blob: 0f566bf7d7b9ffd2f8e7051a5548d0e89e47ddc5 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
122static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
125void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Jingyue Wuca321902015-05-14 23:53:19 +0000133bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134 AssumptionCache *AC, const Instruction *CxtI,
135 const DominatorTree *DT) {
136 assert(LHS->getType() == RHS->getType() &&
137 "LHS and RHS should have the same type");
138 assert(LHS->getType()->isIntOrIntVectorTy() &&
139 "LHS and RHS should be integers");
140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146}
147
Hal Finkel60db0582014-09-07 18:57:58 +0000148static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000149 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000150
151void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000152 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000153 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000154 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000157}
158
159static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000160 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000161
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const Instruction *CxtI,
165 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168}
169
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171
172bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173 AssumptionCache *AC, const Instruction *CxtI,
174 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Jingyue Wu10fcea52015-08-20 18:27:04 +0000178bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179 AssumptionCache *AC, const Instruction *CxtI,
180 const DominatorTree *DT) {
181 bool NonNegative, Negative;
182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183 return NonNegative;
184}
185
Philip Reames8f12eba2016-03-09 21:31:47 +0000186bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 if (auto *CI = dyn_cast<ConstantInt>(V))
190 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000191
Philip Reames8f12eba2016-03-09 21:31:47 +0000192 // TODO: We'd doing two recursive queries here. We should factor this such
193 // that only a single query is needed.
194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196}
197
Nick Lewycky762f8a82016-04-21 00:53:14 +0000198bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199 AssumptionCache *AC, const Instruction *CxtI,
200 const DominatorTree *DT) {
201 bool NonNegative, Negative;
202 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203 return Negative;
204}
205
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000206static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000207
208bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209 AssumptionCache *AC, const Instruction *CxtI,
210 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000211 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212 safeCxtI(V1, safeCxtI(V2, CxtI)),
213 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000214}
215
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000216static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000218
219bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220 unsigned Depth, AssumptionCache *AC,
221 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000222 return ::MaskedValueIsZero(V, Mask, Depth,
223 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000224}
225
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000226static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000227
228unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229 unsigned Depth, AssumptionCache *AC,
230 const Instruction *CxtI,
231 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000232 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000233}
234
Jay Foada0653a32014-05-14 21:14:37 +0000235static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236 APInt &KnownZero, APInt &KnownOne,
237 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000239 if (!Add) {
240 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241 // We know that the top bits of C-X are clear if X contains less bits
242 // than C (i.e. no wrap-around can happen). For example, 20-X is
243 // positive if we can prove that X is >= 0 and < 16.
244 if (!CLHS->getValue().isNegative()) {
245 unsigned BitWidth = KnownZero.getBitWidth();
246 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247 // NLZ can't be BitWidth with no sign bit
248 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000249 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000250
251 // If all of the MaskV bits are known to be zero, then we know the
252 // output top bits are zero, because we now know that the output is
253 // from [0-C].
254 if ((KnownZero2 & MaskV) == MaskV) {
255 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256 // Top bits known zero.
257 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258 }
259 }
260 }
261 }
262
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000263 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000264
David Majnemer97ddca32014-08-22 00:40:43 +0000265 // If an initial sequence of bits in the result is not needed, the
266 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000267 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000270
David Majnemer97ddca32014-08-22 00:40:43 +0000271 // Carry in a 1 for a subtract, rather than a 0.
272 APInt CarryIn(BitWidth, 0);
273 if (!Add) {
274 // Sum = LHS + ~RHS + 1
275 std::swap(KnownZero2, KnownOne2);
276 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277 }
278
David Majnemer97ddca32014-08-22 00:40:43 +0000279 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281
282 // Compute known bits of the carry.
283 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285
286 // Compute set of known bits (where all three relevant bits are known).
287 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288 APInt RHSKnown = KnownZero2 | KnownOne2;
289 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290 APInt Known = LHSKnown & RHSKnown & CarryKnown;
291
292 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293 "known bits of sum differ");
294
295 // Compute known bits of the result.
296 KnownZero = ~PossibleSumOne & Known;
297 KnownOne = PossibleSumOne & Known;
298
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000299 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000300 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000301 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000302 // Adding two non-negative numbers, or subtracting a negative number from
303 // a non-negative one, can't wrap into negative.
304 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305 KnownZero |= APInt::getSignBit(BitWidth);
306 // Adding two negative numbers, or subtracting a non-negative number from
307 // a negative one, can't wrap into non-negative.
308 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000310 }
311 }
312}
313
Jay Foada0653a32014-05-14 21:14:37 +0000314static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315 APInt &KnownZero, APInt &KnownOne,
316 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000318 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000319 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
330 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332 bool isKnownNegativeOp1 = KnownOne.isNegative();
333 bool isKnownNegativeOp0 = KnownOne2.isNegative();
334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
347 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000348 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 // More trickiness is possible, but this is sufficient for the
350 // interesting case of alignment computation.
351 KnownOne.clearAllBits();
352 unsigned TrailZ = KnownZero.countTrailingOnes() +
353 KnownZero2.countTrailingOnes();
354 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
355 KnownZero2.countLeadingOnes(),
356 BitWidth) - BitWidth;
357
358 TrailZ = std::min(TrailZ, BitWidth);
359 LeadZ = std::min(LeadZ, BitWidth);
360 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362
363 // Only make use of no-wrap flags if we failed to compute the sign bit
364 // directly. This matters if the multiplication always overflows, in
365 // which case we prefer to follow the result of the direct computation,
366 // though as the program is invoking undefined behaviour we can choose
367 // whatever we like here.
368 if (isKnownNonNegative && !KnownOne.isNegative())
369 KnownZero.setBit(BitWidth - 1);
370 else if (isKnownNegative && !KnownZero.isNegative())
371 KnownOne.setBit(BitWidth - 1);
372}
373
Jingyue Wu37fcb592014-06-19 16:50:16 +0000374void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000375 APInt &KnownZero,
376 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000378 unsigned NumRanges = Ranges.getNumOperands() / 2;
379 assert(NumRanges >= 1);
380
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000381 KnownZero.setAllBits();
382 KnownOne.setAllBits();
383
Rafael Espindola53190532012-03-30 15:52:11 +0000384 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000385 ConstantInt *Lower =
386 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387 ConstantInt *Upper =
388 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000389 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000390
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000391 // The first CommonPrefixBits of all values in Range are equal.
392 unsigned CommonPrefixBits =
393 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394
395 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396 KnownOne &= Range.getUnsignedMax() & Mask;
397 KnownZero &= ~Range.getUnsignedMax() & Mask;
398 }
Rafael Espindola53190532012-03-30 15:52:11 +0000399}
Jay Foad5a29c362014-05-15 12:12:55 +0000400
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000401static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000402 SmallVector<const Value *, 16> WorkSet(1, I);
403 SmallPtrSet<const Value *, 32> Visited;
404 SmallPtrSet<const Value *, 16> EphValues;
405
Hal Finkelf2199b22015-10-23 20:37:08 +0000406 // The instruction defining an assumption's condition itself is always
407 // considered ephemeral to that assumption (even if it has other
408 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000409 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000410 return true;
411
Hal Finkel60db0582014-09-07 18:57:58 +0000412 while (!WorkSet.empty()) {
413 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000414 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000415 continue;
416
417 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000418 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000419 if (V == E)
420 return true;
421
422 EphValues.insert(V);
423 if (const User *U = dyn_cast<User>(V))
424 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
425 J != JE; ++J) {
426 if (isSafeToSpeculativelyExecute(*J))
427 WorkSet.push_back(*J);
428 }
429 }
430 }
431
432 return false;
433}
434
435// Is this an intrinsic that cannot be speculated but also cannot trap?
436static bool isAssumeLikeIntrinsic(const Instruction *I) {
437 if (const CallInst *CI = dyn_cast<CallInst>(I))
438 if (Function *F = CI->getCalledFunction())
439 switch (F->getIntrinsicID()) {
440 default: break;
441 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
442 case Intrinsic::assume:
443 case Intrinsic::dbg_declare:
444 case Intrinsic::dbg_value:
445 case Intrinsic::invariant_start:
446 case Intrinsic::invariant_end:
447 case Intrinsic::lifetime_start:
448 case Intrinsic::lifetime_end:
449 case Intrinsic::objectsize:
450 case Intrinsic::ptr_annotation:
451 case Intrinsic::var_annotation:
452 return true;
453 }
454
455 return false;
456}
457
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000458bool llvm::isValidAssumeForContext(const Instruction *Inv,
459 const Instruction *CxtI,
460 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000461
462 // There are two restrictions on the use of an assume:
463 // 1. The assume must dominate the context (or the control flow must
464 // reach the assume whenever it reaches the context).
465 // 2. The context must not be in the assume's set of ephemeral values
466 // (otherwise we will use the assume to prove that the condition
467 // feeding the assume is trivially true, thus causing the removal of
468 // the assume).
469
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000470 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000471 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000472 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000473 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
474 // We don't have a DT, but this trivially dominates.
475 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000476 }
477
Pete Cooper54a02552016-08-12 01:00:15 +0000478 // With or without a DT, the only remaining case we will check is if the
479 // instructions are in the same BB. Give up if that is not the case.
480 if (Inv->getParent() != CxtI->getParent())
481 return false;
482
483 // If we have a dom tree, then we now know that the assume doens't dominate
484 // the other instruction. If we don't have a dom tree then we can check if
485 // the assume is first in the BB.
486 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000487 // Search forward from the assume until we reach the context (or the end
488 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000489 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000490 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000491 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000492 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000493 }
494
Pete Cooper54a02552016-08-12 01:00:15 +0000495 // The context comes first, but they're both in the same block. Make sure
496 // there is nothing in between that might interrupt the control flow.
497 for (BasicBlock::const_iterator I =
498 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
499 I != IE; ++I)
500 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
501 return false;
502
503 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000504}
505
Hal Finkel60db0582014-09-07 18:57:58 +0000506static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000507 APInt &KnownOne, unsigned Depth,
508 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000509 // Use of assumptions is context-sensitive. If we don't have a context, we
510 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000511 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000512 return;
513
514 unsigned BitWidth = KnownZero.getBitWidth();
515
Chandler Carruth66b31302015-01-04 12:03:27 +0000516 for (auto &AssumeVH : Q.AC->assumptions()) {
517 if (!AssumeVH)
518 continue;
519 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000520 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000521 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000522 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000523 continue;
524
Philip Reames00d3b272014-11-24 23:44:28 +0000525 // Warning: This loop can end up being somewhat performance sensetive.
526 // We're running this loop for once for each value queried resulting in a
527 // runtime of ~O(#assumes * #values).
528
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000529 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000530 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000531
Philip Reames00d3b272014-11-24 23:44:28 +0000532 Value *Arg = I->getArgOperand(0);
533
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000534 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000535 assert(BitWidth == 1 && "assume operand is not i1?");
536 KnownZero.clearAllBits();
537 KnownOne.setAllBits();
538 return;
539 }
540
David Majnemer9b609752014-12-12 23:59:29 +0000541 // The remaining tests are all recursive, so bail out if we hit the limit.
542 if (Depth == MaxDepth)
543 continue;
544
Hal Finkel60db0582014-09-07 18:57:58 +0000545 Value *A, *B;
546 auto m_V = m_CombineOr(m_Specific(V),
547 m_CombineOr(m_PtrToInt(m_Specific(V)),
548 m_BitCast(m_Specific(V))));
549
550 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000551 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000552 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000553 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000554 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000555 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000556 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000557 KnownZero |= RHSKnownZero;
558 KnownOne |= RHSKnownOne;
559 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000560 } else if (match(Arg,
561 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000562 Pred == ICmpInst::ICMP_EQ &&
563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000564 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000565 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000566 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000568
569 // For those bits in the mask that are known to be one, we can propagate
570 // known bits from the RHS to V.
571 KnownZero |= RHSKnownZero & MaskKnownOne;
572 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000573 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000574 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
575 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000576 Pred == ICmpInst::ICMP_EQ &&
577 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000578 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000579 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000580 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000581 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000582
583 // For those bits in the mask that are known to be one, we can propagate
584 // inverted known bits from the RHS to V.
585 KnownZero |= RHSKnownOne & MaskKnownOne;
586 KnownOne |= RHSKnownZero & MaskKnownOne;
587 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000588 } else if (match(Arg,
589 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000590 Pred == ICmpInst::ICMP_EQ &&
591 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000592 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000593 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000594 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000595 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000596
597 // For those bits in B that are known to be zero, we can propagate known
598 // bits from the RHS to V.
599 KnownZero |= RHSKnownZero & BKnownZero;
600 KnownOne |= RHSKnownOne & BKnownZero;
601 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000602 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
603 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000604 Pred == ICmpInst::ICMP_EQ &&
605 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000606 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000607 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000608 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000609 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000610
611 // For those bits in B that are known to be zero, we can propagate
612 // inverted known bits from the RHS to V.
613 KnownZero |= RHSKnownOne & BKnownZero;
614 KnownOne |= RHSKnownZero & BKnownZero;
615 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000616 } else if (match(Arg,
617 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000618 Pred == ICmpInst::ICMP_EQ &&
619 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000620 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000621 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000622 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000623 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000624
625 // For those bits in B that are known to be zero, we can propagate known
626 // bits from the RHS to V. For those bits in B that are known to be one,
627 // we can propagate inverted known bits from the RHS to V.
628 KnownZero |= RHSKnownZero & BKnownZero;
629 KnownOne |= RHSKnownOne & BKnownZero;
630 KnownZero |= RHSKnownOne & BKnownOne;
631 KnownOne |= RHSKnownZero & BKnownOne;
632 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000633 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
634 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000635 Pred == ICmpInst::ICMP_EQ &&
636 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000638 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000639 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000640 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000641
642 // For those bits in B that are known to be zero, we can propagate
643 // inverted known bits from the RHS to V. For those bits in B that are
644 // known to be one, we can propagate known bits from the RHS to V.
645 KnownZero |= RHSKnownOne & BKnownZero;
646 KnownOne |= RHSKnownZero & BKnownZero;
647 KnownZero |= RHSKnownZero & BKnownOne;
648 KnownOne |= RHSKnownOne & BKnownOne;
649 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000650 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
651 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000652 Pred == ICmpInst::ICMP_EQ &&
653 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000655 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000656 // For those bits in RHS that are known, we can propagate them to known
657 // bits in V shifted to the right by C.
658 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
659 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
660 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000661 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
662 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000663 Pred == ICmpInst::ICMP_EQ &&
664 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000665 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000666 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 // For those bits in RHS that are known, we can propagate them inverted
668 // to known bits in V shifted to the right by C.
669 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
670 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
671 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000672 } else if (match(Arg,
673 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000674 m_AShr(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000676 Pred == ICmpInst::ICMP_EQ &&
677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // For those bits in RHS that are known, we can propagate them to known
681 // bits in V shifted to the right by C.
682 KnownZero |= RHSKnownZero << C->getZExtValue();
683 KnownOne |= RHSKnownOne << C->getZExtValue();
684 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000686 m_LShr(m_V, m_ConstantInt(C)),
687 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them inverted
694 // to known bits in V shifted to the right by C.
695 KnownZero |= RHSKnownOne << C->getZExtValue();
696 KnownOne |= RHSKnownZero << C->getZExtValue();
697 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 Pred == ICmpInst::ICMP_SGE &&
700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000701 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000702 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703
704 if (RHSKnownZero.isNegative()) {
705 // We know that the sign bit is zero.
706 KnownZero |= APInt::getSignBit(BitWidth);
707 }
708 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000709 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000710 Pred == ICmpInst::ICMP_SGT &&
711 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000712 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000713 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714
715 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
716 // We know that the sign bit is zero.
717 KnownZero |= APInt::getSignBit(BitWidth);
718 }
719 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000720 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000721 Pred == ICmpInst::ICMP_SLE &&
722 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000723 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000724 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725
726 if (RHSKnownOne.isNegative()) {
727 // We know that the sign bit is one.
728 KnownOne |= APInt::getSignBit(BitWidth);
729 }
730 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000731 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000732 Pred == ICmpInst::ICMP_SLT &&
733 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000734 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000735 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736
737 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
738 // We know that the sign bit is one.
739 KnownOne |= APInt::getSignBit(BitWidth);
740 }
741 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000742 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000743 Pred == ICmpInst::ICMP_ULE &&
744 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000745 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000746 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747
748 // Whatever high bits in c are zero are known to be zero.
749 KnownZero |=
750 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
751 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000753 Pred == ICmpInst::ICMP_ULT &&
754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000755 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000757
758 // Whatever high bits in c are zero are known to be zero (if c is a power
759 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000760 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000761 KnownZero |=
762 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
763 else
764 KnownZero |=
765 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000766 }
767 }
768}
769
Hal Finkelf2199b22015-10-23 20:37:08 +0000770// Compute known bits from a shift operator, including those with a
771// non-constant shift amount. KnownZero and KnownOne are the outputs of this
772// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
773// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
774// functors that, given the known-zero or known-one bits respectively, and a
775// shift amount, compute the implied known-zero or known-one bits of the shift
776// operator's result respectively for that shift amount. The results from calling
777// KZF and KOF are conservatively combined for all permitted shift amounts.
778template <typename KZFunctor, typename KOFunctor>
779static void computeKnownBitsFromShiftOperator(Operator *I,
780 APInt &KnownZero, APInt &KnownOne,
781 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000782 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000783 unsigned BitWidth = KnownZero.getBitWidth();
784
785 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
786 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
787
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000788 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000789 KnownZero = KZF(KnownZero, ShiftAmt);
790 KnownOne = KOF(KnownOne, ShiftAmt);
791 return;
792 }
793
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000794 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000795
796 // Note: We cannot use KnownZero.getLimitedValue() here, because if
797 // BitWidth > 64 and any upper bits are known, we'll end up returning the
798 // limit value (which implies all bits are known).
799 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
800 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
801
802 // It would be more-clearly correct to use the two temporaries for this
803 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000804 KnownZero.clearAllBits();
805 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000806
James Molloy493e57d2015-10-26 14:10:46 +0000807 // If we know the shifter operand is nonzero, we can sometimes infer more
808 // known bits. However this is expensive to compute, so be lazy about it and
809 // only compute it when absolutely necessary.
810 Optional<bool> ShifterOperandIsNonZero;
811
Hal Finkelf2199b22015-10-23 20:37:08 +0000812 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000813 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
814 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000815 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000816 if (!*ShifterOperandIsNonZero)
817 return;
818 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000819
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000820 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000821
822 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
823 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
824 // Combine the shifted known input bits only for those shift amounts
825 // compatible with its known constraints.
826 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
827 continue;
828 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
829 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000830 // If we know the shifter is nonzero, we may be able to infer more known
831 // bits. This check is sunk down as far as possible to avoid the expensive
832 // call to isKnownNonZero if the cheaper checks above fail.
833 if (ShiftAmt == 0) {
834 if (!ShifterOperandIsNonZero.hasValue())
835 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000836 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000837 if (*ShifterOperandIsNonZero)
838 continue;
839 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000840
841 KnownZero &= KZF(KnownZero2, ShiftAmt);
842 KnownOne &= KOF(KnownOne2, ShiftAmt);
843 }
844
845 // If there are no compatible shift amounts, then we've proven that the shift
846 // amount must be >= the BitWidth, and the result is undefined. We could
847 // return anything we'd like, but we need to make sure the sets of known bits
848 // stay disjoint (it should be better for some other code to actually
849 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000850 if ((KnownZero & KnownOne) != 0) {
851 KnownZero.clearAllBits();
852 KnownOne.clearAllBits();
853 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000854}
855
Jingyue Wu12b0c282015-06-15 05:46:29 +0000856static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000857 APInt &KnownOne, unsigned Depth,
858 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000859 unsigned BitWidth = KnownZero.getBitWidth();
860
Chris Lattner965c7692008-06-02 01:18:21 +0000861 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000862 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000863 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000864 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000865 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000866 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000867 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000868 case Instruction::And: {
869 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000870 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
871 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000872
Chris Lattner965c7692008-06-02 01:18:21 +0000873 // Output known-1 bits are only known if set in both the LHS & RHS.
874 KnownOne &= KnownOne2;
875 // Output known-0 are known to be clear if zero in either the LHS | RHS.
876 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000877
878 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
879 // here we handle the more general case of adding any odd number by
880 // matching the form add(x, add(x, y)) where y is odd.
881 // TODO: This could be generalized to clearing any bit set in y where the
882 // following bit is known to be unset in y.
883 Value *Y = nullptr;
884 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
885 m_Value(Y))) ||
886 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
887 m_Value(Y)))) {
888 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000889 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000890 if (KnownOne3.countTrailingOnes() > 0)
891 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
892 }
Jay Foad5a29c362014-05-15 12:12:55 +0000893 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000894 }
895 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000896 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
897 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000898
Chris Lattner965c7692008-06-02 01:18:21 +0000899 // Output known-0 bits are only known if clear in both the LHS & RHS.
900 KnownZero &= KnownZero2;
901 // Output known-1 are known to be set if set in either the LHS | RHS.
902 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000903 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000904 }
905 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000906 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
907 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000908
Chris Lattner965c7692008-06-02 01:18:21 +0000909 // Output known-0 bits are known if clear or set in both the LHS & RHS.
910 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
911 // Output known-1 are known to be set if set in only one of the LHS, RHS.
912 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
913 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000914 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000915 }
916 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000917 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000918 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000919 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000920 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000921 }
922 case Instruction::UDiv: {
923 // For the purposes of computing leading zeros we can conservatively
924 // treat a udiv as a logical right shift by the power of 2 known to
925 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000926 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000927 unsigned LeadZ = KnownZero2.countLeadingOnes();
928
Jay Foad25a5e4c2010-12-01 08:53:58 +0000929 KnownOne2.clearAllBits();
930 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000931 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000932 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
933 if (RHSUnknownLeadingOnes != BitWidth)
934 LeadZ = std::min(BitWidth,
935 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
936
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000937 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000938 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000939 }
David Majnemera19d0f22016-08-06 08:16:00 +0000940 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000941 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
942 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000943
David Majnemera19d0f22016-08-06 08:16:00 +0000944 Value *LHS, *RHS;
945 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
946 if (SelectPatternResult::isMinOrMax(SPF)) {
947 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
948 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
949 } else {
950 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
951 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
952 }
953
954 unsigned MaxHighOnes = 0;
955 unsigned MaxHighZeros = 0;
956 if (SPF == SPF_SMAX) {
957 // If both sides are negative, the result is negative.
958 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
959 // We can derive a lower bound on the result by taking the max of the
960 // leading one bits.
961 MaxHighOnes =
962 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
963 // If either side is non-negative, the result is non-negative.
964 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
965 MaxHighZeros = 1;
966 } else if (SPF == SPF_SMIN) {
967 // If both sides are non-negative, the result is non-negative.
968 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
969 // We can derive an upper bound on the result by taking the max of the
970 // leading zero bits.
971 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
972 KnownZero2.countLeadingOnes());
973 // If either side is negative, the result is negative.
974 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
975 MaxHighOnes = 1;
976 } else if (SPF == SPF_UMAX) {
977 // We can derive a lower bound on the result by taking the max of the
978 // leading one bits.
979 MaxHighOnes =
980 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
981 } else if (SPF == SPF_UMIN) {
982 // We can derive an upper bound on the result by taking the max of the
983 // leading zero bits.
984 MaxHighZeros =
985 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
986 }
987
Chris Lattner965c7692008-06-02 01:18:21 +0000988 // Only known if known in both the LHS and RHS.
989 KnownOne &= KnownOne2;
990 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +0000991 if (MaxHighOnes > 0)
992 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
993 if (MaxHighZeros > 0)
994 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +0000995 break;
David Majnemera19d0f22016-08-06 08:16:00 +0000996 }
Chris Lattner965c7692008-06-02 01:18:21 +0000997 case Instruction::FPTrunc:
998 case Instruction::FPExt:
999 case Instruction::FPToUI:
1000 case Instruction::FPToSI:
1001 case Instruction::SIToFP:
1002 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001003 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001004 case Instruction::PtrToInt:
1005 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001006 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001007 // FALL THROUGH and handle them the same as zext/trunc.
1008 case Instruction::ZExt:
1009 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001010 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001011
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001012 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001013 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1014 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001015 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001016
1017 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001018 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1019 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001020 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001021 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1022 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001023 // Any top bits are known to be zero.
1024 if (BitWidth > SrcBitWidth)
1025 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001026 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001027 }
1028 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001029 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001030 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001031 // TODO: For now, not handling conversions like:
1032 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001033 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001034 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001035 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001036 }
1037 break;
1038 }
1039 case Instruction::SExt: {
1040 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001041 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001042
Jay Foad583abbc2010-12-07 08:25:19 +00001043 KnownZero = KnownZero.trunc(SrcBitWidth);
1044 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001045 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001046 KnownZero = KnownZero.zext(BitWidth);
1047 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001048
1049 // If the sign bit of the input is known set or clear, then we know the
1050 // top bits of the result.
1051 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1052 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1053 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1054 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001055 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001056 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001057 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001058 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Andrew Kaylor3c05edf2016-08-09 22:41:35 +00001059 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1060 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1061 APInt KZResult = (KnownZero << ShiftAmt) |
Hal Finkelf2199b22015-10-23 20:37:08 +00001062 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
Andrew Kaylor3c05edf2016-08-09 22:41:35 +00001063 // If this shift has "nsw" keyword, then the result is either a poison
1064 // value or has the same sign bit as the first operand.
1065 if (NSW && KnownZero.isNegative())
1066 KZResult.setBit(BitWidth - 1);
1067 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001068 };
1069
Andrew Kaylor3c05edf2016-08-09 22:41:35 +00001070 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1071 APInt KOResult = KnownOne << ShiftAmt;
1072 if (NSW && KnownOne.isNegative())
1073 KOResult.setBit(BitWidth - 1);
1074 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001075 };
1076
1077 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001078 KnownZero2, KnownOne2, Depth, Q, KZF,
1079 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001080 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001081 }
1082 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001083 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001084 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1085 return APIntOps::lshr(KnownZero, ShiftAmt) |
1086 // High bits known zero.
1087 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1088 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001089
Hal Finkelf2199b22015-10-23 20:37:08 +00001090 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1091 return APIntOps::lshr(KnownOne, ShiftAmt);
1092 };
1093
1094 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001095 KnownZero2, KnownOne2, Depth, Q, KZF,
1096 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001097 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001098 }
1099 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001100 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001101 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1102 return APIntOps::ashr(KnownZero, ShiftAmt);
1103 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001104
Hal Finkelf2199b22015-10-23 20:37:08 +00001105 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1106 return APIntOps::ashr(KnownOne, ShiftAmt);
1107 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001108
Hal Finkelf2199b22015-10-23 20:37:08 +00001109 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001110 KnownZero2, KnownOne2, Depth, Q, KZF,
1111 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001112 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001113 }
Chris Lattner965c7692008-06-02 01:18:21 +00001114 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001115 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001116 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001117 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1118 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001119 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001120 }
Chris Lattner965c7692008-06-02 01:18:21 +00001121 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001122 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001123 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001124 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1125 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001126 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001127 }
1128 case Instruction::SRem:
1129 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001130 APInt RA = Rem->getValue().abs();
1131 if (RA.isPowerOf2()) {
1132 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001133 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001134 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001135
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001136 // The low bits of the first operand are unchanged by the srem.
1137 KnownZero = KnownZero2 & LowBits;
1138 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001139
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001140 // If the first operand is non-negative or has all low bits zero, then
1141 // the upper bits are all zero.
1142 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1143 KnownZero |= ~LowBits;
1144
1145 // If the first operand is negative and not all low bits are zero, then
1146 // the upper bits are all one.
1147 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1148 KnownOne |= ~LowBits;
1149
Craig Topper1bef2c82012-12-22 19:15:35 +00001150 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001151 }
1152 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001153
1154 // The sign bit is the LHS's sign bit, except when the result of the
1155 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001156 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001157 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001158 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1159 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001160 // If it's known zero, our sign bit is also zero.
1161 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001162 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001163 }
1164
Chris Lattner965c7692008-06-02 01:18:21 +00001165 break;
1166 case Instruction::URem: {
1167 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001168 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001169 if (RA.isPowerOf2()) {
1170 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001171 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001172 KnownZero |= ~LowBits;
1173 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001174 break;
1175 }
1176 }
1177
1178 // Since the result is less than or equal to either operand, any leading
1179 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001180 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1181 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001182
Chris Lattner4612ae12009-01-20 18:22:57 +00001183 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001184 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001185 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001186 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001187 break;
1188 }
1189
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001190 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001191 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001192 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001193 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001194 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001195
Chris Lattner965c7692008-06-02 01:18:21 +00001196 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001197 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001198 break;
1199 }
1200 case Instruction::GetElementPtr: {
1201 // Analyze all of the subscripts of this getelementptr instruction
1202 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001203 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001204 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1205 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001206 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1207
1208 gep_type_iterator GTI = gep_type_begin(I);
1209 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1210 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001211 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001212 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001213
1214 // Handle case when index is vector zeroinitializer
1215 Constant *CIndex = cast<Constant>(Index);
1216 if (CIndex->isZeroValue())
1217 continue;
1218
1219 if (CIndex->getType()->isVectorTy())
1220 Index = CIndex->getSplatValue();
1221
Chris Lattner965c7692008-06-02 01:18:21 +00001222 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001223 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001224 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001225 TrailZ = std::min<unsigned>(TrailZ,
1226 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001227 } else {
1228 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001229 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001230 if (!IndexedTy->isSized()) {
1231 TrailZ = 0;
1232 break;
1233 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001234 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001235 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001236 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001237 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001238 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001239 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001240 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001241 }
1242 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001243
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001244 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001245 break;
1246 }
1247 case Instruction::PHI: {
1248 PHINode *P = cast<PHINode>(I);
1249 // Handle the case of a simple two-predecessor recurrence PHI.
1250 // There's a lot more that could theoretically be done here, but
1251 // this is sufficient to catch some interesting cases.
1252 if (P->getNumIncomingValues() == 2) {
1253 for (unsigned i = 0; i != 2; ++i) {
1254 Value *L = P->getIncomingValue(i);
1255 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001256 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001257 if (!LU)
1258 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001259 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001260 // Check for operations that have the property that if
1261 // both their operands have low zero bits, the result
Andrew Kaylorb10f6872016-08-10 18:47:19 +00001262 // will have low zero bits. Also check for operations
1263 // that are known to produce non-negative or negative
1264 // recurrence values.
Chris Lattner965c7692008-06-02 01:18:21 +00001265 if (Opcode == Instruction::Add ||
1266 Opcode == Instruction::Sub ||
1267 Opcode == Instruction::And ||
1268 Opcode == Instruction::Or ||
1269 Opcode == Instruction::Mul) {
1270 Value *LL = LU->getOperand(0);
1271 Value *LR = LU->getOperand(1);
1272 // Find a recurrence.
1273 if (LL == I)
1274 L = LR;
1275 else if (LR == I)
1276 L = LL;
1277 else
1278 break;
1279 // Ok, we have a PHI of the form L op= R. Check for low
1280 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001281 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001282
1283 // We need to take the minimum number of known bits
1284 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001285 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001286
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001287 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001288 std::min(KnownZero2.countTrailingOnes(),
1289 KnownZero3.countTrailingOnes()));
Andrew Kaylorb10f6872016-08-10 18:47:19 +00001290
1291 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1292 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1293 // If initial value of recurrence is nonnegative, and we are adding
1294 // a nonnegative number with nsw, the result can only be nonnegative
1295 // or poison value regardless of the number of times we execute the
1296 // add in phi recurrence. If initial value is negative and we are
1297 // adding a negative number with nsw, the result can only be
1298 // negative or poison value. Similar arguments apply to sub and mul.
1299 //
1300 // (add non-negative, non-negative) --> non-negative
1301 // (add negative, negative) --> negative
1302 if (Opcode == Instruction::Add) {
1303 if (KnownZero2.isNegative() && KnownZero3.isNegative())
1304 KnownZero.setBit(BitWidth - 1);
1305 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1306 KnownOne.setBit(BitWidth - 1);
1307 }
1308
1309 // (sub nsw non-negative, negative) --> non-negative
1310 // (sub nsw negative, non-negative) --> negative
1311 else if (Opcode == Instruction::Sub && LL == I) {
1312 if (KnownZero2.isNegative() && KnownOne3.isNegative())
1313 KnownZero.setBit(BitWidth - 1);
1314 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1315 KnownOne.setBit(BitWidth - 1);
1316 }
1317
1318 // (mul nsw non-negative, non-negative) --> non-negative
1319 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1320 KnownZero3.isNegative())
1321 KnownZero.setBit(BitWidth - 1);
1322 }
1323
Chris Lattner965c7692008-06-02 01:18:21 +00001324 break;
1325 }
1326 }
1327 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001328
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001329 // Unreachable blocks may have zero-operand PHI nodes.
1330 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001331 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001332
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001333 // Otherwise take the unions of the known bit sets of the operands,
1334 // taking conservative care to avoid excessive recursion.
1335 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001336 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001337 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001338 break;
1339
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001340 KnownZero = APInt::getAllOnesValue(BitWidth);
1341 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001342 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001343 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001344 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001345
1346 KnownZero2 = APInt(BitWidth, 0);
1347 KnownOne2 = APInt(BitWidth, 0);
1348 // Recurse, but cap the recursion to one level, because we don't
1349 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001350 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001351 KnownZero &= KnownZero2;
1352 KnownOne &= KnownOne2;
1353 // If all bits have been ruled out, there's no need to check
1354 // more operands.
1355 if (!KnownZero && !KnownOne)
1356 break;
1357 }
1358 }
Chris Lattner965c7692008-06-02 01:18:21 +00001359 break;
1360 }
1361 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001362 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001363 // If range metadata is attached to this call, set known bits from that,
1364 // and then intersect with known bits based on other properties of the
1365 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001366 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001367 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001368 if (Value *RV = CallSite(I).getReturnedArgOperand()) {
1369 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1370 KnownZero |= KnownZero2;
1371 KnownOne |= KnownOne2;
1372 }
Chris Lattner965c7692008-06-02 01:18:21 +00001373 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1374 switch (II->getIntrinsicID()) {
1375 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001376 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001377 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001378 KnownZero |= KnownZero2.byteSwap();
1379 KnownOne |= KnownOne2.byteSwap();
1380 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001381 case Intrinsic::ctlz:
1382 case Intrinsic::cttz: {
1383 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001384 // If this call is undefined for 0, the result will be less than 2^n.
1385 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1386 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001387 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001388 break;
1389 }
1390 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001391 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001392 // We can bound the space the count needs. Also, bits known to be zero
1393 // can't contribute to the population.
1394 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1395 unsigned LeadingZeros =
1396 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001397 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001398 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1399 KnownOne &= ~KnownZero;
1400 // TODO: we could bound KnownOne using the lower bound on the number
1401 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001402 break;
1403 }
Chad Rosierb3628842011-05-26 23:13:19 +00001404 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001405 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001406 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001407 }
1408 }
1409 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001410 case Instruction::ExtractValue:
1411 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1412 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1413 if (EVI->getNumIndices() != 1) break;
1414 if (EVI->getIndices()[0] == 0) {
1415 switch (II->getIntrinsicID()) {
1416 default: break;
1417 case Intrinsic::uadd_with_overflow:
1418 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001419 computeKnownBitsAddSub(true, II->getArgOperand(0),
1420 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001421 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001422 break;
1423 case Intrinsic::usub_with_overflow:
1424 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001425 computeKnownBitsAddSub(false, II->getArgOperand(0),
1426 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001427 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001428 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001429 case Intrinsic::umul_with_overflow:
1430 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001431 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001432 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1433 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001434 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001435 }
1436 }
1437 }
Chris Lattner965c7692008-06-02 01:18:21 +00001438 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001439}
1440
1441/// Determine which bits of V are known to be either zero or one and return
1442/// them in the KnownZero/KnownOne bit sets.
1443///
1444/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1445/// we cannot optimize based on the assumption that it is zero without changing
1446/// it to be an explicit zero. If we don't change it to zero, other code could
1447/// optimized based on the contradictory assumption that it is non-zero.
1448/// Because instcombine aggressively folds operations with undef args anyway,
1449/// this won't lose us code quality.
1450///
1451/// This function is defined on values with integer type, values with pointer
1452/// type, and vectors of integers. In the case
1453/// where V is a vector, known zero, and known one values are the
1454/// same width as the vector element, and the bit is set only if it is true
1455/// for all of the elements in the vector.
1456void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001457 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001458 assert(V && "No Value?");
1459 assert(Depth <= MaxDepth && "Limit Search Depth");
1460 unsigned BitWidth = KnownZero.getBitWidth();
1461
1462 assert((V->getType()->isIntOrIntVectorTy() ||
1463 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001464 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001465 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001466 (!V->getType()->isIntOrIntVectorTy() ||
1467 V->getType()->getScalarSizeInBits() == BitWidth) &&
1468 KnownZero.getBitWidth() == BitWidth &&
1469 KnownOne.getBitWidth() == BitWidth &&
1470 "V, KnownOne and KnownZero should have same BitWidth");
1471
1472 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1473 // We know all of the bits for a constant!
1474 KnownOne = CI->getValue();
1475 KnownZero = ~KnownOne;
1476 return;
1477 }
1478 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001479 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001480 KnownOne.clearAllBits();
1481 KnownZero = APInt::getAllOnesValue(BitWidth);
1482 return;
1483 }
1484 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001485 // each element.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001486 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1487 // We know that CDS must be a vector of integers. Take the intersection of
1488 // each element.
1489 KnownZero.setAllBits(); KnownOne.setAllBits();
1490 APInt Elt(KnownZero.getBitWidth(), 0);
1491 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1492 Elt = CDS->getElementAsInteger(i);
1493 KnownZero &= ~Elt;
1494 KnownOne &= Elt;
1495 }
1496 return;
1497 }
1498
David Majnemer3918cdd2016-05-04 06:13:33 +00001499 if (auto *CV = dyn_cast<ConstantVector>(V)) {
1500 // We know that CV must be a vector of integers. Take the intersection of
1501 // each element.
1502 KnownZero.setAllBits(); KnownOne.setAllBits();
1503 APInt Elt(KnownZero.getBitWidth(), 0);
1504 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1505 Constant *Element = CV->getAggregateElement(i);
1506 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1507 if (!ElementCI) {
1508 KnownZero.clearAllBits();
1509 KnownOne.clearAllBits();
1510 return;
1511 }
1512 Elt = ElementCI->getValue();
1513 KnownZero &= ~Elt;
1514 KnownOne &= Elt;
1515 }
1516 return;
1517 }
1518
Jingyue Wu12b0c282015-06-15 05:46:29 +00001519 // Start out not knowing anything.
1520 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1521
1522 // Limit search depth.
1523 // All recursive calls that increase depth must come after this.
1524 if (Depth == MaxDepth)
1525 return;
1526
1527 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1528 // the bits of its aliasee.
1529 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001530 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001531 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001532 return;
1533 }
1534
1535 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001536 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001537
Artur Pilipenko029d8532015-09-30 11:55:45 +00001538 // Aligned pointers have trailing zeros - refine KnownZero set
1539 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001540 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001541 if (Align)
1542 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1543 }
1544
Philip Reames146307e2016-03-03 19:44:06 +00001545 // computeKnownBitsFromAssume strictly refines KnownZero and
1546 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001547
1548 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001549 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001550
Jay Foad5a29c362014-05-15 12:12:55 +00001551 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001552}
1553
Sanjay Patelaee84212014-11-04 16:27:42 +00001554/// Determine whether the sign bit is known to be zero or one.
1555/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001556void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001557 unsigned Depth, const Query &Q) {
1558 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001559 if (!BitWidth) {
1560 KnownZero = false;
1561 KnownOne = false;
1562 return;
1563 }
1564 APInt ZeroBits(BitWidth, 0);
1565 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001566 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001567 KnownOne = OneBits[BitWidth - 1];
1568 KnownZero = ZeroBits[BitWidth - 1];
1569}
1570
Sanjay Patelaee84212014-11-04 16:27:42 +00001571/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001572/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001573/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001574/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001575bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001576 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001577 if (Constant *C = dyn_cast<Constant>(V)) {
1578 if (C->isNullValue())
1579 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001580
1581 const APInt *ConstIntOrConstSplatInt;
1582 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1583 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001584 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001585
1586 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1587 // it is shifted off the end then the result is undefined.
1588 if (match(V, m_Shl(m_One(), m_Value())))
1589 return true;
1590
1591 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1592 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001593 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001594 return true;
1595
1596 // The remaining tests are all recursive, so bail out if we hit the limit.
1597 if (Depth++ == MaxDepth)
1598 return false;
1599
Craig Topper9f008862014-04-15 04:59:12 +00001600 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001601 // A shift left or a logical shift right of a power of two is a power of two
1602 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001603 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001604 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001605 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001606
Duncan Sandsd3951082011-01-25 09:38:29 +00001607 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001608 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001609
1610 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001611 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1612 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001613
Duncan Sandsba286d72011-10-26 20:55:21 +00001614 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1615 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001616 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1617 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001618 return true;
1619 // X & (-X) is always a power of two or zero.
1620 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1621 return true;
1622 return false;
1623 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001624
David Majnemerb7d54092013-07-30 21:01:36 +00001625 // Adding a power-of-two or zero to the same power-of-two or zero yields
1626 // either the original power-of-two, a larger power-of-two or zero.
1627 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1628 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1629 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1630 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1631 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001632 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001633 return true;
1634 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1635 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001636 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001637 return true;
1638
1639 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1640 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001641 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001642
1643 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001644 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001645 // If i8 V is a power of two or zero:
1646 // ZeroBits: 1 1 1 0 1 1 1 1
1647 // ~ZeroBits: 0 0 0 1 0 0 0 0
1648 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1649 // If OrZero isn't set, we cannot give back a zero result.
1650 // Make sure either the LHS or RHS has a bit set.
1651 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1652 return true;
1653 }
1654 }
David Majnemerbeab5672013-05-18 19:30:37 +00001655
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001656 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001657 // is a power of two only if the first operand is a power of two and not
1658 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001659 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1660 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001661 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001662 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001663 }
1664
Duncan Sandsd3951082011-01-25 09:38:29 +00001665 return false;
1666}
1667
Chandler Carruth80d3e562012-12-07 02:08:58 +00001668/// \brief Test whether a GEP's result is known to be non-null.
1669///
1670/// Uses properties inherent in a GEP to try to determine whether it is known
1671/// to be non-null.
1672///
1673/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001674static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1675 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001676 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1677 return false;
1678
1679 // FIXME: Support vector-GEPs.
1680 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1681
1682 // If the base pointer is non-null, we cannot walk to a null address with an
1683 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001684 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001685 return true;
1686
Chandler Carruth80d3e562012-12-07 02:08:58 +00001687 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1688 // If so, then the GEP cannot produce a null pointer, as doing so would
1689 // inherently violate the inbounds contract within address space zero.
1690 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1691 GTI != GTE; ++GTI) {
1692 // Struct types are easy -- they must always be indexed by a constant.
1693 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1694 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1695 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001696 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001697 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1698 if (ElementOffset > 0)
1699 return true;
1700 continue;
1701 }
1702
1703 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001704 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001705 continue;
1706
1707 // Fast path the constant operand case both for efficiency and so we don't
1708 // increment Depth when just zipping down an all-constant GEP.
1709 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1710 if (!OpC->isZero())
1711 return true;
1712 continue;
1713 }
1714
1715 // We post-increment Depth here because while isKnownNonZero increments it
1716 // as well, when we pop back up that increment won't persist. We don't want
1717 // to recurse 10k times just because we have 10k GEP operands. We don't
1718 // bail completely out because we want to handle constant GEPs regardless
1719 // of depth.
1720 if (Depth++ >= MaxDepth)
1721 continue;
1722
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001723 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001724 return true;
1725 }
1726
1727 return false;
1728}
1729
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001730/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1731/// ensure that the value it's attached to is never Value? 'RangeType' is
1732/// is the type of the value described by the range.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001733static bool rangeMetadataExcludesValue(MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001734 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1735 assert(NumRanges >= 1);
1736 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001737 ConstantInt *Lower =
1738 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1739 ConstantInt *Upper =
1740 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001741 ConstantRange Range(Lower->getValue(), Upper->getValue());
1742 if (Range.contains(Value))
1743 return false;
1744 }
1745 return true;
1746}
1747
Sanjay Patelaee84212014-11-04 16:27:42 +00001748/// Return true if the given value is known to be non-zero when defined.
1749/// For vectors return true if every element is known to be non-zero when
1750/// defined. Supports values with integer or pointer type and vectors of
1751/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001752bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001753 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001754 if (C->isNullValue())
1755 return false;
1756 if (isa<ConstantInt>(C))
1757 // Must be non-zero due to null test above.
1758 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001759
1760 // For constant vectors, check that all elements are undefined or known
1761 // non-zero to determine that the whole vector is known non-zero.
1762 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1763 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1764 Constant *Elt = C->getAggregateElement(i);
1765 if (!Elt || Elt->isNullValue())
1766 return false;
1767 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1768 return false;
1769 }
1770 return true;
1771 }
1772
Duncan Sandsd3951082011-01-25 09:38:29 +00001773 return false;
1774 }
1775
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001776 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001777 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001778 // If the possible ranges don't contain zero, then the value is
1779 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001780 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001781 const APInt ZeroValue(Ty->getBitWidth(), 0);
1782 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1783 return true;
1784 }
1785 }
1786 }
1787
Duncan Sandsd3951082011-01-25 09:38:29 +00001788 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001789 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001790 return false;
1791
Chandler Carruth80d3e562012-12-07 02:08:58 +00001792 // Check for pointer simplifications.
1793 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001794 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001795 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001796 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001797 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001798 return true;
1799 }
1800
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001801 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001802
1803 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001804 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001805 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001806 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001807
1808 // ext X != 0 if X != 0.
1809 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001810 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001811
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001812 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001813 // if the lowest bit is shifted off the end.
1814 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001815 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001816 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001817 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001818 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001819
Duncan Sandsd3951082011-01-25 09:38:29 +00001820 APInt KnownZero(BitWidth, 0);
1821 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001822 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001823 if (KnownOne[0])
1824 return true;
1825 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001826 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001827 // defined if the sign bit is shifted off the end.
1828 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001829 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001830 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001831 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001832 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001833
Duncan Sandsd3951082011-01-25 09:38:29 +00001834 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001835 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001836 if (XKnownNegative)
1837 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001838
1839 // If the shifter operand is a constant, and all of the bits shifted
1840 // out are known to be zero, and X is known non-zero then at least one
1841 // non-zero bit must remain.
1842 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1843 APInt KnownZero(BitWidth, 0);
1844 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001845 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001846
James Molloyb6be1eb2015-09-24 16:06:32 +00001847 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1848 // Is there a known one in the portion not shifted out?
1849 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1850 return true;
1851 // Are all the bits to be shifted out known zero?
1852 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001853 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001854 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001855 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001856 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001857 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001858 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001859 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001860 // X + Y.
1861 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1862 bool XKnownNonNegative, XKnownNegative;
1863 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001864 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1865 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001866
1867 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001868 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001869 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001870 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001871 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001872
1873 // If X and Y are both negative (as signed values) then their sum is not
1874 // zero unless both X and Y equal INT_MIN.
1875 if (BitWidth && XKnownNegative && YKnownNegative) {
1876 APInt KnownZero(BitWidth, 0);
1877 APInt KnownOne(BitWidth, 0);
1878 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1879 // The sign bit of X is set. If some other bit is set then X is not equal
1880 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001881 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001882 if ((KnownOne & Mask) != 0)
1883 return true;
1884 // The sign bit of Y is set. If some other bit is set then Y is not equal
1885 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001886 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001887 if ((KnownOne & Mask) != 0)
1888 return true;
1889 }
1890
1891 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001892 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001893 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001894 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001895 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001896 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001897 return true;
1898 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001899 // X * Y.
1900 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1901 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1902 // If X and Y are non-zero then so is X * Y as long as the multiplication
1903 // does not overflow.
1904 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001905 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001906 return true;
1907 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001908 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1909 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001910 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1911 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001912 return true;
1913 }
James Molloy897048b2015-09-29 14:08:45 +00001914 // PHI
1915 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1916 // Try and detect a recurrence that monotonically increases from a
1917 // starting value, as these are common as induction variables.
1918 if (PN->getNumIncomingValues() == 2) {
1919 Value *Start = PN->getIncomingValue(0);
1920 Value *Induction = PN->getIncomingValue(1);
1921 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1922 std::swap(Start, Induction);
1923 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1924 if (!C->isZero() && !C->isNegative()) {
1925 ConstantInt *X;
1926 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1927 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1928 !X->isNegative())
1929 return true;
1930 }
1931 }
1932 }
Jun Bum Limca832662016-02-01 17:03:07 +00001933 // Check if all incoming values are non-zero constant.
1934 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1935 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1936 });
1937 if (AllNonZeroConstants)
1938 return true;
James Molloy897048b2015-09-29 14:08:45 +00001939 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001940
1941 if (!BitWidth) return false;
1942 APInt KnownZero(BitWidth, 0);
1943 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001944 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001945 return KnownOne != 0;
1946}
1947
James Molloy1d88d6f2015-10-22 13:18:42 +00001948/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001949static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001950 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1951 if (!BO || BO->getOpcode() != Instruction::Add)
1952 return false;
1953 Value *Op = nullptr;
1954 if (V2 == BO->getOperand(0))
1955 Op = BO->getOperand(1);
1956 else if (V2 == BO->getOperand(1))
1957 Op = BO->getOperand(0);
1958 else
1959 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001960 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001961}
1962
1963/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001964static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001965 if (V1->getType()->isVectorTy() || V1 == V2)
1966 return false;
1967 if (V1->getType() != V2->getType())
1968 // We can't look through casts yet.
1969 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001970 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001971 return true;
1972
1973 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1974 // Are any known bits in V1 contradictory to known bits in V2? If V1
1975 // has a known zero where V2 has a known one, they must not be equal.
1976 auto BitWidth = Ty->getBitWidth();
1977 APInt KnownZero1(BitWidth, 0);
1978 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001979 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001980 APInt KnownZero2(BitWidth, 0);
1981 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001982 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001983
1984 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1985 if (OppositeBits.getBoolValue())
1986 return true;
1987 }
1988 return false;
1989}
1990
Sanjay Patelaee84212014-11-04 16:27:42 +00001991/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1992/// simplify operations downstream. Mask is known to be zero for bits that V
1993/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001994///
1995/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001996/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001997/// where V is a vector, the mask, known zero, and known one values are the
1998/// same width as the vector element, and the bit is set only if it is true
1999/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002000bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
2001 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002002 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002003 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002004 return (KnownZero & Mask) == Mask;
2005}
2006
Sanjay Patela06d9892016-06-22 19:20:59 +00002007/// For vector constants, loop over the elements and find the constant with the
2008/// minimum number of sign bits. Return 0 if the value is not a vector constant
2009/// or if any element was not analyzed; otherwise, return the count for the
2010/// element with the minimum number of sign bits.
2011static unsigned computeNumSignBitsVectorConstant(Value *V, unsigned TyBits) {
2012 auto *CV = dyn_cast<Constant>(V);
2013 if (!CV || !CV->getType()->isVectorTy())
2014 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002015
Sanjay Patela06d9892016-06-22 19:20:59 +00002016 unsigned MinSignBits = TyBits;
2017 unsigned NumElts = CV->getType()->getVectorNumElements();
2018 for (unsigned i = 0; i != NumElts; ++i) {
2019 // If we find a non-ConstantInt, bail out.
2020 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2021 if (!Elt)
2022 return 0;
2023
2024 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2025 APInt EltVal = Elt->getValue();
2026 if (EltVal.isNegative())
2027 EltVal = ~EltVal;
2028 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2029 }
2030
2031 return MinSignBits;
2032}
Chris Lattner965c7692008-06-02 01:18:21 +00002033
Sanjay Patelaee84212014-11-04 16:27:42 +00002034/// Return the number of times the sign bit of the register is replicated into
2035/// the other bits. We know that at least 1 bit is always equal to the sign bit
2036/// (itself), but other cases can give us information. For example, immediately
2037/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002038/// other, so we return 3. For vectors, return the number of sign bits for the
2039/// vector element with the mininum number of known sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002040unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
2041 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002042 unsigned Tmp, Tmp2;
2043 unsigned FirstAnswer = 1;
2044
Jay Foada0653a32014-05-14 21:14:37 +00002045 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002046 // below.
2047
Chris Lattner965c7692008-06-02 01:18:21 +00002048 if (Depth == 6)
2049 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002050
Dan Gohman80ca01c2009-07-17 20:47:02 +00002051 Operator *U = dyn_cast<Operator>(V);
2052 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002053 default: break;
2054 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002055 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002056 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002057
Nadav Rotemc99a3872015-03-06 00:23:58 +00002058 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002059 const APInt *Denominator;
2060 // sdiv X, C -> adds log(C) sign bits.
2061 if (match(U->getOperand(1), m_APInt(Denominator))) {
2062
2063 // Ignore non-positive denominator.
2064 if (!Denominator->isStrictlyPositive())
2065 break;
2066
2067 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002068 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002069
2070 // Add floor(log(C)) bits to the numerator bits.
2071 return std::min(TyBits, NumBits + Denominator->logBase2());
2072 }
2073 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002074 }
2075
2076 case Instruction::SRem: {
2077 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002078 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2079 // positive constant. This let us put a lower bound on the number of sign
2080 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002081 if (match(U->getOperand(1), m_APInt(Denominator))) {
2082
2083 // Ignore non-positive denominator.
2084 if (!Denominator->isStrictlyPositive())
2085 break;
2086
2087 // Calculate the incoming numerator bits. SRem by a positive constant
2088 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002089 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002090 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002091
2092 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002093 // denominator. Given that the denominator is positive, there are two
2094 // cases:
2095 //
2096 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2097 // (1 << ceilLogBase2(C)).
2098 //
2099 // 2. the numerator is negative. Then the result range is (-C,0] and
2100 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2101 //
2102 // Thus a lower bound on the number of sign bits is `TyBits -
2103 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002104
Sanjoy Dase561fee2015-03-25 22:33:53 +00002105 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002106 return std::max(NumrBits, ResBits);
2107 }
2108 break;
2109 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002110
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002111 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002112 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002113 // ashr X, C -> adds C sign bits. Vectors too.
2114 const APInt *ShAmt;
2115 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2116 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002117 if (Tmp > TyBits) Tmp = TyBits;
2118 }
2119 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002120 }
2121 case Instruction::Shl: {
2122 const APInt *ShAmt;
2123 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002124 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002125 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002126 Tmp2 = ShAmt->getZExtValue();
2127 if (Tmp2 >= TyBits || // Bad shift.
2128 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2129 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002130 }
2131 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002132 }
Chris Lattner965c7692008-06-02 01:18:21 +00002133 case Instruction::And:
2134 case Instruction::Or:
2135 case Instruction::Xor: // NOT is handled here.
2136 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002137 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002138 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002139 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002140 FirstAnswer = std::min(Tmp, Tmp2);
2141 // We computed what we know about the sign bits as our first
2142 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002143 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002144 }
2145 break;
2146
2147 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002148 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002149 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002150 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002151 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002152
Chris Lattner965c7692008-06-02 01:18:21 +00002153 case Instruction::Add:
2154 // Add can have at most one carry bit. Thus we know that the output
2155 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002156 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002157 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002158
Chris Lattner965c7692008-06-02 01:18:21 +00002159 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002160 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002161 if (CRHS->isAllOnesValue()) {
2162 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002163 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002164
Chris Lattner965c7692008-06-02 01:18:21 +00002165 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2166 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002167 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002168 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002169
Chris Lattner965c7692008-06-02 01:18:21 +00002170 // If we are subtracting one from a positive number, there is no carry
2171 // out of the result.
2172 if (KnownZero.isNegative())
2173 return Tmp;
2174 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002175
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002176 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002177 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002178 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002179
Chris Lattner965c7692008-06-02 01:18:21 +00002180 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002181 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002182 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002183
Chris Lattner965c7692008-06-02 01:18:21 +00002184 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002185 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002186 if (CLHS->isNullValue()) {
2187 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002188 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002189 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2190 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002191 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002192 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002193
Chris Lattner965c7692008-06-02 01:18:21 +00002194 // If the input is known to be positive (the sign bit is known clear),
2195 // the output of the NEG has the same number of sign bits as the input.
2196 if (KnownZero.isNegative())
2197 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002198
Chris Lattner965c7692008-06-02 01:18:21 +00002199 // Otherwise, we treat this like a SUB.
2200 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002201
Chris Lattner965c7692008-06-02 01:18:21 +00002202 // Sub can have at most one carry bit. Thus we know that the output
2203 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002204 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002205 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002206 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002207
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002208 case Instruction::PHI: {
2209 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002210 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002211 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002212 if (NumIncomingValues > 4) break;
2213 // Unreachable blocks may have zero-operand PHI nodes.
2214 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002215
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002216 // Take the minimum of all incoming values. This can't infinitely loop
2217 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002218 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002219 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002220 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002221 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002222 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002223 }
2224 return Tmp;
2225 }
2226
Chris Lattner965c7692008-06-02 01:18:21 +00002227 case Instruction::Trunc:
2228 // FIXME: it's tricky to do anything useful for this, but it is an important
2229 // case for targets like X86.
2230 break;
2231 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002232
Chris Lattner965c7692008-06-02 01:18:21 +00002233 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2234 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002235
2236 // If we can examine all elements of a vector constant successfully, we're
2237 // done (we can't do any better than that). If not, keep trying.
2238 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2239 return VecSignBits;
2240
Chris Lattner965c7692008-06-02 01:18:21 +00002241 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002242 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002243
Sanjay Patele0536212016-06-23 17:41:59 +00002244 // If we know that the sign bit is either zero or one, determine the number of
2245 // identical bits in the top of the input value.
2246 if (KnownZero.isNegative())
2247 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002248
Sanjay Patele0536212016-06-23 17:41:59 +00002249 if (KnownOne.isNegative())
2250 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2251
2252 // computeKnownBits gave us no extra information about the top bits.
2253 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002254}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002255
Sanjay Patelaee84212014-11-04 16:27:42 +00002256/// This function computes the integer multiple of Base that equals V.
2257/// If successful, it returns true and returns the multiple in
2258/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002259/// through SExt instructions only if LookThroughSExt is true.
2260bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002261 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002262 const unsigned MaxDepth = 6;
2263
Dan Gohman6a976bb2009-11-18 00:58:27 +00002264 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002265 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002266 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002267
Chris Lattner229907c2011-07-18 04:54:35 +00002268 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002269
Dan Gohman6a976bb2009-11-18 00:58:27 +00002270 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002271
2272 if (Base == 0)
2273 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002274
Victor Hernandez47444882009-11-10 08:28:35 +00002275 if (Base == 1) {
2276 Multiple = V;
2277 return true;
2278 }
2279
2280 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2281 Constant *BaseVal = ConstantInt::get(T, Base);
2282 if (CO && CO == BaseVal) {
2283 // Multiple is 1.
2284 Multiple = ConstantInt::get(T, 1);
2285 return true;
2286 }
2287
2288 if (CI && CI->getZExtValue() % Base == 0) {
2289 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002290 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002291 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002292
Victor Hernandez47444882009-11-10 08:28:35 +00002293 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002294
Victor Hernandez47444882009-11-10 08:28:35 +00002295 Operator *I = dyn_cast<Operator>(V);
2296 if (!I) return false;
2297
2298 switch (I->getOpcode()) {
2299 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002300 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002301 if (!LookThroughSExt) return false;
2302 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002303 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002304 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2305 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002306 case Instruction::Shl:
2307 case Instruction::Mul: {
2308 Value *Op0 = I->getOperand(0);
2309 Value *Op1 = I->getOperand(1);
2310
2311 if (I->getOpcode() == Instruction::Shl) {
2312 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2313 if (!Op1CI) return false;
2314 // Turn Op0 << Op1 into Op0 * 2^Op1
2315 APInt Op1Int = Op1CI->getValue();
2316 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002317 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002318 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002319 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002320 }
2321
Craig Topper9f008862014-04-15 04:59:12 +00002322 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002323 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2324 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2325 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002326 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002327 MulC->getType()->getPrimitiveSizeInBits())
2328 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002329 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002330 MulC->getType()->getPrimitiveSizeInBits())
2331 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002332
Chris Lattner72d283c2010-09-05 17:20:46 +00002333 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2334 Multiple = ConstantExpr::getMul(MulC, Op1C);
2335 return true;
2336 }
Victor Hernandez47444882009-11-10 08:28:35 +00002337
2338 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2339 if (Mul0CI->getValue() == 1) {
2340 // V == Base * Op1, so return Op1
2341 Multiple = Op1;
2342 return true;
2343 }
2344 }
2345
Craig Topper9f008862014-04-15 04:59:12 +00002346 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002347 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2348 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2349 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002350 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002351 MulC->getType()->getPrimitiveSizeInBits())
2352 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002353 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002354 MulC->getType()->getPrimitiveSizeInBits())
2355 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002356
Chris Lattner72d283c2010-09-05 17:20:46 +00002357 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2358 Multiple = ConstantExpr::getMul(MulC, Op0C);
2359 return true;
2360 }
Victor Hernandez47444882009-11-10 08:28:35 +00002361
2362 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2363 if (Mul1CI->getValue() == 1) {
2364 // V == Base * Op0, so return Op0
2365 Multiple = Op0;
2366 return true;
2367 }
2368 }
Victor Hernandez47444882009-11-10 08:28:35 +00002369 }
2370 }
2371
2372 // We could not determine if V is a multiple of Base.
2373 return false;
2374}
2375
David Majnemerb4b27232016-04-19 19:10:21 +00002376Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2377 const TargetLibraryInfo *TLI) {
2378 const Function *F = ICS.getCalledFunction();
2379 if (!F)
2380 return Intrinsic::not_intrinsic;
2381
2382 if (F->isIntrinsic())
2383 return F->getIntrinsicID();
2384
2385 if (!TLI)
2386 return Intrinsic::not_intrinsic;
2387
2388 LibFunc::Func Func;
2389 // We're going to make assumptions on the semantics of the functions, check
2390 // that the target knows that it's available in this environment and it does
2391 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002392 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2393 return Intrinsic::not_intrinsic;
2394
2395 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002396 return Intrinsic::not_intrinsic;
2397
2398 // Otherwise check if we have a call to a function that can be turned into a
2399 // vector intrinsic.
2400 switch (Func) {
2401 default:
2402 break;
2403 case LibFunc::sin:
2404 case LibFunc::sinf:
2405 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002406 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002407 case LibFunc::cos:
2408 case LibFunc::cosf:
2409 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002410 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002411 case LibFunc::exp:
2412 case LibFunc::expf:
2413 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002414 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002415 case LibFunc::exp2:
2416 case LibFunc::exp2f:
2417 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002418 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002419 case LibFunc::log:
2420 case LibFunc::logf:
2421 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002422 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002423 case LibFunc::log10:
2424 case LibFunc::log10f:
2425 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002426 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002427 case LibFunc::log2:
2428 case LibFunc::log2f:
2429 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002430 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002431 case LibFunc::fabs:
2432 case LibFunc::fabsf:
2433 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002434 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002435 case LibFunc::fmin:
2436 case LibFunc::fminf:
2437 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002438 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002439 case LibFunc::fmax:
2440 case LibFunc::fmaxf:
2441 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002442 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002443 case LibFunc::copysign:
2444 case LibFunc::copysignf:
2445 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002446 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002447 case LibFunc::floor:
2448 case LibFunc::floorf:
2449 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002450 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002451 case LibFunc::ceil:
2452 case LibFunc::ceilf:
2453 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002454 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002455 case LibFunc::trunc:
2456 case LibFunc::truncf:
2457 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002458 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002459 case LibFunc::rint:
2460 case LibFunc::rintf:
2461 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002462 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002463 case LibFunc::nearbyint:
2464 case LibFunc::nearbyintf:
2465 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002466 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002467 case LibFunc::round:
2468 case LibFunc::roundf:
2469 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002470 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002471 case LibFunc::pow:
2472 case LibFunc::powf:
2473 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002474 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002475 case LibFunc::sqrt:
2476 case LibFunc::sqrtf:
2477 case LibFunc::sqrtl:
2478 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002479 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002480 return Intrinsic::not_intrinsic;
2481 }
2482
2483 return Intrinsic::not_intrinsic;
2484}
2485
Sanjay Patelaee84212014-11-04 16:27:42 +00002486/// Return true if we can prove that the specified FP value is never equal to
2487/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002488///
2489/// NOTE: this function will need to be revisited when we support non-default
2490/// rounding modes!
2491///
David Majnemer3ee5f342016-04-13 06:55:52 +00002492bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2493 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002494 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2495 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002496
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002497 // FIXME: Magic number! At the least, this should be given a name because it's
2498 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2499 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002500 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002501 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002502
Dan Gohman80ca01c2009-07-17 20:47:02 +00002503 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002504 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002505
2506 // Check if the nsz fast-math flag is set
2507 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2508 if (FPO->hasNoSignedZeros())
2509 return true;
2510
Chris Lattnera12a6de2008-06-02 01:29:46 +00002511 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002512 if (I->getOpcode() == Instruction::FAdd)
2513 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2514 if (CFP->isNullValue())
2515 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002516
Chris Lattnera12a6de2008-06-02 01:29:46 +00002517 // sitofp and uitofp turn into +0.0 for zero.
2518 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2519 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002520
David Majnemer3ee5f342016-04-13 06:55:52 +00002521 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002522 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002523 switch (IID) {
2524 default:
2525 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002526 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002527 case Intrinsic::sqrt:
2528 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2529 // fabs(x) != -0.0
2530 case Intrinsic::fabs:
2531 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002532 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002533 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002534
Chris Lattnera12a6de2008-06-02 01:29:46 +00002535 return false;
2536}
2537
David Majnemer3ee5f342016-04-13 06:55:52 +00002538bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2539 const TargetLibraryInfo *TLI,
2540 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002541 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2542 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2543
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002544 // FIXME: Magic number! At the least, this should be given a name because it's
2545 // used similarly in CannotBeNegativeZero(). A better fix may be to
2546 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002547 if (Depth == 6)
2548 return false; // Limit search depth.
2549
2550 const Operator *I = dyn_cast<Operator>(V);
2551 if (!I) return false;
2552
2553 switch (I->getOpcode()) {
2554 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002555 // Unsigned integers are always nonnegative.
2556 case Instruction::UIToFP:
2557 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002558 case Instruction::FMul:
2559 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002560 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002561 return true;
2562 // Fall through
2563 case Instruction::FAdd:
2564 case Instruction::FDiv:
2565 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002566 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2567 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002568 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002569 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2570 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002571 case Instruction::FPExt:
2572 case Instruction::FPTrunc:
2573 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002574 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2575 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002576 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002577 switch (IID) {
2578 default:
2579 break;
2580 case Intrinsic::maxnum:
2581 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2582 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2583 case Intrinsic::minnum:
2584 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2585 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2586 case Intrinsic::exp:
2587 case Intrinsic::exp2:
2588 case Intrinsic::fabs:
2589 case Intrinsic::sqrt:
2590 return true;
2591 case Intrinsic::powi:
2592 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2593 // powi(x,n) is non-negative if n is even.
2594 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2595 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002596 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002597 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2598 case Intrinsic::fma:
2599 case Intrinsic::fmuladd:
2600 // x*x+y is non-negative if y is non-negative.
2601 return I->getOperand(0) == I->getOperand(1) &&
2602 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2603 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002604 break;
2605 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002606 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002607}
2608
Sanjay Patelaee84212014-11-04 16:27:42 +00002609/// If the specified value can be set by repeating the same byte in memory,
2610/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002611/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2612/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2613/// byte store (e.g. i16 0x1234), return null.
2614Value *llvm::isBytewiseValue(Value *V) {
2615 // All byte-wide stores are splatable, even of arbitrary variables.
2616 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002617
2618 // Handle 'null' ConstantArrayZero etc.
2619 if (Constant *C = dyn_cast<Constant>(V))
2620 if (C->isNullValue())
2621 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002622
Chris Lattner9cb10352010-12-26 20:15:01 +00002623 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002624 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002625 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2626 if (CFP->getType()->isFloatTy())
2627 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2628 if (CFP->getType()->isDoubleTy())
2629 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2630 // Don't handle long double formats, which have strange constraints.
2631 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002632
Benjamin Kramer17d90152015-02-07 19:29:02 +00002633 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002634 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002635 if (CI->getBitWidth() % 8 == 0) {
2636 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002637
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002638 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002639 return nullptr;
2640 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002641 }
2642 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002643
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002644 // A ConstantDataArray/Vector is splatable if all its members are equal and
2645 // also splatable.
2646 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2647 Value *Elt = CA->getElementAsConstant(0);
2648 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002649 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002650 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002651
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002652 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2653 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002654 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002655
Chris Lattner9cb10352010-12-26 20:15:01 +00002656 return Val;
2657 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002658
Chris Lattner9cb10352010-12-26 20:15:01 +00002659 // Conceptually, we could handle things like:
2660 // %a = zext i8 %X to i16
2661 // %b = shl i16 %a, 8
2662 // %c = or i16 %a, %b
2663 // but until there is an example that actually needs this, it doesn't seem
2664 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002665 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002666}
2667
2668
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002669// This is the recursive version of BuildSubAggregate. It takes a few different
2670// arguments. Idxs is the index within the nested struct From that we are
2671// looking at now (which is of type IndexedType). IdxSkip is the number of
2672// indices from Idxs that should be left out when inserting into the resulting
2673// struct. To is the result struct built so far, new insertvalue instructions
2674// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002675static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002676 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002677 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002678 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002679 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002680 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002681 // Save the original To argument so we can modify it
2682 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002683 // General case, the type indexed by Idxs is a struct
2684 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2685 // Process each struct element recursively
2686 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002687 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002688 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002689 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002690 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002691 if (!To) {
2692 // Couldn't find any inserted value for this index? Cleanup
2693 while (PrevTo != OrigTo) {
2694 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2695 PrevTo = Del->getAggregateOperand();
2696 Del->eraseFromParent();
2697 }
2698 // Stop processing elements
2699 break;
2700 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002701 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002702 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002703 if (To)
2704 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002705 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002706 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2707 // the struct's elements had a value that was inserted directly. In the latter
2708 // case, perhaps we can't determine each of the subelements individually, but
2709 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002710
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002711 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002712 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002713
2714 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002715 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002716
2717 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002718 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002719 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002720}
2721
2722// This helper takes a nested struct and extracts a part of it (which is again a
2723// struct) into a new value. For example, given the struct:
2724// { a, { b, { c, d }, e } }
2725// and the indices "1, 1" this returns
2726// { c, d }.
2727//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002728// It does this by inserting an insertvalue for each element in the resulting
2729// struct, as opposed to just inserting a single struct. This will only work if
2730// each of the elements of the substruct are known (ie, inserted into From by an
2731// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002732//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002733// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002734static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002735 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002736 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002737 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002738 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002739 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002740 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002741 unsigned IdxSkip = Idxs.size();
2742
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002743 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002744}
2745
Sanjay Patelaee84212014-11-04 16:27:42 +00002746/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002747/// the scalar value indexed is already around as a register, for example if it
2748/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002749///
2750/// If InsertBefore is not null, this function will duplicate (modified)
2751/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002752Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2753 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002754 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002755 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002756 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002757 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002758 // We have indices, so V should have an indexable type.
2759 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2760 "Not looking at a struct or array?");
2761 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2762 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002763
Chris Lattner67058832012-01-25 06:48:06 +00002764 if (Constant *C = dyn_cast<Constant>(V)) {
2765 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002766 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002767 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2768 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002769
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002770 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002771 // Loop the indices for the insertvalue instruction in parallel with the
2772 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002773 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002774 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2775 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002776 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002777 // We can't handle this without inserting insertvalues
2778 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002779 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002780
2781 // The requested index identifies a part of a nested aggregate. Handle
2782 // this specially. For example,
2783 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2784 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2785 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2786 // This can be changed into
2787 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2788 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2789 // which allows the unused 0,0 element from the nested struct to be
2790 // removed.
2791 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2792 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002793 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002794
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002795 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002796 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002797 // looking for, then.
2798 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002799 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002800 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002801 }
2802 // If we end up here, the indices of the insertvalue match with those
2803 // requested (though possibly only partially). Now we recursively look at
2804 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002805 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002806 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002807 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002808 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002809
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002810 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002811 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002812 // something else, we can extract from that something else directly instead.
2813 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002814
2815 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002816 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002817 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002818 SmallVector<unsigned, 5> Idxs;
2819 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002820 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002821 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002822
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002823 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002824 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002825
Craig Topper1bef2c82012-12-22 19:15:35 +00002826 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002827 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002828
Jay Foad57aa6362011-07-13 10:26:04 +00002829 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002830 }
2831 // Otherwise, we don't know (such as, extracting from a function return value
2832 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002833 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002834}
Evan Chengda3db112008-06-30 07:31:25 +00002835
Sanjay Patelaee84212014-11-04 16:27:42 +00002836/// Analyze the specified pointer to see if it can be expressed as a base
2837/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002838Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002839 const DataLayout &DL) {
2840 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002841 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002842
2843 // We walk up the defs but use a visited set to handle unreachable code. In
2844 // that case, we stop after accumulating the cycle once (not that it
2845 // matters).
2846 SmallPtrSet<Value *, 16> Visited;
2847 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002848 if (Ptr->getType()->isVectorTy())
2849 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002850
Nuno Lopes368c4d02012-12-31 20:48:35 +00002851 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002852 APInt GEPOffset(BitWidth, 0);
2853 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2854 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002855
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002856 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002857
Nuno Lopes368c4d02012-12-31 20:48:35 +00002858 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002859 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2860 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002861 Ptr = cast<Operator>(Ptr)->getOperand(0);
2862 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002863 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002864 break;
2865 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002866 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002867 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002868 }
2869 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002870 Offset = ByteOffset.getSExtValue();
2871 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002872}
2873
David L Kreitzer752c1442016-04-13 14:31:06 +00002874bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2875 // Make sure the GEP has exactly three arguments.
2876 if (GEP->getNumOperands() != 3)
2877 return false;
2878
2879 // Make sure the index-ee is a pointer to array of i8.
2880 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2881 if (!AT || !AT->getElementType()->isIntegerTy(8))
2882 return false;
2883
2884 // Check to make sure that the first operand of the GEP is an integer and
2885 // has value 0 so that we are sure we're indexing into the initializer.
2886 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2887 if (!FirstIdx || !FirstIdx->isZero())
2888 return false;
2889
2890 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002891}
Chris Lattnere28618d2010-11-30 22:25:26 +00002892
Sanjay Patelaee84212014-11-04 16:27:42 +00002893/// This function computes the length of a null-terminated C string pointed to
2894/// by V. If successful, it returns true and returns the string in Str.
2895/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002896bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2897 uint64_t Offset, bool TrimAtNul) {
2898 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002899
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002900 // Look through bitcast instructions and geps.
2901 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002902
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002903 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002904 // offset.
2905 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002906 // The GEP operator should be based on a pointer to string constant, and is
2907 // indexing into the string constant.
2908 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002909 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002910
Evan Chengda3db112008-06-30 07:31:25 +00002911 // If the second index isn't a ConstantInt, then this is a variable index
2912 // into the array. If this occurs, we can't say anything meaningful about
2913 // the string.
2914 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002915 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002916 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002917 else
2918 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002919 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2920 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002921 }
Nick Lewycky46209882011-10-20 00:34:35 +00002922
Evan Chengda3db112008-06-30 07:31:25 +00002923 // The GEP instruction, constant or instruction, must reference a global
2924 // variable that is a constant and is initialized. The referenced constant
2925 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002926 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002927 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002928 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002929
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002930 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002931 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002932 // This is a degenerate case. The initializer is constant zero so the
2933 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002934 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002935 return true;
2936 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002937
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002938 // This must be a ConstantDataArray.
2939 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002940 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002941 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002942
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002943 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002944 uint64_t NumElts = Array->getType()->getArrayNumElements();
2945
2946 // Start out with the entire array in the StringRef.
2947 Str = Array->getAsString();
2948
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002949 if (Offset > NumElts)
2950 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002951
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002952 // Skip over 'offset' bytes.
2953 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002954
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002955 if (TrimAtNul) {
2956 // Trim off the \0 and anything after it. If the array is not nul
2957 // terminated, we just return the whole end of string. The client may know
2958 // some other way that the string is length-bound.
2959 Str = Str.substr(0, Str.find('\0'));
2960 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002961 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002962}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002963
2964// These next two are very similar to the above, but also look through PHI
2965// nodes.
2966// TODO: See if we can integrate these two together.
2967
Sanjay Patelaee84212014-11-04 16:27:42 +00002968/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002969/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002970static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002971 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002972 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002973
2974 // If this is a PHI node, there are two cases: either we have already seen it
2975 // or we haven't.
2976 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002977 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002978 return ~0ULL; // already in the set.
2979
2980 // If it was new, see if all the input strings are the same length.
2981 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002982 for (Value *IncValue : PN->incoming_values()) {
2983 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002984 if (Len == 0) return 0; // Unknown length -> unknown.
2985
2986 if (Len == ~0ULL) continue;
2987
2988 if (Len != LenSoFar && LenSoFar != ~0ULL)
2989 return 0; // Disagree -> unknown.
2990 LenSoFar = Len;
2991 }
2992
2993 // Success, all agree.
2994 return LenSoFar;
2995 }
2996
2997 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2998 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2999 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3000 if (Len1 == 0) return 0;
3001 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3002 if (Len2 == 0) return 0;
3003 if (Len1 == ~0ULL) return Len2;
3004 if (Len2 == ~0ULL) return Len1;
3005 if (Len1 != Len2) return 0;
3006 return Len1;
3007 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003008
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003009 // Otherwise, see if we can read the string.
3010 StringRef StrData;
3011 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003012 return 0;
3013
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003014 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003015}
3016
Sanjay Patelaee84212014-11-04 16:27:42 +00003017/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003018/// the specified pointer, return 'len+1'. If we can't, return 0.
3019uint64_t llvm::GetStringLength(Value *V) {
3020 if (!V->getType()->isPointerTy()) return 0;
3021
3022 SmallPtrSet<PHINode*, 32> PHIs;
3023 uint64_t Len = GetStringLengthH(V, PHIs);
3024 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3025 // an empty string as a length.
3026 return Len == ~0ULL ? 1 : Len;
3027}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003028
Adam Nemete2b885c2015-04-23 20:09:20 +00003029/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3030/// previous iteration of the loop was referring to the same object as \p PN.
3031static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3032 // Find the loop-defined value.
3033 Loop *L = LI->getLoopFor(PN->getParent());
3034 if (PN->getNumIncomingValues() != 2)
3035 return true;
3036
3037 // Find the value from previous iteration.
3038 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3039 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3040 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3041 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3042 return true;
3043
3044 // If a new pointer is loaded in the loop, the pointer references a different
3045 // object in every iteration. E.g.:
3046 // for (i)
3047 // int *p = a[i];
3048 // ...
3049 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3050 if (!L->isLoopInvariant(Load->getPointerOperand()))
3051 return false;
3052 return true;
3053}
3054
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003055Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3056 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003057 if (!V->getType()->isPointerTy())
3058 return V;
3059 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3060 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3061 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003062 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3063 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003064 V = cast<Operator>(V)->getOperand(0);
3065 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003066 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003067 return V;
3068 V = GA->getAliasee();
3069 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003070 if (auto CS = CallSite(V))
3071 if (Value *RV = CS.getReturnedArgOperand()) {
3072 V = RV;
3073 continue;
3074 }
3075
Dan Gohman05b18f12010-12-15 20:49:55 +00003076 // See if InstructionSimplify knows any relevant tricks.
3077 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003078 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003079 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003080 V = Simplified;
3081 continue;
3082 }
3083
Dan Gohmana4fcd242010-12-15 20:02:24 +00003084 return V;
3085 }
3086 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3087 }
3088 return V;
3089}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003090
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003091void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003092 const DataLayout &DL, LoopInfo *LI,
3093 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003094 SmallPtrSet<Value *, 4> Visited;
3095 SmallVector<Value *, 4> Worklist;
3096 Worklist.push_back(V);
3097 do {
3098 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003099 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003100
David Blaikie70573dc2014-11-19 07:49:26 +00003101 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003102 continue;
3103
3104 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3105 Worklist.push_back(SI->getTrueValue());
3106 Worklist.push_back(SI->getFalseValue());
3107 continue;
3108 }
3109
3110 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003111 // If this PHI changes the underlying object in every iteration of the
3112 // loop, don't look through it. Consider:
3113 // int **A;
3114 // for (i) {
3115 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3116 // Curr = A[i];
3117 // *Prev, *Curr;
3118 //
3119 // Prev is tracking Curr one iteration behind so they refer to different
3120 // underlying objects.
3121 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3122 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003123 for (Value *IncValue : PN->incoming_values())
3124 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003125 continue;
3126 }
3127
3128 Objects.push_back(P);
3129 } while (!Worklist.empty());
3130}
3131
Sanjay Patelaee84212014-11-04 16:27:42 +00003132/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003133bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003134 for (const User *U : V->users()) {
3135 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003136 if (!II) return false;
3137
3138 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3139 II->getIntrinsicID() != Intrinsic::lifetime_end)
3140 return false;
3141 }
3142 return true;
3143}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003144
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003145bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3146 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003147 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003148 const Operator *Inst = dyn_cast<Operator>(V);
3149 if (!Inst)
3150 return false;
3151
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003152 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3153 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3154 if (C->canTrap())
3155 return false;
3156
3157 switch (Inst->getOpcode()) {
3158 default:
3159 return true;
3160 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003161 case Instruction::URem: {
3162 // x / y is undefined if y == 0.
3163 const APInt *V;
3164 if (match(Inst->getOperand(1), m_APInt(V)))
3165 return *V != 0;
3166 return false;
3167 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003168 case Instruction::SDiv:
3169 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003170 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003171 const APInt *Numerator, *Denominator;
3172 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3173 return false;
3174 // We cannot hoist this division if the denominator is 0.
3175 if (*Denominator == 0)
3176 return false;
3177 // It's safe to hoist if the denominator is not 0 or -1.
3178 if (*Denominator != -1)
3179 return true;
3180 // At this point we know that the denominator is -1. It is safe to hoist as
3181 // long we know that the numerator is not INT_MIN.
3182 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3183 return !Numerator->isMinSignedValue();
3184 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003185 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003186 }
3187 case Instruction::Load: {
3188 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003189 if (!LI->isUnordered() ||
3190 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003191 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003192 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003193 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003194 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003195 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003196 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3197 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003198 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003199 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003200 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3201 switch (II->getIntrinsicID()) {
3202 // These synthetic intrinsics have no side-effects and just mark
3203 // information about their operands.
3204 // FIXME: There are other no-op synthetic instructions that potentially
3205 // should be considered at least *safe* to speculate...
3206 case Intrinsic::dbg_declare:
3207 case Intrinsic::dbg_value:
3208 return true;
3209
3210 case Intrinsic::bswap:
3211 case Intrinsic::ctlz:
3212 case Intrinsic::ctpop:
3213 case Intrinsic::cttz:
3214 case Intrinsic::objectsize:
3215 case Intrinsic::sadd_with_overflow:
3216 case Intrinsic::smul_with_overflow:
3217 case Intrinsic::ssub_with_overflow:
3218 case Intrinsic::uadd_with_overflow:
3219 case Intrinsic::umul_with_overflow:
3220 case Intrinsic::usub_with_overflow:
3221 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003222 // These intrinsics are defined to have the same behavior as libm
3223 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003224 case Intrinsic::sqrt:
3225 case Intrinsic::fma:
3226 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003227 return true;
3228 // These intrinsics are defined to have the same behavior as libm
3229 // functions, and the corresponding libm functions never set errno.
3230 case Intrinsic::trunc:
3231 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003232 case Intrinsic::fabs:
3233 case Intrinsic::minnum:
3234 case Intrinsic::maxnum:
3235 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003236 // These intrinsics are defined to have the same behavior as libm
3237 // functions, which never overflow when operating on the IEEE754 types
3238 // that we support, and never set errno otherwise.
3239 case Intrinsic::ceil:
3240 case Intrinsic::floor:
3241 case Intrinsic::nearbyint:
3242 case Intrinsic::rint:
3243 case Intrinsic::round:
3244 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003245 // TODO: are convert_{from,to}_fp16 safe?
3246 // TODO: can we list target-specific intrinsics here?
3247 default: break;
3248 }
3249 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003250 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003251 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003252 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003253 case Instruction::VAArg:
3254 case Instruction::Alloca:
3255 case Instruction::Invoke:
3256 case Instruction::PHI:
3257 case Instruction::Store:
3258 case Instruction::Ret:
3259 case Instruction::Br:
3260 case Instruction::IndirectBr:
3261 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003262 case Instruction::Unreachable:
3263 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003264 case Instruction::AtomicRMW:
3265 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003266 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003267 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003268 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003269 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003270 case Instruction::CatchRet:
3271 case Instruction::CleanupPad:
3272 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003273 return false; // Misc instructions which have effects
3274 }
3275}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003276
Quentin Colombet6443cce2015-08-06 18:44:34 +00003277bool llvm::mayBeMemoryDependent(const Instruction &I) {
3278 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3279}
3280
Sanjay Patelaee84212014-11-04 16:27:42 +00003281/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003282bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003283 assert(V->getType()->isPointerTy() && "V must be pointer type");
3284
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003285 // Alloca never returns null, malloc might.
3286 if (isa<AllocaInst>(V)) return true;
3287
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003288 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003289 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003290 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003291
Pete Cooper6b716212015-08-27 03:16:29 +00003292 // A global variable in address space 0 is non null unless extern weak.
3293 // Other address spaces may have null as a valid address for a global,
3294 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003295 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003296 return !GV->hasExternalWeakLinkage() &&
3297 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003298
Sanjoy Das5056e192016-05-07 02:08:22 +00003299 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003300 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003301 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003302
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003303 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003304 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003305 return true;
3306
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003307 return false;
3308}
David Majnemer491331a2015-01-02 07:29:43 +00003309
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003310static bool isKnownNonNullFromDominatingCondition(const Value *V,
3311 const Instruction *CtxI,
3312 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003313 assert(V->getType()->isPointerTy() && "V must be pointer type");
3314
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003315 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003316 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003317 // Avoid massive lists
3318 if (NumUsesExplored >= DomConditionsMaxUses)
3319 break;
3320 NumUsesExplored++;
3321 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003322 CmpInst::Predicate Pred;
3323 if (!match(const_cast<User *>(U),
3324 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3325 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003326 continue;
3327
Sanjoy Das987aaa12016-05-07 02:08:24 +00003328 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003329 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3330 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003331
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003332 BasicBlock *NonNullSuccessor =
3333 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3334 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3335 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3336 return true;
3337 } else if (Pred == ICmpInst::ICMP_NE &&
3338 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3339 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003340 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003341 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003342 }
3343 }
3344
3345 return false;
3346}
3347
3348bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003349 const DominatorTree *DT) {
3350 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003351 return true;
3352
3353 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3354}
3355
David Majnemer491331a2015-01-02 07:29:43 +00003356OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003357 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003358 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003359 const Instruction *CxtI,
3360 const DominatorTree *DT) {
3361 // Multiplying n * m significant bits yields a result of n + m significant
3362 // bits. If the total number of significant bits does not exceed the
3363 // result bit width (minus 1), there is no overflow.
3364 // This means if we have enough leading zero bits in the operands
3365 // we can guarantee that the result does not overflow.
3366 // Ref: "Hacker's Delight" by Henry Warren
3367 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3368 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003369 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003370 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003371 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003372 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3373 DT);
3374 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3375 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003376 // Note that underestimating the number of zero bits gives a more
3377 // conservative answer.
3378 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3379 RHSKnownZero.countLeadingOnes();
3380 // First handle the easy case: if we have enough zero bits there's
3381 // definitely no overflow.
3382 if (ZeroBits >= BitWidth)
3383 return OverflowResult::NeverOverflows;
3384
3385 // Get the largest possible values for each operand.
3386 APInt LHSMax = ~LHSKnownZero;
3387 APInt RHSMax = ~RHSKnownZero;
3388
3389 // We know the multiply operation doesn't overflow if the maximum values for
3390 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003391 bool MaxOverflow;
3392 LHSMax.umul_ov(RHSMax, MaxOverflow);
3393 if (!MaxOverflow)
3394 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003395
David Majnemerc8a576b2015-01-02 07:29:47 +00003396 // We know it always overflows if multiplying the smallest possible values for
3397 // the operands also results in overflow.
3398 bool MinOverflow;
3399 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3400 if (MinOverflow)
3401 return OverflowResult::AlwaysOverflows;
3402
3403 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003404}
David Majnemer5310c1e2015-01-07 00:39:50 +00003405
3406OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003407 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003408 AssumptionCache *AC,
3409 const Instruction *CxtI,
3410 const DominatorTree *DT) {
3411 bool LHSKnownNonNegative, LHSKnownNegative;
3412 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3413 AC, CxtI, DT);
3414 if (LHSKnownNonNegative || LHSKnownNegative) {
3415 bool RHSKnownNonNegative, RHSKnownNegative;
3416 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3417 AC, CxtI, DT);
3418
3419 if (LHSKnownNegative && RHSKnownNegative) {
3420 // The sign bit is set in both cases: this MUST overflow.
3421 // Create a simple add instruction, and insert it into the struct.
3422 return OverflowResult::AlwaysOverflows;
3423 }
3424
3425 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3426 // The sign bit is clear in both cases: this CANNOT overflow.
3427 // Create a simple add instruction, and insert it into the struct.
3428 return OverflowResult::NeverOverflows;
3429 }
3430 }
3431
3432 return OverflowResult::MayOverflow;
3433}
James Molloy71b91c22015-05-11 14:42:20 +00003434
Jingyue Wu10fcea52015-08-20 18:27:04 +00003435static OverflowResult computeOverflowForSignedAdd(
3436 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3437 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3438 if (Add && Add->hasNoSignedWrap()) {
3439 return OverflowResult::NeverOverflows;
3440 }
3441
3442 bool LHSKnownNonNegative, LHSKnownNegative;
3443 bool RHSKnownNonNegative, RHSKnownNegative;
3444 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3445 AC, CxtI, DT);
3446 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3447 AC, CxtI, DT);
3448
3449 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3450 (LHSKnownNegative && RHSKnownNonNegative)) {
3451 // The sign bits are opposite: this CANNOT overflow.
3452 return OverflowResult::NeverOverflows;
3453 }
3454
3455 // The remaining code needs Add to be available. Early returns if not so.
3456 if (!Add)
3457 return OverflowResult::MayOverflow;
3458
3459 // If the sign of Add is the same as at least one of the operands, this add
3460 // CANNOT overflow. This is particularly useful when the sum is
3461 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3462 // operands.
3463 bool LHSOrRHSKnownNonNegative =
3464 (LHSKnownNonNegative || RHSKnownNonNegative);
3465 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3466 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3467 bool AddKnownNonNegative, AddKnownNegative;
3468 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3469 /*Depth=*/0, AC, CxtI, DT);
3470 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3471 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3472 return OverflowResult::NeverOverflows;
3473 }
3474 }
3475
3476 return OverflowResult::MayOverflow;
3477}
3478
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003479bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
3480#ifndef NDEBUG
3481 auto IID = II->getIntrinsicID();
3482 assert((IID == Intrinsic::sadd_with_overflow ||
3483 IID == Intrinsic::uadd_with_overflow ||
3484 IID == Intrinsic::ssub_with_overflow ||
3485 IID == Intrinsic::usub_with_overflow ||
3486 IID == Intrinsic::smul_with_overflow ||
3487 IID == Intrinsic::umul_with_overflow) &&
3488 "Not an overflow intrinsic!");
3489#endif
3490
3491 SmallVector<BranchInst *, 2> GuardingBranches;
3492 SmallVector<ExtractValueInst *, 2> Results;
3493
3494 for (User *U : II->users()) {
3495 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3496 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3497
3498 if (EVI->getIndices()[0] == 0)
3499 Results.push_back(EVI);
3500 else {
3501 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3502
3503 for (auto *U : EVI->users())
3504 if (auto *B = dyn_cast<BranchInst>(U)) {
3505 assert(B->isConditional() && "How else is it using an i1?");
3506 GuardingBranches.push_back(B);
3507 }
3508 }
3509 } else {
3510 // We are using the aggregate directly in a way we don't want to analyze
3511 // here (storing it to a global, say).
3512 return false;
3513 }
3514 }
3515
3516 auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
3517 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3518 if (!NoWrapEdge.isSingleEdge())
3519 return false;
3520
3521 // Check if all users of the add are provably no-wrap.
3522 for (auto *Result : Results) {
3523 // If the extractvalue itself is not executed on overflow, the we don't
3524 // need to check each use separately, since domination is transitive.
3525 if (DT.dominates(NoWrapEdge, Result->getParent()))
3526 continue;
3527
3528 for (auto &RU : Result->uses())
3529 if (!DT.dominates(NoWrapEdge, RU))
3530 return false;
3531 }
3532
3533 return true;
3534 };
3535
3536 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3537}
3538
3539
Jingyue Wu10fcea52015-08-20 18:27:04 +00003540OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3541 const DataLayout &DL,
3542 AssumptionCache *AC,
3543 const Instruction *CxtI,
3544 const DominatorTree *DT) {
3545 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3546 Add, DL, AC, CxtI, DT);
3547}
3548
3549OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3550 const DataLayout &DL,
3551 AssumptionCache *AC,
3552 const Instruction *CxtI,
3553 const DominatorTree *DT) {
3554 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3555}
3556
Jingyue Wu42f1d672015-07-28 18:22:40 +00003557bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003558 // A memory operation returns normally if it isn't volatile. A volatile
3559 // operation is allowed to trap.
3560 //
3561 // An atomic operation isn't guaranteed to return in a reasonable amount of
3562 // time because it's possible for another thread to interfere with it for an
3563 // arbitrary length of time, but programs aren't allowed to rely on that.
3564 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3565 return !LI->isVolatile();
3566 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3567 return !SI->isVolatile();
3568 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3569 return !CXI->isVolatile();
3570 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3571 return !RMWI->isVolatile();
3572 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3573 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003574
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003575 // If there is no successor, then execution can't transfer to it.
3576 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3577 return !CRI->unwindsToCaller();
3578 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3579 return !CatchSwitch->unwindsToCaller();
3580 if (isa<ResumeInst>(I))
3581 return false;
3582 if (isa<ReturnInst>(I))
3583 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003584
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003585 // Calls can throw, or contain an infinite loop, or kill the process.
3586 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3587 // Calls which don't write to arbitrary memory are safe.
3588 // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3589 // but it's consistent with other passes. See http://llvm.org/PR965 .
3590 // FIXME: This isn't aggressive enough; a call which only writes to a
3591 // global is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003592 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3593 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003594 }
3595
3596 // Other instructions return normally.
3597 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003598}
3599
3600bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3601 const Loop *L) {
3602 // The loop header is guaranteed to be executed for every iteration.
3603 //
3604 // FIXME: Relax this constraint to cover all basic blocks that are
3605 // guaranteed to be executed at every iteration.
3606 if (I->getParent() != L->getHeader()) return false;
3607
3608 for (const Instruction &LI : *L->getHeader()) {
3609 if (&LI == I) return true;
3610 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3611 }
3612 llvm_unreachable("Instruction not contained in its own parent basic block.");
3613}
3614
3615bool llvm::propagatesFullPoison(const Instruction *I) {
3616 switch (I->getOpcode()) {
3617 case Instruction::Add:
3618 case Instruction::Sub:
3619 case Instruction::Xor:
3620 case Instruction::Trunc:
3621 case Instruction::BitCast:
3622 case Instruction::AddrSpaceCast:
3623 // These operations all propagate poison unconditionally. Note that poison
3624 // is not any particular value, so xor or subtraction of poison with
3625 // itself still yields poison, not zero.
3626 return true;
3627
3628 case Instruction::AShr:
3629 case Instruction::SExt:
3630 // For these operations, one bit of the input is replicated across
3631 // multiple output bits. A replicated poison bit is still poison.
3632 return true;
3633
3634 case Instruction::Shl: {
3635 // Left shift *by* a poison value is poison. The number of
3636 // positions to shift is unsigned, so no negative values are
3637 // possible there. Left shift by zero places preserves poison. So
3638 // it only remains to consider left shift of poison by a positive
3639 // number of places.
3640 //
3641 // A left shift by a positive number of places leaves the lowest order bit
3642 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3643 // make the poison operand violate that flag, yielding a fresh full-poison
3644 // value.
3645 auto *OBO = cast<OverflowingBinaryOperator>(I);
3646 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3647 }
3648
3649 case Instruction::Mul: {
3650 // A multiplication by zero yields a non-poison zero result, so we need to
3651 // rule out zero as an operand. Conservatively, multiplication by a
3652 // non-zero constant is not multiplication by zero.
3653 //
3654 // Multiplication by a non-zero constant can leave some bits
3655 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3656 // order bit unpoisoned. So we need to consider that.
3657 //
3658 // Multiplication by 1 preserves poison. If the multiplication has a
3659 // no-wrap flag, then we can make the poison operand violate that flag
3660 // when multiplied by any integer other than 0 and 1.
3661 auto *OBO = cast<OverflowingBinaryOperator>(I);
3662 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3663 for (Value *V : OBO->operands()) {
3664 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3665 // A ConstantInt cannot yield poison, so we can assume that it is
3666 // the other operand that is poison.
3667 return !CI->isZero();
3668 }
3669 }
3670 }
3671 return false;
3672 }
3673
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003674 case Instruction::ICmp:
3675 // Comparing poison with any value yields poison. This is why, for
3676 // instance, x s< (x +nsw 1) can be folded to true.
3677 return true;
3678
Jingyue Wu42f1d672015-07-28 18:22:40 +00003679 case Instruction::GetElementPtr:
3680 // A GEP implicitly represents a sequence of additions, subtractions,
3681 // truncations, sign extensions and multiplications. The multiplications
3682 // are by the non-zero sizes of some set of types, so we do not have to be
3683 // concerned with multiplication by zero. If the GEP is in-bounds, then
3684 // these operations are implicitly no-signed-wrap so poison is propagated
3685 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3686 return cast<GEPOperator>(I)->isInBounds();
3687
3688 default:
3689 return false;
3690 }
3691}
3692
3693const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3694 switch (I->getOpcode()) {
3695 case Instruction::Store:
3696 return cast<StoreInst>(I)->getPointerOperand();
3697
3698 case Instruction::Load:
3699 return cast<LoadInst>(I)->getPointerOperand();
3700
3701 case Instruction::AtomicCmpXchg:
3702 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3703
3704 case Instruction::AtomicRMW:
3705 return cast<AtomicRMWInst>(I)->getPointerOperand();
3706
3707 case Instruction::UDiv:
3708 case Instruction::SDiv:
3709 case Instruction::URem:
3710 case Instruction::SRem:
3711 return I->getOperand(1);
3712
3713 default:
3714 return nullptr;
3715 }
3716}
3717
3718bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3719 // We currently only look for uses of poison values within the same basic
3720 // block, as that makes it easier to guarantee that the uses will be
3721 // executed given that PoisonI is executed.
3722 //
3723 // FIXME: Expand this to consider uses beyond the same basic block. To do
3724 // this, look out for the distinction between post-dominance and strong
3725 // post-dominance.
3726 const BasicBlock *BB = PoisonI->getParent();
3727
3728 // Set of instructions that we have proved will yield poison if PoisonI
3729 // does.
3730 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003731 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003732 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003733 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003734
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003735 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003736
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003737 unsigned Iter = 0;
3738 while (Iter++ < MaxDepth) {
3739 for (auto &I : make_range(Begin, End)) {
3740 if (&I != PoisonI) {
3741 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3742 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3743 return true;
3744 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3745 return false;
3746 }
3747
3748 // Mark poison that propagates from I through uses of I.
3749 if (YieldsPoison.count(&I)) {
3750 for (const User *User : I.users()) {
3751 const Instruction *UserI = cast<Instruction>(User);
3752 if (propagatesFullPoison(UserI))
3753 YieldsPoison.insert(User);
3754 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003755 }
3756 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003757
3758 if (auto *NextBB = BB->getSingleSuccessor()) {
3759 if (Visited.insert(NextBB).second) {
3760 BB = NextBB;
3761 Begin = BB->getFirstNonPHI()->getIterator();
3762 End = BB->end();
3763 continue;
3764 }
3765 }
3766
3767 break;
3768 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003769 return false;
3770}
3771
James Molloy134bec22015-08-11 09:12:57 +00003772static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3773 if (FMF.noNaNs())
3774 return true;
3775
3776 if (auto *C = dyn_cast<ConstantFP>(V))
3777 return !C->isNaN();
3778 return false;
3779}
3780
3781static bool isKnownNonZero(Value *V) {
3782 if (auto *C = dyn_cast<ConstantFP>(V))
3783 return !C->isZero();
3784 return false;
3785}
3786
3787static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3788 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003789 Value *CmpLHS, Value *CmpRHS,
3790 Value *TrueVal, Value *FalseVal,
3791 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003792 LHS = CmpLHS;
3793 RHS = CmpRHS;
3794
James Molloy134bec22015-08-11 09:12:57 +00003795 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3796 // return inconsistent results between implementations.
3797 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3798 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3799 // Therefore we behave conservatively and only proceed if at least one of the
3800 // operands is known to not be zero, or if we don't care about signed zeroes.
3801 switch (Pred) {
3802 default: break;
3803 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3804 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3805 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3806 !isKnownNonZero(CmpRHS))
3807 return {SPF_UNKNOWN, SPNB_NA, false};
3808 }
3809
3810 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3811 bool Ordered = false;
3812
3813 // When given one NaN and one non-NaN input:
3814 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3815 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3816 // ordered comparison fails), which could be NaN or non-NaN.
3817 // so here we discover exactly what NaN behavior is required/accepted.
3818 if (CmpInst::isFPPredicate(Pred)) {
3819 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3820 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3821
3822 if (LHSSafe && RHSSafe) {
3823 // Both operands are known non-NaN.
3824 NaNBehavior = SPNB_RETURNS_ANY;
3825 } else if (CmpInst::isOrdered(Pred)) {
3826 // An ordered comparison will return false when given a NaN, so it
3827 // returns the RHS.
3828 Ordered = true;
3829 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003830 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003831 NaNBehavior = SPNB_RETURNS_NAN;
3832 else if (RHSSafe)
3833 NaNBehavior = SPNB_RETURNS_OTHER;
3834 else
3835 // Completely unsafe.
3836 return {SPF_UNKNOWN, SPNB_NA, false};
3837 } else {
3838 Ordered = false;
3839 // An unordered comparison will return true when given a NaN, so it
3840 // returns the LHS.
3841 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003842 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003843 NaNBehavior = SPNB_RETURNS_OTHER;
3844 else if (RHSSafe)
3845 NaNBehavior = SPNB_RETURNS_NAN;
3846 else
3847 // Completely unsafe.
3848 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003849 }
3850 }
3851
James Molloy71b91c22015-05-11 14:42:20 +00003852 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003853 std::swap(CmpLHS, CmpRHS);
3854 Pred = CmpInst::getSwappedPredicate(Pred);
3855 if (NaNBehavior == SPNB_RETURNS_NAN)
3856 NaNBehavior = SPNB_RETURNS_OTHER;
3857 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3858 NaNBehavior = SPNB_RETURNS_NAN;
3859 Ordered = !Ordered;
3860 }
3861
3862 // ([if]cmp X, Y) ? X : Y
3863 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003864 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003865 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003866 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003867 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003868 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003869 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003870 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003871 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003872 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003873 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3874 case FCmpInst::FCMP_UGT:
3875 case FCmpInst::FCMP_UGE:
3876 case FCmpInst::FCMP_OGT:
3877 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3878 case FCmpInst::FCMP_ULT:
3879 case FCmpInst::FCMP_ULE:
3880 case FCmpInst::FCMP_OLT:
3881 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003882 }
3883 }
3884
3885 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3886 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3887 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3888
3889 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3890 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3891 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003892 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003893 }
3894
3895 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3896 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3897 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003898 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003899 }
3900 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003901
James Molloy71b91c22015-05-11 14:42:20 +00003902 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3903 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003904 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3905 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003906 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3907 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3908 LHS = TrueVal;
3909 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003910 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003911 }
3912 }
3913 }
3914
3915 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3916
James Molloy134bec22015-08-11 09:12:57 +00003917 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003918}
James Molloy270ef8c2015-05-15 16:04:50 +00003919
James Molloy569cea62015-09-02 17:25:25 +00003920static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3921 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003922 CastInst *CI = dyn_cast<CastInst>(V1);
3923 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003924 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003925 return nullptr;
3926 *CastOp = CI->getOpcode();
3927
David Majnemerd2a074b2016-04-29 18:40:34 +00003928 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00003929 // If V1 and V2 are both the same cast from the same type, we can look
3930 // through V1.
3931 if (CI2->getOpcode() == CI->getOpcode() &&
3932 CI2->getSrcTy() == CI->getSrcTy())
3933 return CI2->getOperand(0);
3934 return nullptr;
3935 } else if (!C) {
3936 return nullptr;
3937 }
3938
David Majnemerd2a074b2016-04-29 18:40:34 +00003939 Constant *CastedTo = nullptr;
3940
David Majnemer826e9832016-04-29 21:22:04 +00003941 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3942 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3943
David Majnemerd2a074b2016-04-29 18:40:34 +00003944 if (isa<SExtInst>(CI) && CmpI->isSigned())
3945 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3946
David Majnemer826e9832016-04-29 21:22:04 +00003947 if (isa<TruncInst>(CI))
3948 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3949
3950 if (isa<FPTruncInst>(CI))
3951 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3952
3953 if (isa<FPExtInst>(CI))
3954 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3955
David Majnemerd2a074b2016-04-29 18:40:34 +00003956 if (isa<FPToUIInst>(CI))
3957 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3958
3959 if (isa<FPToSIInst>(CI))
3960 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3961
3962 if (isa<UIToFPInst>(CI))
3963 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3964
3965 if (isa<SIToFPInst>(CI))
3966 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3967
3968 if (!CastedTo)
3969 return nullptr;
3970
3971 Constant *CastedBack =
3972 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3973 // Make sure the cast doesn't lose any information.
3974 if (CastedBack != C)
3975 return nullptr;
3976
3977 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00003978}
3979
Sanjay Patele8dc0902016-05-23 17:57:54 +00003980SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003981 Instruction::CastOps *CastOp) {
3982 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003983 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003984
James Molloy134bec22015-08-11 09:12:57 +00003985 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3986 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003987
James Molloy134bec22015-08-11 09:12:57 +00003988 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003989 Value *CmpLHS = CmpI->getOperand(0);
3990 Value *CmpRHS = CmpI->getOperand(1);
3991 Value *TrueVal = SI->getTrueValue();
3992 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003993 FastMathFlags FMF;
3994 if (isa<FPMathOperator>(CmpI))
3995 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003996
3997 // Bail out early.
3998 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003999 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004000
4001 // Deal with type mismatches.
4002 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004003 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004004 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004005 cast<CastInst>(TrueVal)->getOperand(0), C,
4006 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004007 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004008 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004009 C, cast<CastInst>(FalseVal)->getOperand(0),
4010 LHS, RHS);
4011 }
James Molloy134bec22015-08-11 09:12:57 +00004012 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004013 LHS, RHS);
4014}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004015
4016ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4017 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4018 assert(NumRanges >= 1 && "Must have at least one range!");
4019 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4020
4021 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4022 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4023
4024 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4025
4026 for (unsigned i = 1; i < NumRanges; ++i) {
4027 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4028 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4029
4030 // Note: unionWith will potentially create a range that contains values not
4031 // contained in any of the original N ranges.
4032 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4033 }
4034
4035 return CR;
4036}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004037
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004038/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004039static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4040 const DataLayout &DL, unsigned Depth,
4041 AssumptionCache *AC, const Instruction *CxtI,
4042 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004043 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004044 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4045 return true;
4046
4047 switch (Pred) {
4048 default:
4049 return false;
4050
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004051 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004052 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004053
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004054 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004055 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004056 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004057 return false;
4058 }
4059
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004060 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004061 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004062
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004063 // LHS u<= LHS +_{nuw} C for any C
4064 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004065 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004066
4067 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4068 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4069 const APInt *&CA, const APInt *&CB) {
4070 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4071 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4072 return true;
4073
4074 // If X & C == 0 then (X | C) == X +_{nuw} C
4075 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4076 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4077 unsigned BitWidth = CA->getBitWidth();
4078 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4079 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4080
4081 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4082 return true;
4083 }
4084
4085 return false;
4086 };
4087
4088 Value *X;
4089 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004090 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4091 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004092
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004093 return false;
4094 }
4095 }
4096}
4097
4098/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004099/// ALHS ARHS" is true. Otherwise, return None.
4100static Optional<bool>
4101isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
4102 Value *BLHS, Value *BRHS, const DataLayout &DL,
4103 unsigned Depth, AssumptionCache *AC,
4104 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004105 switch (Pred) {
4106 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004107 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004108
4109 case CmpInst::ICMP_SLT:
4110 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004111 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4112 DT) &&
4113 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4114 return true;
4115 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004116
4117 case CmpInst::ICMP_ULT:
4118 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004119 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4120 DT) &&
4121 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4122 return true;
4123 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004124 }
4125}
4126
Chad Rosier226a7342016-05-05 17:41:19 +00004127/// Return true if the operands of the two compares match. IsSwappedOps is true
4128/// when the operands match, but are swapped.
4129static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
4130 bool &IsSwappedOps) {
4131
4132 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4133 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4134 return IsMatchingOps || IsSwappedOps;
4135}
4136
Chad Rosier41dd31f2016-04-20 19:15:26 +00004137/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4138/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4139/// BRHS" is false. Otherwise, return None if we can't infer anything.
4140static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4141 Value *ALHS, Value *ARHS,
4142 CmpInst::Predicate BPred,
Chad Rosier226a7342016-05-05 17:41:19 +00004143 Value *BLHS, Value *BRHS,
4144 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004145 // Canonicalize the operands so they're matching.
4146 if (IsSwappedOps) {
4147 std::swap(BLHS, BRHS);
4148 BPred = ICmpInst::getSwappedPredicate(BPred);
4149 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004150 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004151 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004152 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004153 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004154
Chad Rosier41dd31f2016-04-20 19:15:26 +00004155 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004156}
4157
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004158/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4159/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4160/// C2" is false. Otherwise, return None if we can't infer anything.
4161static Optional<bool>
4162isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
4163 ConstantInt *C1, CmpInst::Predicate BPred,
4164 Value *BLHS, ConstantInt *C2) {
4165 assert(ALHS == BLHS && "LHS operands must match.");
4166 ConstantRange DomCR =
4167 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4168 ConstantRange CR =
4169 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4170 ConstantRange Intersection = DomCR.intersectWith(CR);
4171 ConstantRange Difference = DomCR.difference(CR);
4172 if (Intersection.isEmptySet())
4173 return false;
4174 if (Difference.isEmptySet())
4175 return true;
4176 return None;
4177}
4178
Chad Rosier41dd31f2016-04-20 19:15:26 +00004179Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004180 const DataLayout &DL, bool InvertAPred,
4181 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004182 const Instruction *CxtI,
4183 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004184 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4185 if (LHS->getType() != RHS->getType())
4186 return None;
4187
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004188 Type *OpTy = LHS->getType();
4189 assert(OpTy->getScalarType()->isIntegerTy(1));
4190
4191 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004192 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004193 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004194
4195 if (OpTy->isVectorTy())
4196 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004197 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004198 assert(OpTy->isIntegerTy(1) && "implied by above");
4199
4200 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004201 Value *ALHS, *ARHS;
4202 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004203
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004204 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4205 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004206 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004207
Chad Rosiere2cbd132016-04-25 17:23:36 +00004208 if (InvertAPred)
4209 APred = CmpInst::getInversePredicate(APred);
4210
Chad Rosier226a7342016-05-05 17:41:19 +00004211 // Can we infer anything when the two compares have matching operands?
4212 bool IsSwappedOps;
4213 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4214 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4215 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004216 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004217 // No amount of additional analysis will infer the second condition, so
4218 // early exit.
4219 return None;
4220 }
4221
4222 // Can we infer anything when the LHS operands match and the RHS operands are
4223 // constants (not necessarily matching)?
4224 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4225 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4226 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4227 cast<ConstantInt>(BRHS)))
4228 return Implication;
4229 // No amount of additional analysis will infer the second condition, so
4230 // early exit.
4231 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004232 }
4233
Chad Rosier41dd31f2016-04-20 19:15:26 +00004234 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004235 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4236 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004237
Chad Rosier41dd31f2016-04-20 19:15:26 +00004238 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004239}