blob: 007fb65d69ebba12c8116ccddcf65bee5d0964a5 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000091#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000092#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000093using namespace llvm;
94
Chandler Carruthf1221bd2014-04-22 02:48:03 +000095#define DEBUG_TYPE "scalar-evolution"
96
Chris Lattner57ef9422006-12-19 22:30:33 +000097STATISTIC(NumArrayLenItCounts,
98 "Number of trip counts computed with array length");
99STATISTIC(NumTripCountsComputed,
100 "Number of loops with predictable loop counts");
101STATISTIC(NumTripCountsNotComputed,
102 "Number of loops without predictable loop counts");
103STATISTIC(NumBruteForceTripCountsComputed,
104 "Number of loops with trip counts computed by force");
105
Dan Gohmand78c4002008-05-13 00:00:25 +0000106static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000107MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
108 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000109 "symbolically execute a constant "
110 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000111 cl::init(100));
112
Benjamin Kramer214935e2012-10-26 17:31:32 +0000113// FIXME: Enable this with XDEBUG when the test suite is clean.
114static cl::opt<bool>
115VerifySCEV("verify-scev",
116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
117
Chris Lattnerd934c702004-04-02 20:23:17 +0000118//===----------------------------------------------------------------------===//
119// SCEV class definitions
120//===----------------------------------------------------------------------===//
121
122//===----------------------------------------------------------------------===//
123// Implementation of the SCEV class.
124//
Dan Gohman3423e722009-06-30 20:13:32 +0000125
Manman Ren49d684e2012-09-12 05:06:18 +0000126#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000127void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000128 print(dbgs());
129 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000130}
Manman Renc3366cc2012-09-06 19:55:56 +0000131#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000132
Dan Gohman534749b2010-11-17 22:27:42 +0000133void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000134 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000135 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000137 return;
138 case scTruncate: {
139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140 const SCEV *Op = Trunc->getOperand();
141 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142 << *Trunc->getType() << ")";
143 return;
144 }
145 case scZeroExtend: {
146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147 const SCEV *Op = ZExt->getOperand();
148 OS << "(zext " << *Op->getType() << " " << *Op << " to "
149 << *ZExt->getType() << ")";
150 return;
151 }
152 case scSignExtend: {
153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154 const SCEV *Op = SExt->getOperand();
155 OS << "(sext " << *Op->getType() << " " << *Op << " to "
156 << *SExt->getType() << ")";
157 return;
158 }
159 case scAddRecExpr: {
160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161 OS << "{" << *AR->getOperand(0);
162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163 OS << ",+," << *AR->getOperand(i);
164 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000165 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000166 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000167 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000168 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNW) &&
170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000173 OS << ">";
174 return;
175 }
176 case scAddExpr:
177 case scMulExpr:
178 case scUMaxExpr:
179 case scSMaxExpr: {
180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000181 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000182 switch (NAry->getSCEVType()) {
183 case scAddExpr: OpStr = " + "; break;
184 case scMulExpr: OpStr = " * "; break;
185 case scUMaxExpr: OpStr = " umax "; break;
186 case scSMaxExpr: OpStr = " smax "; break;
187 }
188 OS << "(";
189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190 I != E; ++I) {
191 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000192 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000193 OS << OpStr;
194 }
195 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000196 switch (NAry->getSCEVType()) {
197 case scAddExpr:
198 case scMulExpr:
199 if (NAry->getNoWrapFlags(FlagNUW))
200 OS << "<nuw>";
201 if (NAry->getNoWrapFlags(FlagNSW))
202 OS << "<nsw>";
203 }
Dan Gohman534749b2010-11-17 22:27:42 +0000204 return;
205 }
206 case scUDivExpr: {
207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209 return;
210 }
211 case scUnknown: {
212 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000213 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000214 if (U->isSizeOf(AllocTy)) {
215 OS << "sizeof(" << *AllocTy << ")";
216 return;
217 }
218 if (U->isAlignOf(AllocTy)) {
219 OS << "alignof(" << *AllocTy << ")";
220 return;
221 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000222
Chris Lattner229907c2011-07-18 04:54:35 +0000223 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000224 Constant *FieldNo;
225 if (U->isOffsetOf(CTy, FieldNo)) {
226 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000227 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000228 OS << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Dan Gohman534749b2010-11-17 22:27:42 +0000232 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000233 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000234 return;
235 }
236 case scCouldNotCompute:
237 OS << "***COULDNOTCOMPUTE***";
238 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattner229907c2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000244 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000264 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000266}
267
Dan Gohmanbe928e32008-06-18 16:23:07 +0000268bool SCEV::isZero() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isZero();
271 return false;
272}
273
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000274bool SCEV::isOne() const {
275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276 return SC->getValue()->isOne();
277 return false;
278}
Chris Lattnerd934c702004-04-02 20:23:17 +0000279
Dan Gohman18a96bb2009-06-24 00:30:26 +0000280bool SCEV::isAllOnesValue() const {
281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282 return SC->getValue()->isAllOnesValue();
283 return false;
284}
285
Andrew Trick881a7762012-01-07 00:27:31 +0000286/// isNonConstantNegative - Return true if the specified scev is negated, but
287/// not a constant.
288bool SCEV::isNonConstantNegative() const {
289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290 if (!Mul) return false;
291
292 // If there is a constant factor, it will be first.
293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294 if (!SC) return false;
295
296 // Return true if the value is negative, this matches things like (-42 * V).
297 return SC->getValue()->getValue().isNegative();
298}
299
Owen Anderson04052ec2009-06-22 21:57:23 +0000300SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000302
Chris Lattnerd934c702004-04-02 20:23:17 +0000303bool SCEVCouldNotCompute::classof(const SCEV *S) {
304 return S->getSCEVType() == scCouldNotCompute;
305}
306
Dan Gohmanaf752342009-07-07 17:06:11 +0000307const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000308 FoldingSetNodeID ID;
309 ID.AddInteger(scConstant);
310 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000311 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000314 UniqueSCEVs.InsertNode(S, IP);
315 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000316}
Chris Lattnerd934c702004-04-02 20:23:17 +0000317
Nick Lewycky31eaca52014-01-27 10:04:03 +0000318const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000319 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000320}
321
Dan Gohmanaf752342009-07-07 17:06:11 +0000322const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000323ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000325 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000326}
327
Dan Gohman24ceda82010-06-18 19:54:20 +0000328SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000329 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000338}
Chris Lattnerd934c702004-04-02 20:23:17 +0000339
Dan Gohman24ceda82010-06-18 19:54:20 +0000340SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000341 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000342 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346}
347
Dan Gohman24ceda82010-06-18 19:54:20 +0000348SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000349 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000350 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000354}
355
Dan Gohman7cac9572010-08-02 23:49:30 +0000356void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000357 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000358 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000359
360 // Remove this SCEVUnknown from the uniquing map.
361 SE->UniqueSCEVs.RemoveNode(this);
362
363 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000364 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000365}
366
367void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000368 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000369 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370
371 // Remove this SCEVUnknown from the uniquing map.
372 SE->UniqueSCEVs.RemoveNode(this);
373
374 // Update this SCEVUnknown to point to the new value. This is needed
375 // because there may still be outstanding SCEVs which still point to
376 // this SCEVUnknown.
377 setValPtr(New);
378}
379
Chris Lattner229907c2011-07-18 04:54:35 +0000380bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000382 if (VCE->getOpcode() == Instruction::PtrToInt)
383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000384 if (CE->getOpcode() == Instruction::GetElementPtr &&
385 CE->getOperand(0)->isNullValue() &&
386 CE->getNumOperands() == 2)
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388 if (CI->isOne()) {
389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390 ->getElementType();
391 return true;
392 }
Dan Gohmancf913832010-01-28 02:15:55 +0000393
394 return false;
395}
396
Chris Lattner229907c2011-07-18 04:54:35 +0000397bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000399 if (VCE->getOpcode() == Instruction::PtrToInt)
400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000401 if (CE->getOpcode() == Instruction::GetElementPtr &&
402 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000403 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000405 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (!STy->isPacked() &&
407 CE->getNumOperands() == 3 &&
408 CE->getOperand(1)->isNullValue()) {
409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410 if (CI->isOne() &&
411 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000412 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 AllocTy = STy->getElementType(1);
414 return true;
415 }
416 }
417 }
Dan Gohmancf913832010-01-28 02:15:55 +0000418
419 return false;
420}
421
Chris Lattner229907c2011-07-18 04:54:35 +0000422bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000424 if (VCE->getOpcode() == Instruction::PtrToInt)
425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426 if (CE->getOpcode() == Instruction::GetElementPtr &&
427 CE->getNumOperands() == 3 &&
428 CE->getOperand(0)->isNullValue() &&
429 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000430 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432 // Ignore vector types here so that ScalarEvolutionExpander doesn't
433 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000434 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 CTy = Ty;
436 FieldNo = CE->getOperand(2);
437 return true;
438 }
439 }
440
441 return false;
442}
443
Chris Lattnereb3e8402004-06-20 06:23:15 +0000444//===----------------------------------------------------------------------===//
445// SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
451 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000452 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000453 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000454 public:
Dan Gohman992db002010-07-23 21:18:55 +0000455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000456
Dan Gohman27065672010-08-27 15:26:01 +0000457 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000458 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000459 return compare(LHS, RHS) < 0;
460 }
461
462 // Return negative, zero, or positive, if LHS is less than, equal to, or
463 // greater than RHS, respectively. A three-way result allows recursive
464 // comparisons to be more efficient.
465 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000466 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000468 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000469
Dan Gohman9ba542c2009-05-07 14:39:04 +0000470 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000473 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474
Dan Gohman24ceda82010-06-18 19:54:20 +0000475 // Aside from the getSCEVType() ordering, the particular ordering
476 // isn't very important except that it's beneficial to be consistent,
477 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000478 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000479 case scUnknown: {
480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000482
483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000485 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000486
487 // Order pointer values after integer values. This helps SCEVExpander
488 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000489 bool LIsPointer = LV->getType()->isPointerTy(),
490 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000491 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000492 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
494 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000495 unsigned LID = LV->getValueID(),
496 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000497 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000498 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000499
500 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000501 if (const Argument *LA = dyn_cast<Argument>(LV)) {
502 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000505 }
506
Dan Gohman27065672010-08-27 15:26:01 +0000507 // For instructions, compare their loop depth, and their operand
508 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000511
512 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000513 const BasicBlock *LParent = LInst->getParent(),
514 *RParent = RInst->getParent();
515 if (LParent != RParent) {
516 unsigned LDepth = LI->getLoopDepth(LParent),
517 RDepth = LI->getLoopDepth(RParent);
518 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000519 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000521
522 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000523 unsigned LNumOps = LInst->getNumOperands(),
524 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000525 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000526 }
527
Dan Gohman27065672010-08-27 15:26:01 +0000528 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000529 }
530
Dan Gohman27065672010-08-27 15:26:01 +0000531 case scConstant: {
532 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000534
535 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000536 const APInt &LA = LC->getValue()->getValue();
537 const APInt &RA = RC->getValue()->getValue();
538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000539 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000540 return (int)LBitWidth - (int)RBitWidth;
541 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 }
543
Dan Gohman27065672010-08-27 15:26:01 +0000544 case scAddRecExpr: {
545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000547
548 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550 if (LLoop != RLoop) {
551 unsigned LDepth = LLoop->getLoopDepth(),
552 RDepth = RLoop->getLoopDepth();
553 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000554 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000555 }
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Addrec complexity grows with operand count.
558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559 if (LNumOps != RNumOps)
560 return (int)LNumOps - (int)RNumOps;
561
562 // Lexicographically compare.
563 for (unsigned i = 0; i != LNumOps; ++i) {
564 long X = compare(LA->getOperand(i), RA->getOperand(i));
565 if (X != 0)
566 return X;
567 }
568
569 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000570 }
571
Dan Gohman27065672010-08-27 15:26:01 +0000572 case scAddExpr:
573 case scMulExpr:
574 case scSMaxExpr:
575 case scUMaxExpr: {
576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000578
579 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000581 if (LNumOps != RNumOps)
582 return (int)LNumOps - (int)RNumOps;
583
Dan Gohman5ae31022010-07-23 21:20:52 +0000584 for (unsigned i = 0; i != LNumOps; ++i) {
585 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000586 return 1;
587 long X = compare(LC->getOperand(i), RC->getOperand(i));
588 if (X != 0)
589 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000590 }
Dan Gohman27065672010-08-27 15:26:01 +0000591 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000592 }
593
Dan Gohman27065672010-08-27 15:26:01 +0000594 case scUDivExpr: {
595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000597
598 // Lexicographically compare udiv expressions.
599 long X = compare(LC->getLHS(), RC->getLHS());
600 if (X != 0)
601 return X;
602 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000603 }
604
Dan Gohman27065672010-08-27 15:26:01 +0000605 case scTruncate:
606 case scZeroExtend:
607 case scSignExtend: {
608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000610
611 // Compare cast expressions by operand.
612 return compare(LC->getOperand(), RC->getOperand());
613 }
614
Benjamin Kramer987b8502014-02-11 19:02:55 +0000615 case scCouldNotCompute:
616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000617 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000618 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000619 }
620 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000621}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000628/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000629/// results from this routine. In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
Dan Gohmanaf752342009-07-07 17:06:11 +0000633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000634 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000635 if (Ops.size() < 2) return; // Noop
636 if (Ops.size() == 2) {
637 // This is the common case, which also happens to be trivially simple.
638 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640 if (SCEVComplexityCompare(LI)(RHS, LHS))
641 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 return;
643 }
644
Dan Gohman24ceda82010-06-18 19:54:20 +0000645 // Do the rough sort by complexity.
646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648 // Now that we are sorted by complexity, group elements of the same
649 // complexity. Note that this is, at worst, N^2, but the vector is likely to
650 // be extremely short in practice. Note that we take this approach because we
651 // do not want to depend on the addresses of the objects we are grouping.
652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653 const SCEV *S = Ops[i];
654 unsigned Complexity = S->getSCEVType();
655
656 // If there are any objects of the same complexity and same value as this
657 // one, group them.
658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659 if (Ops[j] == S) { // Found a duplicate.
660 // Move it to immediately after i'th element.
661 std::swap(Ops[i+1], Ops[j]);
662 ++i; // no need to rescan it.
663 if (i == e-2) return; // Done!
664 }
665 }
666 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000667}
668
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000669namespace {
670struct FindSCEVSize {
671 int Size;
672 FindSCEVSize() : Size(0) {}
673
674 bool follow(const SCEV *S) {
675 ++Size;
676 // Keep looking at all operands of S.
677 return true;
678 }
679 bool isDone() const {
680 return false;
681 }
682};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000683}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000684
685// Returns the size of the SCEV S.
686static inline int sizeOfSCEV(const SCEV *S) {
687 FindSCEVSize F;
688 SCEVTraversal<FindSCEVSize> ST(F);
689 ST.visitAll(S);
690 return F.Size;
691}
692
693namespace {
694
David Majnemer4e879362014-12-14 09:12:33 +0000695struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000696public:
697 // Computes the Quotient and Remainder of the division of Numerator by
698 // Denominator.
699 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700 const SCEV *Denominator, const SCEV **Quotient,
701 const SCEV **Remainder) {
702 assert(Numerator && Denominator && "Uninitialized SCEV");
703
David Majnemer4e879362014-12-14 09:12:33 +0000704 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705
706 // Check for the trivial case here to avoid having to check for it in the
707 // rest of the code.
708 if (Numerator == Denominator) {
709 *Quotient = D.One;
710 *Remainder = D.Zero;
711 return;
712 }
713
714 if (Numerator->isZero()) {
715 *Quotient = D.Zero;
716 *Remainder = D.Zero;
717 return;
718 }
719
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000720 // A simple case when N/1. The quotient is N.
721 if (Denominator->isOne()) {
722 *Quotient = Numerator;
723 *Remainder = D.Zero;
724 return;
725 }
726
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000727 // Split the Denominator when it is a product.
728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
729 const SCEV *Q, *R;
730 *Quotient = Numerator;
731 for (const SCEV *Op : T->operands()) {
732 divide(SE, *Quotient, Op, &Q, &R);
733 *Quotient = Q;
734
735 // Bail out when the Numerator is not divisible by one of the terms of
736 // the Denominator.
737 if (!R->isZero()) {
738 *Quotient = D.Zero;
739 *Remainder = Numerator;
740 return;
741 }
742 }
743 *Remainder = D.Zero;
744 return;
745 }
746
747 D.visit(Numerator);
748 *Quotient = D.Quotient;
749 *Remainder = D.Remainder;
750 }
751
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000752 // Except in the trivial case described above, we do not know how to divide
753 // Expr by Denominator for the following functions with empty implementation.
754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760 void visitUnknown(const SCEVUnknown *Numerator) {}
761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762
David Majnemer4e879362014-12-14 09:12:33 +0000763 void visitConstant(const SCEVConstant *Numerator) {
764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765 APInt NumeratorVal = Numerator->getValue()->getValue();
766 APInt DenominatorVal = D->getValue()->getValue();
767 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769
770 if (NumeratorBW > DenominatorBW)
771 DenominatorVal = DenominatorVal.sext(NumeratorBW);
772 else if (NumeratorBW < DenominatorBW)
773 NumeratorVal = NumeratorVal.sext(DenominatorBW);
774
775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778 Quotient = SE.getConstant(QuotientVal);
779 Remainder = SE.getConstant(RemainderVal);
780 return;
781 }
782 }
783
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000786 if (!Numerator->isAffine())
787 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000790 // Bail out if the types do not match.
791 Type *Ty = Denominator->getType();
792 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000793 Ty != StepQ->getType() || Ty != StepR->getType())
794 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 }
800
801 void visitAddExpr(const SCEVAddExpr *Numerator) {
802 SmallVector<const SCEV *, 2> Qs, Rs;
803 Type *Ty = Denominator->getType();
804
805 for (const SCEV *Op : Numerator->operands()) {
806 const SCEV *Q, *R;
807 divide(SE, Op, Denominator, &Q, &R);
808
809 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000810 if (Ty != Q->getType() || Ty != R->getType())
811 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000812
813 Qs.push_back(Q);
814 Rs.push_back(R);
815 }
816
817 if (Qs.size() == 1) {
818 Quotient = Qs[0];
819 Remainder = Rs[0];
820 return;
821 }
822
823 Quotient = SE.getAddExpr(Qs);
824 Remainder = SE.getAddExpr(Rs);
825 }
826
827 void visitMulExpr(const SCEVMulExpr *Numerator) {
828 SmallVector<const SCEV *, 2> Qs;
829 Type *Ty = Denominator->getType();
830
831 bool FoundDenominatorTerm = false;
832 for (const SCEV *Op : Numerator->operands()) {
833 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000834 if (Ty != Op->getType())
835 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000836
837 if (FoundDenominatorTerm) {
838 Qs.push_back(Op);
839 continue;
840 }
841
842 // Check whether Denominator divides one of the product operands.
843 const SCEV *Q, *R;
844 divide(SE, Op, Denominator, &Q, &R);
845 if (!R->isZero()) {
846 Qs.push_back(Op);
847 continue;
848 }
849
850 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000851 if (Ty != Q->getType())
852 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000853
854 FoundDenominatorTerm = true;
855 Qs.push_back(Q);
856 }
857
858 if (FoundDenominatorTerm) {
859 Remainder = Zero;
860 if (Qs.size() == 1)
861 Quotient = Qs[0];
862 else
863 Quotient = SE.getMulExpr(Qs);
864 return;
865 }
866
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000867 if (!isa<SCEVUnknown>(Denominator))
868 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000869
870 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871 ValueToValueMap RewriteMap;
872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873 cast<SCEVConstant>(Zero)->getValue();
874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875
876 if (Remainder->isZero()) {
877 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879 cast<SCEVConstant>(One)->getValue();
880 Quotient =
881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882 return;
883 }
884
885 // Quotient is (Numerator - Remainder) divided by Denominator.
886 const SCEV *Q, *R;
887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000888 // This SCEV does not seem to simplify: fail the division here.
889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000891 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000892 if (R != Zero)
893 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000894 Quotient = Q;
895 }
896
897private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899 const SCEV *Denominator)
900 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000901 Zero = SE.getZero(Denominator->getType());
902 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000903
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000904 // We generally do not know how to divide Expr by Denominator. We
905 // initialize the division to a "cannot divide" state to simplify the rest
906 // of the code.
907 cannotDivide(Numerator);
908 }
909
910 // Convenience function for giving up on the division. We set the quotient to
911 // be equal to zero and the remainder to be equal to the numerator.
912 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000913 Quotient = Zero;
914 Remainder = Numerator;
915 }
916
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000917 ScalarEvolution &SE;
918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000919};
920
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000921}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000922
Chris Lattnerd934c702004-04-02 20:23:17 +0000923//===----------------------------------------------------------------------===//
924// Simple SCEV method implementations
925//===----------------------------------------------------------------------===//
926
Eli Friedman61f67622008-08-04 23:49:06 +0000927/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000928/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000929static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000930 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000931 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000932 // Handle the simplest case efficiently.
933 if (K == 1)
934 return SE.getTruncateOrZeroExtend(It, ResultTy);
935
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000936 // We are using the following formula for BC(It, K):
937 //
938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
939 //
Eli Friedman61f67622008-08-04 23:49:06 +0000940 // Suppose, W is the bitwidth of the return value. We must be prepared for
941 // overflow. Hence, we must assure that the result of our computation is
942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
943 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000944 //
Eli Friedman61f67622008-08-04 23:49:06 +0000945 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000946 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
948 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000949 //
Eli Friedman61f67622008-08-04 23:49:06 +0000950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000951 //
Eli Friedman61f67622008-08-04 23:49:06 +0000952 // This formula is trivially equivalent to the previous formula. However,
953 // this formula can be implemented much more efficiently. The trick is that
954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
955 // arithmetic. To do exact division in modular arithmetic, all we have
956 // to do is multiply by the inverse. Therefore, this step can be done at
957 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000958 //
Eli Friedman61f67622008-08-04 23:49:06 +0000959 // The next issue is how to safely do the division by 2^T. The way this
960 // is done is by doing the multiplication step at a width of at least W + T
961 // bits. This way, the bottom W+T bits of the product are accurate. Then,
962 // when we perform the division by 2^T (which is equivalent to a right shift
963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
964 // truncated out after the division by 2^T.
965 //
966 // In comparison to just directly using the first formula, this technique
967 // is much more efficient; using the first formula requires W * K bits,
968 // but this formula less than W + K bits. Also, the first formula requires
969 // a division step, whereas this formula only requires multiplies and shifts.
970 //
971 // It doesn't matter whether the subtraction step is done in the calculation
972 // width or the input iteration count's width; if the subtraction overflows,
973 // the result must be zero anyway. We prefer here to do it in the width of
974 // the induction variable because it helps a lot for certain cases; CodeGen
975 // isn't smart enough to ignore the overflow, which leads to much less
976 // efficient code if the width of the subtraction is wider than the native
977 // register width.
978 //
979 // (It's possible to not widen at all by pulling out factors of 2 before
980 // the multiplication; for example, K=2 can be calculated as
981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
982 // extra arithmetic, so it's not an obvious win, and it gets
983 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000984
Eli Friedman61f67622008-08-04 23:49:06 +0000985 // Protection from insane SCEVs; this bound is conservative,
986 // but it probably doesn't matter.
987 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000988 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000989
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000990 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000991
Eli Friedman61f67622008-08-04 23:49:06 +0000992 // Calculate K! / 2^T and T; we divide out the factors of two before
993 // multiplying for calculating K! / 2^T to avoid overflow.
994 // Other overflow doesn't matter because we only care about the bottom
995 // W bits of the result.
996 APInt OddFactorial(W, 1);
997 unsigned T = 1;
998 for (unsigned i = 3; i <= K; ++i) {
999 APInt Mult(W, i);
1000 unsigned TwoFactors = Mult.countTrailingZeros();
1001 T += TwoFactors;
1002 Mult = Mult.lshr(TwoFactors);
1003 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001004 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001005
Eli Friedman61f67622008-08-04 23:49:06 +00001006 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001007 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001008
Dan Gohman8b0a4192010-03-01 17:49:51 +00001009 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001011
1012 // Calculate the multiplicative inverse of K! / 2^T;
1013 // this multiplication factor will perform the exact division by
1014 // K! / 2^T.
1015 APInt Mod = APInt::getSignedMinValue(W+1);
1016 APInt MultiplyFactor = OddFactorial.zext(W+1);
1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1018 MultiplyFactor = MultiplyFactor.trunc(W);
1019
1020 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001022 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001024 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001026 Dividend = SE.getMulExpr(Dividend,
1027 SE.getTruncateOrZeroExtend(S, CalculationTy));
1028 }
1029
1030 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001032
1033 // Truncate the result, and divide by K! / 2^T.
1034
1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001037}
1038
Chris Lattnerd934c702004-04-02 20:23:17 +00001039/// evaluateAtIteration - Return the value of this chain of recurrences at
1040/// the specified iteration number. We can evaluate this recurrence by
1041/// multiplying each element in the chain by the binomial coefficient
1042/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1043///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001044/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001045///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001047///
Dan Gohmanaf752342009-07-07 17:06:11 +00001048const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001049 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001050 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001052 // The computation is correct in the face of overflow provided that the
1053 // multiplication is performed _after_ the evaluation of the binomial
1054 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001056 if (isa<SCEVCouldNotCompute>(Coeff))
1057 return Coeff;
1058
1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001060 }
1061 return Result;
1062}
1063
Chris Lattnerd934c702004-04-02 20:23:17 +00001064//===----------------------------------------------------------------------===//
1065// SCEV Expression folder implementations
1066//===----------------------------------------------------------------------===//
1067
Dan Gohmanaf752342009-07-07 17:06:11 +00001068const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001069 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001071 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001072 assert(isSCEVable(Ty) &&
1073 "This is not a conversion to a SCEVable type!");
1074 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001075
Dan Gohman3a302cb2009-07-13 20:50:19 +00001076 FoldingSetNodeID ID;
1077 ID.AddInteger(scTruncate);
1078 ID.AddPointer(Op);
1079 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001080 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1082
Dan Gohman3423e722009-06-30 20:13:32 +00001083 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001085 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001087
Dan Gohman79af8542009-04-22 16:20:48 +00001088 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001090 return getTruncateExpr(ST->getOperand(), Ty);
1091
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001094 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1095
1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1099
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001101 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1103 SmallVector<const SCEV *, 4> Operands;
1104 bool hasTrunc = false;
1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001107 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1108 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001109 Operands.push_back(S);
1110 }
1111 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001112 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001114 }
1115
Nick Lewycky5c901f32011-01-19 18:56:00 +00001116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001117 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1119 SmallVector<const SCEV *, 4> Operands;
1120 bool hasTrunc = false;
1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001123 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1124 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001125 Operands.push_back(S);
1126 }
1127 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001128 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001130 }
1131
Dan Gohman5a728c92009-06-18 16:24:47 +00001132 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001134 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001135 for (const SCEV *Op : AddRec->operands())
1136 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001138 }
1139
Dan Gohman89dd42a2010-06-25 18:47:08 +00001140 // The cast wasn't folded; create an explicit cast node. We can reuse
1141 // the existing insert position since if we get here, we won't have
1142 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1144 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001145 UniqueSCEVs.InsertNode(S, IP);
1146 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001147}
1148
Sanjoy Das4153f472015-02-18 01:47:07 +00001149// Get the limit of a recurrence such that incrementing by Step cannot cause
1150// signed overflow as long as the value of the recurrence within the
1151// loop does not exceed this limit before incrementing.
1152static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1153 ICmpInst::Predicate *Pred,
1154 ScalarEvolution *SE) {
1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1156 if (SE->isKnownPositive(Step)) {
1157 *Pred = ICmpInst::ICMP_SLT;
1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1159 SE->getSignedRange(Step).getSignedMax());
1160 }
1161 if (SE->isKnownNegative(Step)) {
1162 *Pred = ICmpInst::ICMP_SGT;
1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1164 SE->getSignedRange(Step).getSignedMin());
1165 }
1166 return nullptr;
1167}
1168
1169// Get the limit of a recurrence such that incrementing by Step cannot cause
1170// unsigned overflow as long as the value of the recurrence within the loop does
1171// not exceed this limit before incrementing.
1172static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1173 ICmpInst::Predicate *Pred,
1174 ScalarEvolution *SE) {
1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1176 *Pred = ICmpInst::ICMP_ULT;
1177
1178 return SE->getConstant(APInt::getMinValue(BitWidth) -
1179 SE->getUnsignedRange(Step).getUnsignedMax());
1180}
1181
1182namespace {
1183
1184struct ExtendOpTraitsBase {
1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1186};
1187
1188// Used to make code generic over signed and unsigned overflow.
1189template <typename ExtendOp> struct ExtendOpTraits {
1190 // Members present:
1191 //
1192 // static const SCEV::NoWrapFlags WrapType;
1193 //
1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1195 //
1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1197 // ICmpInst::Predicate *Pred,
1198 // ScalarEvolution *SE);
1199};
1200
1201template <>
1202struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1204
1205 static const GetExtendExprTy GetExtendExpr;
1206
1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1208 ICmpInst::Predicate *Pred,
1209 ScalarEvolution *SE) {
1210 return getSignedOverflowLimitForStep(Step, Pred, SE);
1211 }
1212};
1213
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001214const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1216
1217template <>
1218struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1220
1221 static const GetExtendExprTy GetExtendExpr;
1222
1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1224 ICmpInst::Predicate *Pred,
1225 ScalarEvolution *SE) {
1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1227 }
1228};
1229
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001230const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001232}
Sanjoy Das4153f472015-02-18 01:47:07 +00001233
1234// The recurrence AR has been shown to have no signed/unsigned wrap or something
1235// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1236// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1237// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1238// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1239// expression "Step + sext/zext(PreIncAR)" is congruent with
1240// "sext/zext(PostIncAR)"
1241template <typename ExtendOpTy>
1242static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1243 ScalarEvolution *SE) {
1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1246
1247 const Loop *L = AR->getLoop();
1248 const SCEV *Start = AR->getStart();
1249 const SCEV *Step = AR->getStepRecurrence(*SE);
1250
1251 // Check for a simple looking step prior to loop entry.
1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1253 if (!SA)
1254 return nullptr;
1255
1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1257 // subtraction is expensive. For this purpose, perform a quick and dirty
1258 // difference, by checking for Step in the operand list.
1259 SmallVector<const SCEV *, 4> DiffOps;
1260 for (const SCEV *Op : SA->operands())
1261 if (Op != Step)
1262 DiffOps.push_back(Op);
1263
1264 if (DiffOps.size() == SA->getNumOperands())
1265 return nullptr;
1266
1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1268 // `Step`:
1269
1270 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001271 auto PreStartFlags =
1272 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1276
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1278 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001279 //
1280
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001281 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001284 return PreStart;
1285
1286 // 2. Direct overflow check on the step operation's expression.
1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1289 const SCEV *OperandExtendedStart =
1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1291 (SE->*GetExtendExpr)(Step, WideTy));
1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1293 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1298 }
1299 return PreStart;
1300 }
1301
1302 // 3. Loop precondition.
1303 ICmpInst::Predicate Pred;
1304 const SCEV *OverflowLimit =
1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1306
1307 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001309 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001310
Sanjoy Das4153f472015-02-18 01:47:07 +00001311 return nullptr;
1312}
1313
1314// Get the normalized zero or sign extended expression for this AddRec's Start.
1315template <typename ExtendOpTy>
1316static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1317 ScalarEvolution *SE) {
1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1319
1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1321 if (!PreStart)
1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1323
1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1325 (SE->*GetExtendExpr)(PreStart, Ty));
1326}
1327
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001328// Try to prove away overflow by looking at "nearby" add recurrences. A
1329// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1330// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1331//
1332// Formally:
1333//
1334// {S,+,X} == {S-T,+,X} + T
1335// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1336//
1337// If ({S-T,+,X} + T) does not overflow ... (1)
1338//
1339// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1340//
1341// If {S-T,+,X} does not overflow ... (2)
1342//
1343// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1344// == {Ext(S-T)+Ext(T),+,Ext(X)}
1345//
1346// If (S-T)+T does not overflow ... (3)
1347//
1348// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1349// == {Ext(S),+,Ext(X)} == LHS
1350//
1351// Thus, if (1), (2) and (3) are true for some T, then
1352// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1353//
1354// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1355// does not overflow" restricted to the 0th iteration. Therefore we only need
1356// to check for (1) and (2).
1357//
1358// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1359// is `Delta` (defined below).
1360//
1361template <typename ExtendOpTy>
1362bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1363 const SCEV *Step,
1364 const Loop *L) {
1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1366
1367 // We restrict `Start` to a constant to prevent SCEV from spending too much
1368 // time here. It is correct (but more expensive) to continue with a
1369 // non-constant `Start` and do a general SCEV subtraction to compute
1370 // `PreStart` below.
1371 //
1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1373 if (!StartC)
1374 return false;
1375
1376 APInt StartAI = StartC->getValue()->getValue();
1377
1378 for (unsigned Delta : {-2, -1, 1, 2}) {
1379 const SCEV *PreStart = getConstant(StartAI - Delta);
1380
Sanjoy Das42801102015-10-23 06:57:21 +00001381 FoldingSetNodeID ID;
1382 ID.AddInteger(scAddRecExpr);
1383 ID.AddPointer(PreStart);
1384 ID.AddPointer(Step);
1385 ID.AddPointer(L);
1386 void *IP = nullptr;
1387 const auto *PreAR =
1388 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1389
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001390 // Give up if we don't already have the add recurrence we need because
1391 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1396 DeltaS, &Pred, this);
1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1398 return true;
1399 }
1400 }
1401
1402 return false;
1403}
1404
Dan Gohmanaf752342009-07-07 17:06:11 +00001405const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001406 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001408 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001409 assert(isSCEVable(Ty) &&
1410 "This is not a conversion to a SCEVable type!");
1411 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001412
Dan Gohman3423e722009-06-30 20:13:32 +00001413 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1415 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001417
Dan Gohman79af8542009-04-22 16:20:48 +00001418 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001420 return getZeroExtendExpr(SZ->getOperand(), Ty);
1421
Dan Gohman74a0ba12009-07-13 20:55:53 +00001422 // Before doing any expensive analysis, check to see if we've already
1423 // computed a SCEV for this Op and Ty.
1424 FoldingSetNodeID ID;
1425 ID.AddInteger(scZeroExtend);
1426 ID.AddPointer(Op);
1427 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001428 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1430
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001431 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1433 // It's possible the bits taken off by the truncate were all zero bits. If
1434 // so, we should be able to simplify this further.
1435 const SCEV *X = ST->getOperand();
1436 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001437 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1438 unsigned NewBits = getTypeSizeInBits(Ty);
1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001440 CR.zextOrTrunc(NewBits)))
1441 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001442 }
1443
Dan Gohman76466372009-04-27 20:16:15 +00001444 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001445 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001446 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001449 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001450 const SCEV *Start = AR->getStart();
1451 const SCEV *Step = AR->getStepRecurrence(*this);
1452 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1453 const Loop *L = AR->getLoop();
1454
Dan Gohman62ef6a72009-07-25 01:22:26 +00001455 // If we have special knowledge that this addrec won't overflow,
1456 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001457 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001458 return getAddRecExpr(
1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001461
Dan Gohman76466372009-04-27 20:16:15 +00001462 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1463 // Note that this serves two purposes: It filters out loops that are
1464 // simply not analyzable, and it covers the case where this code is
1465 // being called from within backedge-taken count analysis, such that
1466 // attempting to ask for the backedge-taken count would likely result
1467 // in infinite recursion. In the later case, the analysis code will
1468 // cope with a conservative value, and it will take care to purge
1469 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001472 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001473 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001474
1475 // Check whether the backedge-taken count can be losslessly casted to
1476 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001477 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001478 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001479 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1481 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001483 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1487 const SCEV *WideMaxBECount =
1488 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001489 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001490 getAddExpr(WideStart,
1491 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001492 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001493 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001494 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001496 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001497 return getAddRecExpr(
1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001500 }
Dan Gohman76466372009-04-27 20:16:15 +00001501 // Similar to above, only this time treat the step value as signed.
1502 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001503 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001504 getAddExpr(WideStart,
1505 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001506 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001507 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001508 // Cache knowledge of AR NW, which is propagated to this AddRec.
1509 // Negative step causes unsigned wrap, but it still can't self-wrap.
1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001511 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001512 return getAddRecExpr(
1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001515 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001516 }
1517
1518 // If the backedge is guarded by a comparison with the pre-inc value
1519 // the addrec is safe. Also, if the entry is guarded by a comparison
1520 // with the start value and the backedge is guarded by a comparison
1521 // with the post-inc value, the addrec is safe.
1522 if (isKnownPositive(Step)) {
1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1524 getUnsignedRange(Step).getUnsignedMax());
1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001528 AR->getPostIncExpr(*this), N))) {
1529 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001531 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001532 return getAddRecExpr(
1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001535 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001536 } else if (isKnownNegative(Step)) {
1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1538 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001542 AR->getPostIncExpr(*this), N))) {
1543 // Cache knowledge of AR NW, which is propagated to this AddRec.
1544 // Negative step causes unsigned wrap, but it still can't self-wrap.
1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1546 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001547 return getAddRecExpr(
1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001550 }
Dan Gohman76466372009-04-27 20:16:15 +00001551 }
1552 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001553
1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1556 return getAddRecExpr(
1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1559 }
Dan Gohman76466372009-04-27 20:16:15 +00001560 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001561
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001562 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1563 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1564 if (SA->getNoWrapFlags(SCEV::FlagNUW)) {
1565 // If the addition does not unsign overflow then we can, by definition,
1566 // commute the zero extension with the addition operation.
1567 SmallVector<const SCEV *, 4> Ops;
1568 for (const auto *Op : SA->operands())
1569 Ops.push_back(getZeroExtendExpr(Op, Ty));
1570 return getAddExpr(Ops, SCEV::FlagNUW);
1571 }
1572 }
1573
Dan Gohman74a0ba12009-07-13 20:55:53 +00001574 // The cast wasn't folded; create an explicit cast node.
1575 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001576 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001577 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1578 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001579 UniqueSCEVs.InsertNode(S, IP);
1580 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001581}
1582
Dan Gohmanaf752342009-07-07 17:06:11 +00001583const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001584 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001585 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001586 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001587 assert(isSCEVable(Ty) &&
1588 "This is not a conversion to a SCEVable type!");
1589 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001590
Dan Gohman3423e722009-06-30 20:13:32 +00001591 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001592 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1593 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001594 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001595
Dan Gohman79af8542009-04-22 16:20:48 +00001596 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001597 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001598 return getSignExtendExpr(SS->getOperand(), Ty);
1599
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001600 // sext(zext(x)) --> zext(x)
1601 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1602 return getZeroExtendExpr(SZ->getOperand(), Ty);
1603
Dan Gohman74a0ba12009-07-13 20:55:53 +00001604 // Before doing any expensive analysis, check to see if we've already
1605 // computed a SCEV for this Op and Ty.
1606 FoldingSetNodeID ID;
1607 ID.AddInteger(scSignExtend);
1608 ID.AddPointer(Op);
1609 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001610 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001611 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1612
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001613 // If the input value is provably positive, build a zext instead.
1614 if (isKnownNonNegative(Op))
1615 return getZeroExtendExpr(Op, Ty);
1616
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001617 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1618 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1619 // It's possible the bits taken off by the truncate were all sign bits. If
1620 // so, we should be able to simplify this further.
1621 const SCEV *X = ST->getOperand();
1622 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001623 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1624 unsigned NewBits = getTypeSizeInBits(Ty);
1625 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001626 CR.sextOrTrunc(NewBits)))
1627 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001628 }
1629
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001630 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001631 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001632 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001633 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1634 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001635 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001636 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001637 const APInt &C1 = SC1->getValue()->getValue();
1638 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001639 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001640 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001641 return getAddExpr(getSignExtendExpr(SC1, Ty),
1642 getSignExtendExpr(SMul, Ty));
1643 }
1644 }
1645 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001646
1647 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1648 if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
1649 // If the addition does not sign overflow then we can, by definition,
1650 // commute the sign extension with the addition operation.
1651 SmallVector<const SCEV *, 4> Ops;
1652 for (const auto *Op : SA->operands())
1653 Ops.push_back(getSignExtendExpr(Op, Ty));
1654 return getAddExpr(Ops, SCEV::FlagNSW);
1655 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001656 }
Dan Gohman76466372009-04-27 20:16:15 +00001657 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001658 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001659 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001660 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001662 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001663 const SCEV *Start = AR->getStart();
1664 const SCEV *Step = AR->getStepRecurrence(*this);
1665 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1666 const Loop *L = AR->getLoop();
1667
Dan Gohman62ef6a72009-07-25 01:22:26 +00001668 // If we have special knowledge that this addrec won't overflow,
1669 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001670 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001671 return getAddRecExpr(
1672 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1673 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001674
Dan Gohman76466372009-04-27 20:16:15 +00001675 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1676 // Note that this serves two purposes: It filters out loops that are
1677 // simply not analyzable, and it covers the case where this code is
1678 // being called from within backedge-taken count analysis, such that
1679 // attempting to ask for the backedge-taken count would likely result
1680 // in infinite recursion. In the later case, the analysis code will
1681 // cope with a conservative value, and it will take care to purge
1682 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001683 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001684 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001685 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001686 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001687
1688 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001689 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001690 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001691 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001692 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001693 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1694 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001695 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001696 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001697 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001698 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1699 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1700 const SCEV *WideMaxBECount =
1701 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001702 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001703 getAddExpr(WideStart,
1704 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001705 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001706 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001707 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1708 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001709 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001710 return getAddRecExpr(
1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1712 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001713 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001714 // Similar to above, only this time treat the step value as unsigned.
1715 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001716 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001717 getAddExpr(WideStart,
1718 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001719 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001720 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001721 // If AR wraps around then
1722 //
1723 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1724 // => SAdd != OperandExtendedAdd
1725 //
1726 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1727 // (SAdd == OperandExtendedAdd => AR is NW)
1728
1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1730
Dan Gohman8c129d72009-07-16 17:34:36 +00001731 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001732 return getAddRecExpr(
1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1734 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001735 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001736 }
1737
1738 // If the backedge is guarded by a comparison with the pre-inc value
1739 // the addrec is safe. Also, if the entry is guarded by a comparison
1740 // with the start value and the backedge is guarded by a comparison
1741 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001742 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001743 const SCEV *OverflowLimit =
1744 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001745 if (OverflowLimit &&
1746 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1747 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1748 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1749 OverflowLimit)))) {
1750 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1751 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001752 return getAddRecExpr(
1753 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1754 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001755 }
1756 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001757 // If Start and Step are constants, check if we can apply this
1758 // transformation:
1759 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001760 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1761 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001762 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001763 const APInt &C1 = SC1->getValue()->getValue();
1764 const APInt &C2 = SC2->getValue()->getValue();
1765 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1766 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001767 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001768 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1769 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001770 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1771 }
1772 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001773
1774 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1775 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1776 return getAddRecExpr(
1777 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1778 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1779 }
Dan Gohman76466372009-04-27 20:16:15 +00001780 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001781
Dan Gohman74a0ba12009-07-13 20:55:53 +00001782 // The cast wasn't folded; create an explicit cast node.
1783 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001785 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1786 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001787 UniqueSCEVs.InsertNode(S, IP);
1788 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001789}
1790
Dan Gohman8db2edc2009-06-13 15:56:47 +00001791/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1792/// unspecified bits out to the given type.
1793///
Dan Gohmanaf752342009-07-07 17:06:11 +00001794const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001795 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001796 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1797 "This is not an extending conversion!");
1798 assert(isSCEVable(Ty) &&
1799 "This is not a conversion to a SCEVable type!");
1800 Ty = getEffectiveSCEVType(Ty);
1801
1802 // Sign-extend negative constants.
1803 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1804 if (SC->getValue()->getValue().isNegative())
1805 return getSignExtendExpr(Op, Ty);
1806
1807 // Peel off a truncate cast.
1808 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001809 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001810 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1811 return getAnyExtendExpr(NewOp, Ty);
1812 return getTruncateOrNoop(NewOp, Ty);
1813 }
1814
1815 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001816 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001817 if (!isa<SCEVZeroExtendExpr>(ZExt))
1818 return ZExt;
1819
1820 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001821 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001822 if (!isa<SCEVSignExtendExpr>(SExt))
1823 return SExt;
1824
Dan Gohman51ad99d2010-01-21 02:09:26 +00001825 // Force the cast to be folded into the operands of an addrec.
1826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1827 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001828 for (const SCEV *Op : AR->operands())
1829 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001830 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001831 }
1832
Dan Gohman8db2edc2009-06-13 15:56:47 +00001833 // If the expression is obviously signed, use the sext cast value.
1834 if (isa<SCEVSMaxExpr>(Op))
1835 return SExt;
1836
1837 // Absent any other information, use the zext cast value.
1838 return ZExt;
1839}
1840
Dan Gohman038d02e2009-06-14 22:58:51 +00001841/// CollectAddOperandsWithScales - Process the given Ops list, which is
1842/// a list of operands to be added under the given scale, update the given
1843/// map. This is a helper function for getAddRecExpr. As an example of
1844/// what it does, given a sequence of operands that would form an add
1845/// expression like this:
1846///
Tobias Grosserba49e422014-03-05 10:37:17 +00001847/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001848///
1849/// where A and B are constants, update the map with these values:
1850///
1851/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1852///
1853/// and add 13 + A*B*29 to AccumulatedConstant.
1854/// This will allow getAddRecExpr to produce this:
1855///
1856/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1857///
1858/// This form often exposes folding opportunities that are hidden in
1859/// the original operand list.
1860///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001861/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001862/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1863/// the common case where no interesting opportunities are present, and
1864/// is also used as a check to avoid infinite recursion.
1865///
1866static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001867CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001868 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001869 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001870 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001871 const APInt &Scale,
1872 ScalarEvolution &SE) {
1873 bool Interesting = false;
1874
Dan Gohman45073042010-06-18 19:12:32 +00001875 // Iterate over the add operands. They are sorted, with constants first.
1876 unsigned i = 0;
1877 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1878 ++i;
1879 // Pull a buried constant out to the outside.
1880 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1881 Interesting = true;
1882 AccumulatedConstant += Scale * C->getValue()->getValue();
1883 }
1884
1885 // Next comes everything else. We're especially interested in multiplies
1886 // here, but they're in the middle, so just visit the rest with one loop.
1887 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001888 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1889 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1890 APInt NewScale =
1891 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1892 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1893 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001894 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001895 Interesting |=
1896 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001897 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001898 NewScale, SE);
1899 } else {
1900 // A multiplication of a constant with some other value. Update
1901 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001902 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1903 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Das7a9f8bb2015-09-17 19:04:09 +00001904 auto Pair = M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001905 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001906 NewOps.push_back(Pair.first->first);
1907 } else {
1908 Pair.first->second += NewScale;
1909 // The map already had an entry for this value, which may indicate
1910 // a folding opportunity.
1911 Interesting = true;
1912 }
1913 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001914 } else {
1915 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001916 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001917 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001918 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001919 NewOps.push_back(Pair.first->first);
1920 } else {
1921 Pair.first->second += Scale;
1922 // The map already had an entry for this value, which may indicate
1923 // a folding opportunity.
1924 Interesting = true;
1925 }
1926 }
1927 }
1928
1929 return Interesting;
1930}
1931
1932namespace {
1933 struct APIntCompare {
1934 bool operator()(const APInt &LHS, const APInt &RHS) const {
1935 return LHS.ult(RHS);
1936 }
1937 };
1938}
1939
Sanjoy Das81401d42015-01-10 23:41:24 +00001940// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1941// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1942// can't-overflow flags for the operation if possible.
1943static SCEV::NoWrapFlags
1944StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1945 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001946 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001947 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001948 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001949
1950 bool CanAnalyze =
1951 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1952 (void)CanAnalyze;
1953 assert(CanAnalyze && "don't call from other places!");
1954
1955 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1956 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001957 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001958
1959 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1960 auto IsKnownNonNegative =
1961 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1962
1963 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1964 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001965 Flags =
1966 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001967
Sanjoy Das8f274152015-10-22 19:57:19 +00001968 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1969
1970 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1971 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1972
1973 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1974 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1975
1976 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue();
1977 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1978 auto NSWRegion =
1979 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1980 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1981 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1982 }
1983 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1984 auto NUWRegion =
1985 ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1986 OBO::NoUnsignedWrap);
1987 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1988 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1989 }
1990 }
1991
1992 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00001993}
1994
Dan Gohman4d5435d2009-05-24 23:45:28 +00001995/// getAddExpr - Get a canonical add expression, or something simpler if
1996/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001997const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001998 SCEV::NoWrapFlags Flags) {
1999 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2000 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002001 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00002002 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002003#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002004 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002005 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00002006 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002007 "SCEVAddExpr operand types don't match!");
2008#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002009
2010 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002011 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002012
Sanjoy Das64895612015-10-09 02:44:45 +00002013 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2014
Chris Lattnerd934c702004-04-02 20:23:17 +00002015 // If there are any constants, fold them together.
2016 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002017 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002018 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002019 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002020 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002021 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00002022 Ops[0] = getConstant(LHSC->getValue()->getValue() +
2023 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00002024 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002025 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002026 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002027 }
2028
2029 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002030 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002031 Ops.erase(Ops.begin());
2032 --Idx;
2033 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002034
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002035 if (Ops.size() == 1) return Ops[0];
2036 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002037
Dan Gohman15871f22010-08-27 21:39:59 +00002038 // Okay, check to see if the same value occurs in the operand list more than
2039 // once. If so, merge them together into an multiply expression. Since we
2040 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002041 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002042 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002043 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002044 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002045 // Scan ahead to count how many equal operands there are.
2046 unsigned Count = 2;
2047 while (i+Count != e && Ops[i+Count] == Ops[i])
2048 ++Count;
2049 // Merge the values into a multiply.
2050 const SCEV *Scale = getConstant(Ty, Count);
2051 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2052 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002053 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002054 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002055 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002056 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002057 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002058 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002059 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002060 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002061
Dan Gohman2e55cc52009-05-08 21:03:19 +00002062 // Check for truncates. If all the operands are truncated from the same
2063 // type, see if factoring out the truncate would permit the result to be
2064 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2065 // if the contents of the resulting outer trunc fold to something simple.
2066 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2067 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002068 Type *DstType = Trunc->getType();
2069 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002070 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002071 bool Ok = true;
2072 // Check all the operands to see if they can be represented in the
2073 // source type of the truncate.
2074 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2075 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2076 if (T->getOperand()->getType() != SrcType) {
2077 Ok = false;
2078 break;
2079 }
2080 LargeOps.push_back(T->getOperand());
2081 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002082 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002083 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002084 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002085 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2086 if (const SCEVTruncateExpr *T =
2087 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2088 if (T->getOperand()->getType() != SrcType) {
2089 Ok = false;
2090 break;
2091 }
2092 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002093 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002094 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002095 } else {
2096 Ok = false;
2097 break;
2098 }
2099 }
2100 if (Ok)
2101 LargeOps.push_back(getMulExpr(LargeMulOps));
2102 } else {
2103 Ok = false;
2104 break;
2105 }
2106 }
2107 if (Ok) {
2108 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002109 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002110 // If it folds to something simple, use it. Otherwise, don't.
2111 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2112 return getTruncateExpr(Fold, DstType);
2113 }
2114 }
2115
2116 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002117 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2118 ++Idx;
2119
2120 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002121 if (Idx < Ops.size()) {
2122 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002123 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002124 // If we have an add, expand the add operands onto the end of the operands
2125 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002126 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002127 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002128 DeletedAdd = true;
2129 }
2130
2131 // If we deleted at least one add, we added operands to the end of the list,
2132 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002133 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002134 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002135 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002136 }
2137
2138 // Skip over the add expression until we get to a multiply.
2139 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2140 ++Idx;
2141
Dan Gohman038d02e2009-06-14 22:58:51 +00002142 // Check to see if there are any folding opportunities present with
2143 // operands multiplied by constant values.
2144 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2145 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002146 DenseMap<const SCEV *, APInt> M;
2147 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002148 APInt AccumulatedConstant(BitWidth, 0);
2149 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002150 Ops.data(), Ops.size(),
2151 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002152 // Some interesting folding opportunity is present, so its worthwhile to
2153 // re-generate the operands list. Group the operands by constant scale,
2154 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002155 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002156 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002157 E = NewOps.end(); I != E; ++I)
2158 MulOpLists[M.find(*I)->second].push_back(*I);
2159 // Re-generate the operands list.
2160 Ops.clear();
2161 if (AccumulatedConstant != 0)
2162 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002163 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2164 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002165 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002166 Ops.push_back(getMulExpr(getConstant(I->first),
2167 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002168 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002169 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002170 if (Ops.size() == 1)
2171 return Ops[0];
2172 return getAddExpr(Ops);
2173 }
2174 }
2175
Chris Lattnerd934c702004-04-02 20:23:17 +00002176 // If we are adding something to a multiply expression, make sure the
2177 // something is not already an operand of the multiply. If so, merge it into
2178 // the multiply.
2179 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002180 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002181 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002182 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002183 if (isa<SCEVConstant>(MulOpSCEV))
2184 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002185 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002186 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002187 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002188 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002189 if (Mul->getNumOperands() != 2) {
2190 // If the multiply has more than two operands, we must get the
2191 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002192 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2193 Mul->op_begin()+MulOp);
2194 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002195 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002196 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002197 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002198 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002199 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002200 if (Ops.size() == 2) return OuterMul;
2201 if (AddOp < Idx) {
2202 Ops.erase(Ops.begin()+AddOp);
2203 Ops.erase(Ops.begin()+Idx-1);
2204 } else {
2205 Ops.erase(Ops.begin()+Idx);
2206 Ops.erase(Ops.begin()+AddOp-1);
2207 }
2208 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002209 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002210 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002211
Chris Lattnerd934c702004-04-02 20:23:17 +00002212 // Check this multiply against other multiplies being added together.
2213 for (unsigned OtherMulIdx = Idx+1;
2214 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2215 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002216 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002217 // If MulOp occurs in OtherMul, we can fold the two multiplies
2218 // together.
2219 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2220 OMulOp != e; ++OMulOp)
2221 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2222 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002223 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002224 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002225 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002226 Mul->op_begin()+MulOp);
2227 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002228 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002229 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002230 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002231 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002232 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002233 OtherMul->op_begin()+OMulOp);
2234 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002235 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002236 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002237 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2238 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002239 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002240 Ops.erase(Ops.begin()+Idx);
2241 Ops.erase(Ops.begin()+OtherMulIdx-1);
2242 Ops.push_back(OuterMul);
2243 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002244 }
2245 }
2246 }
2247 }
2248
2249 // If there are any add recurrences in the operands list, see if any other
2250 // added values are loop invariant. If so, we can fold them into the
2251 // recurrence.
2252 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2253 ++Idx;
2254
2255 // Scan over all recurrences, trying to fold loop invariants into them.
2256 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2257 // Scan all of the other operands to this add and add them to the vector if
2258 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002259 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002260 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002261 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002262 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002263 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002264 LIOps.push_back(Ops[i]);
2265 Ops.erase(Ops.begin()+i);
2266 --i; --e;
2267 }
2268
2269 // If we found some loop invariants, fold them into the recurrence.
2270 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002271 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002272 LIOps.push_back(AddRec->getStart());
2273
Dan Gohmanaf752342009-07-07 17:06:11 +00002274 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002275 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002276 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002277
Dan Gohman16206132010-06-30 07:16:37 +00002278 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002279 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002280 // Always propagate NW.
2281 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002282 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002283
Chris Lattnerd934c702004-04-02 20:23:17 +00002284 // If all of the other operands were loop invariant, we are done.
2285 if (Ops.size() == 1) return NewRec;
2286
Nick Lewyckydb66b822011-09-06 05:08:09 +00002287 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002288 for (unsigned i = 0;; ++i)
2289 if (Ops[i] == AddRec) {
2290 Ops[i] = NewRec;
2291 break;
2292 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002293 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002294 }
2295
2296 // Okay, if there weren't any loop invariants to be folded, check to see if
2297 // there are multiple AddRec's with the same loop induction variable being
2298 // added together. If so, we can fold them.
2299 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002300 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2301 ++OtherIdx)
2302 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2303 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2304 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2305 AddRec->op_end());
2306 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2307 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002308 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002309 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002310 if (OtherAddRec->getLoop() == AddRecLoop) {
2311 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2312 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002313 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002314 AddRecOps.append(OtherAddRec->op_begin()+i,
2315 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002316 break;
2317 }
Dan Gohman028c1812010-08-29 14:53:34 +00002318 AddRecOps[i] = getAddExpr(AddRecOps[i],
2319 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002320 }
2321 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002322 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002323 // Step size has changed, so we cannot guarantee no self-wraparound.
2324 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002325 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002326 }
2327
2328 // Otherwise couldn't fold anything into this recurrence. Move onto the
2329 // next one.
2330 }
2331
2332 // Okay, it looks like we really DO need an add expr. Check to see if we
2333 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002334 FoldingSetNodeID ID;
2335 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002336 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2337 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002338 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002339 SCEVAddExpr *S =
2340 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2341 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002342 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2343 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002344 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2345 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002346 UniqueSCEVs.InsertNode(S, IP);
2347 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002348 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002349 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002350}
2351
Nick Lewycky287682e2011-10-04 06:51:26 +00002352static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2353 uint64_t k = i*j;
2354 if (j > 1 && k / j != i) Overflow = true;
2355 return k;
2356}
2357
2358/// Compute the result of "n choose k", the binomial coefficient. If an
2359/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002360/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002361static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2362 // We use the multiplicative formula:
2363 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2364 // At each iteration, we take the n-th term of the numeral and divide by the
2365 // (k-n)th term of the denominator. This division will always produce an
2366 // integral result, and helps reduce the chance of overflow in the
2367 // intermediate computations. However, we can still overflow even when the
2368 // final result would fit.
2369
2370 if (n == 0 || n == k) return 1;
2371 if (k > n) return 0;
2372
2373 if (k > n/2)
2374 k = n-k;
2375
2376 uint64_t r = 1;
2377 for (uint64_t i = 1; i <= k; ++i) {
2378 r = umul_ov(r, n-(i-1), Overflow);
2379 r /= i;
2380 }
2381 return r;
2382}
2383
Nick Lewycky05044c22014-12-06 00:45:50 +00002384/// Determine if any of the operands in this SCEV are a constant or if
2385/// any of the add or multiply expressions in this SCEV contain a constant.
2386static bool containsConstantSomewhere(const SCEV *StartExpr) {
2387 SmallVector<const SCEV *, 4> Ops;
2388 Ops.push_back(StartExpr);
2389 while (!Ops.empty()) {
2390 const SCEV *CurrentExpr = Ops.pop_back_val();
2391 if (isa<SCEVConstant>(*CurrentExpr))
2392 return true;
2393
2394 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2395 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002396 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002397 }
2398 }
2399 return false;
2400}
2401
Dan Gohman4d5435d2009-05-24 23:45:28 +00002402/// getMulExpr - Get a canonical multiply expression, or something simpler if
2403/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002404const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002405 SCEV::NoWrapFlags Flags) {
2406 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2407 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002408 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002409 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002410#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002411 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002412 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002413 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002414 "SCEVMulExpr operand types don't match!");
2415#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002416
2417 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002418 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002419
Sanjoy Das64895612015-10-09 02:44:45 +00002420 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2421
Chris Lattnerd934c702004-04-02 20:23:17 +00002422 // If there are any constants, fold them together.
2423 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002424 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002425
2426 // C1*(C2+V) -> C1*C2 + C1*V
2427 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002428 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2429 // If any of Add's ops are Adds or Muls with a constant,
2430 // apply this transformation as well.
2431 if (Add->getNumOperands() == 2)
2432 if (containsConstantSomewhere(Add))
2433 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2434 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002435
Chris Lattnerd934c702004-04-02 20:23:17 +00002436 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002437 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002438 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002439 ConstantInt *Fold = ConstantInt::get(getContext(),
2440 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002441 RHSC->getValue()->getValue());
2442 Ops[0] = getConstant(Fold);
2443 Ops.erase(Ops.begin()+1); // Erase the folded element
2444 if (Ops.size() == 1) return Ops[0];
2445 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002446 }
2447
2448 // If we are left with a constant one being multiplied, strip it off.
2449 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2450 Ops.erase(Ops.begin());
2451 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002452 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002453 // If we have a multiply of zero, it will always be zero.
2454 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002455 } else if (Ops[0]->isAllOnesValue()) {
2456 // If we have a mul by -1 of an add, try distributing the -1 among the
2457 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002458 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002459 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2460 SmallVector<const SCEV *, 4> NewOps;
2461 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002462 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2463 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002464 const SCEV *Mul = getMulExpr(Ops[0], *I);
2465 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2466 NewOps.push_back(Mul);
2467 }
2468 if (AnyFolded)
2469 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002470 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002471 // Negation preserves a recurrence's no self-wrap property.
2472 SmallVector<const SCEV *, 4> Operands;
2473 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2474 E = AddRec->op_end(); I != E; ++I) {
2475 Operands.push_back(getMulExpr(Ops[0], *I));
2476 }
2477 return getAddRecExpr(Operands, AddRec->getLoop(),
2478 AddRec->getNoWrapFlags(SCEV::FlagNW));
2479 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002480 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002481 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002482
2483 if (Ops.size() == 1)
2484 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002485 }
2486
2487 // Skip over the add expression until we get to a multiply.
2488 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2489 ++Idx;
2490
Chris Lattnerd934c702004-04-02 20:23:17 +00002491 // If there are mul operands inline them all into this expression.
2492 if (Idx < Ops.size()) {
2493 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002494 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002495 // If we have an mul, expand the mul operands onto the end of the operands
2496 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002497 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002498 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002499 DeletedMul = true;
2500 }
2501
2502 // If we deleted at least one mul, we added operands to the end of the list,
2503 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002504 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002505 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002506 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002507 }
2508
2509 // If there are any add recurrences in the operands list, see if any other
2510 // added values are loop invariant. If so, we can fold them into the
2511 // recurrence.
2512 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2513 ++Idx;
2514
2515 // Scan over all recurrences, trying to fold loop invariants into them.
2516 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2517 // Scan all of the other operands to this mul and add them to the vector if
2518 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002519 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002520 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002521 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002522 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002523 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002524 LIOps.push_back(Ops[i]);
2525 Ops.erase(Ops.begin()+i);
2526 --i; --e;
2527 }
2528
2529 // If we found some loop invariants, fold them into the recurrence.
2530 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002531 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002532 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002533 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002534 const SCEV *Scale = getMulExpr(LIOps);
2535 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2536 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002537
Dan Gohman16206132010-06-30 07:16:37 +00002538 // Build the new addrec. Propagate the NUW and NSW flags if both the
2539 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002540 //
2541 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002542 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002543 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2544 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002545
2546 // If all of the other operands were loop invariant, we are done.
2547 if (Ops.size() == 1) return NewRec;
2548
Nick Lewyckydb66b822011-09-06 05:08:09 +00002549 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002550 for (unsigned i = 0;; ++i)
2551 if (Ops[i] == AddRec) {
2552 Ops[i] = NewRec;
2553 break;
2554 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002555 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002556 }
2557
2558 // Okay, if there weren't any loop invariants to be folded, check to see if
2559 // there are multiple AddRec's with the same loop induction variable being
2560 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002561
2562 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2563 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2564 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2565 // ]]],+,...up to x=2n}.
2566 // Note that the arguments to choose() are always integers with values
2567 // known at compile time, never SCEV objects.
2568 //
2569 // The implementation avoids pointless extra computations when the two
2570 // addrec's are of different length (mathematically, it's equivalent to
2571 // an infinite stream of zeros on the right).
2572 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002573 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002574 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002575 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002576 const SCEVAddRecExpr *OtherAddRec =
2577 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2578 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002579 continue;
2580
Nick Lewycky97756402014-09-01 05:17:15 +00002581 bool Overflow = false;
2582 Type *Ty = AddRec->getType();
2583 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2584 SmallVector<const SCEV*, 7> AddRecOps;
2585 for (int x = 0, xe = AddRec->getNumOperands() +
2586 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002587 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002588 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2589 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2590 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2591 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2592 z < ze && !Overflow; ++z) {
2593 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2594 uint64_t Coeff;
2595 if (LargerThan64Bits)
2596 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2597 else
2598 Coeff = Coeff1*Coeff2;
2599 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2600 const SCEV *Term1 = AddRec->getOperand(y-z);
2601 const SCEV *Term2 = OtherAddRec->getOperand(z);
2602 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002603 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002604 }
Nick Lewycky97756402014-09-01 05:17:15 +00002605 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002606 }
Nick Lewycky97756402014-09-01 05:17:15 +00002607 if (!Overflow) {
2608 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2609 SCEV::FlagAnyWrap);
2610 if (Ops.size() == 2) return NewAddRec;
2611 Ops[Idx] = NewAddRec;
2612 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2613 OpsModified = true;
2614 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2615 if (!AddRec)
2616 break;
2617 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002618 }
Nick Lewycky97756402014-09-01 05:17:15 +00002619 if (OpsModified)
2620 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002621
2622 // Otherwise couldn't fold anything into this recurrence. Move onto the
2623 // next one.
2624 }
2625
2626 // Okay, it looks like we really DO need an mul expr. Check to see if we
2627 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002628 FoldingSetNodeID ID;
2629 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002630 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2631 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002632 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002633 SCEVMulExpr *S =
2634 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2635 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002636 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2637 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002638 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2639 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002640 UniqueSCEVs.InsertNode(S, IP);
2641 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002642 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002643 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002644}
2645
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002646/// getUDivExpr - Get a canonical unsigned division expression, or something
2647/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002648const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2649 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002650 assert(getEffectiveSCEVType(LHS->getType()) ==
2651 getEffectiveSCEVType(RHS->getType()) &&
2652 "SCEVUDivExpr operand types don't match!");
2653
Dan Gohmana30370b2009-05-04 22:02:23 +00002654 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002655 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002656 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002657 // If the denominator is zero, the result of the udiv is undefined. Don't
2658 // try to analyze it, because the resolution chosen here may differ from
2659 // the resolution chosen in other parts of the compiler.
2660 if (!RHSC->getValue()->isZero()) {
2661 // Determine if the division can be folded into the operands of
2662 // its operands.
2663 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002664 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002665 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002666 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002667 // For non-power-of-two values, effectively round the value up to the
2668 // nearest power of two.
2669 if (!RHSC->getValue()->getValue().isPowerOf2())
2670 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002671 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002672 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002673 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2674 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002675 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2676 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2677 const APInt &StepInt = Step->getValue()->getValue();
2678 const APInt &DivInt = RHSC->getValue()->getValue();
2679 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002680 getZeroExtendExpr(AR, ExtTy) ==
2681 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2682 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002683 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002684 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002685 for (const SCEV *Op : AR->operands())
2686 Operands.push_back(getUDivExpr(Op, RHS));
2687 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002688 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002689 /// Get a canonical UDivExpr for a recurrence.
2690 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2691 // We can currently only fold X%N if X is constant.
2692 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2693 if (StartC && !DivInt.urem(StepInt) &&
2694 getZeroExtendExpr(AR, ExtTy) ==
2695 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2696 getZeroExtendExpr(Step, ExtTy),
2697 AR->getLoop(), SCEV::FlagAnyWrap)) {
2698 const APInt &StartInt = StartC->getValue()->getValue();
2699 const APInt &StartRem = StartInt.urem(StepInt);
2700 if (StartRem != 0)
2701 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2702 AR->getLoop(), SCEV::FlagNW);
2703 }
2704 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002705 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2706 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2707 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002708 for (const SCEV *Op : M->operands())
2709 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002710 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2711 // Find an operand that's safely divisible.
2712 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2713 const SCEV *Op = M->getOperand(i);
2714 const SCEV *Div = getUDivExpr(Op, RHSC);
2715 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2716 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2717 M->op_end());
2718 Operands[i] = Div;
2719 return getMulExpr(Operands);
2720 }
2721 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002722 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002723 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002724 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002725 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002726 for (const SCEV *Op : A->operands())
2727 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002728 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2729 Operands.clear();
2730 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2731 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2732 if (isa<SCEVUDivExpr>(Op) ||
2733 getMulExpr(Op, RHS) != A->getOperand(i))
2734 break;
2735 Operands.push_back(Op);
2736 }
2737 if (Operands.size() == A->getNumOperands())
2738 return getAddExpr(Operands);
2739 }
2740 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002741
Dan Gohmanacd700a2010-04-22 01:35:11 +00002742 // Fold if both operands are constant.
2743 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2744 Constant *LHSCV = LHSC->getValue();
2745 Constant *RHSCV = RHSC->getValue();
2746 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2747 RHSCV)));
2748 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002749 }
2750 }
2751
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002752 FoldingSetNodeID ID;
2753 ID.AddInteger(scUDivExpr);
2754 ID.AddPointer(LHS);
2755 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002756 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002757 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002758 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2759 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002760 UniqueSCEVs.InsertNode(S, IP);
2761 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002762}
2763
Nick Lewycky31eaca52014-01-27 10:04:03 +00002764static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2765 APInt A = C1->getValue()->getValue().abs();
2766 APInt B = C2->getValue()->getValue().abs();
2767 uint32_t ABW = A.getBitWidth();
2768 uint32_t BBW = B.getBitWidth();
2769
2770 if (ABW > BBW)
2771 B = B.zext(ABW);
2772 else if (ABW < BBW)
2773 A = A.zext(BBW);
2774
2775 return APIntOps::GreatestCommonDivisor(A, B);
2776}
2777
2778/// getUDivExactExpr - Get a canonical unsigned division expression, or
2779/// something simpler if possible. There is no representation for an exact udiv
2780/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2781/// We can't do this when it's not exact because the udiv may be clearing bits.
2782const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2783 const SCEV *RHS) {
2784 // TODO: we could try to find factors in all sorts of things, but for now we
2785 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2786 // end of this file for inspiration.
2787
2788 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2789 if (!Mul)
2790 return getUDivExpr(LHS, RHS);
2791
2792 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2793 // If the mulexpr multiplies by a constant, then that constant must be the
2794 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002795 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002796 if (LHSCst == RHSCst) {
2797 SmallVector<const SCEV *, 2> Operands;
2798 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2799 return getMulExpr(Operands);
2800 }
2801
2802 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2803 // that there's a factor provided by one of the other terms. We need to
2804 // check.
2805 APInt Factor = gcd(LHSCst, RHSCst);
2806 if (!Factor.isIntN(1)) {
2807 LHSCst = cast<SCEVConstant>(
2808 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2809 RHSCst = cast<SCEVConstant>(
2810 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2811 SmallVector<const SCEV *, 2> Operands;
2812 Operands.push_back(LHSCst);
2813 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2814 LHS = getMulExpr(Operands);
2815 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002816 Mul = dyn_cast<SCEVMulExpr>(LHS);
2817 if (!Mul)
2818 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002819 }
2820 }
2821 }
2822
2823 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2824 if (Mul->getOperand(i) == RHS) {
2825 SmallVector<const SCEV *, 2> Operands;
2826 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2827 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2828 return getMulExpr(Operands);
2829 }
2830 }
2831
2832 return getUDivExpr(LHS, RHS);
2833}
Chris Lattnerd934c702004-04-02 20:23:17 +00002834
Dan Gohman4d5435d2009-05-24 23:45:28 +00002835/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2836/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002837const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2838 const Loop *L,
2839 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002840 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002841 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002842 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002843 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002844 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002845 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002846 }
2847
2848 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002849 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002850}
2851
Dan Gohman4d5435d2009-05-24 23:45:28 +00002852/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2853/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002854const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002855ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002856 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002857 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002858#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002859 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002860 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002861 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002862 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002863 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002864 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002865 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002866#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002867
Dan Gohmanbe928e32008-06-18 16:23:07 +00002868 if (Operands.back()->isZero()) {
2869 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002870 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002871 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002872
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002873 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2874 // use that information to infer NUW and NSW flags. However, computing a
2875 // BE count requires calling getAddRecExpr, so we may not yet have a
2876 // meaningful BE count at this point (and if we don't, we'd be stuck
2877 // with a SCEVCouldNotCompute as the cached BE count).
2878
Sanjoy Das81401d42015-01-10 23:41:24 +00002879 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002880
Dan Gohman223a5d22008-08-08 18:33:12 +00002881 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002882 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002883 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002884 if (L->contains(NestedLoop)
2885 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2886 : (!NestedLoop->contains(L) &&
2887 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002888 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002889 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002890 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002891 // AddRecs require their operands be loop-invariant with respect to their
2892 // loops. Don't perform this transformation if it would break this
2893 // requirement.
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002894 bool AllInvariant =
2895 std::all_of(Operands.begin(), Operands.end(),
2896 [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2897
Dan Gohmancc030b72009-06-26 22:36:20 +00002898 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002899 // Create a recurrence for the outer loop with the same step size.
2900 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002901 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2902 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002903 SCEV::NoWrapFlags OuterFlags =
2904 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002905
2906 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002907 AllInvariant = std::all_of(
2908 NestedOperands.begin(), NestedOperands.end(),
2909 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); });
2910
Andrew Trick8b55b732011-03-14 16:50:06 +00002911 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002912 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002913 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002914 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2915 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002916 SCEV::NoWrapFlags InnerFlags =
2917 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002918 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2919 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002920 }
2921 // Reset Operands to its original state.
2922 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002923 }
2924 }
2925
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002926 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2927 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002928 FoldingSetNodeID ID;
2929 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002930 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2931 ID.AddPointer(Operands[i]);
2932 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002933 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002934 SCEVAddRecExpr *S =
2935 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2936 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002937 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2938 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002939 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2940 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002941 UniqueSCEVs.InsertNode(S, IP);
2942 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002943 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002944 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002945}
2946
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002947const SCEV *
2948ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2949 const SmallVectorImpl<const SCEV *> &IndexExprs,
2950 bool InBounds) {
2951 // getSCEV(Base)->getType() has the same address space as Base->getType()
2952 // because SCEV::getType() preserves the address space.
2953 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2954 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2955 // instruction to its SCEV, because the Instruction may be guarded by control
2956 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002957 // context. This can be fixed similarly to how these flags are handled for
2958 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002959 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2960
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002961 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002962 // The address space is unimportant. The first thing we do on CurTy is getting
2963 // its element type.
2964 Type *CurTy = PointerType::getUnqual(PointeeType);
2965 for (const SCEV *IndexExpr : IndexExprs) {
2966 // Compute the (potentially symbolic) offset in bytes for this index.
2967 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2968 // For a struct, add the member offset.
2969 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2970 unsigned FieldNo = Index->getZExtValue();
2971 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2972
2973 // Add the field offset to the running total offset.
2974 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2975
2976 // Update CurTy to the type of the field at Index.
2977 CurTy = STy->getTypeAtIndex(Index);
2978 } else {
2979 // Update CurTy to its element type.
2980 CurTy = cast<SequentialType>(CurTy)->getElementType();
2981 // For an array, add the element offset, explicitly scaled.
2982 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2983 // Getelementptr indices are signed.
2984 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2985
2986 // Multiply the index by the element size to compute the element offset.
2987 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2988
2989 // Add the element offset to the running total offset.
2990 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2991 }
2992 }
2993
2994 // Add the total offset from all the GEP indices to the base.
2995 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2996}
2997
Dan Gohmanabd17092009-06-24 14:49:00 +00002998const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2999 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003000 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003001 Ops.push_back(LHS);
3002 Ops.push_back(RHS);
3003 return getSMaxExpr(Ops);
3004}
3005
Dan Gohmanaf752342009-07-07 17:06:11 +00003006const SCEV *
3007ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003008 assert(!Ops.empty() && "Cannot get empty smax!");
3009 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003010#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003011 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003012 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003013 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003014 "SCEVSMaxExpr operand types don't match!");
3015#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003016
3017 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003018 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003019
3020 // If there are any constants, fold them together.
3021 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003022 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003023 ++Idx;
3024 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003025 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003026 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003027 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003028 APIntOps::smax(LHSC->getValue()->getValue(),
3029 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003030 Ops[0] = getConstant(Fold);
3031 Ops.erase(Ops.begin()+1); // Erase the folded element
3032 if (Ops.size() == 1) return Ops[0];
3033 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003034 }
3035
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003036 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003037 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3038 Ops.erase(Ops.begin());
3039 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003040 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3041 // If we have an smax with a constant maximum-int, it will always be
3042 // maximum-int.
3043 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003044 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003045
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003046 if (Ops.size() == 1) return Ops[0];
3047 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003048
3049 // Find the first SMax
3050 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3051 ++Idx;
3052
3053 // Check to see if one of the operands is an SMax. If so, expand its operands
3054 // onto our operand list, and recurse to simplify.
3055 if (Idx < Ops.size()) {
3056 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003057 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003058 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003059 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003060 DeletedSMax = true;
3061 }
3062
3063 if (DeletedSMax)
3064 return getSMaxExpr(Ops);
3065 }
3066
3067 // Okay, check to see if the same value occurs in the operand list twice. If
3068 // so, delete one. Since we sorted the list, these values are required to
3069 // be adjacent.
3070 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003071 // X smax Y smax Y --> X smax Y
3072 // X smax Y --> X, if X is always greater than Y
3073 if (Ops[i] == Ops[i+1] ||
3074 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3075 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3076 --i; --e;
3077 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003078 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3079 --i; --e;
3080 }
3081
3082 if (Ops.size() == 1) return Ops[0];
3083
3084 assert(!Ops.empty() && "Reduced smax down to nothing!");
3085
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003086 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003087 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003088 FoldingSetNodeID ID;
3089 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003090 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3091 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003092 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003093 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003094 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3095 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003096 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3097 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003098 UniqueSCEVs.InsertNode(S, IP);
3099 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003100}
3101
Dan Gohmanabd17092009-06-24 14:49:00 +00003102const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3103 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003104 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003105 Ops.push_back(LHS);
3106 Ops.push_back(RHS);
3107 return getUMaxExpr(Ops);
3108}
3109
Dan Gohmanaf752342009-07-07 17:06:11 +00003110const SCEV *
3111ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003112 assert(!Ops.empty() && "Cannot get empty umax!");
3113 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003114#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003115 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003116 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003117 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003118 "SCEVUMaxExpr operand types don't match!");
3119#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003120
3121 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003122 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003123
3124 // If there are any constants, fold them together.
3125 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003126 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003127 ++Idx;
3128 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003129 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003130 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003131 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003132 APIntOps::umax(LHSC->getValue()->getValue(),
3133 RHSC->getValue()->getValue()));
3134 Ops[0] = getConstant(Fold);
3135 Ops.erase(Ops.begin()+1); // Erase the folded element
3136 if (Ops.size() == 1) return Ops[0];
3137 LHSC = cast<SCEVConstant>(Ops[0]);
3138 }
3139
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003140 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003141 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3142 Ops.erase(Ops.begin());
3143 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003144 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3145 // If we have an umax with a constant maximum-int, it will always be
3146 // maximum-int.
3147 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003148 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003149
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003150 if (Ops.size() == 1) return Ops[0];
3151 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003152
3153 // Find the first UMax
3154 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3155 ++Idx;
3156
3157 // Check to see if one of the operands is a UMax. If so, expand its operands
3158 // onto our operand list, and recurse to simplify.
3159 if (Idx < Ops.size()) {
3160 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003161 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003162 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003163 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003164 DeletedUMax = true;
3165 }
3166
3167 if (DeletedUMax)
3168 return getUMaxExpr(Ops);
3169 }
3170
3171 // Okay, check to see if the same value occurs in the operand list twice. If
3172 // so, delete one. Since we sorted the list, these values are required to
3173 // be adjacent.
3174 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003175 // X umax Y umax Y --> X umax Y
3176 // X umax Y --> X, if X is always greater than Y
3177 if (Ops[i] == Ops[i+1] ||
3178 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3179 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3180 --i; --e;
3181 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003182 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3183 --i; --e;
3184 }
3185
3186 if (Ops.size() == 1) return Ops[0];
3187
3188 assert(!Ops.empty() && "Reduced umax down to nothing!");
3189
3190 // Okay, it looks like we really DO need a umax expr. Check to see if we
3191 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003192 FoldingSetNodeID ID;
3193 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003194 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3195 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003196 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003197 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003198 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3199 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003200 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3201 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003202 UniqueSCEVs.InsertNode(S, IP);
3203 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003204}
3205
Dan Gohmanabd17092009-06-24 14:49:00 +00003206const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3207 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003208 // ~smax(~x, ~y) == smin(x, y).
3209 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3210}
3211
Dan Gohmanabd17092009-06-24 14:49:00 +00003212const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3213 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003214 // ~umax(~x, ~y) == umin(x, y)
3215 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3216}
3217
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003218const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003219 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003220 // constant expression and then folding it back into a ConstantInt.
3221 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003222 return getConstant(IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003223 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003224}
3225
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003226const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3227 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003228 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003229 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003230 // constant expression and then folding it back into a ConstantInt.
3231 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003232 return getConstant(
3233 IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003234 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003235 FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003236}
3237
Dan Gohmanaf752342009-07-07 17:06:11 +00003238const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003239 // Don't attempt to do anything other than create a SCEVUnknown object
3240 // here. createSCEV only calls getUnknown after checking for all other
3241 // interesting possibilities, and any other code that calls getUnknown
3242 // is doing so in order to hide a value from SCEV canonicalization.
3243
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003244 FoldingSetNodeID ID;
3245 ID.AddInteger(scUnknown);
3246 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003247 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003248 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3249 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3250 "Stale SCEVUnknown in uniquing map!");
3251 return S;
3252 }
3253 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3254 FirstUnknown);
3255 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003256 UniqueSCEVs.InsertNode(S, IP);
3257 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003258}
3259
Chris Lattnerd934c702004-04-02 20:23:17 +00003260//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003261// Basic SCEV Analysis and PHI Idiom Recognition Code
3262//
3263
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003264/// isSCEVable - Test if values of the given type are analyzable within
3265/// the SCEV framework. This primarily includes integer types, and it
3266/// can optionally include pointer types if the ScalarEvolution class
3267/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003268bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003269 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003270 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003271}
3272
3273/// getTypeSizeInBits - Return the size in bits of the specified type,
3274/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003275uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003276 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003277 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003278}
3279
3280/// getEffectiveSCEVType - Return a type with the same bitwidth as
3281/// the given type and which represents how SCEV will treat the given
3282/// type, for which isSCEVable must return true. For pointer types,
3283/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003284Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003285 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3286
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003287 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003288 return Ty;
3289
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003290 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003291 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003292 return F.getParent()->getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003293}
Chris Lattnerd934c702004-04-02 20:23:17 +00003294
Dan Gohmanaf752342009-07-07 17:06:11 +00003295const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003296 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003297}
3298
Shuxin Yangefc4c012013-07-08 17:33:13 +00003299namespace {
3300 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3301 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3302 // is set iff if find such SCEVUnknown.
3303 //
3304 struct FindInvalidSCEVUnknown {
3305 bool FindOne;
3306 FindInvalidSCEVUnknown() { FindOne = false; }
3307 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003308 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003309 case scConstant:
3310 return false;
3311 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003312 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003313 FindOne = true;
3314 return false;
3315 default:
3316 return true;
3317 }
3318 }
3319 bool isDone() const { return FindOne; }
3320 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003321}
Shuxin Yangefc4c012013-07-08 17:33:13 +00003322
3323bool ScalarEvolution::checkValidity(const SCEV *S) const {
3324 FindInvalidSCEVUnknown F;
3325 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3326 ST.visitAll(S);
3327
3328 return !F.FindOne;
3329}
3330
Chris Lattnerd934c702004-04-02 20:23:17 +00003331/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3332/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003333const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003334 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003335
Jingyue Wu42f1d672015-07-28 18:22:40 +00003336 const SCEV *S = getExistingSCEV(V);
3337 if (S == nullptr) {
3338 S = createSCEV(V);
3339 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3340 }
3341 return S;
3342}
3343
3344const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3345 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3346
Shuxin Yangefc4c012013-07-08 17:33:13 +00003347 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3348 if (I != ValueExprMap.end()) {
3349 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003350 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003351 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003352 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003353 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003354 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003355}
3356
Dan Gohman0a40ad92009-04-16 03:18:22 +00003357/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3358///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003359const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3360 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003361 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003362 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003363 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003364
Chris Lattner229907c2011-07-18 04:54:35 +00003365 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003366 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003367 return getMulExpr(
3368 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003369}
3370
3371/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003372const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003373 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003374 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003375 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003376
Chris Lattner229907c2011-07-18 04:54:35 +00003377 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003378 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003379 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003380 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003381 return getMinusSCEV(AllOnes, V);
3382}
3383
Andrew Trick8b55b732011-03-14 16:50:06 +00003384/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003385const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003386 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003387 // Fast path: X - X --> 0.
3388 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003389 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003390
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003391 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3392 // makes it so that we cannot make much use of NUW.
3393 auto AddFlags = SCEV::FlagAnyWrap;
3394 const bool RHSIsNotMinSigned =
3395 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3396 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3397 // Let M be the minimum representable signed value. Then (-1)*RHS
3398 // signed-wraps if and only if RHS is M. That can happen even for
3399 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3400 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3401 // (-1)*RHS, we need to prove that RHS != M.
3402 //
3403 // If LHS is non-negative and we know that LHS - RHS does not
3404 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3405 // either by proving that RHS > M or that LHS >= 0.
3406 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3407 AddFlags = SCEV::FlagNSW;
3408 }
3409 }
3410
3411 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3412 // RHS is NSW and LHS >= 0.
3413 //
3414 // The difficulty here is that the NSW flag may have been proven
3415 // relative to a loop that is to be found in a recurrence in LHS and
3416 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3417 // larger scope than intended.
3418 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3419
3420 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003421}
3422
3423/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3424/// input value to the specified type. If the type must be extended, it is zero
3425/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003426const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003427ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3428 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003429 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3430 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003431 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003432 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003433 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003434 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003435 return getTruncateExpr(V, Ty);
3436 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003437}
3438
3439/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3440/// input value to the specified type. If the type must be extended, it is sign
3441/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003442const SCEV *
3443ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003444 Type *Ty) {
3445 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003446 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3447 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003448 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003449 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003450 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003451 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003452 return getTruncateExpr(V, Ty);
3453 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003454}
3455
Dan Gohmane712a2f2009-05-13 03:46:30 +00003456/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3457/// input value to the specified type. If the type must be extended, it is zero
3458/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003459const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003460ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3461 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003462 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3463 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003464 "Cannot noop or zero extend with non-integer arguments!");
3465 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3466 "getNoopOrZeroExtend cannot truncate!");
3467 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3468 return V; // No conversion
3469 return getZeroExtendExpr(V, Ty);
3470}
3471
3472/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3473/// input value to the specified type. If the type must be extended, it is sign
3474/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003475const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003476ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3477 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003478 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3479 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003480 "Cannot noop or sign extend with non-integer arguments!");
3481 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3482 "getNoopOrSignExtend cannot truncate!");
3483 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3484 return V; // No conversion
3485 return getSignExtendExpr(V, Ty);
3486}
3487
Dan Gohman8db2edc2009-06-13 15:56:47 +00003488/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3489/// the input value to the specified type. If the type must be extended,
3490/// it is extended with unspecified bits. The conversion must not be
3491/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003492const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003493ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3494 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003495 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3496 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003497 "Cannot noop or any extend with non-integer arguments!");
3498 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3499 "getNoopOrAnyExtend cannot truncate!");
3500 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3501 return V; // No conversion
3502 return getAnyExtendExpr(V, Ty);
3503}
3504
Dan Gohmane712a2f2009-05-13 03:46:30 +00003505/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3506/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003507const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003508ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3509 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003510 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3511 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003512 "Cannot truncate or noop with non-integer arguments!");
3513 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3514 "getTruncateOrNoop cannot extend!");
3515 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3516 return V; // No conversion
3517 return getTruncateExpr(V, Ty);
3518}
3519
Dan Gohman96212b62009-06-22 00:31:57 +00003520/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3521/// the types using zero-extension, and then perform a umax operation
3522/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003523const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3524 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003525 const SCEV *PromotedLHS = LHS;
3526 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003527
3528 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3529 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3530 else
3531 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3532
3533 return getUMaxExpr(PromotedLHS, PromotedRHS);
3534}
3535
Dan Gohman2bc22302009-06-22 15:03:27 +00003536/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3537/// the types using zero-extension, and then perform a umin operation
3538/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003539const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3540 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003541 const SCEV *PromotedLHS = LHS;
3542 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003543
3544 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3545 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3546 else
3547 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3548
3549 return getUMinExpr(PromotedLHS, PromotedRHS);
3550}
3551
Andrew Trick87716c92011-03-17 23:51:11 +00003552/// getPointerBase - Transitively follow the chain of pointer-type operands
3553/// until reaching a SCEV that does not have a single pointer operand. This
3554/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3555/// but corner cases do exist.
3556const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3557 // A pointer operand may evaluate to a nonpointer expression, such as null.
3558 if (!V->getType()->isPointerTy())
3559 return V;
3560
3561 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3562 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003563 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003564 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003565 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3566 I != E; ++I) {
3567 if ((*I)->getType()->isPointerTy()) {
3568 // Cannot find the base of an expression with multiple pointer operands.
3569 if (PtrOp)
3570 return V;
3571 PtrOp = *I;
3572 }
3573 }
3574 if (!PtrOp)
3575 return V;
3576 return getPointerBase(PtrOp);
3577 }
3578 return V;
3579}
3580
Dan Gohman0b89dff2009-07-25 01:13:03 +00003581/// PushDefUseChildren - Push users of the given Instruction
3582/// onto the given Worklist.
3583static void
3584PushDefUseChildren(Instruction *I,
3585 SmallVectorImpl<Instruction *> &Worklist) {
3586 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003587 for (User *U : I->users())
3588 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003589}
3590
3591/// ForgetSymbolicValue - This looks up computed SCEV values for all
3592/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003593/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003594/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003595void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003596ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003597 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003598 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003599
Dan Gohman0b89dff2009-07-25 01:13:03 +00003600 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003601 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003602 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003603 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003604 if (!Visited.insert(I).second)
3605 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003606
Sanjoy Das63914592015-10-18 00:29:20 +00003607 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003608 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003609 const SCEV *Old = It->second;
3610
Dan Gohman0b89dff2009-07-25 01:13:03 +00003611 // Short-circuit the def-use traversal if the symbolic name
3612 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003613 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003614 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003615
Dan Gohman0b89dff2009-07-25 01:13:03 +00003616 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003617 // structure, it's a PHI that's in the progress of being computed
3618 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3619 // additional loop trip count information isn't going to change anything.
3620 // In the second case, createNodeForPHI will perform the necessary
3621 // updates on its own when it gets to that point. In the third, we do
3622 // want to forget the SCEVUnknown.
3623 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003624 !isa<SCEVUnknown>(Old) ||
3625 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003626 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003627 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003628 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003629 }
3630
3631 PushDefUseChildren(I, Worklist);
3632 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003633}
Chris Lattnerd934c702004-04-02 20:23:17 +00003634
Sanjoy Das55015d22015-10-02 23:09:44 +00003635const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3636 const Loop *L = LI.getLoopFor(PN->getParent());
3637 if (!L || L->getHeader() != PN->getParent())
3638 return nullptr;
3639
3640 // The loop may have multiple entrances or multiple exits; we can analyze
3641 // this phi as an addrec if it has a unique entry value and a unique
3642 // backedge value.
3643 Value *BEValueV = nullptr, *StartValueV = nullptr;
3644 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3645 Value *V = PN->getIncomingValue(i);
3646 if (L->contains(PN->getIncomingBlock(i))) {
3647 if (!BEValueV) {
3648 BEValueV = V;
3649 } else if (BEValueV != V) {
3650 BEValueV = nullptr;
3651 break;
3652 }
3653 } else if (!StartValueV) {
3654 StartValueV = V;
3655 } else if (StartValueV != V) {
3656 StartValueV = nullptr;
3657 break;
3658 }
3659 }
3660 if (BEValueV && StartValueV) {
3661 // While we are analyzing this PHI node, handle its value symbolically.
3662 const SCEV *SymbolicName = getUnknown(PN);
3663 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3664 "PHI node already processed?");
3665 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3666
3667 // Using this symbolic name for the PHI, analyze the value coming around
3668 // the back-edge.
3669 const SCEV *BEValue = getSCEV(BEValueV);
3670
3671 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3672 // has a special value for the first iteration of the loop.
3673
3674 // If the value coming around the backedge is an add with the symbolic
3675 // value we just inserted, then we found a simple induction variable!
3676 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3677 // If there is a single occurrence of the symbolic value, replace it
3678 // with a recurrence.
3679 unsigned FoundIndex = Add->getNumOperands();
3680 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3681 if (Add->getOperand(i) == SymbolicName)
3682 if (FoundIndex == e) {
3683 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003684 break;
3685 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003686
3687 if (FoundIndex != Add->getNumOperands()) {
3688 // Create an add with everything but the specified operand.
3689 SmallVector<const SCEV *, 8> Ops;
3690 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3691 if (i != FoundIndex)
3692 Ops.push_back(Add->getOperand(i));
3693 const SCEV *Accum = getAddExpr(Ops);
3694
3695 // This is not a valid addrec if the step amount is varying each
3696 // loop iteration, but is not itself an addrec in this loop.
3697 if (isLoopInvariant(Accum, L) ||
3698 (isa<SCEVAddRecExpr>(Accum) &&
3699 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3700 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3701
3702 // If the increment doesn't overflow, then neither the addrec nor
3703 // the post-increment will overflow.
3704 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3705 if (OBO->getOperand(0) == PN) {
3706 if (OBO->hasNoUnsignedWrap())
3707 Flags = setFlags(Flags, SCEV::FlagNUW);
3708 if (OBO->hasNoSignedWrap())
3709 Flags = setFlags(Flags, SCEV::FlagNSW);
3710 }
3711 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3712 // If the increment is an inbounds GEP, then we know the address
3713 // space cannot be wrapped around. We cannot make any guarantee
3714 // about signed or unsigned overflow because pointers are
3715 // unsigned but we may have a negative index from the base
3716 // pointer. We can guarantee that no unsigned wrap occurs if the
3717 // indices form a positive value.
3718 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3719 Flags = setFlags(Flags, SCEV::FlagNW);
3720
3721 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3722 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3723 Flags = setFlags(Flags, SCEV::FlagNUW);
3724 }
3725
3726 // We cannot transfer nuw and nsw flags from subtraction
3727 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3728 // for instance.
3729 }
3730
3731 const SCEV *StartVal = getSCEV(StartValueV);
3732 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3733
3734 // Since the no-wrap flags are on the increment, they apply to the
3735 // post-incremented value as well.
3736 if (isLoopInvariant(Accum, L))
3737 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3738
3739 // Okay, for the entire analysis of this edge we assumed the PHI
3740 // to be symbolic. We now need to go back and purge all of the
3741 // entries for the scalars that use the symbolic expression.
3742 ForgetSymbolicName(PN, SymbolicName);
3743 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3744 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003745 }
3746 }
Sanjoy Das63914592015-10-18 00:29:20 +00003747 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003748 // Otherwise, this could be a loop like this:
3749 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3750 // In this case, j = {1,+,1} and BEValue is j.
3751 // Because the other in-value of i (0) fits the evolution of BEValue
3752 // i really is an addrec evolution.
3753 if (AddRec->getLoop() == L && AddRec->isAffine()) {
3754 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003755
Sanjoy Das55015d22015-10-02 23:09:44 +00003756 // If StartVal = j.start - j.stride, we can use StartVal as the
3757 // initial step of the addrec evolution.
3758 if (StartVal ==
3759 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) {
3760 // FIXME: For constant StartVal, we should be able to infer
3761 // no-wrap flags.
3762 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1),
3763 L, SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00003764
Sanjoy Das55015d22015-10-02 23:09:44 +00003765 // Okay, for the entire analysis of this edge we assumed the PHI
3766 // to be symbolic. We now need to go back and purge all of the
3767 // entries for the scalars that use the symbolic expression.
3768 ForgetSymbolicName(PN, SymbolicName);
3769 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3770 return PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003771 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003772 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003773 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003774 }
3775
3776 return nullptr;
3777}
3778
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003779// Checks if the SCEV S is available at BB. S is considered available at BB
3780// if S can be materialized at BB without introducing a fault.
3781static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3782 BasicBlock *BB) {
3783 struct CheckAvailable {
3784 bool TraversalDone = false;
3785 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003786
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003787 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
3788 BasicBlock *BB = nullptr;
3789 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00003790
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003791 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3792 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00003793
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003794 bool setUnavailable() {
3795 TraversalDone = true;
3796 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003797 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003798 }
3799
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003800 bool follow(const SCEV *S) {
3801 switch (S->getSCEVType()) {
3802 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3803 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00003804 // These expressions are available if their operand(s) is/are.
3805 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003806
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003807 case scAddRecExpr: {
3808 // We allow add recurrences that are on the loop BB is in, or some
3809 // outer loop. This guarantees availability because the value of the
3810 // add recurrence at BB is simply the "current" value of the induction
3811 // variable. We can relax this in the future; for instance an add
3812 // recurrence on a sibling dominating loop is also available at BB.
3813 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3814 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00003815 return true;
3816
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003817 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00003818 }
3819
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003820 case scUnknown: {
3821 // For SCEVUnknown, we check for simple dominance.
3822 const auto *SU = cast<SCEVUnknown>(S);
3823 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00003824
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003825 if (isa<Argument>(V))
3826 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003827
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003828 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3829 return false;
3830
3831 return setUnavailable();
3832 }
3833
3834 case scUDivExpr:
3835 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003836 // We do not try to smart about these at all.
3837 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003838 }
3839 llvm_unreachable("switch should be fully covered!");
3840 }
3841
3842 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00003843 };
3844
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003845 CheckAvailable CA(L, BB, DT);
3846 SCEVTraversal<CheckAvailable> ST(CA);
3847
3848 ST.visitAll(S);
3849 return CA.Available;
3850}
3851
3852// Try to match a control flow sequence that branches out at BI and merges back
3853// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
3854// match.
3855static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3856 Value *&C, Value *&LHS, Value *&RHS) {
3857 C = BI->getCondition();
3858
3859 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3860 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3861
3862 if (!LeftEdge.isSingleEdge())
3863 return false;
3864
3865 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3866
3867 Use &LeftUse = Merge->getOperandUse(0);
3868 Use &RightUse = Merge->getOperandUse(1);
3869
3870 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3871 LHS = LeftUse;
3872 RHS = RightUse;
3873 return true;
3874 }
3875
3876 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3877 LHS = RightUse;
3878 RHS = LeftUse;
3879 return true;
3880 }
3881
3882 return false;
3883}
3884
3885const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003886 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003887 const Loop *L = LI.getLoopFor(PN->getParent());
3888
Sanjoy Das55015d22015-10-02 23:09:44 +00003889 // Try to match
3890 //
3891 // br %cond, label %left, label %right
3892 // left:
3893 // br label %merge
3894 // right:
3895 // br label %merge
3896 // merge:
3897 // V = phi [ %x, %left ], [ %y, %right ]
3898 //
3899 // as "select %cond, %x, %y"
3900
3901 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3902 assert(IDom && "At least the entry block should dominate PN");
3903
3904 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3905 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3906
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003907 if (BI && BI->isConditional() &&
3908 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3909 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3910 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00003911 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3912 }
3913
3914 return nullptr;
3915}
3916
3917const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3918 if (const SCEV *S = createAddRecFromPHI(PN))
3919 return S;
3920
3921 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3922 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00003923
Dan Gohmana9c205c2010-02-25 06:57:05 +00003924 // If the PHI has a single incoming value, follow that value, unless the
3925 // PHI's incoming blocks are in a different loop, in which case doing so
3926 // risks breaking LCSSA form. Instcombine would normally zap these, but
3927 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003928 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI,
3929 &DT, &AC))
3930 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003931 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003932
Chris Lattnerd934c702004-04-02 20:23:17 +00003933 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003934 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003935}
3936
Sanjoy Das55015d22015-10-02 23:09:44 +00003937const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
3938 Value *Cond,
3939 Value *TrueVal,
3940 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00003941 // Handle "constant" branch or select. This can occur for instance when a
3942 // loop pass transforms an inner loop and moves on to process the outer loop.
3943 if (auto *CI = dyn_cast<ConstantInt>(Cond))
3944 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
3945
Sanjoy Dasd0671342015-10-02 19:39:59 +00003946 // Try to match some simple smax or umax patterns.
3947 auto *ICI = dyn_cast<ICmpInst>(Cond);
3948 if (!ICI)
3949 return getUnknown(I);
3950
3951 Value *LHS = ICI->getOperand(0);
3952 Value *RHS = ICI->getOperand(1);
3953
3954 switch (ICI->getPredicate()) {
3955 case ICmpInst::ICMP_SLT:
3956 case ICmpInst::ICMP_SLE:
3957 std::swap(LHS, RHS);
3958 // fall through
3959 case ICmpInst::ICMP_SGT:
3960 case ICmpInst::ICMP_SGE:
3961 // a >s b ? a+x : b+x -> smax(a, b)+x
3962 // a >s b ? b+x : a+x -> smin(a, b)+x
3963 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
3964 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
3965 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
3966 const SCEV *LA = getSCEV(TrueVal);
3967 const SCEV *RA = getSCEV(FalseVal);
3968 const SCEV *LDiff = getMinusSCEV(LA, LS);
3969 const SCEV *RDiff = getMinusSCEV(RA, RS);
3970 if (LDiff == RDiff)
3971 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3972 LDiff = getMinusSCEV(LA, RS);
3973 RDiff = getMinusSCEV(RA, LS);
3974 if (LDiff == RDiff)
3975 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3976 }
3977 break;
3978 case ICmpInst::ICMP_ULT:
3979 case ICmpInst::ICMP_ULE:
3980 std::swap(LHS, RHS);
3981 // fall through
3982 case ICmpInst::ICMP_UGT:
3983 case ICmpInst::ICMP_UGE:
3984 // a >u b ? a+x : b+x -> umax(a, b)+x
3985 // a >u b ? b+x : a+x -> umin(a, b)+x
3986 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
3987 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
3988 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
3989 const SCEV *LA = getSCEV(TrueVal);
3990 const SCEV *RA = getSCEV(FalseVal);
3991 const SCEV *LDiff = getMinusSCEV(LA, LS);
3992 const SCEV *RDiff = getMinusSCEV(RA, RS);
3993 if (LDiff == RDiff)
3994 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3995 LDiff = getMinusSCEV(LA, RS);
3996 RDiff = getMinusSCEV(RA, LS);
3997 if (LDiff == RDiff)
3998 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3999 }
4000 break;
4001 case ICmpInst::ICMP_NE:
4002 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4003 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4004 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4005 const SCEV *One = getOne(I->getType());
4006 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4007 const SCEV *LA = getSCEV(TrueVal);
4008 const SCEV *RA = getSCEV(FalseVal);
4009 const SCEV *LDiff = getMinusSCEV(LA, LS);
4010 const SCEV *RDiff = getMinusSCEV(RA, One);
4011 if (LDiff == RDiff)
4012 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4013 }
4014 break;
4015 case ICmpInst::ICMP_EQ:
4016 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4017 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4018 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4019 const SCEV *One = getOne(I->getType());
4020 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4021 const SCEV *LA = getSCEV(TrueVal);
4022 const SCEV *RA = getSCEV(FalseVal);
4023 const SCEV *LDiff = getMinusSCEV(LA, One);
4024 const SCEV *RDiff = getMinusSCEV(RA, LS);
4025 if (LDiff == RDiff)
4026 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4027 }
4028 break;
4029 default:
4030 break;
4031 }
4032
4033 return getUnknown(I);
4034}
4035
Dan Gohmanee750d12009-05-08 20:26:55 +00004036/// createNodeForGEP - Expand GEP instructions into add and multiply
4037/// operations. This allows them to be analyzed by regular SCEV code.
4038///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004039const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00004040 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00004041 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00004042 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004043 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004044
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004045 SmallVector<const SCEV *, 4> IndexExprs;
4046 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4047 IndexExprs.push_back(getSCEV(*Index));
4048 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
4049 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004050}
4051
Nick Lewycky3783b462007-11-22 07:59:40 +00004052/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4053/// guaranteed to end in (at every loop iteration). It is, at the same time,
4054/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4055/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004056uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004057ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004058 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00004059 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004060
Dan Gohmana30370b2009-05-04 22:02:23 +00004061 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004062 return std::min(GetMinTrailingZeros(T->getOperand()),
4063 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004064
Dan Gohmana30370b2009-05-04 22:02:23 +00004065 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004066 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4067 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4068 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004069 }
4070
Dan Gohmana30370b2009-05-04 22:02:23 +00004071 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004072 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4073 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4074 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004075 }
4076
Dan Gohmana30370b2009-05-04 22:02:23 +00004077 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004078 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004079 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004080 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004081 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004082 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004083 }
4084
Dan Gohmana30370b2009-05-04 22:02:23 +00004085 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004086 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004087 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4088 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004089 for (unsigned i = 1, e = M->getNumOperands();
4090 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004091 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004092 BitWidth);
4093 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004094 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004095
Dan Gohmana30370b2009-05-04 22:02:23 +00004096 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004097 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004098 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004099 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004100 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004101 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004102 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004103
Dan Gohmana30370b2009-05-04 22:02:23 +00004104 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004105 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004106 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004107 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004108 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004109 return MinOpRes;
4110 }
4111
Dan Gohmana30370b2009-05-04 22:02:23 +00004112 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004113 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004114 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004115 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004116 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004117 return MinOpRes;
4118 }
4119
Dan Gohmanc702fc02009-06-19 23:29:04 +00004120 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4121 // For a SCEVUnknown, ask ValueTracking.
4122 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004123 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004124 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(),
4125 0, &AC, nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004126 return Zeros.countTrailingOnes();
4127 }
4128
4129 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004130 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004131}
Chris Lattnerd934c702004-04-02 20:23:17 +00004132
Sanjoy Das1f05c512014-10-10 21:22:34 +00004133/// GetRangeFromMetadata - Helper method to assign a range to V from
4134/// metadata present in the IR.
4135static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004136 if (Instruction *I = dyn_cast<Instruction>(V))
4137 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4138 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004139
4140 return None;
4141}
4142
Sanjoy Das91b54772015-03-09 21:43:43 +00004143/// getRange - Determine the range for a particular SCEV. If SignHint is
4144/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4145/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004146///
4147ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004148ScalarEvolution::getRange(const SCEV *S,
4149 ScalarEvolution::RangeSignHint SignHint) {
4150 DenseMap<const SCEV *, ConstantRange> &Cache =
4151 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4152 : SignedRanges;
4153
Dan Gohman761065e2010-11-17 02:44:44 +00004154 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004155 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4156 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004157 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004158
4159 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00004160 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004161
Dan Gohman85be4332010-01-26 19:19:05 +00004162 unsigned BitWidth = getTypeSizeInBits(S->getType());
4163 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4164
Sanjoy Das91b54772015-03-09 21:43:43 +00004165 // If the value has known zeros, the maximum value will have those known zeros
4166 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004167 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004168 if (TZ != 0) {
4169 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4170 ConservativeResult =
4171 ConstantRange(APInt::getMinValue(BitWidth),
4172 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4173 else
4174 ConservativeResult = ConstantRange(
4175 APInt::getSignedMinValue(BitWidth),
4176 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4177 }
Dan Gohman85be4332010-01-26 19:19:05 +00004178
Dan Gohmane65c9172009-07-13 21:35:55 +00004179 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004180 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004181 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004182 X = X.add(getRange(Add->getOperand(i), SignHint));
4183 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004184 }
4185
4186 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004187 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004188 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004189 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4190 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004191 }
4192
4193 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004194 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004195 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004196 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4197 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004198 }
4199
4200 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004201 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004202 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004203 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4204 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004205 }
4206
4207 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004208 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4209 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4210 return setRange(UDiv, SignHint,
4211 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004212 }
4213
4214 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004215 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4216 return setRange(ZExt, SignHint,
4217 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004218 }
4219
4220 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004221 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4222 return setRange(SExt, SignHint,
4223 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004224 }
4225
4226 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004227 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4228 return setRange(Trunc, SignHint,
4229 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004230 }
4231
Dan Gohmane65c9172009-07-13 21:35:55 +00004232 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004233 // If there's no unsigned wrap, the value will never be less than its
4234 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00004235 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00004236 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004237 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00004238 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00004239 ConservativeResult.intersectWith(
4240 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004241
Dan Gohman51ad99d2010-01-21 02:09:26 +00004242 // If there's no signed wrap, and all the operands have the same sign or
4243 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00004244 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004245 bool AllNonNeg = true;
4246 bool AllNonPos = true;
4247 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4248 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4249 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4250 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004251 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004252 ConservativeResult = ConservativeResult.intersectWith(
4253 ConstantRange(APInt(BitWidth, 0),
4254 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004255 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004256 ConservativeResult = ConservativeResult.intersectWith(
4257 ConstantRange(APInt::getSignedMinValue(BitWidth),
4258 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004259 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004260
4261 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004262 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004263 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004264 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004265 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4266 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004267
4268 // Check for overflow. This must be done with ConstantRange arithmetic
4269 // because we could be called from within the ScalarEvolution overflow
4270 // checking code.
4271
Dan Gohmane65c9172009-07-13 21:35:55 +00004272 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004273 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4274 ConstantRange ZExtMaxBECountRange =
4275 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004276
4277 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004278 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004279 ConstantRange StepSRange = getSignedRange(Step);
4280 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004281
Sanjoy Das91b54772015-03-09 21:43:43 +00004282 ConstantRange StartURange = getUnsignedRange(Start);
4283 ConstantRange EndURange =
4284 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004285
Sanjoy Das91b54772015-03-09 21:43:43 +00004286 // Check for unsigned overflow.
4287 ConstantRange ZExtStartURange =
4288 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4289 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4290 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4291 ZExtEndURange) {
4292 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4293 EndURange.getUnsignedMin());
4294 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4295 EndURange.getUnsignedMax());
4296 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4297 if (!IsFullRange)
4298 ConservativeResult =
4299 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4300 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004301
Sanjoy Das91b54772015-03-09 21:43:43 +00004302 ConstantRange StartSRange = getSignedRange(Start);
4303 ConstantRange EndSRange =
4304 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4305
4306 // Check for signed overflow. This must be done with ConstantRange
4307 // arithmetic because we could be called from within the ScalarEvolution
4308 // overflow checking code.
4309 ConstantRange SExtStartSRange =
4310 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4311 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4312 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4313 SExtEndSRange) {
4314 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4315 EndSRange.getSignedMin());
4316 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4317 EndSRange.getSignedMax());
4318 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4319 if (!IsFullRange)
4320 ConservativeResult =
4321 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4322 }
Dan Gohmand261d272009-06-24 01:05:09 +00004323 }
Dan Gohmand261d272009-06-24 01:05:09 +00004324 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004325
Sanjoy Das91b54772015-03-09 21:43:43 +00004326 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004327 }
4328
Dan Gohmanc702fc02009-06-19 23:29:04 +00004329 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004330 // Check if the IR explicitly contains !range metadata.
4331 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4332 if (MDRange.hasValue())
4333 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4334
Sanjoy Das91b54772015-03-09 21:43:43 +00004335 // Split here to avoid paying the compile-time cost of calling both
4336 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4337 // if needed.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004338 const DataLayout &DL = F.getParent()->getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004339 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4340 // For a SCEVUnknown, ask ValueTracking.
4341 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004342 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004343 if (Ones != ~Zeros + 1)
4344 ConservativeResult =
4345 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4346 } else {
4347 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4348 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004349 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004350 if (NS > 1)
4351 ConservativeResult = ConservativeResult.intersectWith(
4352 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4353 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004354 }
4355
4356 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004357 }
4358
Sanjoy Das91b54772015-03-09 21:43:43 +00004359 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004360}
4361
Jingyue Wu42f1d672015-07-28 18:22:40 +00004362SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004363 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004364 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4365
4366 // Return early if there are no flags to propagate to the SCEV.
4367 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4368 if (BinOp->hasNoUnsignedWrap())
4369 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4370 if (BinOp->hasNoSignedWrap())
4371 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4372 if (Flags == SCEV::FlagAnyWrap) {
4373 return SCEV::FlagAnyWrap;
4374 }
4375
4376 // Here we check that BinOp is in the header of the innermost loop
4377 // containing BinOp, since we only deal with instructions in the loop
4378 // header. The actual loop we need to check later will come from an add
4379 // recurrence, but getting that requires computing the SCEV of the operands,
4380 // which can be expensive. This check we can do cheaply to rule out some
4381 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004382 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004383 if (innermostContainingLoop == nullptr ||
4384 innermostContainingLoop->getHeader() != BinOp->getParent())
4385 return SCEV::FlagAnyWrap;
4386
4387 // Only proceed if we can prove that BinOp does not yield poison.
4388 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4389
4390 // At this point we know that if V is executed, then it does not wrap
4391 // according to at least one of NSW or NUW. If V is not executed, then we do
4392 // not know if the calculation that V represents would wrap. Multiple
4393 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4394 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4395 // derived from other instructions that map to the same SCEV. We cannot make
4396 // that guarantee for cases where V is not executed. So we need to find the
4397 // loop that V is considered in relation to and prove that V is executed for
4398 // every iteration of that loop. That implies that the value that V
4399 // calculates does not wrap anywhere in the loop, so then we can apply the
4400 // flags to the SCEV.
4401 //
4402 // We check isLoopInvariant to disambiguate in case we are adding two
4403 // recurrences from different loops, so that we know which loop to prove
4404 // that V is executed in.
4405 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4406 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4407 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4408 const int OtherOpIndex = 1 - OpIndex;
4409 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4410 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4411 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4412 return Flags;
4413 }
4414 }
4415 return SCEV::FlagAnyWrap;
4416}
4417
4418/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4419/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004420///
Dan Gohmanaf752342009-07-07 17:06:11 +00004421const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004422 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004423 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004424
Dan Gohman05e89732008-06-22 19:56:46 +00004425 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004426 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004427 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004428
4429 // Don't attempt to analyze instructions in blocks that aren't
4430 // reachable. Such instructions don't matter, and they aren't required
4431 // to obey basic rules for definitions dominating uses which this
4432 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004433 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004434 return getUnknown(V);
4435 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004436 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004437 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4438 return getConstant(CI);
4439 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004440 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004441 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4442 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004443 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004444 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004445
Dan Gohman80ca01c2009-07-17 20:47:02 +00004446 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004447 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004448 case Instruction::Add: {
4449 // The simple thing to do would be to just call getSCEV on both operands
4450 // and call getAddExpr with the result. However if we're looking at a
4451 // bunch of things all added together, this can be quite inefficient,
4452 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4453 // Instead, gather up all the operands and make a single getAddExpr call.
4454 // LLVM IR canonical form means we need only traverse the left operands.
4455 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004456 for (Value *Op = U;; Op = U->getOperand(0)) {
4457 U = dyn_cast<Operator>(Op);
4458 unsigned Opcode = U ? U->getOpcode() : 0;
4459 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4460 assert(Op != V && "V should be an add");
4461 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004462 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004463 }
4464
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004465 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004466 AddOps.push_back(OpSCEV);
4467 break;
4468 }
4469
4470 // If a NUW or NSW flag can be applied to the SCEV for this
4471 // addition, then compute the SCEV for this addition by itself
4472 // with a separate call to getAddExpr. We need to do that
4473 // instead of pushing the operands of the addition onto AddOps,
4474 // since the flags are only known to apply to this particular
4475 // addition - they may not apply to other additions that can be
4476 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004477 const SCEV *RHS = getSCEV(U->getOperand(1));
4478 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4479 if (Flags != SCEV::FlagAnyWrap) {
4480 const SCEV *LHS = getSCEV(U->getOperand(0));
4481 if (Opcode == Instruction::Sub)
4482 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4483 else
4484 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4485 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004486 }
4487
Dan Gohman47308d52010-08-31 22:53:17 +00004488 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004489 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004490 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004491 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004492 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004493 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004494 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004495
Dan Gohmane5fb1032010-08-16 16:03:49 +00004496 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004497 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004498 for (Value *Op = U;; Op = U->getOperand(0)) {
4499 U = dyn_cast<Operator>(Op);
4500 if (!U || U->getOpcode() != Instruction::Mul) {
4501 assert(Op != V && "V should be a mul");
4502 MulOps.push_back(getSCEV(Op));
4503 break;
4504 }
4505
4506 if (auto *OpSCEV = getExistingSCEV(U)) {
4507 MulOps.push_back(OpSCEV);
4508 break;
4509 }
4510
4511 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4512 if (Flags != SCEV::FlagAnyWrap) {
4513 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4514 getSCEV(U->getOperand(1)), Flags));
4515 break;
4516 }
4517
Dan Gohmane5fb1032010-08-16 16:03:49 +00004518 MulOps.push_back(getSCEV(U->getOperand(1)));
4519 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004520 return getMulExpr(MulOps);
4521 }
Dan Gohman05e89732008-06-22 19:56:46 +00004522 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004523 return getUDivExpr(getSCEV(U->getOperand(0)),
4524 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004525 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004526 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4527 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004528 case Instruction::And:
4529 // For an expression like x&255 that merely masks off the high bits,
4530 // use zext(trunc(x)) as the SCEV expression.
4531 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004532 if (CI->isNullValue())
4533 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004534 if (CI->isAllOnesValue())
4535 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004536 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004537
4538 // Instcombine's ShrinkDemandedConstant may strip bits out of
4539 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004540 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004541 // knew about to reconstruct a low-bits mask value.
4542 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004543 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004544 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004545 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004546 computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004547 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004548
Nick Lewycky31eaca52014-01-27 10:04:03 +00004549 APInt EffectiveMask =
4550 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4551 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4552 const SCEV *MulCount = getConstant(
4553 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4554 return getMulExpr(
4555 getZeroExtendExpr(
4556 getTruncateExpr(
4557 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4558 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4559 U->getType()),
4560 MulCount);
4561 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004562 }
4563 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004564
Dan Gohman05e89732008-06-22 19:56:46 +00004565 case Instruction::Or:
4566 // If the RHS of the Or is a constant, we may have something like:
4567 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4568 // optimizations will transparently handle this case.
4569 //
4570 // In order for this transformation to be safe, the LHS must be of the
4571 // form X*(2^n) and the Or constant must be less than 2^n.
4572 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004573 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004574 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004575 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004576 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4577 // Build a plain add SCEV.
4578 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4579 // If the LHS of the add was an addrec and it has no-wrap flags,
4580 // transfer the no-wrap flags, since an or won't introduce a wrap.
4581 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4582 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004583 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4584 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004585 }
4586 return S;
4587 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004588 }
Dan Gohman05e89732008-06-22 19:56:46 +00004589 break;
4590 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004591 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004592 // If the RHS of the xor is a signbit, then this is just an add.
4593 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004594 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004595 return getAddExpr(getSCEV(U->getOperand(0)),
4596 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004597
4598 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004599 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004600 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004601
4602 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4603 // This is a variant of the check for xor with -1, and it handles
4604 // the case where instcombine has trimmed non-demanded bits out
4605 // of an xor with -1.
4606 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4607 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4608 if (BO->getOpcode() == Instruction::And &&
4609 LCI->getValue() == CI->getValue())
4610 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004611 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004612 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004613 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004614 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004615 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4616
Dan Gohman8b0a4192010-03-01 17:49:51 +00004617 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004618 // mask off the high bits. Complement the operand and
4619 // re-apply the zext.
4620 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4621 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4622
4623 // If C is a single bit, it may be in the sign-bit position
4624 // before the zero-extend. In this case, represent the xor
4625 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004626 APInt Trunc = CI->getValue().trunc(Z0TySize);
4627 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004628 Trunc.isSignBit())
4629 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4630 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004631 }
Dan Gohman05e89732008-06-22 19:56:46 +00004632 }
4633 break;
4634
4635 case Instruction::Shl:
4636 // Turn shift left of a constant amount into a multiply.
4637 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004638 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004639
4640 // If the shift count is not less than the bitwidth, the result of
4641 // the shift is undefined. Don't try to analyze it, because the
4642 // resolution chosen here may differ from the resolution chosen in
4643 // other parts of the compiler.
4644 if (SA->getValue().uge(BitWidth))
4645 break;
4646
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004647 // It is currently not resolved how to interpret NSW for left
4648 // shift by BitWidth - 1, so we avoid applying flags in that
4649 // case. Remove this check (or this comment) once the situation
4650 // is resolved. See
4651 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4652 // and http://reviews.llvm.org/D8890 .
4653 auto Flags = SCEV::FlagAnyWrap;
4654 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4655
Owen Andersonedb4a702009-07-24 23:12:02 +00004656 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004657 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004658 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004659 }
4660 break;
4661
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004662 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004663 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004664 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004665 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004666
4667 // If the shift count is not less than the bitwidth, the result of
4668 // the shift is undefined. Don't try to analyze it, because the
4669 // resolution chosen here may differ from the resolution chosen in
4670 // other parts of the compiler.
4671 if (SA->getValue().uge(BitWidth))
4672 break;
4673
Owen Andersonedb4a702009-07-24 23:12:02 +00004674 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004675 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004676 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004677 }
4678 break;
4679
Dan Gohman0ec05372009-04-21 02:26:00 +00004680 case Instruction::AShr:
4681 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4682 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004683 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004684 if (L->getOpcode() == Instruction::Shl &&
4685 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004686 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4687
4688 // If the shift count is not less than the bitwidth, the result of
4689 // the shift is undefined. Don't try to analyze it, because the
4690 // resolution chosen here may differ from the resolution chosen in
4691 // other parts of the compiler.
4692 if (CI->getValue().uge(BitWidth))
4693 break;
4694
Dan Gohmandf199482009-04-25 17:05:40 +00004695 uint64_t Amt = BitWidth - CI->getZExtValue();
4696 if (Amt == BitWidth)
4697 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004698 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004699 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004700 IntegerType::get(getContext(),
4701 Amt)),
4702 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004703 }
4704 break;
4705
Dan Gohman05e89732008-06-22 19:56:46 +00004706 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004707 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004708
4709 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004710 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004711
4712 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004713 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004714
4715 case Instruction::BitCast:
4716 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004717 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004718 return getSCEV(U->getOperand(0));
4719 break;
4720
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004721 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4722 // lead to pointer expressions which cannot safely be expanded to GEPs,
4723 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4724 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004725
Dan Gohmanee750d12009-05-08 20:26:55 +00004726 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004727 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004728
Dan Gohman05e89732008-06-22 19:56:46 +00004729 case Instruction::PHI:
4730 return createNodeForPHI(cast<PHINode>(U));
4731
4732 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00004733 // U can also be a select constant expr, which let fall through. Since
4734 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4735 // constant expressions cannot have instructions as operands, we'd have
4736 // returned getUnknown for a select constant expressions anyway.
4737 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00004738 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4739 U->getOperand(1), U->getOperand(2));
Dan Gohman05e89732008-06-22 19:56:46 +00004740
4741 default: // We cannot analyze this expression.
4742 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004743 }
4744
Dan Gohmanc8e23622009-04-21 23:15:49 +00004745 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004746}
4747
4748
4749
4750//===----------------------------------------------------------------------===//
4751// Iteration Count Computation Code
4752//
4753
Chandler Carruth6666c272014-10-11 00:12:11 +00004754unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4755 if (BasicBlock *ExitingBB = L->getExitingBlock())
4756 return getSmallConstantTripCount(L, ExitingBB);
4757
4758 // No trip count information for multiple exits.
4759 return 0;
4760}
4761
Andrew Trick2b6860f2011-08-11 23:36:16 +00004762/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004763/// normal unsigned value. Returns 0 if the trip count is unknown or not
4764/// constant. Will also return 0 if the maximum trip count is very large (>=
4765/// 2^32).
4766///
4767/// This "trip count" assumes that control exits via ExitingBlock. More
4768/// precisely, it is the number of times that control may reach ExitingBlock
4769/// before taking the branch. For loops with multiple exits, it may not be the
4770/// number times that the loop header executes because the loop may exit
4771/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004772unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4773 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004774 assert(ExitingBlock && "Must pass a non-null exiting block!");
4775 assert(L->isLoopExiting(ExitingBlock) &&
4776 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004777 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004778 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004779 if (!ExitCount)
4780 return 0;
4781
4782 ConstantInt *ExitConst = ExitCount->getValue();
4783
4784 // Guard against huge trip counts.
4785 if (ExitConst->getValue().getActiveBits() > 32)
4786 return 0;
4787
4788 // In case of integer overflow, this returns 0, which is correct.
4789 return ((unsigned)ExitConst->getZExtValue()) + 1;
4790}
4791
Chandler Carruth6666c272014-10-11 00:12:11 +00004792unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4793 if (BasicBlock *ExitingBB = L->getExitingBlock())
4794 return getSmallConstantTripMultiple(L, ExitingBB);
4795
4796 // No trip multiple information for multiple exits.
4797 return 0;
4798}
4799
Andrew Trick2b6860f2011-08-11 23:36:16 +00004800/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4801/// trip count of this loop as a normal unsigned value, if possible. This
4802/// means that the actual trip count is always a multiple of the returned
4803/// value (don't forget the trip count could very well be zero as well!).
4804///
4805/// Returns 1 if the trip count is unknown or not guaranteed to be the
4806/// multiple of a constant (which is also the case if the trip count is simply
4807/// constant, use getSmallConstantTripCount for that case), Will also return 1
4808/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004809///
4810/// As explained in the comments for getSmallConstantTripCount, this assumes
4811/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004812unsigned
4813ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4814 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004815 assert(ExitingBlock && "Must pass a non-null exiting block!");
4816 assert(L->isLoopExiting(ExitingBlock) &&
4817 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004818 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004819 if (ExitCount == getCouldNotCompute())
4820 return 1;
4821
4822 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004823 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004824 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4825 // to factor simple cases.
4826 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4827 TCMul = Mul->getOperand(0);
4828
4829 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4830 if (!MulC)
4831 return 1;
4832
4833 ConstantInt *Result = MulC->getValue();
4834
Hal Finkel30bd9342012-10-24 19:46:44 +00004835 // Guard against huge trip counts (this requires checking
4836 // for zero to handle the case where the trip count == -1 and the
4837 // addition wraps).
4838 if (!Result || Result->getValue().getActiveBits() > 32 ||
4839 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004840 return 1;
4841
4842 return (unsigned)Result->getZExtValue();
4843}
4844
Andrew Trick3ca3f982011-07-26 17:19:55 +00004845// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004846// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004847// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004848const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4849 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004850}
4851
Dan Gohman0bddac12009-02-24 18:55:53 +00004852/// getBackedgeTakenCount - If the specified loop has a predictable
4853/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4854/// object. The backedge-taken count is the number of times the loop header
4855/// will be branched to from within the loop. This is one less than the
4856/// trip count of the loop, since it doesn't count the first iteration,
4857/// when the header is branched to from outside the loop.
4858///
4859/// Note that it is not valid to call this method on a loop without a
4860/// loop-invariant backedge-taken count (see
4861/// hasLoopInvariantBackedgeTakenCount).
4862///
Dan Gohmanaf752342009-07-07 17:06:11 +00004863const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004864 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004865}
4866
4867/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4868/// return the least SCEV value that is known never to be less than the
4869/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004870const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004871 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004872}
4873
Dan Gohmandc191042009-07-08 19:23:34 +00004874/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4875/// onto the given Worklist.
4876static void
4877PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4878 BasicBlock *Header = L->getHeader();
4879
4880 // Push all Loop-header PHIs onto the Worklist stack.
4881 for (BasicBlock::iterator I = Header->begin();
4882 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4883 Worklist.push_back(PN);
4884}
4885
Dan Gohman2b8da352009-04-30 20:47:05 +00004886const ScalarEvolution::BackedgeTakenInfo &
4887ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004888 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004889 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004890 // update the value. The temporary CouldNotCompute value tells SCEV
4891 // code elsewhere that it shouldn't attempt to request a new
4892 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004893 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004894 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004895 if (!Pair.second)
4896 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004897
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004898 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00004899 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4900 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004901 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004902
4903 if (Result.getExact(this) != getCouldNotCompute()) {
4904 assert(isLoopInvariant(Result.getExact(this), L) &&
4905 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004906 "Computed backedge-taken count isn't loop invariant for loop!");
4907 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004908 }
4909 else if (Result.getMax(this) == getCouldNotCompute() &&
4910 isa<PHINode>(L->getHeader()->begin())) {
4911 // Only count loops that have phi nodes as not being computable.
4912 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004913 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004914
Chris Lattnera337f5e2011-01-09 02:16:18 +00004915 // Now that we know more about the trip count for this loop, forget any
4916 // existing SCEV values for PHI nodes in this loop since they are only
4917 // conservative estimates made without the benefit of trip count
4918 // information. This is similar to the code in forgetLoop, except that
4919 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004920 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004921 SmallVector<Instruction *, 16> Worklist;
4922 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004923
Chris Lattnera337f5e2011-01-09 02:16:18 +00004924 SmallPtrSet<Instruction *, 8> Visited;
4925 while (!Worklist.empty()) {
4926 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004927 if (!Visited.insert(I).second)
4928 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004929
Chris Lattnera337f5e2011-01-09 02:16:18 +00004930 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004931 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004932 if (It != ValueExprMap.end()) {
4933 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004934
Chris Lattnera337f5e2011-01-09 02:16:18 +00004935 // SCEVUnknown for a PHI either means that it has an unrecognized
4936 // structure, or it's a PHI that's in the progress of being computed
4937 // by createNodeForPHI. In the former case, additional loop trip
4938 // count information isn't going to change anything. In the later
4939 // case, createNodeForPHI will perform the necessary updates on its
4940 // own when it gets to that point.
4941 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4942 forgetMemoizedResults(Old);
4943 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004944 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004945 if (PHINode *PN = dyn_cast<PHINode>(I))
4946 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004947 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004948
4949 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004950 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004951 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004952
4953 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004954 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00004955 // recusive call to getBackedgeTakenInfo (on a different
4956 // loop), which would invalidate the iterator computed
4957 // earlier.
4958 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004959}
4960
Dan Gohman880c92a2009-10-31 15:04:55 +00004961/// forgetLoop - This method should be called by the client when it has
4962/// changed a loop in a way that may effect ScalarEvolution's ability to
4963/// compute a trip count, or if the loop is deleted.
4964void ScalarEvolution::forgetLoop(const Loop *L) {
4965 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004966 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4967 BackedgeTakenCounts.find(L);
4968 if (BTCPos != BackedgeTakenCounts.end()) {
4969 BTCPos->second.clear();
4970 BackedgeTakenCounts.erase(BTCPos);
4971 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004972
Dan Gohman880c92a2009-10-31 15:04:55 +00004973 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004974 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004975 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004976
Dan Gohmandc191042009-07-08 19:23:34 +00004977 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004978 while (!Worklist.empty()) {
4979 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004980 if (!Visited.insert(I).second)
4981 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004982
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004983 ValueExprMapType::iterator It =
4984 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004985 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004986 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004987 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004988 if (PHINode *PN = dyn_cast<PHINode>(I))
4989 ConstantEvolutionLoopExitValue.erase(PN);
4990 }
4991
4992 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004993 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004994
4995 // Forget all contained loops too, to avoid dangling entries in the
4996 // ValuesAtScopes map.
4997 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4998 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004999}
5000
Eric Christopheref6d5932010-07-29 01:25:38 +00005001/// forgetValue - This method should be called by the client when it has
5002/// changed a value in a way that may effect its value, or which may
5003/// disconnect it from a def-use chain linking it to a loop.
5004void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005005 Instruction *I = dyn_cast<Instruction>(V);
5006 if (!I) return;
5007
5008 // Drop information about expressions based on loop-header PHIs.
5009 SmallVector<Instruction *, 16> Worklist;
5010 Worklist.push_back(I);
5011
5012 SmallPtrSet<Instruction *, 8> Visited;
5013 while (!Worklist.empty()) {
5014 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005015 if (!Visited.insert(I).second)
5016 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005017
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005018 ValueExprMapType::iterator It =
5019 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005020 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005021 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005022 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005023 if (PHINode *PN = dyn_cast<PHINode>(I))
5024 ConstantEvolutionLoopExitValue.erase(PN);
5025 }
5026
5027 PushDefUseChildren(I, Worklist);
5028 }
5029}
5030
Andrew Trick3ca3f982011-07-26 17:19:55 +00005031/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005032/// exits. A computable result can only be returned for loops with a single
5033/// exit. Returning the minimum taken count among all exits is incorrect
5034/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5035/// assumes that the limit of each loop test is never skipped. This is a valid
5036/// assumption as long as the loop exits via that test. For precise results, it
5037/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005038/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005039const SCEV *
5040ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5041 // If any exits were not computable, the loop is not computable.
5042 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5043
Andrew Trick90c7a102011-11-16 00:52:40 +00005044 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005045 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005046 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5047
Craig Topper9f008862014-04-15 04:59:12 +00005048 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005049 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005050 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005051
5052 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5053
5054 if (!BECount)
5055 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00005056 else if (BECount != ENT->ExactNotTaken)
5057 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005058 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00005059 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005060 return BECount;
5061}
5062
5063/// getExact - Get the exact not taken count for this loop exit.
5064const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005065ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005066 ScalarEvolution *SE) const {
5067 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005068 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005069
Andrew Trick77c55422011-08-02 04:23:35 +00005070 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005071 return ENT->ExactNotTaken;
5072 }
5073 return SE->getCouldNotCompute();
5074}
5075
5076/// getMax - Get the max backedge taken count for the loop.
5077const SCEV *
5078ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5079 return Max ? Max : SE->getCouldNotCompute();
5080}
5081
Andrew Trick9093e152013-03-26 03:14:53 +00005082bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5083 ScalarEvolution *SE) const {
5084 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5085 return true;
5086
5087 if (!ExitNotTaken.ExitingBlock)
5088 return false;
5089
5090 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005091 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00005092
5093 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5094 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5095 return true;
5096 }
5097 }
5098 return false;
5099}
5100
Andrew Trick3ca3f982011-07-26 17:19:55 +00005101/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5102/// computable exit into a persistent ExitNotTakenInfo array.
5103ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5104 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5105 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5106
5107 if (!Complete)
5108 ExitNotTaken.setIncomplete();
5109
5110 unsigned NumExits = ExitCounts.size();
5111 if (NumExits == 0) return;
5112
Andrew Trick77c55422011-08-02 04:23:35 +00005113 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005114 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5115 if (NumExits == 1) return;
5116
5117 // Handle the rare case of multiple computable exits.
5118 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5119
5120 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5121 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5122 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00005123 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005124 ENT->ExactNotTaken = ExitCounts[i].second;
5125 }
5126}
5127
5128/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5129void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005130 ExitNotTaken.ExitingBlock = nullptr;
5131 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005132 delete[] ExitNotTaken.getNextExit();
5133}
5134
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005135/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005136/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005137ScalarEvolution::BackedgeTakenInfo
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005138ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005139 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005140 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005141
Andrew Trick839e30b2014-05-23 19:47:13 +00005142 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005143 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005144 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005145 const SCEV *MustExitMaxBECount = nullptr;
5146 const SCEV *MayExitMaxBECount = nullptr;
5147
5148 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5149 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00005150 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005151 BasicBlock *ExitBB = ExitingBlocks[i];
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005152 ExitLimit EL = computeExitLimit(L, ExitBB);
Andrew Trick839e30b2014-05-23 19:47:13 +00005153
5154 // 1. For each exit that can be computed, add an entry to ExitCounts.
5155 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005156 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005157 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005158 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005159 CouldComputeBECount = false;
5160 else
Andrew Trick839e30b2014-05-23 19:47:13 +00005161 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005162
Andrew Trick839e30b2014-05-23 19:47:13 +00005163 // 2. Derive the loop's MaxBECount from each exit's max number of
5164 // non-exiting iterations. Partition the loop exits into two kinds:
5165 // LoopMustExits and LoopMayExits.
5166 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005167 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5168 // is a LoopMayExit. If any computable LoopMustExit is found, then
5169 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5170 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5171 // considered greater than any computable EL.Max.
5172 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005173 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005174 if (!MustExitMaxBECount)
5175 MustExitMaxBECount = EL.Max;
5176 else {
5177 MustExitMaxBECount =
5178 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005179 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005180 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5181 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5182 MayExitMaxBECount = EL.Max;
5183 else {
5184 MayExitMaxBECount =
5185 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5186 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005187 }
Dan Gohman96212b62009-06-22 00:31:57 +00005188 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005189 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5190 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005191 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005192}
5193
Andrew Trick3ca3f982011-07-26 17:19:55 +00005194ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005195ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005196
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005197 // Okay, we've chosen an exiting block. See what condition causes us to exit
5198 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005199 // lead to the loop header.
5200 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005201 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005202 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5203 SI != SE; ++SI)
5204 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005205 if (Exit) // Multiple exit successors.
5206 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005207 Exit = *SI;
5208 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005209 MustExecuteLoopHeader = false;
5210 }
Dan Gohmance973df2009-06-24 04:48:43 +00005211
Chris Lattner18954852007-01-07 02:24:26 +00005212 // At this point, we know we have a conditional branch that determines whether
5213 // the loop is exited. However, we don't know if the branch is executed each
5214 // time through the loop. If not, then the execution count of the branch will
5215 // not be equal to the trip count of the loop.
5216 //
5217 // Currently we check for this by checking to see if the Exit branch goes to
5218 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005219 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005220 // loop header. This is common for un-rotated loops.
5221 //
5222 // If both of those tests fail, walk up the unique predecessor chain to the
5223 // header, stopping if there is an edge that doesn't exit the loop. If the
5224 // header is reached, the execution count of the branch will be equal to the
5225 // trip count of the loop.
5226 //
5227 // More extensive analysis could be done to handle more cases here.
5228 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005229 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005230 // The simple checks failed, try climbing the unique predecessor chain
5231 // up to the header.
5232 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005233 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005234 BasicBlock *Pred = BB->getUniquePredecessor();
5235 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005236 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005237 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005238 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005239 if (PredSucc == BB)
5240 continue;
5241 // If the predecessor has a successor that isn't BB and isn't
5242 // outside the loop, assume the worst.
5243 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005244 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005245 }
5246 if (Pred == L->getHeader()) {
5247 Ok = true;
5248 break;
5249 }
5250 BB = Pred;
5251 }
5252 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005253 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005254 }
5255
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005256 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005257 TerminatorInst *Term = ExitingBlock->getTerminator();
5258 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5259 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5260 // Proceed to the next level to examine the exit condition expression.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005261 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
Benjamin Kramer5a188542014-02-11 15:44:32 +00005262 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005263 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005264 }
5265
5266 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005267 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005268 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005269
5270 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005271}
5272
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005273/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005274/// backedge of the specified loop will execute if its exit condition
5275/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005276///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005277/// @param ControlsExit is true if ExitCond directly controls the exit
5278/// branch. In this case, we can assume that the loop exits only if the
5279/// condition is true and can infer that failing to meet the condition prior to
5280/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005281ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005282ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005283 Value *ExitCond,
5284 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005285 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005286 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005287 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005288 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5289 if (BO->getOpcode() == Instruction::And) {
5290 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005291 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005292 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005293 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005294 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005295 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005296 const SCEV *BECount = getCouldNotCompute();
5297 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005298 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005299 // Both conditions must be true for the loop to continue executing.
5300 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005301 if (EL0.Exact == getCouldNotCompute() ||
5302 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005303 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005304 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005305 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5306 if (EL0.Max == getCouldNotCompute())
5307 MaxBECount = EL1.Max;
5308 else if (EL1.Max == getCouldNotCompute())
5309 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005310 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005311 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005312 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005313 // Both conditions must be true at the same time for the loop to exit.
5314 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005315 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005316 if (EL0.Max == EL1.Max)
5317 MaxBECount = EL0.Max;
5318 if (EL0.Exact == EL1.Exact)
5319 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005320 }
5321
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005322 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005323 }
5324 if (BO->getOpcode() == Instruction::Or) {
5325 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005326 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005327 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005328 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005329 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005330 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005331 const SCEV *BECount = getCouldNotCompute();
5332 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005333 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005334 // Both conditions must be false for the loop to continue executing.
5335 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005336 if (EL0.Exact == getCouldNotCompute() ||
5337 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005338 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005339 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005340 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5341 if (EL0.Max == getCouldNotCompute())
5342 MaxBECount = EL1.Max;
5343 else if (EL1.Max == getCouldNotCompute())
5344 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005345 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005346 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005347 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005348 // Both conditions must be false at the same time for the loop to exit.
5349 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005350 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005351 if (EL0.Max == EL1.Max)
5352 MaxBECount = EL0.Max;
5353 if (EL0.Exact == EL1.Exact)
5354 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005355 }
5356
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005357 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005358 }
5359 }
5360
5361 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005362 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005363 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005364 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005365
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005366 // Check for a constant condition. These are normally stripped out by
5367 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5368 // preserve the CFG and is temporarily leaving constant conditions
5369 // in place.
5370 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5371 if (L->contains(FBB) == !CI->getZExtValue())
5372 // The backedge is always taken.
5373 return getCouldNotCompute();
5374 else
5375 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005376 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005377 }
5378
Eli Friedmanebf98b02009-05-09 12:32:42 +00005379 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005380 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005381}
5382
Andrew Trick3ca3f982011-07-26 17:19:55 +00005383ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005384ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005385 ICmpInst *ExitCond,
5386 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005387 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005388 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005389
Reid Spencer266e42b2006-12-23 06:05:41 +00005390 // If the condition was exit on true, convert the condition to exit on false
5391 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005392 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005393 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005394 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005395 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005396
5397 // Handle common loops like: for (X = "string"; *X; ++X)
5398 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5399 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005400 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005401 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005402 if (ItCnt.hasAnyInfo())
5403 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005404 }
5405
Dan Gohmanaf752342009-07-07 17:06:11 +00005406 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5407 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005408
5409 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005410 LHS = getSCEVAtScope(LHS, L);
5411 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005412
Dan Gohmance973df2009-06-24 04:48:43 +00005413 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005414 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005415 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005416 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005417 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005418 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005419 }
5420
Dan Gohman81585c12010-05-03 16:35:17 +00005421 // Simplify the operands before analyzing them.
5422 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5423
Chris Lattnerd934c702004-04-02 20:23:17 +00005424 // If we have a comparison of a chrec against a constant, try to use value
5425 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005426 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5427 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005428 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005429 // Form the constant range.
5430 ConstantRange CompRange(
5431 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005432
Dan Gohmanaf752342009-07-07 17:06:11 +00005433 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005434 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005435 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005436
Chris Lattnerd934c702004-04-02 20:23:17 +00005437 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005438 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005439 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005440 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005441 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005442 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005443 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005444 case ICmpInst::ICMP_EQ: { // while (X == Y)
5445 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005446 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5447 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005448 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005449 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005450 case ICmpInst::ICMP_SLT:
5451 case ICmpInst::ICMP_ULT: { // while (X < Y)
5452 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005453 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005454 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005455 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005456 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005457 case ICmpInst::ICMP_SGT:
5458 case ICmpInst::ICMP_UGT: { // while (X > Y)
5459 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005460 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005461 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005462 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005463 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005464 default:
Chris Lattner09169212004-04-02 20:26:46 +00005465#if 0
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005466 dbgs() << "computeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005467 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005468 dbgs() << "[unsigned] ";
5469 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005470 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005471 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005472#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005473 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005474 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005475 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005476}
5477
Benjamin Kramer5a188542014-02-11 15:44:32 +00005478ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005479ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005480 SwitchInst *Switch,
5481 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005482 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005483 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5484
5485 // Give up if the exit is the default dest of a switch.
5486 if (Switch->getDefaultDest() == ExitingBlock)
5487 return getCouldNotCompute();
5488
5489 assert(L->contains(Switch->getDefaultDest()) &&
5490 "Default case must not exit the loop!");
5491 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5492 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5493
5494 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005495 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005496 if (EL.hasAnyInfo())
5497 return EL;
5498
5499 return getCouldNotCompute();
5500}
5501
Chris Lattnerec901cc2004-10-12 01:49:27 +00005502static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005503EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5504 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005505 const SCEV *InVal = SE.getConstant(C);
5506 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005507 assert(isa<SCEVConstant>(Val) &&
5508 "Evaluation of SCEV at constant didn't fold correctly?");
5509 return cast<SCEVConstant>(Val)->getValue();
5510}
5511
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005512/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005513/// 'icmp op load X, cst', try to see if we can compute the backedge
5514/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005515ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005516ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00005517 LoadInst *LI,
5518 Constant *RHS,
5519 const Loop *L,
5520 ICmpInst::Predicate predicate) {
5521
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005522 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005523
5524 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005525 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005526 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005527 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005528
5529 // Make sure that it is really a constant global we are gepping, with an
5530 // initializer, and make sure the first IDX is really 0.
5531 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005532 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005533 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5534 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005535 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005536
5537 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005538 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005539 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005540 unsigned VarIdxNum = 0;
5541 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5542 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5543 Indexes.push_back(CI);
5544 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005545 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005546 VarIdx = GEP->getOperand(i);
5547 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005548 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005549 }
5550
Andrew Trick7004e4b2012-03-26 22:33:59 +00005551 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5552 if (!VarIdx)
5553 return getCouldNotCompute();
5554
Chris Lattnerec901cc2004-10-12 01:49:27 +00005555 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5556 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005557 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005558 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005559
5560 // We can only recognize very limited forms of loop index expressions, in
5561 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005562 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005563 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005564 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5565 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005566 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005567
5568 unsigned MaxSteps = MaxBruteForceIterations;
5569 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005570 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005571 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005572 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005573
5574 // Form the GEP offset.
5575 Indexes[VarIdxNum] = Val;
5576
Chris Lattnere166a852012-01-24 05:49:24 +00005577 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5578 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005579 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005580
5581 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005582 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005583 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005584 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005585#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005586 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005587 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5588 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005589#endif
5590 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005591 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005592 }
5593 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005594 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005595}
5596
5597
Chris Lattnerdd730472004-04-17 22:58:41 +00005598/// CanConstantFold - Return true if we can constant fold an instruction of the
5599/// specified type, assuming that all operands were constants.
5600static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005601 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005602 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5603 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005604 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005605
Chris Lattnerdd730472004-04-17 22:58:41 +00005606 if (const CallInst *CI = dyn_cast<CallInst>(I))
5607 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005608 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005609 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005610}
5611
Andrew Trick3a86ba72011-10-05 03:25:31 +00005612/// Determine whether this instruction can constant evolve within this loop
5613/// assuming its operands can all constant evolve.
5614static bool canConstantEvolve(Instruction *I, const Loop *L) {
5615 // An instruction outside of the loop can't be derived from a loop PHI.
5616 if (!L->contains(I)) return false;
5617
5618 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005619 // We don't currently keep track of the control flow needed to evaluate
5620 // PHIs, so we cannot handle PHIs inside of loops.
5621 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005622 }
5623
5624 // If we won't be able to constant fold this expression even if the operands
5625 // are constants, bail early.
5626 return CanConstantFold(I);
5627}
5628
5629/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5630/// recursing through each instruction operand until reaching a loop header phi.
5631static PHINode *
5632getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005633 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005634
5635 // Otherwise, we can evaluate this instruction if all of its operands are
5636 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005637 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005638 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5639 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5640
5641 if (isa<Constant>(*OpI)) continue;
5642
5643 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005644 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005645
5646 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005647 if (!P)
5648 // If this operand is already visited, reuse the prior result.
5649 // We may have P != PHI if this is the deepest point at which the
5650 // inconsistent paths meet.
5651 P = PHIMap.lookup(OpInst);
5652 if (!P) {
5653 // Recurse and memoize the results, whether a phi is found or not.
5654 // This recursive call invalidates pointers into PHIMap.
5655 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5656 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005657 }
Craig Topper9f008862014-04-15 04:59:12 +00005658 if (!P)
5659 return nullptr; // Not evolving from PHI
5660 if (PHI && PHI != P)
5661 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005662 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005663 }
5664 // This is a expression evolving from a constant PHI!
5665 return PHI;
5666}
5667
Chris Lattnerdd730472004-04-17 22:58:41 +00005668/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5669/// in the loop that V is derived from. We allow arbitrary operations along the
5670/// way, but the operands of an operation must either be constants or a value
5671/// derived from a constant PHI. If this expression does not fit with these
5672/// constraints, return null.
5673static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005674 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005675 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005676
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00005677 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00005678 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00005679
Andrew Trick3a86ba72011-10-05 03:25:31 +00005680 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005681 DenseMap<Instruction *, PHINode *> PHIMap;
5682 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005683}
5684
5685/// EvaluateExpression - Given an expression that passes the
5686/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5687/// in the loop has the value PHIVal. If we can't fold this expression for some
5688/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005689static Constant *EvaluateExpression(Value *V, const Loop *L,
5690 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005691 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005692 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005693 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005694 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005695 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005696 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005697
Andrew Trick3a86ba72011-10-05 03:25:31 +00005698 if (Constant *C = Vals.lookup(I)) return C;
5699
Nick Lewyckya6674c72011-10-22 19:58:20 +00005700 // An instruction inside the loop depends on a value outside the loop that we
5701 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005702 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005703
5704 // An unmapped PHI can be due to a branch or another loop inside this loop,
5705 // or due to this not being the initial iteration through a loop where we
5706 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005707 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005708
Dan Gohmanf820bd32010-06-22 13:15:46 +00005709 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005710
5711 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005712 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5713 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005714 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005715 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005716 continue;
5717 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005718 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005719 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005720 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005721 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005722 }
5723
Nick Lewyckya6674c72011-10-22 19:58:20 +00005724 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005725 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005726 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005727 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5728 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005729 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005730 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005731 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005732 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005733}
5734
5735/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5736/// in the header of its containing loop, we know the loop executes a
5737/// constant number of times, and the PHI node is just a recurrence
5738/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005739Constant *
5740ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005741 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005742 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00005743 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00005744 if (I != ConstantEvolutionLoopExitValue.end())
5745 return I->second;
5746
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005747 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005748 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005749
5750 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5751
Andrew Trick3a86ba72011-10-05 03:25:31 +00005752 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005753 BasicBlock *Header = L->getHeader();
5754 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005755
Sanjoy Dasdd709962015-10-08 18:28:36 +00005756 BasicBlock *Latch = L->getLoopLatch();
5757 if (!Latch)
5758 return nullptr;
5759
5760 // Since the loop has one latch, the PHI node must have two entries. One
Chris Lattnerdd730472004-04-17 22:58:41 +00005761 // entry must be a constant (coming in from outside of the loop), and the
5762 // second must be derived from the same PHI.
Sanjoy Dasdd709962015-10-08 18:28:36 +00005763
5764 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0)
5765 ? PN->getIncomingBlock(1)
5766 : PN->getIncomingBlock(0);
5767
5768 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!");
5769
5770 // Note: not all PHI nodes in the same block have to have their incoming
5771 // values in the same order, so we use the basic block to look up the incoming
5772 // value, not an index.
5773
Sanjoy Das4493b402015-10-07 17:38:25 +00005774 for (auto &I : *Header) {
5775 PHINode *PHI = dyn_cast<PHINode>(&I);
5776 if (!PHI) break;
5777 auto *StartCST =
Sanjoy Dasdd709962015-10-08 18:28:36 +00005778 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch));
Craig Topper9f008862014-04-15 04:59:12 +00005779 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005780 CurrentIterVals[PHI] = StartCST;
5781 }
5782 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005783 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005784
Sanjoy Dasdd709962015-10-08 18:28:36 +00005785 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00005786
5787 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005788 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005789 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005790
Dan Gohman0bddac12009-02-24 18:55:53 +00005791 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005792 unsigned IterationNum = 0;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005793 const DataLayout &DL = F.getParent()->getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005794 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005795 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005796 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005797
Nick Lewyckya6674c72011-10-22 19:58:20 +00005798 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005799 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005800 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005801 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005802 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005803 if (!NextPHI)
5804 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005805 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005806
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005807 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5808
Nick Lewyckya6674c72011-10-22 19:58:20 +00005809 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5810 // cease to be able to evaluate one of them or if they stop evolving,
5811 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005812 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00005813 for (const auto &I : CurrentIterVals) {
5814 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005815 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00005816 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005817 }
5818 // We use two distinct loops because EvaluateExpression may invalidate any
5819 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00005820 for (const auto &I : PHIsToCompute) {
5821 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005822 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005823 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00005824 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005825 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005826 }
Sanjoy Das4493b402015-10-07 17:38:25 +00005827 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005828 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005829 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005830
5831 // If all entries in CurrentIterVals == NextIterVals then we can stop
5832 // iterating, the loop can't continue to change.
5833 if (StoppedEvolving)
5834 return RetVal = CurrentIterVals[PN];
5835
Andrew Trick3a86ba72011-10-05 03:25:31 +00005836 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005837 }
5838}
5839
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005840const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00005841 Value *Cond,
5842 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005843 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005844 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005845
Dan Gohman866971e2010-06-19 14:17:24 +00005846 // If the loop is canonicalized, the PHI will have exactly two entries.
5847 // That's the only form we support here.
5848 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5849
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005850 DenseMap<Instruction *, Constant *> CurrentIterVals;
5851 BasicBlock *Header = L->getHeader();
5852 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5853
Sanjoy Dasdd709962015-10-08 18:28:36 +00005854 BasicBlock *Latch = L->getLoopLatch();
5855 assert(Latch && "Should follow from NumIncomingValues == 2!");
5856
5857 // NonLatch is the preheader, or something equivalent.
5858 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0)
5859 ? PN->getIncomingBlock(1)
5860 : PN->getIncomingBlock(0);
5861
5862 // Note: not all PHI nodes in the same block have to have their incoming
5863 // values in the same order, so we use the basic block to look up the incoming
5864 // value, not an index.
5865
Sanjoy Das4493b402015-10-07 17:38:25 +00005866 for (auto &I : *Header) {
5867 PHINode *PHI = dyn_cast<PHINode>(&I);
5868 if (!PHI)
5869 break;
5870 auto *StartCST =
Sanjoy Dasdd709962015-10-08 18:28:36 +00005871 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch));
Craig Topper9f008862014-04-15 04:59:12 +00005872 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005873 CurrentIterVals[PHI] = StartCST;
5874 }
5875 if (!CurrentIterVals.count(PN))
5876 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005877
5878 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5879 // the loop symbolically to determine when the condition gets a value of
5880 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00005881 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005882 const DataLayout &DL = F.getParent()->getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005883 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00005884 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005885 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005886
Zhou Sheng75b871f2007-01-11 12:24:14 +00005887 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005888 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005889
Reid Spencer983e3b32007-03-01 07:25:48 +00005890 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005891 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005892 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005893 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005894
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005895 // Update all the PHI nodes for the next iteration.
5896 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005897
5898 // Create a list of which PHIs we need to compute. We want to do this before
5899 // calling EvaluateExpression on them because that may invalidate iterators
5900 // into CurrentIterVals.
5901 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00005902 for (const auto &I : CurrentIterVals) {
5903 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005904 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005905 PHIsToCompute.push_back(PHI);
5906 }
Sanjoy Das4493b402015-10-07 17:38:25 +00005907 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005908 Constant *&NextPHI = NextIterVals[PHI];
5909 if (NextPHI) continue; // Already computed!
5910
Sanjoy Dasdd709962015-10-08 18:28:36 +00005911 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005912 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005913 }
5914 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005915 }
5916
5917 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005918 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005919}
5920
Dan Gohman237d9e52009-09-03 15:00:26 +00005921/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005922/// at the specified scope in the program. The L value specifies a loop
5923/// nest to evaluate the expression at, where null is the top-level or a
5924/// specified loop is immediately inside of the loop.
5925///
5926/// This method can be used to compute the exit value for a variable defined
5927/// in a loop by querying what the value will hold in the parent loop.
5928///
Dan Gohman8ca08852009-05-24 23:25:42 +00005929/// In the case that a relevant loop exit value cannot be computed, the
5930/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005931const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005932 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005933 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5934 for (unsigned u = 0; u < Values.size(); u++) {
5935 if (Values[u].first == L)
5936 return Values[u].second ? Values[u].second : V;
5937 }
Craig Topper9f008862014-04-15 04:59:12 +00005938 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005939 // Otherwise compute it.
5940 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005941 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5942 for (unsigned u = Values2.size(); u > 0; u--) {
5943 if (Values2[u - 1].first == L) {
5944 Values2[u - 1].second = C;
5945 break;
5946 }
5947 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005948 return C;
5949}
5950
Nick Lewyckya6674c72011-10-22 19:58:20 +00005951/// This builds up a Constant using the ConstantExpr interface. That way, we
5952/// will return Constants for objects which aren't represented by a
5953/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5954/// Returns NULL if the SCEV isn't representable as a Constant.
5955static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005956 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005957 case scCouldNotCompute:
5958 case scAddRecExpr:
5959 break;
5960 case scConstant:
5961 return cast<SCEVConstant>(V)->getValue();
5962 case scUnknown:
5963 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5964 case scSignExtend: {
5965 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5966 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5967 return ConstantExpr::getSExt(CastOp, SS->getType());
5968 break;
5969 }
5970 case scZeroExtend: {
5971 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5972 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5973 return ConstantExpr::getZExt(CastOp, SZ->getType());
5974 break;
5975 }
5976 case scTruncate: {
5977 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5978 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5979 return ConstantExpr::getTrunc(CastOp, ST->getType());
5980 break;
5981 }
5982 case scAddExpr: {
5983 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5984 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005985 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5986 unsigned AS = PTy->getAddressSpace();
5987 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5988 C = ConstantExpr::getBitCast(C, DestPtrTy);
5989 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005990 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5991 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005992 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005993
5994 // First pointer!
5995 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005996 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005997 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005998 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005999 // The offsets have been converted to bytes. We can add bytes to an
6000 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006001 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006002 }
6003
6004 // Don't bother trying to sum two pointers. We probably can't
6005 // statically compute a load that results from it anyway.
6006 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006007 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006008
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006009 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6010 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006011 C2 = ConstantExpr::getIntegerCast(
6012 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006013 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006014 } else
6015 C = ConstantExpr::getAdd(C, C2);
6016 }
6017 return C;
6018 }
6019 break;
6020 }
6021 case scMulExpr: {
6022 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6023 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6024 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006025 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006026 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6027 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006028 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006029 C = ConstantExpr::getMul(C, C2);
6030 }
6031 return C;
6032 }
6033 break;
6034 }
6035 case scUDivExpr: {
6036 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6037 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6038 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6039 if (LHS->getType() == RHS->getType())
6040 return ConstantExpr::getUDiv(LHS, RHS);
6041 break;
6042 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006043 case scSMaxExpr:
6044 case scUMaxExpr:
6045 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006046 }
Craig Topper9f008862014-04-15 04:59:12 +00006047 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006048}
6049
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006050const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006051 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006052
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006053 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006054 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006055 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006056 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006057 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006058 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6059 if (PHINode *PN = dyn_cast<PHINode>(I))
6060 if (PN->getParent() == LI->getHeader()) {
6061 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006062 // to see if the loop that contains it has a known backedge-taken
6063 // count. If so, we may be able to force computation of the exit
6064 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006065 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006066 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006067 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006068 // Okay, we know how many times the containing loop executes. If
6069 // this is a constant evolving PHI node, get the final value at
6070 // the specified iteration number.
6071 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00006072 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00006073 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006074 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006075 }
6076 }
6077
Reid Spencere6328ca2006-12-04 21:33:23 +00006078 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006079 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006080 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006081 // result. This is particularly useful for computing loop exit values.
6082 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006083 SmallVector<Constant *, 4> Operands;
6084 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006085 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006086 if (Constant *C = dyn_cast<Constant>(Op)) {
6087 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006088 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006089 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006090
6091 // If any of the operands is non-constant and if they are
6092 // non-integer and non-pointer, don't even try to analyze them
6093 // with scev techniques.
6094 if (!isSCEVable(Op->getType()))
6095 return V;
6096
6097 const SCEV *OrigV = getSCEV(Op);
6098 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6099 MadeImprovement |= OrigV != OpV;
6100
Nick Lewyckya6674c72011-10-22 19:58:20 +00006101 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006102 if (!C) return V;
6103 if (C->getType() != Op->getType())
6104 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6105 Op->getType(),
6106 false),
6107 C, Op->getType());
6108 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006109 }
Dan Gohmance973df2009-06-24 04:48:43 +00006110
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006111 // Check to see if getSCEVAtScope actually made an improvement.
6112 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006113 Constant *C = nullptr;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006114 const DataLayout &DL = F.getParent()->getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006115 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006116 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006117 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006118 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6119 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006120 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006121 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006122 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006123 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006124 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006125 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006126 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006127 }
6128 }
6129
6130 // This is some other type of SCEVUnknown, just return it.
6131 return V;
6132 }
6133
Dan Gohmana30370b2009-05-04 22:02:23 +00006134 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006135 // Avoid performing the look-up in the common case where the specified
6136 // expression has no loop-variant portions.
6137 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006138 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006139 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006140 // Okay, at least one of these operands is loop variant but might be
6141 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006142 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6143 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006144 NewOps.push_back(OpAtScope);
6145
6146 for (++i; i != e; ++i) {
6147 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006148 NewOps.push_back(OpAtScope);
6149 }
6150 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006151 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006152 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006153 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006154 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006155 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006156 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006157 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006158 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006159 }
6160 }
6161 // If we got here, all operands are loop invariant.
6162 return Comm;
6163 }
6164
Dan Gohmana30370b2009-05-04 22:02:23 +00006165 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006166 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6167 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006168 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6169 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006170 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006171 }
6172
6173 // If this is a loop recurrence for a loop that does not contain L, then we
6174 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006175 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006176 // First, attempt to evaluate each operand.
6177 // Avoid performing the look-up in the common case where the specified
6178 // expression has no loop-variant portions.
6179 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6180 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6181 if (OpAtScope == AddRec->getOperand(i))
6182 continue;
6183
6184 // Okay, at least one of these operands is loop variant but might be
6185 // foldable. Build a new instance of the folded commutative expression.
6186 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6187 AddRec->op_begin()+i);
6188 NewOps.push_back(OpAtScope);
6189 for (++i; i != e; ++i)
6190 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6191
Andrew Trick759ba082011-04-27 01:21:25 +00006192 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006193 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006194 AddRec->getNoWrapFlags(SCEV::FlagNW));
6195 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006196 // The addrec may be folded to a nonrecurrence, for example, if the
6197 // induction variable is multiplied by zero after constant folding. Go
6198 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006199 if (!AddRec)
6200 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006201 break;
6202 }
6203
6204 // If the scope is outside the addrec's loop, evaluate it by using the
6205 // loop exit value of the addrec.
6206 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006207 // To evaluate this recurrence, we need to know how many times the AddRec
6208 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006209 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006210 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006211
Eli Friedman61f67622008-08-04 23:49:06 +00006212 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006213 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006214 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006215
Dan Gohman8ca08852009-05-24 23:25:42 +00006216 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006217 }
6218
Dan Gohmana30370b2009-05-04 22:02:23 +00006219 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006220 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006221 if (Op == Cast->getOperand())
6222 return Cast; // must be loop invariant
6223 return getZeroExtendExpr(Op, Cast->getType());
6224 }
6225
Dan Gohmana30370b2009-05-04 22:02:23 +00006226 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006227 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006228 if (Op == Cast->getOperand())
6229 return Cast; // must be loop invariant
6230 return getSignExtendExpr(Op, Cast->getType());
6231 }
6232
Dan Gohmana30370b2009-05-04 22:02:23 +00006233 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006234 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006235 if (Op == Cast->getOperand())
6236 return Cast; // must be loop invariant
6237 return getTruncateExpr(Op, Cast->getType());
6238 }
6239
Torok Edwinfbcc6632009-07-14 16:55:14 +00006240 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006241}
6242
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006243/// getSCEVAtScope - This is a convenience function which does
6244/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006245const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006246 return getSCEVAtScope(getSCEV(V), L);
6247}
6248
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006249/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6250/// following equation:
6251///
6252/// A * X = B (mod N)
6253///
6254/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6255/// A and B isn't important.
6256///
6257/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006258static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006259 ScalarEvolution &SE) {
6260 uint32_t BW = A.getBitWidth();
6261 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6262 assert(A != 0 && "A must be non-zero.");
6263
6264 // 1. D = gcd(A, N)
6265 //
6266 // The gcd of A and N may have only one prime factor: 2. The number of
6267 // trailing zeros in A is its multiplicity
6268 uint32_t Mult2 = A.countTrailingZeros();
6269 // D = 2^Mult2
6270
6271 // 2. Check if B is divisible by D.
6272 //
6273 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6274 // is not less than multiplicity of this prime factor for D.
6275 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006276 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006277
6278 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6279 // modulo (N / D).
6280 //
6281 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6282 // bit width during computations.
6283 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6284 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006285 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006286 APInt I = AD.multiplicativeInverse(Mod);
6287
6288 // 4. Compute the minimum unsigned root of the equation:
6289 // I * (B / D) mod (N / D)
6290 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6291
6292 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6293 // bits.
6294 return SE.getConstant(Result.trunc(BW));
6295}
Chris Lattnerd934c702004-04-02 20:23:17 +00006296
6297/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6298/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6299/// might be the same) or two SCEVCouldNotCompute objects.
6300///
Dan Gohmanaf752342009-07-07 17:06:11 +00006301static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006302SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006303 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006304 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6305 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6306 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006307
Chris Lattnerd934c702004-04-02 20:23:17 +00006308 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006309 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006310 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006311 return std::make_pair(CNC, CNC);
6312 }
6313
Reid Spencer983e3b32007-03-01 07:25:48 +00006314 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006315 const APInt &L = LC->getValue()->getValue();
6316 const APInt &M = MC->getValue()->getValue();
6317 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006318 APInt Two(BitWidth, 2);
6319 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006320
Dan Gohmance973df2009-06-24 04:48:43 +00006321 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006322 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006323 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006324 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6325 // The B coefficient is M-N/2
6326 APInt B(M);
6327 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006328
Reid Spencer983e3b32007-03-01 07:25:48 +00006329 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006330 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006331
Reid Spencer983e3b32007-03-01 07:25:48 +00006332 // Compute the B^2-4ac term.
6333 APInt SqrtTerm(B);
6334 SqrtTerm *= B;
6335 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006336
Nick Lewyckyfb780832012-08-01 09:14:36 +00006337 if (SqrtTerm.isNegative()) {
6338 // The loop is provably infinite.
6339 const SCEV *CNC = SE.getCouldNotCompute();
6340 return std::make_pair(CNC, CNC);
6341 }
6342
Reid Spencer983e3b32007-03-01 07:25:48 +00006343 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6344 // integer value or else APInt::sqrt() will assert.
6345 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006346
Dan Gohmance973df2009-06-24 04:48:43 +00006347 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006348 // The divisions must be performed as signed divisions.
6349 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006350 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006351 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006352 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006353 return std::make_pair(CNC, CNC);
6354 }
6355
Owen Anderson47db9412009-07-22 00:24:57 +00006356 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006357
6358 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006359 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006360 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006361 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006362
Dan Gohmance973df2009-06-24 04:48:43 +00006363 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006364 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006365 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006366}
6367
6368/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006369/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006370///
6371/// This is only used for loops with a "x != y" exit test. The exit condition is
6372/// now expressed as a single expression, V = x-y. So the exit test is
6373/// effectively V != 0. We know and take advantage of the fact that this
6374/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006375ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006376ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006377 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006378 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006379 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006380 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006381 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006382 }
6383
Dan Gohman48f82222009-05-04 22:30:44 +00006384 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006385 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006386 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006387
Chris Lattnerdff679f2011-01-09 22:39:48 +00006388 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6389 // the quadratic equation to solve it.
6390 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6391 std::pair<const SCEV *,const SCEV *> Roots =
6392 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006393 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6394 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006395 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006396#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006397 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006398 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006399#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006400 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006401 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006402 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6403 R1->getValue(),
6404 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006405 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006406 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006407
Chris Lattnerd934c702004-04-02 20:23:17 +00006408 // We can only use this value if the chrec ends up with an exact zero
6409 // value at this index. When solving for "X*X != 5", for example, we
6410 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006411 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006412 if (Val->isZero())
6413 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006414 }
6415 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006416 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006417 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006418
Chris Lattnerdff679f2011-01-09 22:39:48 +00006419 // Otherwise we can only handle this if it is affine.
6420 if (!AddRec->isAffine())
6421 return getCouldNotCompute();
6422
6423 // If this is an affine expression, the execution count of this branch is
6424 // the minimum unsigned root of the following equation:
6425 //
6426 // Start + Step*N = 0 (mod 2^BW)
6427 //
6428 // equivalent to:
6429 //
6430 // Step*N = -Start (mod 2^BW)
6431 //
6432 // where BW is the common bit width of Start and Step.
6433
6434 // Get the initial value for the loop.
6435 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6436 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6437
6438 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006439 //
6440 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6441 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6442 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6443 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006444 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006445 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006446 return getCouldNotCompute();
6447
Andrew Trick8b55b732011-03-14 16:50:06 +00006448 // For positive steps (counting up until unsigned overflow):
6449 // N = -Start/Step (as unsigned)
6450 // For negative steps (counting down to zero):
6451 // N = Start/-Step
6452 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006453 bool CountDown = StepC->getValue()->getValue().isNegative();
6454 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006455
6456 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006457 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6458 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006459 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6460 ConstantRange CR = getUnsignedRange(Start);
6461 const SCEV *MaxBECount;
6462 if (!CountDown && CR.getUnsignedMin().isMinValue())
6463 // When counting up, the worst starting value is 1, not 0.
6464 MaxBECount = CR.getUnsignedMax().isMinValue()
6465 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6466 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6467 else
6468 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6469 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006470 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006471 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006472
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006473 // As a special case, handle the instance where Step is a positive power of
6474 // two. In this case, determining whether Step divides Distance evenly can be
6475 // done by counting and comparing the number of trailing zeros of Step and
6476 // Distance.
6477 if (!CountDown) {
6478 const APInt &StepV = StepC->getValue()->getValue();
6479 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6480 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6481 // case is not handled as this code is guarded by !CountDown.
6482 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006483 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6484 // Here we've constrained the equation to be of the form
6485 //
6486 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6487 //
6488 // where we're operating on a W bit wide integer domain and k is
6489 // non-negative. The smallest unsigned solution for X is the trip count.
6490 //
6491 // (0) is equivalent to:
6492 //
6493 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6494 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6495 // <=> 2^k * Distance' - X = L * 2^(W - N)
6496 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6497 //
6498 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6499 // by 2^(W - N).
6500 //
6501 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6502 //
6503 // E.g. say we're solving
6504 //
6505 // 2 * Val = 2 * X (in i8) ... (3)
6506 //
6507 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6508 //
6509 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6510 // necessarily the smallest unsigned value of X that satisfies (3).
6511 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6512 // is i8 1, not i8 -127
6513
6514 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6515
6516 // Since SCEV does not have a URem node, we construct one using a truncate
6517 // and a zero extend.
6518
6519 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6520 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6521 auto *WideTy = Distance->getType();
6522
6523 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6524 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006525 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006526
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006527 // If the condition controls loop exit (the loop exits only if the expression
6528 // is true) and the addition is no-wrap we can use unsigned divide to
6529 // compute the backedge count. In this case, the step may not divide the
6530 // distance, but we don't care because if the condition is "missed" the loop
6531 // will have undefined behavior due to wrapping.
6532 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6533 const SCEV *Exact =
6534 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6535 return ExitLimit(Exact, Exact);
6536 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006537
Chris Lattnerdff679f2011-01-09 22:39:48 +00006538 // Then, try to solve the above equation provided that Start is constant.
6539 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6540 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6541 -StartC->getValue()->getValue(),
6542 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006543 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006544}
6545
6546/// HowFarToNonZero - Return the number of times a backedge checking the
6547/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006548/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006549ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006550ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006551 // Loops that look like: while (X == 0) are very strange indeed. We don't
6552 // handle them yet except for the trivial case. This could be expanded in the
6553 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006554
Chris Lattnerd934c702004-04-02 20:23:17 +00006555 // If the value is a constant, check to see if it is known to be non-zero
6556 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006557 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006558 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006559 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006560 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006561 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006562
Chris Lattnerd934c702004-04-02 20:23:17 +00006563 // We could implement others, but I really doubt anyone writes loops like
6564 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006565 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006566}
6567
Dan Gohmanf9081a22008-09-15 22:18:04 +00006568/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6569/// (which may not be an immediate predecessor) which has exactly one
6570/// successor from which BB is reachable, or null if no such block is
6571/// found.
6572///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006573std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006574ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006575 // If the block has a unique predecessor, then there is no path from the
6576 // predecessor to the block that does not go through the direct edge
6577 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006578 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006579 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006580
6581 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006582 // If the header has a unique predecessor outside the loop, it must be
6583 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006584 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006585 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006586
Dan Gohman4e3c1132010-04-15 16:19:08 +00006587 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006588}
6589
Dan Gohman450f4e02009-06-20 00:35:32 +00006590/// HasSameValue - SCEV structural equivalence is usually sufficient for
6591/// testing whether two expressions are equal, however for the purposes of
6592/// looking for a condition guarding a loop, it can be useful to be a little
6593/// more general, since a front-end may have replicated the controlling
6594/// expression.
6595///
Dan Gohmanaf752342009-07-07 17:06:11 +00006596static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006597 // Quick check to see if they are the same SCEV.
6598 if (A == B) return true;
6599
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006600 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6601 // Not all instructions that are "identical" compute the same value. For
6602 // instance, two distinct alloca instructions allocating the same type are
6603 // identical and do not read memory; but compute distinct values.
6604 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6605 };
6606
Dan Gohman450f4e02009-06-20 00:35:32 +00006607 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6608 // two different instructions with the same value. Check for this case.
6609 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6610 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6611 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6612 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006613 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00006614 return true;
6615
6616 // Otherwise assume they may have a different value.
6617 return false;
6618}
6619
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006620/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006621/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006622///
6623bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006624 const SCEV *&LHS, const SCEV *&RHS,
6625 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006626 bool Changed = false;
6627
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006628 // If we hit the max recursion limit bail out.
6629 if (Depth >= 3)
6630 return false;
6631
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006632 // Canonicalize a constant to the right side.
6633 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6634 // Check for both operands constant.
6635 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6636 if (ConstantExpr::getICmp(Pred,
6637 LHSC->getValue(),
6638 RHSC->getValue())->isNullValue())
6639 goto trivially_false;
6640 else
6641 goto trivially_true;
6642 }
6643 // Otherwise swap the operands to put the constant on the right.
6644 std::swap(LHS, RHS);
6645 Pred = ICmpInst::getSwappedPredicate(Pred);
6646 Changed = true;
6647 }
6648
6649 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006650 // addrec's loop, put the addrec on the left. Also make a dominance check,
6651 // as both operands could be addrecs loop-invariant in each other's loop.
6652 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6653 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006654 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006655 std::swap(LHS, RHS);
6656 Pred = ICmpInst::getSwappedPredicate(Pred);
6657 Changed = true;
6658 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006659 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006660
6661 // If there's a constant operand, canonicalize comparisons with boundary
6662 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6663 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6664 const APInt &RA = RC->getValue()->getValue();
6665 switch (Pred) {
6666 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6667 case ICmpInst::ICMP_EQ:
6668 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006669 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6670 if (!RA)
6671 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6672 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006673 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6674 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006675 RHS = AE->getOperand(1);
6676 LHS = ME->getOperand(1);
6677 Changed = true;
6678 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006679 break;
6680 case ICmpInst::ICMP_UGE:
6681 if ((RA - 1).isMinValue()) {
6682 Pred = ICmpInst::ICMP_NE;
6683 RHS = getConstant(RA - 1);
6684 Changed = true;
6685 break;
6686 }
6687 if (RA.isMaxValue()) {
6688 Pred = ICmpInst::ICMP_EQ;
6689 Changed = true;
6690 break;
6691 }
6692 if (RA.isMinValue()) goto trivially_true;
6693
6694 Pred = ICmpInst::ICMP_UGT;
6695 RHS = getConstant(RA - 1);
6696 Changed = true;
6697 break;
6698 case ICmpInst::ICMP_ULE:
6699 if ((RA + 1).isMaxValue()) {
6700 Pred = ICmpInst::ICMP_NE;
6701 RHS = getConstant(RA + 1);
6702 Changed = true;
6703 break;
6704 }
6705 if (RA.isMinValue()) {
6706 Pred = ICmpInst::ICMP_EQ;
6707 Changed = true;
6708 break;
6709 }
6710 if (RA.isMaxValue()) goto trivially_true;
6711
6712 Pred = ICmpInst::ICMP_ULT;
6713 RHS = getConstant(RA + 1);
6714 Changed = true;
6715 break;
6716 case ICmpInst::ICMP_SGE:
6717 if ((RA - 1).isMinSignedValue()) {
6718 Pred = ICmpInst::ICMP_NE;
6719 RHS = getConstant(RA - 1);
6720 Changed = true;
6721 break;
6722 }
6723 if (RA.isMaxSignedValue()) {
6724 Pred = ICmpInst::ICMP_EQ;
6725 Changed = true;
6726 break;
6727 }
6728 if (RA.isMinSignedValue()) goto trivially_true;
6729
6730 Pred = ICmpInst::ICMP_SGT;
6731 RHS = getConstant(RA - 1);
6732 Changed = true;
6733 break;
6734 case ICmpInst::ICMP_SLE:
6735 if ((RA + 1).isMaxSignedValue()) {
6736 Pred = ICmpInst::ICMP_NE;
6737 RHS = getConstant(RA + 1);
6738 Changed = true;
6739 break;
6740 }
6741 if (RA.isMinSignedValue()) {
6742 Pred = ICmpInst::ICMP_EQ;
6743 Changed = true;
6744 break;
6745 }
6746 if (RA.isMaxSignedValue()) goto trivially_true;
6747
6748 Pred = ICmpInst::ICMP_SLT;
6749 RHS = getConstant(RA + 1);
6750 Changed = true;
6751 break;
6752 case ICmpInst::ICMP_UGT:
6753 if (RA.isMinValue()) {
6754 Pred = ICmpInst::ICMP_NE;
6755 Changed = true;
6756 break;
6757 }
6758 if ((RA + 1).isMaxValue()) {
6759 Pred = ICmpInst::ICMP_EQ;
6760 RHS = getConstant(RA + 1);
6761 Changed = true;
6762 break;
6763 }
6764 if (RA.isMaxValue()) goto trivially_false;
6765 break;
6766 case ICmpInst::ICMP_ULT:
6767 if (RA.isMaxValue()) {
6768 Pred = ICmpInst::ICMP_NE;
6769 Changed = true;
6770 break;
6771 }
6772 if ((RA - 1).isMinValue()) {
6773 Pred = ICmpInst::ICMP_EQ;
6774 RHS = getConstant(RA - 1);
6775 Changed = true;
6776 break;
6777 }
6778 if (RA.isMinValue()) goto trivially_false;
6779 break;
6780 case ICmpInst::ICMP_SGT:
6781 if (RA.isMinSignedValue()) {
6782 Pred = ICmpInst::ICMP_NE;
6783 Changed = true;
6784 break;
6785 }
6786 if ((RA + 1).isMaxSignedValue()) {
6787 Pred = ICmpInst::ICMP_EQ;
6788 RHS = getConstant(RA + 1);
6789 Changed = true;
6790 break;
6791 }
6792 if (RA.isMaxSignedValue()) goto trivially_false;
6793 break;
6794 case ICmpInst::ICMP_SLT:
6795 if (RA.isMaxSignedValue()) {
6796 Pred = ICmpInst::ICMP_NE;
6797 Changed = true;
6798 break;
6799 }
6800 if ((RA - 1).isMinSignedValue()) {
6801 Pred = ICmpInst::ICMP_EQ;
6802 RHS = getConstant(RA - 1);
6803 Changed = true;
6804 break;
6805 }
6806 if (RA.isMinSignedValue()) goto trivially_false;
6807 break;
6808 }
6809 }
6810
6811 // Check for obvious equality.
6812 if (HasSameValue(LHS, RHS)) {
6813 if (ICmpInst::isTrueWhenEqual(Pred))
6814 goto trivially_true;
6815 if (ICmpInst::isFalseWhenEqual(Pred))
6816 goto trivially_false;
6817 }
6818
Dan Gohman81585c12010-05-03 16:35:17 +00006819 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6820 // adding or subtracting 1 from one of the operands.
6821 switch (Pred) {
6822 case ICmpInst::ICMP_SLE:
6823 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6824 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006825 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006826 Pred = ICmpInst::ICMP_SLT;
6827 Changed = true;
6828 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006829 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006830 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006831 Pred = ICmpInst::ICMP_SLT;
6832 Changed = true;
6833 }
6834 break;
6835 case ICmpInst::ICMP_SGE:
6836 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006837 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006838 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006839 Pred = ICmpInst::ICMP_SGT;
6840 Changed = true;
6841 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6842 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006843 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006844 Pred = ICmpInst::ICMP_SGT;
6845 Changed = true;
6846 }
6847 break;
6848 case ICmpInst::ICMP_ULE:
6849 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006850 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006851 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006852 Pred = ICmpInst::ICMP_ULT;
6853 Changed = true;
6854 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006855 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006856 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006857 Pred = ICmpInst::ICMP_ULT;
6858 Changed = true;
6859 }
6860 break;
6861 case ICmpInst::ICMP_UGE:
6862 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006863 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006864 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006865 Pred = ICmpInst::ICMP_UGT;
6866 Changed = true;
6867 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006868 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006869 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006870 Pred = ICmpInst::ICMP_UGT;
6871 Changed = true;
6872 }
6873 break;
6874 default:
6875 break;
6876 }
6877
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006878 // TODO: More simplifications are possible here.
6879
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006880 // Recursively simplify until we either hit a recursion limit or nothing
6881 // changes.
6882 if (Changed)
6883 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6884
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006885 return Changed;
6886
6887trivially_true:
6888 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006889 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006890 Pred = ICmpInst::ICMP_EQ;
6891 return true;
6892
6893trivially_false:
6894 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006895 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006896 Pred = ICmpInst::ICMP_NE;
6897 return true;
6898}
6899
Dan Gohmane65c9172009-07-13 21:35:55 +00006900bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6901 return getSignedRange(S).getSignedMax().isNegative();
6902}
6903
6904bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6905 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6906}
6907
6908bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6909 return !getSignedRange(S).getSignedMin().isNegative();
6910}
6911
6912bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6913 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6914}
6915
6916bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6917 return isKnownNegative(S) || isKnownPositive(S);
6918}
6919
6920bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6921 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006922 // Canonicalize the inputs first.
6923 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6924
Dan Gohman07591692010-04-11 22:16:48 +00006925 // If LHS or RHS is an addrec, check to see if the condition is true in
6926 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006927 // If LHS and RHS are both addrec, both conditions must be true in
6928 // every iteration of the loop.
6929 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6930 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6931 bool LeftGuarded = false;
6932 bool RightGuarded = false;
6933 if (LAR) {
6934 const Loop *L = LAR->getLoop();
6935 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6936 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6937 if (!RAR) return true;
6938 LeftGuarded = true;
6939 }
6940 }
6941 if (RAR) {
6942 const Loop *L = RAR->getLoop();
6943 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6944 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6945 if (!LAR) return true;
6946 RightGuarded = true;
6947 }
6948 }
6949 if (LeftGuarded && RightGuarded)
6950 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006951
Sanjoy Das7d910f22015-10-02 18:50:30 +00006952 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
6953 return true;
6954
Dan Gohman07591692010-04-11 22:16:48 +00006955 // Otherwise see what can be done with known constant ranges.
6956 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6957}
6958
Sanjoy Das5dab2052015-07-27 21:42:49 +00006959bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
6960 ICmpInst::Predicate Pred,
6961 bool &Increasing) {
6962 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
6963
6964#ifndef NDEBUG
6965 // Verify an invariant: inverting the predicate should turn a monotonically
6966 // increasing change to a monotonically decreasing one, and vice versa.
6967 bool IncreasingSwapped;
6968 bool ResultSwapped = isMonotonicPredicateImpl(
6969 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
6970
6971 assert(Result == ResultSwapped && "should be able to analyze both!");
6972 if (ResultSwapped)
6973 assert(Increasing == !IncreasingSwapped &&
6974 "monotonicity should flip as we flip the predicate");
6975#endif
6976
6977 return Result;
6978}
6979
6980bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
6981 ICmpInst::Predicate Pred,
6982 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00006983
6984 // A zero step value for LHS means the induction variable is essentially a
6985 // loop invariant value. We don't really depend on the predicate actually
6986 // flipping from false to true (for increasing predicates, and the other way
6987 // around for decreasing predicates), all we care about is that *if* the
6988 // predicate changes then it only changes from false to true.
6989 //
6990 // A zero step value in itself is not very useful, but there may be places
6991 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
6992 // as general as possible.
6993
Sanjoy Das366acc12015-08-06 20:43:41 +00006994 switch (Pred) {
6995 default:
6996 return false; // Conservative answer
6997
6998 case ICmpInst::ICMP_UGT:
6999 case ICmpInst::ICMP_UGE:
7000 case ICmpInst::ICMP_ULT:
7001 case ICmpInst::ICMP_ULE:
7002 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
7003 return false;
7004
7005 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007006 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007007
7008 case ICmpInst::ICMP_SGT:
7009 case ICmpInst::ICMP_SGE:
7010 case ICmpInst::ICMP_SLT:
7011 case ICmpInst::ICMP_SLE: {
7012 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
7013 return false;
7014
7015 const SCEV *Step = LHS->getStepRecurrence(*this);
7016
7017 if (isKnownNonNegative(Step)) {
7018 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7019 return true;
7020 }
7021
7022 if (isKnownNonPositive(Step)) {
7023 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7024 return true;
7025 }
7026
7027 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007028 }
7029
Sanjoy Das5dab2052015-07-27 21:42:49 +00007030 }
7031
Sanjoy Das366acc12015-08-06 20:43:41 +00007032 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007033}
7034
7035bool ScalarEvolution::isLoopInvariantPredicate(
7036 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7037 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7038 const SCEV *&InvariantRHS) {
7039
7040 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7041 if (!isLoopInvariant(RHS, L)) {
7042 if (!isLoopInvariant(LHS, L))
7043 return false;
7044
7045 std::swap(LHS, RHS);
7046 Pred = ICmpInst::getSwappedPredicate(Pred);
7047 }
7048
7049 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7050 if (!ArLHS || ArLHS->getLoop() != L)
7051 return false;
7052
7053 bool Increasing;
7054 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7055 return false;
7056
7057 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7058 // true as the loop iterates, and the backedge is control dependent on
7059 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7060 //
7061 // * if the predicate was false in the first iteration then the predicate
7062 // is never evaluated again, since the loop exits without taking the
7063 // backedge.
7064 // * if the predicate was true in the first iteration then it will
7065 // continue to be true for all future iterations since it is
7066 // monotonically increasing.
7067 //
7068 // For both the above possibilities, we can replace the loop varying
7069 // predicate with its value on the first iteration of the loop (which is
7070 // loop invariant).
7071 //
7072 // A similar reasoning applies for a monotonically decreasing predicate, by
7073 // replacing true with false and false with true in the above two bullets.
7074
7075 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7076
7077 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7078 return false;
7079
7080 InvariantPred = Pred;
7081 InvariantLHS = ArLHS->getStart();
7082 InvariantRHS = RHS;
7083 return true;
7084}
7085
Dan Gohman07591692010-04-11 22:16:48 +00007086bool
7087ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7088 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007089 if (HasSameValue(LHS, RHS))
7090 return ICmpInst::isTrueWhenEqual(Pred);
7091
Dan Gohman07591692010-04-11 22:16:48 +00007092 // This code is split out from isKnownPredicate because it is called from
7093 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007094 switch (Pred) {
7095 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00007096 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00007097 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007098 std::swap(LHS, RHS);
7099 case ICmpInst::ICMP_SLT: {
7100 ConstantRange LHSRange = getSignedRange(LHS);
7101 ConstantRange RHSRange = getSignedRange(RHS);
7102 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7103 return true;
7104 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7105 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007106 break;
7107 }
7108 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007109 std::swap(LHS, RHS);
7110 case ICmpInst::ICMP_SLE: {
7111 ConstantRange LHSRange = getSignedRange(LHS);
7112 ConstantRange RHSRange = getSignedRange(RHS);
7113 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7114 return true;
7115 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7116 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007117 break;
7118 }
7119 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007120 std::swap(LHS, RHS);
7121 case ICmpInst::ICMP_ULT: {
7122 ConstantRange LHSRange = getUnsignedRange(LHS);
7123 ConstantRange RHSRange = getUnsignedRange(RHS);
7124 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7125 return true;
7126 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7127 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007128 break;
7129 }
7130 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007131 std::swap(LHS, RHS);
7132 case ICmpInst::ICMP_ULE: {
7133 ConstantRange LHSRange = getUnsignedRange(LHS);
7134 ConstantRange RHSRange = getUnsignedRange(RHS);
7135 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7136 return true;
7137 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7138 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007139 break;
7140 }
7141 case ICmpInst::ICMP_NE: {
7142 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7143 return true;
7144 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7145 return true;
7146
7147 const SCEV *Diff = getMinusSCEV(LHS, RHS);
7148 if (isKnownNonZero(Diff))
7149 return true;
7150 break;
7151 }
7152 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00007153 // The check at the top of the function catches the case where
7154 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00007155 break;
7156 }
7157 return false;
7158}
7159
Sanjoy Das11231482015-10-22 19:57:29 +00007160bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7161 const SCEV *LHS,
7162 const SCEV *RHS) {
7163
7164 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7165 // Return Y via OutY.
7166 auto MatchBinaryAddToConst =
7167 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7168 SCEV::NoWrapFlags ExpectedFlags) {
7169 const SCEV *NonConstOp, *ConstOp;
7170 SCEV::NoWrapFlags FlagsPresent;
7171
7172 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7173 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7174 return false;
7175
7176 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue();
Sanjoy Das52f7b082015-10-23 20:09:57 +00007177 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
Sanjoy Das11231482015-10-22 19:57:29 +00007178 };
7179
7180 APInt C;
7181
7182 switch (Pred) {
7183 default:
7184 break;
7185
7186 case ICmpInst::ICMP_SGE:
7187 std::swap(LHS, RHS);
7188 case ICmpInst::ICMP_SLE:
7189 // X s<= (X + C)<nsw> if C >= 0
7190 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7191 return true;
7192
7193 // (X + C)<nsw> s<= X if C <= 0
7194 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7195 !C.isStrictlyPositive())
7196 return true;
7197
7198 case ICmpInst::ICMP_SGT:
7199 std::swap(LHS, RHS);
7200 case ICmpInst::ICMP_SLT:
7201 // X s< (X + C)<nsw> if C > 0
7202 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7203 C.isStrictlyPositive())
7204 return true;
7205
7206 // (X + C)<nsw> s< X if C < 0
7207 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7208 return true;
7209 }
7210
7211 return false;
7212}
7213
Sanjoy Das7d910f22015-10-02 18:50:30 +00007214bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7215 const SCEV *LHS,
7216 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007217 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007218 return false;
7219
7220 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7221 // the stack can result in exponential time complexity.
7222 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7223
7224 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7225 //
7226 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7227 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7228 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7229 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7230 // use isKnownPredicate later if needed.
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007231 if (isKnownNonNegative(RHS) &&
Sanjoy Das7d910f22015-10-02 18:50:30 +00007232 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7233 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS))
7234 return true;
7235
7236 return false;
7237}
7238
Dan Gohmane65c9172009-07-13 21:35:55 +00007239/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7240/// protected by a conditional between LHS and RHS. This is used to
7241/// to eliminate casts.
7242bool
7243ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7244 ICmpInst::Predicate Pred,
7245 const SCEV *LHS, const SCEV *RHS) {
7246 // Interpret a null as meaning no loop, where there is obviously no guard
7247 // (interprocedural conditions notwithstanding).
7248 if (!L) return true;
7249
Sanjoy Das1f05c512014-10-10 21:22:34 +00007250 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7251
Dan Gohmane65c9172009-07-13 21:35:55 +00007252 BasicBlock *Latch = L->getLoopLatch();
7253 if (!Latch)
7254 return false;
7255
7256 BranchInst *LoopContinuePredicate =
7257 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007258 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7259 isImpliedCond(Pred, LHS, RHS,
7260 LoopContinuePredicate->getCondition(),
7261 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7262 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007263
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007264 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007265 // -- that can lead to O(n!) time complexity.
7266 if (WalkingBEDominatingConds)
7267 return false;
7268
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007269 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007270
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007271 // See if we can exploit a trip count to prove the predicate.
7272 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7273 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7274 if (LatchBECount != getCouldNotCompute()) {
7275 // We know that Latch branches back to the loop header exactly
7276 // LatchBECount times. This means the backdege condition at Latch is
7277 // equivalent to "{0,+,1} u< LatchBECount".
7278 Type *Ty = LatchBECount->getType();
7279 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7280 const SCEV *LoopCounter =
7281 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7282 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7283 LatchBECount))
7284 return true;
7285 }
7286
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007287 // Check conditions due to any @llvm.assume intrinsics.
7288 for (auto &AssumeVH : AC.assumptions()) {
7289 if (!AssumeVH)
7290 continue;
7291 auto *CI = cast<CallInst>(AssumeVH);
7292 if (!DT.dominates(CI, Latch->getTerminator()))
7293 continue;
7294
7295 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7296 return true;
7297 }
7298
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007299 // If the loop is not reachable from the entry block, we risk running into an
7300 // infinite loop as we walk up into the dom tree. These loops do not matter
7301 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007302 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007303 return false;
7304
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007305 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7306 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007307
7308 assert(DTN && "should reach the loop header before reaching the root!");
7309
7310 BasicBlock *BB = DTN->getBlock();
7311 BasicBlock *PBB = BB->getSinglePredecessor();
7312 if (!PBB)
7313 continue;
7314
7315 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7316 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7317 continue;
7318
7319 Value *Condition = ContinuePredicate->getCondition();
7320
7321 // If we have an edge `E` within the loop body that dominates the only
7322 // latch, the condition guarding `E` also guards the backedge. This
7323 // reasoning works only for loops with a single latch.
7324
7325 BasicBlockEdge DominatingEdge(PBB, BB);
7326 if (DominatingEdge.isSingleEdge()) {
7327 // We're constructively (and conservatively) enumerating edges within the
7328 // loop body that dominate the latch. The dominator tree better agree
7329 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007330 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007331
7332 if (isImpliedCond(Pred, LHS, RHS, Condition,
7333 BB != ContinuePredicate->getSuccessor(0)))
7334 return true;
7335 }
7336 }
7337
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007338 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007339}
7340
Dan Gohmanb50349a2010-04-11 19:27:13 +00007341/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007342/// by a conditional between LHS and RHS. This is used to help avoid max
7343/// expressions in loop trip counts, and to eliminate casts.
7344bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007345ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7346 ICmpInst::Predicate Pred,
7347 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007348 // Interpret a null as meaning no loop, where there is obviously no guard
7349 // (interprocedural conditions notwithstanding).
7350 if (!L) return false;
7351
Sanjoy Das1f05c512014-10-10 21:22:34 +00007352 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7353
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007354 // Starting at the loop predecessor, climb up the predecessor chain, as long
7355 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007356 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007357 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007358 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007359 Pair.first;
7360 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007361
7362 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007363 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007364 if (!LoopEntryPredicate ||
7365 LoopEntryPredicate->isUnconditional())
7366 continue;
7367
Dan Gohmane18c2d62010-08-10 23:46:30 +00007368 if (isImpliedCond(Pred, LHS, RHS,
7369 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007370 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007371 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007372 }
7373
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007374 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007375 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007376 if (!AssumeVH)
7377 continue;
7378 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007379 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007380 continue;
7381
7382 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7383 return true;
7384 }
7385
Dan Gohman2a62fd92008-08-12 20:17:31 +00007386 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007387}
7388
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007389/// RAII wrapper to prevent recursive application of isImpliedCond.
7390/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7391/// currently evaluating isImpliedCond.
7392struct MarkPendingLoopPredicate {
7393 Value *Cond;
7394 DenseSet<Value*> &LoopPreds;
7395 bool Pending;
7396
7397 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7398 : Cond(C), LoopPreds(LP) {
7399 Pending = !LoopPreds.insert(Cond).second;
7400 }
7401 ~MarkPendingLoopPredicate() {
7402 if (!Pending)
7403 LoopPreds.erase(Cond);
7404 }
7405};
7406
Dan Gohman430f0cc2009-07-21 23:03:19 +00007407/// isImpliedCond - Test whether the condition described by Pred, LHS,
7408/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007409bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007410 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007411 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007412 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007413 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7414 if (Mark.Pending)
7415 return false;
7416
Dan Gohman8b0a4192010-03-01 17:49:51 +00007417 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007418 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007419 if (BO->getOpcode() == Instruction::And) {
7420 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007421 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7422 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007423 } else if (BO->getOpcode() == Instruction::Or) {
7424 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007425 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7426 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007427 }
7428 }
7429
Dan Gohmane18c2d62010-08-10 23:46:30 +00007430 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007431 if (!ICI) return false;
7432
Andrew Trickfa594032012-11-29 18:35:13 +00007433 // Now that we found a conditional branch that dominates the loop or controls
7434 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007435 ICmpInst::Predicate FoundPred;
7436 if (Inverse)
7437 FoundPred = ICI->getInversePredicate();
7438 else
7439 FoundPred = ICI->getPredicate();
7440
7441 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7442 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007443
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007444 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7445}
7446
7447bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7448 const SCEV *RHS,
7449 ICmpInst::Predicate FoundPred,
7450 const SCEV *FoundLHS,
7451 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007452 // Balance the types.
7453 if (getTypeSizeInBits(LHS->getType()) <
7454 getTypeSizeInBits(FoundLHS->getType())) {
7455 if (CmpInst::isSigned(Pred)) {
7456 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7457 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7458 } else {
7459 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7460 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7461 }
7462 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007463 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007464 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007465 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7466 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7467 } else {
7468 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7469 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7470 }
7471 }
7472
Dan Gohman430f0cc2009-07-21 23:03:19 +00007473 // Canonicalize the query to match the way instcombine will have
7474 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007475 if (SimplifyICmpOperands(Pred, LHS, RHS))
7476 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007477 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007478 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7479 if (FoundLHS == FoundRHS)
7480 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007481
7482 // Check to see if we can make the LHS or RHS match.
7483 if (LHS == FoundRHS || RHS == FoundLHS) {
7484 if (isa<SCEVConstant>(RHS)) {
7485 std::swap(FoundLHS, FoundRHS);
7486 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7487 } else {
7488 std::swap(LHS, RHS);
7489 Pred = ICmpInst::getSwappedPredicate(Pred);
7490 }
7491 }
7492
7493 // Check whether the found predicate is the same as the desired predicate.
7494 if (FoundPred == Pred)
7495 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7496
7497 // Check whether swapping the found predicate makes it the same as the
7498 // desired predicate.
7499 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7500 if (isa<SCEVConstant>(RHS))
7501 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7502 else
7503 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7504 RHS, LHS, FoundLHS, FoundRHS);
7505 }
7506
Sanjoy Das6e78b172015-10-22 19:57:34 +00007507 // Unsigned comparison is the same as signed comparison when both the operands
7508 // are non-negative.
7509 if (CmpInst::isUnsigned(FoundPred) &&
7510 CmpInst::getSignedPredicate(FoundPred) == Pred &&
7511 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7512 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7513
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007514 // Check if we can make progress by sharpening ranges.
7515 if (FoundPred == ICmpInst::ICMP_NE &&
7516 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7517
7518 const SCEVConstant *C = nullptr;
7519 const SCEV *V = nullptr;
7520
7521 if (isa<SCEVConstant>(FoundLHS)) {
7522 C = cast<SCEVConstant>(FoundLHS);
7523 V = FoundRHS;
7524 } else {
7525 C = cast<SCEVConstant>(FoundRHS);
7526 V = FoundLHS;
7527 }
7528
7529 // The guarding predicate tells us that C != V. If the known range
7530 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7531 // range we consider has to correspond to same signedness as the
7532 // predicate we're interested in folding.
7533
7534 APInt Min = ICmpInst::isSigned(Pred) ?
7535 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7536
7537 if (Min == C->getValue()->getValue()) {
7538 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7539 // This is true even if (Min + 1) wraps around -- in case of
7540 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7541
7542 APInt SharperMin = Min + 1;
7543
7544 switch (Pred) {
7545 case ICmpInst::ICMP_SGE:
7546 case ICmpInst::ICMP_UGE:
7547 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7548 // RHS, we're done.
7549 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7550 getConstant(SharperMin)))
7551 return true;
7552
7553 case ICmpInst::ICMP_SGT:
7554 case ICmpInst::ICMP_UGT:
7555 // We know from the range information that (V `Pred` Min ||
7556 // V == Min). We know from the guarding condition that !(V
7557 // == Min). This gives us
7558 //
7559 // V `Pred` Min || V == Min && !(V == Min)
7560 // => V `Pred` Min
7561 //
7562 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7563
7564 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7565 return true;
7566
7567 default:
7568 // No change
7569 break;
7570 }
7571 }
7572 }
7573
Dan Gohman430f0cc2009-07-21 23:03:19 +00007574 // Check whether the actual condition is beyond sufficient.
7575 if (FoundPred == ICmpInst::ICMP_EQ)
7576 if (ICmpInst::isTrueWhenEqual(Pred))
7577 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7578 return true;
7579 if (Pred == ICmpInst::ICMP_NE)
7580 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7581 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7582 return true;
7583
7584 // Otherwise assume the worst.
7585 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007586}
7587
Sanjoy Das1ed69102015-10-13 02:53:27 +00007588bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7589 const SCEV *&L, const SCEV *&R,
7590 SCEV::NoWrapFlags &Flags) {
7591 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7592 if (!AE || AE->getNumOperands() != 2)
7593 return false;
7594
7595 L = AE->getOperand(0);
7596 R = AE->getOperand(1);
7597 Flags = AE->getNoWrapFlags();
7598 return true;
7599}
7600
7601bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7602 const SCEV *More,
7603 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00007604 // We avoid subtracting expressions here because this function is usually
7605 // fairly deep in the call stack (i.e. is called many times).
7606
Sanjoy Das96709c42015-09-25 23:53:45 +00007607 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7608 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7609 const auto *MAR = cast<SCEVAddRecExpr>(More);
7610
7611 if (LAR->getLoop() != MAR->getLoop())
7612 return false;
7613
7614 // We look at affine expressions only; not for correctness but to keep
7615 // getStepRecurrence cheap.
7616 if (!LAR->isAffine() || !MAR->isAffine())
7617 return false;
7618
Sanjoy Das1ed69102015-10-13 02:53:27 +00007619 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00007620 return false;
7621
7622 Less = LAR->getStart();
7623 More = MAR->getStart();
7624
7625 // fall through
7626 }
7627
7628 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7629 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue();
7630 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue();
7631 C = M - L;
7632 return true;
7633 }
7634
7635 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007636 SCEV::NoWrapFlags Flags;
7637 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007638 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7639 if (R == More) {
7640 C = -(LC->getValue()->getValue());
7641 return true;
7642 }
7643
Sanjoy Das1ed69102015-10-13 02:53:27 +00007644 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007645 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7646 if (R == Less) {
7647 C = LC->getValue()->getValue();
7648 return true;
7649 }
7650
7651 return false;
7652}
7653
7654bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7655 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7656 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7657 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7658 return false;
7659
7660 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7661 if (!AddRecLHS)
7662 return false;
7663
7664 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7665 if (!AddRecFoundLHS)
7666 return false;
7667
7668 // We'd like to let SCEV reason about control dependencies, so we constrain
7669 // both the inequalities to be about add recurrences on the same loop. This
7670 // way we can use isLoopEntryGuardedByCond later.
7671
7672 const Loop *L = AddRecFoundLHS->getLoop();
7673 if (L != AddRecLHS->getLoop())
7674 return false;
7675
7676 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7677 //
7678 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7679 // ... (2)
7680 //
7681 // Informal proof for (2), assuming (1) [*]:
7682 //
7683 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7684 //
7685 // Then
7686 //
7687 // FoundLHS s< FoundRHS s< INT_MIN - C
7688 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7689 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7690 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7691 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7692 // <=> FoundLHS + C s< FoundRHS + C
7693 //
7694 // [*]: (1) can be proved by ruling out overflow.
7695 //
7696 // [**]: This can be proved by analyzing all the four possibilities:
7697 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7698 // (A s>= 0, B s>= 0).
7699 //
7700 // Note:
7701 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7702 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7703 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7704 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7705 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7706 // C)".
7707
7708 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007709 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7710 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00007711 LDiff != RDiff)
7712 return false;
7713
7714 if (LDiff == 0)
7715 return true;
7716
Sanjoy Das96709c42015-09-25 23:53:45 +00007717 APInt FoundRHSLimit;
7718
7719 if (Pred == CmpInst::ICMP_ULT) {
7720 FoundRHSLimit = -RDiff;
7721 } else {
7722 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00007723 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00007724 }
7725
7726 // Try to prove (1) or (2), as needed.
7727 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7728 getConstant(FoundRHSLimit));
7729}
7730
Dan Gohman430f0cc2009-07-21 23:03:19 +00007731/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007732/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007733/// and FoundRHS is true.
7734bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7735 const SCEV *LHS, const SCEV *RHS,
7736 const SCEV *FoundLHS,
7737 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007738 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7739 return true;
7740
Sanjoy Das96709c42015-09-25 23:53:45 +00007741 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7742 return true;
7743
Dan Gohman430f0cc2009-07-21 23:03:19 +00007744 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7745 FoundLHS, FoundRHS) ||
7746 // ~x < ~y --> x > y
7747 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7748 getNotSCEV(FoundRHS),
7749 getNotSCEV(FoundLHS));
7750}
7751
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007752
7753/// If Expr computes ~A, return A else return nullptr
7754static const SCEV *MatchNotExpr(const SCEV *Expr) {
7755 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007756 if (!Add || Add->getNumOperands() != 2 ||
7757 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007758 return nullptr;
7759
7760 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007761 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7762 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007763 return nullptr;
7764
7765 return AddRHS->getOperand(1);
7766}
7767
7768
7769/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7770template<typename MaxExprType>
7771static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7772 const SCEV *Candidate) {
7773 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7774 if (!MaxExpr) return false;
7775
7776 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7777 return It != MaxExpr->op_end();
7778}
7779
7780
7781/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7782template<typename MaxExprType>
7783static bool IsMinConsistingOf(ScalarEvolution &SE,
7784 const SCEV *MaybeMinExpr,
7785 const SCEV *Candidate) {
7786 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7787 if (!MaybeMaxExpr)
7788 return false;
7789
7790 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7791}
7792
Hal Finkela8d205f2015-08-19 01:51:51 +00007793static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7794 ICmpInst::Predicate Pred,
7795 const SCEV *LHS, const SCEV *RHS) {
7796
7797 // If both sides are affine addrecs for the same loop, with equal
7798 // steps, and we know the recurrences don't wrap, then we only
7799 // need to check the predicate on the starting values.
7800
7801 if (!ICmpInst::isRelational(Pred))
7802 return false;
7803
7804 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7805 if (!LAR)
7806 return false;
7807 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7808 if (!RAR)
7809 return false;
7810 if (LAR->getLoop() != RAR->getLoop())
7811 return false;
7812 if (!LAR->isAffine() || !RAR->isAffine())
7813 return false;
7814
7815 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
7816 return false;
7817
Hal Finkelff08a2e2015-08-19 17:26:07 +00007818 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
7819 SCEV::FlagNSW : SCEV::FlagNUW;
7820 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00007821 return false;
7822
7823 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
7824}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007825
7826/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7827/// expression?
7828static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7829 ICmpInst::Predicate Pred,
7830 const SCEV *LHS, const SCEV *RHS) {
7831 switch (Pred) {
7832 default:
7833 return false;
7834
7835 case ICmpInst::ICMP_SGE:
7836 std::swap(LHS, RHS);
7837 // fall through
7838 case ICmpInst::ICMP_SLE:
7839 return
7840 // min(A, ...) <= A
7841 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7842 // A <= max(A, ...)
7843 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7844
7845 case ICmpInst::ICMP_UGE:
7846 std::swap(LHS, RHS);
7847 // fall through
7848 case ICmpInst::ICMP_ULE:
7849 return
7850 // min(A, ...) <= A
7851 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7852 // A <= max(A, ...)
7853 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7854 }
7855
7856 llvm_unreachable("covered switch fell through?!");
7857}
7858
Dan Gohman430f0cc2009-07-21 23:03:19 +00007859/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007860/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007861/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007862bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007863ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7864 const SCEV *LHS, const SCEV *RHS,
7865 const SCEV *FoundLHS,
7866 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007867 auto IsKnownPredicateFull =
7868 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7869 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00007870 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
7871 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
7872 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007873 };
7874
Dan Gohmane65c9172009-07-13 21:35:55 +00007875 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007876 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7877 case ICmpInst::ICMP_EQ:
7878 case ICmpInst::ICMP_NE:
7879 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7880 return true;
7881 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007882 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007883 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007884 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7885 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007886 return true;
7887 break;
7888 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007889 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007890 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7891 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007892 return true;
7893 break;
7894 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007895 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007896 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7897 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007898 return true;
7899 break;
7900 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007901 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007902 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7903 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007904 return true;
7905 break;
7906 }
7907
7908 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007909}
7910
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007911/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7912/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7913bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7914 const SCEV *LHS,
7915 const SCEV *RHS,
7916 const SCEV *FoundLHS,
7917 const SCEV *FoundRHS) {
7918 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7919 // The restriction on `FoundRHS` be lifted easily -- it exists only to
7920 // reduce the compile time impact of this optimization.
7921 return false;
7922
7923 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7924 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7925 !isa<SCEVConstant>(AddLHS->getOperand(0)))
7926 return false;
7927
7928 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7929
7930 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7931 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7932 ConstantRange FoundLHSRange =
7933 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7934
7935 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7936 // for `LHS`:
7937 APInt Addend =
7938 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7939 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7940
7941 // We can also compute the range of values for `LHS` that satisfy the
7942 // consequent, "`LHS` `Pred` `RHS`":
7943 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7944 ConstantRange SatisfyingLHSRange =
7945 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7946
7947 // The antecedent implies the consequent if every value of `LHS` that
7948 // satisfies the antecedent also satisfies the consequent.
7949 return SatisfyingLHSRange.contains(LHSRange);
7950}
7951
Johannes Doerfert2683e562015-02-09 12:34:23 +00007952// Verify if an linear IV with positive stride can overflow when in a
7953// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007954// stride and the knowledge of NSW/NUW flags on the recurrence.
7955bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7956 bool IsSigned, bool NoWrap) {
7957 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007958
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007959 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007960 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00007961
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007962 if (IsSigned) {
7963 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7964 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7965 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7966 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007967
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007968 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7969 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007970 }
Dan Gohman01048422009-06-21 23:46:38 +00007971
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007972 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7973 APInt MaxValue = APInt::getMaxValue(BitWidth);
7974 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7975 .getUnsignedMax();
7976
7977 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7978 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7979}
7980
Johannes Doerfert2683e562015-02-09 12:34:23 +00007981// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007982// greater-than comparison, knowing the invariant term of the comparison,
7983// the stride and the knowledge of NSW/NUW flags on the recurrence.
7984bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7985 bool IsSigned, bool NoWrap) {
7986 if (NoWrap) return false;
7987
7988 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007989 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007990
7991 if (IsSigned) {
7992 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7993 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7994 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7995 .getSignedMax();
7996
7997 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7998 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7999 }
8000
8001 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8002 APInt MinValue = APInt::getMinValue(BitWidth);
8003 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8004 .getUnsignedMax();
8005
8006 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8007 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8008}
8009
8010// Compute the backedge taken count knowing the interval difference, the
8011// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008012const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008013 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008014 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008015 Delta = Equality ? getAddExpr(Delta, Step)
8016 : getAddExpr(Delta, getMinusSCEV(Step, One));
8017 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008018}
8019
Chris Lattner587a75b2005-08-15 23:33:51 +00008020/// HowManyLessThans - Return the number of times a backedge containing the
8021/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008022/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008023///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008024/// @param ControlsExit is true when the LHS < RHS condition directly controls
8025/// the branch (loops exits only if condition is true). In this case, we can use
8026/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008027ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008028ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008029 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008030 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008031 // We handle only IV < Invariant
8032 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008033 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008034
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008035 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00008036
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008037 // Avoid weird loops
8038 if (!IV || IV->getLoop() != L || !IV->isAffine())
8039 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008040
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008041 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008042 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008043
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008044 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008045
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008046 // Avoid negative or zero stride values
8047 if (!isKnownPositive(Stride))
8048 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008049
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008050 // Avoid proven overflow cases: this will ensure that the backedge taken count
8051 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008052 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008053 // behaviors like the case of C language.
8054 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8055 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008056
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008057 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8058 : ICmpInst::ICMP_ULT;
8059 const SCEV *Start = IV->getStart();
8060 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008061 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8062 const SCEV *Diff = getMinusSCEV(RHS, Start);
8063 // If we have NoWrap set, then we can assume that the increment won't
8064 // overflow, in which case if RHS - Start is a constant, we don't need to
8065 // do a max operation since we can just figure it out statically
8066 if (NoWrap && isa<SCEVConstant>(Diff)) {
8067 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8068 if (D.isNegative())
8069 End = Start;
8070 } else
8071 End = IsSigned ? getSMaxExpr(RHS, Start)
8072 : getUMaxExpr(RHS, Start);
8073 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008074
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008075 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008076
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008077 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8078 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008079
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008080 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8081 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008082
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008083 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8084 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8085 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008086
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008087 // Although End can be a MAX expression we estimate MaxEnd considering only
8088 // the case End = RHS. This is safe because in the other case (End - Start)
8089 // is zero, leading to a zero maximum backedge taken count.
8090 APInt MaxEnd =
8091 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8092 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8093
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008094 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008095 if (isa<SCEVConstant>(BECount))
8096 MaxBECount = BECount;
8097 else
8098 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8099 getConstant(MinStride), false);
8100
8101 if (isa<SCEVCouldNotCompute>(MaxBECount))
8102 MaxBECount = BECount;
8103
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008104 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008105}
8106
8107ScalarEvolution::ExitLimit
8108ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8109 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008110 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008111 // We handle only IV > Invariant
8112 if (!isLoopInvariant(RHS, L))
8113 return getCouldNotCompute();
8114
8115 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8116
8117 // Avoid weird loops
8118 if (!IV || IV->getLoop() != L || !IV->isAffine())
8119 return getCouldNotCompute();
8120
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008121 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008122 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8123
8124 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8125
8126 // Avoid negative or zero stride values
8127 if (!isKnownPositive(Stride))
8128 return getCouldNotCompute();
8129
8130 // Avoid proven overflow cases: this will ensure that the backedge taken count
8131 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008132 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008133 // behaviors like the case of C language.
8134 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8135 return getCouldNotCompute();
8136
8137 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8138 : ICmpInst::ICMP_UGT;
8139
8140 const SCEV *Start = IV->getStart();
8141 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008142 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8143 const SCEV *Diff = getMinusSCEV(RHS, Start);
8144 // If we have NoWrap set, then we can assume that the increment won't
8145 // overflow, in which case if RHS - Start is a constant, we don't need to
8146 // do a max operation since we can just figure it out statically
8147 if (NoWrap && isa<SCEVConstant>(Diff)) {
8148 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8149 if (!D.isNegative())
8150 End = Start;
8151 } else
8152 End = IsSigned ? getSMinExpr(RHS, Start)
8153 : getUMinExpr(RHS, Start);
8154 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008155
8156 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8157
8158 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8159 : getUnsignedRange(Start).getUnsignedMax();
8160
8161 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8162 : getUnsignedRange(Stride).getUnsignedMin();
8163
8164 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8165 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8166 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8167
8168 // Although End can be a MIN expression we estimate MinEnd considering only
8169 // the case End = RHS. This is safe because in the other case (Start - End)
8170 // is zero, leading to a zero maximum backedge taken count.
8171 APInt MinEnd =
8172 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8173 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8174
8175
8176 const SCEV *MaxBECount = getCouldNotCompute();
8177 if (isa<SCEVConstant>(BECount))
8178 MaxBECount = BECount;
8179 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008180 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008181 getConstant(MinStride), false);
8182
8183 if (isa<SCEVCouldNotCompute>(MaxBECount))
8184 MaxBECount = BECount;
8185
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008186 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00008187}
8188
Chris Lattnerd934c702004-04-02 20:23:17 +00008189/// getNumIterationsInRange - Return the number of iterations of this loop that
8190/// produce values in the specified constant range. Another way of looking at
8191/// this is that it returns the first iteration number where the value is not in
8192/// the condition, thus computing the exit count. If the iteration count can't
8193/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008194const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008195 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008196 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008197 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008198
8199 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008200 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008201 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008202 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008203 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008204 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008205 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008206 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008207 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00008208 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008209 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008210 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008211 }
8212
8213 // The only time we can solve this is when we have all constant indices.
8214 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008215 if (std::any_of(op_begin(), op_end(),
8216 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);}))
8217 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008218
8219 // Okay at this point we know that all elements of the chrec are constants and
8220 // that the start element is zero.
8221
8222 // First check to see if the range contains zero. If not, the first
8223 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008224 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008225 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008226 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008227
Chris Lattnerd934c702004-04-02 20:23:17 +00008228 if (isAffine()) {
8229 // If this is an affine expression then we have this situation:
8230 // Solve {0,+,A} in Range === Ax in Range
8231
Nick Lewycky52460262007-07-16 02:08:00 +00008232 // We know that zero is in the range. If A is positive then we know that
8233 // the upper value of the range must be the first possible exit value.
8234 // If A is negative then the lower of the range is the last possible loop
8235 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008236 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00008237 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
8238 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008239
Nick Lewycky52460262007-07-16 02:08:00 +00008240 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008241 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008242 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008243
8244 // Evaluate at the exit value. If we really did fall out of the valid
8245 // range, then we computed our trip count, otherwise wrap around or other
8246 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008247 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008248 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008249 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008250
8251 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008252 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008253 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008254 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008255 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008256 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008257 } else if (isQuadratic()) {
8258 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8259 // quadratic equation to solve it. To do this, we must frame our problem in
8260 // terms of figuring out when zero is crossed, instead of when
8261 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008262 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008263 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008264 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8265 // getNoWrapFlags(FlagNW)
8266 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008267
8268 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00008269 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00008270 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008271 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8272 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008273 if (R1) {
8274 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008275 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00008276 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00008277 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008278 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008279 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008280
Chris Lattnerd934c702004-04-02 20:23:17 +00008281 // Make sure the root is not off by one. The returned iteration should
8282 // not be in the range, but the previous one should be. When solving
8283 // for "X*X < 5", for example, we should not return a root of 2.
8284 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008285 R1->getValue(),
8286 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008287 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008288 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008289 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008290 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008291
Dan Gohmana37eaf22007-10-22 18:31:58 +00008292 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008293 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008294 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008295 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008296 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008297
Chris Lattnerd934c702004-04-02 20:23:17 +00008298 // If R1 was not in the range, then it is a good return value. Make
8299 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008300 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008301 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008302 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008303 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008304 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008305 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008306 }
8307 }
8308 }
8309
Dan Gohman31efa302009-04-18 17:58:19 +00008310 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008311}
8312
Sebastian Pop448712b2014-05-07 18:01:20 +00008313namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008314struct FindUndefs {
8315 bool Found;
8316 FindUndefs() : Found(false) {}
8317
8318 bool follow(const SCEV *S) {
8319 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8320 if (isa<UndefValue>(C->getValue()))
8321 Found = true;
8322 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8323 if (isa<UndefValue>(C->getValue()))
8324 Found = true;
8325 }
8326
8327 // Keep looking if we haven't found it yet.
8328 return !Found;
8329 }
8330 bool isDone() const {
8331 // Stop recursion if we have found an undef.
8332 return Found;
8333 }
8334};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008335}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008336
8337// Return true when S contains at least an undef value.
8338static inline bool
8339containsUndefs(const SCEV *S) {
8340 FindUndefs F;
8341 SCEVTraversal<FindUndefs> ST(F);
8342 ST.visitAll(S);
8343
8344 return F.Found;
8345}
8346
8347namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008348// Collect all steps of SCEV expressions.
8349struct SCEVCollectStrides {
8350 ScalarEvolution &SE;
8351 SmallVectorImpl<const SCEV *> &Strides;
8352
8353 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8354 : SE(SE), Strides(S) {}
8355
8356 bool follow(const SCEV *S) {
8357 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8358 Strides.push_back(AR->getStepRecurrence(SE));
8359 return true;
8360 }
8361 bool isDone() const { return false; }
8362};
8363
8364// Collect all SCEVUnknown and SCEVMulExpr expressions.
8365struct SCEVCollectTerms {
8366 SmallVectorImpl<const SCEV *> &Terms;
8367
8368 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8369 : Terms(T) {}
8370
8371 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008372 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008373 if (!containsUndefs(S))
8374 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008375
8376 // Stop recursion: once we collected a term, do not walk its operands.
8377 return false;
8378 }
8379
8380 // Keep looking.
8381 return true;
8382 }
8383 bool isDone() const { return false; }
8384};
Tobias Grosser374bce02015-10-12 08:02:00 +00008385
8386// Check if a SCEV contains an AddRecExpr.
8387struct SCEVHasAddRec {
8388 bool &ContainsAddRec;
8389
8390 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8391 ContainsAddRec = false;
8392 }
8393
8394 bool follow(const SCEV *S) {
8395 if (isa<SCEVAddRecExpr>(S)) {
8396 ContainsAddRec = true;
8397
8398 // Stop recursion: once we collected a term, do not walk its operands.
8399 return false;
8400 }
8401
8402 // Keep looking.
8403 return true;
8404 }
8405 bool isDone() const { return false; }
8406};
8407
8408// Find factors that are multiplied with an expression that (possibly as a
8409// subexpression) contains an AddRecExpr. In the expression:
8410//
8411// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8412//
8413// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8414// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8415// parameters as they form a product with an induction variable.
8416//
8417// This collector expects all array size parameters to be in the same MulExpr.
8418// It might be necessary to later add support for collecting parameters that are
8419// spread over different nested MulExpr.
8420struct SCEVCollectAddRecMultiplies {
8421 SmallVectorImpl<const SCEV *> &Terms;
8422 ScalarEvolution &SE;
8423
8424 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8425 : Terms(T), SE(SE) {}
8426
8427 bool follow(const SCEV *S) {
8428 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8429 bool HasAddRec = false;
8430 SmallVector<const SCEV *, 0> Operands;
8431 for (auto Op : Mul->operands()) {
8432 if (isa<SCEVUnknown>(Op)) {
8433 Operands.push_back(Op);
8434 } else {
8435 bool ContainsAddRec;
8436 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8437 visitAll(Op, ContiansAddRec);
8438 HasAddRec |= ContainsAddRec;
8439 }
8440 }
8441 if (Operands.size() == 0)
8442 return true;
8443
8444 if (!HasAddRec)
8445 return false;
8446
8447 Terms.push_back(SE.getMulExpr(Operands));
8448 // Stop recursion: once we collected a term, do not walk its operands.
8449 return false;
8450 }
8451
8452 // Keep looking.
8453 return true;
8454 }
8455 bool isDone() const { return false; }
8456};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008457}
Sebastian Pop448712b2014-05-07 18:01:20 +00008458
Tobias Grosser374bce02015-10-12 08:02:00 +00008459/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8460/// two places:
8461/// 1) The strides of AddRec expressions.
8462/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008463void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8464 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008465 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008466 SCEVCollectStrides StrideCollector(*this, Strides);
8467 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008468
8469 DEBUG({
8470 dbgs() << "Strides:\n";
8471 for (const SCEV *S : Strides)
8472 dbgs() << *S << "\n";
8473 });
8474
8475 for (const SCEV *S : Strides) {
8476 SCEVCollectTerms TermCollector(Terms);
8477 visitAll(S, TermCollector);
8478 }
8479
8480 DEBUG({
8481 dbgs() << "Terms:\n";
8482 for (const SCEV *T : Terms)
8483 dbgs() << *T << "\n";
8484 });
Tobias Grosser374bce02015-10-12 08:02:00 +00008485
8486 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8487 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008488}
8489
Sebastian Popb1a548f2014-05-12 19:01:53 +00008490static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008491 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008492 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008493 int Last = Terms.size() - 1;
8494 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008495
Sebastian Pop448712b2014-05-07 18:01:20 +00008496 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008497 if (Last == 0) {
8498 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008499 SmallVector<const SCEV *, 2> Qs;
8500 for (const SCEV *Op : M->operands())
8501 if (!isa<SCEVConstant>(Op))
8502 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008503
Sebastian Pope30bd352014-05-27 22:41:56 +00008504 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008505 }
8506
Sebastian Pope30bd352014-05-27 22:41:56 +00008507 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008508 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008509 }
8510
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008511 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008512 // Normalize the terms before the next call to findArrayDimensionsRec.
8513 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008514 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008515
8516 // Bail out when GCD does not evenly divide one of the terms.
8517 if (!R->isZero())
8518 return false;
8519
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008520 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008521 }
8522
Tobias Grosser3080cf12014-05-08 07:55:34 +00008523 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008524 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8525 return isa<SCEVConstant>(E);
8526 }),
8527 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008528
Sebastian Pop448712b2014-05-07 18:01:20 +00008529 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008530 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8531 return false;
8532
Sebastian Pope30bd352014-05-27 22:41:56 +00008533 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008534 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008535}
Sebastian Popc62c6792013-11-12 22:47:20 +00008536
Sebastian Pop448712b2014-05-07 18:01:20 +00008537namespace {
8538struct FindParameter {
8539 bool FoundParameter;
8540 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00008541
Sebastian Pop448712b2014-05-07 18:01:20 +00008542 bool follow(const SCEV *S) {
8543 if (isa<SCEVUnknown>(S)) {
8544 FoundParameter = true;
8545 // Stop recursion: we found a parameter.
8546 return false;
8547 }
8548 // Keep looking.
8549 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008550 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008551 bool isDone() const {
8552 // Stop recursion if we have found a parameter.
8553 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00008554 }
Sebastian Popc62c6792013-11-12 22:47:20 +00008555};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008556}
Sebastian Popc62c6792013-11-12 22:47:20 +00008557
Sebastian Pop448712b2014-05-07 18:01:20 +00008558// Returns true when S contains at least a SCEVUnknown parameter.
8559static inline bool
8560containsParameters(const SCEV *S) {
8561 FindParameter F;
8562 SCEVTraversal<FindParameter> ST(F);
8563 ST.visitAll(S);
8564
8565 return F.FoundParameter;
8566}
8567
8568// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8569static inline bool
8570containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8571 for (const SCEV *T : Terms)
8572 if (containsParameters(T))
8573 return true;
8574 return false;
8575}
8576
8577// Return the number of product terms in S.
8578static inline int numberOfTerms(const SCEV *S) {
8579 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8580 return Expr->getNumOperands();
8581 return 1;
8582}
8583
Sebastian Popa6e58602014-05-27 22:41:45 +00008584static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8585 if (isa<SCEVConstant>(T))
8586 return nullptr;
8587
8588 if (isa<SCEVUnknown>(T))
8589 return T;
8590
8591 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8592 SmallVector<const SCEV *, 2> Factors;
8593 for (const SCEV *Op : M->operands())
8594 if (!isa<SCEVConstant>(Op))
8595 Factors.push_back(Op);
8596
8597 return SE.getMulExpr(Factors);
8598 }
8599
8600 return T;
8601}
8602
8603/// Return the size of an element read or written by Inst.
8604const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8605 Type *Ty;
8606 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8607 Ty = Store->getValueOperand()->getType();
8608 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008609 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008610 else
8611 return nullptr;
8612
8613 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8614 return getSizeOfExpr(ETy, Ty);
8615}
8616
Sebastian Pop448712b2014-05-07 18:01:20 +00008617/// Second step of delinearization: compute the array dimensions Sizes from the
8618/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008619void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8620 SmallVectorImpl<const SCEV *> &Sizes,
8621 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008622
Sebastian Pop53524082014-05-29 19:44:05 +00008623 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008624 return;
8625
8626 // Early return when Terms do not contain parameters: we do not delinearize
8627 // non parametric SCEVs.
8628 if (!containsParameters(Terms))
8629 return;
8630
8631 DEBUG({
8632 dbgs() << "Terms:\n";
8633 for (const SCEV *T : Terms)
8634 dbgs() << *T << "\n";
8635 });
8636
8637 // Remove duplicates.
8638 std::sort(Terms.begin(), Terms.end());
8639 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8640
8641 // Put larger terms first.
8642 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8643 return numberOfTerms(LHS) > numberOfTerms(RHS);
8644 });
8645
Sebastian Popa6e58602014-05-27 22:41:45 +00008646 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8647
Tobias Grosser374bce02015-10-12 08:02:00 +00008648 // Try to divide all terms by the element size. If term is not divisible by
8649 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00008650 for (const SCEV *&Term : Terms) {
8651 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008652 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00008653 if (!Q->isZero())
8654 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00008655 }
8656
8657 SmallVector<const SCEV *, 4> NewTerms;
8658
8659 // Remove constant factors.
8660 for (const SCEV *T : Terms)
8661 if (const SCEV *NewT = removeConstantFactors(SE, T))
8662 NewTerms.push_back(NewT);
8663
Sebastian Pop448712b2014-05-07 18:01:20 +00008664 DEBUG({
8665 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008666 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008667 dbgs() << *T << "\n";
8668 });
8669
Sebastian Popa6e58602014-05-27 22:41:45 +00008670 if (NewTerms.empty() ||
8671 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008672 Sizes.clear();
8673 return;
8674 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008675
Sebastian Popa6e58602014-05-27 22:41:45 +00008676 // The last element to be pushed into Sizes is the size of an element.
8677 Sizes.push_back(ElementSize);
8678
Sebastian Pop448712b2014-05-07 18:01:20 +00008679 DEBUG({
8680 dbgs() << "Sizes:\n";
8681 for (const SCEV *S : Sizes)
8682 dbgs() << *S << "\n";
8683 });
8684}
8685
8686/// Third step of delinearization: compute the access functions for the
8687/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008688void ScalarEvolution::computeAccessFunctions(
8689 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8690 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008691
Sebastian Popb1a548f2014-05-12 19:01:53 +00008692 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008693 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008694 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008695
Sanjoy Das1195dbe2015-10-08 03:45:58 +00008696 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008697 if (!AR->isAffine())
8698 return;
8699
8700 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008701 int Last = Sizes.size() - 1;
8702 for (int i = Last; i >= 0; i--) {
8703 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008704 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008705
8706 DEBUG({
8707 dbgs() << "Res: " << *Res << "\n";
8708 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8709 dbgs() << "Res divided by Sizes[i]:\n";
8710 dbgs() << "Quotient: " << *Q << "\n";
8711 dbgs() << "Remainder: " << *R << "\n";
8712 });
8713
8714 Res = Q;
8715
Sebastian Popa6e58602014-05-27 22:41:45 +00008716 // Do not record the last subscript corresponding to the size of elements in
8717 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008718 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008719
8720 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008721 if (isa<SCEVAddRecExpr>(R)) {
8722 Subscripts.clear();
8723 Sizes.clear();
8724 return;
8725 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008726
Sebastian Pop448712b2014-05-07 18:01:20 +00008727 continue;
8728 }
8729
8730 // Record the access function for the current subscript.
8731 Subscripts.push_back(R);
8732 }
8733
8734 // Also push in last position the remainder of the last division: it will be
8735 // the access function of the innermost dimension.
8736 Subscripts.push_back(Res);
8737
8738 std::reverse(Subscripts.begin(), Subscripts.end());
8739
8740 DEBUG({
8741 dbgs() << "Subscripts:\n";
8742 for (const SCEV *S : Subscripts)
8743 dbgs() << *S << "\n";
8744 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008745}
8746
Sebastian Popc62c6792013-11-12 22:47:20 +00008747/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8748/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008749/// is the offset start of the array. The SCEV->delinearize algorithm computes
8750/// the multiples of SCEV coefficients: that is a pattern matching of sub
8751/// expressions in the stride and base of a SCEV corresponding to the
8752/// computation of a GCD (greatest common divisor) of base and stride. When
8753/// SCEV->delinearize fails, it returns the SCEV unchanged.
8754///
8755/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8756///
8757/// void foo(long n, long m, long o, double A[n][m][o]) {
8758///
8759/// for (long i = 0; i < n; i++)
8760/// for (long j = 0; j < m; j++)
8761/// for (long k = 0; k < o; k++)
8762/// A[i][j][k] = 1.0;
8763/// }
8764///
8765/// the delinearization input is the following AddRec SCEV:
8766///
8767/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8768///
8769/// From this SCEV, we are able to say that the base offset of the access is %A
8770/// because it appears as an offset that does not divide any of the strides in
8771/// the loops:
8772///
8773/// CHECK: Base offset: %A
8774///
8775/// and then SCEV->delinearize determines the size of some of the dimensions of
8776/// the array as these are the multiples by which the strides are happening:
8777///
8778/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8779///
8780/// Note that the outermost dimension remains of UnknownSize because there are
8781/// no strides that would help identifying the size of the last dimension: when
8782/// the array has been statically allocated, one could compute the size of that
8783/// dimension by dividing the overall size of the array by the size of the known
8784/// dimensions: %m * %o * 8.
8785///
8786/// Finally delinearize provides the access functions for the array reference
8787/// that does correspond to A[i][j][k] of the above C testcase:
8788///
8789/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8790///
8791/// The testcases are checking the output of a function pass:
8792/// DelinearizationPass that walks through all loads and stores of a function
8793/// asking for the SCEV of the memory access with respect to all enclosing
8794/// loops, calling SCEV->delinearize on that and printing the results.
8795
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008796void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008797 SmallVectorImpl<const SCEV *> &Subscripts,
8798 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008799 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008800 // First step: collect parametric terms.
8801 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008802 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008803
Sebastian Popb1a548f2014-05-12 19:01:53 +00008804 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008805 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008806
Sebastian Pop448712b2014-05-07 18:01:20 +00008807 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008808 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008809
Sebastian Popb1a548f2014-05-12 19:01:53 +00008810 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008811 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008812
Sebastian Pop448712b2014-05-07 18:01:20 +00008813 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008814 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00008815
Sebastian Pop28e6b972014-05-27 22:41:51 +00008816 if (Subscripts.empty())
8817 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008818
Sebastian Pop448712b2014-05-07 18:01:20 +00008819 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008820 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00008821 dbgs() << "ArrayDecl[UnknownSize]";
8822 for (const SCEV *S : Sizes)
8823 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00008824
Sebastian Pop444621a2014-05-09 22:45:02 +00008825 dbgs() << "\nArrayRef";
8826 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00008827 dbgs() << "[" << *S << "]";
8828 dbgs() << "\n";
8829 });
Sebastian Popc62c6792013-11-12 22:47:20 +00008830}
Chris Lattnerd934c702004-04-02 20:23:17 +00008831
8832//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00008833// SCEVCallbackVH Class Implementation
8834//===----------------------------------------------------------------------===//
8835
Dan Gohmand33a0902009-05-19 19:22:47 +00008836void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00008837 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00008838 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
8839 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008840 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00008841 // this now dangles!
8842}
8843
Dan Gohman7a066722010-07-28 01:09:07 +00008844void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00008845 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00008846
Dan Gohman48f82222009-05-04 22:30:44 +00008847 // Forget all the expressions associated with users of the old value,
8848 // so that future queries will recompute the expressions using the new
8849 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00008850 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00008851 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00008852 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00008853 while (!Worklist.empty()) {
8854 User *U = Worklist.pop_back_val();
8855 // Deleting the Old value will cause this to dangle. Postpone
8856 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008857 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00008858 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00008859 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00008860 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00008861 if (PHINode *PN = dyn_cast<PHINode>(U))
8862 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008863 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00008864 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00008865 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008866 // Delete the Old value.
8867 if (PHINode *PN = dyn_cast<PHINode>(Old))
8868 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008869 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008870 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00008871}
8872
Dan Gohmand33a0902009-05-19 19:22:47 +00008873ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00008874 : CallbackVH(V), SE(se) {}
8875
8876//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00008877// ScalarEvolution Class Implementation
8878//===----------------------------------------------------------------------===//
8879
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008880ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
8881 AssumptionCache &AC, DominatorTree &DT,
8882 LoopInfo &LI)
8883 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
8884 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00008885 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
8886 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
8887 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008888
8889ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
8890 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
8891 CouldNotCompute(std::move(Arg.CouldNotCompute)),
8892 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00008893 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008894 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
8895 ConstantEvolutionLoopExitValue(
8896 std::move(Arg.ConstantEvolutionLoopExitValue)),
8897 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
8898 LoopDispositions(std::move(Arg.LoopDispositions)),
8899 BlockDispositions(std::move(Arg.BlockDispositions)),
8900 UnsignedRanges(std::move(Arg.UnsignedRanges)),
8901 SignedRanges(std::move(Arg.SignedRanges)),
8902 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
8903 SCEVAllocator(std::move(Arg.SCEVAllocator)),
8904 FirstUnknown(Arg.FirstUnknown) {
8905 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00008906}
8907
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008908ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00008909 // Iterate through all the SCEVUnknown instances and call their
8910 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00008911 for (SCEVUnknown *U = FirstUnknown; U;) {
8912 SCEVUnknown *Tmp = U;
8913 U = U->Next;
8914 Tmp->~SCEVUnknown();
8915 }
Craig Topper9f008862014-04-15 04:59:12 +00008916 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00008917
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008918 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008919
8920 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
8921 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008922 for (auto &BTCI : BackedgeTakenCounts)
8923 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008924
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008925 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00008926 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00008927 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00008928}
8929
Dan Gohmanc8e23622009-04-21 23:15:49 +00008930bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008931 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008932}
8933
Dan Gohmanc8e23622009-04-21 23:15:49 +00008934static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008935 const Loop *L) {
8936 // Print all inner loops first
8937 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8938 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008939
Dan Gohmanbc694912010-01-09 18:17:45 +00008940 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008941 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008942 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008943
Dan Gohmancb0efec2009-12-18 01:14:11 +00008944 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008945 L->getExitBlocks(ExitBlocks);
8946 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008947 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008948
Dan Gohman0bddac12009-02-24 18:55:53 +00008949 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8950 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008951 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008952 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008953 }
8954
Dan Gohmanbc694912010-01-09 18:17:45 +00008955 OS << "\n"
8956 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008957 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008958 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008959
8960 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8961 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8962 } else {
8963 OS << "Unpredictable max backedge-taken count. ";
8964 }
8965
8966 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008967}
8968
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008969void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008970 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008971 // out SCEV values of all instructions that are interesting. Doing
8972 // this potentially causes it to create new SCEV objects though,
8973 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008974 // observable from outside the class though, so casting away the
8975 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008976 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008977
Dan Gohmanbc694912010-01-09 18:17:45 +00008978 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008979 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008980 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008981 for (Instruction &I : instructions(F))
8982 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
8983 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008984 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008985 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008986 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008987 if (!isa<SCEVCouldNotCompute>(SV)) {
8988 OS << " U: ";
8989 SE.getUnsignedRange(SV).print(OS);
8990 OS << " S: ";
8991 SE.getSignedRange(SV).print(OS);
8992 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008993
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008994 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00008995
Dan Gohmanaf752342009-07-07 17:06:11 +00008996 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008997 if (AtUse != SV) {
8998 OS << " --> ";
8999 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009000 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9001 OS << " U: ";
9002 SE.getUnsignedRange(AtUse).print(OS);
9003 OS << " S: ";
9004 SE.getSignedRange(AtUse).print(OS);
9005 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009006 }
9007
9008 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009009 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009010 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009011 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009012 OS << "<<Unknown>>";
9013 } else {
9014 OS << *ExitValue;
9015 }
9016 }
9017
Chris Lattnerd934c702004-04-02 20:23:17 +00009018 OS << "\n";
9019 }
9020
Dan Gohmanbc694912010-01-09 18:17:45 +00009021 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009022 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009023 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009024 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009025 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009026}
Dan Gohmane20f8242009-04-21 00:47:46 +00009027
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009028ScalarEvolution::LoopDisposition
9029ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009030 auto &Values = LoopDispositions[S];
9031 for (auto &V : Values) {
9032 if (V.getPointer() == L)
9033 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009034 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009035 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009036 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009037 auto &Values2 = LoopDispositions[S];
9038 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9039 if (V.getPointer() == L) {
9040 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009041 break;
9042 }
9043 }
9044 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009045}
9046
9047ScalarEvolution::LoopDisposition
9048ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009049 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009050 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009051 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009052 case scTruncate:
9053 case scZeroExtend:
9054 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009055 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009056 case scAddRecExpr: {
9057 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9058
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009059 // If L is the addrec's loop, it's computable.
9060 if (AR->getLoop() == L)
9061 return LoopComputable;
9062
Dan Gohmanafd6db92010-11-17 21:23:15 +00009063 // Add recurrences are never invariant in the function-body (null loop).
9064 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009065 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009066
9067 // This recurrence is variant w.r.t. L if L contains AR's loop.
9068 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009069 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009070
9071 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9072 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009073 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009074
9075 // This recurrence is variant w.r.t. L if any of its operands
9076 // are variant.
9077 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
9078 I != E; ++I)
9079 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009080 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009081
9082 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009083 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009084 }
9085 case scAddExpr:
9086 case scMulExpr:
9087 case scUMaxExpr:
9088 case scSMaxExpr: {
9089 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009090 bool HasVarying = false;
9091 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
9092 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009093 LoopDisposition D = getLoopDisposition(*I, L);
9094 if (D == LoopVariant)
9095 return LoopVariant;
9096 if (D == LoopComputable)
9097 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009098 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009099 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009100 }
9101 case scUDivExpr: {
9102 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009103 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9104 if (LD == LoopVariant)
9105 return LoopVariant;
9106 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9107 if (RD == LoopVariant)
9108 return LoopVariant;
9109 return (LD == LoopInvariant && RD == LoopInvariant) ?
9110 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009111 }
9112 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009113 // All non-instruction values are loop invariant. All instructions are loop
9114 // invariant if they are not contained in the specified loop.
9115 // Instructions are never considered invariant in the function body
9116 // (null loop) because they are defined within the "loop".
9117 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9118 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9119 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009120 case scCouldNotCompute:
9121 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009122 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009123 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009124}
9125
9126bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9127 return getLoopDisposition(S, L) == LoopInvariant;
9128}
9129
9130bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9131 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009132}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009133
Dan Gohman8ea83d82010-11-18 00:34:22 +00009134ScalarEvolution::BlockDisposition
9135ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009136 auto &Values = BlockDispositions[S];
9137 for (auto &V : Values) {
9138 if (V.getPointer() == BB)
9139 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009140 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009141 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009142 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009143 auto &Values2 = BlockDispositions[S];
9144 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9145 if (V.getPointer() == BB) {
9146 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009147 break;
9148 }
9149 }
9150 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009151}
9152
Dan Gohman8ea83d82010-11-18 00:34:22 +00009153ScalarEvolution::BlockDisposition
9154ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009155 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009156 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009157 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009158 case scTruncate:
9159 case scZeroExtend:
9160 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009161 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009162 case scAddRecExpr: {
9163 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009164 // to test for proper dominance too, because the instruction which
9165 // produces the addrec's value is a PHI, and a PHI effectively properly
9166 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009167 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009168 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009169 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009170 }
9171 // FALL THROUGH into SCEVNAryExpr handling.
9172 case scAddExpr:
9173 case scMulExpr:
9174 case scUMaxExpr:
9175 case scSMaxExpr: {
9176 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009177 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009178 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00009179 I != E; ++I) {
9180 BlockDisposition D = getBlockDisposition(*I, BB);
9181 if (D == DoesNotDominateBlock)
9182 return DoesNotDominateBlock;
9183 if (D == DominatesBlock)
9184 Proper = false;
9185 }
9186 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009187 }
9188 case scUDivExpr: {
9189 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009190 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9191 BlockDisposition LD = getBlockDisposition(LHS, BB);
9192 if (LD == DoesNotDominateBlock)
9193 return DoesNotDominateBlock;
9194 BlockDisposition RD = getBlockDisposition(RHS, BB);
9195 if (RD == DoesNotDominateBlock)
9196 return DoesNotDominateBlock;
9197 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9198 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009199 }
9200 case scUnknown:
9201 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009202 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9203 if (I->getParent() == BB)
9204 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009205 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009206 return ProperlyDominatesBlock;
9207 return DoesNotDominateBlock;
9208 }
9209 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009210 case scCouldNotCompute:
9211 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009212 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009213 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009214}
9215
9216bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9217 return getBlockDisposition(S, BB) >= DominatesBlock;
9218}
9219
9220bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9221 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009222}
Dan Gohman534749b2010-11-17 22:27:42 +00009223
Andrew Trick365e31c2012-07-13 23:33:03 +00009224namespace {
9225// Search for a SCEV expression node within an expression tree.
9226// Implements SCEVTraversal::Visitor.
9227struct SCEVSearch {
9228 const SCEV *Node;
9229 bool IsFound;
9230
9231 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9232
9233 bool follow(const SCEV *S) {
9234 IsFound |= (S == Node);
9235 return !IsFound;
9236 }
9237 bool isDone() const { return IsFound; }
9238};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009239}
Andrew Trick365e31c2012-07-13 23:33:03 +00009240
Dan Gohman534749b2010-11-17 22:27:42 +00009241bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00009242 SCEVSearch Search(Op);
9243 visitAll(S, Search);
9244 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009245}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009246
9247void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9248 ValuesAtScopes.erase(S);
9249 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009250 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009251 UnsignedRanges.erase(S);
9252 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009253
9254 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9255 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9256 BackedgeTakenInfo &BEInfo = I->second;
9257 if (BEInfo.hasOperand(S, this)) {
9258 BEInfo.clear();
9259 BackedgeTakenCounts.erase(I++);
9260 }
9261 else
9262 ++I;
9263 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00009264}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009265
9266typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009267
Alp Tokercb402912014-01-24 17:20:08 +00009268/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009269static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9270 size_t Pos = 0;
9271 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9272 Str.replace(Pos, From.size(), To.data(), To.size());
9273 Pos += To.size();
9274 }
9275}
9276
Benjamin Kramer214935e2012-10-26 17:31:32 +00009277/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9278static void
9279getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9280 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
9281 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
9282
9283 std::string &S = Map[L];
9284 if (S.empty()) {
9285 raw_string_ostream OS(S);
9286 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009287
9288 // false and 0 are semantically equivalent. This can happen in dead loops.
9289 replaceSubString(OS.str(), "false", "0");
9290 // Remove wrap flags, their use in SCEV is highly fragile.
9291 // FIXME: Remove this when SCEV gets smarter about them.
9292 replaceSubString(OS.str(), "<nw>", "");
9293 replaceSubString(OS.str(), "<nsw>", "");
9294 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009295 }
9296 }
9297}
9298
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009299void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009300 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9301
9302 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9303 // FIXME: It would be much better to store actual values instead of strings,
9304 // but SCEV pointers will change if we drop the caches.
9305 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009306 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009307 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9308
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009309 // Gather stringified backedge taken counts for all loops using a fresh
9310 // ScalarEvolution object.
9311 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9312 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9313 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009314
9315 // Now compare whether they're the same with and without caches. This allows
9316 // verifying that no pass changed the cache.
9317 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9318 "New loops suddenly appeared!");
9319
9320 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9321 OldE = BackedgeDumpsOld.end(),
9322 NewI = BackedgeDumpsNew.begin();
9323 OldI != OldE; ++OldI, ++NewI) {
9324 assert(OldI->first == NewI->first && "Loop order changed!");
9325
9326 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9327 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009328 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009329 // means that a pass is buggy or SCEV has to learn a new pattern but is
9330 // usually not harmful.
9331 if (OldI->second != NewI->second &&
9332 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009333 NewI->second.find("undef") == std::string::npos &&
9334 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009335 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009336 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009337 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009338 << "' changed from '" << OldI->second
9339 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009340 std::abort();
9341 }
9342 }
9343
9344 // TODO: Verify more things.
9345}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009346
9347char ScalarEvolutionAnalysis::PassID;
9348
9349ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9350 AnalysisManager<Function> *AM) {
9351 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9352 AM->getResult<AssumptionAnalysis>(F),
9353 AM->getResult<DominatorTreeAnalysis>(F),
9354 AM->getResult<LoopAnalysis>(F));
9355}
9356
9357PreservedAnalyses
9358ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9359 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9360 return PreservedAnalyses::all();
9361}
9362
9363INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9364 "Scalar Evolution Analysis", false, true)
9365INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9366INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9367INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9368INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9369INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9370 "Scalar Evolution Analysis", false, true)
9371char ScalarEvolutionWrapperPass::ID = 0;
9372
9373ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9374 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9375}
9376
9377bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9378 SE.reset(new ScalarEvolution(
9379 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9380 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9381 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9382 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9383 return false;
9384}
9385
9386void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9387
9388void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9389 SE->print(OS);
9390}
9391
9392void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9393 if (!VerifySCEV)
9394 return;
9395
9396 SE->verify();
9397}
9398
9399void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9400 AU.setPreservesAll();
9401 AU.addRequiredTransitive<AssumptionCacheTracker>();
9402 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9403 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9404 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9405}