blob: 601fef8523963c57cfa03171f1b7a7f7652d7f1b [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Hal Finkel3ca4a6b2016-12-15 03:02:15 +000018#include "llvm/ADT/SmallSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000054// This optimization is known to cause performance regressions is some cases,
55// keep it under a temporary flag for now.
56static cl::opt<bool>
57DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
58 cl::Hidden, cl::init(true));
59
Sanjay Patelaee84212014-11-04 16:27:42 +000060/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
61/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000062static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000063 if (unsigned BitWidth = Ty->getScalarSizeInBits())
64 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000065
Mehdi Aminia28d91d2015-03-10 02:37:25 +000066 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000067}
Chris Lattner965c7692008-06-02 01:18:21 +000068
Benjamin Kramercfd8d902014-09-12 08:56:53 +000069namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000070// Simplifying using an assume can only be done in a particular control-flow
71// context (the context instruction provides that context). If an assume and
72// the context instruction are not in the same block then the DT helps in
73// figuring out if we can use it.
74struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000075 const DataLayout &DL;
Hal Finkel60db0582014-09-07 18:57:58 +000076 const Instruction *CxtI;
77 const DominatorTree *DT;
78
Matthias Braun37e5d792016-01-28 06:29:33 +000079 /// Set of assumptions that should be excluded from further queries.
80 /// This is because of the potential for mutual recursion to cause
81 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
82 /// classic case of this is assume(x = y), which will attempt to determine
83 /// bits in x from bits in y, which will attempt to determine bits in y from
84 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
85 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
86 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
87 /// on.
Li Huang755f75f2016-10-15 19:00:04 +000088 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000089 unsigned NumExcluded;
90
Hal Finkel3ca4a6b2016-12-15 03:02:15 +000091 Query(const DataLayout &DL, const Instruction *CxtI, const DominatorTree *DT)
92 : DL(DL), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000093
94 Query(const Query &Q, const Value *NewExcl)
Hal Finkel3ca4a6b2016-12-15 03:02:15 +000095 : DL(Q.DL), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +000096 Excluded = Q.Excluded;
97 Excluded[NumExcluded++] = NewExcl;
98 assert(NumExcluded <= Excluded.size());
99 }
100
101 bool isExcluded(const Value *Value) const {
102 if (NumExcluded == 0)
103 return false;
104 auto End = Excluded.begin() + NumExcluded;
105 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000106 }
107};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000108} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000109
Sanjay Patel547e9752014-11-04 16:09:50 +0000110// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000111// the preferred context instruction (if any).
112static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
113 // If we've been provided with a context instruction, then use that (provided
114 // it has been inserted).
115 if (CxtI && CxtI->getParent())
116 return CxtI;
117
118 // If the value is really an already-inserted instruction, then use that.
119 CxtI = dyn_cast<Instruction>(V);
120 if (CxtI && CxtI->getParent())
121 return CxtI;
122
123 return nullptr;
124}
125
Pete Cooper35b00d52016-08-13 01:05:32 +0000126static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000127 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000128
Pete Cooper35b00d52016-08-13 01:05:32 +0000129void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000130 const DataLayout &DL, unsigned Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000131 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000132 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000133 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000134 Query(DL, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000135}
136
Pete Cooper35b00d52016-08-13 01:05:32 +0000137bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
138 const DataLayout &DL,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000139 const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000140 const DominatorTree *DT) {
141 assert(LHS->getType() == RHS->getType() &&
142 "LHS and RHS should have the same type");
143 assert(LHS->getType()->isIntOrIntVectorTy() &&
144 "LHS and RHS should be integers");
145 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
146 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
147 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000148 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, CxtI, DT);
149 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, CxtI, DT);
Jingyue Wuca321902015-05-14 23:53:19 +0000150 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
151}
152
Pete Cooper35b00d52016-08-13 01:05:32 +0000153static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000154 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000155
Pete Cooper35b00d52016-08-13 01:05:32 +0000156void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000157 const DataLayout &DL, unsigned Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000158 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000159 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000160 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000161 Query(DL, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000162}
163
Pete Cooper35b00d52016-08-13 01:05:32 +0000164static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000165 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000166
Pete Cooper35b00d52016-08-13 01:05:32 +0000167bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
168 bool OrZero,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000169 unsigned Depth, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000170 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000172 Query(DL, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000173}
174
Pete Cooper35b00d52016-08-13 01:05:32 +0000175static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176
Pete Cooper35b00d52016-08-13 01:05:32 +0000177bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000178 const Instruction *CxtI, const DominatorTree *DT) {
179 return ::isKnownNonZero(V, Depth, Query(DL, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000180}
181
Pete Cooper35b00d52016-08-13 01:05:32 +0000182bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000183 unsigned Depth, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000184 const DominatorTree *DT) {
185 bool NonNegative, Negative;
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000186 ComputeSignBit(V, NonNegative, Negative, DL, Depth, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +0000187 return NonNegative;
188}
189
Pete Cooper35b00d52016-08-13 01:05:32 +0000190bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000191 const Instruction *CxtI, const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000192 if (auto *CI = dyn_cast<ConstantInt>(V))
193 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000194
Philip Reames8f12eba2016-03-09 21:31:47 +0000195 // TODO: We'd doing two recursive queries here. We should factor this such
196 // that only a single query is needed.
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000197 return isKnownNonNegative(V, DL, Depth, CxtI, DT) &&
198 isKnownNonZero(V, DL, Depth, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000199}
200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000202 const Instruction *CxtI, const DominatorTree *DT) {
Nick Lewycky762f8a82016-04-21 00:53:14 +0000203 bool NonNegative, Negative;
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000204 ComputeSignBit(V, NonNegative, Negative, DL, Depth, CxtI, DT);
Nick Lewycky762f8a82016-04-21 00:53:14 +0000205 return Negative;
206}
207
Pete Cooper35b00d52016-08-13 01:05:32 +0000208static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000209
Pete Cooper35b00d52016-08-13 01:05:32 +0000210bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000211 const DataLayout &DL, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000212 const DominatorTree *DT) {
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000213 return ::isKnownNonEqual(V1, V2, Query(DL, safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000214 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000215}
216
Pete Cooper35b00d52016-08-13 01:05:32 +0000217static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000218 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000219
Pete Cooper35b00d52016-08-13 01:05:32 +0000220bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
221 const DataLayout &DL,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000222 unsigned Depth, const Instruction *CxtI,
223 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000224 return ::MaskedValueIsZero(V, Mask, Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000225 Query(DL, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000226}
227
Pete Cooper35b00d52016-08-13 01:05:32 +0000228static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
229 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000230
Pete Cooper35b00d52016-08-13 01:05:32 +0000231unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000232 unsigned Depth, const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000233 const DominatorTree *DT) {
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000234 return ::ComputeNumSignBits(V, Depth, Query(DL, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000235}
236
Pete Cooper35b00d52016-08-13 01:05:32 +0000237static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
238 bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000239 APInt &KnownZero, APInt &KnownOne,
240 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000241 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000242 if (!Add) {
Pete Cooper35b00d52016-08-13 01:05:32 +0000243 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000244 // We know that the top bits of C-X are clear if X contains less bits
245 // than C (i.e. no wrap-around can happen). For example, 20-X is
246 // positive if we can prove that X is >= 0 and < 16.
247 if (!CLHS->getValue().isNegative()) {
248 unsigned BitWidth = KnownZero.getBitWidth();
249 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
250 // NLZ can't be BitWidth with no sign bit
251 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000252 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000253
254 // If all of the MaskV bits are known to be zero, then we know the
255 // output top bits are zero, because we now know that the output is
256 // from [0-C].
257 if ((KnownZero2 & MaskV) == MaskV) {
258 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
259 // Top bits known zero.
260 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
261 }
262 }
263 }
264 }
265
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000266 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000267
David Majnemer97ddca32014-08-22 00:40:43 +0000268 // If an initial sequence of bits in the result is not needed, the
269 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000270 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000271 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
272 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000273
David Majnemer97ddca32014-08-22 00:40:43 +0000274 // Carry in a 1 for a subtract, rather than a 0.
275 APInt CarryIn(BitWidth, 0);
276 if (!Add) {
277 // Sum = LHS + ~RHS + 1
278 std::swap(KnownZero2, KnownOne2);
279 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000280 }
281
David Majnemer97ddca32014-08-22 00:40:43 +0000282 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
283 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
284
285 // Compute known bits of the carry.
286 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
287 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
288
289 // Compute set of known bits (where all three relevant bits are known).
290 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
291 APInt RHSKnown = KnownZero2 | KnownOne2;
292 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
293 APInt Known = LHSKnown & RHSKnown & CarryKnown;
294
295 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
296 "known bits of sum differ");
297
298 // Compute known bits of the result.
299 KnownZero = ~PossibleSumOne & Known;
300 KnownOne = PossibleSumOne & Known;
301
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000302 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000303 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000304 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000305 // Adding two non-negative numbers, or subtracting a negative number from
306 // a non-negative one, can't wrap into negative.
307 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
308 KnownZero |= APInt::getSignBit(BitWidth);
309 // Adding two negative numbers, or subtracting a non-negative number from
310 // a negative one, can't wrap into non-negative.
311 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
312 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000313 }
314 }
315}
316
Pete Cooper35b00d52016-08-13 01:05:32 +0000317static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000318 APInt &KnownZero, APInt &KnownOne,
319 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000320 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000321 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000322 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
323 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000324
325 bool isKnownNegative = false;
326 bool isKnownNonNegative = false;
327 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000328 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000329 if (Op0 == Op1) {
330 // The product of a number with itself is non-negative.
331 isKnownNonNegative = true;
332 } else {
333 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
334 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
335 bool isKnownNegativeOp1 = KnownOne.isNegative();
336 bool isKnownNegativeOp0 = KnownOne2.isNegative();
337 // The product of two numbers with the same sign is non-negative.
338 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
339 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
340 // The product of a negative number and a non-negative number is either
341 // negative or zero.
342 if (!isKnownNonNegative)
343 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000344 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000345 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000346 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000347 }
348 }
349
350 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000351 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000352 // More trickiness is possible, but this is sufficient for the
353 // interesting case of alignment computation.
354 KnownOne.clearAllBits();
355 unsigned TrailZ = KnownZero.countTrailingOnes() +
356 KnownZero2.countTrailingOnes();
357 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
358 KnownZero2.countLeadingOnes(),
359 BitWidth) - BitWidth;
360
361 TrailZ = std::min(TrailZ, BitWidth);
362 LeadZ = std::min(LeadZ, BitWidth);
363 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
364 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000365
366 // Only make use of no-wrap flags if we failed to compute the sign bit
367 // directly. This matters if the multiplication always overflows, in
368 // which case we prefer to follow the result of the direct computation,
369 // though as the program is invoking undefined behaviour we can choose
370 // whatever we like here.
371 if (isKnownNonNegative && !KnownOne.isNegative())
372 KnownZero.setBit(BitWidth - 1);
373 else if (isKnownNegative && !KnownZero.isNegative())
374 KnownOne.setBit(BitWidth - 1);
375}
376
Jingyue Wu37fcb592014-06-19 16:50:16 +0000377void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000378 APInt &KnownZero,
379 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000380 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000381 unsigned NumRanges = Ranges.getNumOperands() / 2;
382 assert(NumRanges >= 1);
383
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000384 KnownZero.setAllBits();
385 KnownOne.setAllBits();
386
Rafael Espindola53190532012-03-30 15:52:11 +0000387 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000388 ConstantInt *Lower =
389 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
390 ConstantInt *Upper =
391 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000392 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000393
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000394 // The first CommonPrefixBits of all values in Range are equal.
395 unsigned CommonPrefixBits =
396 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
397
398 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
399 KnownOne &= Range.getUnsignedMax() & Mask;
400 KnownZero &= ~Range.getUnsignedMax() & Mask;
401 }
Rafael Espindola53190532012-03-30 15:52:11 +0000402}
Jay Foad5a29c362014-05-15 12:12:55 +0000403
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000404static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000405 SmallVector<const Value *, 16> WorkSet(1, I);
406 SmallPtrSet<const Value *, 32> Visited;
407 SmallPtrSet<const Value *, 16> EphValues;
408
Hal Finkelf2199b22015-10-23 20:37:08 +0000409 // The instruction defining an assumption's condition itself is always
410 // considered ephemeral to that assumption (even if it has other
411 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000412 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000413 return true;
414
Hal Finkel60db0582014-09-07 18:57:58 +0000415 while (!WorkSet.empty()) {
416 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000417 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000418 continue;
419
420 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000421 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000422 if (V == E)
423 return true;
424
425 EphValues.insert(V);
426 if (const User *U = dyn_cast<User>(V))
427 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
428 J != JE; ++J) {
429 if (isSafeToSpeculativelyExecute(*J))
430 WorkSet.push_back(*J);
431 }
432 }
433 }
434
435 return false;
436}
437
438// Is this an intrinsic that cannot be speculated but also cannot trap?
439static bool isAssumeLikeIntrinsic(const Instruction *I) {
440 if (const CallInst *CI = dyn_cast<CallInst>(I))
441 if (Function *F = CI->getCalledFunction())
442 switch (F->getIntrinsicID()) {
443 default: break;
444 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
445 case Intrinsic::assume:
446 case Intrinsic::dbg_declare:
447 case Intrinsic::dbg_value:
448 case Intrinsic::invariant_start:
449 case Intrinsic::invariant_end:
450 case Intrinsic::lifetime_start:
451 case Intrinsic::lifetime_end:
452 case Intrinsic::objectsize:
453 case Intrinsic::ptr_annotation:
454 case Intrinsic::var_annotation:
455 return true;
456 }
457
458 return false;
459}
460
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000461bool llvm::isValidAssumeForContext(const Instruction *Inv,
462 const Instruction *CxtI,
463 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000464
465 // There are two restrictions on the use of an assume:
466 // 1. The assume must dominate the context (or the control flow must
467 // reach the assume whenever it reaches the context).
468 // 2. The context must not be in the assume's set of ephemeral values
469 // (otherwise we will use the assume to prove that the condition
470 // feeding the assume is trivially true, thus causing the removal of
471 // the assume).
472
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000473 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000474 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000475 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000476 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
477 // We don't have a DT, but this trivially dominates.
478 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000479 }
480
Pete Cooper54a02552016-08-12 01:00:15 +0000481 // With or without a DT, the only remaining case we will check is if the
482 // instructions are in the same BB. Give up if that is not the case.
483 if (Inv->getParent() != CxtI->getParent())
484 return false;
485
486 // If we have a dom tree, then we now know that the assume doens't dominate
487 // the other instruction. If we don't have a dom tree then we can check if
488 // the assume is first in the BB.
489 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000490 // Search forward from the assume until we reach the context (or the end
491 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000492 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000493 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000494 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000495 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000496 }
497
Pete Cooper54a02552016-08-12 01:00:15 +0000498 // The context comes first, but they're both in the same block. Make sure
499 // there is nothing in between that might interrupt the control flow.
500 for (BasicBlock::const_iterator I =
501 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
502 I != IE; ++I)
503 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
504 return false;
505
506 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000507}
508
Pete Cooper35b00d52016-08-13 01:05:32 +0000509static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000510 APInt &KnownOne, unsigned Depth,
511 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000512 // Use of assumptions is context-sensitive. If we don't have a context, we
513 // cannot use them!
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000514 if (!Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000515 return;
516
517 unsigned BitWidth = KnownZero.getBitWidth();
518
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000519 for (auto *U : V->users()) {
520 auto *II = dyn_cast<IntrinsicInst>(U);
521 if (!II)
Chandler Carruth66b31302015-01-04 12:03:27 +0000522 continue;
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000523 if (II->getIntrinsicID() != Intrinsic::assume)
524 continue;
525 if (Q.isExcluded(II))
Hal Finkel60db0582014-09-07 18:57:58 +0000526 continue;
527
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000528 Value *Arg = II->getArgOperand(0);
Philip Reames00d3b272014-11-24 23:44:28 +0000529
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000530 if (Arg == V && isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000531 assert(BitWidth == 1 && "assume operand is not i1?");
532 KnownZero.clearAllBits();
533 KnownOne.setAllBits();
534 return;
535 }
536
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000537 // Note that the patterns below need to be kept in sync with the code
538 // in InstCombiner::visitCallInst that adds relevant values to each
539 // assume's operand bundles.
540
David Majnemer9b609752014-12-12 23:59:29 +0000541 // The remaining tests are all recursive, so bail out if we hit the limit.
542 if (Depth == MaxDepth)
543 continue;
544
Hal Finkel60db0582014-09-07 18:57:58 +0000545 Value *A, *B;
546 auto m_V = m_CombineOr(m_Specific(V),
547 m_CombineOr(m_PtrToInt(m_Specific(V)),
548 m_BitCast(m_Specific(V))));
549
550 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000551 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000552 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000553 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000554 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000555 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000556 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel60db0582014-09-07 18:57:58 +0000557 KnownZero |= RHSKnownZero;
558 KnownOne |= RHSKnownOne;
559 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000560 } else if (match(Arg,
561 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000562 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000563 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000564 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000565 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel60db0582014-09-07 18:57:58 +0000566 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000567 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, II));
Hal Finkel60db0582014-09-07 18:57:58 +0000568
569 // For those bits in the mask that are known to be one, we can propagate
570 // known bits from the RHS to V.
571 KnownZero |= RHSKnownZero & MaskKnownOne;
572 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000573 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000574 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
575 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000576 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000577 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000578 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000579 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000580 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000581 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000582
583 // For those bits in the mask that are known to be one, we can propagate
584 // inverted known bits from the RHS to V.
585 KnownZero |= RHSKnownOne & MaskKnownOne;
586 KnownOne |= RHSKnownZero & MaskKnownOne;
587 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000588 } else if (match(Arg,
589 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000590 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000591 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000592 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000593 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000594 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000595 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000596
597 // For those bits in B that are known to be zero, we can propagate known
598 // bits from the RHS to V.
599 KnownZero |= RHSKnownZero & BKnownZero;
600 KnownOne |= RHSKnownOne & BKnownZero;
601 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000602 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
603 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000604 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000605 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000606 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000607 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000608 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000609 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000610
611 // For those bits in B that are known to be zero, we can propagate
612 // inverted known bits from the RHS to V.
613 KnownZero |= RHSKnownOne & BKnownZero;
614 KnownOne |= RHSKnownZero & BKnownZero;
615 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000616 } else if (match(Arg,
617 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000618 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000619 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000620 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000621 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000622 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000623 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000624
625 // For those bits in B that are known to be zero, we can propagate known
626 // bits from the RHS to V. For those bits in B that are known to be one,
627 // we can propagate inverted known bits from the RHS to V.
628 KnownZero |= RHSKnownZero & BKnownZero;
629 KnownOne |= RHSKnownOne & BKnownZero;
630 KnownZero |= RHSKnownOne & BKnownOne;
631 KnownOne |= RHSKnownZero & BKnownOne;
632 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000633 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
634 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000635 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000636 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000638 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000639 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000640 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000641
642 // For those bits in B that are known to be zero, we can propagate
643 // inverted known bits from the RHS to V. For those bits in B that are
644 // known to be one, we can propagate known bits from the RHS to V.
645 KnownZero |= RHSKnownOne & BKnownZero;
646 KnownOne |= RHSKnownZero & BKnownZero;
647 KnownZero |= RHSKnownZero & BKnownOne;
648 KnownOne |= RHSKnownOne & BKnownOne;
649 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000650 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
651 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000652 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000653 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000655 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000656 // For those bits in RHS that are known, we can propagate them to known
657 // bits in V shifted to the right by C.
658 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
659 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
660 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000661 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
662 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000663 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000664 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000665 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000666 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 // For those bits in RHS that are known, we can propagate them inverted
668 // to known bits in V shifted to the right by C.
669 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
670 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
671 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000672 } else if (match(Arg,
673 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000674 m_AShr(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000676 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000677 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // For those bits in RHS that are known, we can propagate them to known
681 // bits in V shifted to the right by C.
682 KnownZero |= RHSKnownZero << C->getZExtValue();
683 KnownOne |= RHSKnownOne << C->getZExtValue();
684 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000686 m_LShr(m_V, m_ConstantInt(C)),
687 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000690 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them inverted
694 // to known bits in V shifted to the right by C.
695 KnownZero |= RHSKnownOne << C->getZExtValue();
696 KnownOne |= RHSKnownZero << C->getZExtValue();
697 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 Pred == ICmpInst::ICMP_SGE &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000700 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000701 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000702 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703
704 if (RHSKnownZero.isNegative()) {
705 // We know that the sign bit is zero.
706 KnownZero |= APInt::getSignBit(BitWidth);
707 }
708 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000709 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000710 Pred == ICmpInst::ICMP_SGT &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000711 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000712 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000713 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714
715 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
716 // We know that the sign bit is zero.
717 KnownZero |= APInt::getSignBit(BitWidth);
718 }
719 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000720 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000721 Pred == ICmpInst::ICMP_SLE &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000722 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000723 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000724 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725
726 if (RHSKnownOne.isNegative()) {
727 // We know that the sign bit is one.
728 KnownOne |= APInt::getSignBit(BitWidth);
729 }
730 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000731 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000732 Pred == ICmpInst::ICMP_SLT &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000733 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000734 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000735 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736
737 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
738 // We know that the sign bit is one.
739 KnownOne |= APInt::getSignBit(BitWidth);
740 }
741 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000742 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000743 Pred == ICmpInst::ICMP_ULE &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000744 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000745 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000746 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747
748 // Whatever high bits in c are zero are known to be zero.
749 KnownZero |=
750 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
751 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000753 Pred == ICmpInst::ICMP_ULT &&
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000754 isValidAssumeForContext(II, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000755 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000756 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, II));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000757
758 // Whatever high bits in c are zero are known to be zero (if c is a power
759 // of 2, then one more).
Hal Finkelcb9f78e2016-12-15 02:53:42 +0000760 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, II)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000761 KnownZero |=
762 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
763 else
764 KnownZero |=
765 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000766 }
767 }
768}
769
Hal Finkelf2199b22015-10-23 20:37:08 +0000770// Compute known bits from a shift operator, including those with a
771// non-constant shift amount. KnownZero and KnownOne are the outputs of this
772// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
773// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
774// functors that, given the known-zero or known-one bits respectively, and a
775// shift amount, compute the implied known-zero or known-one bits of the shift
776// operator's result respectively for that shift amount. The results from calling
777// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000778static void computeKnownBitsFromShiftOperator(
779 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
780 APInt &KnownOne2, unsigned Depth, const Query &Q,
781 function_ref<APInt(const APInt &, unsigned)> KZF,
782 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000783 unsigned BitWidth = KnownZero.getBitWidth();
784
785 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
786 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
787
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000788 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000789 KnownZero = KZF(KnownZero, ShiftAmt);
790 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000791 // If there is conflict between KnownZero and KnownOne, this must be an
792 // overflowing left shift, so the shift result is undefined. Clear KnownZero
793 // and KnownOne bits so that other code could propagate this undef.
794 if ((KnownZero & KnownOne) != 0) {
795 KnownZero.clearAllBits();
796 KnownOne.clearAllBits();
797 }
798
Hal Finkelf2199b22015-10-23 20:37:08 +0000799 return;
800 }
801
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000802 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000803
804 // Note: We cannot use KnownZero.getLimitedValue() here, because if
805 // BitWidth > 64 and any upper bits are known, we'll end up returning the
806 // limit value (which implies all bits are known).
807 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
808 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
809
810 // It would be more-clearly correct to use the two temporaries for this
811 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000812 KnownZero.clearAllBits();
813 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000814
James Molloy493e57d2015-10-26 14:10:46 +0000815 // If we know the shifter operand is nonzero, we can sometimes infer more
816 // known bits. However this is expensive to compute, so be lazy about it and
817 // only compute it when absolutely necessary.
818 Optional<bool> ShifterOperandIsNonZero;
819
Hal Finkelf2199b22015-10-23 20:37:08 +0000820 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000821 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
822 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000823 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000824 if (!*ShifterOperandIsNonZero)
825 return;
826 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000827
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000828 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000829
830 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
831 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
832 // Combine the shifted known input bits only for those shift amounts
833 // compatible with its known constraints.
834 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
835 continue;
836 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
837 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000838 // If we know the shifter is nonzero, we may be able to infer more known
839 // bits. This check is sunk down as far as possible to avoid the expensive
840 // call to isKnownNonZero if the cheaper checks above fail.
841 if (ShiftAmt == 0) {
842 if (!ShifterOperandIsNonZero.hasValue())
843 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000844 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000845 if (*ShifterOperandIsNonZero)
846 continue;
847 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000848
849 KnownZero &= KZF(KnownZero2, ShiftAmt);
850 KnownOne &= KOF(KnownOne2, ShiftAmt);
851 }
852
853 // If there are no compatible shift amounts, then we've proven that the shift
854 // amount must be >= the BitWidth, and the result is undefined. We could
855 // return anything we'd like, but we need to make sure the sets of known bits
856 // stay disjoint (it should be better for some other code to actually
857 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000858 if ((KnownZero & KnownOne) != 0) {
859 KnownZero.clearAllBits();
860 KnownOne.clearAllBits();
861 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000862}
863
Pete Cooper35b00d52016-08-13 01:05:32 +0000864static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000865 APInt &KnownOne, unsigned Depth,
866 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000867 unsigned BitWidth = KnownZero.getBitWidth();
868
Chris Lattner965c7692008-06-02 01:18:21 +0000869 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000870 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000871 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000872 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000873 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000874 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000875 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000876 case Instruction::And: {
877 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000878 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
879 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000880
Chris Lattner965c7692008-06-02 01:18:21 +0000881 // Output known-1 bits are only known if set in both the LHS & RHS.
882 KnownOne &= KnownOne2;
883 // Output known-0 are known to be clear if zero in either the LHS | RHS.
884 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000885
886 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
887 // here we handle the more general case of adding any odd number by
888 // matching the form add(x, add(x, y)) where y is odd.
889 // TODO: This could be generalized to clearing any bit set in y where the
890 // following bit is known to be unset in y.
891 Value *Y = nullptr;
892 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
893 m_Value(Y))) ||
894 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
895 m_Value(Y)))) {
896 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000897 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000898 if (KnownOne3.countTrailingOnes() > 0)
899 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
900 }
Jay Foad5a29c362014-05-15 12:12:55 +0000901 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000902 }
903 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000904 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
905 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000906
Chris Lattner965c7692008-06-02 01:18:21 +0000907 // Output known-0 bits are only known if clear in both the LHS & RHS.
908 KnownZero &= KnownZero2;
909 // Output known-1 are known to be set if set in either the LHS | RHS.
910 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000911 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000912 }
913 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000914 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
915 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000916
Chris Lattner965c7692008-06-02 01:18:21 +0000917 // Output known-0 bits are known if clear or set in both the LHS & RHS.
918 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
919 // Output known-1 are known to be set if set in only one of the LHS, RHS.
920 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
921 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000922 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000923 }
924 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000925 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000926 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000927 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000928 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000929 }
930 case Instruction::UDiv: {
931 // For the purposes of computing leading zeros we can conservatively
932 // treat a udiv as a logical right shift by the power of 2 known to
933 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000934 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000935 unsigned LeadZ = KnownZero2.countLeadingOnes();
936
Jay Foad25a5e4c2010-12-01 08:53:58 +0000937 KnownOne2.clearAllBits();
938 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000939 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000940 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
941 if (RHSUnknownLeadingOnes != BitWidth)
942 LeadZ = std::min(BitWidth,
943 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
944
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000945 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000946 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000947 }
David Majnemera19d0f22016-08-06 08:16:00 +0000948 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000949 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
950 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000951
Pete Cooper35b00d52016-08-13 01:05:32 +0000952 const Value *LHS;
953 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000954 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
955 if (SelectPatternResult::isMinOrMax(SPF)) {
956 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
957 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
958 } else {
959 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
960 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
961 }
962
963 unsigned MaxHighOnes = 0;
964 unsigned MaxHighZeros = 0;
965 if (SPF == SPF_SMAX) {
966 // If both sides are negative, the result is negative.
967 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
968 // We can derive a lower bound on the result by taking the max of the
969 // leading one bits.
970 MaxHighOnes =
971 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
972 // If either side is non-negative, the result is non-negative.
973 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
974 MaxHighZeros = 1;
975 } else if (SPF == SPF_SMIN) {
976 // If both sides are non-negative, the result is non-negative.
977 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
978 // We can derive an upper bound on the result by taking the max of the
979 // leading zero bits.
980 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
981 KnownZero2.countLeadingOnes());
982 // If either side is negative, the result is negative.
983 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
984 MaxHighOnes = 1;
985 } else if (SPF == SPF_UMAX) {
986 // We can derive a lower bound on the result by taking the max of the
987 // leading one bits.
988 MaxHighOnes =
989 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
990 } else if (SPF == SPF_UMIN) {
991 // We can derive an upper bound on the result by taking the max of the
992 // leading zero bits.
993 MaxHighZeros =
994 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
995 }
996
Chris Lattner965c7692008-06-02 01:18:21 +0000997 // Only known if known in both the LHS and RHS.
998 KnownOne &= KnownOne2;
999 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001000 if (MaxHighOnes > 0)
1001 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1002 if (MaxHighZeros > 0)
1003 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001004 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001005 }
Chris Lattner965c7692008-06-02 01:18:21 +00001006 case Instruction::FPTrunc:
1007 case Instruction::FPExt:
1008 case Instruction::FPToUI:
1009 case Instruction::FPToSI:
1010 case Instruction::SIToFP:
1011 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001012 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001013 case Instruction::PtrToInt:
1014 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001015 // Fall through and handle them the same as zext/trunc.
1016 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001017 case Instruction::ZExt:
1018 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001019 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001020
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001021 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001022 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1023 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001024 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001025
1026 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001027 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1028 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001029 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001030 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1031 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001032 // Any top bits are known to be zero.
1033 if (BitWidth > SrcBitWidth)
1034 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001035 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001036 }
1037 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001038 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001039 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001040 // TODO: For now, not handling conversions like:
1041 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001042 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001043 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001044 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001045 }
1046 break;
1047 }
1048 case Instruction::SExt: {
1049 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001050 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001051
Jay Foad583abbc2010-12-07 08:25:19 +00001052 KnownZero = KnownZero.trunc(SrcBitWidth);
1053 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001054 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001055 KnownZero = KnownZero.zext(BitWidth);
1056 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001057
1058 // If the sign bit of the input is known set or clear, then we know the
1059 // top bits of the result.
1060 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1061 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1062 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1063 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001064 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001065 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001066 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001067 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001068 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1069 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1070 APInt KZResult =
1071 (KnownZero << ShiftAmt) |
1072 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1073 // If this shift has "nsw" keyword, then the result is either a poison
1074 // value or has the same sign bit as the first operand.
1075 if (NSW && KnownZero.isNegative())
1076 KZResult.setBit(BitWidth - 1);
1077 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001078 };
1079
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001080 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1081 APInt KOResult = KnownOne << ShiftAmt;
1082 if (NSW && KnownOne.isNegative())
1083 KOResult.setBit(BitWidth - 1);
1084 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001085 };
1086
1087 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001088 KnownZero2, KnownOne2, Depth, Q, KZF,
1089 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001090 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001091 }
1092 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001093 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001094 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1095 return APIntOps::lshr(KnownZero, ShiftAmt) |
1096 // High bits known zero.
1097 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1098 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001099
Hal Finkelf2199b22015-10-23 20:37:08 +00001100 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1101 return APIntOps::lshr(KnownOne, ShiftAmt);
1102 };
1103
1104 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001105 KnownZero2, KnownOne2, Depth, Q, KZF,
1106 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001107 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001108 }
1109 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001110 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001111 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1112 return APIntOps::ashr(KnownZero, ShiftAmt);
1113 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001114
Hal Finkelf2199b22015-10-23 20:37:08 +00001115 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1116 return APIntOps::ashr(KnownOne, ShiftAmt);
1117 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001118
Hal Finkelf2199b22015-10-23 20:37:08 +00001119 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001120 KnownZero2, KnownOne2, Depth, Q, KZF,
1121 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001122 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001123 }
Chris Lattner965c7692008-06-02 01:18:21 +00001124 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001125 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001126 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001127 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1128 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001129 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001130 }
Chris Lattner965c7692008-06-02 01:18:21 +00001131 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001132 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001133 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001134 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1135 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001136 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001137 }
1138 case Instruction::SRem:
1139 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001140 APInt RA = Rem->getValue().abs();
1141 if (RA.isPowerOf2()) {
1142 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001143 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001144 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001145
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001146 // The low bits of the first operand are unchanged by the srem.
1147 KnownZero = KnownZero2 & LowBits;
1148 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001149
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001150 // If the first operand is non-negative or has all low bits zero, then
1151 // the upper bits are all zero.
1152 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1153 KnownZero |= ~LowBits;
1154
1155 // If the first operand is negative and not all low bits are zero, then
1156 // the upper bits are all one.
1157 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1158 KnownOne |= ~LowBits;
1159
Craig Topper1bef2c82012-12-22 19:15:35 +00001160 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001161 }
1162 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001163
1164 // The sign bit is the LHS's sign bit, except when the result of the
1165 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001166 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001167 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001168 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1169 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001170 // If it's known zero, our sign bit is also zero.
1171 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001172 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001173 }
1174
Chris Lattner965c7692008-06-02 01:18:21 +00001175 break;
1176 case Instruction::URem: {
1177 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001178 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001179 if (RA.isPowerOf2()) {
1180 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001181 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001182 KnownZero |= ~LowBits;
1183 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001184 break;
1185 }
1186 }
1187
1188 // Since the result is less than or equal to either operand, any leading
1189 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001190 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1191 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001192
Chris Lattner4612ae12009-01-20 18:22:57 +00001193 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001194 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001195 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001196 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001197 break;
1198 }
1199
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001200 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001201 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001202 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001203 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001204 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001205
Chris Lattner965c7692008-06-02 01:18:21 +00001206 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001207 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001208 break;
1209 }
1210 case Instruction::GetElementPtr: {
1211 // Analyze all of the subscripts of this getelementptr instruction
1212 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001213 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001214 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1215 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001216 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1217
1218 gep_type_iterator GTI = gep_type_begin(I);
1219 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1220 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001221 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001222 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001223
1224 // Handle case when index is vector zeroinitializer
1225 Constant *CIndex = cast<Constant>(Index);
1226 if (CIndex->isZeroValue())
1227 continue;
1228
1229 if (CIndex->getType()->isVectorTy())
1230 Index = CIndex->getSplatValue();
1231
Chris Lattner965c7692008-06-02 01:18:21 +00001232 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001233 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001234 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001235 TrailZ = std::min<unsigned>(TrailZ,
1236 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001237 } else {
1238 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001239 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001240 if (!IndexedTy->isSized()) {
1241 TrailZ = 0;
1242 break;
1243 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001244 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001245 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001246 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001247 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001248 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001249 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001250 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001251 }
1252 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001253
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001254 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001255 break;
1256 }
1257 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001258 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001259 // Handle the case of a simple two-predecessor recurrence PHI.
1260 // There's a lot more that could theoretically be done here, but
1261 // this is sufficient to catch some interesting cases.
1262 if (P->getNumIncomingValues() == 2) {
1263 for (unsigned i = 0; i != 2; ++i) {
1264 Value *L = P->getIncomingValue(i);
1265 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001266 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001267 if (!LU)
1268 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001269 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001270 // Check for operations that have the property that if
1271 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001272 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001273 if (Opcode == Instruction::Add ||
1274 Opcode == Instruction::Sub ||
1275 Opcode == Instruction::And ||
1276 Opcode == Instruction::Or ||
1277 Opcode == Instruction::Mul) {
1278 Value *LL = LU->getOperand(0);
1279 Value *LR = LU->getOperand(1);
1280 // Find a recurrence.
1281 if (LL == I)
1282 L = LR;
1283 else if (LR == I)
1284 L = LL;
1285 else
1286 break;
1287 // Ok, we have a PHI of the form L op= R. Check for low
1288 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001289 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001290
1291 // We need to take the minimum number of known bits
1292 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001293 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001294
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001295 KnownZero = APInt::getLowBitsSet(
1296 BitWidth, std::min(KnownZero2.countTrailingOnes(),
1297 KnownZero3.countTrailingOnes()));
1298
1299 if (DontImproveNonNegativePhiBits)
1300 break;
1301
1302 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1303 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1304 // If initial value of recurrence is nonnegative, and we are adding
1305 // a nonnegative number with nsw, the result can only be nonnegative
1306 // or poison value regardless of the number of times we execute the
1307 // add in phi recurrence. If initial value is negative and we are
1308 // adding a negative number with nsw, the result can only be
1309 // negative or poison value. Similar arguments apply to sub and mul.
1310 //
1311 // (add non-negative, non-negative) --> non-negative
1312 // (add negative, negative) --> negative
1313 if (Opcode == Instruction::Add) {
1314 if (KnownZero2.isNegative() && KnownZero3.isNegative())
1315 KnownZero.setBit(BitWidth - 1);
1316 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1317 KnownOne.setBit(BitWidth - 1);
1318 }
1319
1320 // (sub nsw non-negative, negative) --> non-negative
1321 // (sub nsw negative, non-negative) --> negative
1322 else if (Opcode == Instruction::Sub && LL == I) {
1323 if (KnownZero2.isNegative() && KnownOne3.isNegative())
1324 KnownZero.setBit(BitWidth - 1);
1325 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1326 KnownOne.setBit(BitWidth - 1);
1327 }
1328
1329 // (mul nsw non-negative, non-negative) --> non-negative
1330 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1331 KnownZero3.isNegative())
1332 KnownZero.setBit(BitWidth - 1);
1333 }
1334
Chris Lattner965c7692008-06-02 01:18:21 +00001335 break;
1336 }
1337 }
1338 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001339
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001340 // Unreachable blocks may have zero-operand PHI nodes.
1341 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001342 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001343
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001344 // Otherwise take the unions of the known bit sets of the operands,
1345 // taking conservative care to avoid excessive recursion.
1346 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001347 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001348 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001349 break;
1350
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001351 KnownZero = APInt::getAllOnesValue(BitWidth);
1352 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001353 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001354 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001355 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001356
1357 KnownZero2 = APInt(BitWidth, 0);
1358 KnownOne2 = APInt(BitWidth, 0);
1359 // Recurse, but cap the recursion to one level, because we don't
1360 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001361 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001362 KnownZero &= KnownZero2;
1363 KnownOne &= KnownOne2;
1364 // If all bits have been ruled out, there's no need to check
1365 // more operands.
1366 if (!KnownZero && !KnownOne)
1367 break;
1368 }
1369 }
Chris Lattner965c7692008-06-02 01:18:21 +00001370 break;
1371 }
1372 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001373 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001374 // If range metadata is attached to this call, set known bits from that,
1375 // and then intersect with known bits based on other properties of the
1376 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001377 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001378 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001379 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001380 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1381 KnownZero |= KnownZero2;
1382 KnownOne |= KnownOne2;
1383 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001384 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001385 switch (II->getIntrinsicID()) {
1386 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001387 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001388 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001389 KnownZero |= KnownZero2.byteSwap();
1390 KnownOne |= KnownOne2.byteSwap();
1391 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001392 case Intrinsic::ctlz:
1393 case Intrinsic::cttz: {
1394 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001395 // If this call is undefined for 0, the result will be less than 2^n.
1396 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1397 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001398 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001399 break;
1400 }
1401 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001402 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001403 // We can bound the space the count needs. Also, bits known to be zero
1404 // can't contribute to the population.
1405 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1406 unsigned LeadingZeros =
1407 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001408 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001409 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1410 KnownOne &= ~KnownZero;
1411 // TODO: we could bound KnownOne using the lower bound on the number
1412 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001413 break;
1414 }
Chad Rosierb3628842011-05-26 23:13:19 +00001415 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001416 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001417 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001418 }
1419 }
1420 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001421 case Instruction::ExtractElement:
1422 // Look through extract element. At the moment we keep this simple and skip
1423 // tracking the specific element. But at least we might find information
1424 // valid for all elements of the vector (for example if vector is sign
1425 // extended, shifted, etc).
1426 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1427 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001428 case Instruction::ExtractValue:
1429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001430 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001431 if (EVI->getNumIndices() != 1) break;
1432 if (EVI->getIndices()[0] == 0) {
1433 switch (II->getIntrinsicID()) {
1434 default: break;
1435 case Intrinsic::uadd_with_overflow:
1436 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001437 computeKnownBitsAddSub(true, II->getArgOperand(0),
1438 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001439 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001440 break;
1441 case Intrinsic::usub_with_overflow:
1442 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001443 computeKnownBitsAddSub(false, II->getArgOperand(0),
1444 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001445 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001446 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001447 case Intrinsic::umul_with_overflow:
1448 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001449 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001450 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1451 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001452 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001453 }
1454 }
1455 }
Chris Lattner965c7692008-06-02 01:18:21 +00001456 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001457}
1458
1459/// Determine which bits of V are known to be either zero or one and return
1460/// them in the KnownZero/KnownOne bit sets.
1461///
1462/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1463/// we cannot optimize based on the assumption that it is zero without changing
1464/// it to be an explicit zero. If we don't change it to zero, other code could
1465/// optimized based on the contradictory assumption that it is non-zero.
1466/// Because instcombine aggressively folds operations with undef args anyway,
1467/// this won't lose us code quality.
1468///
1469/// This function is defined on values with integer type, values with pointer
1470/// type, and vectors of integers. In the case
1471/// where V is a vector, known zero, and known one values are the
1472/// same width as the vector element, and the bit is set only if it is true
1473/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001474void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001475 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001476 assert(V && "No Value?");
1477 assert(Depth <= MaxDepth && "Limit Search Depth");
1478 unsigned BitWidth = KnownZero.getBitWidth();
1479
1480 assert((V->getType()->isIntOrIntVectorTy() ||
1481 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001482 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001483 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001484 (!V->getType()->isIntOrIntVectorTy() ||
1485 V->getType()->getScalarSizeInBits() == BitWidth) &&
1486 KnownZero.getBitWidth() == BitWidth &&
1487 KnownOne.getBitWidth() == BitWidth &&
1488 "V, KnownOne and KnownZero should have same BitWidth");
1489
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001490 const APInt *C;
1491 if (match(V, m_APInt(C))) {
1492 // We know all of the bits for a scalar constant or a splat vector constant!
1493 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001494 KnownZero = ~KnownOne;
1495 return;
1496 }
1497 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001498 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001499 KnownOne.clearAllBits();
1500 KnownZero = APInt::getAllOnesValue(BitWidth);
1501 return;
1502 }
1503 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001504 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001505 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001506 // We know that CDS must be a vector of integers. Take the intersection of
1507 // each element.
1508 KnownZero.setAllBits(); KnownOne.setAllBits();
1509 APInt Elt(KnownZero.getBitWidth(), 0);
1510 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1511 Elt = CDS->getElementAsInteger(i);
1512 KnownZero &= ~Elt;
1513 KnownOne &= Elt;
1514 }
1515 return;
1516 }
1517
Pete Cooper35b00d52016-08-13 01:05:32 +00001518 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001519 // We know that CV must be a vector of integers. Take the intersection of
1520 // each element.
1521 KnownZero.setAllBits(); KnownOne.setAllBits();
1522 APInt Elt(KnownZero.getBitWidth(), 0);
1523 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1524 Constant *Element = CV->getAggregateElement(i);
1525 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1526 if (!ElementCI) {
1527 KnownZero.clearAllBits();
1528 KnownOne.clearAllBits();
1529 return;
1530 }
1531 Elt = ElementCI->getValue();
1532 KnownZero &= ~Elt;
1533 KnownOne &= Elt;
1534 }
1535 return;
1536 }
1537
Jingyue Wu12b0c282015-06-15 05:46:29 +00001538 // Start out not knowing anything.
1539 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1540
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001541 // We can't imply anything about undefs.
1542 if (isa<UndefValue>(V))
1543 return;
1544
1545 // There's no point in looking through other users of ConstantData for
1546 // assumptions. Confirm that we've handled them all.
1547 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1548
Jingyue Wu12b0c282015-06-15 05:46:29 +00001549 // Limit search depth.
1550 // All recursive calls that increase depth must come after this.
1551 if (Depth == MaxDepth)
1552 return;
1553
1554 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1555 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001556 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001557 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001558 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001559 return;
1560 }
1561
Pete Cooper35b00d52016-08-13 01:05:32 +00001562 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001563 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001564
Artur Pilipenko029d8532015-09-30 11:55:45 +00001565 // Aligned pointers have trailing zeros - refine KnownZero set
1566 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001567 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001568 if (Align)
1569 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1570 }
1571
Philip Reames146307e2016-03-03 19:44:06 +00001572 // computeKnownBitsFromAssume strictly refines KnownZero and
1573 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001574
1575 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001576 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001577
Jay Foad5a29c362014-05-15 12:12:55 +00001578 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001579}
1580
Sanjay Patelaee84212014-11-04 16:27:42 +00001581/// Determine whether the sign bit is known to be zero or one.
1582/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001583void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001584 unsigned Depth, const Query &Q) {
1585 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001586 if (!BitWidth) {
1587 KnownZero = false;
1588 KnownOne = false;
1589 return;
1590 }
1591 APInt ZeroBits(BitWidth, 0);
1592 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001593 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001594 KnownOne = OneBits[BitWidth - 1];
1595 KnownZero = ZeroBits[BitWidth - 1];
1596}
1597
Sanjay Patelaee84212014-11-04 16:27:42 +00001598/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001599/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001600/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001601/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001602bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001603 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001604 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001605 if (C->isNullValue())
1606 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001607
1608 const APInt *ConstIntOrConstSplatInt;
1609 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1610 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001611 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001612
1613 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1614 // it is shifted off the end then the result is undefined.
1615 if (match(V, m_Shl(m_One(), m_Value())))
1616 return true;
1617
1618 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1619 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001620 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001621 return true;
1622
1623 // The remaining tests are all recursive, so bail out if we hit the limit.
1624 if (Depth++ == MaxDepth)
1625 return false;
1626
Craig Topper9f008862014-04-15 04:59:12 +00001627 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001628 // A shift left or a logical shift right of a power of two is a power of two
1629 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001630 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001631 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001632 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001633
Pete Cooper35b00d52016-08-13 01:05:32 +00001634 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001635 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001636
Pete Cooper35b00d52016-08-13 01:05:32 +00001637 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001638 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1639 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001640
Duncan Sandsba286d72011-10-26 20:55:21 +00001641 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1642 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001643 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1644 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001645 return true;
1646 // X & (-X) is always a power of two or zero.
1647 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1648 return true;
1649 return false;
1650 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001651
David Majnemerb7d54092013-07-30 21:01:36 +00001652 // Adding a power-of-two or zero to the same power-of-two or zero yields
1653 // either the original power-of-two, a larger power-of-two or zero.
1654 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001655 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001656 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1657 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1658 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001659 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001660 return true;
1661 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1662 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001663 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001664 return true;
1665
1666 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1667 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001668 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001669
1670 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001671 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001672 // If i8 V is a power of two or zero:
1673 // ZeroBits: 1 1 1 0 1 1 1 1
1674 // ~ZeroBits: 0 0 0 1 0 0 0 0
1675 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1676 // If OrZero isn't set, we cannot give back a zero result.
1677 // Make sure either the LHS or RHS has a bit set.
1678 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1679 return true;
1680 }
1681 }
David Majnemerbeab5672013-05-18 19:30:37 +00001682
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001683 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001684 // is a power of two only if the first operand is a power of two and not
1685 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001686 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1687 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001688 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001689 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001690 }
1691
Duncan Sandsd3951082011-01-25 09:38:29 +00001692 return false;
1693}
1694
Chandler Carruth80d3e562012-12-07 02:08:58 +00001695/// \brief Test whether a GEP's result is known to be non-null.
1696///
1697/// Uses properties inherent in a GEP to try to determine whether it is known
1698/// to be non-null.
1699///
1700/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001701static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001702 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001703 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1704 return false;
1705
1706 // FIXME: Support vector-GEPs.
1707 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1708
1709 // If the base pointer is non-null, we cannot walk to a null address with an
1710 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001711 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001712 return true;
1713
Chandler Carruth80d3e562012-12-07 02:08:58 +00001714 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1715 // If so, then the GEP cannot produce a null pointer, as doing so would
1716 // inherently violate the inbounds contract within address space zero.
1717 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1718 GTI != GTE; ++GTI) {
1719 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001720 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001721 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1722 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001723 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001724 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1725 if (ElementOffset > 0)
1726 return true;
1727 continue;
1728 }
1729
1730 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001731 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001732 continue;
1733
1734 // Fast path the constant operand case both for efficiency and so we don't
1735 // increment Depth when just zipping down an all-constant GEP.
1736 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1737 if (!OpC->isZero())
1738 return true;
1739 continue;
1740 }
1741
1742 // We post-increment Depth here because while isKnownNonZero increments it
1743 // as well, when we pop back up that increment won't persist. We don't want
1744 // to recurse 10k times just because we have 10k GEP operands. We don't
1745 // bail completely out because we want to handle constant GEPs regardless
1746 // of depth.
1747 if (Depth++ >= MaxDepth)
1748 continue;
1749
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001750 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001751 return true;
1752 }
1753
1754 return false;
1755}
1756
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001757/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1758/// ensure that the value it's attached to is never Value? 'RangeType' is
1759/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001760static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001761 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1762 assert(NumRanges >= 1);
1763 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001764 ConstantInt *Lower =
1765 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1766 ConstantInt *Upper =
1767 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001768 ConstantRange Range(Lower->getValue(), Upper->getValue());
1769 if (Range.contains(Value))
1770 return false;
1771 }
1772 return true;
1773}
1774
Sanjay Patelaee84212014-11-04 16:27:42 +00001775/// Return true if the given value is known to be non-zero when defined.
1776/// For vectors return true if every element is known to be non-zero when
1777/// defined. Supports values with integer or pointer type and vectors of
1778/// integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001779bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001780 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001781 if (C->isNullValue())
1782 return false;
1783 if (isa<ConstantInt>(C))
1784 // Must be non-zero due to null test above.
1785 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001786
1787 // For constant vectors, check that all elements are undefined or known
1788 // non-zero to determine that the whole vector is known non-zero.
1789 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1790 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1791 Constant *Elt = C->getAggregateElement(i);
1792 if (!Elt || Elt->isNullValue())
1793 return false;
1794 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1795 return false;
1796 }
1797 return true;
1798 }
1799
Duncan Sandsd3951082011-01-25 09:38:29 +00001800 return false;
1801 }
1802
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001803 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001804 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001805 // If the possible ranges don't contain zero, then the value is
1806 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001807 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001808 const APInt ZeroValue(Ty->getBitWidth(), 0);
1809 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1810 return true;
1811 }
1812 }
1813 }
1814
Duncan Sandsd3951082011-01-25 09:38:29 +00001815 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001816 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001817 return false;
1818
Chandler Carruth80d3e562012-12-07 02:08:58 +00001819 // Check for pointer simplifications.
1820 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001821 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001822 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001823 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001824 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001825 return true;
1826 }
1827
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001828 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001829
1830 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001831 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001832 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001833 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001834
1835 // ext X != 0 if X != 0.
1836 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001837 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001838
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001839 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001840 // if the lowest bit is shifted off the end.
1841 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001842 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001843 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001844 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001845 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001846
Duncan Sandsd3951082011-01-25 09:38:29 +00001847 APInt KnownZero(BitWidth, 0);
1848 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001849 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001850 if (KnownOne[0])
1851 return true;
1852 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001853 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001854 // defined if the sign bit is shifted off the end.
1855 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001856 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001857 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001858 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001859 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001860
Duncan Sandsd3951082011-01-25 09:38:29 +00001861 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001862 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001863 if (XKnownNegative)
1864 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001865
1866 // If the shifter operand is a constant, and all of the bits shifted
1867 // out are known to be zero, and X is known non-zero then at least one
1868 // non-zero bit must remain.
1869 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1870 APInt KnownZero(BitWidth, 0);
1871 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001872 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001873
James Molloyb6be1eb2015-09-24 16:06:32 +00001874 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1875 // Is there a known one in the portion not shifted out?
1876 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1877 return true;
1878 // Are all the bits to be shifted out known zero?
1879 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001880 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001881 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001882 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001883 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001884 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001885 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001886 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001887 // X + Y.
1888 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1889 bool XKnownNonNegative, XKnownNegative;
1890 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001891 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1892 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001893
1894 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001895 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001896 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001897 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001898 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001899
1900 // If X and Y are both negative (as signed values) then their sum is not
1901 // zero unless both X and Y equal INT_MIN.
1902 if (BitWidth && XKnownNegative && YKnownNegative) {
1903 APInt KnownZero(BitWidth, 0);
1904 APInt KnownOne(BitWidth, 0);
1905 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1906 // The sign bit of X is set. If some other bit is set then X is not equal
1907 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001908 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001909 if ((KnownOne & Mask) != 0)
1910 return true;
1911 // The sign bit of Y is set. If some other bit is set then Y is not equal
1912 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001913 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001914 if ((KnownOne & Mask) != 0)
1915 return true;
1916 }
1917
1918 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001919 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001920 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001921 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001922 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001923 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001924 return true;
1925 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001926 // X * Y.
1927 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001928 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001929 // If X and Y are non-zero then so is X * Y as long as the multiplication
1930 // does not overflow.
1931 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001932 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001933 return true;
1934 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001935 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001936 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001937 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1938 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001939 return true;
1940 }
James Molloy897048b2015-09-29 14:08:45 +00001941 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001942 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001943 // Try and detect a recurrence that monotonically increases from a
1944 // starting value, as these are common as induction variables.
1945 if (PN->getNumIncomingValues() == 2) {
1946 Value *Start = PN->getIncomingValue(0);
1947 Value *Induction = PN->getIncomingValue(1);
1948 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1949 std::swap(Start, Induction);
1950 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1951 if (!C->isZero() && !C->isNegative()) {
1952 ConstantInt *X;
1953 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1954 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1955 !X->isNegative())
1956 return true;
1957 }
1958 }
1959 }
Jun Bum Limca832662016-02-01 17:03:07 +00001960 // Check if all incoming values are non-zero constant.
1961 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1962 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1963 });
1964 if (AllNonZeroConstants)
1965 return true;
James Molloy897048b2015-09-29 14:08:45 +00001966 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001967
1968 if (!BitWidth) return false;
1969 APInt KnownZero(BitWidth, 0);
1970 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001971 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001972 return KnownOne != 0;
1973}
1974
James Molloy1d88d6f2015-10-22 13:18:42 +00001975/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001976static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1977 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001978 if (!BO || BO->getOpcode() != Instruction::Add)
1979 return false;
1980 Value *Op = nullptr;
1981 if (V2 == BO->getOperand(0))
1982 Op = BO->getOperand(1);
1983 else if (V2 == BO->getOperand(1))
1984 Op = BO->getOperand(0);
1985 else
1986 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001987 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001988}
1989
1990/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00001991static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001992 if (V1->getType()->isVectorTy() || V1 == V2)
1993 return false;
1994 if (V1->getType() != V2->getType())
1995 // We can't look through casts yet.
1996 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001997 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001998 return true;
1999
2000 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2001 // Are any known bits in V1 contradictory to known bits in V2? If V1
2002 // has a known zero where V2 has a known one, they must not be equal.
2003 auto BitWidth = Ty->getBitWidth();
2004 APInt KnownZero1(BitWidth, 0);
2005 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002006 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002007 APInt KnownZero2(BitWidth, 0);
2008 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002009 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002010
2011 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2012 if (OppositeBits.getBoolValue())
2013 return true;
2014 }
2015 return false;
2016}
2017
Sanjay Patelaee84212014-11-04 16:27:42 +00002018/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2019/// simplify operations downstream. Mask is known to be zero for bits that V
2020/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002021///
2022/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002023/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002024/// where V is a vector, the mask, known zero, and known one values are the
2025/// same width as the vector element, and the bit is set only if it is true
2026/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002027bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002028 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002029 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002030 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002031 return (KnownZero & Mask) == Mask;
2032}
2033
Sanjay Patela06d9892016-06-22 19:20:59 +00002034/// For vector constants, loop over the elements and find the constant with the
2035/// minimum number of sign bits. Return 0 if the value is not a vector constant
2036/// or if any element was not analyzed; otherwise, return the count for the
2037/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002038static unsigned computeNumSignBitsVectorConstant(const Value *V,
2039 unsigned TyBits) {
2040 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002041 if (!CV || !CV->getType()->isVectorTy())
2042 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002043
Sanjay Patela06d9892016-06-22 19:20:59 +00002044 unsigned MinSignBits = TyBits;
2045 unsigned NumElts = CV->getType()->getVectorNumElements();
2046 for (unsigned i = 0; i != NumElts; ++i) {
2047 // If we find a non-ConstantInt, bail out.
2048 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2049 if (!Elt)
2050 return 0;
2051
2052 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2053 APInt EltVal = Elt->getValue();
2054 if (EltVal.isNegative())
2055 EltVal = ~EltVal;
2056 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2057 }
2058
2059 return MinSignBits;
2060}
Chris Lattner965c7692008-06-02 01:18:21 +00002061
Sanjay Patelaee84212014-11-04 16:27:42 +00002062/// Return the number of times the sign bit of the register is replicated into
2063/// the other bits. We know that at least 1 bit is always equal to the sign bit
2064/// (itself), but other cases can give us information. For example, immediately
2065/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002066/// other, so we return 3. For vectors, return the number of sign bits for the
2067/// vector element with the mininum number of known sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002068unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002069 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002070 unsigned Tmp, Tmp2;
2071 unsigned FirstAnswer = 1;
2072
Jay Foada0653a32014-05-14 21:14:37 +00002073 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002074 // below.
2075
Chris Lattner965c7692008-06-02 01:18:21 +00002076 if (Depth == 6)
2077 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002078
Pete Cooper35b00d52016-08-13 01:05:32 +00002079 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002080 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002081 default: break;
2082 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002083 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002084 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002085
Nadav Rotemc99a3872015-03-06 00:23:58 +00002086 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002087 const APInt *Denominator;
2088 // sdiv X, C -> adds log(C) sign bits.
2089 if (match(U->getOperand(1), m_APInt(Denominator))) {
2090
2091 // Ignore non-positive denominator.
2092 if (!Denominator->isStrictlyPositive())
2093 break;
2094
2095 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002096 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002097
2098 // Add floor(log(C)) bits to the numerator bits.
2099 return std::min(TyBits, NumBits + Denominator->logBase2());
2100 }
2101 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002102 }
2103
2104 case Instruction::SRem: {
2105 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002106 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2107 // positive constant. This let us put a lower bound on the number of sign
2108 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002109 if (match(U->getOperand(1), m_APInt(Denominator))) {
2110
2111 // Ignore non-positive denominator.
2112 if (!Denominator->isStrictlyPositive())
2113 break;
2114
2115 // Calculate the incoming numerator bits. SRem by a positive constant
2116 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002117 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002118 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002119
2120 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002121 // denominator. Given that the denominator is positive, there are two
2122 // cases:
2123 //
2124 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2125 // (1 << ceilLogBase2(C)).
2126 //
2127 // 2. the numerator is negative. Then the result range is (-C,0] and
2128 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2129 //
2130 // Thus a lower bound on the number of sign bits is `TyBits -
2131 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002132
Sanjoy Dase561fee2015-03-25 22:33:53 +00002133 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002134 return std::max(NumrBits, ResBits);
2135 }
2136 break;
2137 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002138
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002139 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002140 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002141 // ashr X, C -> adds C sign bits. Vectors too.
2142 const APInt *ShAmt;
2143 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2144 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002145 if (Tmp > TyBits) Tmp = TyBits;
2146 }
2147 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002148 }
2149 case Instruction::Shl: {
2150 const APInt *ShAmt;
2151 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002152 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002153 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002154 Tmp2 = ShAmt->getZExtValue();
2155 if (Tmp2 >= TyBits || // Bad shift.
2156 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2157 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002158 }
2159 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002160 }
Chris Lattner965c7692008-06-02 01:18:21 +00002161 case Instruction::And:
2162 case Instruction::Or:
2163 case Instruction::Xor: // NOT is handled here.
2164 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002165 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002166 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002167 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002168 FirstAnswer = std::min(Tmp, Tmp2);
2169 // We computed what we know about the sign bits as our first
2170 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002171 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002172 }
2173 break;
2174
2175 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002176 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002177 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002178 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002179 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002180
Chris Lattner965c7692008-06-02 01:18:21 +00002181 case Instruction::Add:
2182 // Add can have at most one carry bit. Thus we know that the output
2183 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002184 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002185 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002186
Chris Lattner965c7692008-06-02 01:18:21 +00002187 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002188 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002189 if (CRHS->isAllOnesValue()) {
2190 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002191 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002192
Chris Lattner965c7692008-06-02 01:18:21 +00002193 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2194 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002195 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002196 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002197
Chris Lattner965c7692008-06-02 01:18:21 +00002198 // If we are subtracting one from a positive number, there is no carry
2199 // out of the result.
2200 if (KnownZero.isNegative())
2201 return Tmp;
2202 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002203
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002204 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002205 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002206 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002207
Chris Lattner965c7692008-06-02 01:18:21 +00002208 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002209 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002210 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002211
Chris Lattner965c7692008-06-02 01:18:21 +00002212 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002213 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002214 if (CLHS->isNullValue()) {
2215 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002216 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002217 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2218 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002219 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002220 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002221
Chris Lattner965c7692008-06-02 01:18:21 +00002222 // If the input is known to be positive (the sign bit is known clear),
2223 // the output of the NEG has the same number of sign bits as the input.
2224 if (KnownZero.isNegative())
2225 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002226
Chris Lattner965c7692008-06-02 01:18:21 +00002227 // Otherwise, we treat this like a SUB.
2228 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002229
Chris Lattner965c7692008-06-02 01:18:21 +00002230 // Sub can have at most one carry bit. Thus we know that the output
2231 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002232 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002233 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002234 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002235
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002236 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002237 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002238 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002239 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002240 if (NumIncomingValues > 4) break;
2241 // Unreachable blocks may have zero-operand PHI nodes.
2242 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002243
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002244 // Take the minimum of all incoming values. This can't infinitely loop
2245 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002246 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002247 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002248 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002249 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002250 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002251 }
2252 return Tmp;
2253 }
2254
Chris Lattner965c7692008-06-02 01:18:21 +00002255 case Instruction::Trunc:
2256 // FIXME: it's tricky to do anything useful for this, but it is an important
2257 // case for targets like X86.
2258 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002259
2260 case Instruction::ExtractElement:
2261 // Look through extract element. At the moment we keep this simple and skip
2262 // tracking the specific element. But at least we might find information
2263 // valid for all elements of the vector (for example if vector is sign
2264 // extended, shifted, etc).
2265 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002266 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002267
Chris Lattner965c7692008-06-02 01:18:21 +00002268 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2269 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002270
2271 // If we can examine all elements of a vector constant successfully, we're
2272 // done (we can't do any better than that). If not, keep trying.
2273 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2274 return VecSignBits;
2275
Chris Lattner965c7692008-06-02 01:18:21 +00002276 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002277 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002278
Sanjay Patele0536212016-06-23 17:41:59 +00002279 // If we know that the sign bit is either zero or one, determine the number of
2280 // identical bits in the top of the input value.
2281 if (KnownZero.isNegative())
2282 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002283
Sanjay Patele0536212016-06-23 17:41:59 +00002284 if (KnownOne.isNegative())
2285 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2286
2287 // computeKnownBits gave us no extra information about the top bits.
2288 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002289}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002290
Sanjay Patelaee84212014-11-04 16:27:42 +00002291/// This function computes the integer multiple of Base that equals V.
2292/// If successful, it returns true and returns the multiple in
2293/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002294/// through SExt instructions only if LookThroughSExt is true.
2295bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002296 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002297 const unsigned MaxDepth = 6;
2298
Dan Gohman6a976bb2009-11-18 00:58:27 +00002299 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002300 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002301 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002302
Chris Lattner229907c2011-07-18 04:54:35 +00002303 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002304
Dan Gohman6a976bb2009-11-18 00:58:27 +00002305 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002306
2307 if (Base == 0)
2308 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002309
Victor Hernandez47444882009-11-10 08:28:35 +00002310 if (Base == 1) {
2311 Multiple = V;
2312 return true;
2313 }
2314
2315 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2316 Constant *BaseVal = ConstantInt::get(T, Base);
2317 if (CO && CO == BaseVal) {
2318 // Multiple is 1.
2319 Multiple = ConstantInt::get(T, 1);
2320 return true;
2321 }
2322
2323 if (CI && CI->getZExtValue() % Base == 0) {
2324 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002325 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002326 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002327
Victor Hernandez47444882009-11-10 08:28:35 +00002328 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002329
Victor Hernandez47444882009-11-10 08:28:35 +00002330 Operator *I = dyn_cast<Operator>(V);
2331 if (!I) return false;
2332
2333 switch (I->getOpcode()) {
2334 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002335 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002336 if (!LookThroughSExt) return false;
2337 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002338 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002339 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2340 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002341 case Instruction::Shl:
2342 case Instruction::Mul: {
2343 Value *Op0 = I->getOperand(0);
2344 Value *Op1 = I->getOperand(1);
2345
2346 if (I->getOpcode() == Instruction::Shl) {
2347 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2348 if (!Op1CI) return false;
2349 // Turn Op0 << Op1 into Op0 * 2^Op1
2350 APInt Op1Int = Op1CI->getValue();
2351 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002352 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002353 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002354 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002355 }
2356
Craig Topper9f008862014-04-15 04:59:12 +00002357 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002358 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2359 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2360 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002361 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002362 MulC->getType()->getPrimitiveSizeInBits())
2363 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002364 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002365 MulC->getType()->getPrimitiveSizeInBits())
2366 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002367
Chris Lattner72d283c2010-09-05 17:20:46 +00002368 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2369 Multiple = ConstantExpr::getMul(MulC, Op1C);
2370 return true;
2371 }
Victor Hernandez47444882009-11-10 08:28:35 +00002372
2373 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2374 if (Mul0CI->getValue() == 1) {
2375 // V == Base * Op1, so return Op1
2376 Multiple = Op1;
2377 return true;
2378 }
2379 }
2380
Craig Topper9f008862014-04-15 04:59:12 +00002381 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002382 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2383 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2384 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002385 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002386 MulC->getType()->getPrimitiveSizeInBits())
2387 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002388 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002389 MulC->getType()->getPrimitiveSizeInBits())
2390 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002391
Chris Lattner72d283c2010-09-05 17:20:46 +00002392 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2393 Multiple = ConstantExpr::getMul(MulC, Op0C);
2394 return true;
2395 }
Victor Hernandez47444882009-11-10 08:28:35 +00002396
2397 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2398 if (Mul1CI->getValue() == 1) {
2399 // V == Base * Op0, so return Op0
2400 Multiple = Op0;
2401 return true;
2402 }
2403 }
Victor Hernandez47444882009-11-10 08:28:35 +00002404 }
2405 }
2406
2407 // We could not determine if V is a multiple of Base.
2408 return false;
2409}
2410
David Majnemerb4b27232016-04-19 19:10:21 +00002411Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2412 const TargetLibraryInfo *TLI) {
2413 const Function *F = ICS.getCalledFunction();
2414 if (!F)
2415 return Intrinsic::not_intrinsic;
2416
2417 if (F->isIntrinsic())
2418 return F->getIntrinsicID();
2419
2420 if (!TLI)
2421 return Intrinsic::not_intrinsic;
2422
2423 LibFunc::Func Func;
2424 // We're going to make assumptions on the semantics of the functions, check
2425 // that the target knows that it's available in this environment and it does
2426 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002427 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2428 return Intrinsic::not_intrinsic;
2429
2430 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002431 return Intrinsic::not_intrinsic;
2432
2433 // Otherwise check if we have a call to a function that can be turned into a
2434 // vector intrinsic.
2435 switch (Func) {
2436 default:
2437 break;
2438 case LibFunc::sin:
2439 case LibFunc::sinf:
2440 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002441 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002442 case LibFunc::cos:
2443 case LibFunc::cosf:
2444 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002445 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002446 case LibFunc::exp:
2447 case LibFunc::expf:
2448 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002449 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002450 case LibFunc::exp2:
2451 case LibFunc::exp2f:
2452 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002453 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002454 case LibFunc::log:
2455 case LibFunc::logf:
2456 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002457 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002458 case LibFunc::log10:
2459 case LibFunc::log10f:
2460 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002461 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002462 case LibFunc::log2:
2463 case LibFunc::log2f:
2464 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002465 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002466 case LibFunc::fabs:
2467 case LibFunc::fabsf:
2468 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002469 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002470 case LibFunc::fmin:
2471 case LibFunc::fminf:
2472 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002473 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002474 case LibFunc::fmax:
2475 case LibFunc::fmaxf:
2476 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002477 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002478 case LibFunc::copysign:
2479 case LibFunc::copysignf:
2480 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002481 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002482 case LibFunc::floor:
2483 case LibFunc::floorf:
2484 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002485 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002486 case LibFunc::ceil:
2487 case LibFunc::ceilf:
2488 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002489 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002490 case LibFunc::trunc:
2491 case LibFunc::truncf:
2492 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002493 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002494 case LibFunc::rint:
2495 case LibFunc::rintf:
2496 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002497 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002498 case LibFunc::nearbyint:
2499 case LibFunc::nearbyintf:
2500 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002501 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002502 case LibFunc::round:
2503 case LibFunc::roundf:
2504 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002505 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002506 case LibFunc::pow:
2507 case LibFunc::powf:
2508 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002509 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002510 case LibFunc::sqrt:
2511 case LibFunc::sqrtf:
2512 case LibFunc::sqrtl:
2513 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002514 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002515 return Intrinsic::not_intrinsic;
2516 }
2517
2518 return Intrinsic::not_intrinsic;
2519}
2520
Sanjay Patelaee84212014-11-04 16:27:42 +00002521/// Return true if we can prove that the specified FP value is never equal to
2522/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002523///
2524/// NOTE: this function will need to be revisited when we support non-default
2525/// rounding modes!
2526///
David Majnemer3ee5f342016-04-13 06:55:52 +00002527bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2528 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002529 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2530 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002531
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002532 // FIXME: Magic number! At the least, this should be given a name because it's
2533 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2534 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002535 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002536 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002537
Dan Gohman80ca01c2009-07-17 20:47:02 +00002538 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002539 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002540
2541 // Check if the nsz fast-math flag is set
2542 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2543 if (FPO->hasNoSignedZeros())
2544 return true;
2545
Chris Lattnera12a6de2008-06-02 01:29:46 +00002546 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002547 if (I->getOpcode() == Instruction::FAdd)
2548 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2549 if (CFP->isNullValue())
2550 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002551
Chris Lattnera12a6de2008-06-02 01:29:46 +00002552 // sitofp and uitofp turn into +0.0 for zero.
2553 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2554 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002555
David Majnemer3ee5f342016-04-13 06:55:52 +00002556 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002557 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002558 switch (IID) {
2559 default:
2560 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002561 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002562 case Intrinsic::sqrt:
2563 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2564 // fabs(x) != -0.0
2565 case Intrinsic::fabs:
2566 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002567 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002568 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002569
Chris Lattnera12a6de2008-06-02 01:29:46 +00002570 return false;
2571}
2572
David Majnemer3ee5f342016-04-13 06:55:52 +00002573bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2574 const TargetLibraryInfo *TLI,
2575 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002576 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2577 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2578
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002579 // FIXME: Magic number! At the least, this should be given a name because it's
2580 // used similarly in CannotBeNegativeZero(). A better fix may be to
2581 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002582 if (Depth == 6)
2583 return false; // Limit search depth.
2584
2585 const Operator *I = dyn_cast<Operator>(V);
2586 if (!I) return false;
2587
2588 switch (I->getOpcode()) {
2589 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002590 // Unsigned integers are always nonnegative.
2591 case Instruction::UIToFP:
2592 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002593 case Instruction::FMul:
2594 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002595 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002596 return true;
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002597 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002598 case Instruction::FAdd:
2599 case Instruction::FDiv:
2600 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002601 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2602 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002603 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002604 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2605 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002606 case Instruction::FPExt:
2607 case Instruction::FPTrunc:
2608 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002609 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2610 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002611 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002612 switch (IID) {
2613 default:
2614 break;
2615 case Intrinsic::maxnum:
2616 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2617 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2618 case Intrinsic::minnum:
2619 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2620 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2621 case Intrinsic::exp:
2622 case Intrinsic::exp2:
2623 case Intrinsic::fabs:
2624 case Intrinsic::sqrt:
2625 return true;
2626 case Intrinsic::powi:
2627 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2628 // powi(x,n) is non-negative if n is even.
2629 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2630 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002631 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002632 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2633 case Intrinsic::fma:
2634 case Intrinsic::fmuladd:
2635 // x*x+y is non-negative if y is non-negative.
2636 return I->getOperand(0) == I->getOperand(1) &&
2637 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2638 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002639 break;
2640 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002641 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002642}
2643
Sanjay Patelaee84212014-11-04 16:27:42 +00002644/// If the specified value can be set by repeating the same byte in memory,
2645/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002646/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2647/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2648/// byte store (e.g. i16 0x1234), return null.
2649Value *llvm::isBytewiseValue(Value *V) {
2650 // All byte-wide stores are splatable, even of arbitrary variables.
2651 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002652
2653 // Handle 'null' ConstantArrayZero etc.
2654 if (Constant *C = dyn_cast<Constant>(V))
2655 if (C->isNullValue())
2656 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002657
Chris Lattner9cb10352010-12-26 20:15:01 +00002658 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002659 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002660 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2661 if (CFP->getType()->isFloatTy())
2662 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2663 if (CFP->getType()->isDoubleTy())
2664 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2665 // Don't handle long double formats, which have strange constraints.
2666 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002667
Benjamin Kramer17d90152015-02-07 19:29:02 +00002668 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002669 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002670 if (CI->getBitWidth() % 8 == 0) {
2671 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002672
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002673 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002674 return nullptr;
2675 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002676 }
2677 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002678
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002679 // A ConstantDataArray/Vector is splatable if all its members are equal and
2680 // also splatable.
2681 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2682 Value *Elt = CA->getElementAsConstant(0);
2683 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002684 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002685 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002686
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002687 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2688 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002689 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002690
Chris Lattner9cb10352010-12-26 20:15:01 +00002691 return Val;
2692 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002693
Chris Lattner9cb10352010-12-26 20:15:01 +00002694 // Conceptually, we could handle things like:
2695 // %a = zext i8 %X to i16
2696 // %b = shl i16 %a, 8
2697 // %c = or i16 %a, %b
2698 // but until there is an example that actually needs this, it doesn't seem
2699 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002700 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002701}
2702
2703
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002704// This is the recursive version of BuildSubAggregate. It takes a few different
2705// arguments. Idxs is the index within the nested struct From that we are
2706// looking at now (which is of type IndexedType). IdxSkip is the number of
2707// indices from Idxs that should be left out when inserting into the resulting
2708// struct. To is the result struct built so far, new insertvalue instructions
2709// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002710static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002711 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002712 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002713 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002714 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002715 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002716 // Save the original To argument so we can modify it
2717 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002718 // General case, the type indexed by Idxs is a struct
2719 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2720 // Process each struct element recursively
2721 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002722 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002723 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002724 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002725 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002726 if (!To) {
2727 // Couldn't find any inserted value for this index? Cleanup
2728 while (PrevTo != OrigTo) {
2729 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2730 PrevTo = Del->getAggregateOperand();
2731 Del->eraseFromParent();
2732 }
2733 // Stop processing elements
2734 break;
2735 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002736 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002737 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002738 if (To)
2739 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002740 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002741 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2742 // the struct's elements had a value that was inserted directly. In the latter
2743 // case, perhaps we can't determine each of the subelements individually, but
2744 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002745
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002746 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002747 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002748
2749 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002750 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002751
2752 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002753 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002754 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002755}
2756
2757// This helper takes a nested struct and extracts a part of it (which is again a
2758// struct) into a new value. For example, given the struct:
2759// { a, { b, { c, d }, e } }
2760// and the indices "1, 1" this returns
2761// { c, d }.
2762//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002763// It does this by inserting an insertvalue for each element in the resulting
2764// struct, as opposed to just inserting a single struct. This will only work if
2765// each of the elements of the substruct are known (ie, inserted into From by an
2766// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002767//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002768// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002769static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002770 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002771 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002772 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002773 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002774 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002775 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002776 unsigned IdxSkip = Idxs.size();
2777
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002778 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002779}
2780
Sanjay Patelaee84212014-11-04 16:27:42 +00002781/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002782/// the scalar value indexed is already around as a register, for example if it
2783/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002784///
2785/// If InsertBefore is not null, this function will duplicate (modified)
2786/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002787Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2788 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002789 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002790 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002791 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002792 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002793 // We have indices, so V should have an indexable type.
2794 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2795 "Not looking at a struct or array?");
2796 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2797 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002798
Chris Lattner67058832012-01-25 06:48:06 +00002799 if (Constant *C = dyn_cast<Constant>(V)) {
2800 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002801 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002802 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2803 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002804
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002805 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002806 // Loop the indices for the insertvalue instruction in parallel with the
2807 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002808 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002809 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2810 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002811 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002812 // We can't handle this without inserting insertvalues
2813 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002814 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002815
2816 // The requested index identifies a part of a nested aggregate. Handle
2817 // this specially. For example,
2818 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2819 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2820 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2821 // This can be changed into
2822 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2823 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2824 // which allows the unused 0,0 element from the nested struct to be
2825 // removed.
2826 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2827 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002828 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002829
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002830 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002831 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002832 // looking for, then.
2833 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002834 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002835 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002836 }
2837 // If we end up here, the indices of the insertvalue match with those
2838 // requested (though possibly only partially). Now we recursively look at
2839 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002840 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002841 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002842 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002843 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002844
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002845 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002846 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002847 // something else, we can extract from that something else directly instead.
2848 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002849
2850 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002851 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002852 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002853 SmallVector<unsigned, 5> Idxs;
2854 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002855 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002856 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002857
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002858 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002859 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002860
Craig Topper1bef2c82012-12-22 19:15:35 +00002861 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002862 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002863
Jay Foad57aa6362011-07-13 10:26:04 +00002864 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002865 }
2866 // Otherwise, we don't know (such as, extracting from a function return value
2867 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002868 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002869}
Evan Chengda3db112008-06-30 07:31:25 +00002870
Sanjay Patelaee84212014-11-04 16:27:42 +00002871/// Analyze the specified pointer to see if it can be expressed as a base
2872/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002873Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002874 const DataLayout &DL) {
2875 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002876 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002877
2878 // We walk up the defs but use a visited set to handle unreachable code. In
2879 // that case, we stop after accumulating the cycle once (not that it
2880 // matters).
2881 SmallPtrSet<Value *, 16> Visited;
2882 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002883 if (Ptr->getType()->isVectorTy())
2884 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002885
Nuno Lopes368c4d02012-12-31 20:48:35 +00002886 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002887 // If one of the values we have visited is an addrspacecast, then
2888 // the pointer type of this GEP may be different from the type
2889 // of the Ptr parameter which was passed to this function. This
2890 // means when we construct GEPOffset, we need to use the size
2891 // of GEP's pointer type rather than the size of the original
2892 // pointer type.
2893 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002894 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2895 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002896
Tom Stellard17eb3412016-10-07 14:23:29 +00002897 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002898
Nuno Lopes368c4d02012-12-31 20:48:35 +00002899 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002900 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2901 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002902 Ptr = cast<Operator>(Ptr)->getOperand(0);
2903 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002904 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002905 break;
2906 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002907 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002908 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002909 }
2910 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002911 Offset = ByteOffset.getSExtValue();
2912 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002913}
2914
David L Kreitzer752c1442016-04-13 14:31:06 +00002915bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2916 // Make sure the GEP has exactly three arguments.
2917 if (GEP->getNumOperands() != 3)
2918 return false;
2919
2920 // Make sure the index-ee is a pointer to array of i8.
2921 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2922 if (!AT || !AT->getElementType()->isIntegerTy(8))
2923 return false;
2924
2925 // Check to make sure that the first operand of the GEP is an integer and
2926 // has value 0 so that we are sure we're indexing into the initializer.
2927 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2928 if (!FirstIdx || !FirstIdx->isZero())
2929 return false;
2930
2931 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002932}
Chris Lattnere28618d2010-11-30 22:25:26 +00002933
Sanjay Patelaee84212014-11-04 16:27:42 +00002934/// This function computes the length of a null-terminated C string pointed to
2935/// by V. If successful, it returns true and returns the string in Str.
2936/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002937bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2938 uint64_t Offset, bool TrimAtNul) {
2939 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002940
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002941 // Look through bitcast instructions and geps.
2942 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002943
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002944 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002945 // offset.
2946 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002947 // The GEP operator should be based on a pointer to string constant, and is
2948 // indexing into the string constant.
2949 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002950 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002951
Evan Chengda3db112008-06-30 07:31:25 +00002952 // If the second index isn't a ConstantInt, then this is a variable index
2953 // into the array. If this occurs, we can't say anything meaningful about
2954 // the string.
2955 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002956 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002957 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002958 else
2959 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002960 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2961 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002962 }
Nick Lewycky46209882011-10-20 00:34:35 +00002963
Evan Chengda3db112008-06-30 07:31:25 +00002964 // The GEP instruction, constant or instruction, must reference a global
2965 // variable that is a constant and is initialized. The referenced constant
2966 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002967 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002968 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002969 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002970
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002971 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002972 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002973 // This is a degenerate case. The initializer is constant zero so the
2974 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002975 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002976 return true;
2977 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002978
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002979 // This must be a ConstantDataArray.
2980 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002981 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002982 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002983
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002984 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002985 uint64_t NumElts = Array->getType()->getArrayNumElements();
2986
2987 // Start out with the entire array in the StringRef.
2988 Str = Array->getAsString();
2989
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002990 if (Offset > NumElts)
2991 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002992
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002993 // Skip over 'offset' bytes.
2994 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002995
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002996 if (TrimAtNul) {
2997 // Trim off the \0 and anything after it. If the array is not nul
2998 // terminated, we just return the whole end of string. The client may know
2999 // some other way that the string is length-bound.
3000 Str = Str.substr(0, Str.find('\0'));
3001 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003002 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003003}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003004
3005// These next two are very similar to the above, but also look through PHI
3006// nodes.
3007// TODO: See if we can integrate these two together.
3008
Sanjay Patelaee84212014-11-04 16:27:42 +00003009/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003010/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003011static uint64_t GetStringLengthH(const Value *V,
3012 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003013 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003014 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003015
3016 // If this is a PHI node, there are two cases: either we have already seen it
3017 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003018 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003019 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003020 return ~0ULL; // already in the set.
3021
3022 // If it was new, see if all the input strings are the same length.
3023 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003024 for (Value *IncValue : PN->incoming_values()) {
3025 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003026 if (Len == 0) return 0; // Unknown length -> unknown.
3027
3028 if (Len == ~0ULL) continue;
3029
3030 if (Len != LenSoFar && LenSoFar != ~0ULL)
3031 return 0; // Disagree -> unknown.
3032 LenSoFar = Len;
3033 }
3034
3035 // Success, all agree.
3036 return LenSoFar;
3037 }
3038
3039 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003040 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003041 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3042 if (Len1 == 0) return 0;
3043 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3044 if (Len2 == 0) return 0;
3045 if (Len1 == ~0ULL) return Len2;
3046 if (Len2 == ~0ULL) return Len1;
3047 if (Len1 != Len2) return 0;
3048 return Len1;
3049 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003050
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003051 // Otherwise, see if we can read the string.
3052 StringRef StrData;
3053 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003054 return 0;
3055
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003056 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003057}
3058
Sanjay Patelaee84212014-11-04 16:27:42 +00003059/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003060/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003061uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003062 if (!V->getType()->isPointerTy()) return 0;
3063
Pete Cooper35b00d52016-08-13 01:05:32 +00003064 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003065 uint64_t Len = GetStringLengthH(V, PHIs);
3066 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3067 // an empty string as a length.
3068 return Len == ~0ULL ? 1 : Len;
3069}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003070
Adam Nemete2b885c2015-04-23 20:09:20 +00003071/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3072/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003073static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3074 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003075 // Find the loop-defined value.
3076 Loop *L = LI->getLoopFor(PN->getParent());
3077 if (PN->getNumIncomingValues() != 2)
3078 return true;
3079
3080 // Find the value from previous iteration.
3081 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3082 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3083 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3084 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3085 return true;
3086
3087 // If a new pointer is loaded in the loop, the pointer references a different
3088 // object in every iteration. E.g.:
3089 // for (i)
3090 // int *p = a[i];
3091 // ...
3092 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3093 if (!L->isLoopInvariant(Load->getPointerOperand()))
3094 return false;
3095 return true;
3096}
3097
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003098Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3099 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003100 if (!V->getType()->isPointerTy())
3101 return V;
3102 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3103 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3104 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003105 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3106 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003107 V = cast<Operator>(V)->getOperand(0);
3108 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003109 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003110 return V;
3111 V = GA->getAliasee();
3112 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003113 if (auto CS = CallSite(V))
3114 if (Value *RV = CS.getReturnedArgOperand()) {
3115 V = RV;
3116 continue;
3117 }
3118
Dan Gohman05b18f12010-12-15 20:49:55 +00003119 // See if InstructionSimplify knows any relevant tricks.
3120 if (Instruction *I = dyn_cast<Instruction>(V))
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00003121 // TODO: Acquire a DominatorTree and use it.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003122 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003123 V = Simplified;
3124 continue;
3125 }
3126
Dan Gohmana4fcd242010-12-15 20:02:24 +00003127 return V;
3128 }
3129 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3130 }
3131 return V;
3132}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003133
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003134void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003135 const DataLayout &DL, LoopInfo *LI,
3136 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003137 SmallPtrSet<Value *, 4> Visited;
3138 SmallVector<Value *, 4> Worklist;
3139 Worklist.push_back(V);
3140 do {
3141 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003142 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003143
David Blaikie70573dc2014-11-19 07:49:26 +00003144 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003145 continue;
3146
3147 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3148 Worklist.push_back(SI->getTrueValue());
3149 Worklist.push_back(SI->getFalseValue());
3150 continue;
3151 }
3152
3153 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003154 // If this PHI changes the underlying object in every iteration of the
3155 // loop, don't look through it. Consider:
3156 // int **A;
3157 // for (i) {
3158 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3159 // Curr = A[i];
3160 // *Prev, *Curr;
3161 //
3162 // Prev is tracking Curr one iteration behind so they refer to different
3163 // underlying objects.
3164 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3165 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003166 for (Value *IncValue : PN->incoming_values())
3167 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003168 continue;
3169 }
3170
3171 Objects.push_back(P);
3172 } while (!Worklist.empty());
3173}
3174
Sanjay Patelaee84212014-11-04 16:27:42 +00003175/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003176bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003177 for (const User *U : V->users()) {
3178 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003179 if (!II) return false;
3180
3181 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3182 II->getIntrinsicID() != Intrinsic::lifetime_end)
3183 return false;
3184 }
3185 return true;
3186}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003187
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003188bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3189 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003190 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003191 const Operator *Inst = dyn_cast<Operator>(V);
3192 if (!Inst)
3193 return false;
3194
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003195 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3196 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3197 if (C->canTrap())
3198 return false;
3199
3200 switch (Inst->getOpcode()) {
3201 default:
3202 return true;
3203 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003204 case Instruction::URem: {
3205 // x / y is undefined if y == 0.
3206 const APInt *V;
3207 if (match(Inst->getOperand(1), m_APInt(V)))
3208 return *V != 0;
3209 return false;
3210 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003211 case Instruction::SDiv:
3212 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003213 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003214 const APInt *Numerator, *Denominator;
3215 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3216 return false;
3217 // We cannot hoist this division if the denominator is 0.
3218 if (*Denominator == 0)
3219 return false;
3220 // It's safe to hoist if the denominator is not 0 or -1.
3221 if (*Denominator != -1)
3222 return true;
3223 // At this point we know that the denominator is -1. It is safe to hoist as
3224 // long we know that the numerator is not INT_MIN.
3225 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3226 return !Numerator->isMinSignedValue();
3227 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003228 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003229 }
3230 case Instruction::Load: {
3231 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003232 if (!LI->isUnordered() ||
3233 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003234 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003235 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003236 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003237 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003238 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003239 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3240 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003241 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003242 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003243 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3244 switch (II->getIntrinsicID()) {
3245 // These synthetic intrinsics have no side-effects and just mark
3246 // information about their operands.
3247 // FIXME: There are other no-op synthetic instructions that potentially
3248 // should be considered at least *safe* to speculate...
3249 case Intrinsic::dbg_declare:
3250 case Intrinsic::dbg_value:
3251 return true;
3252
3253 case Intrinsic::bswap:
3254 case Intrinsic::ctlz:
3255 case Intrinsic::ctpop:
3256 case Intrinsic::cttz:
3257 case Intrinsic::objectsize:
3258 case Intrinsic::sadd_with_overflow:
3259 case Intrinsic::smul_with_overflow:
3260 case Intrinsic::ssub_with_overflow:
3261 case Intrinsic::uadd_with_overflow:
3262 case Intrinsic::umul_with_overflow:
3263 case Intrinsic::usub_with_overflow:
3264 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003265 // These intrinsics are defined to have the same behavior as libm
3266 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003267 case Intrinsic::sqrt:
3268 case Intrinsic::fma:
3269 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003270 return true;
3271 // These intrinsics are defined to have the same behavior as libm
3272 // functions, and the corresponding libm functions never set errno.
3273 case Intrinsic::trunc:
3274 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003275 case Intrinsic::fabs:
3276 case Intrinsic::minnum:
3277 case Intrinsic::maxnum:
3278 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003279 // These intrinsics are defined to have the same behavior as libm
3280 // functions, which never overflow when operating on the IEEE754 types
3281 // that we support, and never set errno otherwise.
3282 case Intrinsic::ceil:
3283 case Intrinsic::floor:
3284 case Intrinsic::nearbyint:
3285 case Intrinsic::rint:
3286 case Intrinsic::round:
3287 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003288 // TODO: are convert_{from,to}_fp16 safe?
3289 // TODO: can we list target-specific intrinsics here?
3290 default: break;
3291 }
3292 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003293 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003294 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003295 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003296 case Instruction::VAArg:
3297 case Instruction::Alloca:
3298 case Instruction::Invoke:
3299 case Instruction::PHI:
3300 case Instruction::Store:
3301 case Instruction::Ret:
3302 case Instruction::Br:
3303 case Instruction::IndirectBr:
3304 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003305 case Instruction::Unreachable:
3306 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003307 case Instruction::AtomicRMW:
3308 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003309 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003310 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003311 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003312 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003313 case Instruction::CatchRet:
3314 case Instruction::CleanupPad:
3315 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003316 return false; // Misc instructions which have effects
3317 }
3318}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003319
Quentin Colombet6443cce2015-08-06 18:44:34 +00003320bool llvm::mayBeMemoryDependent(const Instruction &I) {
3321 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3322}
3323
Sanjay Patelaee84212014-11-04 16:27:42 +00003324/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003325bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003326 assert(V->getType()->isPointerTy() && "V must be pointer type");
3327
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003328 // Alloca never returns null, malloc might.
3329 if (isa<AllocaInst>(V)) return true;
3330
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003331 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003332 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003333 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003334
Peter Collingbourne235c2752016-12-08 19:01:00 +00003335 // A global variable in address space 0 is non null unless extern weak
3336 // or an absolute symbol reference. Other address spaces may have null as a
3337 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003338 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003339 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003340 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003341
Sanjoy Das5056e192016-05-07 02:08:22 +00003342 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003343 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003344 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003345
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003346 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003347 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003348 return true;
3349
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003350 return false;
3351}
David Majnemer491331a2015-01-02 07:29:43 +00003352
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003353static bool isKnownNonNullFromDominatingCondition(const Value *V,
3354 const Instruction *CtxI,
3355 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003356 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003357 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Chen Li0d043b52015-09-14 18:10:43 +00003358
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003359 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003360 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003361 // Avoid massive lists
3362 if (NumUsesExplored >= DomConditionsMaxUses)
3363 break;
3364 NumUsesExplored++;
3365 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003366 CmpInst::Predicate Pred;
3367 if (!match(const_cast<User *>(U),
3368 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3369 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003370 continue;
3371
Sanjoy Das987aaa12016-05-07 02:08:24 +00003372 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003373 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3374 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003375
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003376 BasicBlock *NonNullSuccessor =
3377 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3378 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3379 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3380 return true;
3381 } else if (Pred == ICmpInst::ICMP_NE &&
3382 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3383 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003384 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003385 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003386 }
3387 }
3388
3389 return false;
3390}
3391
3392bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003393 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003394 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3395 return false;
3396
Sean Silva45835e72016-07-02 23:47:27 +00003397 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003398 return true;
3399
3400 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3401}
3402
Pete Cooper35b00d52016-08-13 01:05:32 +00003403OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3404 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003405 const DataLayout &DL,
David Majnemer491331a2015-01-02 07:29:43 +00003406 const Instruction *CxtI,
3407 const DominatorTree *DT) {
3408 // Multiplying n * m significant bits yields a result of n + m significant
3409 // bits. If the total number of significant bits does not exceed the
3410 // result bit width (minus 1), there is no overflow.
3411 // This means if we have enough leading zero bits in the operands
3412 // we can guarantee that the result does not overflow.
3413 // Ref: "Hacker's Delight" by Henry Warren
3414 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3415 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003416 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003417 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003418 APInt RHSKnownOne(BitWidth, 0);
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00003419 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, CxtI, DT);
3420 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, CxtI, DT);
David Majnemer491331a2015-01-02 07:29:43 +00003421 // Note that underestimating the number of zero bits gives a more
3422 // conservative answer.
3423 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3424 RHSKnownZero.countLeadingOnes();
3425 // First handle the easy case: if we have enough zero bits there's
3426 // definitely no overflow.
3427 if (ZeroBits >= BitWidth)
3428 return OverflowResult::NeverOverflows;
3429
3430 // Get the largest possible values for each operand.
3431 APInt LHSMax = ~LHSKnownZero;
3432 APInt RHSMax = ~RHSKnownZero;
3433
3434 // We know the multiply operation doesn't overflow if the maximum values for
3435 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003436 bool MaxOverflow;
3437 LHSMax.umul_ov(RHSMax, MaxOverflow);
3438 if (!MaxOverflow)
3439 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003440
David Majnemerc8a576b2015-01-02 07:29:47 +00003441 // We know it always overflows if multiplying the smallest possible values for
3442 // the operands also results in overflow.
3443 bool MinOverflow;
3444 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3445 if (MinOverflow)
3446 return OverflowResult::AlwaysOverflows;
3447
3448 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003449}
David Majnemer5310c1e2015-01-07 00:39:50 +00003450
Pete Cooper35b00d52016-08-13 01:05:32 +00003451OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3452 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003453 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003454 const Instruction *CxtI,
3455 const DominatorTree *DT) {
3456 bool LHSKnownNonNegative, LHSKnownNegative;
3457 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00003458 CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003459 if (LHSKnownNonNegative || LHSKnownNegative) {
3460 bool RHSKnownNonNegative, RHSKnownNegative;
3461 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00003462 CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003463
3464 if (LHSKnownNegative && RHSKnownNegative) {
3465 // The sign bit is set in both cases: this MUST overflow.
3466 // Create a simple add instruction, and insert it into the struct.
3467 return OverflowResult::AlwaysOverflows;
3468 }
3469
3470 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3471 // The sign bit is clear in both cases: this CANNOT overflow.
3472 // Create a simple add instruction, and insert it into the struct.
3473 return OverflowResult::NeverOverflows;
3474 }
3475 }
3476
3477 return OverflowResult::MayOverflow;
3478}
James Molloy71b91c22015-05-11 14:42:20 +00003479
Pete Cooper35b00d52016-08-13 01:05:32 +00003480static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3481 const Value *RHS,
3482 const AddOperator *Add,
3483 const DataLayout &DL,
Pete Cooper35b00d52016-08-13 01:05:32 +00003484 const Instruction *CxtI,
3485 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003486 if (Add && Add->hasNoSignedWrap()) {
3487 return OverflowResult::NeverOverflows;
3488 }
3489
3490 bool LHSKnownNonNegative, LHSKnownNegative;
3491 bool RHSKnownNonNegative, RHSKnownNegative;
3492 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00003493 CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003494 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00003495 CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003496
3497 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3498 (LHSKnownNegative && RHSKnownNonNegative)) {
3499 // The sign bits are opposite: this CANNOT overflow.
3500 return OverflowResult::NeverOverflows;
3501 }
3502
3503 // The remaining code needs Add to be available. Early returns if not so.
3504 if (!Add)
3505 return OverflowResult::MayOverflow;
3506
3507 // If the sign of Add is the same as at least one of the operands, this add
3508 // CANNOT overflow. This is particularly useful when the sum is
3509 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3510 // operands.
3511 bool LHSOrRHSKnownNonNegative =
3512 (LHSKnownNonNegative || RHSKnownNonNegative);
3513 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3514 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3515 bool AddKnownNonNegative, AddKnownNegative;
3516 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00003517 /*Depth=*/0, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003518 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3519 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3520 return OverflowResult::NeverOverflows;
3521 }
3522 }
3523
3524 return OverflowResult::MayOverflow;
3525}
3526
Pete Cooper35b00d52016-08-13 01:05:32 +00003527bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3528 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003529#ifndef NDEBUG
3530 auto IID = II->getIntrinsicID();
3531 assert((IID == Intrinsic::sadd_with_overflow ||
3532 IID == Intrinsic::uadd_with_overflow ||
3533 IID == Intrinsic::ssub_with_overflow ||
3534 IID == Intrinsic::usub_with_overflow ||
3535 IID == Intrinsic::smul_with_overflow ||
3536 IID == Intrinsic::umul_with_overflow) &&
3537 "Not an overflow intrinsic!");
3538#endif
3539
Pete Cooper35b00d52016-08-13 01:05:32 +00003540 SmallVector<const BranchInst *, 2> GuardingBranches;
3541 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003542
Pete Cooper35b00d52016-08-13 01:05:32 +00003543 for (const User *U : II->users()) {
3544 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003545 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3546
3547 if (EVI->getIndices()[0] == 0)
3548 Results.push_back(EVI);
3549 else {
3550 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3551
Pete Cooper35b00d52016-08-13 01:05:32 +00003552 for (const auto *U : EVI->users())
3553 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003554 assert(B->isConditional() && "How else is it using an i1?");
3555 GuardingBranches.push_back(B);
3556 }
3557 }
3558 } else {
3559 // We are using the aggregate directly in a way we don't want to analyze
3560 // here (storing it to a global, say).
3561 return false;
3562 }
3563 }
3564
Pete Cooper35b00d52016-08-13 01:05:32 +00003565 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003566 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3567 if (!NoWrapEdge.isSingleEdge())
3568 return false;
3569
3570 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003571 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003572 // If the extractvalue itself is not executed on overflow, the we don't
3573 // need to check each use separately, since domination is transitive.
3574 if (DT.dominates(NoWrapEdge, Result->getParent()))
3575 continue;
3576
3577 for (auto &RU : Result->uses())
3578 if (!DT.dominates(NoWrapEdge, RU))
3579 return false;
3580 }
3581
3582 return true;
3583 };
3584
3585 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3586}
3587
3588
Pete Cooper35b00d52016-08-13 01:05:32 +00003589OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003590 const DataLayout &DL,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003591 const Instruction *CxtI,
3592 const DominatorTree *DT) {
3593 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00003594 Add, DL, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003595}
3596
Pete Cooper35b00d52016-08-13 01:05:32 +00003597OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3598 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003599 const DataLayout &DL,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003600 const Instruction *CxtI,
3601 const DominatorTree *DT) {
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00003602 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003603}
3604
Jingyue Wu42f1d672015-07-28 18:22:40 +00003605bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003606 // A memory operation returns normally if it isn't volatile. A volatile
3607 // operation is allowed to trap.
3608 //
3609 // An atomic operation isn't guaranteed to return in a reasonable amount of
3610 // time because it's possible for another thread to interfere with it for an
3611 // arbitrary length of time, but programs aren't allowed to rely on that.
3612 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3613 return !LI->isVolatile();
3614 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3615 return !SI->isVolatile();
3616 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3617 return !CXI->isVolatile();
3618 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3619 return !RMWI->isVolatile();
3620 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3621 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003622
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003623 // If there is no successor, then execution can't transfer to it.
3624 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3625 return !CRI->unwindsToCaller();
3626 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3627 return !CatchSwitch->unwindsToCaller();
3628 if (isa<ResumeInst>(I))
3629 return false;
3630 if (isa<ReturnInst>(I))
3631 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003632
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003633 // Calls can throw, or contain an infinite loop, or kill the process.
3634 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3635 // Calls which don't write to arbitrary memory are safe.
3636 // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3637 // but it's consistent with other passes. See http://llvm.org/PR965 .
3638 // FIXME: This isn't aggressive enough; a call which only writes to a
3639 // global is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003640 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3641 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003642 }
3643
3644 // Other instructions return normally.
3645 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003646}
3647
3648bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3649 const Loop *L) {
3650 // The loop header is guaranteed to be executed for every iteration.
3651 //
3652 // FIXME: Relax this constraint to cover all basic blocks that are
3653 // guaranteed to be executed at every iteration.
3654 if (I->getParent() != L->getHeader()) return false;
3655
3656 for (const Instruction &LI : *L->getHeader()) {
3657 if (&LI == I) return true;
3658 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3659 }
3660 llvm_unreachable("Instruction not contained in its own parent basic block.");
3661}
3662
3663bool llvm::propagatesFullPoison(const Instruction *I) {
3664 switch (I->getOpcode()) {
3665 case Instruction::Add:
3666 case Instruction::Sub:
3667 case Instruction::Xor:
3668 case Instruction::Trunc:
3669 case Instruction::BitCast:
3670 case Instruction::AddrSpaceCast:
3671 // These operations all propagate poison unconditionally. Note that poison
3672 // is not any particular value, so xor or subtraction of poison with
3673 // itself still yields poison, not zero.
3674 return true;
3675
3676 case Instruction::AShr:
3677 case Instruction::SExt:
3678 // For these operations, one bit of the input is replicated across
3679 // multiple output bits. A replicated poison bit is still poison.
3680 return true;
3681
3682 case Instruction::Shl: {
3683 // Left shift *by* a poison value is poison. The number of
3684 // positions to shift is unsigned, so no negative values are
3685 // possible there. Left shift by zero places preserves poison. So
3686 // it only remains to consider left shift of poison by a positive
3687 // number of places.
3688 //
3689 // A left shift by a positive number of places leaves the lowest order bit
3690 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3691 // make the poison operand violate that flag, yielding a fresh full-poison
3692 // value.
3693 auto *OBO = cast<OverflowingBinaryOperator>(I);
3694 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3695 }
3696
3697 case Instruction::Mul: {
3698 // A multiplication by zero yields a non-poison zero result, so we need to
3699 // rule out zero as an operand. Conservatively, multiplication by a
3700 // non-zero constant is not multiplication by zero.
3701 //
3702 // Multiplication by a non-zero constant can leave some bits
3703 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3704 // order bit unpoisoned. So we need to consider that.
3705 //
3706 // Multiplication by 1 preserves poison. If the multiplication has a
3707 // no-wrap flag, then we can make the poison operand violate that flag
3708 // when multiplied by any integer other than 0 and 1.
3709 auto *OBO = cast<OverflowingBinaryOperator>(I);
3710 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3711 for (Value *V : OBO->operands()) {
3712 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3713 // A ConstantInt cannot yield poison, so we can assume that it is
3714 // the other operand that is poison.
3715 return !CI->isZero();
3716 }
3717 }
3718 }
3719 return false;
3720 }
3721
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003722 case Instruction::ICmp:
3723 // Comparing poison with any value yields poison. This is why, for
3724 // instance, x s< (x +nsw 1) can be folded to true.
3725 return true;
3726
Jingyue Wu42f1d672015-07-28 18:22:40 +00003727 case Instruction::GetElementPtr:
3728 // A GEP implicitly represents a sequence of additions, subtractions,
3729 // truncations, sign extensions and multiplications. The multiplications
3730 // are by the non-zero sizes of some set of types, so we do not have to be
3731 // concerned with multiplication by zero. If the GEP is in-bounds, then
3732 // these operations are implicitly no-signed-wrap so poison is propagated
3733 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3734 return cast<GEPOperator>(I)->isInBounds();
3735
3736 default:
3737 return false;
3738 }
3739}
3740
3741const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3742 switch (I->getOpcode()) {
3743 case Instruction::Store:
3744 return cast<StoreInst>(I)->getPointerOperand();
3745
3746 case Instruction::Load:
3747 return cast<LoadInst>(I)->getPointerOperand();
3748
3749 case Instruction::AtomicCmpXchg:
3750 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3751
3752 case Instruction::AtomicRMW:
3753 return cast<AtomicRMWInst>(I)->getPointerOperand();
3754
3755 case Instruction::UDiv:
3756 case Instruction::SDiv:
3757 case Instruction::URem:
3758 case Instruction::SRem:
3759 return I->getOperand(1);
3760
3761 default:
3762 return nullptr;
3763 }
3764}
3765
3766bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3767 // We currently only look for uses of poison values within the same basic
3768 // block, as that makes it easier to guarantee that the uses will be
3769 // executed given that PoisonI is executed.
3770 //
3771 // FIXME: Expand this to consider uses beyond the same basic block. To do
3772 // this, look out for the distinction between post-dominance and strong
3773 // post-dominance.
3774 const BasicBlock *BB = PoisonI->getParent();
3775
3776 // Set of instructions that we have proved will yield poison if PoisonI
3777 // does.
3778 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003779 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003780 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003781 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003782
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003783 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003784
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003785 unsigned Iter = 0;
3786 while (Iter++ < MaxDepth) {
3787 for (auto &I : make_range(Begin, End)) {
3788 if (&I != PoisonI) {
3789 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3790 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3791 return true;
3792 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3793 return false;
3794 }
3795
3796 // Mark poison that propagates from I through uses of I.
3797 if (YieldsPoison.count(&I)) {
3798 for (const User *User : I.users()) {
3799 const Instruction *UserI = cast<Instruction>(User);
3800 if (propagatesFullPoison(UserI))
3801 YieldsPoison.insert(User);
3802 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003803 }
3804 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003805
3806 if (auto *NextBB = BB->getSingleSuccessor()) {
3807 if (Visited.insert(NextBB).second) {
3808 BB = NextBB;
3809 Begin = BB->getFirstNonPHI()->getIterator();
3810 End = BB->end();
3811 continue;
3812 }
3813 }
3814
3815 break;
3816 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003817 return false;
3818}
3819
Pete Cooper35b00d52016-08-13 01:05:32 +00003820static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003821 if (FMF.noNaNs())
3822 return true;
3823
3824 if (auto *C = dyn_cast<ConstantFP>(V))
3825 return !C->isNaN();
3826 return false;
3827}
3828
Pete Cooper35b00d52016-08-13 01:05:32 +00003829static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003830 if (auto *C = dyn_cast<ConstantFP>(V))
3831 return !C->isZero();
3832 return false;
3833}
3834
Sanjay Patel819f0962016-11-13 19:30:19 +00003835/// Match non-obvious integer minimum and maximum sequences.
3836static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3837 Value *CmpLHS, Value *CmpRHS,
3838 Value *TrueVal, Value *FalseVal,
3839 Value *&LHS, Value *&RHS) {
3840 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3841 return {SPF_UNKNOWN, SPNB_NA, false};
3842
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003843 // Z = X -nsw Y
3844 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3845 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3846 if (match(TrueVal, m_Zero()) &&
3847 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3848 LHS = TrueVal;
3849 RHS = FalseVal;
3850 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3851 }
3852
3853 // Z = X -nsw Y
3854 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3855 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3856 if (match(FalseVal, m_Zero()) &&
3857 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3858 LHS = TrueVal;
3859 RHS = FalseVal;
3860 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3861 }
3862
Sanjay Patel819f0962016-11-13 19:30:19 +00003863 const APInt *C1;
3864 if (!match(CmpRHS, m_APInt(C1)))
3865 return {SPF_UNKNOWN, SPNB_NA, false};
3866
3867 // An unsigned min/max can be written with a signed compare.
3868 const APInt *C2;
3869 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3870 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3871 // Is the sign bit set?
3872 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
3873 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
3874 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) {
3875 LHS = TrueVal;
3876 RHS = FalseVal;
3877 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3878 }
3879
3880 // Is the sign bit clear?
3881 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
3882 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
3883 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
3884 C2->isMinSignedValue()) {
3885 LHS = TrueVal;
3886 RHS = FalseVal;
3887 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3888 }
3889 }
3890
3891 // Look through 'not' ops to find disguised signed min/max.
3892 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
3893 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
3894 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
3895 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) {
3896 LHS = TrueVal;
3897 RHS = FalseVal;
3898 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3899 }
3900
3901 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
3902 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
3903 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
3904 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) {
3905 LHS = TrueVal;
3906 RHS = FalseVal;
3907 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3908 }
3909
3910 return {SPF_UNKNOWN, SPNB_NA, false};
3911}
3912
James Molloy134bec22015-08-11 09:12:57 +00003913static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3914 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003915 Value *CmpLHS, Value *CmpRHS,
3916 Value *TrueVal, Value *FalseVal,
3917 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003918 LHS = CmpLHS;
3919 RHS = CmpRHS;
3920
James Molloy134bec22015-08-11 09:12:57 +00003921 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3922 // return inconsistent results between implementations.
3923 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3924 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3925 // Therefore we behave conservatively and only proceed if at least one of the
3926 // operands is known to not be zero, or if we don't care about signed zeroes.
3927 switch (Pred) {
3928 default: break;
3929 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3930 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3931 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3932 !isKnownNonZero(CmpRHS))
3933 return {SPF_UNKNOWN, SPNB_NA, false};
3934 }
3935
3936 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3937 bool Ordered = false;
3938
3939 // When given one NaN and one non-NaN input:
3940 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3941 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3942 // ordered comparison fails), which could be NaN or non-NaN.
3943 // so here we discover exactly what NaN behavior is required/accepted.
3944 if (CmpInst::isFPPredicate(Pred)) {
3945 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3946 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3947
3948 if (LHSSafe && RHSSafe) {
3949 // Both operands are known non-NaN.
3950 NaNBehavior = SPNB_RETURNS_ANY;
3951 } else if (CmpInst::isOrdered(Pred)) {
3952 // An ordered comparison will return false when given a NaN, so it
3953 // returns the RHS.
3954 Ordered = true;
3955 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003956 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003957 NaNBehavior = SPNB_RETURNS_NAN;
3958 else if (RHSSafe)
3959 NaNBehavior = SPNB_RETURNS_OTHER;
3960 else
3961 // Completely unsafe.
3962 return {SPF_UNKNOWN, SPNB_NA, false};
3963 } else {
3964 Ordered = false;
3965 // An unordered comparison will return true when given a NaN, so it
3966 // returns the LHS.
3967 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003968 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003969 NaNBehavior = SPNB_RETURNS_OTHER;
3970 else if (RHSSafe)
3971 NaNBehavior = SPNB_RETURNS_NAN;
3972 else
3973 // Completely unsafe.
3974 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003975 }
3976 }
3977
James Molloy71b91c22015-05-11 14:42:20 +00003978 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003979 std::swap(CmpLHS, CmpRHS);
3980 Pred = CmpInst::getSwappedPredicate(Pred);
3981 if (NaNBehavior == SPNB_RETURNS_NAN)
3982 NaNBehavior = SPNB_RETURNS_OTHER;
3983 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3984 NaNBehavior = SPNB_RETURNS_NAN;
3985 Ordered = !Ordered;
3986 }
3987
3988 // ([if]cmp X, Y) ? X : Y
3989 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003990 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003991 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003992 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003993 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003994 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003995 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003996 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003997 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003998 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003999 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4000 case FCmpInst::FCMP_UGT:
4001 case FCmpInst::FCMP_UGE:
4002 case FCmpInst::FCMP_OGT:
4003 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4004 case FCmpInst::FCMP_ULT:
4005 case FCmpInst::FCMP_ULE:
4006 case FCmpInst::FCMP_OLT:
4007 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004008 }
4009 }
4010
Sanjay Patele372aec2016-10-27 15:26:10 +00004011 const APInt *C1;
4012 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004013 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4014 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4015
4016 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4017 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004018 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004019 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004020 }
4021
4022 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4023 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004024 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004025 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004026 }
4027 }
James Molloy71b91c22015-05-11 14:42:20 +00004028 }
4029
Sanjay Patel819f0962016-11-13 19:30:19 +00004030 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004031}
James Molloy270ef8c2015-05-15 16:04:50 +00004032
James Molloy569cea62015-09-02 17:25:25 +00004033static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4034 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00004035 CastInst *CI = dyn_cast<CastInst>(V1);
4036 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00004037 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00004038 return nullptr;
4039 *CastOp = CI->getOpcode();
4040
David Majnemerd2a074b2016-04-29 18:40:34 +00004041 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00004042 // If V1 and V2 are both the same cast from the same type, we can look
4043 // through V1.
4044 if (CI2->getOpcode() == CI->getOpcode() &&
4045 CI2->getSrcTy() == CI->getSrcTy())
4046 return CI2->getOperand(0);
4047 return nullptr;
4048 } else if (!C) {
4049 return nullptr;
4050 }
4051
David Majnemerd2a074b2016-04-29 18:40:34 +00004052 Constant *CastedTo = nullptr;
4053
David Majnemer826e9832016-04-29 21:22:04 +00004054 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4055 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
4056
David Majnemerd2a074b2016-04-29 18:40:34 +00004057 if (isa<SExtInst>(CI) && CmpI->isSigned())
4058 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
4059
David Majnemer826e9832016-04-29 21:22:04 +00004060 if (isa<TruncInst>(CI))
4061 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4062
4063 if (isa<FPTruncInst>(CI))
4064 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4065
4066 if (isa<FPExtInst>(CI))
4067 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4068
David Majnemerd2a074b2016-04-29 18:40:34 +00004069 if (isa<FPToUIInst>(CI))
4070 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4071
4072 if (isa<FPToSIInst>(CI))
4073 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4074
4075 if (isa<UIToFPInst>(CI))
4076 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4077
4078 if (isa<SIToFPInst>(CI))
4079 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4080
4081 if (!CastedTo)
4082 return nullptr;
4083
4084 Constant *CastedBack =
4085 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
4086 // Make sure the cast doesn't lose any information.
4087 if (CastedBack != C)
4088 return nullptr;
4089
4090 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004091}
4092
Sanjay Patele8dc0902016-05-23 17:57:54 +00004093SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004094 Instruction::CastOps *CastOp) {
4095 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004096 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004097
James Molloy134bec22015-08-11 09:12:57 +00004098 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4099 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004100
James Molloy134bec22015-08-11 09:12:57 +00004101 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004102 Value *CmpLHS = CmpI->getOperand(0);
4103 Value *CmpRHS = CmpI->getOperand(1);
4104 Value *TrueVal = SI->getTrueValue();
4105 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004106 FastMathFlags FMF;
4107 if (isa<FPMathOperator>(CmpI))
4108 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004109
4110 // Bail out early.
4111 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004112 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004113
4114 // Deal with type mismatches.
4115 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004116 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004117 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004118 cast<CastInst>(TrueVal)->getOperand(0), C,
4119 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004120 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004121 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004122 C, cast<CastInst>(FalseVal)->getOperand(0),
4123 LHS, RHS);
4124 }
James Molloy134bec22015-08-11 09:12:57 +00004125 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004126 LHS, RHS);
4127}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004128
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004129/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004130static bool isTruePredicate(CmpInst::Predicate Pred,
4131 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004132 const DataLayout &DL, unsigned Depth,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00004133 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004134 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004135 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4136 return true;
4137
4138 switch (Pred) {
4139 default:
4140 return false;
4141
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004142 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004143 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004144
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004145 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004146 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004147 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004148 return false;
4149 }
4150
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004151 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004152 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004153
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004154 // LHS u<= LHS +_{nuw} C for any C
4155 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004156 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004157
4158 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004159 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4160 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004161 const APInt *&CA, const APInt *&CB) {
4162 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4163 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4164 return true;
4165
4166 // If X & C == 0 then (X | C) == X +_{nuw} C
4167 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4168 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4169 unsigned BitWidth = CA->getBitWidth();
4170 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00004171 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004172
4173 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4174 return true;
4175 }
4176
4177 return false;
4178 };
4179
Pete Cooper35b00d52016-08-13 01:05:32 +00004180 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004181 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004182 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4183 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004184
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004185 return false;
4186 }
4187 }
4188}
4189
4190/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004191/// ALHS ARHS" is true. Otherwise, return None.
4192static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004193isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4194 const Value *ARHS, const Value *BLHS,
4195 const Value *BRHS, const DataLayout &DL,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00004196 unsigned Depth, const Instruction *CxtI,
4197 const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004198 switch (Pred) {
4199 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004200 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004201
4202 case CmpInst::ICMP_SLT:
4203 case CmpInst::ICMP_SLE:
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00004204 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004205 DT) &&
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00004206 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004207 return true;
4208 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004209
4210 case CmpInst::ICMP_ULT:
4211 case CmpInst::ICMP_ULE:
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00004212 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, CxtI, DT) &&
4213 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004214 return true;
4215 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004216 }
4217}
4218
Chad Rosier226a7342016-05-05 17:41:19 +00004219/// Return true if the operands of the two compares match. IsSwappedOps is true
4220/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004221static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4222 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004223 bool &IsSwappedOps) {
4224
4225 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4226 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4227 return IsMatchingOps || IsSwappedOps;
4228}
4229
Chad Rosier41dd31f2016-04-20 19:15:26 +00004230/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4231/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4232/// BRHS" is false. Otherwise, return None if we can't infer anything.
4233static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004234 const Value *ALHS,
4235 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004236 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004237 const Value *BLHS,
4238 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004239 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004240 // Canonicalize the operands so they're matching.
4241 if (IsSwappedOps) {
4242 std::swap(BLHS, BRHS);
4243 BPred = ICmpInst::getSwappedPredicate(BPred);
4244 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004245 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004246 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004247 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004248 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004249
Chad Rosier41dd31f2016-04-20 19:15:26 +00004250 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004251}
4252
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004253/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4254/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4255/// C2" is false. Otherwise, return None if we can't infer anything.
4256static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004257isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4258 const ConstantInt *C1,
4259 CmpInst::Predicate BPred,
4260 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004261 assert(ALHS == BLHS && "LHS operands must match.");
4262 ConstantRange DomCR =
4263 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4264 ConstantRange CR =
4265 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4266 ConstantRange Intersection = DomCR.intersectWith(CR);
4267 ConstantRange Difference = DomCR.difference(CR);
4268 if (Intersection.isEmptySet())
4269 return false;
4270 if (Difference.isEmptySet())
4271 return true;
4272 return None;
4273}
4274
Pete Cooper35b00d52016-08-13 01:05:32 +00004275Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004276 const DataLayout &DL, bool InvertAPred,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00004277 unsigned Depth, const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004278 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004279 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4280 if (LHS->getType() != RHS->getType())
4281 return None;
4282
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004283 Type *OpTy = LHS->getType();
4284 assert(OpTy->getScalarType()->isIntegerTy(1));
4285
4286 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004287 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004288 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004289
4290 if (OpTy->isVectorTy())
4291 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004292 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004293 assert(OpTy->isIntegerTy(1) && "implied by above");
4294
4295 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004296 Value *ALHS, *ARHS;
4297 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004298
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004299 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4300 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004301 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004302
Chad Rosiere2cbd132016-04-25 17:23:36 +00004303 if (InvertAPred)
4304 APred = CmpInst::getInversePredicate(APred);
4305
Chad Rosier226a7342016-05-05 17:41:19 +00004306 // Can we infer anything when the two compares have matching operands?
4307 bool IsSwappedOps;
4308 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4309 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4310 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004311 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004312 // No amount of additional analysis will infer the second condition, so
4313 // early exit.
4314 return None;
4315 }
4316
4317 // Can we infer anything when the LHS operands match and the RHS operands are
4318 // constants (not necessarily matching)?
4319 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4320 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4321 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4322 cast<ConstantInt>(BRHS)))
4323 return Implication;
4324 // No amount of additional analysis will infer the second condition, so
4325 // early exit.
4326 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004327 }
4328
Chad Rosier41dd31f2016-04-20 19:15:26 +00004329 if (APred == BPred)
Hal Finkel3ca4a6b2016-12-15 03:02:15 +00004330 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, CxtI,
4331 DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004332
Chad Rosier41dd31f2016-04-20 19:15:26 +00004333 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004334}