
6146argument.
6147
6148If the condition is a vector of i1, then the value arguments must be
6149vectors of the same size, and the selection is done element by element.
6150
6151Example:
6152""""""""
6153
6154.. code-block:: llvm
6155
6156 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6157
6158.. _i_call:
6159
6160'``call``' Instruction
6161^^^^^^^^^^^^^^^^^^^^^^
6162
6163Syntax:
6164"""""""
6165
6166::
6167
6168 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6169
6170Overview:
6171"""""""""
6172
6173The '``call``' instruction represents a simple function call.
6174
6175Arguments:
6176""""""""""
6177
6178This instruction requires several arguments:
6179
6180#. The optional "tail" marker indicates that the callee function does
6181 not access any allocas or varargs in the caller. Note that calls may
6182 be marked "tail" even if they do not occur before a
6183 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6184 function call is eligible for tail call optimization, but `might not
6185 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6186 The code generator may optimize calls marked "tail" with either 1)
6187 automatic `sibling call
6188 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6189 callee have matching signatures, or 2) forced tail call optimization
6190 when the following extra requirements are met:
6191
6192 - Caller and callee both have the calling convention ``fastcc``.
6193 - The call is in tail position (ret immediately follows call and ret
6194 uses value of call or is void).
6195 - Option ``-tailcallopt`` is enabled, or
6196 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6197 - `Platform specific constraints are
6198 met. <CodeGenerator.html#tailcallopt>`_
6199
6200#. The optional "cconv" marker indicates which :ref:`calling
6201 convention <callingconv>` the call should use. If none is
6202 specified, the call defaults to using C calling conventions. The
6203 calling convention of the call must match the calling convention of
6204 the target function, or else the behavior is undefined.
6205#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6206 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6207 are valid here.
6208#. '``ty``': the type of the call instruction itself which is also the
6209 type of the return value. Functions that return no value are marked
6210 ``void``.
6211#. '``fnty``': shall be the signature of the pointer to function value
6212 being invoked. The argument types must match the types implied by
6213 this signature. This type can be omitted if the function is not
6214 varargs and if the function type does not return a pointer to a
6215 function.
6216#. '``fnptrval``': An LLVM value containing a pointer to a function to
6217 be invoked. In most cases, this is a direct function invocation, but
6218 indirect ``call``'s are just as possible, calling an arbitrary pointer
6219 to function value.
6220#. '``function args``': argument list whose types match the function
6221 signature argument types and parameter attributes. All arguments must
6222 be of :ref:`first class <t_firstclass>` type. If the function signature
6223 indicates the function accepts a variable number of arguments, the
6224 extra arguments can be specified.
6225#. The optional :ref:`function attributes <fnattrs>` list. Only
6226 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6227 attributes are valid here.
6228
6229Semantics:
6230""""""""""
6231
6232The '``call``' instruction is used to cause control flow to transfer to
6233a specified function, with its incoming arguments bound to the specified
6234values. Upon a '``ret``' instruction in the called function, control
6235flow continues with the instruction after the function call, and the
6236return value of the function is bound to the result argument.
6237
6238Example:
6239""""""""
6240
6241.. code-block:: llvm
6242
6243 %retval = call i32 @test(i32 %argc)
6244 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6245 %X = tail call i32 @foo() ; yields i32
6246 %Y = tail call fastcc i32 @foo() ; yields i32
6247 call void %foo(i8 97 signext)
6248
6249 %struct.A = type { i32, i8 }
6250 %r = call %struct.A @foo() ; yields { 32, i8 }
6251 %gr = extractvalue %struct.A %r, 0 ; yields i32
6252 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6253 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6254 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6255
6256llvm treats calls to some functions with names and arguments that match
6257the standard C99 library as being the C99 library functions, and may
6258perform optimizations or generate code for them under that assumption.
6259This is something we'd like to change in the future to provide better
6260support for freestanding environments and non-C-based languages.
6261
6262.. _i_va_arg:
6263
6264'``va_arg``' Instruction
6265^^^^^^^^^^^^^^^^^^^^^^^^
6266
6267Syntax:
6268"""""""
6269
6270::
6271
6272 <resultval> = va_arg <va_list*> <arglist>, <argty>
6273
6274Overview:
6275"""""""""
6276
6277The '``va_arg``' instruction is used to access arguments passed through
6278the "variable argument" area of a function call. It is used to implement
6279the ``va_arg`` macro in C.
6280
6281Arguments:
6282""""""""""
6283
6284This instruction takes a ``va_list*`` value and the type of the
6285argument. It returns a value of the specified argument type and
6286increments the ``va_list`` to point to the next argument. The actual
6287type of ``va_list`` is target specific.
6288
6289Semantics:
6290""""""""""
6291
6292The '``va_arg``' instruction loads an argument of the specified type
6293from the specified ``va_list`` and causes the ``va_list`` to point to
6294the next argument. For more information, see the variable argument
6295handling :ref:`Intrinsic Functions <int_varargs>`.
6296
6297It is legal for this instruction to be called in a function which does
6298not take a variable number of arguments, for example, the ``vfprintf``
6299function.
6300
6301``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6302function <intrinsics>` because it takes a type as an argument.
6303
6304Example:
6305""""""""
6306
6307See the :ref:`variable argument processing <int_varargs>` section.
6308
6309Note that the code generator does not yet fully support va\_arg on many
6310targets. Also, it does not currently support va\_arg with aggregate
6311types on any target.
6312
6313.. _i_landingpad:
6314
6315'``landingpad``' Instruction
6316^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6317
6318Syntax:
6319"""""""
6320
6321::
6322
6323 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6324 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6325
6326 <clause> := catch <type> <value>
6327 <clause> := filter <array constant type> <array constant>
6328
6329Overview:
6330"""""""""
6331
6332The '``landingpad``' instruction is used by `LLVM's exception handling
6333system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006334is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006335code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6336defines values supplied by the personality function (``pers_fn``) upon
6337re-entry to the function. The ``resultval`` has the type ``resultty``.
6338
6339Arguments:
6340""""""""""
6341
6342This instruction takes a ``pers_fn`` value. This is the personality
6343function associated with the unwinding mechanism. The optional
6344``cleanup`` flag indicates that the landing pad block is a cleanup.
6345
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006346A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006347contains the global variable representing the "type" that may be caught
6348or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6349clause takes an array constant as its argument. Use
6350"``[0 x i8**] undef``" for a filter which cannot throw. The
6351'``landingpad``' instruction must contain *at least* one ``clause`` or
6352the ``cleanup`` flag.
6353
6354Semantics:
6355""""""""""
6356
6357The '``landingpad``' instruction defines the values which are set by the
6358personality function (``pers_fn``) upon re-entry to the function, and
6359therefore the "result type" of the ``landingpad`` instruction. As with
6360calling conventions, how the personality function results are
6361represented in LLVM IR is target specific.
6362
6363The clauses are applied in order from top to bottom. If two
6364``landingpad`` instructions are merged together through inlining, the
6365clauses from the calling function are appended to the list of clauses.
6366When the call stack is being unwound due to an exception being thrown,
6367the exception is compared against each ``clause`` in turn. If it doesn't
6368match any of the clauses, and the ``cleanup`` flag is not set, then
6369unwinding continues further up the call stack.
6370
6371The ``landingpad`` instruction has several restrictions:
6372
6373- A landing pad block is a basic block which is the unwind destination
6374 of an '``invoke``' instruction.
6375- A landing pad block must have a '``landingpad``' instruction as its
6376 first non-PHI instruction.
6377- There can be only one '``landingpad``' instruction within the landing
6378 pad block.
6379- A basic block that is not a landing pad block may not include a
6380 '``landingpad``' instruction.
6381- All '``landingpad``' instructions in a function must have the same
6382 personality function.
6383
6384Example:
6385""""""""
6386
6387.. code-block:: llvm
6388
6389 ;; A landing pad which can catch an integer.
6390 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6391 catch i8** @_ZTIi
6392 ;; A landing pad that is a cleanup.
6393 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6394 cleanup
6395 ;; A landing pad which can catch an integer and can only throw a double.
6396 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6397 catch i8** @_ZTIi
6398 filter [1 x i8**] [@_ZTId]
6399
6400.. _intrinsics:
6401
6402Intrinsic Functions
6403===================
6404
6405LLVM supports the notion of an "intrinsic function". These functions
6406have well known names and semantics and are required to follow certain
6407restrictions. Overall, these intrinsics represent an extension mechanism
6408for the LLVM language that does not require changing all of the
6409transformations in LLVM when adding to the language (or the bitcode
6410reader/writer, the parser, etc...).
6411
6412Intrinsic function names must all start with an "``llvm.``" prefix. This
6413prefix is reserved in LLVM for intrinsic names; thus, function names may
6414not begin with this prefix. Intrinsic functions must always be external
6415functions: you cannot define the body of intrinsic functions. Intrinsic
6416functions may only be used in call or invoke instructions: it is illegal
6417to take the address of an intrinsic function. Additionally, because
6418intrinsic functions are part of the LLVM language, it is required if any
6419are added that they be documented here.
6420
6421Some intrinsic functions can be overloaded, i.e., the intrinsic
6422represents a family of functions that perform the same operation but on
6423different data types. Because LLVM can represent over 8 million
6424different integer types, overloading is used commonly to allow an
6425intrinsic function to operate on any integer type. One or more of the
6426argument types or the result type can be overloaded to accept any
6427integer type. Argument types may also be defined as exactly matching a
6428previous argument's type or the result type. This allows an intrinsic
6429function which accepts multiple arguments, but needs all of them to be
6430of the same type, to only be overloaded with respect to a single
6431argument or the result.
6432
6433Overloaded intrinsics will have the names of its overloaded argument
6434types encoded into its function name, each preceded by a period. Only
6435those types which are overloaded result in a name suffix. Arguments
6436whose type is matched against another type do not. For example, the
6437``llvm.ctpop`` function can take an integer of any width and returns an
6438integer of exactly the same integer width. This leads to a family of
6439functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6440``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6441overloaded, and only one type suffix is required. Because the argument's
6442type is matched against the return type, it does not require its own
6443name suffix.
6444
6445To learn how to add an intrinsic function, please see the `Extending
6446LLVM Guide <ExtendingLLVM.html>`_.
6447
6448.. _int_varargs:
6449
6450Variable Argument Handling Intrinsics
6451-------------------------------------
6452
6453Variable argument support is defined in LLVM with the
6454:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6455functions. These functions are related to the similarly named macros
6456defined in the ``<stdarg.h>`` header file.
6457
6458All of these functions operate on arguments that use a target-specific
6459value type "``va_list``". The LLVM assembly language reference manual
6460does not define what this type is, so all transformations should be
6461prepared to handle these functions regardless of the type used.
6462
6463This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6464variable argument handling intrinsic functions are used.
6465
6466.. code-block:: llvm
6467
6468 define i32 @test(i32 %X, ...) {
6469 ; Initialize variable argument processing
6470 %ap = alloca i8*
6471 %ap2 = bitcast i8** %ap to i8*
6472 call void @llvm.va_start(i8* %ap2)
6473
6474 ; Read a single integer argument
6475 %tmp = va_arg i8** %ap, i32
6476
6477 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6478 %aq = alloca i8*
6479 %aq2 = bitcast i8** %aq to i8*
6480 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6481 call void @llvm.va_end(i8* %aq2)
6482
6483 ; Stop processing of arguments.
6484 call void @llvm.va_end(i8* %ap2)
6485 ret i32 %tmp
6486 }
6487
6488 declare void @llvm.va_start(i8*)
6489 declare void @llvm.va_copy(i8*, i8*)
6490 declare void @llvm.va_end(i8*)
6491
6492.. _int_va_start:
6493
6494'``llvm.va_start``' Intrinsic
6495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6496
6497Syntax:
6498"""""""
6499
6500::
6501
Nick Lewycky04f6de02013-09-11 22:04:52 +00006502 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006503
6504Overview:
6505"""""""""
6506
6507The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6508subsequent use by ``va_arg``.
6509
6510Arguments:
6511""""""""""
6512
6513The argument is a pointer to a ``va_list`` element to initialize.
6514
6515Semantics:
6516""""""""""
6517
6518The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6519available in C. In a target-dependent way, it initializes the
6520``va_list`` element to which the argument points, so that the next call
6521to ``va_arg`` will produce the first variable argument passed to the
6522function. Unlike the C ``va_start`` macro, this intrinsic does not need
6523to know the last argument of the function as the compiler can figure
6524that out.
6525
6526'``llvm.va_end``' Intrinsic
6527^^^^^^^^^^^^^^^^^^^^^^^^^^^
6528
6529Syntax:
6530"""""""
6531
6532::
6533
6534 declare void @llvm.va_end(i8* <arglist>)
6535
6536Overview:
6537"""""""""
6538
6539The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6540initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6541
6542Arguments:
6543""""""""""
6544
6545The argument is a pointer to a ``va_list`` to destroy.
6546
6547Semantics:
6548""""""""""
6549
6550The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6551available in C. In a target-dependent way, it destroys the ``va_list``
6552element to which the argument points. Calls to
6553:ref:`llvm.va_start <int_va_start>` and
6554:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6555``llvm.va_end``.
6556
6557.. _int_va_copy:
6558
6559'``llvm.va_copy``' Intrinsic
6560^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6561
6562Syntax:
6563"""""""
6564
6565::
6566
6567 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6568
6569Overview:
6570"""""""""
6571
6572The '``llvm.va_copy``' intrinsic copies the current argument position
6573from the source argument list to the destination argument list.
6574
6575Arguments:
6576""""""""""
6577
6578The first argument is a pointer to a ``va_list`` element to initialize.
6579The second argument is a pointer to a ``va_list`` element to copy from.
6580
6581Semantics:
6582""""""""""
6583
6584The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6585available in C. In a target-dependent way, it copies the source
6586``va_list`` element into the destination ``va_list`` element. This
6587intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6588arbitrarily complex and require, for example, memory allocation.
6589
6590Accurate Garbage Collection Intrinsics
6591--------------------------------------
6592
6593LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6594(GC) requires the implementation and generation of these intrinsics.
6595These intrinsics allow identification of :ref:`GC roots on the
6596stack <int_gcroot>`, as well as garbage collector implementations that
6597require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6598Front-ends for type-safe garbage collected languages should generate
6599these intrinsics to make use of the LLVM garbage collectors. For more
6600details, see `Accurate Garbage Collection with
6601LLVM <GarbageCollection.html>`_.
6602
6603The garbage collection intrinsics only operate on objects in the generic
6604address space (address space zero).
6605
6606.. _int_gcroot:
6607
6608'``llvm.gcroot``' Intrinsic
6609^^^^^^^^^^^^^^^^^^^^^^^^^^^
6610
6611Syntax:
6612"""""""
6613
6614::
6615
6616 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6617
6618Overview:
6619"""""""""
6620
6621The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6622the code generator, and allows some metadata to be associated with it.
6623
6624Arguments:
6625""""""""""
6626
6627The first argument specifies the address of a stack object that contains
6628the root pointer. The second pointer (which must be either a constant or
6629a global value address) contains the meta-data to be associated with the
6630root.
6631
6632Semantics:
6633""""""""""
6634
6635At runtime, a call to this intrinsic stores a null pointer into the
6636"ptrloc" location. At compile-time, the code generator generates
6637information to allow the runtime to find the pointer at GC safe points.
6638The '``llvm.gcroot``' intrinsic may only be used in a function which
6639:ref:`specifies a GC algorithm <gc>`.
6640
6641.. _int_gcread:
6642
6643'``llvm.gcread``' Intrinsic
6644^^^^^^^^^^^^^^^^^^^^^^^^^^^
6645
6646Syntax:
6647"""""""
6648
6649::
6650
6651 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6652
6653Overview:
6654"""""""""
6655
6656The '``llvm.gcread``' intrinsic identifies reads of references from heap
6657locations, allowing garbage collector implementations that require read
6658barriers.
6659
6660Arguments:
6661""""""""""
6662
6663The second argument is the address to read from, which should be an
6664address allocated from the garbage collector. The first object is a
6665pointer to the start of the referenced object, if needed by the language
6666runtime (otherwise null).
6667
6668Semantics:
6669""""""""""
6670
6671The '``llvm.gcread``' intrinsic has the same semantics as a load
6672instruction, but may be replaced with substantially more complex code by
6673the garbage collector runtime, as needed. The '``llvm.gcread``'
6674intrinsic may only be used in a function which :ref:`specifies a GC
6675algorithm <gc>`.
6676
6677.. _int_gcwrite:
6678
6679'``llvm.gcwrite``' Intrinsic
6680^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6681
6682Syntax:
6683"""""""
6684
6685::
6686
6687 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6688
6689Overview:
6690"""""""""
6691
6692The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6693locations, allowing garbage collector implementations that require write
6694barriers (such as generational or reference counting collectors).
6695
6696Arguments:
6697""""""""""
6698
6699The first argument is the reference to store, the second is the start of
6700the object to store it to, and the third is the address of the field of
6701Obj to store to. If the runtime does not require a pointer to the
6702object, Obj may be null.
6703
6704Semantics:
6705""""""""""
6706
6707The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6708instruction, but may be replaced with substantially more complex code by
6709the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6710intrinsic may only be used in a function which :ref:`specifies a GC
6711algorithm <gc>`.
6712
6713Code Generator Intrinsics
6714-------------------------
6715
6716These intrinsics are provided by LLVM to expose special features that
6717may only be implemented with code generator support.
6718
6719'``llvm.returnaddress``' Intrinsic
6720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6721
6722Syntax:
6723"""""""
6724
6725::
6726
6727 declare i8 *@llvm.returnaddress(i32 <level>)
6728
6729Overview:
6730"""""""""
6731
6732The '``llvm.returnaddress``' intrinsic attempts to compute a
6733target-specific value indicating the return address of the current
6734function or one of its callers.
6735
6736Arguments:
6737""""""""""
6738
6739The argument to this intrinsic indicates which function to return the
6740address for. Zero indicates the calling function, one indicates its
6741caller, etc. The argument is **required** to be a constant integer
6742value.
6743
6744Semantics:
6745""""""""""
6746
6747The '``llvm.returnaddress``' intrinsic either returns a pointer
6748indicating the return address of the specified call frame, or zero if it
6749cannot be identified. The value returned by this intrinsic is likely to
6750be incorrect or 0 for arguments other than zero, so it should only be
6751used for debugging purposes.
6752
6753Note that calling this intrinsic does not prevent function inlining or
6754other aggressive transformations, so the value returned may not be that
6755of the obvious source-language caller.
6756
6757'``llvm.frameaddress``' Intrinsic
6758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6759
6760Syntax:
6761"""""""
6762
6763::
6764
6765 declare i8* @llvm.frameaddress(i32 <level>)
6766
6767Overview:
6768"""""""""
6769
6770The '``llvm.frameaddress``' intrinsic attempts to return the
6771target-specific frame pointer value for the specified stack frame.
6772
6773Arguments:
6774""""""""""
6775
6776The argument to this intrinsic indicates which function to return the
6777frame pointer for. Zero indicates the calling function, one indicates
6778its caller, etc. The argument is **required** to be a constant integer
6779value.
6780
6781Semantics:
6782""""""""""
6783
6784The '``llvm.frameaddress``' intrinsic either returns a pointer
6785indicating the frame address of the specified call frame, or zero if it
6786cannot be identified. The value returned by this intrinsic is likely to
6787be incorrect or 0 for arguments other than zero, so it should only be
6788used for debugging purposes.
6789
6790Note that calling this intrinsic does not prevent function inlining or
6791other aggressive transformations, so the value returned may not be that
6792of the obvious source-language caller.
6793
6794.. _int_stacksave:
6795
6796'``llvm.stacksave``' Intrinsic
6797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6798
6799Syntax:
6800"""""""
6801
6802::
6803
6804 declare i8* @llvm.stacksave()
6805
6806Overview:
6807"""""""""
6808
6809The '``llvm.stacksave``' intrinsic is used to remember the current state
6810of the function stack, for use with
6811:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6812implementing language features like scoped automatic variable sized
6813arrays in C99.
6814
6815Semantics:
6816""""""""""
6817
6818This intrinsic returns a opaque pointer value that can be passed to
6819:ref:`llvm.stackrestore <int_stackrestore>`. When an
6820``llvm.stackrestore`` intrinsic is executed with a value saved from
6821``llvm.stacksave``, it effectively restores the state of the stack to
6822the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6823practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6824were allocated after the ``llvm.stacksave`` was executed.
6825
6826.. _int_stackrestore:
6827
6828'``llvm.stackrestore``' Intrinsic
6829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6830
6831Syntax:
6832"""""""
6833
6834::
6835
6836 declare void @llvm.stackrestore(i8* %ptr)
6837
6838Overview:
6839"""""""""
6840
6841The '``llvm.stackrestore``' intrinsic is used to restore the state of
6842the function stack to the state it was in when the corresponding
6843:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6844useful for implementing language features like scoped automatic variable
6845sized arrays in C99.
6846
6847Semantics:
6848""""""""""
6849
6850See the description for :ref:`llvm.stacksave <int_stacksave>`.
6851
6852'``llvm.prefetch``' Intrinsic
6853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6854
6855Syntax:
6856"""""""
6857
6858::
6859
6860 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6861
6862Overview:
6863"""""""""
6864
6865The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6866insert a prefetch instruction if supported; otherwise, it is a noop.
6867Prefetches have no effect on the behavior of the program but can change
6868its performance characteristics.
6869
6870Arguments:
6871""""""""""
6872
6873``address`` is the address to be prefetched, ``rw`` is the specifier
6874determining if the fetch should be for a read (0) or write (1), and
6875``locality`` is a temporal locality specifier ranging from (0) - no
6876locality, to (3) - extremely local keep in cache. The ``cache type``
6877specifies whether the prefetch is performed on the data (1) or
6878instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6879arguments must be constant integers.
6880
6881Semantics:
6882""""""""""
6883
6884This intrinsic does not modify the behavior of the program. In
6885particular, prefetches cannot trap and do not produce a value. On
6886targets that support this intrinsic, the prefetch can provide hints to
6887the processor cache for better performance.
6888
6889'``llvm.pcmarker``' Intrinsic
6890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6891
6892Syntax:
6893"""""""
6894
6895::
6896
6897 declare void @llvm.pcmarker(i32 <id>)
6898
6899Overview:
6900"""""""""
6901
6902The '``llvm.pcmarker``' intrinsic is a method to export a Program
6903Counter (PC) in a region of code to simulators and other tools. The
6904method is target specific, but it is expected that the marker will use
6905exported symbols to transmit the PC of the marker. The marker makes no
6906guarantees that it will remain with any specific instruction after
6907optimizations. It is possible that the presence of a marker will inhibit
6908optimizations. The intended use is to be inserted after optimizations to
6909allow correlations of simulation runs.
6910
6911Arguments:
6912""""""""""
6913
6914``id`` is a numerical id identifying the marker.
6915
6916Semantics:
6917""""""""""
6918
6919This intrinsic does not modify the behavior of the program. Backends
6920that do not support this intrinsic may ignore it.
6921
6922'``llvm.readcyclecounter``' Intrinsic
6923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6924
6925Syntax:
6926"""""""
6927
6928::
6929
6930 declare i64 @llvm.readcyclecounter()
6931
6932Overview:
6933"""""""""
6934
6935The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6936counter register (or similar low latency, high accuracy clocks) on those
6937targets that support it. On X86, it should map to RDTSC. On Alpha, it
6938should map to RPCC. As the backing counters overflow quickly (on the
6939order of 9 seconds on alpha), this should only be used for small
6940timings.
6941
6942Semantics:
6943""""""""""
6944
6945When directly supported, reading the cycle counter should not modify any
6946memory. Implementations are allowed to either return a application
6947specific value or a system wide value. On backends without support, this
6948is lowered to a constant 0.
6949
Tim Northoverbc933082013-05-23 19:11:20 +00006950Note that runtime support may be conditional on the privilege-level code is
6951running at and the host platform.
6952
Sean Silvab084af42012-12-07 10:36:55 +00006953Standard C Library Intrinsics
6954-----------------------------
6955
6956LLVM provides intrinsics for a few important standard C library
6957functions. These intrinsics allow source-language front-ends to pass
6958information about the alignment of the pointer arguments to the code
6959generator, providing opportunity for more efficient code generation.
6960
6961.. _int_memcpy:
6962
6963'``llvm.memcpy``' Intrinsic
6964^^^^^^^^^^^^^^^^^^^^^^^^^^^
6965
6966Syntax:
6967"""""""
6968
6969This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6970integer bit width and for different address spaces. Not all targets
6971support all bit widths however.
6972
6973::
6974
6975 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6976 i32 <len>, i32 <align>, i1 <isvolatile>)
6977 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6978 i64 <len>, i32 <align>, i1 <isvolatile>)
6979
6980Overview:
6981"""""""""
6982
6983The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6984source location to the destination location.
6985
6986Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6987intrinsics do not return a value, takes extra alignment/isvolatile
6988arguments and the pointers can be in specified address spaces.
6989
6990Arguments:
6991""""""""""
6992
6993The first argument is a pointer to the destination, the second is a
6994pointer to the source. The third argument is an integer argument
6995specifying the number of bytes to copy, the fourth argument is the
6996alignment of the source and destination locations, and the fifth is a
6997boolean indicating a volatile access.
6998
6999If the call to this intrinsic has an alignment value that is not 0 or 1,
7000then the caller guarantees that both the source and destination pointers
7001are aligned to that boundary.
7002
7003If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7004a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7005very cleanly specified and it is unwise to depend on it.
7006
7007Semantics:
7008""""""""""
7009
7010The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7011source location to the destination location, which are not allowed to
7012overlap. It copies "len" bytes of memory over. If the argument is known
7013to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007014argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007015
7016'``llvm.memmove``' Intrinsic
7017^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7018
7019Syntax:
7020"""""""
7021
7022This is an overloaded intrinsic. You can use llvm.memmove on any integer
7023bit width and for different address space. Not all targets support all
7024bit widths however.
7025
7026::
7027
7028 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7029 i32 <len>, i32 <align>, i1 <isvolatile>)
7030 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7031 i64 <len>, i32 <align>, i1 <isvolatile>)
7032
7033Overview:
7034"""""""""
7035
7036The '``llvm.memmove.*``' intrinsics move a block of memory from the
7037source location to the destination location. It is similar to the
7038'``llvm.memcpy``' intrinsic but allows the two memory locations to
7039overlap.
7040
7041Note that, unlike the standard libc function, the ``llvm.memmove.*``
7042intrinsics do not return a value, takes extra alignment/isvolatile
7043arguments and the pointers can be in specified address spaces.
7044
7045Arguments:
7046""""""""""
7047
7048The first argument is a pointer to the destination, the second is a
7049pointer to the source. The third argument is an integer argument
7050specifying the number of bytes to copy, the fourth argument is the
7051alignment of the source and destination locations, and the fifth is a
7052boolean indicating a volatile access.
7053
7054If the call to this intrinsic has an alignment value that is not 0 or 1,
7055then the caller guarantees that the source and destination pointers are
7056aligned to that boundary.
7057
7058If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7059is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7060not very cleanly specified and it is unwise to depend on it.
7061
7062Semantics:
7063""""""""""
7064
7065The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7066source location to the destination location, which may overlap. It
7067copies "len" bytes of memory over. If the argument is known to be
7068aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007069otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007070
7071'``llvm.memset.*``' Intrinsics
7072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7073
7074Syntax:
7075"""""""
7076
7077This is an overloaded intrinsic. You can use llvm.memset on any integer
7078bit width and for different address spaces. However, not all targets
7079support all bit widths.
7080
7081::
7082
7083 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7084 i32 <len>, i32 <align>, i1 <isvolatile>)
7085 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7086 i64 <len>, i32 <align>, i1 <isvolatile>)
7087
7088Overview:
7089"""""""""
7090
7091The '``llvm.memset.*``' intrinsics fill a block of memory with a
7092particular byte value.
7093
7094Note that, unlike the standard libc function, the ``llvm.memset``
7095intrinsic does not return a value and takes extra alignment/volatile
7096arguments. Also, the destination can be in an arbitrary address space.
7097
7098Arguments:
7099""""""""""
7100
7101The first argument is a pointer to the destination to fill, the second
7102is the byte value with which to fill it, the third argument is an
7103integer argument specifying the number of bytes to fill, and the fourth
7104argument is the known alignment of the destination location.
7105
7106If the call to this intrinsic has an alignment value that is not 0 or 1,
7107then the caller guarantees that the destination pointer is aligned to
7108that boundary.
7109
7110If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7111a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7112very cleanly specified and it is unwise to depend on it.
7113
7114Semantics:
7115""""""""""
7116
7117The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7118at the destination location. If the argument is known to be aligned to
7119some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007120it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007121
7122'``llvm.sqrt.*``' Intrinsic
7123^^^^^^^^^^^^^^^^^^^^^^^^^^^
7124
7125Syntax:
7126"""""""
7127
7128This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7129floating point or vector of floating point type. Not all targets support
7130all types however.
7131
7132::
7133
7134 declare float @llvm.sqrt.f32(float %Val)
7135 declare double @llvm.sqrt.f64(double %Val)
7136 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7137 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7138 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7139
7140Overview:
7141"""""""""
7142
7143The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7144returning the same value as the libm '``sqrt``' functions would. Unlike
7145``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7146negative numbers other than -0.0 (which allows for better optimization,
7147because there is no need to worry about errno being set).
7148``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7149
7150Arguments:
7151""""""""""
7152
7153The argument and return value are floating point numbers of the same
7154type.
7155
7156Semantics:
7157""""""""""
7158
7159This function returns the sqrt of the specified operand if it is a
7160nonnegative floating point number.
7161
7162'``llvm.powi.*``' Intrinsic
7163^^^^^^^^^^^^^^^^^^^^^^^^^^^
7164
7165Syntax:
7166"""""""
7167
7168This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7169floating point or vector of floating point type. Not all targets support
7170all types however.
7171
7172::
7173
7174 declare float @llvm.powi.f32(float %Val, i32 %power)
7175 declare double @llvm.powi.f64(double %Val, i32 %power)
7176 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7177 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7178 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7179
7180Overview:
7181"""""""""
7182
7183The '``llvm.powi.*``' intrinsics return the first operand raised to the
7184specified (positive or negative) power. The order of evaluation of
7185multiplications is not defined. When a vector of floating point type is
7186used, the second argument remains a scalar integer value.
7187
7188Arguments:
7189""""""""""
7190
7191The second argument is an integer power, and the first is a value to
7192raise to that power.
7193
7194Semantics:
7195""""""""""
7196
7197This function returns the first value raised to the second power with an
7198unspecified sequence of rounding operations.
7199
7200'``llvm.sin.*``' Intrinsic
7201^^^^^^^^^^^^^^^^^^^^^^^^^^
7202
7203Syntax:
7204"""""""
7205
7206This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7207floating point or vector of floating point type. Not all targets support
7208all types however.
7209
7210::
7211
7212 declare float @llvm.sin.f32(float %Val)
7213 declare double @llvm.sin.f64(double %Val)
7214 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7215 declare fp128 @llvm.sin.f128(fp128 %Val)
7216 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7217
7218Overview:
7219"""""""""
7220
7221The '``llvm.sin.*``' intrinsics return the sine of the operand.
7222
7223Arguments:
7224""""""""""
7225
7226The argument and return value are floating point numbers of the same
7227type.
7228
7229Semantics:
7230""""""""""
7231
7232This function returns the sine of the specified operand, returning the
7233same values as the libm ``sin`` functions would, and handles error
7234conditions in the same way.
7235
7236'``llvm.cos.*``' Intrinsic
7237^^^^^^^^^^^^^^^^^^^^^^^^^^
7238
7239Syntax:
7240"""""""
7241
7242This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7243floating point or vector of floating point type. Not all targets support
7244all types however.
7245
7246::
7247
7248 declare float @llvm.cos.f32(float %Val)
7249 declare double @llvm.cos.f64(double %Val)
7250 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7251 declare fp128 @llvm.cos.f128(fp128 %Val)
7252 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7253
7254Overview:
7255"""""""""
7256
7257The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7258
7259Arguments:
7260""""""""""
7261
7262The argument and return value are floating point numbers of the same
7263type.
7264
7265Semantics:
7266""""""""""
7267
7268This function returns the cosine of the specified operand, returning the
7269same values as the libm ``cos`` functions would, and handles error
7270conditions in the same way.
7271
7272'``llvm.pow.*``' Intrinsic
7273^^^^^^^^^^^^^^^^^^^^^^^^^^
7274
7275Syntax:
7276"""""""
7277
7278This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7279floating point or vector of floating point type. Not all targets support
7280all types however.
7281
7282::
7283
7284 declare float @llvm.pow.f32(float %Val, float %Power)
7285 declare double @llvm.pow.f64(double %Val, double %Power)
7286 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7287 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7288 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7289
7290Overview:
7291"""""""""
7292
7293The '``llvm.pow.*``' intrinsics return the first operand raised to the
7294specified (positive or negative) power.
7295
7296Arguments:
7297""""""""""
7298
7299The second argument is a floating point power, and the first is a value
7300to raise to that power.
7301
7302Semantics:
7303""""""""""
7304
7305This function returns the first value raised to the second power,
7306returning the same values as the libm ``pow`` functions would, and
7307handles error conditions in the same way.
7308
7309'``llvm.exp.*``' Intrinsic
7310^^^^^^^^^^^^^^^^^^^^^^^^^^
7311
7312Syntax:
7313"""""""
7314
7315This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7316floating point or vector of floating point type. Not all targets support
7317all types however.
7318
7319::
7320
7321 declare float @llvm.exp.f32(float %Val)
7322 declare double @llvm.exp.f64(double %Val)
7323 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7324 declare fp128 @llvm.exp.f128(fp128 %Val)
7325 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7326
7327Overview:
7328"""""""""
7329
7330The '``llvm.exp.*``' intrinsics perform the exp function.
7331
7332Arguments:
7333""""""""""
7334
7335The argument and return value are floating point numbers of the same
7336type.
7337
7338Semantics:
7339""""""""""
7340
7341This function returns the same values as the libm ``exp`` functions
7342would, and handles error conditions in the same way.
7343
7344'``llvm.exp2.*``' Intrinsic
7345^^^^^^^^^^^^^^^^^^^^^^^^^^^
7346
7347Syntax:
7348"""""""
7349
7350This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7351floating point or vector of floating point type. Not all targets support
7352all types however.
7353
7354::
7355
7356 declare float @llvm.exp2.f32(float %Val)
7357 declare double @llvm.exp2.f64(double %Val)
7358 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7359 declare fp128 @llvm.exp2.f128(fp128 %Val)
7360 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7361
7362Overview:
7363"""""""""
7364
7365The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7366
7367Arguments:
7368""""""""""
7369
7370The argument and return value are floating point numbers of the same
7371type.
7372
7373Semantics:
7374""""""""""
7375
7376This function returns the same values as the libm ``exp2`` functions
7377would, and handles error conditions in the same way.
7378
7379'``llvm.log.*``' Intrinsic
7380^^^^^^^^^^^^^^^^^^^^^^^^^^
7381
7382Syntax:
7383"""""""
7384
7385This is an overloaded intrinsic. You can use ``llvm.log`` on any
7386floating point or vector of floating point type. Not all targets support
7387all types however.
7388
7389::
7390
7391 declare float @llvm.log.f32(float %Val)
7392 declare double @llvm.log.f64(double %Val)
7393 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7394 declare fp128 @llvm.log.f128(fp128 %Val)
7395 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7396
7397Overview:
7398"""""""""
7399
7400The '``llvm.log.*``' intrinsics perform the log function.
7401
7402Arguments:
7403""""""""""
7404
7405The argument and return value are floating point numbers of the same
7406type.
7407
7408Semantics:
7409""""""""""
7410
7411This function returns the same values as the libm ``log`` functions
7412would, and handles error conditions in the same way.
7413
7414'``llvm.log10.*``' Intrinsic
7415^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7416
7417Syntax:
7418"""""""
7419
7420This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7421floating point or vector of floating point type. Not all targets support
7422all types however.
7423
7424::
7425
7426 declare float @llvm.log10.f32(float %Val)
7427 declare double @llvm.log10.f64(double %Val)
7428 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7429 declare fp128 @llvm.log10.f128(fp128 %Val)
7430 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7431
7432Overview:
7433"""""""""
7434
7435The '``llvm.log10.*``' intrinsics perform the log10 function.
7436
7437Arguments:
7438""""""""""
7439
7440The argument and return value are floating point numbers of the same
7441type.
7442
7443Semantics:
7444""""""""""
7445
7446This function returns the same values as the libm ``log10`` functions
7447would, and handles error conditions in the same way.
7448
7449'``llvm.log2.*``' Intrinsic
7450^^^^^^^^^^^^^^^^^^^^^^^^^^^
7451
7452Syntax:
7453"""""""
7454
7455This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7456floating point or vector of floating point type. Not all targets support
7457all types however.
7458
7459::
7460
7461 declare float @llvm.log2.f32(float %Val)
7462 declare double @llvm.log2.f64(double %Val)
7463 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7464 declare fp128 @llvm.log2.f128(fp128 %Val)
7465 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7466
7467Overview:
7468"""""""""
7469
7470The '``llvm.log2.*``' intrinsics perform the log2 function.
7471
7472Arguments:
7473""""""""""
7474
7475The argument and return value are floating point numbers of the same
7476type.
7477
7478Semantics:
7479""""""""""
7480
7481This function returns the same values as the libm ``log2`` functions
7482would, and handles error conditions in the same way.
7483
7484'``llvm.fma.*``' Intrinsic
7485^^^^^^^^^^^^^^^^^^^^^^^^^^
7486
7487Syntax:
7488"""""""
7489
7490This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7491floating point or vector of floating point type. Not all targets support
7492all types however.
7493
7494::
7495
7496 declare float @llvm.fma.f32(float %a, float %b, float %c)
7497 declare double @llvm.fma.f64(double %a, double %b, double %c)
7498 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7499 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7500 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7501
7502Overview:
7503"""""""""
7504
7505The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7506operation.
7507
7508Arguments:
7509""""""""""
7510
7511The argument and return value are floating point numbers of the same
7512type.
7513
7514Semantics:
7515""""""""""
7516
7517This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007518would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007519
7520'``llvm.fabs.*``' Intrinsic
7521^^^^^^^^^^^^^^^^^^^^^^^^^^^
7522
7523Syntax:
7524"""""""
7525
7526This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7527floating point or vector of floating point type. Not all targets support
7528all types however.
7529
7530::
7531
7532 declare float @llvm.fabs.f32(float %Val)
7533 declare double @llvm.fabs.f64(double %Val)
7534 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7535 declare fp128 @llvm.fabs.f128(fp128 %Val)
7536 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7537
7538Overview:
7539"""""""""
7540
7541The '``llvm.fabs.*``' intrinsics return the absolute value of the
7542operand.
7543
7544Arguments:
7545""""""""""
7546
7547The argument and return value are floating point numbers of the same
7548type.
7549
7550Semantics:
7551""""""""""
7552
7553This function returns the same values as the libm ``fabs`` functions
7554would, and handles error conditions in the same way.
7555
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007556'``llvm.copysign.*``' Intrinsic
7557^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7558
7559Syntax:
7560"""""""
7561
7562This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7563floating point or vector of floating point type. Not all targets support
7564all types however.
7565
7566::
7567
7568 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7569 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7570 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7571 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7572 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7573
7574Overview:
7575"""""""""
7576
7577The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7578first operand and the sign of the second operand.
7579
7580Arguments:
7581""""""""""
7582
7583The arguments and return value are floating point numbers of the same
7584type.
7585
7586Semantics:
7587""""""""""
7588
7589This function returns the same values as the libm ``copysign``
7590functions would, and handles error conditions in the same way.
7591
Sean Silvab084af42012-12-07 10:36:55 +00007592'``llvm.floor.*``' Intrinsic
7593^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7594
7595Syntax:
7596"""""""
7597
7598This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7599floating point or vector of floating point type. Not all targets support
7600all types however.
7601
7602::
7603
7604 declare float @llvm.floor.f32(float %Val)
7605 declare double @llvm.floor.f64(double %Val)
7606 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7607 declare fp128 @llvm.floor.f128(fp128 %Val)
7608 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7609
7610Overview:
7611"""""""""
7612
7613The '``llvm.floor.*``' intrinsics return the floor of the operand.
7614
7615Arguments:
7616""""""""""
7617
7618The argument and return value are floating point numbers of the same
7619type.
7620
7621Semantics:
7622""""""""""
7623
7624This function returns the same values as the libm ``floor`` functions
7625would, and handles error conditions in the same way.
7626
7627'``llvm.ceil.*``' Intrinsic
7628^^^^^^^^^^^^^^^^^^^^^^^^^^^
7629
7630Syntax:
7631"""""""
7632
7633This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7634floating point or vector of floating point type. Not all targets support
7635all types however.
7636
7637::
7638
7639 declare float @llvm.ceil.f32(float %Val)
7640 declare double @llvm.ceil.f64(double %Val)
7641 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7642 declare fp128 @llvm.ceil.f128(fp128 %Val)
7643 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7644
7645Overview:
7646"""""""""
7647
7648The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7649
7650Arguments:
7651""""""""""
7652
7653The argument and return value are floating point numbers of the same
7654type.
7655
7656Semantics:
7657""""""""""
7658
7659This function returns the same values as the libm ``ceil`` functions
7660would, and handles error conditions in the same way.
7661
7662'``llvm.trunc.*``' Intrinsic
7663^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7664
7665Syntax:
7666"""""""
7667
7668This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7669floating point or vector of floating point type. Not all targets support
7670all types however.
7671
7672::
7673
7674 declare float @llvm.trunc.f32(float %Val)
7675 declare double @llvm.trunc.f64(double %Val)
7676 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7677 declare fp128 @llvm.trunc.f128(fp128 %Val)
7678 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7679
7680Overview:
7681"""""""""
7682
7683The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7684nearest integer not larger in magnitude than the operand.
7685
7686Arguments:
7687""""""""""
7688
7689The argument and return value are floating point numbers of the same
7690type.
7691
7692Semantics:
7693""""""""""
7694
7695This function returns the same values as the libm ``trunc`` functions
7696would, and handles error conditions in the same way.
7697
7698'``llvm.rint.*``' Intrinsic
7699^^^^^^^^^^^^^^^^^^^^^^^^^^^
7700
7701Syntax:
7702"""""""
7703
7704This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7705floating point or vector of floating point type. Not all targets support
7706all types however.
7707
7708::
7709
7710 declare float @llvm.rint.f32(float %Val)
7711 declare double @llvm.rint.f64(double %Val)
7712 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7713 declare fp128 @llvm.rint.f128(fp128 %Val)
7714 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7715
7716Overview:
7717"""""""""
7718
7719The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7720nearest integer. It may raise an inexact floating-point exception if the
7721operand isn't an integer.
7722
7723Arguments:
7724""""""""""
7725
7726The argument and return value are floating point numbers of the same
7727type.
7728
7729Semantics:
7730""""""""""
7731
7732This function returns the same values as the libm ``rint`` functions
7733would, and handles error conditions in the same way.
7734
7735'``llvm.nearbyint.*``' Intrinsic
7736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7737
7738Syntax:
7739"""""""
7740
7741This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7742floating point or vector of floating point type. Not all targets support
7743all types however.
7744
7745::
7746
7747 declare float @llvm.nearbyint.f32(float %Val)
7748 declare double @llvm.nearbyint.f64(double %Val)
7749 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7750 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7751 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7752
7753Overview:
7754"""""""""
7755
7756The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7757nearest integer.
7758
7759Arguments:
7760""""""""""
7761
7762The argument and return value are floating point numbers of the same
7763type.
7764
7765Semantics:
7766""""""""""
7767
7768This function returns the same values as the libm ``nearbyint``
7769functions would, and handles error conditions in the same way.
7770
Hal Finkel171817e2013-08-07 22:49:12 +00007771'``llvm.round.*``' Intrinsic
7772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7773
7774Syntax:
7775"""""""
7776
7777This is an overloaded intrinsic. You can use ``llvm.round`` on any
7778floating point or vector of floating point type. Not all targets support
7779all types however.
7780
7781::
7782
7783 declare float @llvm.round.f32(float %Val)
7784 declare double @llvm.round.f64(double %Val)
7785 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7786 declare fp128 @llvm.round.f128(fp128 %Val)
7787 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7788
7789Overview:
7790"""""""""
7791
7792The '``llvm.round.*``' intrinsics returns the operand rounded to the
7793nearest integer.
7794
7795Arguments:
7796""""""""""
7797
7798The argument and return value are floating point numbers of the same
7799type.
7800
7801Semantics:
7802""""""""""
7803
7804This function returns the same values as the libm ``round``
7805functions would, and handles error conditions in the same way.
7806
Sean Silvab084af42012-12-07 10:36:55 +00007807Bit Manipulation Intrinsics
7808---------------------------
7809
7810LLVM provides intrinsics for a few important bit manipulation
7811operations. These allow efficient code generation for some algorithms.
7812
7813'``llvm.bswap.*``' Intrinsics
7814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7815
7816Syntax:
7817"""""""
7818
7819This is an overloaded intrinsic function. You can use bswap on any
7820integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7821
7822::
7823
7824 declare i16 @llvm.bswap.i16(i16 <id>)
7825 declare i32 @llvm.bswap.i32(i32 <id>)
7826 declare i64 @llvm.bswap.i64(i64 <id>)
7827
7828Overview:
7829"""""""""
7830
7831The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7832values with an even number of bytes (positive multiple of 16 bits).
7833These are useful for performing operations on data that is not in the
7834target's native byte order.
7835
7836Semantics:
7837""""""""""
7838
7839The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7840and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7841intrinsic returns an i32 value that has the four bytes of the input i32
7842swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7843returned i32 will have its bytes in 3, 2, 1, 0 order. The
7844``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7845concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7846respectively).
7847
7848'``llvm.ctpop.*``' Intrinsic
7849^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7850
7851Syntax:
7852"""""""
7853
7854This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7855bit width, or on any vector with integer elements. Not all targets
7856support all bit widths or vector types, however.
7857
7858::
7859
7860 declare i8 @llvm.ctpop.i8(i8 <src>)
7861 declare i16 @llvm.ctpop.i16(i16 <src>)
7862 declare i32 @llvm.ctpop.i32(i32 <src>)
7863 declare i64 @llvm.ctpop.i64(i64 <src>)
7864 declare i256 @llvm.ctpop.i256(i256 <src>)
7865 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7866
7867Overview:
7868"""""""""
7869
7870The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7871in a value.
7872
7873Arguments:
7874""""""""""
7875
7876The only argument is the value to be counted. The argument may be of any
7877integer type, or a vector with integer elements. The return type must
7878match the argument type.
7879
7880Semantics:
7881""""""""""
7882
7883The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7884each element of a vector.
7885
7886'``llvm.ctlz.*``' Intrinsic
7887^^^^^^^^^^^^^^^^^^^^^^^^^^^
7888
7889Syntax:
7890"""""""
7891
7892This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7893integer bit width, or any vector whose elements are integers. Not all
7894targets support all bit widths or vector types, however.
7895
7896::
7897
7898 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7899 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7900 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7901 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7902 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7903 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7904
7905Overview:
7906"""""""""
7907
7908The '``llvm.ctlz``' family of intrinsic functions counts the number of
7909leading zeros in a variable.
7910
7911Arguments:
7912""""""""""
7913
7914The first argument is the value to be counted. This argument may be of
7915any integer type, or a vectory with integer element type. The return
7916type must match the first argument type.
7917
7918The second argument must be a constant and is a flag to indicate whether
7919the intrinsic should ensure that a zero as the first argument produces a
7920defined result. Historically some architectures did not provide a
7921defined result for zero values as efficiently, and many algorithms are
7922now predicated on avoiding zero-value inputs.
7923
7924Semantics:
7925""""""""""
7926
7927The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7928zeros in a variable, or within each element of the vector. If
7929``src == 0`` then the result is the size in bits of the type of ``src``
7930if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7931``llvm.ctlz(i32 2) = 30``.
7932
7933'``llvm.cttz.*``' Intrinsic
7934^^^^^^^^^^^^^^^^^^^^^^^^^^^
7935
7936Syntax:
7937"""""""
7938
7939This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7940integer bit width, or any vector of integer elements. Not all targets
7941support all bit widths or vector types, however.
7942
7943::
7944
7945 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7946 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7947 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7948 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7949 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7950 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7951
7952Overview:
7953"""""""""
7954
7955The '``llvm.cttz``' family of intrinsic functions counts the number of
7956trailing zeros.
7957
7958Arguments:
7959""""""""""
7960
7961The first argument is the value to be counted. This argument may be of
7962any integer type, or a vectory with integer element type. The return
7963type must match the first argument type.
7964
7965The second argument must be a constant and is a flag to indicate whether
7966the intrinsic should ensure that a zero as the first argument produces a
7967defined result. Historically some architectures did not provide a
7968defined result for zero values as efficiently, and many algorithms are
7969now predicated on avoiding zero-value inputs.
7970
7971Semantics:
7972""""""""""
7973
7974The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7975zeros in a variable, or within each element of a vector. If ``src == 0``
7976then the result is the size in bits of the type of ``src`` if
7977``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7978``llvm.cttz(2) = 1``.
7979
7980Arithmetic with Overflow Intrinsics
7981-----------------------------------
7982
7983LLVM provides intrinsics for some arithmetic with overflow operations.
7984
7985'``llvm.sadd.with.overflow.*``' Intrinsics
7986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7987
7988Syntax:
7989"""""""
7990
7991This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7992on any integer bit width.
7993
7994::
7995
7996 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7997 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7998 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7999
8000Overview:
8001"""""""""
8002
8003The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8004a signed addition of the two arguments, and indicate whether an overflow
8005occurred during the signed summation.
8006
8007Arguments:
8008""""""""""
8009
8010The arguments (%a and %b) and the first element of the result structure
8011may be of integer types of any bit width, but they must have the same
8012bit width. The second element of the result structure must be of type
8013``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8014addition.
8015
8016Semantics:
8017""""""""""
8018
8019The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008020a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008021first element of which is the signed summation, and the second element
8022of which is a bit specifying if the signed summation resulted in an
8023overflow.
8024
8025Examples:
8026"""""""""
8027
8028.. code-block:: llvm
8029
8030 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8031 %sum = extractvalue {i32, i1} %res, 0
8032 %obit = extractvalue {i32, i1} %res, 1
8033 br i1 %obit, label %overflow, label %normal
8034
8035'``llvm.uadd.with.overflow.*``' Intrinsics
8036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8037
8038Syntax:
8039"""""""
8040
8041This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8042on any integer bit width.
8043
8044::
8045
8046 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8047 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8048 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8049
8050Overview:
8051"""""""""
8052
8053The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8054an unsigned addition of the two arguments, and indicate whether a carry
8055occurred during the unsigned summation.
8056
8057Arguments:
8058""""""""""
8059
8060The arguments (%a and %b) and the first element of the result structure
8061may be of integer types of any bit width, but they must have the same
8062bit width. The second element of the result structure must be of type
8063``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8064addition.
8065
8066Semantics:
8067""""""""""
8068
8069The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008070an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008071first element of which is the sum, and the second element of which is a
8072bit specifying if the unsigned summation resulted in a carry.
8073
8074Examples:
8075"""""""""
8076
8077.. code-block:: llvm
8078
8079 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8080 %sum = extractvalue {i32, i1} %res, 0
8081 %obit = extractvalue {i32, i1} %res, 1
8082 br i1 %obit, label %carry, label %normal
8083
8084'``llvm.ssub.with.overflow.*``' Intrinsics
8085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8086
8087Syntax:
8088"""""""
8089
8090This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8091on any integer bit width.
8092
8093::
8094
8095 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8096 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8097 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8098
8099Overview:
8100"""""""""
8101
8102The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8103a signed subtraction of the two arguments, and indicate whether an
8104overflow occurred during the signed subtraction.
8105
8106Arguments:
8107""""""""""
8108
8109The arguments (%a and %b) and the first element of the result structure
8110may be of integer types of any bit width, but they must have the same
8111bit width. The second element of the result structure must be of type
8112``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8113subtraction.
8114
8115Semantics:
8116""""""""""
8117
8118The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008119a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008120first element of which is the subtraction, and the second element of
8121which is a bit specifying if the signed subtraction resulted in an
8122overflow.
8123
8124Examples:
8125"""""""""
8126
8127.. code-block:: llvm
8128
8129 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8130 %sum = extractvalue {i32, i1} %res, 0
8131 %obit = extractvalue {i32, i1} %res, 1
8132 br i1 %obit, label %overflow, label %normal
8133
8134'``llvm.usub.with.overflow.*``' Intrinsics
8135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8136
8137Syntax:
8138"""""""
8139
8140This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8141on any integer bit width.
8142
8143::
8144
8145 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8146 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8147 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8148
8149Overview:
8150"""""""""
8151
8152The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8153an unsigned subtraction of the two arguments, and indicate whether an
8154overflow occurred during the unsigned subtraction.
8155
8156Arguments:
8157""""""""""
8158
8159The arguments (%a and %b) and the first element of the result structure
8160may be of integer types of any bit width, but they must have the same
8161bit width. The second element of the result structure must be of type
8162``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8163subtraction.
8164
8165Semantics:
8166""""""""""
8167
8168The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008169an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008170the first element of which is the subtraction, and the second element of
8171which is a bit specifying if the unsigned subtraction resulted in an
8172overflow.
8173
8174Examples:
8175"""""""""
8176
8177.. code-block:: llvm
8178
8179 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8180 %sum = extractvalue {i32, i1} %res, 0
8181 %obit = extractvalue {i32, i1} %res, 1
8182 br i1 %obit, label %overflow, label %normal
8183
8184'``llvm.smul.with.overflow.*``' Intrinsics
8185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8186
8187Syntax:
8188"""""""
8189
8190This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8191on any integer bit width.
8192
8193::
8194
8195 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8196 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8197 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8198
8199Overview:
8200"""""""""
8201
8202The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8203a signed multiplication of the two arguments, and indicate whether an
8204overflow occurred during the signed multiplication.
8205
8206Arguments:
8207""""""""""
8208
8209The arguments (%a and %b) and the first element of the result structure
8210may be of integer types of any bit width, but they must have the same
8211bit width. The second element of the result structure must be of type
8212``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8213multiplication.
8214
8215Semantics:
8216""""""""""
8217
8218The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008219a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008220the first element of which is the multiplication, and the second element
8221of which is a bit specifying if the signed multiplication resulted in an
8222overflow.
8223
8224Examples:
8225"""""""""
8226
8227.. code-block:: llvm
8228
8229 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8230 %sum = extractvalue {i32, i1} %res, 0
8231 %obit = extractvalue {i32, i1} %res, 1
8232 br i1 %obit, label %overflow, label %normal
8233
8234'``llvm.umul.with.overflow.*``' Intrinsics
8235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8236
8237Syntax:
8238"""""""
8239
8240This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8241on any integer bit width.
8242
8243::
8244
8245 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8246 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8247 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8248
8249Overview:
8250"""""""""
8251
8252The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8253a unsigned multiplication of the two arguments, and indicate whether an
8254overflow occurred during the unsigned multiplication.
8255
8256Arguments:
8257""""""""""
8258
8259The arguments (%a and %b) and the first element of the result structure
8260may be of integer types of any bit width, but they must have the same
8261bit width. The second element of the result structure must be of type
8262``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8263multiplication.
8264
8265Semantics:
8266""""""""""
8267
8268The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008269an unsigned multiplication of the two arguments. They return a structure ---
8270the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008271element of which is a bit specifying if the unsigned multiplication
8272resulted in an overflow.
8273
8274Examples:
8275"""""""""
8276
8277.. code-block:: llvm
8278
8279 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8280 %sum = extractvalue {i32, i1} %res, 0
8281 %obit = extractvalue {i32, i1} %res, 1
8282 br i1 %obit, label %overflow, label %normal
8283
8284Specialised Arithmetic Intrinsics
8285---------------------------------
8286
8287'``llvm.fmuladd.*``' Intrinsic
8288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8289
8290Syntax:
8291"""""""
8292
8293::
8294
8295 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8296 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8297
8298Overview:
8299"""""""""
8300
8301The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008302expressions that can be fused if the code generator determines that (a) the
8303target instruction set has support for a fused operation, and (b) that the
8304fused operation is more efficient than the equivalent, separate pair of mul
8305and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008306
8307Arguments:
8308""""""""""
8309
8310The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8311multiplicands, a and b, and an addend c.
8312
8313Semantics:
8314""""""""""
8315
8316The expression:
8317
8318::
8319
8320 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8321
8322is equivalent to the expression a \* b + c, except that rounding will
8323not be performed between the multiplication and addition steps if the
8324code generator fuses the operations. Fusion is not guaranteed, even if
8325the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008326corresponding llvm.fma.\* intrinsic function should be used
8327instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008328
8329Examples:
8330"""""""""
8331
8332.. code-block:: llvm
8333
8334 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8335
8336Half Precision Floating Point Intrinsics
8337----------------------------------------
8338
8339For most target platforms, half precision floating point is a
8340storage-only format. This means that it is a dense encoding (in memory)
8341but does not support computation in the format.
8342
8343This means that code must first load the half-precision floating point
8344value as an i16, then convert it to float with
8345:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8346then be performed on the float value (including extending to double
8347etc). To store the value back to memory, it is first converted to float
8348if needed, then converted to i16 with
8349:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8350i16 value.
8351
8352.. _int_convert_to_fp16:
8353
8354'``llvm.convert.to.fp16``' Intrinsic
8355^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8356
8357Syntax:
8358"""""""
8359
8360::
8361
8362 declare i16 @llvm.convert.to.fp16(f32 %a)
8363
8364Overview:
8365"""""""""
8366
8367The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8368from single precision floating point format to half precision floating
8369point format.
8370
8371Arguments:
8372""""""""""
8373
8374The intrinsic function contains single argument - the value to be
8375converted.
8376
8377Semantics:
8378""""""""""
8379
8380The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8381from single precision floating point format to half precision floating
8382point format. The return value is an ``i16`` which contains the
8383converted number.
8384
8385Examples:
8386"""""""""
8387
8388.. code-block:: llvm
8389
8390 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8391 store i16 %res, i16* @x, align 2
8392
8393.. _int_convert_from_fp16:
8394
8395'``llvm.convert.from.fp16``' Intrinsic
8396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8397
8398Syntax:
8399"""""""
8400
8401::
8402
8403 declare f32 @llvm.convert.from.fp16(i16 %a)
8404
8405Overview:
8406"""""""""
8407
8408The '``llvm.convert.from.fp16``' intrinsic function performs a
8409conversion from half precision floating point format to single precision
8410floating point format.
8411
8412Arguments:
8413""""""""""
8414
8415The intrinsic function contains single argument - the value to be
8416converted.
8417
8418Semantics:
8419""""""""""
8420
8421The '``llvm.convert.from.fp16``' intrinsic function performs a
8422conversion from half single precision floating point format to single
8423precision floating point format. The input half-float value is
8424represented by an ``i16`` value.
8425
8426Examples:
8427"""""""""
8428
8429.. code-block:: llvm
8430
8431 %a = load i16* @x, align 2
8432 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8433
8434Debugger Intrinsics
8435-------------------
8436
8437The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8438prefix), are described in the `LLVM Source Level
8439Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8440document.
8441
8442Exception Handling Intrinsics
8443-----------------------------
8444
8445The LLVM exception handling intrinsics (which all start with
8446``llvm.eh.`` prefix), are described in the `LLVM Exception
8447Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8448
8449.. _int_trampoline:
8450
8451Trampoline Intrinsics
8452---------------------
8453
8454These intrinsics make it possible to excise one parameter, marked with
8455the :ref:`nest <nest>` attribute, from a function. The result is a
8456callable function pointer lacking the nest parameter - the caller does
8457not need to provide a value for it. Instead, the value to use is stored
8458in advance in a "trampoline", a block of memory usually allocated on the
8459stack, which also contains code to splice the nest value into the
8460argument list. This is used to implement the GCC nested function address
8461extension.
8462
8463For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8464then the resulting function pointer has signature ``i32 (i32, i32)*``.
8465It can be created as follows:
8466
8467.. code-block:: llvm
8468
8469 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8470 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8471 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8472 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8473 %fp = bitcast i8* %p to i32 (i32, i32)*
8474
8475The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8476``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8477
8478.. _int_it:
8479
8480'``llvm.init.trampoline``' Intrinsic
8481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8482
8483Syntax:
8484"""""""
8485
8486::
8487
8488 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8489
8490Overview:
8491"""""""""
8492
8493This fills the memory pointed to by ``tramp`` with executable code,
8494turning it into a trampoline.
8495
8496Arguments:
8497""""""""""
8498
8499The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8500pointers. The ``tramp`` argument must point to a sufficiently large and
8501sufficiently aligned block of memory; this memory is written to by the
8502intrinsic. Note that the size and the alignment are target-specific -
8503LLVM currently provides no portable way of determining them, so a
8504front-end that generates this intrinsic needs to have some
8505target-specific knowledge. The ``func`` argument must hold a function
8506bitcast to an ``i8*``.
8507
8508Semantics:
8509""""""""""
8510
8511The block of memory pointed to by ``tramp`` is filled with target
8512dependent code, turning it into a function. Then ``tramp`` needs to be
8513passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8514be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8515function's signature is the same as that of ``func`` with any arguments
8516marked with the ``nest`` attribute removed. At most one such ``nest``
8517argument is allowed, and it must be of pointer type. Calling the new
8518function is equivalent to calling ``func`` with the same argument list,
8519but with ``nval`` used for the missing ``nest`` argument. If, after
8520calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8521modified, then the effect of any later call to the returned function
8522pointer is undefined.
8523
8524.. _int_at:
8525
8526'``llvm.adjust.trampoline``' Intrinsic
8527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8528
8529Syntax:
8530"""""""
8531
8532::
8533
8534 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8535
8536Overview:
8537"""""""""
8538
8539This performs any required machine-specific adjustment to the address of
8540a trampoline (passed as ``tramp``).
8541
8542Arguments:
8543""""""""""
8544
8545``tramp`` must point to a block of memory which already has trampoline
8546code filled in by a previous call to
8547:ref:`llvm.init.trampoline <int_it>`.
8548
8549Semantics:
8550""""""""""
8551
8552On some architectures the address of the code to be executed needs to be
8553different to the address where the trampoline is actually stored. This
8554intrinsic returns the executable address corresponding to ``tramp``
8555after performing the required machine specific adjustments. The pointer
8556returned can then be :ref:`bitcast and executed <int_trampoline>`.
8557
8558Memory Use Markers
8559------------------
8560
8561This class of intrinsics exists to information about the lifetime of
8562memory objects and ranges where variables are immutable.
8563
Reid Klecknera534a382013-12-19 02:14:12 +00008564.. _int_lifestart:
8565
Sean Silvab084af42012-12-07 10:36:55 +00008566'``llvm.lifetime.start``' Intrinsic
8567^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8568
8569Syntax:
8570"""""""
8571
8572::
8573
8574 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8575
8576Overview:
8577"""""""""
8578
8579The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8580object's lifetime.
8581
8582Arguments:
8583""""""""""
8584
8585The first argument is a constant integer representing the size of the
8586object, or -1 if it is variable sized. The second argument is a pointer
8587to the object.
8588
8589Semantics:
8590""""""""""
8591
8592This intrinsic indicates that before this point in the code, the value
8593of the memory pointed to by ``ptr`` is dead. This means that it is known
8594to never be used and has an undefined value. A load from the pointer
8595that precedes this intrinsic can be replaced with ``'undef'``.
8596
Reid Klecknera534a382013-12-19 02:14:12 +00008597.. _int_lifeend:
8598
Sean Silvab084af42012-12-07 10:36:55 +00008599'``llvm.lifetime.end``' Intrinsic
8600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8601
8602Syntax:
8603"""""""
8604
8605::
8606
8607 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8608
8609Overview:
8610"""""""""
8611
8612The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8613object's lifetime.
8614
8615Arguments:
8616""""""""""
8617
8618The first argument is a constant integer representing the size of the
8619object, or -1 if it is variable sized. The second argument is a pointer
8620to the object.
8621
8622Semantics:
8623""""""""""
8624
8625This intrinsic indicates that after this point in the code, the value of
8626the memory pointed to by ``ptr`` is dead. This means that it is known to
8627never be used and has an undefined value. Any stores into the memory
8628object following this intrinsic may be removed as dead.
8629
8630'``llvm.invariant.start``' Intrinsic
8631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8632
8633Syntax:
8634"""""""
8635
8636::
8637
8638 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8639
8640Overview:
8641"""""""""
8642
8643The '``llvm.invariant.start``' intrinsic specifies that the contents of
8644a memory object will not change.
8645
8646Arguments:
8647""""""""""
8648
8649The first argument is a constant integer representing the size of the
8650object, or -1 if it is variable sized. The second argument is a pointer
8651to the object.
8652
8653Semantics:
8654""""""""""
8655
8656This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8657the return value, the referenced memory location is constant and
8658unchanging.
8659
8660'``llvm.invariant.end``' Intrinsic
8661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8662
8663Syntax:
8664"""""""
8665
8666::
8667
8668 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8669
8670Overview:
8671"""""""""
8672
8673The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8674memory object are mutable.
8675
8676Arguments:
8677""""""""""
8678
8679The first argument is the matching ``llvm.invariant.start`` intrinsic.
8680The second argument is a constant integer representing the size of the
8681object, or -1 if it is variable sized and the third argument is a
8682pointer to the object.
8683
8684Semantics:
8685""""""""""
8686
8687This intrinsic indicates that the memory is mutable again.
8688
8689General Intrinsics
8690------------------
8691
8692This class of intrinsics is designed to be generic and has no specific
8693purpose.
8694
8695'``llvm.var.annotation``' Intrinsic
8696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8697
8698Syntax:
8699"""""""
8700
8701::
8702
8703 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8704
8705Overview:
8706"""""""""
8707
8708The '``llvm.var.annotation``' intrinsic.
8709
8710Arguments:
8711""""""""""
8712
8713The first argument is a pointer to a value, the second is a pointer to a
8714global string, the third is a pointer to a global string which is the
8715source file name, and the last argument is the line number.
8716
8717Semantics:
8718""""""""""
8719
8720This intrinsic allows annotation of local variables with arbitrary
8721strings. This can be useful for special purpose optimizations that want
8722to look for these annotations. These have no other defined use; they are
8723ignored by code generation and optimization.
8724
Michael Gottesman88d18832013-03-26 00:34:27 +00008725'``llvm.ptr.annotation.*``' Intrinsic
8726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8727
8728Syntax:
8729"""""""
8730
8731This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8732pointer to an integer of any width. *NOTE* you must specify an address space for
8733the pointer. The identifier for the default address space is the integer
8734'``0``'.
8735
8736::
8737
8738 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8739 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8740 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8741 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8742 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8743
8744Overview:
8745"""""""""
8746
8747The '``llvm.ptr.annotation``' intrinsic.
8748
8749Arguments:
8750""""""""""
8751
8752The first argument is a pointer to an integer value of arbitrary bitwidth
8753(result of some expression), the second is a pointer to a global string, the
8754third is a pointer to a global string which is the source file name, and the
8755last argument is the line number. It returns the value of the first argument.
8756
8757Semantics:
8758""""""""""
8759
8760This intrinsic allows annotation of a pointer to an integer with arbitrary
8761strings. This can be useful for special purpose optimizations that want to look
8762for these annotations. These have no other defined use; they are ignored by code
8763generation and optimization.
8764
Sean Silvab084af42012-12-07 10:36:55 +00008765'``llvm.annotation.*``' Intrinsic
8766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8767
8768Syntax:
8769"""""""
8770
8771This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8772any integer bit width.
8773
8774::
8775
8776 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8777 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8778 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8779 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8780 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8781
8782Overview:
8783"""""""""
8784
8785The '``llvm.annotation``' intrinsic.
8786
8787Arguments:
8788""""""""""
8789
8790The first argument is an integer value (result of some expression), the
8791second is a pointer to a global string, the third is a pointer to a
8792global string which is the source file name, and the last argument is
8793the line number. It returns the value of the first argument.
8794
8795Semantics:
8796""""""""""
8797
8798This intrinsic allows annotations to be put on arbitrary expressions
8799with arbitrary strings. This can be useful for special purpose
8800optimizations that want to look for these annotations. These have no
8801other defined use; they are ignored by code generation and optimization.
8802
8803'``llvm.trap``' Intrinsic
8804^^^^^^^^^^^^^^^^^^^^^^^^^
8805
8806Syntax:
8807"""""""
8808
8809::
8810
8811 declare void @llvm.trap() noreturn nounwind
8812
8813Overview:
8814"""""""""
8815
8816The '``llvm.trap``' intrinsic.
8817
8818Arguments:
8819""""""""""
8820
8821None.
8822
8823Semantics:
8824""""""""""
8825
8826This intrinsic is lowered to the target dependent trap instruction. If
8827the target does not have a trap instruction, this intrinsic will be
8828lowered to a call of the ``abort()`` function.
8829
8830'``llvm.debugtrap``' Intrinsic
8831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8832
8833Syntax:
8834"""""""
8835
8836::
8837
8838 declare void @llvm.debugtrap() nounwind
8839
8840Overview:
8841"""""""""
8842
8843The '``llvm.debugtrap``' intrinsic.
8844
8845Arguments:
8846""""""""""
8847
8848None.
8849
8850Semantics:
8851""""""""""
8852
8853This intrinsic is lowered to code which is intended to cause an
8854execution trap with the intention of requesting the attention of a
8855debugger.
8856
8857'``llvm.stackprotector``' Intrinsic
8858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8859
8860Syntax:
8861"""""""
8862
8863::
8864
8865 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8866
8867Overview:
8868"""""""""
8869
8870The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8871onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8872is placed on the stack before local variables.
8873
8874Arguments:
8875""""""""""
8876
8877The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8878The first argument is the value loaded from the stack guard
8879``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8880enough space to hold the value of the guard.
8881
8882Semantics:
8883""""""""""
8884
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008885This intrinsic causes the prologue/epilogue inserter to force the position of
8886the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8887to ensure that if a local variable on the stack is overwritten, it will destroy
8888the value of the guard. When the function exits, the guard on the stack is
8889checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8890different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8891calling the ``__stack_chk_fail()`` function.
8892
8893'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008895
8896Syntax:
8897"""""""
8898
8899::
8900
8901 declare void @llvm.stackprotectorcheck(i8** <guard>)
8902
8903Overview:
8904"""""""""
8905
8906The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008907created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008908``__stack_chk_fail()`` function.
8909
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008910Arguments:
8911""""""""""
8912
8913The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8914the variable ``@__stack_chk_guard``.
8915
8916Semantics:
8917""""""""""
8918
8919This intrinsic is provided to perform the stack protector check by comparing
8920``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8921values do not match call the ``__stack_chk_fail()`` function.
8922
8923The reason to provide this as an IR level intrinsic instead of implementing it
8924via other IR operations is that in order to perform this operation at the IR
8925level without an intrinsic, one would need to create additional basic blocks to
8926handle the success/failure cases. This makes it difficult to stop the stack
8927protector check from disrupting sibling tail calls in Codegen. With this
8928intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008929codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008930
Sean Silvab084af42012-12-07 10:36:55 +00008931'``llvm.objectsize``' Intrinsic
8932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8933
8934Syntax:
8935"""""""
8936
8937::
8938
8939 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8940 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8941
8942Overview:
8943"""""""""
8944
8945The ``llvm.objectsize`` intrinsic is designed to provide information to
8946the optimizers to determine at compile time whether a) an operation
8947(like memcpy) will overflow a buffer that corresponds to an object, or
8948b) that a runtime check for overflow isn't necessary. An object in this
8949context means an allocation of a specific class, structure, array, or
8950other object.
8951
8952Arguments:
8953""""""""""
8954
8955The ``llvm.objectsize`` intrinsic takes two arguments. The first
8956argument is a pointer to or into the ``object``. The second argument is
8957a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8958or -1 (if false) when the object size is unknown. The second argument
8959only accepts constants.
8960
8961Semantics:
8962""""""""""
8963
8964The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8965the size of the object concerned. If the size cannot be determined at
8966compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8967on the ``min`` argument).
8968
8969'``llvm.expect``' Intrinsic
8970^^^^^^^^^^^^^^^^^^^^^^^^^^^
8971
8972Syntax:
8973"""""""
8974
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00008975This is an overloaded intrinsic. You can use ``llvm.expect`` on any
8976integer bit width.
8977
Sean Silvab084af42012-12-07 10:36:55 +00008978::
8979
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00008980 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00008981 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8982 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8983
8984Overview:
8985"""""""""
8986
8987The ``llvm.expect`` intrinsic provides information about expected (the
8988most probable) value of ``val``, which can be used by optimizers.
8989
8990Arguments:
8991""""""""""
8992
8993The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8994a value. The second argument is an expected value, this needs to be a
8995constant value, variables are not allowed.
8996
8997Semantics:
8998""""""""""
8999
9000This intrinsic is lowered to the ``val``.
9001
9002'``llvm.donothing``' Intrinsic
9003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9004
9005Syntax:
9006"""""""
9007
9008::
9009
9010 declare void @llvm.donothing() nounwind readnone
9011
9012Overview:
9013"""""""""
9014
9015The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9016only intrinsic that can be called with an invoke instruction.
9017
9018Arguments:
9019""""""""""
9020
9021None.
9022
9023Semantics:
9024""""""""""
9025
9026This intrinsic does nothing, and it's removed by optimizers and ignored
9027by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009028
9029Stack Map Intrinsics
9030--------------------
9031
9032LLVM provides experimental intrinsics to support runtime patching
9033mechanisms commonly desired in dynamic language JITs. These intrinsics
9034are described in :doc:`StackMaps`.