blob: 5a6ca9436380fbc2adb3d30ba75604e4f5bf8934 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000054// This optimization is known to cause performance regressions is some cases,
55// keep it under a temporary flag for now.
56static cl::opt<bool>
57DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
58 cl::Hidden, cl::init(true));
59
Sanjay Patelaee84212014-11-04 16:27:42 +000060/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
61/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000062static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000063 if (unsigned BitWidth = Ty->getScalarSizeInBits())
64 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000065
Mehdi Aminia28d91d2015-03-10 02:37:25 +000066 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000067}
Chris Lattner965c7692008-06-02 01:18:21 +000068
Benjamin Kramercfd8d902014-09-12 08:56:53 +000069namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000070// Simplifying using an assume can only be done in a particular control-flow
71// context (the context instruction provides that context). If an assume and
72// the context instruction are not in the same block then the DT helps in
73// figuring out if we can use it.
74struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000075 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000076 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000077 const Instruction *CxtI;
78 const DominatorTree *DT;
79
Matthias Braun37e5d792016-01-28 06:29:33 +000080 /// Set of assumptions that should be excluded from further queries.
81 /// This is because of the potential for mutual recursion to cause
82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
83 /// classic case of this is assume(x = y), which will attempt to determine
84 /// bits in x from bits in y, which will attempt to determine bits in y from
85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
86 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
87 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
88 /// on.
Li Huang755f75f2016-10-15 19:00:04 +000089 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000090 unsigned NumExcluded;
91
Matthias Braunfeb81bc2016-01-15 22:22:04 +000092 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
93 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000094 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000095
96 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000097 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
98 Excluded = Q.Excluded;
99 Excluded[NumExcluded++] = NewExcl;
100 assert(NumExcluded <= Excluded.size());
101 }
102
103 bool isExcluded(const Value *Value) const {
104 if (NumExcluded == 0)
105 return false;
106 auto End = Excluded.begin() + NumExcluded;
107 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000108 }
109};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000110} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000111
Sanjay Patel547e9752014-11-04 16:09:50 +0000112// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000113// the preferred context instruction (if any).
114static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
115 // If we've been provided with a context instruction, then use that (provided
116 // it has been inserted).
117 if (CxtI && CxtI->getParent())
118 return CxtI;
119
120 // If the value is really an already-inserted instruction, then use that.
121 CxtI = dyn_cast<Instruction>(V);
122 if (CxtI && CxtI->getParent())
123 return CxtI;
124
125 return nullptr;
126}
127
Pete Cooper35b00d52016-08-13 01:05:32 +0000128static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000130
Pete Cooper35b00d52016-08-13 01:05:32 +0000131void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000132 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000133 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000134 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000135 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
136 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000137}
138
Pete Cooper35b00d52016-08-13 01:05:32 +0000139bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
140 const DataLayout &DL,
Jingyue Wuca321902015-05-14 23:53:19 +0000141 AssumptionCache *AC, const Instruction *CxtI,
142 const DominatorTree *DT) {
143 assert(LHS->getType() == RHS->getType() &&
144 "LHS and RHS should have the same type");
145 assert(LHS->getType()->isIntOrIntVectorTy() &&
146 "LHS and RHS should be integers");
147 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
148 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
149 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
150 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
152 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
153}
154
Pete Cooper35b00d52016-08-13 01:05:32 +0000155static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000156 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000157
Pete Cooper35b00d52016-08-13 01:05:32 +0000158void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000159 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000160 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000161 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
163 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000164}
165
Pete Cooper35b00d52016-08-13 01:05:32 +0000166static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000168
Pete Cooper35b00d52016-08-13 01:05:32 +0000169bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
170 bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000171 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000172 const Instruction *CxtI,
173 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000174 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000175 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Pete Cooper35b00d52016-08-13 01:05:32 +0000178static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000179
Pete Cooper35b00d52016-08-13 01:05:32 +0000180bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000181 AssumptionCache *AC, const Instruction *CxtI,
182 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000183 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000184}
185
Pete Cooper35b00d52016-08-13 01:05:32 +0000186bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
187 unsigned Depth,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000188 AssumptionCache *AC, const Instruction *CxtI,
189 const DominatorTree *DT) {
190 bool NonNegative, Negative;
191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
192 return NonNegative;
193}
194
Pete Cooper35b00d52016-08-13 01:05:32 +0000195bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Philip Reames8f12eba2016-03-09 21:31:47 +0000196 AssumptionCache *AC, const Instruction *CxtI,
197 const DominatorTree *DT) {
198 if (auto *CI = dyn_cast<ConstantInt>(V))
199 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000200
Philip Reames8f12eba2016-03-09 21:31:47 +0000201 // TODO: We'd doing two recursive queries here. We should factor this such
202 // that only a single query is needed.
203 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
204 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
205}
206
Pete Cooper35b00d52016-08-13 01:05:32 +0000207bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Nick Lewycky762f8a82016-04-21 00:53:14 +0000208 AssumptionCache *AC, const Instruction *CxtI,
209 const DominatorTree *DT) {
210 bool NonNegative, Negative;
211 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
212 return Negative;
213}
214
Pete Cooper35b00d52016-08-13 01:05:32 +0000215static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000216
Pete Cooper35b00d52016-08-13 01:05:32 +0000217bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
218 const DataLayout &DL,
219 AssumptionCache *AC, const Instruction *CxtI,
220 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000221 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
222 safeCxtI(V1, safeCxtI(V2, CxtI)),
223 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000224}
225
Pete Cooper35b00d52016-08-13 01:05:32 +0000226static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000228
Pete Cooper35b00d52016-08-13 01:05:32 +0000229bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
230 const DataLayout &DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000231 unsigned Depth, AssumptionCache *AC,
232 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 return ::MaskedValueIsZero(V, Mask, Depth,
234 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000235}
236
Pete Cooper35b00d52016-08-13 01:05:32 +0000237static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
238 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000239
Pete Cooper35b00d52016-08-13 01:05:32 +0000240unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000241 unsigned Depth, AssumptionCache *AC,
242 const Instruction *CxtI,
243 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000244 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000245}
246
Pete Cooper35b00d52016-08-13 01:05:32 +0000247static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
248 bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000249 APInt &KnownZero, APInt &KnownOne,
250 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000251 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000252 if (!Add) {
Pete Cooper35b00d52016-08-13 01:05:32 +0000253 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000254 // We know that the top bits of C-X are clear if X contains less bits
255 // than C (i.e. no wrap-around can happen). For example, 20-X is
256 // positive if we can prove that X is >= 0 and < 16.
257 if (!CLHS->getValue().isNegative()) {
258 unsigned BitWidth = KnownZero.getBitWidth();
259 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
260 // NLZ can't be BitWidth with no sign bit
261 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000262 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000263
264 // If all of the MaskV bits are known to be zero, then we know the
265 // output top bits are zero, because we now know that the output is
266 // from [0-C].
267 if ((KnownZero2 & MaskV) == MaskV) {
268 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
269 // Top bits known zero.
270 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
271 }
272 }
273 }
274 }
275
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000276 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // If an initial sequence of bits in the result is not needed, the
279 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000281 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
282 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // Carry in a 1 for a subtract, rather than a 0.
285 APInt CarryIn(BitWidth, 0);
286 if (!Add) {
287 // Sum = LHS + ~RHS + 1
288 std::swap(KnownZero2, KnownOne2);
289 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000290 }
291
David Majnemer97ddca32014-08-22 00:40:43 +0000292 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
293 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
294
295 // Compute known bits of the carry.
296 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
297 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
298
299 // Compute set of known bits (where all three relevant bits are known).
300 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
301 APInt RHSKnown = KnownZero2 | KnownOne2;
302 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
303 APInt Known = LHSKnown & RHSKnown & CarryKnown;
304
305 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
306 "known bits of sum differ");
307
308 // Compute known bits of the result.
309 KnownZero = ~PossibleSumOne & Known;
310 KnownOne = PossibleSumOne & Known;
311
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000312 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000313 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000314 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000315 // Adding two non-negative numbers, or subtracting a negative number from
316 // a non-negative one, can't wrap into negative.
317 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
318 KnownZero |= APInt::getSignBit(BitWidth);
319 // Adding two negative numbers, or subtracting a non-negative number from
320 // a negative one, can't wrap into non-negative.
321 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
322 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000323 }
324 }
325}
326
Pete Cooper35b00d52016-08-13 01:05:32 +0000327static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000328 APInt &KnownZero, APInt &KnownOne,
329 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000330 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000331 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000332 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
333 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334
335 bool isKnownNegative = false;
336 bool isKnownNonNegative = false;
337 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000338 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000339 if (Op0 == Op1) {
340 // The product of a number with itself is non-negative.
341 isKnownNonNegative = true;
342 } else {
343 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
344 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
345 bool isKnownNegativeOp1 = KnownOne.isNegative();
346 bool isKnownNegativeOp0 = KnownOne2.isNegative();
347 // The product of two numbers with the same sign is non-negative.
348 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
349 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
350 // The product of a negative number and a non-negative number is either
351 // negative or zero.
352 if (!isKnownNonNegative)
353 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000354 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000355 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000356 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000357 }
358 }
359
360 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000361 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362 // More trickiness is possible, but this is sufficient for the
363 // interesting case of alignment computation.
364 KnownOne.clearAllBits();
365 unsigned TrailZ = KnownZero.countTrailingOnes() +
366 KnownZero2.countTrailingOnes();
367 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
368 KnownZero2.countLeadingOnes(),
369 BitWidth) - BitWidth;
370
371 TrailZ = std::min(TrailZ, BitWidth);
372 LeadZ = std::min(LeadZ, BitWidth);
373 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
374 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000375
376 // Only make use of no-wrap flags if we failed to compute the sign bit
377 // directly. This matters if the multiplication always overflows, in
378 // which case we prefer to follow the result of the direct computation,
379 // though as the program is invoking undefined behaviour we can choose
380 // whatever we like here.
381 if (isKnownNonNegative && !KnownOne.isNegative())
382 KnownZero.setBit(BitWidth - 1);
383 else if (isKnownNegative && !KnownZero.isNegative())
384 KnownOne.setBit(BitWidth - 1);
385}
386
Jingyue Wu37fcb592014-06-19 16:50:16 +0000387void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388 APInt &KnownZero,
389 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000390 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000391 unsigned NumRanges = Ranges.getNumOperands() / 2;
392 assert(NumRanges >= 1);
393
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000394 KnownZero.setAllBits();
395 KnownOne.setAllBits();
396
Rafael Espindola53190532012-03-30 15:52:11 +0000397 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000398 ConstantInt *Lower =
399 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
400 ConstantInt *Upper =
401 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000402 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000403
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000404 // The first CommonPrefixBits of all values in Range are equal.
405 unsigned CommonPrefixBits =
406 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
407
408 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
409 KnownOne &= Range.getUnsignedMax() & Mask;
410 KnownZero &= ~Range.getUnsignedMax() & Mask;
411 }
Rafael Espindola53190532012-03-30 15:52:11 +0000412}
Jay Foad5a29c362014-05-15 12:12:55 +0000413
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000414static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000415 SmallVector<const Value *, 16> WorkSet(1, I);
416 SmallPtrSet<const Value *, 32> Visited;
417 SmallPtrSet<const Value *, 16> EphValues;
418
Hal Finkelf2199b22015-10-23 20:37:08 +0000419 // The instruction defining an assumption's condition itself is always
420 // considered ephemeral to that assumption (even if it has other
421 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000422 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000423 return true;
424
Hal Finkel60db0582014-09-07 18:57:58 +0000425 while (!WorkSet.empty()) {
426 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000427 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000428 continue;
429
430 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000431 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000432 if (V == E)
433 return true;
434
435 EphValues.insert(V);
436 if (const User *U = dyn_cast<User>(V))
437 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
438 J != JE; ++J) {
439 if (isSafeToSpeculativelyExecute(*J))
440 WorkSet.push_back(*J);
441 }
442 }
443 }
444
445 return false;
446}
447
448// Is this an intrinsic that cannot be speculated but also cannot trap?
449static bool isAssumeLikeIntrinsic(const Instruction *I) {
450 if (const CallInst *CI = dyn_cast<CallInst>(I))
451 if (Function *F = CI->getCalledFunction())
452 switch (F->getIntrinsicID()) {
453 default: break;
454 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
455 case Intrinsic::assume:
456 case Intrinsic::dbg_declare:
457 case Intrinsic::dbg_value:
458 case Intrinsic::invariant_start:
459 case Intrinsic::invariant_end:
460 case Intrinsic::lifetime_start:
461 case Intrinsic::lifetime_end:
462 case Intrinsic::objectsize:
463 case Intrinsic::ptr_annotation:
464 case Intrinsic::var_annotation:
465 return true;
466 }
467
468 return false;
469}
470
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000471bool llvm::isValidAssumeForContext(const Instruction *Inv,
472 const Instruction *CxtI,
473 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000474
475 // There are two restrictions on the use of an assume:
476 // 1. The assume must dominate the context (or the control flow must
477 // reach the assume whenever it reaches the context).
478 // 2. The context must not be in the assume's set of ephemeral values
479 // (otherwise we will use the assume to prove that the condition
480 // feeding the assume is trivially true, thus causing the removal of
481 // the assume).
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000484 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000485 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000486 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
487 // We don't have a DT, but this trivially dominates.
488 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000489 }
490
Pete Cooper54a02552016-08-12 01:00:15 +0000491 // With or without a DT, the only remaining case we will check is if the
492 // instructions are in the same BB. Give up if that is not the case.
493 if (Inv->getParent() != CxtI->getParent())
494 return false;
495
496 // If we have a dom tree, then we now know that the assume doens't dominate
497 // the other instruction. If we don't have a dom tree then we can check if
498 // the assume is first in the BB.
499 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000500 // Search forward from the assume until we reach the context (or the end
501 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000502 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000504 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000506 }
507
Pete Cooper54a02552016-08-12 01:00:15 +0000508 // The context comes first, but they're both in the same block. Make sure
509 // there is nothing in between that might interrupt the control flow.
510 for (BasicBlock::const_iterator I =
511 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
512 I != IE; ++I)
513 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
514 return false;
515
516 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Pete Cooper35b00d52016-08-13 01:05:32 +0000519static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Chandler Carruth66b31302015-01-04 12:03:27 +0000529 for (auto &AssumeVH : Q.AC->assumptions()) {
530 if (!AssumeVH)
531 continue;
532 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000534 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000535 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000536 continue;
537
Philip Reames00d3b272014-11-24 23:44:28 +0000538 // Warning: This loop can end up being somewhat performance sensetive.
539 // We're running this loop for once for each value queried resulting in a
540 // runtime of ~O(#assumes * #values).
541
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000543 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000544
Philip Reames00d3b272014-11-24 23:44:28 +0000545 Value *Arg = I->getArgOperand(0);
546
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000548 assert(BitWidth == 1 && "assume operand is not i1?");
549 KnownZero.clearAllBits();
550 KnownOne.setAllBits();
551 return;
552 }
553
David Majnemer9b609752014-12-12 23:59:29 +0000554 // The remaining tests are all recursive, so bail out if we hit the limit.
555 if (Depth == MaxDepth)
556 continue;
557
Hal Finkel60db0582014-09-07 18:57:58 +0000558 Value *A, *B;
559 auto m_V = m_CombineOr(m_Specific(V),
560 m_CombineOr(m_PtrToInt(m_Specific(V)),
561 m_BitCast(m_Specific(V))));
562
563 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000564 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000565 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000570 KnownZero |= RHSKnownZero;
571 KnownOne |= RHSKnownOne;
572 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000573 } else if (match(Arg,
574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 Pred == ICmpInst::ICMP_EQ &&
576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000581
582 // For those bits in the mask that are known to be one, we can propagate
583 // known bits from the RHS to V.
584 KnownZero |= RHSKnownZero & MaskKnownOne;
585 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000589 Pred == ICmpInst::ICMP_EQ &&
590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000595
596 // For those bits in the mask that are known to be one, we can propagate
597 // inverted known bits from the RHS to V.
598 KnownZero |= RHSKnownOne & MaskKnownOne;
599 KnownOne |= RHSKnownZero & MaskKnownOne;
600 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000601 } else if (match(Arg,
602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000603 Pred == ICmpInst::ICMP_EQ &&
604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000609
610 // For those bits in B that are known to be zero, we can propagate known
611 // bits from the RHS to V.
612 KnownZero |= RHSKnownZero & BKnownZero;
613 KnownOne |= RHSKnownOne & BKnownZero;
614 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000617 Pred == ICmpInst::ICMP_EQ &&
618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623
624 // For those bits in B that are known to be zero, we can propagate
625 // inverted known bits from the RHS to V.
626 KnownZero |= RHSKnownOne & BKnownZero;
627 KnownOne |= RHSKnownZero & BKnownZero;
628 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000629 } else if (match(Arg,
630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000631 Pred == ICmpInst::ICMP_EQ &&
632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637
638 // For those bits in B that are known to be zero, we can propagate known
639 // bits from the RHS to V. For those bits in B that are known to be one,
640 // we can propagate inverted known bits from the RHS to V.
641 KnownZero |= RHSKnownZero & BKnownZero;
642 KnownOne |= RHSKnownOne & BKnownZero;
643 KnownZero |= RHSKnownOne & BKnownOne;
644 KnownOne |= RHSKnownZero & BKnownOne;
645 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000648 Pred == ICmpInst::ICMP_EQ &&
649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654
655 // For those bits in B that are known to be zero, we can propagate
656 // inverted known bits from the RHS to V. For those bits in B that are
657 // known to be one, we can propagate known bits from the RHS to V.
658 KnownZero |= RHSKnownOne & BKnownZero;
659 KnownOne |= RHSKnownZero & BKnownZero;
660 KnownZero |= RHSKnownZero & BKnownOne;
661 KnownOne |= RHSKnownOne & BKnownOne;
662 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000665 Pred == ICmpInst::ICMP_EQ &&
666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000669 // For those bits in RHS that are known, we can propagate them to known
670 // bits in V shifted to the right by C.
671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
673 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000676 Pred == ICmpInst::ICMP_EQ &&
677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // For those bits in RHS that are known, we can propagate them inverted
681 // to known bits in V shifted to the right by C.
682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
684 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg,
686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000687 m_AShr(m_V, m_ConstantInt(C))),
688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them to known
694 // bits in V shifted to the right by C.
695 KnownZero |= RHSKnownZero << C->getZExtValue();
696 KnownOne |= RHSKnownOne << C->getZExtValue();
697 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000699 m_LShr(m_V, m_ConstantInt(C)),
700 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000701 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000702 Pred == ICmpInst::ICMP_EQ &&
703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // For those bits in RHS that are known, we can propagate them inverted
707 // to known bits in V shifted to the right by C.
708 KnownZero |= RHSKnownOne << C->getZExtValue();
709 KnownOne |= RHSKnownZero << C->getZExtValue();
710 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_SGE &&
713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716
717 if (RHSKnownZero.isNegative()) {
718 // We know that the sign bit is zero.
719 KnownZero |= APInt::getSignBit(BitWidth);
720 }
721 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000723 Pred == ICmpInst::ICMP_SGT &&
724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000727
728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729 // We know that the sign bit is zero.
730 KnownZero |= APInt::getSignBit(BitWidth);
731 }
732 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000734 Pred == ICmpInst::ICMP_SLE &&
735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738
739 if (RHSKnownOne.isNegative()) {
740 // We know that the sign bit is one.
741 KnownOne |= APInt::getSignBit(BitWidth);
742 }
743 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 Pred == ICmpInst::ICMP_SLT &&
746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000749
750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751 // We know that the sign bit is one.
752 KnownOne |= APInt::getSignBit(BitWidth);
753 }
754 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 Pred == ICmpInst::ICMP_ULE &&
757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760
761 // Whatever high bits in c are zero are known to be zero.
762 KnownZero |=
763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000766 Pred == ICmpInst::ICMP_ULT &&
767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770
771 // Whatever high bits in c are zero are known to be zero (if c is a power
772 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 KnownZero |=
775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776 else
777 KnownZero |=
778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000779 }
780 }
781}
782
Hal Finkelf2199b22015-10-23 20:37:08 +0000783// Compute known bits from a shift operator, including those with a
784// non-constant shift amount. KnownZero and KnownOne are the outputs of this
785// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787// functors that, given the known-zero or known-one bits respectively, and a
788// shift amount, compute the implied known-zero or known-one bits of the shift
789// operator's result respectively for that shift amount. The results from calling
790// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000791static void computeKnownBitsFromShiftOperator(
792 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
793 APInt &KnownOne2, unsigned Depth, const Query &Q,
794 function_ref<APInt(const APInt &, unsigned)> KZF,
795 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000796 unsigned BitWidth = KnownZero.getBitWidth();
797
798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000802 KnownZero = KZF(KnownZero, ShiftAmt);
803 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000804 // If there is conflict between KnownZero and KnownOne, this must be an
805 // overflowing left shift, so the shift result is undefined. Clear KnownZero
806 // and KnownOne bits so that other code could propagate this undef.
807 if ((KnownZero & KnownOne) != 0) {
808 KnownZero.clearAllBits();
809 KnownOne.clearAllBits();
810 }
811
Hal Finkelf2199b22015-10-23 20:37:08 +0000812 return;
813 }
814
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000815 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000816
817 // Note: We cannot use KnownZero.getLimitedValue() here, because if
818 // BitWidth > 64 and any upper bits are known, we'll end up returning the
819 // limit value (which implies all bits are known).
820 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
821 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
822
823 // It would be more-clearly correct to use the two temporaries for this
824 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000825 KnownZero.clearAllBits();
826 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000827
James Molloy493e57d2015-10-26 14:10:46 +0000828 // If we know the shifter operand is nonzero, we can sometimes infer more
829 // known bits. However this is expensive to compute, so be lazy about it and
830 // only compute it when absolutely necessary.
831 Optional<bool> ShifterOperandIsNonZero;
832
Hal Finkelf2199b22015-10-23 20:37:08 +0000833 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000834 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
835 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000836 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000837 if (!*ShifterOperandIsNonZero)
838 return;
839 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000840
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000841 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000842
843 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
844 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
845 // Combine the shifted known input bits only for those shift amounts
846 // compatible with its known constraints.
847 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
848 continue;
849 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
850 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000851 // If we know the shifter is nonzero, we may be able to infer more known
852 // bits. This check is sunk down as far as possible to avoid the expensive
853 // call to isKnownNonZero if the cheaper checks above fail.
854 if (ShiftAmt == 0) {
855 if (!ShifterOperandIsNonZero.hasValue())
856 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000857 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000858 if (*ShifterOperandIsNonZero)
859 continue;
860 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000861
862 KnownZero &= KZF(KnownZero2, ShiftAmt);
863 KnownOne &= KOF(KnownOne2, ShiftAmt);
864 }
865
866 // If there are no compatible shift amounts, then we've proven that the shift
867 // amount must be >= the BitWidth, and the result is undefined. We could
868 // return anything we'd like, but we need to make sure the sets of known bits
869 // stay disjoint (it should be better for some other code to actually
870 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000871 if ((KnownZero & KnownOne) != 0) {
872 KnownZero.clearAllBits();
873 KnownOne.clearAllBits();
874 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000875}
876
Pete Cooper35b00d52016-08-13 01:05:32 +0000877static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000878 APInt &KnownOne, unsigned Depth,
879 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000880 unsigned BitWidth = KnownZero.getBitWidth();
881
Chris Lattner965c7692008-06-02 01:18:21 +0000882 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000883 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000884 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000885 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000886 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000887 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000888 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000889 case Instruction::And: {
890 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000891 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
892 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000893
Chris Lattner965c7692008-06-02 01:18:21 +0000894 // Output known-1 bits are only known if set in both the LHS & RHS.
895 KnownOne &= KnownOne2;
896 // Output known-0 are known to be clear if zero in either the LHS | RHS.
897 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000898
899 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
900 // here we handle the more general case of adding any odd number by
901 // matching the form add(x, add(x, y)) where y is odd.
902 // TODO: This could be generalized to clearing any bit set in y where the
903 // following bit is known to be unset in y.
904 Value *Y = nullptr;
905 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
906 m_Value(Y))) ||
907 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
908 m_Value(Y)))) {
909 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000910 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000911 if (KnownOne3.countTrailingOnes() > 0)
912 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
913 }
Jay Foad5a29c362014-05-15 12:12:55 +0000914 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000915 }
916 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000917 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
918 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000919
Chris Lattner965c7692008-06-02 01:18:21 +0000920 // Output known-0 bits are only known if clear in both the LHS & RHS.
921 KnownZero &= KnownZero2;
922 // Output known-1 are known to be set if set in either the LHS | RHS.
923 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000924 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000925 }
926 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000927 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
928 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000929
Chris Lattner965c7692008-06-02 01:18:21 +0000930 // Output known-0 bits are known if clear or set in both the LHS & RHS.
931 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
932 // Output known-1 are known to be set if set in only one of the LHS, RHS.
933 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
934 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000935 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000936 }
937 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000938 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000939 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000940 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000941 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000942 }
943 case Instruction::UDiv: {
944 // For the purposes of computing leading zeros we can conservatively
945 // treat a udiv as a logical right shift by the power of 2 known to
946 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000947 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000948 unsigned LeadZ = KnownZero2.countLeadingOnes();
949
Jay Foad25a5e4c2010-12-01 08:53:58 +0000950 KnownOne2.clearAllBits();
951 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000952 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000953 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
954 if (RHSUnknownLeadingOnes != BitWidth)
955 LeadZ = std::min(BitWidth,
956 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
957
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000958 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000959 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000960 }
David Majnemera19d0f22016-08-06 08:16:00 +0000961 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000962 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
963 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000964
Pete Cooper35b00d52016-08-13 01:05:32 +0000965 const Value *LHS;
966 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000967 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
968 if (SelectPatternResult::isMinOrMax(SPF)) {
969 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
970 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
971 } else {
972 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
973 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
974 }
975
976 unsigned MaxHighOnes = 0;
977 unsigned MaxHighZeros = 0;
978 if (SPF == SPF_SMAX) {
979 // If both sides are negative, the result is negative.
980 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
981 // We can derive a lower bound on the result by taking the max of the
982 // leading one bits.
983 MaxHighOnes =
984 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
985 // If either side is non-negative, the result is non-negative.
986 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
987 MaxHighZeros = 1;
988 } else if (SPF == SPF_SMIN) {
989 // If both sides are non-negative, the result is non-negative.
990 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
991 // We can derive an upper bound on the result by taking the max of the
992 // leading zero bits.
993 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
994 KnownZero2.countLeadingOnes());
995 // If either side is negative, the result is negative.
996 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
997 MaxHighOnes = 1;
998 } else if (SPF == SPF_UMAX) {
999 // We can derive a lower bound on the result by taking the max of the
1000 // leading one bits.
1001 MaxHighOnes =
1002 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1003 } else if (SPF == SPF_UMIN) {
1004 // We can derive an upper bound on the result by taking the max of the
1005 // leading zero bits.
1006 MaxHighZeros =
1007 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1008 }
1009
Chris Lattner965c7692008-06-02 01:18:21 +00001010 // Only known if known in both the LHS and RHS.
1011 KnownOne &= KnownOne2;
1012 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001013 if (MaxHighOnes > 0)
1014 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1015 if (MaxHighZeros > 0)
1016 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001017 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001018 }
Chris Lattner965c7692008-06-02 01:18:21 +00001019 case Instruction::FPTrunc:
1020 case Instruction::FPExt:
1021 case Instruction::FPToUI:
1022 case Instruction::FPToSI:
1023 case Instruction::SIToFP:
1024 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001025 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001026 case Instruction::PtrToInt:
1027 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001028 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001029 // Fall through and handle them the same as zext/trunc.
1030 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001031 case Instruction::ZExt:
1032 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001033 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001034
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001035 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001036 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1037 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001038 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001039
1040 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001041 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1042 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001043 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001044 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1045 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001046 // Any top bits are known to be zero.
1047 if (BitWidth > SrcBitWidth)
1048 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001049 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001050 }
1051 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001052 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001053 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001054 // TODO: For now, not handling conversions like:
1055 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001056 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001057 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001058 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001059 }
1060 break;
1061 }
1062 case Instruction::SExt: {
1063 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001064 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001065
Jay Foad583abbc2010-12-07 08:25:19 +00001066 KnownZero = KnownZero.trunc(SrcBitWidth);
1067 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001068 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001069 KnownZero = KnownZero.zext(BitWidth);
1070 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001071
1072 // If the sign bit of the input is known set or clear, then we know the
1073 // top bits of the result.
1074 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1075 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1076 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1077 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001078 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001079 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001080 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001081 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001082 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1083 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1084 APInt KZResult =
1085 (KnownZero << ShiftAmt) |
1086 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1087 // If this shift has "nsw" keyword, then the result is either a poison
1088 // value or has the same sign bit as the first operand.
1089 if (NSW && KnownZero.isNegative())
1090 KZResult.setBit(BitWidth - 1);
1091 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001092 };
1093
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001094 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1095 APInt KOResult = KnownOne << ShiftAmt;
1096 if (NSW && KnownOne.isNegative())
1097 KOResult.setBit(BitWidth - 1);
1098 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001099 };
1100
1101 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001102 KnownZero2, KnownOne2, Depth, Q, KZF,
1103 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001104 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001105 }
1106 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001107 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001108 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1109 return APIntOps::lshr(KnownZero, ShiftAmt) |
1110 // High bits known zero.
1111 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1112 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001113
Hal Finkelf2199b22015-10-23 20:37:08 +00001114 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1115 return APIntOps::lshr(KnownOne, ShiftAmt);
1116 };
1117
1118 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001119 KnownZero2, KnownOne2, Depth, Q, KZF,
1120 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001121 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001122 }
1123 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001124 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001125 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1126 return APIntOps::ashr(KnownZero, ShiftAmt);
1127 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001128
Hal Finkelf2199b22015-10-23 20:37:08 +00001129 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1130 return APIntOps::ashr(KnownOne, ShiftAmt);
1131 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001132
Hal Finkelf2199b22015-10-23 20:37:08 +00001133 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001134 KnownZero2, KnownOne2, Depth, Q, KZF,
1135 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001136 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001137 }
Chris Lattner965c7692008-06-02 01:18:21 +00001138 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001139 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001140 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001141 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1142 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001143 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001144 }
Chris Lattner965c7692008-06-02 01:18:21 +00001145 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001146 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001147 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001148 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1149 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001150 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001151 }
1152 case Instruction::SRem:
1153 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001154 APInt RA = Rem->getValue().abs();
1155 if (RA.isPowerOf2()) {
1156 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001157 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001158 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001159
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001160 // The low bits of the first operand are unchanged by the srem.
1161 KnownZero = KnownZero2 & LowBits;
1162 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001163
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001164 // If the first operand is non-negative or has all low bits zero, then
1165 // the upper bits are all zero.
1166 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1167 KnownZero |= ~LowBits;
1168
1169 // If the first operand is negative and not all low bits are zero, then
1170 // the upper bits are all one.
1171 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1172 KnownOne |= ~LowBits;
1173
Craig Topper1bef2c82012-12-22 19:15:35 +00001174 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001175 }
1176 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001177
1178 // The sign bit is the LHS's sign bit, except when the result of the
1179 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001180 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001181 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001182 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1183 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001184 // If it's known zero, our sign bit is also zero.
1185 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001186 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001187 }
1188
Chris Lattner965c7692008-06-02 01:18:21 +00001189 break;
1190 case Instruction::URem: {
1191 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001192 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001193 if (RA.isPowerOf2()) {
1194 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001195 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001196 KnownZero |= ~LowBits;
1197 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001198 break;
1199 }
1200 }
1201
1202 // Since the result is less than or equal to either operand, any leading
1203 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001204 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1205 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001206
Chris Lattner4612ae12009-01-20 18:22:57 +00001207 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001208 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001209 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001210 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001211 break;
1212 }
1213
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001214 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001215 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001216 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001217 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001218 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001219
Chris Lattner965c7692008-06-02 01:18:21 +00001220 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001221 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001222 break;
1223 }
1224 case Instruction::GetElementPtr: {
1225 // Analyze all of the subscripts of this getelementptr instruction
1226 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001227 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001228 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1229 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001230 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1231
1232 gep_type_iterator GTI = gep_type_begin(I);
1233 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1234 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001235 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001236 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001237
1238 // Handle case when index is vector zeroinitializer
1239 Constant *CIndex = cast<Constant>(Index);
1240 if (CIndex->isZeroValue())
1241 continue;
1242
1243 if (CIndex->getType()->isVectorTy())
1244 Index = CIndex->getSplatValue();
1245
Chris Lattner965c7692008-06-02 01:18:21 +00001246 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001247 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001249 TrailZ = std::min<unsigned>(TrailZ,
1250 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001251 } else {
1252 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001253 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001254 if (!IndexedTy->isSized()) {
1255 TrailZ = 0;
1256 break;
1257 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001258 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001259 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001260 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001261 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001262 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001263 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001264 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001265 }
1266 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001267
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001268 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001269 break;
1270 }
1271 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001272 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001273 // Handle the case of a simple two-predecessor recurrence PHI.
1274 // There's a lot more that could theoretically be done here, but
1275 // this is sufficient to catch some interesting cases.
1276 if (P->getNumIncomingValues() == 2) {
1277 for (unsigned i = 0; i != 2; ++i) {
1278 Value *L = P->getIncomingValue(i);
1279 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001280 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001281 if (!LU)
1282 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001283 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001284 // Check for operations that have the property that if
1285 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001286 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001287 if (Opcode == Instruction::Add ||
1288 Opcode == Instruction::Sub ||
1289 Opcode == Instruction::And ||
1290 Opcode == Instruction::Or ||
1291 Opcode == Instruction::Mul) {
1292 Value *LL = LU->getOperand(0);
1293 Value *LR = LU->getOperand(1);
1294 // Find a recurrence.
1295 if (LL == I)
1296 L = LR;
1297 else if (LR == I)
1298 L = LL;
1299 else
1300 break;
1301 // Ok, we have a PHI of the form L op= R. Check for low
1302 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001303 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001304
1305 // We need to take the minimum number of known bits
1306 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001307 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001308
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001309 KnownZero = APInt::getLowBitsSet(
1310 BitWidth, std::min(KnownZero2.countTrailingOnes(),
1311 KnownZero3.countTrailingOnes()));
1312
1313 if (DontImproveNonNegativePhiBits)
1314 break;
1315
1316 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1317 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1318 // If initial value of recurrence is nonnegative, and we are adding
1319 // a nonnegative number with nsw, the result can only be nonnegative
1320 // or poison value regardless of the number of times we execute the
1321 // add in phi recurrence. If initial value is negative and we are
1322 // adding a negative number with nsw, the result can only be
1323 // negative or poison value. Similar arguments apply to sub and mul.
1324 //
1325 // (add non-negative, non-negative) --> non-negative
1326 // (add negative, negative) --> negative
1327 if (Opcode == Instruction::Add) {
1328 if (KnownZero2.isNegative() && KnownZero3.isNegative())
1329 KnownZero.setBit(BitWidth - 1);
1330 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1331 KnownOne.setBit(BitWidth - 1);
1332 }
1333
1334 // (sub nsw non-negative, negative) --> non-negative
1335 // (sub nsw negative, non-negative) --> negative
1336 else if (Opcode == Instruction::Sub && LL == I) {
1337 if (KnownZero2.isNegative() && KnownOne3.isNegative())
1338 KnownZero.setBit(BitWidth - 1);
1339 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1340 KnownOne.setBit(BitWidth - 1);
1341 }
1342
1343 // (mul nsw non-negative, non-negative) --> non-negative
1344 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1345 KnownZero3.isNegative())
1346 KnownZero.setBit(BitWidth - 1);
1347 }
1348
Chris Lattner965c7692008-06-02 01:18:21 +00001349 break;
1350 }
1351 }
1352 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001353
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001354 // Unreachable blocks may have zero-operand PHI nodes.
1355 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001356 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001357
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001358 // Otherwise take the unions of the known bit sets of the operands,
1359 // taking conservative care to avoid excessive recursion.
1360 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001361 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001362 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001363 break;
1364
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001365 KnownZero = APInt::getAllOnesValue(BitWidth);
1366 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001367 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001368 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001369 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001370
1371 KnownZero2 = APInt(BitWidth, 0);
1372 KnownOne2 = APInt(BitWidth, 0);
1373 // Recurse, but cap the recursion to one level, because we don't
1374 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001375 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001376 KnownZero &= KnownZero2;
1377 KnownOne &= KnownOne2;
1378 // If all bits have been ruled out, there's no need to check
1379 // more operands.
1380 if (!KnownZero && !KnownOne)
1381 break;
1382 }
1383 }
Chris Lattner965c7692008-06-02 01:18:21 +00001384 break;
1385 }
1386 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001387 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001388 // If range metadata is attached to this call, set known bits from that,
1389 // and then intersect with known bits based on other properties of the
1390 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001391 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001392 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001393 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001394 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1395 KnownZero |= KnownZero2;
1396 KnownOne |= KnownOne2;
1397 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001398 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001399 switch (II->getIntrinsicID()) {
1400 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001401 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001402 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001403 KnownZero |= KnownZero2.byteSwap();
1404 KnownOne |= KnownOne2.byteSwap();
1405 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001406 case Intrinsic::ctlz:
1407 case Intrinsic::cttz: {
1408 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001409 // If this call is undefined for 0, the result will be less than 2^n.
1410 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1411 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001412 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001413 break;
1414 }
1415 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001416 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001417 // We can bound the space the count needs. Also, bits known to be zero
1418 // can't contribute to the population.
1419 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1420 unsigned LeadingZeros =
1421 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001422 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001423 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1424 KnownOne &= ~KnownZero;
1425 // TODO: we could bound KnownOne using the lower bound on the number
1426 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001427 break;
1428 }
Chad Rosierb3628842011-05-26 23:13:19 +00001429 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001430 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001431 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001432 }
1433 }
1434 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001435 case Instruction::ExtractElement:
1436 // Look through extract element. At the moment we keep this simple and skip
1437 // tracking the specific element. But at least we might find information
1438 // valid for all elements of the vector (for example if vector is sign
1439 // extended, shifted, etc).
1440 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1441 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001442 case Instruction::ExtractValue:
1443 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001444 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001445 if (EVI->getNumIndices() != 1) break;
1446 if (EVI->getIndices()[0] == 0) {
1447 switch (II->getIntrinsicID()) {
1448 default: break;
1449 case Intrinsic::uadd_with_overflow:
1450 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001451 computeKnownBitsAddSub(true, II->getArgOperand(0),
1452 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001453 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001454 break;
1455 case Intrinsic::usub_with_overflow:
1456 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001457 computeKnownBitsAddSub(false, II->getArgOperand(0),
1458 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001459 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001460 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001461 case Intrinsic::umul_with_overflow:
1462 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001463 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001464 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1465 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001466 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001467 }
1468 }
1469 }
Chris Lattner965c7692008-06-02 01:18:21 +00001470 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001471}
1472
1473/// Determine which bits of V are known to be either zero or one and return
1474/// them in the KnownZero/KnownOne bit sets.
1475///
1476/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1477/// we cannot optimize based on the assumption that it is zero without changing
1478/// it to be an explicit zero. If we don't change it to zero, other code could
1479/// optimized based on the contradictory assumption that it is non-zero.
1480/// Because instcombine aggressively folds operations with undef args anyway,
1481/// this won't lose us code quality.
1482///
1483/// This function is defined on values with integer type, values with pointer
1484/// type, and vectors of integers. In the case
1485/// where V is a vector, known zero, and known one values are the
1486/// same width as the vector element, and the bit is set only if it is true
1487/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001488void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001489 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001490 assert(V && "No Value?");
1491 assert(Depth <= MaxDepth && "Limit Search Depth");
1492 unsigned BitWidth = KnownZero.getBitWidth();
1493
1494 assert((V->getType()->isIntOrIntVectorTy() ||
1495 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001496 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001497 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001498 (!V->getType()->isIntOrIntVectorTy() ||
1499 V->getType()->getScalarSizeInBits() == BitWidth) &&
1500 KnownZero.getBitWidth() == BitWidth &&
1501 KnownOne.getBitWidth() == BitWidth &&
1502 "V, KnownOne and KnownZero should have same BitWidth");
1503
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001504 const APInt *C;
1505 if (match(V, m_APInt(C))) {
1506 // We know all of the bits for a scalar constant or a splat vector constant!
1507 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001508 KnownZero = ~KnownOne;
1509 return;
1510 }
1511 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001512 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001513 KnownOne.clearAllBits();
1514 KnownZero = APInt::getAllOnesValue(BitWidth);
1515 return;
1516 }
1517 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001518 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001519 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001520 // We know that CDS must be a vector of integers. Take the intersection of
1521 // each element.
1522 KnownZero.setAllBits(); KnownOne.setAllBits();
1523 APInt Elt(KnownZero.getBitWidth(), 0);
1524 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1525 Elt = CDS->getElementAsInteger(i);
1526 KnownZero &= ~Elt;
1527 KnownOne &= Elt;
1528 }
1529 return;
1530 }
1531
Pete Cooper35b00d52016-08-13 01:05:32 +00001532 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001533 // We know that CV must be a vector of integers. Take the intersection of
1534 // each element.
1535 KnownZero.setAllBits(); KnownOne.setAllBits();
1536 APInt Elt(KnownZero.getBitWidth(), 0);
1537 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1538 Constant *Element = CV->getAggregateElement(i);
1539 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1540 if (!ElementCI) {
1541 KnownZero.clearAllBits();
1542 KnownOne.clearAllBits();
1543 return;
1544 }
1545 Elt = ElementCI->getValue();
1546 KnownZero &= ~Elt;
1547 KnownOne &= Elt;
1548 }
1549 return;
1550 }
1551
Jingyue Wu12b0c282015-06-15 05:46:29 +00001552 // Start out not knowing anything.
1553 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1554
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001555 // We can't imply anything about undefs.
1556 if (isa<UndefValue>(V))
1557 return;
1558
1559 // There's no point in looking through other users of ConstantData for
1560 // assumptions. Confirm that we've handled them all.
1561 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1562
Jingyue Wu12b0c282015-06-15 05:46:29 +00001563 // Limit search depth.
1564 // All recursive calls that increase depth must come after this.
1565 if (Depth == MaxDepth)
1566 return;
1567
1568 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1569 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001570 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001571 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001572 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001573 return;
1574 }
1575
Pete Cooper35b00d52016-08-13 01:05:32 +00001576 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001577 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001578
Artur Pilipenko029d8532015-09-30 11:55:45 +00001579 // Aligned pointers have trailing zeros - refine KnownZero set
1580 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001581 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001582 if (Align)
1583 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1584 }
1585
Philip Reames146307e2016-03-03 19:44:06 +00001586 // computeKnownBitsFromAssume strictly refines KnownZero and
1587 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001588
1589 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001590 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001591
Jay Foad5a29c362014-05-15 12:12:55 +00001592 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001593}
1594
Sanjay Patelaee84212014-11-04 16:27:42 +00001595/// Determine whether the sign bit is known to be zero or one.
1596/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001597void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001598 unsigned Depth, const Query &Q) {
1599 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001600 if (!BitWidth) {
1601 KnownZero = false;
1602 KnownOne = false;
1603 return;
1604 }
1605 APInt ZeroBits(BitWidth, 0);
1606 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001607 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001608 KnownOne = OneBits[BitWidth - 1];
1609 KnownZero = ZeroBits[BitWidth - 1];
1610}
1611
Sanjay Patelaee84212014-11-04 16:27:42 +00001612/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001613/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001614/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001615/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001616bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001617 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001618 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001619 if (C->isNullValue())
1620 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001621
1622 const APInt *ConstIntOrConstSplatInt;
1623 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1624 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001625 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001626
1627 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1628 // it is shifted off the end then the result is undefined.
1629 if (match(V, m_Shl(m_One(), m_Value())))
1630 return true;
1631
1632 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1633 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001634 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001635 return true;
1636
1637 // The remaining tests are all recursive, so bail out if we hit the limit.
1638 if (Depth++ == MaxDepth)
1639 return false;
1640
Craig Topper9f008862014-04-15 04:59:12 +00001641 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001642 // A shift left or a logical shift right of a power of two is a power of two
1643 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001644 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001645 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001646 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001647
Pete Cooper35b00d52016-08-13 01:05:32 +00001648 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001649 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001650
Pete Cooper35b00d52016-08-13 01:05:32 +00001651 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001652 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1653 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001654
Duncan Sandsba286d72011-10-26 20:55:21 +00001655 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1656 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001657 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1658 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001659 return true;
1660 // X & (-X) is always a power of two or zero.
1661 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1662 return true;
1663 return false;
1664 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001665
David Majnemerb7d54092013-07-30 21:01:36 +00001666 // Adding a power-of-two or zero to the same power-of-two or zero yields
1667 // either the original power-of-two, a larger power-of-two or zero.
1668 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001669 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001670 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1671 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1672 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001673 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001674 return true;
1675 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1676 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001677 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001678 return true;
1679
1680 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1681 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001682 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001683
1684 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001685 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001686 // If i8 V is a power of two or zero:
1687 // ZeroBits: 1 1 1 0 1 1 1 1
1688 // ~ZeroBits: 0 0 0 1 0 0 0 0
1689 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1690 // If OrZero isn't set, we cannot give back a zero result.
1691 // Make sure either the LHS or RHS has a bit set.
1692 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1693 return true;
1694 }
1695 }
David Majnemerbeab5672013-05-18 19:30:37 +00001696
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001697 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001698 // is a power of two only if the first operand is a power of two and not
1699 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001700 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1701 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001702 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001703 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001704 }
1705
Duncan Sandsd3951082011-01-25 09:38:29 +00001706 return false;
1707}
1708
Chandler Carruth80d3e562012-12-07 02:08:58 +00001709/// \brief Test whether a GEP's result is known to be non-null.
1710///
1711/// Uses properties inherent in a GEP to try to determine whether it is known
1712/// to be non-null.
1713///
1714/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001715static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001716 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001717 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1718 return false;
1719
1720 // FIXME: Support vector-GEPs.
1721 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1722
1723 // If the base pointer is non-null, we cannot walk to a null address with an
1724 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001725 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001726 return true;
1727
Chandler Carruth80d3e562012-12-07 02:08:58 +00001728 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1729 // If so, then the GEP cannot produce a null pointer, as doing so would
1730 // inherently violate the inbounds contract within address space zero.
1731 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1732 GTI != GTE; ++GTI) {
1733 // Struct types are easy -- they must always be indexed by a constant.
1734 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1735 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1736 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001737 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001738 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1739 if (ElementOffset > 0)
1740 return true;
1741 continue;
1742 }
1743
1744 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001745 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001746 continue;
1747
1748 // Fast path the constant operand case both for efficiency and so we don't
1749 // increment Depth when just zipping down an all-constant GEP.
1750 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1751 if (!OpC->isZero())
1752 return true;
1753 continue;
1754 }
1755
1756 // We post-increment Depth here because while isKnownNonZero increments it
1757 // as well, when we pop back up that increment won't persist. We don't want
1758 // to recurse 10k times just because we have 10k GEP operands. We don't
1759 // bail completely out because we want to handle constant GEPs regardless
1760 // of depth.
1761 if (Depth++ >= MaxDepth)
1762 continue;
1763
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001764 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001765 return true;
1766 }
1767
1768 return false;
1769}
1770
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001771/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1772/// ensure that the value it's attached to is never Value? 'RangeType' is
1773/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001774static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001775 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1776 assert(NumRanges >= 1);
1777 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001778 ConstantInt *Lower =
1779 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1780 ConstantInt *Upper =
1781 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001782 ConstantRange Range(Lower->getValue(), Upper->getValue());
1783 if (Range.contains(Value))
1784 return false;
1785 }
1786 return true;
1787}
1788
Sanjay Patelaee84212014-11-04 16:27:42 +00001789/// Return true if the given value is known to be non-zero when defined.
1790/// For vectors return true if every element is known to be non-zero when
1791/// defined. Supports values with integer or pointer type and vectors of
1792/// integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001793bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001794 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001795 if (C->isNullValue())
1796 return false;
1797 if (isa<ConstantInt>(C))
1798 // Must be non-zero due to null test above.
1799 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001800
1801 // For constant vectors, check that all elements are undefined or known
1802 // non-zero to determine that the whole vector is known non-zero.
1803 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1804 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1805 Constant *Elt = C->getAggregateElement(i);
1806 if (!Elt || Elt->isNullValue())
1807 return false;
1808 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1809 return false;
1810 }
1811 return true;
1812 }
1813
Duncan Sandsd3951082011-01-25 09:38:29 +00001814 return false;
1815 }
1816
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001817 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001818 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001819 // If the possible ranges don't contain zero, then the value is
1820 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001821 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001822 const APInt ZeroValue(Ty->getBitWidth(), 0);
1823 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1824 return true;
1825 }
1826 }
1827 }
1828
Duncan Sandsd3951082011-01-25 09:38:29 +00001829 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001830 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001831 return false;
1832
Chandler Carruth80d3e562012-12-07 02:08:58 +00001833 // Check for pointer simplifications.
1834 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001835 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001836 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001837 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001838 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001839 return true;
1840 }
1841
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001842 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001843
1844 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001845 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001846 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001847 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001848
1849 // ext X != 0 if X != 0.
1850 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001851 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001852
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001853 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001854 // if the lowest bit is shifted off the end.
1855 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001856 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001857 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001858 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001859 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001860
Duncan Sandsd3951082011-01-25 09:38:29 +00001861 APInt KnownZero(BitWidth, 0);
1862 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001863 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001864 if (KnownOne[0])
1865 return true;
1866 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001867 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001868 // defined if the sign bit is shifted off the end.
1869 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001870 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001871 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001872 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001873 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001874
Duncan Sandsd3951082011-01-25 09:38:29 +00001875 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001876 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001877 if (XKnownNegative)
1878 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001879
1880 // If the shifter operand is a constant, and all of the bits shifted
1881 // out are known to be zero, and X is known non-zero then at least one
1882 // non-zero bit must remain.
1883 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1884 APInt KnownZero(BitWidth, 0);
1885 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001886 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001887
James Molloyb6be1eb2015-09-24 16:06:32 +00001888 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1889 // Is there a known one in the portion not shifted out?
1890 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1891 return true;
1892 // Are all the bits to be shifted out known zero?
1893 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001894 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001895 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001896 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001897 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001898 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001899 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001900 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001901 // X + Y.
1902 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1903 bool XKnownNonNegative, XKnownNegative;
1904 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001905 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1906 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001907
1908 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001909 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001910 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001911 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001912 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001913
1914 // If X and Y are both negative (as signed values) then their sum is not
1915 // zero unless both X and Y equal INT_MIN.
1916 if (BitWidth && XKnownNegative && YKnownNegative) {
1917 APInt KnownZero(BitWidth, 0);
1918 APInt KnownOne(BitWidth, 0);
1919 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1920 // The sign bit of X is set. If some other bit is set then X is not equal
1921 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001922 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001923 if ((KnownOne & Mask) != 0)
1924 return true;
1925 // The sign bit of Y is set. If some other bit is set then Y is not equal
1926 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001927 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001928 if ((KnownOne & Mask) != 0)
1929 return true;
1930 }
1931
1932 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001933 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001934 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001935 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001936 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001937 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001938 return true;
1939 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001940 // X * Y.
1941 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001942 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001943 // If X and Y are non-zero then so is X * Y as long as the multiplication
1944 // does not overflow.
1945 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001946 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001947 return true;
1948 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001949 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001950 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001951 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1952 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001953 return true;
1954 }
James Molloy897048b2015-09-29 14:08:45 +00001955 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001956 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001957 // Try and detect a recurrence that monotonically increases from a
1958 // starting value, as these are common as induction variables.
1959 if (PN->getNumIncomingValues() == 2) {
1960 Value *Start = PN->getIncomingValue(0);
1961 Value *Induction = PN->getIncomingValue(1);
1962 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1963 std::swap(Start, Induction);
1964 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1965 if (!C->isZero() && !C->isNegative()) {
1966 ConstantInt *X;
1967 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1968 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1969 !X->isNegative())
1970 return true;
1971 }
1972 }
1973 }
Jun Bum Limca832662016-02-01 17:03:07 +00001974 // Check if all incoming values are non-zero constant.
1975 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1976 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1977 });
1978 if (AllNonZeroConstants)
1979 return true;
James Molloy897048b2015-09-29 14:08:45 +00001980 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001981
1982 if (!BitWidth) return false;
1983 APInt KnownZero(BitWidth, 0);
1984 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001985 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001986 return KnownOne != 0;
1987}
1988
James Molloy1d88d6f2015-10-22 13:18:42 +00001989/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001990static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1991 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001992 if (!BO || BO->getOpcode() != Instruction::Add)
1993 return false;
1994 Value *Op = nullptr;
1995 if (V2 == BO->getOperand(0))
1996 Op = BO->getOperand(1);
1997 else if (V2 == BO->getOperand(1))
1998 Op = BO->getOperand(0);
1999 else
2000 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002001 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002002}
2003
2004/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002005static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002006 if (V1->getType()->isVectorTy() || V1 == V2)
2007 return false;
2008 if (V1->getType() != V2->getType())
2009 // We can't look through casts yet.
2010 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002011 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002012 return true;
2013
2014 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2015 // Are any known bits in V1 contradictory to known bits in V2? If V1
2016 // has a known zero where V2 has a known one, they must not be equal.
2017 auto BitWidth = Ty->getBitWidth();
2018 APInt KnownZero1(BitWidth, 0);
2019 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002020 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002021 APInt KnownZero2(BitWidth, 0);
2022 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002023 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002024
2025 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2026 if (OppositeBits.getBoolValue())
2027 return true;
2028 }
2029 return false;
2030}
2031
Sanjay Patelaee84212014-11-04 16:27:42 +00002032/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2033/// simplify operations downstream. Mask is known to be zero for bits that V
2034/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002035///
2036/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002037/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002038/// where V is a vector, the mask, known zero, and known one values are the
2039/// same width as the vector element, and the bit is set only if it is true
2040/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002041bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002042 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002043 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002044 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002045 return (KnownZero & Mask) == Mask;
2046}
2047
Sanjay Patela06d9892016-06-22 19:20:59 +00002048/// For vector constants, loop over the elements and find the constant with the
2049/// minimum number of sign bits. Return 0 if the value is not a vector constant
2050/// or if any element was not analyzed; otherwise, return the count for the
2051/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002052static unsigned computeNumSignBitsVectorConstant(const Value *V,
2053 unsigned TyBits) {
2054 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002055 if (!CV || !CV->getType()->isVectorTy())
2056 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002057
Sanjay Patela06d9892016-06-22 19:20:59 +00002058 unsigned MinSignBits = TyBits;
2059 unsigned NumElts = CV->getType()->getVectorNumElements();
2060 for (unsigned i = 0; i != NumElts; ++i) {
2061 // If we find a non-ConstantInt, bail out.
2062 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2063 if (!Elt)
2064 return 0;
2065
2066 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2067 APInt EltVal = Elt->getValue();
2068 if (EltVal.isNegative())
2069 EltVal = ~EltVal;
2070 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2071 }
2072
2073 return MinSignBits;
2074}
Chris Lattner965c7692008-06-02 01:18:21 +00002075
Sanjay Patelaee84212014-11-04 16:27:42 +00002076/// Return the number of times the sign bit of the register is replicated into
2077/// the other bits. We know that at least 1 bit is always equal to the sign bit
2078/// (itself), but other cases can give us information. For example, immediately
2079/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002080/// other, so we return 3. For vectors, return the number of sign bits for the
2081/// vector element with the mininum number of known sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002082unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002083 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002084 unsigned Tmp, Tmp2;
2085 unsigned FirstAnswer = 1;
2086
Jay Foada0653a32014-05-14 21:14:37 +00002087 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002088 // below.
2089
Chris Lattner965c7692008-06-02 01:18:21 +00002090 if (Depth == 6)
2091 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002092
Pete Cooper35b00d52016-08-13 01:05:32 +00002093 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002094 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002095 default: break;
2096 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002097 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002098 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002099
Nadav Rotemc99a3872015-03-06 00:23:58 +00002100 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002101 const APInt *Denominator;
2102 // sdiv X, C -> adds log(C) sign bits.
2103 if (match(U->getOperand(1), m_APInt(Denominator))) {
2104
2105 // Ignore non-positive denominator.
2106 if (!Denominator->isStrictlyPositive())
2107 break;
2108
2109 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002110 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002111
2112 // Add floor(log(C)) bits to the numerator bits.
2113 return std::min(TyBits, NumBits + Denominator->logBase2());
2114 }
2115 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002116 }
2117
2118 case Instruction::SRem: {
2119 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002120 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2121 // positive constant. This let us put a lower bound on the number of sign
2122 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002123 if (match(U->getOperand(1), m_APInt(Denominator))) {
2124
2125 // Ignore non-positive denominator.
2126 if (!Denominator->isStrictlyPositive())
2127 break;
2128
2129 // Calculate the incoming numerator bits. SRem by a positive constant
2130 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002131 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002132 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002133
2134 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002135 // denominator. Given that the denominator is positive, there are two
2136 // cases:
2137 //
2138 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2139 // (1 << ceilLogBase2(C)).
2140 //
2141 // 2. the numerator is negative. Then the result range is (-C,0] and
2142 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2143 //
2144 // Thus a lower bound on the number of sign bits is `TyBits -
2145 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002146
Sanjoy Dase561fee2015-03-25 22:33:53 +00002147 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002148 return std::max(NumrBits, ResBits);
2149 }
2150 break;
2151 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002152
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002153 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002154 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002155 // ashr X, C -> adds C sign bits. Vectors too.
2156 const APInt *ShAmt;
2157 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2158 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002159 if (Tmp > TyBits) Tmp = TyBits;
2160 }
2161 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002162 }
2163 case Instruction::Shl: {
2164 const APInt *ShAmt;
2165 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002166 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002167 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002168 Tmp2 = ShAmt->getZExtValue();
2169 if (Tmp2 >= TyBits || // Bad shift.
2170 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2171 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002172 }
2173 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002174 }
Chris Lattner965c7692008-06-02 01:18:21 +00002175 case Instruction::And:
2176 case Instruction::Or:
2177 case Instruction::Xor: // NOT is handled here.
2178 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002179 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002180 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002181 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002182 FirstAnswer = std::min(Tmp, Tmp2);
2183 // We computed what we know about the sign bits as our first
2184 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002185 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002186 }
2187 break;
2188
2189 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002190 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002191 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002192 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002193 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002194
Chris Lattner965c7692008-06-02 01:18:21 +00002195 case Instruction::Add:
2196 // Add can have at most one carry bit. Thus we know that the output
2197 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002198 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002199 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002200
Chris Lattner965c7692008-06-02 01:18:21 +00002201 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002202 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002203 if (CRHS->isAllOnesValue()) {
2204 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002205 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002206
Chris Lattner965c7692008-06-02 01:18:21 +00002207 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2208 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002209 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002210 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002211
Chris Lattner965c7692008-06-02 01:18:21 +00002212 // If we are subtracting one from a positive number, there is no carry
2213 // out of the result.
2214 if (KnownZero.isNegative())
2215 return Tmp;
2216 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002217
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002218 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002219 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002220 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002221
Chris Lattner965c7692008-06-02 01:18:21 +00002222 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002223 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002224 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002225
Chris Lattner965c7692008-06-02 01:18:21 +00002226 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002227 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002228 if (CLHS->isNullValue()) {
2229 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002230 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002231 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2232 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002233 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002234 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002235
Chris Lattner965c7692008-06-02 01:18:21 +00002236 // If the input is known to be positive (the sign bit is known clear),
2237 // the output of the NEG has the same number of sign bits as the input.
2238 if (KnownZero.isNegative())
2239 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002240
Chris Lattner965c7692008-06-02 01:18:21 +00002241 // Otherwise, we treat this like a SUB.
2242 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002243
Chris Lattner965c7692008-06-02 01:18:21 +00002244 // Sub can have at most one carry bit. Thus we know that the output
2245 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002246 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002247 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002248 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002249
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002250 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002251 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002252 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002253 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002254 if (NumIncomingValues > 4) break;
2255 // Unreachable blocks may have zero-operand PHI nodes.
2256 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002257
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002258 // Take the minimum of all incoming values. This can't infinitely loop
2259 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002260 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002261 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002262 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002263 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002264 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002265 }
2266 return Tmp;
2267 }
2268
Chris Lattner965c7692008-06-02 01:18:21 +00002269 case Instruction::Trunc:
2270 // FIXME: it's tricky to do anything useful for this, but it is an important
2271 // case for targets like X86.
2272 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002273
2274 case Instruction::ExtractElement:
2275 // Look through extract element. At the moment we keep this simple and skip
2276 // tracking the specific element. But at least we might find information
2277 // valid for all elements of the vector (for example if vector is sign
2278 // extended, shifted, etc).
2279 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002280 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002281
Chris Lattner965c7692008-06-02 01:18:21 +00002282 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2283 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002284
2285 // If we can examine all elements of a vector constant successfully, we're
2286 // done (we can't do any better than that). If not, keep trying.
2287 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2288 return VecSignBits;
2289
Chris Lattner965c7692008-06-02 01:18:21 +00002290 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002291 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002292
Sanjay Patele0536212016-06-23 17:41:59 +00002293 // If we know that the sign bit is either zero or one, determine the number of
2294 // identical bits in the top of the input value.
2295 if (KnownZero.isNegative())
2296 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002297
Sanjay Patele0536212016-06-23 17:41:59 +00002298 if (KnownOne.isNegative())
2299 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2300
2301 // computeKnownBits gave us no extra information about the top bits.
2302 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002303}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002304
Sanjay Patelaee84212014-11-04 16:27:42 +00002305/// This function computes the integer multiple of Base that equals V.
2306/// If successful, it returns true and returns the multiple in
2307/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002308/// through SExt instructions only if LookThroughSExt is true.
2309bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002310 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002311 const unsigned MaxDepth = 6;
2312
Dan Gohman6a976bb2009-11-18 00:58:27 +00002313 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002314 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002315 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002316
Chris Lattner229907c2011-07-18 04:54:35 +00002317 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002318
Dan Gohman6a976bb2009-11-18 00:58:27 +00002319 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002320
2321 if (Base == 0)
2322 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002323
Victor Hernandez47444882009-11-10 08:28:35 +00002324 if (Base == 1) {
2325 Multiple = V;
2326 return true;
2327 }
2328
2329 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2330 Constant *BaseVal = ConstantInt::get(T, Base);
2331 if (CO && CO == BaseVal) {
2332 // Multiple is 1.
2333 Multiple = ConstantInt::get(T, 1);
2334 return true;
2335 }
2336
2337 if (CI && CI->getZExtValue() % Base == 0) {
2338 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002339 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002340 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002341
Victor Hernandez47444882009-11-10 08:28:35 +00002342 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002343
Victor Hernandez47444882009-11-10 08:28:35 +00002344 Operator *I = dyn_cast<Operator>(V);
2345 if (!I) return false;
2346
2347 switch (I->getOpcode()) {
2348 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002349 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002350 if (!LookThroughSExt) return false;
2351 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002352 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002353 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2354 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002355 case Instruction::Shl:
2356 case Instruction::Mul: {
2357 Value *Op0 = I->getOperand(0);
2358 Value *Op1 = I->getOperand(1);
2359
2360 if (I->getOpcode() == Instruction::Shl) {
2361 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2362 if (!Op1CI) return false;
2363 // Turn Op0 << Op1 into Op0 * 2^Op1
2364 APInt Op1Int = Op1CI->getValue();
2365 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002366 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002367 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002368 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002369 }
2370
Craig Topper9f008862014-04-15 04:59:12 +00002371 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002372 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2373 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2374 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002375 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002376 MulC->getType()->getPrimitiveSizeInBits())
2377 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002378 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002379 MulC->getType()->getPrimitiveSizeInBits())
2380 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002381
Chris Lattner72d283c2010-09-05 17:20:46 +00002382 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2383 Multiple = ConstantExpr::getMul(MulC, Op1C);
2384 return true;
2385 }
Victor Hernandez47444882009-11-10 08:28:35 +00002386
2387 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2388 if (Mul0CI->getValue() == 1) {
2389 // V == Base * Op1, so return Op1
2390 Multiple = Op1;
2391 return true;
2392 }
2393 }
2394
Craig Topper9f008862014-04-15 04:59:12 +00002395 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002396 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2397 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2398 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002399 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002400 MulC->getType()->getPrimitiveSizeInBits())
2401 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002402 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002403 MulC->getType()->getPrimitiveSizeInBits())
2404 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002405
Chris Lattner72d283c2010-09-05 17:20:46 +00002406 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2407 Multiple = ConstantExpr::getMul(MulC, Op0C);
2408 return true;
2409 }
Victor Hernandez47444882009-11-10 08:28:35 +00002410
2411 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2412 if (Mul1CI->getValue() == 1) {
2413 // V == Base * Op0, so return Op0
2414 Multiple = Op0;
2415 return true;
2416 }
2417 }
Victor Hernandez47444882009-11-10 08:28:35 +00002418 }
2419 }
2420
2421 // We could not determine if V is a multiple of Base.
2422 return false;
2423}
2424
David Majnemerb4b27232016-04-19 19:10:21 +00002425Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2426 const TargetLibraryInfo *TLI) {
2427 const Function *F = ICS.getCalledFunction();
2428 if (!F)
2429 return Intrinsic::not_intrinsic;
2430
2431 if (F->isIntrinsic())
2432 return F->getIntrinsicID();
2433
2434 if (!TLI)
2435 return Intrinsic::not_intrinsic;
2436
2437 LibFunc::Func Func;
2438 // We're going to make assumptions on the semantics of the functions, check
2439 // that the target knows that it's available in this environment and it does
2440 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002441 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2442 return Intrinsic::not_intrinsic;
2443
2444 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002445 return Intrinsic::not_intrinsic;
2446
2447 // Otherwise check if we have a call to a function that can be turned into a
2448 // vector intrinsic.
2449 switch (Func) {
2450 default:
2451 break;
2452 case LibFunc::sin:
2453 case LibFunc::sinf:
2454 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002455 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002456 case LibFunc::cos:
2457 case LibFunc::cosf:
2458 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002459 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002460 case LibFunc::exp:
2461 case LibFunc::expf:
2462 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002463 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002464 case LibFunc::exp2:
2465 case LibFunc::exp2f:
2466 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002467 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002468 case LibFunc::log:
2469 case LibFunc::logf:
2470 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002471 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002472 case LibFunc::log10:
2473 case LibFunc::log10f:
2474 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002475 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002476 case LibFunc::log2:
2477 case LibFunc::log2f:
2478 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002479 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002480 case LibFunc::fabs:
2481 case LibFunc::fabsf:
2482 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002483 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002484 case LibFunc::fmin:
2485 case LibFunc::fminf:
2486 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002487 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002488 case LibFunc::fmax:
2489 case LibFunc::fmaxf:
2490 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002491 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002492 case LibFunc::copysign:
2493 case LibFunc::copysignf:
2494 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002495 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002496 case LibFunc::floor:
2497 case LibFunc::floorf:
2498 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002499 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002500 case LibFunc::ceil:
2501 case LibFunc::ceilf:
2502 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002503 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002504 case LibFunc::trunc:
2505 case LibFunc::truncf:
2506 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002507 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002508 case LibFunc::rint:
2509 case LibFunc::rintf:
2510 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002511 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002512 case LibFunc::nearbyint:
2513 case LibFunc::nearbyintf:
2514 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002515 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002516 case LibFunc::round:
2517 case LibFunc::roundf:
2518 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002519 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002520 case LibFunc::pow:
2521 case LibFunc::powf:
2522 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002523 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002524 case LibFunc::sqrt:
2525 case LibFunc::sqrtf:
2526 case LibFunc::sqrtl:
2527 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002528 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002529 return Intrinsic::not_intrinsic;
2530 }
2531
2532 return Intrinsic::not_intrinsic;
2533}
2534
Sanjay Patelaee84212014-11-04 16:27:42 +00002535/// Return true if we can prove that the specified FP value is never equal to
2536/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002537///
2538/// NOTE: this function will need to be revisited when we support non-default
2539/// rounding modes!
2540///
David Majnemer3ee5f342016-04-13 06:55:52 +00002541bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2542 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002543 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2544 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002545
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002546 // FIXME: Magic number! At the least, this should be given a name because it's
2547 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2548 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002549 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002550 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002551
Dan Gohman80ca01c2009-07-17 20:47:02 +00002552 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002553 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002554
2555 // Check if the nsz fast-math flag is set
2556 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2557 if (FPO->hasNoSignedZeros())
2558 return true;
2559
Chris Lattnera12a6de2008-06-02 01:29:46 +00002560 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002561 if (I->getOpcode() == Instruction::FAdd)
2562 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2563 if (CFP->isNullValue())
2564 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002565
Chris Lattnera12a6de2008-06-02 01:29:46 +00002566 // sitofp and uitofp turn into +0.0 for zero.
2567 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2568 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002569
David Majnemer3ee5f342016-04-13 06:55:52 +00002570 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002571 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002572 switch (IID) {
2573 default:
2574 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002575 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002576 case Intrinsic::sqrt:
2577 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2578 // fabs(x) != -0.0
2579 case Intrinsic::fabs:
2580 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002581 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002582 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002583
Chris Lattnera12a6de2008-06-02 01:29:46 +00002584 return false;
2585}
2586
David Majnemer3ee5f342016-04-13 06:55:52 +00002587bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2588 const TargetLibraryInfo *TLI,
2589 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002590 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2591 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2592
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002593 // FIXME: Magic number! At the least, this should be given a name because it's
2594 // used similarly in CannotBeNegativeZero(). A better fix may be to
2595 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002596 if (Depth == 6)
2597 return false; // Limit search depth.
2598
2599 const Operator *I = dyn_cast<Operator>(V);
2600 if (!I) return false;
2601
2602 switch (I->getOpcode()) {
2603 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002604 // Unsigned integers are always nonnegative.
2605 case Instruction::UIToFP:
2606 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002607 case Instruction::FMul:
2608 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002609 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002610 return true;
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002611 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002612 case Instruction::FAdd:
2613 case Instruction::FDiv:
2614 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002615 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2616 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002617 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002618 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2619 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002620 case Instruction::FPExt:
2621 case Instruction::FPTrunc:
2622 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002623 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2624 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002625 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002626 switch (IID) {
2627 default:
2628 break;
2629 case Intrinsic::maxnum:
2630 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2631 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2632 case Intrinsic::minnum:
2633 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2634 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2635 case Intrinsic::exp:
2636 case Intrinsic::exp2:
2637 case Intrinsic::fabs:
2638 case Intrinsic::sqrt:
2639 return true;
2640 case Intrinsic::powi:
2641 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2642 // powi(x,n) is non-negative if n is even.
2643 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2644 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002645 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002646 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2647 case Intrinsic::fma:
2648 case Intrinsic::fmuladd:
2649 // x*x+y is non-negative if y is non-negative.
2650 return I->getOperand(0) == I->getOperand(1) &&
2651 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2652 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002653 break;
2654 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002655 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002656}
2657
Sanjay Patelaee84212014-11-04 16:27:42 +00002658/// If the specified value can be set by repeating the same byte in memory,
2659/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002660/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2661/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2662/// byte store (e.g. i16 0x1234), return null.
2663Value *llvm::isBytewiseValue(Value *V) {
2664 // All byte-wide stores are splatable, even of arbitrary variables.
2665 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002666
2667 // Handle 'null' ConstantArrayZero etc.
2668 if (Constant *C = dyn_cast<Constant>(V))
2669 if (C->isNullValue())
2670 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002671
Chris Lattner9cb10352010-12-26 20:15:01 +00002672 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002673 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002674 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2675 if (CFP->getType()->isFloatTy())
2676 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2677 if (CFP->getType()->isDoubleTy())
2678 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2679 // Don't handle long double formats, which have strange constraints.
2680 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002681
Benjamin Kramer17d90152015-02-07 19:29:02 +00002682 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002683 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002684 if (CI->getBitWidth() % 8 == 0) {
2685 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002686
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002687 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002688 return nullptr;
2689 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002690 }
2691 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002692
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002693 // A ConstantDataArray/Vector is splatable if all its members are equal and
2694 // also splatable.
2695 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2696 Value *Elt = CA->getElementAsConstant(0);
2697 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002698 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002699 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002700
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002701 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2702 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002703 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002704
Chris Lattner9cb10352010-12-26 20:15:01 +00002705 return Val;
2706 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002707
Chris Lattner9cb10352010-12-26 20:15:01 +00002708 // Conceptually, we could handle things like:
2709 // %a = zext i8 %X to i16
2710 // %b = shl i16 %a, 8
2711 // %c = or i16 %a, %b
2712 // but until there is an example that actually needs this, it doesn't seem
2713 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002714 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002715}
2716
2717
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002718// This is the recursive version of BuildSubAggregate. It takes a few different
2719// arguments. Idxs is the index within the nested struct From that we are
2720// looking at now (which is of type IndexedType). IdxSkip is the number of
2721// indices from Idxs that should be left out when inserting into the resulting
2722// struct. To is the result struct built so far, new insertvalue instructions
2723// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002724static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002725 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002726 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002727 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002728 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002729 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002730 // Save the original To argument so we can modify it
2731 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002732 // General case, the type indexed by Idxs is a struct
2733 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2734 // Process each struct element recursively
2735 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002736 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002737 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002738 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002739 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002740 if (!To) {
2741 // Couldn't find any inserted value for this index? Cleanup
2742 while (PrevTo != OrigTo) {
2743 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2744 PrevTo = Del->getAggregateOperand();
2745 Del->eraseFromParent();
2746 }
2747 // Stop processing elements
2748 break;
2749 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002750 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002751 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002752 if (To)
2753 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002754 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002755 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2756 // the struct's elements had a value that was inserted directly. In the latter
2757 // case, perhaps we can't determine each of the subelements individually, but
2758 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002759
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002760 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002761 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002762
2763 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002764 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002765
2766 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002767 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002768 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002769}
2770
2771// This helper takes a nested struct and extracts a part of it (which is again a
2772// struct) into a new value. For example, given the struct:
2773// { a, { b, { c, d }, e } }
2774// and the indices "1, 1" this returns
2775// { c, d }.
2776//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002777// It does this by inserting an insertvalue for each element in the resulting
2778// struct, as opposed to just inserting a single struct. This will only work if
2779// each of the elements of the substruct are known (ie, inserted into From by an
2780// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002781//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002782// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002783static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002784 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002785 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002786 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002787 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002788 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002789 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002790 unsigned IdxSkip = Idxs.size();
2791
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002792 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002793}
2794
Sanjay Patelaee84212014-11-04 16:27:42 +00002795/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002796/// the scalar value indexed is already around as a register, for example if it
2797/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002798///
2799/// If InsertBefore is not null, this function will duplicate (modified)
2800/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002801Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2802 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002803 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002804 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002805 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002806 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002807 // We have indices, so V should have an indexable type.
2808 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2809 "Not looking at a struct or array?");
2810 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2811 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002812
Chris Lattner67058832012-01-25 06:48:06 +00002813 if (Constant *C = dyn_cast<Constant>(V)) {
2814 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002815 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002816 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2817 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002818
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002819 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002820 // Loop the indices for the insertvalue instruction in parallel with the
2821 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002822 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002823 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2824 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002825 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002826 // We can't handle this without inserting insertvalues
2827 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002828 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002829
2830 // The requested index identifies a part of a nested aggregate. Handle
2831 // this specially. For example,
2832 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2833 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2834 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2835 // This can be changed into
2836 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2837 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2838 // which allows the unused 0,0 element from the nested struct to be
2839 // removed.
2840 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2841 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002842 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002843
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002844 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002845 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002846 // looking for, then.
2847 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002848 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002849 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002850 }
2851 // If we end up here, the indices of the insertvalue match with those
2852 // requested (though possibly only partially). Now we recursively look at
2853 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002854 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002855 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002856 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002857 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002858
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002859 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002860 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002861 // something else, we can extract from that something else directly instead.
2862 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002863
2864 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002865 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002866 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002867 SmallVector<unsigned, 5> Idxs;
2868 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002869 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002870 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002871
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002872 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002873 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002874
Craig Topper1bef2c82012-12-22 19:15:35 +00002875 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002876 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002877
Jay Foad57aa6362011-07-13 10:26:04 +00002878 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002879 }
2880 // Otherwise, we don't know (such as, extracting from a function return value
2881 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002882 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002883}
Evan Chengda3db112008-06-30 07:31:25 +00002884
Sanjay Patelaee84212014-11-04 16:27:42 +00002885/// Analyze the specified pointer to see if it can be expressed as a base
2886/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002887Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002888 const DataLayout &DL) {
2889 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002890 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002891
2892 // We walk up the defs but use a visited set to handle unreachable code. In
2893 // that case, we stop after accumulating the cycle once (not that it
2894 // matters).
2895 SmallPtrSet<Value *, 16> Visited;
2896 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002897 if (Ptr->getType()->isVectorTy())
2898 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002899
Nuno Lopes368c4d02012-12-31 20:48:35 +00002900 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002901 // If one of the values we have visited is an addrspacecast, then
2902 // the pointer type of this GEP may be different from the type
2903 // of the Ptr parameter which was passed to this function. This
2904 // means when we construct GEPOffset, we need to use the size
2905 // of GEP's pointer type rather than the size of the original
2906 // pointer type.
2907 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002908 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2909 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002910
Tom Stellard17eb3412016-10-07 14:23:29 +00002911 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002912
Nuno Lopes368c4d02012-12-31 20:48:35 +00002913 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002914 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2915 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002916 Ptr = cast<Operator>(Ptr)->getOperand(0);
2917 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002918 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002919 break;
2920 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002921 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002922 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002923 }
2924 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002925 Offset = ByteOffset.getSExtValue();
2926 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002927}
2928
David L Kreitzer752c1442016-04-13 14:31:06 +00002929bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2930 // Make sure the GEP has exactly three arguments.
2931 if (GEP->getNumOperands() != 3)
2932 return false;
2933
2934 // Make sure the index-ee is a pointer to array of i8.
2935 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2936 if (!AT || !AT->getElementType()->isIntegerTy(8))
2937 return false;
2938
2939 // Check to make sure that the first operand of the GEP is an integer and
2940 // has value 0 so that we are sure we're indexing into the initializer.
2941 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2942 if (!FirstIdx || !FirstIdx->isZero())
2943 return false;
2944
2945 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002946}
Chris Lattnere28618d2010-11-30 22:25:26 +00002947
Sanjay Patelaee84212014-11-04 16:27:42 +00002948/// This function computes the length of a null-terminated C string pointed to
2949/// by V. If successful, it returns true and returns the string in Str.
2950/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002951bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2952 uint64_t Offset, bool TrimAtNul) {
2953 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002954
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002955 // Look through bitcast instructions and geps.
2956 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002957
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002958 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002959 // offset.
2960 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002961 // The GEP operator should be based on a pointer to string constant, and is
2962 // indexing into the string constant.
2963 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002964 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002965
Evan Chengda3db112008-06-30 07:31:25 +00002966 // If the second index isn't a ConstantInt, then this is a variable index
2967 // into the array. If this occurs, we can't say anything meaningful about
2968 // the string.
2969 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002970 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002971 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002972 else
2973 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002974 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2975 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002976 }
Nick Lewycky46209882011-10-20 00:34:35 +00002977
Evan Chengda3db112008-06-30 07:31:25 +00002978 // The GEP instruction, constant or instruction, must reference a global
2979 // variable that is a constant and is initialized. The referenced constant
2980 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002981 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002982 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002983 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002984
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002985 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002986 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002987 // This is a degenerate case. The initializer is constant zero so the
2988 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002989 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002990 return true;
2991 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002992
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002993 // This must be a ConstantDataArray.
2994 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002995 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002996 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002997
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002998 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002999 uint64_t NumElts = Array->getType()->getArrayNumElements();
3000
3001 // Start out with the entire array in the StringRef.
3002 Str = Array->getAsString();
3003
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003004 if (Offset > NumElts)
3005 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003006
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003007 // Skip over 'offset' bytes.
3008 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003009
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003010 if (TrimAtNul) {
3011 // Trim off the \0 and anything after it. If the array is not nul
3012 // terminated, we just return the whole end of string. The client may know
3013 // some other way that the string is length-bound.
3014 Str = Str.substr(0, Str.find('\0'));
3015 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003016 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003017}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003018
3019// These next two are very similar to the above, but also look through PHI
3020// nodes.
3021// TODO: See if we can integrate these two together.
3022
Sanjay Patelaee84212014-11-04 16:27:42 +00003023/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003024/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003025static uint64_t GetStringLengthH(const Value *V,
3026 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003027 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003028 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003029
3030 // If this is a PHI node, there are two cases: either we have already seen it
3031 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003032 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003033 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003034 return ~0ULL; // already in the set.
3035
3036 // If it was new, see if all the input strings are the same length.
3037 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003038 for (Value *IncValue : PN->incoming_values()) {
3039 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003040 if (Len == 0) return 0; // Unknown length -> unknown.
3041
3042 if (Len == ~0ULL) continue;
3043
3044 if (Len != LenSoFar && LenSoFar != ~0ULL)
3045 return 0; // Disagree -> unknown.
3046 LenSoFar = Len;
3047 }
3048
3049 // Success, all agree.
3050 return LenSoFar;
3051 }
3052
3053 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003054 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003055 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3056 if (Len1 == 0) return 0;
3057 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3058 if (Len2 == 0) return 0;
3059 if (Len1 == ~0ULL) return Len2;
3060 if (Len2 == ~0ULL) return Len1;
3061 if (Len1 != Len2) return 0;
3062 return Len1;
3063 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003064
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003065 // Otherwise, see if we can read the string.
3066 StringRef StrData;
3067 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003068 return 0;
3069
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003070 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003071}
3072
Sanjay Patelaee84212014-11-04 16:27:42 +00003073/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003074/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003075uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003076 if (!V->getType()->isPointerTy()) return 0;
3077
Pete Cooper35b00d52016-08-13 01:05:32 +00003078 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003079 uint64_t Len = GetStringLengthH(V, PHIs);
3080 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3081 // an empty string as a length.
3082 return Len == ~0ULL ? 1 : Len;
3083}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003084
Adam Nemete2b885c2015-04-23 20:09:20 +00003085/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3086/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003087static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3088 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003089 // Find the loop-defined value.
3090 Loop *L = LI->getLoopFor(PN->getParent());
3091 if (PN->getNumIncomingValues() != 2)
3092 return true;
3093
3094 // Find the value from previous iteration.
3095 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3096 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3097 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3098 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3099 return true;
3100
3101 // If a new pointer is loaded in the loop, the pointer references a different
3102 // object in every iteration. E.g.:
3103 // for (i)
3104 // int *p = a[i];
3105 // ...
3106 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3107 if (!L->isLoopInvariant(Load->getPointerOperand()))
3108 return false;
3109 return true;
3110}
3111
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003112Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3113 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003114 if (!V->getType()->isPointerTy())
3115 return V;
3116 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3117 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3118 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003119 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3120 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003121 V = cast<Operator>(V)->getOperand(0);
3122 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003123 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003124 return V;
3125 V = GA->getAliasee();
3126 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003127 if (auto CS = CallSite(V))
3128 if (Value *RV = CS.getReturnedArgOperand()) {
3129 V = RV;
3130 continue;
3131 }
3132
Dan Gohman05b18f12010-12-15 20:49:55 +00003133 // See if InstructionSimplify knows any relevant tricks.
3134 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003135 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003136 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003137 V = Simplified;
3138 continue;
3139 }
3140
Dan Gohmana4fcd242010-12-15 20:02:24 +00003141 return V;
3142 }
3143 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3144 }
3145 return V;
3146}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003147
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003148void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003149 const DataLayout &DL, LoopInfo *LI,
3150 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003151 SmallPtrSet<Value *, 4> Visited;
3152 SmallVector<Value *, 4> Worklist;
3153 Worklist.push_back(V);
3154 do {
3155 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003156 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003157
David Blaikie70573dc2014-11-19 07:49:26 +00003158 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003159 continue;
3160
3161 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3162 Worklist.push_back(SI->getTrueValue());
3163 Worklist.push_back(SI->getFalseValue());
3164 continue;
3165 }
3166
3167 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003168 // If this PHI changes the underlying object in every iteration of the
3169 // loop, don't look through it. Consider:
3170 // int **A;
3171 // for (i) {
3172 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3173 // Curr = A[i];
3174 // *Prev, *Curr;
3175 //
3176 // Prev is tracking Curr one iteration behind so they refer to different
3177 // underlying objects.
3178 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3179 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003180 for (Value *IncValue : PN->incoming_values())
3181 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003182 continue;
3183 }
3184
3185 Objects.push_back(P);
3186 } while (!Worklist.empty());
3187}
3188
Sanjay Patelaee84212014-11-04 16:27:42 +00003189/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003190bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003191 for (const User *U : V->users()) {
3192 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003193 if (!II) return false;
3194
3195 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3196 II->getIntrinsicID() != Intrinsic::lifetime_end)
3197 return false;
3198 }
3199 return true;
3200}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003201
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003202bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3203 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003204 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003205 const Operator *Inst = dyn_cast<Operator>(V);
3206 if (!Inst)
3207 return false;
3208
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003209 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3210 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3211 if (C->canTrap())
3212 return false;
3213
3214 switch (Inst->getOpcode()) {
3215 default:
3216 return true;
3217 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003218 case Instruction::URem: {
3219 // x / y is undefined if y == 0.
3220 const APInt *V;
3221 if (match(Inst->getOperand(1), m_APInt(V)))
3222 return *V != 0;
3223 return false;
3224 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003225 case Instruction::SDiv:
3226 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003227 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003228 const APInt *Numerator, *Denominator;
3229 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3230 return false;
3231 // We cannot hoist this division if the denominator is 0.
3232 if (*Denominator == 0)
3233 return false;
3234 // It's safe to hoist if the denominator is not 0 or -1.
3235 if (*Denominator != -1)
3236 return true;
3237 // At this point we know that the denominator is -1. It is safe to hoist as
3238 // long we know that the numerator is not INT_MIN.
3239 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3240 return !Numerator->isMinSignedValue();
3241 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003242 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003243 }
3244 case Instruction::Load: {
3245 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003246 if (!LI->isUnordered() ||
3247 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003248 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003249 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003250 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003251 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003252 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003253 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3254 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003255 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003256 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003257 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3258 switch (II->getIntrinsicID()) {
3259 // These synthetic intrinsics have no side-effects and just mark
3260 // information about their operands.
3261 // FIXME: There are other no-op synthetic instructions that potentially
3262 // should be considered at least *safe* to speculate...
3263 case Intrinsic::dbg_declare:
3264 case Intrinsic::dbg_value:
3265 return true;
3266
3267 case Intrinsic::bswap:
3268 case Intrinsic::ctlz:
3269 case Intrinsic::ctpop:
3270 case Intrinsic::cttz:
3271 case Intrinsic::objectsize:
3272 case Intrinsic::sadd_with_overflow:
3273 case Intrinsic::smul_with_overflow:
3274 case Intrinsic::ssub_with_overflow:
3275 case Intrinsic::uadd_with_overflow:
3276 case Intrinsic::umul_with_overflow:
3277 case Intrinsic::usub_with_overflow:
3278 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003279 // These intrinsics are defined to have the same behavior as libm
3280 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003281 case Intrinsic::sqrt:
3282 case Intrinsic::fma:
3283 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003284 return true;
3285 // These intrinsics are defined to have the same behavior as libm
3286 // functions, and the corresponding libm functions never set errno.
3287 case Intrinsic::trunc:
3288 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003289 case Intrinsic::fabs:
3290 case Intrinsic::minnum:
3291 case Intrinsic::maxnum:
3292 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003293 // These intrinsics are defined to have the same behavior as libm
3294 // functions, which never overflow when operating on the IEEE754 types
3295 // that we support, and never set errno otherwise.
3296 case Intrinsic::ceil:
3297 case Intrinsic::floor:
3298 case Intrinsic::nearbyint:
3299 case Intrinsic::rint:
3300 case Intrinsic::round:
3301 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003302 // TODO: are convert_{from,to}_fp16 safe?
3303 // TODO: can we list target-specific intrinsics here?
3304 default: break;
3305 }
3306 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003307 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003308 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003309 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003310 case Instruction::VAArg:
3311 case Instruction::Alloca:
3312 case Instruction::Invoke:
3313 case Instruction::PHI:
3314 case Instruction::Store:
3315 case Instruction::Ret:
3316 case Instruction::Br:
3317 case Instruction::IndirectBr:
3318 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003319 case Instruction::Unreachable:
3320 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003321 case Instruction::AtomicRMW:
3322 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003323 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003324 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003325 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003326 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003327 case Instruction::CatchRet:
3328 case Instruction::CleanupPad:
3329 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003330 return false; // Misc instructions which have effects
3331 }
3332}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003333
Quentin Colombet6443cce2015-08-06 18:44:34 +00003334bool llvm::mayBeMemoryDependent(const Instruction &I) {
3335 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3336}
3337
Sanjay Patelaee84212014-11-04 16:27:42 +00003338/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003339bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003340 assert(V->getType()->isPointerTy() && "V must be pointer type");
3341
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003342 // Alloca never returns null, malloc might.
3343 if (isa<AllocaInst>(V)) return true;
3344
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003345 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003346 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003347 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003348
Pete Cooper6b716212015-08-27 03:16:29 +00003349 // A global variable in address space 0 is non null unless extern weak.
3350 // Other address spaces may have null as a valid address for a global,
3351 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003352 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003353 return !GV->hasExternalWeakLinkage() &&
3354 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003355
Sanjoy Das5056e192016-05-07 02:08:22 +00003356 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003357 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003358 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003359
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003360 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003361 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003362 return true;
3363
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003364 return false;
3365}
David Majnemer491331a2015-01-02 07:29:43 +00003366
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003367static bool isKnownNonNullFromDominatingCondition(const Value *V,
3368 const Instruction *CtxI,
3369 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003370 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003371 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Chen Li0d043b52015-09-14 18:10:43 +00003372
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003373 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003374 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003375 // Avoid massive lists
3376 if (NumUsesExplored >= DomConditionsMaxUses)
3377 break;
3378 NumUsesExplored++;
3379 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003380 CmpInst::Predicate Pred;
3381 if (!match(const_cast<User *>(U),
3382 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3383 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003384 continue;
3385
Sanjoy Das987aaa12016-05-07 02:08:24 +00003386 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003387 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3388 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003389
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003390 BasicBlock *NonNullSuccessor =
3391 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3392 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3393 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3394 return true;
3395 } else if (Pred == ICmpInst::ICMP_NE &&
3396 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3397 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003398 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003399 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003400 }
3401 }
3402
3403 return false;
3404}
3405
3406bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003407 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003408 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3409 return false;
3410
Sean Silva45835e72016-07-02 23:47:27 +00003411 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003412 return true;
3413
3414 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3415}
3416
Pete Cooper35b00d52016-08-13 01:05:32 +00003417OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3418 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003419 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003420 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003421 const Instruction *CxtI,
3422 const DominatorTree *DT) {
3423 // Multiplying n * m significant bits yields a result of n + m significant
3424 // bits. If the total number of significant bits does not exceed the
3425 // result bit width (minus 1), there is no overflow.
3426 // This means if we have enough leading zero bits in the operands
3427 // we can guarantee that the result does not overflow.
3428 // Ref: "Hacker's Delight" by Henry Warren
3429 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3430 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003431 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003432 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003433 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003434 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3435 DT);
3436 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3437 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003438 // Note that underestimating the number of zero bits gives a more
3439 // conservative answer.
3440 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3441 RHSKnownZero.countLeadingOnes();
3442 // First handle the easy case: if we have enough zero bits there's
3443 // definitely no overflow.
3444 if (ZeroBits >= BitWidth)
3445 return OverflowResult::NeverOverflows;
3446
3447 // Get the largest possible values for each operand.
3448 APInt LHSMax = ~LHSKnownZero;
3449 APInt RHSMax = ~RHSKnownZero;
3450
3451 // We know the multiply operation doesn't overflow if the maximum values for
3452 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003453 bool MaxOverflow;
3454 LHSMax.umul_ov(RHSMax, MaxOverflow);
3455 if (!MaxOverflow)
3456 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003457
David Majnemerc8a576b2015-01-02 07:29:47 +00003458 // We know it always overflows if multiplying the smallest possible values for
3459 // the operands also results in overflow.
3460 bool MinOverflow;
3461 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3462 if (MinOverflow)
3463 return OverflowResult::AlwaysOverflows;
3464
3465 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003466}
David Majnemer5310c1e2015-01-07 00:39:50 +00003467
Pete Cooper35b00d52016-08-13 01:05:32 +00003468OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3469 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003470 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003471 AssumptionCache *AC,
3472 const Instruction *CxtI,
3473 const DominatorTree *DT) {
3474 bool LHSKnownNonNegative, LHSKnownNegative;
3475 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3476 AC, CxtI, DT);
3477 if (LHSKnownNonNegative || LHSKnownNegative) {
3478 bool RHSKnownNonNegative, RHSKnownNegative;
3479 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3480 AC, CxtI, DT);
3481
3482 if (LHSKnownNegative && RHSKnownNegative) {
3483 // The sign bit is set in both cases: this MUST overflow.
3484 // Create a simple add instruction, and insert it into the struct.
3485 return OverflowResult::AlwaysOverflows;
3486 }
3487
3488 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3489 // The sign bit is clear in both cases: this CANNOT overflow.
3490 // Create a simple add instruction, and insert it into the struct.
3491 return OverflowResult::NeverOverflows;
3492 }
3493 }
3494
3495 return OverflowResult::MayOverflow;
3496}
James Molloy71b91c22015-05-11 14:42:20 +00003497
Pete Cooper35b00d52016-08-13 01:05:32 +00003498static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3499 const Value *RHS,
3500 const AddOperator *Add,
3501 const DataLayout &DL,
3502 AssumptionCache *AC,
3503 const Instruction *CxtI,
3504 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003505 if (Add && Add->hasNoSignedWrap()) {
3506 return OverflowResult::NeverOverflows;
3507 }
3508
3509 bool LHSKnownNonNegative, LHSKnownNegative;
3510 bool RHSKnownNonNegative, RHSKnownNegative;
3511 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3512 AC, CxtI, DT);
3513 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3514 AC, CxtI, DT);
3515
3516 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3517 (LHSKnownNegative && RHSKnownNonNegative)) {
3518 // The sign bits are opposite: this CANNOT overflow.
3519 return OverflowResult::NeverOverflows;
3520 }
3521
3522 // The remaining code needs Add to be available. Early returns if not so.
3523 if (!Add)
3524 return OverflowResult::MayOverflow;
3525
3526 // If the sign of Add is the same as at least one of the operands, this add
3527 // CANNOT overflow. This is particularly useful when the sum is
3528 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3529 // operands.
3530 bool LHSOrRHSKnownNonNegative =
3531 (LHSKnownNonNegative || RHSKnownNonNegative);
3532 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3533 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3534 bool AddKnownNonNegative, AddKnownNegative;
3535 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3536 /*Depth=*/0, AC, CxtI, DT);
3537 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3538 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3539 return OverflowResult::NeverOverflows;
3540 }
3541 }
3542
3543 return OverflowResult::MayOverflow;
3544}
3545
Pete Cooper35b00d52016-08-13 01:05:32 +00003546bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3547 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003548#ifndef NDEBUG
3549 auto IID = II->getIntrinsicID();
3550 assert((IID == Intrinsic::sadd_with_overflow ||
3551 IID == Intrinsic::uadd_with_overflow ||
3552 IID == Intrinsic::ssub_with_overflow ||
3553 IID == Intrinsic::usub_with_overflow ||
3554 IID == Intrinsic::smul_with_overflow ||
3555 IID == Intrinsic::umul_with_overflow) &&
3556 "Not an overflow intrinsic!");
3557#endif
3558
Pete Cooper35b00d52016-08-13 01:05:32 +00003559 SmallVector<const BranchInst *, 2> GuardingBranches;
3560 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003561
Pete Cooper35b00d52016-08-13 01:05:32 +00003562 for (const User *U : II->users()) {
3563 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003564 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3565
3566 if (EVI->getIndices()[0] == 0)
3567 Results.push_back(EVI);
3568 else {
3569 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3570
Pete Cooper35b00d52016-08-13 01:05:32 +00003571 for (const auto *U : EVI->users())
3572 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003573 assert(B->isConditional() && "How else is it using an i1?");
3574 GuardingBranches.push_back(B);
3575 }
3576 }
3577 } else {
3578 // We are using the aggregate directly in a way we don't want to analyze
3579 // here (storing it to a global, say).
3580 return false;
3581 }
3582 }
3583
Pete Cooper35b00d52016-08-13 01:05:32 +00003584 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003585 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3586 if (!NoWrapEdge.isSingleEdge())
3587 return false;
3588
3589 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003590 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003591 // If the extractvalue itself is not executed on overflow, the we don't
3592 // need to check each use separately, since domination is transitive.
3593 if (DT.dominates(NoWrapEdge, Result->getParent()))
3594 continue;
3595
3596 for (auto &RU : Result->uses())
3597 if (!DT.dominates(NoWrapEdge, RU))
3598 return false;
3599 }
3600
3601 return true;
3602 };
3603
3604 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3605}
3606
3607
Pete Cooper35b00d52016-08-13 01:05:32 +00003608OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003609 const DataLayout &DL,
3610 AssumptionCache *AC,
3611 const Instruction *CxtI,
3612 const DominatorTree *DT) {
3613 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3614 Add, DL, AC, CxtI, DT);
3615}
3616
Pete Cooper35b00d52016-08-13 01:05:32 +00003617OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3618 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003619 const DataLayout &DL,
3620 AssumptionCache *AC,
3621 const Instruction *CxtI,
3622 const DominatorTree *DT) {
3623 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3624}
3625
Jingyue Wu42f1d672015-07-28 18:22:40 +00003626bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003627 // A memory operation returns normally if it isn't volatile. A volatile
3628 // operation is allowed to trap.
3629 //
3630 // An atomic operation isn't guaranteed to return in a reasonable amount of
3631 // time because it's possible for another thread to interfere with it for an
3632 // arbitrary length of time, but programs aren't allowed to rely on that.
3633 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3634 return !LI->isVolatile();
3635 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3636 return !SI->isVolatile();
3637 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3638 return !CXI->isVolatile();
3639 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3640 return !RMWI->isVolatile();
3641 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3642 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003643
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003644 // If there is no successor, then execution can't transfer to it.
3645 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3646 return !CRI->unwindsToCaller();
3647 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3648 return !CatchSwitch->unwindsToCaller();
3649 if (isa<ResumeInst>(I))
3650 return false;
3651 if (isa<ReturnInst>(I))
3652 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003653
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003654 // Calls can throw, or contain an infinite loop, or kill the process.
3655 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3656 // Calls which don't write to arbitrary memory are safe.
3657 // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3658 // but it's consistent with other passes. See http://llvm.org/PR965 .
3659 // FIXME: This isn't aggressive enough; a call which only writes to a
3660 // global is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003661 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3662 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003663 }
3664
3665 // Other instructions return normally.
3666 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003667}
3668
3669bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3670 const Loop *L) {
3671 // The loop header is guaranteed to be executed for every iteration.
3672 //
3673 // FIXME: Relax this constraint to cover all basic blocks that are
3674 // guaranteed to be executed at every iteration.
3675 if (I->getParent() != L->getHeader()) return false;
3676
3677 for (const Instruction &LI : *L->getHeader()) {
3678 if (&LI == I) return true;
3679 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3680 }
3681 llvm_unreachable("Instruction not contained in its own parent basic block.");
3682}
3683
3684bool llvm::propagatesFullPoison(const Instruction *I) {
3685 switch (I->getOpcode()) {
3686 case Instruction::Add:
3687 case Instruction::Sub:
3688 case Instruction::Xor:
3689 case Instruction::Trunc:
3690 case Instruction::BitCast:
3691 case Instruction::AddrSpaceCast:
3692 // These operations all propagate poison unconditionally. Note that poison
3693 // is not any particular value, so xor or subtraction of poison with
3694 // itself still yields poison, not zero.
3695 return true;
3696
3697 case Instruction::AShr:
3698 case Instruction::SExt:
3699 // For these operations, one bit of the input is replicated across
3700 // multiple output bits. A replicated poison bit is still poison.
3701 return true;
3702
3703 case Instruction::Shl: {
3704 // Left shift *by* a poison value is poison. The number of
3705 // positions to shift is unsigned, so no negative values are
3706 // possible there. Left shift by zero places preserves poison. So
3707 // it only remains to consider left shift of poison by a positive
3708 // number of places.
3709 //
3710 // A left shift by a positive number of places leaves the lowest order bit
3711 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3712 // make the poison operand violate that flag, yielding a fresh full-poison
3713 // value.
3714 auto *OBO = cast<OverflowingBinaryOperator>(I);
3715 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3716 }
3717
3718 case Instruction::Mul: {
3719 // A multiplication by zero yields a non-poison zero result, so we need to
3720 // rule out zero as an operand. Conservatively, multiplication by a
3721 // non-zero constant is not multiplication by zero.
3722 //
3723 // Multiplication by a non-zero constant can leave some bits
3724 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3725 // order bit unpoisoned. So we need to consider that.
3726 //
3727 // Multiplication by 1 preserves poison. If the multiplication has a
3728 // no-wrap flag, then we can make the poison operand violate that flag
3729 // when multiplied by any integer other than 0 and 1.
3730 auto *OBO = cast<OverflowingBinaryOperator>(I);
3731 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3732 for (Value *V : OBO->operands()) {
3733 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3734 // A ConstantInt cannot yield poison, so we can assume that it is
3735 // the other operand that is poison.
3736 return !CI->isZero();
3737 }
3738 }
3739 }
3740 return false;
3741 }
3742
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003743 case Instruction::ICmp:
3744 // Comparing poison with any value yields poison. This is why, for
3745 // instance, x s< (x +nsw 1) can be folded to true.
3746 return true;
3747
Jingyue Wu42f1d672015-07-28 18:22:40 +00003748 case Instruction::GetElementPtr:
3749 // A GEP implicitly represents a sequence of additions, subtractions,
3750 // truncations, sign extensions and multiplications. The multiplications
3751 // are by the non-zero sizes of some set of types, so we do not have to be
3752 // concerned with multiplication by zero. If the GEP is in-bounds, then
3753 // these operations are implicitly no-signed-wrap so poison is propagated
3754 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3755 return cast<GEPOperator>(I)->isInBounds();
3756
3757 default:
3758 return false;
3759 }
3760}
3761
3762const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3763 switch (I->getOpcode()) {
3764 case Instruction::Store:
3765 return cast<StoreInst>(I)->getPointerOperand();
3766
3767 case Instruction::Load:
3768 return cast<LoadInst>(I)->getPointerOperand();
3769
3770 case Instruction::AtomicCmpXchg:
3771 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3772
3773 case Instruction::AtomicRMW:
3774 return cast<AtomicRMWInst>(I)->getPointerOperand();
3775
3776 case Instruction::UDiv:
3777 case Instruction::SDiv:
3778 case Instruction::URem:
3779 case Instruction::SRem:
3780 return I->getOperand(1);
3781
3782 default:
3783 return nullptr;
3784 }
3785}
3786
3787bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3788 // We currently only look for uses of poison values within the same basic
3789 // block, as that makes it easier to guarantee that the uses will be
3790 // executed given that PoisonI is executed.
3791 //
3792 // FIXME: Expand this to consider uses beyond the same basic block. To do
3793 // this, look out for the distinction between post-dominance and strong
3794 // post-dominance.
3795 const BasicBlock *BB = PoisonI->getParent();
3796
3797 // Set of instructions that we have proved will yield poison if PoisonI
3798 // does.
3799 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003800 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003801 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003802 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003803
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003804 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003805
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003806 unsigned Iter = 0;
3807 while (Iter++ < MaxDepth) {
3808 for (auto &I : make_range(Begin, End)) {
3809 if (&I != PoisonI) {
3810 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3811 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3812 return true;
3813 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3814 return false;
3815 }
3816
3817 // Mark poison that propagates from I through uses of I.
3818 if (YieldsPoison.count(&I)) {
3819 for (const User *User : I.users()) {
3820 const Instruction *UserI = cast<Instruction>(User);
3821 if (propagatesFullPoison(UserI))
3822 YieldsPoison.insert(User);
3823 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003824 }
3825 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003826
3827 if (auto *NextBB = BB->getSingleSuccessor()) {
3828 if (Visited.insert(NextBB).second) {
3829 BB = NextBB;
3830 Begin = BB->getFirstNonPHI()->getIterator();
3831 End = BB->end();
3832 continue;
3833 }
3834 }
3835
3836 break;
3837 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003838 return false;
3839}
3840
Pete Cooper35b00d52016-08-13 01:05:32 +00003841static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003842 if (FMF.noNaNs())
3843 return true;
3844
3845 if (auto *C = dyn_cast<ConstantFP>(V))
3846 return !C->isNaN();
3847 return false;
3848}
3849
Pete Cooper35b00d52016-08-13 01:05:32 +00003850static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003851 if (auto *C = dyn_cast<ConstantFP>(V))
3852 return !C->isZero();
3853 return false;
3854}
3855
Sanjay Patel819f0962016-11-13 19:30:19 +00003856/// Match non-obvious integer minimum and maximum sequences.
3857static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3858 Value *CmpLHS, Value *CmpRHS,
3859 Value *TrueVal, Value *FalseVal,
3860 Value *&LHS, Value *&RHS) {
3861 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3862 return {SPF_UNKNOWN, SPNB_NA, false};
3863
3864 const APInt *C1;
3865 if (!match(CmpRHS, m_APInt(C1)))
3866 return {SPF_UNKNOWN, SPNB_NA, false};
3867
3868 // An unsigned min/max can be written with a signed compare.
3869 const APInt *C2;
3870 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3871 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3872 // Is the sign bit set?
3873 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
3874 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
3875 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) {
3876 LHS = TrueVal;
3877 RHS = FalseVal;
3878 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3879 }
3880
3881 // Is the sign bit clear?
3882 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
3883 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
3884 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
3885 C2->isMinSignedValue()) {
3886 LHS = TrueVal;
3887 RHS = FalseVal;
3888 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3889 }
3890 }
3891
3892 // Look through 'not' ops to find disguised signed min/max.
3893 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
3894 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
3895 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
3896 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) {
3897 LHS = TrueVal;
3898 RHS = FalseVal;
3899 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3900 }
3901
3902 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
3903 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
3904 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
3905 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) {
3906 LHS = TrueVal;
3907 RHS = FalseVal;
3908 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3909 }
3910
3911 return {SPF_UNKNOWN, SPNB_NA, false};
3912}
3913
James Molloy134bec22015-08-11 09:12:57 +00003914static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3915 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003916 Value *CmpLHS, Value *CmpRHS,
3917 Value *TrueVal, Value *FalseVal,
3918 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003919 LHS = CmpLHS;
3920 RHS = CmpRHS;
3921
James Molloy134bec22015-08-11 09:12:57 +00003922 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3923 // return inconsistent results between implementations.
3924 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3925 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3926 // Therefore we behave conservatively and only proceed if at least one of the
3927 // operands is known to not be zero, or if we don't care about signed zeroes.
3928 switch (Pred) {
3929 default: break;
3930 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3931 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3932 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3933 !isKnownNonZero(CmpRHS))
3934 return {SPF_UNKNOWN, SPNB_NA, false};
3935 }
3936
3937 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3938 bool Ordered = false;
3939
3940 // When given one NaN and one non-NaN input:
3941 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3942 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3943 // ordered comparison fails), which could be NaN or non-NaN.
3944 // so here we discover exactly what NaN behavior is required/accepted.
3945 if (CmpInst::isFPPredicate(Pred)) {
3946 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3947 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3948
3949 if (LHSSafe && RHSSafe) {
3950 // Both operands are known non-NaN.
3951 NaNBehavior = SPNB_RETURNS_ANY;
3952 } else if (CmpInst::isOrdered(Pred)) {
3953 // An ordered comparison will return false when given a NaN, so it
3954 // returns the RHS.
3955 Ordered = true;
3956 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003957 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003958 NaNBehavior = SPNB_RETURNS_NAN;
3959 else if (RHSSafe)
3960 NaNBehavior = SPNB_RETURNS_OTHER;
3961 else
3962 // Completely unsafe.
3963 return {SPF_UNKNOWN, SPNB_NA, false};
3964 } else {
3965 Ordered = false;
3966 // An unordered comparison will return true when given a NaN, so it
3967 // returns the LHS.
3968 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003969 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003970 NaNBehavior = SPNB_RETURNS_OTHER;
3971 else if (RHSSafe)
3972 NaNBehavior = SPNB_RETURNS_NAN;
3973 else
3974 // Completely unsafe.
3975 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003976 }
3977 }
3978
James Molloy71b91c22015-05-11 14:42:20 +00003979 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003980 std::swap(CmpLHS, CmpRHS);
3981 Pred = CmpInst::getSwappedPredicate(Pred);
3982 if (NaNBehavior == SPNB_RETURNS_NAN)
3983 NaNBehavior = SPNB_RETURNS_OTHER;
3984 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3985 NaNBehavior = SPNB_RETURNS_NAN;
3986 Ordered = !Ordered;
3987 }
3988
3989 // ([if]cmp X, Y) ? X : Y
3990 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003991 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003992 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003993 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003994 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003995 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003996 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003997 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003998 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003999 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004000 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4001 case FCmpInst::FCMP_UGT:
4002 case FCmpInst::FCMP_UGE:
4003 case FCmpInst::FCMP_OGT:
4004 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4005 case FCmpInst::FCMP_ULT:
4006 case FCmpInst::FCMP_ULE:
4007 case FCmpInst::FCMP_OLT:
4008 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004009 }
4010 }
4011
Sanjay Patele372aec2016-10-27 15:26:10 +00004012 const APInt *C1;
4013 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004014 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4015 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4016
4017 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4018 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004019 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004020 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004021 }
4022
4023 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4024 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004025 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004026 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004027 }
4028 }
James Molloy71b91c22015-05-11 14:42:20 +00004029 }
4030
Sanjay Patel819f0962016-11-13 19:30:19 +00004031 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004032}
James Molloy270ef8c2015-05-15 16:04:50 +00004033
James Molloy569cea62015-09-02 17:25:25 +00004034static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4035 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00004036 CastInst *CI = dyn_cast<CastInst>(V1);
4037 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00004038 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00004039 return nullptr;
4040 *CastOp = CI->getOpcode();
4041
David Majnemerd2a074b2016-04-29 18:40:34 +00004042 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00004043 // If V1 and V2 are both the same cast from the same type, we can look
4044 // through V1.
4045 if (CI2->getOpcode() == CI->getOpcode() &&
4046 CI2->getSrcTy() == CI->getSrcTy())
4047 return CI2->getOperand(0);
4048 return nullptr;
4049 } else if (!C) {
4050 return nullptr;
4051 }
4052
David Majnemerd2a074b2016-04-29 18:40:34 +00004053 Constant *CastedTo = nullptr;
4054
David Majnemer826e9832016-04-29 21:22:04 +00004055 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4056 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
4057
David Majnemerd2a074b2016-04-29 18:40:34 +00004058 if (isa<SExtInst>(CI) && CmpI->isSigned())
4059 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
4060
David Majnemer826e9832016-04-29 21:22:04 +00004061 if (isa<TruncInst>(CI))
4062 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4063
4064 if (isa<FPTruncInst>(CI))
4065 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4066
4067 if (isa<FPExtInst>(CI))
4068 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4069
David Majnemerd2a074b2016-04-29 18:40:34 +00004070 if (isa<FPToUIInst>(CI))
4071 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4072
4073 if (isa<FPToSIInst>(CI))
4074 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4075
4076 if (isa<UIToFPInst>(CI))
4077 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4078
4079 if (isa<SIToFPInst>(CI))
4080 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4081
4082 if (!CastedTo)
4083 return nullptr;
4084
4085 Constant *CastedBack =
4086 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
4087 // Make sure the cast doesn't lose any information.
4088 if (CastedBack != C)
4089 return nullptr;
4090
4091 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004092}
4093
Sanjay Patele8dc0902016-05-23 17:57:54 +00004094SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004095 Instruction::CastOps *CastOp) {
4096 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004097 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004098
James Molloy134bec22015-08-11 09:12:57 +00004099 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4100 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004101
James Molloy134bec22015-08-11 09:12:57 +00004102 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004103 Value *CmpLHS = CmpI->getOperand(0);
4104 Value *CmpRHS = CmpI->getOperand(1);
4105 Value *TrueVal = SI->getTrueValue();
4106 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004107 FastMathFlags FMF;
4108 if (isa<FPMathOperator>(CmpI))
4109 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004110
4111 // Bail out early.
4112 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004113 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004114
4115 // Deal with type mismatches.
4116 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004117 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004118 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004119 cast<CastInst>(TrueVal)->getOperand(0), C,
4120 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004121 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004122 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004123 C, cast<CastInst>(FalseVal)->getOperand(0),
4124 LHS, RHS);
4125 }
James Molloy134bec22015-08-11 09:12:57 +00004126 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004127 LHS, RHS);
4128}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004129
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004130/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004131static bool isTruePredicate(CmpInst::Predicate Pred,
4132 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004133 const DataLayout &DL, unsigned Depth,
4134 AssumptionCache *AC, const Instruction *CxtI,
4135 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004136 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004137 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4138 return true;
4139
4140 switch (Pred) {
4141 default:
4142 return false;
4143
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004144 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004145 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004146
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004147 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004148 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004149 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004150 return false;
4151 }
4152
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004153 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004154 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004155
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004156 // LHS u<= LHS +_{nuw} C for any C
4157 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004158 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004159
4160 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004161 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4162 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004163 const APInt *&CA, const APInt *&CB) {
4164 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4165 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4166 return true;
4167
4168 // If X & C == 0 then (X | C) == X +_{nuw} C
4169 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4170 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4171 unsigned BitWidth = CA->getBitWidth();
4172 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4173 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4174
4175 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4176 return true;
4177 }
4178
4179 return false;
4180 };
4181
Pete Cooper35b00d52016-08-13 01:05:32 +00004182 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004183 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004184 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4185 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004186
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004187 return false;
4188 }
4189 }
4190}
4191
4192/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004193/// ALHS ARHS" is true. Otherwise, return None.
4194static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004195isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4196 const Value *ARHS, const Value *BLHS,
4197 const Value *BRHS, const DataLayout &DL,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004198 unsigned Depth, AssumptionCache *AC,
4199 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004200 switch (Pred) {
4201 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004202 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004203
4204 case CmpInst::ICMP_SLT:
4205 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004206 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4207 DT) &&
4208 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4209 return true;
4210 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004211
4212 case CmpInst::ICMP_ULT:
4213 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004214 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4215 DT) &&
4216 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4217 return true;
4218 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004219 }
4220}
4221
Chad Rosier226a7342016-05-05 17:41:19 +00004222/// Return true if the operands of the two compares match. IsSwappedOps is true
4223/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004224static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4225 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004226 bool &IsSwappedOps) {
4227
4228 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4229 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4230 return IsMatchingOps || IsSwappedOps;
4231}
4232
Chad Rosier41dd31f2016-04-20 19:15:26 +00004233/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4234/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4235/// BRHS" is false. Otherwise, return None if we can't infer anything.
4236static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004237 const Value *ALHS,
4238 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004239 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004240 const Value *BLHS,
4241 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004242 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004243 // Canonicalize the operands so they're matching.
4244 if (IsSwappedOps) {
4245 std::swap(BLHS, BRHS);
4246 BPred = ICmpInst::getSwappedPredicate(BPred);
4247 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004248 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004249 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004250 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004251 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004252
Chad Rosier41dd31f2016-04-20 19:15:26 +00004253 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004254}
4255
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004256/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4257/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4258/// C2" is false. Otherwise, return None if we can't infer anything.
4259static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004260isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4261 const ConstantInt *C1,
4262 CmpInst::Predicate BPred,
4263 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004264 assert(ALHS == BLHS && "LHS operands must match.");
4265 ConstantRange DomCR =
4266 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4267 ConstantRange CR =
4268 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4269 ConstantRange Intersection = DomCR.intersectWith(CR);
4270 ConstantRange Difference = DomCR.difference(CR);
4271 if (Intersection.isEmptySet())
4272 return false;
4273 if (Difference.isEmptySet())
4274 return true;
4275 return None;
4276}
4277
Pete Cooper35b00d52016-08-13 01:05:32 +00004278Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004279 const DataLayout &DL, bool InvertAPred,
4280 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004281 const Instruction *CxtI,
4282 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004283 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4284 if (LHS->getType() != RHS->getType())
4285 return None;
4286
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004287 Type *OpTy = LHS->getType();
4288 assert(OpTy->getScalarType()->isIntegerTy(1));
4289
4290 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004291 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004292 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004293
4294 if (OpTy->isVectorTy())
4295 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004296 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004297 assert(OpTy->isIntegerTy(1) && "implied by above");
4298
4299 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004300 Value *ALHS, *ARHS;
4301 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004302
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004303 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4304 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004305 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004306
Chad Rosiere2cbd132016-04-25 17:23:36 +00004307 if (InvertAPred)
4308 APred = CmpInst::getInversePredicate(APred);
4309
Chad Rosier226a7342016-05-05 17:41:19 +00004310 // Can we infer anything when the two compares have matching operands?
4311 bool IsSwappedOps;
4312 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4313 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4314 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004315 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004316 // No amount of additional analysis will infer the second condition, so
4317 // early exit.
4318 return None;
4319 }
4320
4321 // Can we infer anything when the LHS operands match and the RHS operands are
4322 // constants (not necessarily matching)?
4323 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4324 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4325 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4326 cast<ConstantInt>(BRHS)))
4327 return Implication;
4328 // No amount of additional analysis will infer the second condition, so
4329 // early exit.
4330 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004331 }
4332
Chad Rosier41dd31f2016-04-20 19:15:26 +00004333 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004334 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4335 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004336
Chad Rosier41dd31f2016-04-20 19:15:26 +00004337 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004338}