blob: ef58b988172d8b2ed089de325f88f8a81d5a3dfb [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Daniel Dunbar46d611a2012-04-19 20:20:34 +000010 <link rel="stylesheet" href="_static/llvm.css" type="text/css">
Misha Brukman76307852003-11-08 01:05:38 +000011</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
Bill Wendlingb4d076e2011-10-11 06:41:28 +000038 <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000039 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Eli Friedman35b54aa2011-07-20 21:35:53 +000056 <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
Eli Friedmanc9a551e2011-07-28 21:48:00 +000057 <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000058 </ol>
59 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000060 <li><a href="#typesystem">Type System</a>
61 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000062 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000063 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000064 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000065 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000067 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000068 <li><a href="#t_void">Void Type</a></li>
69 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000070 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 </ol>
72 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000073 <li><a href="#t_derived">Derived Types</a>
74 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000075 <li><a href="#t_aggregate">Aggregate Types</a>
76 <ol>
77 <li><a href="#t_array">Array Type</a></li>
78 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattner2a843822011-07-23 19:59:08 +000079 <li><a href="#t_opaque">Opaque Structure Types</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000080 <li><a href="#t_vector">Vector Type</a></li>
81 </ol>
82 </li>
Misha Brukman76307852003-11-08 01:05:38 +000083 <li><a href="#t_function">Function Type</a></li>
84 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000085 </ol>
86 </li>
87 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohman9a2a0932011-12-06 03:18:47 +000095 <li><a href="#poisonvalues">Poison Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
104 <ol>
105 <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
Duncan Sands34bd91a2012-04-14 12:36:06 +0000106 <li><a href="#fpmath">'<tt>fpmath</tt>' Metadata</a></li>
Rafael Espindolaef9f5502012-03-24 00:14:51 +0000107 <li><a href="#range">'<tt>range</tt>' Metadata</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000108 </ol>
109 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000110 </ol>
111 </li>
Bill Wendling911fdf42012-02-11 11:59:36 +0000112 <li><a href="#module_flags">Module Flags Metadata</a>
113 <ol>
Bill Wendling73462772012-02-16 01:10:50 +0000114 <li><a href="#objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a></li>
Bill Wendling911fdf42012-02-11 11:59:36 +0000115 </ol>
116 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000117 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
118 <ol>
119 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000120 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
121 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000122 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
123 Global Variable</a></li>
124 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
125 Global Variable</a></li>
126 </ol>
127 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000128 <li><a href="#instref">Instruction Reference</a>
129 <ol>
130 <li><a href="#terminators">Terminator Instructions</a>
131 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
133 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000134 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000135 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000136 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Bill Wendlingf891bf82011-07-31 06:30:59 +0000137 <li><a href="#i_resume">'<tt>resume</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000138 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000139 </ol>
140 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000141 <li><a href="#binaryops">Binary Operations</a>
142 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000143 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000144 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000145 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000146 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000147 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000148 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000149 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
150 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
151 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000152 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
153 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
154 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000155 </ol>
156 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000157 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
158 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000159 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
160 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
161 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000162 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000163 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000164 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000165 </ol>
166 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000167 <li><a href="#vectorops">Vector Operations</a>
168 <ol>
169 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
170 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
171 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000172 </ol>
173 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000174 <li><a href="#aggregateops">Aggregate Operations</a>
175 <ol>
176 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
177 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
178 </ol>
179 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000180 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000181 <ol>
Eli Friedmanc9a551e2011-07-28 21:48:00 +0000182 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
183 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
184 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
185 <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
186 <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
187 <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000188 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000189 </ol>
190 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000191 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000192 <ol>
193 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
194 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
195 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
196 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
197 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000198 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
199 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
200 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
201 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000202 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
203 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000204 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000205 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000206 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000207 <li><a href="#otherops">Other Operations</a>
208 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000209 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
210 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000211 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000212 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000213 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000214 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +0000215 <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000216 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000217 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000218 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000219 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000220 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000221 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000222 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
223 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000224 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
225 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
226 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000227 </ol>
228 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000229 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
230 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000231 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
232 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
233 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000234 </ol>
235 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000236 <li><a href="#int_codegen">Code Generator Intrinsics</a>
237 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000238 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
239 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
240 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
241 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
242 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
243 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000244 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000245 </ol>
246 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000247 <li><a href="#int_libc">Standard C Library Intrinsics</a>
248 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000249 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
250 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
251 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
252 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
253 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000254 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
255 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
256 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmane635c522011-05-27 00:36:31 +0000257 <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
258 <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
Cameron Zwarichf03fa182011-07-08 21:39:21 +0000259 <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
Peter Collingbourne2165cf62012-07-03 12:25:40 +0000260 <li><a href="#int_fabs">'<tt>llvm.fabs.*</tt>' Intrinsic</a></li>
Dan Gohman0b3d7822012-07-26 17:43:27 +0000261 <li><a href="#int_floor">'<tt>llvm.floor.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000262 </ol>
263 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000264 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000265 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000266 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000267 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
268 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
269 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000270 </ol>
271 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000272 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
273 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000274 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
275 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
276 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
277 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
278 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000279 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000280 </ol>
281 </li>
Lang Hamesa59100c2012-06-05 19:07:46 +0000282 <li><a href="#spec_arithmetic">Specialised Arithmetic Intrinsics</a>
283 <ol>
284 <li><a href="#fmuladd">'<tt>llvm.fmuladd</tt> Intrinsic</a></li>
285 </ol>
286 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000287 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
288 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000289 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
290 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000291 </ol>
292 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000293 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000294 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000295 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000296 <ol>
297 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000298 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000299 </ol>
300 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000301 <li><a href="#int_memorymarkers">Memory Use Markers</a>
302 <ol>
Jakub Staszak5fd147f2011-12-04 20:44:25 +0000303 <li><a href="#int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a></li>
304 <li><a href="#int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a></li>
305 <li><a href="#int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a></li>
306 <li><a href="#int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a></li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000307 </ol>
308 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000309 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000310 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000311 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000312 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000313 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000314 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000315 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000316 '<tt>llvm.trap</tt>' Intrinsic</a></li>
Dan Gohman164fe182012-05-14 18:58:10 +0000317 <li><a href="#int_debugtrap">
318 '<tt>llvm.debugtrap</tt>' Intrinsic</a></li>
Bill Wendling14313312008-11-19 05:56:17 +0000319 <li><a href="#int_stackprotector">
320 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Nuno Lopes4d6c8322012-07-05 17:37:07 +0000321 <li><a href="#int_objectsize">
Eric Christopher73484322009-11-30 08:03:53 +0000322 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Nuno Lopes4d6c8322012-07-05 17:37:07 +0000323 <li><a href="#int_expect">
Jakub Staszak5fef7922011-12-04 18:29:26 +0000324 '<tt>llvm.expect</tt>' Intrinsic</a></li>
Nuno Lopes4d6c8322012-07-05 17:37:07 +0000325 <li><a href="#int_donothing">
326 '<tt>llvm.donothing</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000327 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000328 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000329 </ol>
330 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000331</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000332
333<div class="doc_author">
334 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
335 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000336</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000337
Chris Lattner2f7c9632001-06-06 20:29:01 +0000338<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000339<h2><a name="abstract">Abstract</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000340<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000341
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000342<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000343
344<p>This document is a reference manual for the LLVM assembly language. LLVM is
345 a Static Single Assignment (SSA) based representation that provides type
346 safety, low-level operations, flexibility, and the capability of representing
347 'all' high-level languages cleanly. It is the common code representation
348 used throughout all phases of the LLVM compilation strategy.</p>
349
Misha Brukman76307852003-11-08 01:05:38 +0000350</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000351
Chris Lattner2f7c9632001-06-06 20:29:01 +0000352<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000353<h2><a name="introduction">Introduction</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000354<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000355
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000356<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000357
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000358<p>The LLVM code representation is designed to be used in three different forms:
359 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
360 for fast loading by a Just-In-Time compiler), and as a human readable
361 assembly language representation. This allows LLVM to provide a powerful
362 intermediate representation for efficient compiler transformations and
363 analysis, while providing a natural means to debug and visualize the
364 transformations. The three different forms of LLVM are all equivalent. This
365 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000366
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000367<p>The LLVM representation aims to be light-weight and low-level while being
368 expressive, typed, and extensible at the same time. It aims to be a
369 "universal IR" of sorts, by being at a low enough level that high-level ideas
370 may be cleanly mapped to it (similar to how microprocessors are "universal
371 IR's", allowing many source languages to be mapped to them). By providing
372 type information, LLVM can be used as the target of optimizations: for
373 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000374 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000375 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000376
Chris Lattner2f7c9632001-06-06 20:29:01 +0000377<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000378<h4>
379 <a name="wellformed">Well-Formedness</a>
380</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000381
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000382<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000383
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000384<p>It is important to note that this document describes 'well formed' LLVM
385 assembly language. There is a difference between what the parser accepts and
386 what is considered 'well formed'. For example, the following instruction is
387 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000388
Benjamin Kramer79698be2010-07-13 12:26:09 +0000389<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000390%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000391</pre>
392
Bill Wendling7f4a3362009-11-02 00:24:16 +0000393<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
394 LLVM infrastructure provides a verification pass that may be used to verify
395 that an LLVM module is well formed. This pass is automatically run by the
396 parser after parsing input assembly and by the optimizer before it outputs
397 bitcode. The violations pointed out by the verifier pass indicate bugs in
398 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000399
Bill Wendling3716c5d2007-05-29 09:04:49 +0000400</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000401
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000402</div>
403
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000404<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000405
Chris Lattner2f7c9632001-06-06 20:29:01 +0000406<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000407<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000408<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000409
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000410<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000411
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000412<p>LLVM identifiers come in two basic types: global and local. Global
413 identifiers (functions, global variables) begin with the <tt>'@'</tt>
414 character. Local identifiers (register names, types) begin with
415 the <tt>'%'</tt> character. Additionally, there are three different formats
416 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000417
Chris Lattner2f7c9632001-06-06 20:29:01 +0000418<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000419 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000420 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
421 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
422 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
423 other characters in their names can be surrounded with quotes. Special
424 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
425 ASCII code for the character in hexadecimal. In this way, any character
426 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000427
Reid Spencerb23b65f2007-08-07 14:34:28 +0000428 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000429 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000430
Reid Spencer8f08d802004-12-09 18:02:53 +0000431 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000432 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000433</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000434
Reid Spencerb23b65f2007-08-07 14:34:28 +0000435<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000436 don't need to worry about name clashes with reserved words, and the set of
437 reserved words may be expanded in the future without penalty. Additionally,
438 unnamed identifiers allow a compiler to quickly come up with a temporary
439 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000440
Chris Lattner48b383b02003-11-25 01:02:51 +0000441<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000442 languages. There are keywords for different opcodes
443 ('<tt><a href="#i_add">add</a></tt>',
444 '<tt><a href="#i_bitcast">bitcast</a></tt>',
445 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
446 ('<tt><a href="#t_void">void</a></tt>',
447 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
448 reserved words cannot conflict with variable names, because none of them
449 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000450
451<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000452 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000453
Misha Brukman76307852003-11-08 01:05:38 +0000454<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000455
Benjamin Kramer79698be2010-07-13 12:26:09 +0000456<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000457%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000458</pre>
459
Misha Brukman76307852003-11-08 01:05:38 +0000460<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000461
Benjamin Kramer79698be2010-07-13 12:26:09 +0000462<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000463%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000464</pre>
465
Misha Brukman76307852003-11-08 01:05:38 +0000466<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000467
Benjamin Kramer79698be2010-07-13 12:26:09 +0000468<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000469%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
470%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000471%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000472</pre>
473
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000474<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
475 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000476
Chris Lattner2f7c9632001-06-06 20:29:01 +0000477<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000478 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000479 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000480
481 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000482 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000483
Misha Brukman76307852003-11-08 01:05:38 +0000484 <li>Unnamed temporaries are numbered sequentially</li>
485</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000486
Bill Wendling7f4a3362009-11-02 00:24:16 +0000487<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000488 demonstrating instructions, we will follow an instruction with a comment that
489 defines the type and name of value produced. Comments are shown in italic
490 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000491
Misha Brukman76307852003-11-08 01:05:38 +0000492</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000493
494<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000495<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattner6af02f32004-12-09 16:11:40 +0000496<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000497<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000498<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000499<h3>
500 <a name="modulestructure">Module Structure</a>
501</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000502
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000503<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000504
Bill Wendling21ee0d22012-03-14 08:07:43 +0000505<p>LLVM programs are composed of <tt>Module</tt>s, each of which is a
506 translation unit of the input programs. Each module consists of functions,
507 global variables, and symbol table entries. Modules may be combined together
508 with the LLVM linker, which merges function (and global variable)
509 definitions, resolves forward declarations, and merges symbol table
510 entries. Here is an example of the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000511
Benjamin Kramer79698be2010-07-13 12:26:09 +0000512<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000513<i>; Declare the string constant as a global constant.</i>&nbsp;
Bill Wendling21ee0d22012-03-14 08:07:43 +0000514<a href="#identifiers">@.str</a> = <a href="#linkage_private">private</a>&nbsp;<a href="#globalvars">unnamed_addr</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000515
Chris Lattner54a7be72010-08-17 17:13:42 +0000516<i>; External declaration of the puts function</i>&nbsp;
Bill Wendling21ee0d22012-03-14 08:07:43 +0000517<a href="#functionstructure">declare</a> i32 @puts(i8* <a href="#nocapture">nocapture</a>) <a href="#fnattrs">nounwind</a>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000518
519<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000520define i32 @main() { <i>; i32()* </i>&nbsp;
521 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
Bill Wendling21ee0d22012-03-14 08:07:43 +0000522 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.str, i64 0, i64 0
Chris Lattner6af02f32004-12-09 16:11:40 +0000523
Chris Lattner54a7be72010-08-17 17:13:42 +0000524 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
Bill Wendling21ee0d22012-03-14 08:07:43 +0000525 <a href="#i_call">call</a> i32 @puts(i8* %cast210)
Chris Lattner54a7be72010-08-17 17:13:42 +0000526 <a href="#i_ret">ret</a> i32 0&nbsp;
527}
Devang Pateld1a89692010-01-11 19:35:55 +0000528
529<i>; Named metadata</i>
Bill Wendling21ee0d22012-03-14 08:07:43 +0000530!1 = metadata !{i32 42}
Devang Pateld1a89692010-01-11 19:35:55 +0000531!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000532</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000533
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000534<p>This example is made up of a <a href="#globalvars">global variable</a> named
Bill Wendling21ee0d22012-03-14 08:07:43 +0000535 "<tt>.str</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000536 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000537 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
Bill Wendling21ee0d22012-03-14 08:07:43 +0000538 "<tt>foo</tt>".</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000539
Bill Wendling21ee0d22012-03-14 08:07:43 +0000540<p>In general, a module is made up of a list of global values (where both
541 functions and global variables are global values). Global values are
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000542 represented by a pointer to a memory location (in this case, a pointer to an
543 array of char, and a pointer to a function), and have one of the
544 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000545
Chris Lattnerd79749a2004-12-09 16:36:40 +0000546</div>
547
548<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000549<h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000550 <a name="linkage">Linkage Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000551</h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000552
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000553<div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000554
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000555<p>All Global Variables and Functions have one of the following types of
556 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000557
558<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000559 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000560 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
561 by objects in the current module. In particular, linking code into a
562 module with an private global value may cause the private to be renamed as
563 necessary to avoid collisions. Because the symbol is private to the
564 module, all references can be updated. This doesn't show up in any symbol
565 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000566
Bill Wendling7f4a3362009-11-02 00:24:16 +0000567 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000568 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
569 assembler and evaluated by the linker. Unlike normal strong symbols, they
570 are removed by the linker from the final linked image (executable or
571 dynamic library).</dd>
572
573 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
574 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
575 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
576 linker. The symbols are removed by the linker from the final linked image
577 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000578
Bill Wendling578ee402010-08-20 22:05:50 +0000579 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
580 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
581 of the object is not taken. For instance, functions that had an inline
582 definition, but the compiler decided not to inline it. Note,
583 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
584 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
585 visibility. The symbols are removed by the linker from the final linked
586 image (executable or dynamic library).</dd>
587
Bill Wendling7f4a3362009-11-02 00:24:16 +0000588 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000589 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000590 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
591 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000592
Bill Wendling7f4a3362009-11-02 00:24:16 +0000593 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000594 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000595 into the object file corresponding to the LLVM module. They exist to
596 allow inlining and other optimizations to take place given knowledge of
597 the definition of the global, which is known to be somewhere outside the
598 module. Globals with <tt>available_externally</tt> linkage are allowed to
599 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
600 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000601
Bill Wendling7f4a3362009-11-02 00:24:16 +0000602 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000603 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000604 the same name when linkage occurs. This can be used to implement
605 some forms of inline functions, templates, or other code which must be
606 generated in each translation unit that uses it, but where the body may
607 be overridden with a more definitive definition later. Unreferenced
608 <tt>linkonce</tt> globals are allowed to be discarded. Note that
609 <tt>linkonce</tt> linkage does not actually allow the optimizer to
610 inline the body of this function into callers because it doesn't know if
611 this definition of the function is the definitive definition within the
612 program or whether it will be overridden by a stronger definition.
613 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
614 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000615
Bill Wendling7f4a3362009-11-02 00:24:16 +0000616 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000617 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
618 <tt>linkonce</tt> linkage, except that unreferenced globals with
619 <tt>weak</tt> linkage may not be discarded. This is used for globals that
620 are declared "weak" in C source code.</dd>
621
Bill Wendling7f4a3362009-11-02 00:24:16 +0000622 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000623 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
624 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
625 global scope.
626 Symbols with "<tt>common</tt>" linkage are merged in the same way as
627 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000628 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000629 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000630 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
631 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000632
Chris Lattnerd79749a2004-12-09 16:36:40 +0000633
Bill Wendling7f4a3362009-11-02 00:24:16 +0000634 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000635 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000636 pointer to array type. When two global variables with appending linkage
637 are linked together, the two global arrays are appended together. This is
638 the LLVM, typesafe, equivalent of having the system linker append together
639 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000640
Bill Wendling7f4a3362009-11-02 00:24:16 +0000641 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000642 <dd>The semantics of this linkage follow the ELF object file model: the symbol
643 is weak until linked, if not linked, the symbol becomes null instead of
644 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000645
Bill Wendling7f4a3362009-11-02 00:24:16 +0000646 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
647 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000648 <dd>Some languages allow differing globals to be merged, such as two functions
649 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000650 that only equivalent globals are ever merged (the "one definition rule"
651 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000652 and <tt>weak_odr</tt> linkage types to indicate that the global will only
653 be merged with equivalent globals. These linkage types are otherwise the
654 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000655
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000656 <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000657 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000658 visible, meaning that it participates in linkage and can be used to
659 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000660</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000661
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000662<p>The next two types of linkage are targeted for Microsoft Windows platform
663 only. They are designed to support importing (exporting) symbols from (to)
664 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000665
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000666<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000667 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000668 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000669 or variable via a global pointer to a pointer that is set up by the DLL
670 exporting the symbol. On Microsoft Windows targets, the pointer name is
671 formed by combining <code>__imp_</code> and the function or variable
672 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000673
Bill Wendling7f4a3362009-11-02 00:24:16 +0000674 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000675 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000676 pointer to a pointer in a DLL, so that it can be referenced with the
677 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
678 name is formed by combining <code>__imp_</code> and the function or
679 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000680</dl>
681
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000682<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
683 another module defined a "<tt>.LC0</tt>" variable and was linked with this
684 one, one of the two would be renamed, preventing a collision. Since
685 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
686 declarations), they are accessible outside of the current module.</p>
687
688<p>It is illegal for a function <i>declaration</i> to have any linkage type
Bill Wendlingb4d076e2011-10-11 06:41:28 +0000689 other than <tt>external</tt>, <tt>dllimport</tt>
690 or <tt>extern_weak</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000691
Duncan Sands12da8ce2009-03-07 15:45:40 +0000692<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000693 or <tt>weak_odr</tt> linkages.</p>
694
Chris Lattner6af02f32004-12-09 16:11:40 +0000695</div>
696
697<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000698<h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000699 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000700</h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000701
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000702<div>
Chris Lattner0132aff2005-05-06 22:57:40 +0000703
704<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000705 and <a href="#i_invoke">invokes</a> can all have an optional calling
706 convention specified for the call. The calling convention of any pair of
707 dynamic caller/callee must match, or the behavior of the program is
708 undefined. The following calling conventions are supported by LLVM, and more
709 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000710
711<dl>
712 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000713 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000714 specified) matches the target C calling conventions. This calling
715 convention supports varargs function calls and tolerates some mismatch in
716 the declared prototype and implemented declaration of the function (as
717 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000718
719 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000720 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000721 (e.g. by passing things in registers). This calling convention allows the
722 target to use whatever tricks it wants to produce fast code for the
723 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000724 (Application Binary Interface).
725 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000726 when this or the GHC convention is used.</a> This calling convention
727 does not support varargs and requires the prototype of all callees to
728 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000729
730 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000731 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000732 as possible under the assumption that the call is not commonly executed.
733 As such, these calls often preserve all registers so that the call does
734 not break any live ranges in the caller side. This calling convention
735 does not support varargs and requires the prototype of all callees to
736 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000737
Chris Lattnera179e4d2010-03-11 00:22:57 +0000738 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
739 <dd>This calling convention has been implemented specifically for use by the
740 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
741 It passes everything in registers, going to extremes to achieve this by
742 disabling callee save registers. This calling convention should not be
743 used lightly but only for specific situations such as an alternative to
744 the <em>register pinning</em> performance technique often used when
745 implementing functional programming languages.At the moment only X86
746 supports this convention and it has the following limitations:
747 <ul>
748 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
749 floating point types are supported.</li>
750 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
751 6 floating point parameters.</li>
752 </ul>
753 This calling convention supports
754 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
755 requires both the caller and callee are using it.
756 </dd>
757
Chris Lattner573f64e2005-05-07 01:46:40 +0000758 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000759 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000760 target-specific calling conventions to be used. Target specific calling
761 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000762</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000763
764<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000765 support Pascal conventions or any other well-known target-independent
766 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000767
768</div>
769
770<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000771<h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000772 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000773</h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000774
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000775<div>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000776
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000777<p>All Global Variables and Functions have one of the following visibility
778 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000779
780<dl>
781 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000782 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000783 that the declaration is visible to other modules and, in shared libraries,
784 means that the declared entity may be overridden. On Darwin, default
785 visibility means that the declaration is visible to other modules. Default
786 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000787
788 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000789 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000790 object if they are in the same shared object. Usually, hidden visibility
791 indicates that the symbol will not be placed into the dynamic symbol
792 table, so no other module (executable or shared library) can reference it
793 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000794
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000795 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000796 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000797 the dynamic symbol table, but that references within the defining module
798 will bind to the local symbol. That is, the symbol cannot be overridden by
799 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000800</dl>
801
802</div>
803
804<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000805<h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000806 <a name="namedtypes">Named Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000807</h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000808
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000809<div>
Chris Lattnerbc088212009-01-11 20:53:49 +0000810
811<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000812 it easier to read the IR and make the IR more condensed (particularly when
813 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000814
Benjamin Kramer79698be2010-07-13 12:26:09 +0000815<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000816%mytype = type { %mytype*, i32 }
817</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000818
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000819<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000820 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000821 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000822
823<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000824 and that you can therefore specify multiple names for the same type. This
825 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
826 uses structural typing, the name is not part of the type. When printing out
827 LLVM IR, the printer will pick <em>one name</em> to render all types of a
828 particular shape. This means that if you have code where two different
829 source types end up having the same LLVM type, that the dumper will sometimes
830 print the "wrong" or unexpected type. This is an important design point and
831 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000832
833</div>
834
Chris Lattnerbc088212009-01-11 20:53:49 +0000835<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000836<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000837 <a name="globalvars">Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000838</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000839
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000840<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000841
Chris Lattner5d5aede2005-02-12 19:30:21 +0000842<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000843 instead of run-time. Global variables may optionally be initialized, may
844 have an explicit section to be placed in, and may have an optional explicit
Hans Wennborgcbe34b42012-06-23 11:37:03 +0000845 alignment specified.</p>
846
847<p>A variable may be defined as <tt>thread_local</tt>, which
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000848 means that it will not be shared by threads (each thread will have a
Hans Wennborgcbe34b42012-06-23 11:37:03 +0000849 separated copy of the variable). Not all targets support thread-local
850 variables. Optionally, a TLS model may be specified:</p>
851
852<dl>
853 <dt><b><tt>localdynamic</tt></b>:</dt>
854 <dd>For variables that are only used within the current shared library.</dd>
855
856 <dt><b><tt>initialexec</tt></b>:</dt>
857 <dd>For variables in modules that will not be loaded dynamically.</dd>
858
859 <dt><b><tt>localexec</tt></b>:</dt>
860 <dd>For variables defined in the executable and only used within it.</dd>
861</dl>
862
863<p>The models correspond to the ELF TLS models; see
864 <a href="http://people.redhat.com/drepper/tls.pdf">ELF
865 Handling For Thread-Local Storage</a> for more information on under which
866 circumstances the different models may be used. The target may choose a
867 different TLS model if the specified model is not supported, or if a better
868 choice of model can be made.</p>
869
870<p>A variable may be defined as a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000871 "constant," which indicates that the contents of the variable
872 will <b>never</b> be modified (enabling better optimization, allowing the
873 global data to be placed in the read-only section of an executable, etc).
874 Note that variables that need runtime initialization cannot be marked
875 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000876
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000877<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
878 constant, even if the final definition of the global is not. This capability
879 can be used to enable slightly better optimization of the program, but
880 requires the language definition to guarantee that optimizations based on the
881 'constantness' are valid for the translation units that do not include the
882 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000883
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000884<p>As SSA values, global variables define pointer values that are in scope
885 (i.e. they dominate) all basic blocks in the program. Global variables
886 always define a pointer to their "content" type because they describe a
887 region of memory, and all memory objects in LLVM are accessed through
888 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000889
Rafael Espindola45e6c192011-01-08 16:42:36 +0000890<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
891 that the address is not significant, only the content. Constants marked
Rafael Espindolaf1ed7812011-01-15 08:20:57 +0000892 like this can be merged with other constants if they have the same
893 initializer. Note that a constant with significant address <em>can</em>
894 be merged with a <tt>unnamed_addr</tt> constant, the result being a
895 constant whose address is significant.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000896
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000897<p>A global variable may be declared to reside in a target-specific numbered
898 address space. For targets that support them, address spaces may affect how
899 optimizations are performed and/or what target instructions are used to
900 access the variable. The default address space is zero. The address space
901 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000902
Chris Lattner662c8722005-11-12 00:45:07 +0000903<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000904 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000905
Chris Lattner78e00bc2010-04-28 00:13:42 +0000906<p>An explicit alignment may be specified for a global, which must be a power
907 of 2. If not present, or if the alignment is set to zero, the alignment of
908 the global is set by the target to whatever it feels convenient. If an
909 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000910 alignment. Targets and optimizers are not allowed to over-align the global
911 if the global has an assigned section. In this case, the extra alignment
912 could be observable: for example, code could assume that the globals are
913 densely packed in their section and try to iterate over them as an array,
914 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000915
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000916<p>For example, the following defines a global in a numbered address space with
917 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000918
Benjamin Kramer79698be2010-07-13 12:26:09 +0000919<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000920@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000921</pre>
922
Hans Wennborgcbe34b42012-06-23 11:37:03 +0000923<p>The following example defines a thread-local global with
924 the <tt>initialexec</tt> TLS model:</p>
925
926<pre class="doc_code">
927@G = thread_local(initialexec) global i32 0, align 4
928</pre>
929
Chris Lattner6af02f32004-12-09 16:11:40 +0000930</div>
931
932
933<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000934<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000935 <a name="functionstructure">Functions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000936</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000937
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000938<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000939
Dan Gohmana269a0a2010-03-01 17:41:39 +0000940<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000941 optional <a href="#linkage">linkage type</a>, an optional
942 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000943 <a href="#callingconv">calling convention</a>,
944 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000945 <a href="#paramattrs">parameter attribute</a> for the return type, a function
946 name, a (possibly empty) argument list (each with optional
947 <a href="#paramattrs">parameter attributes</a>), optional
948 <a href="#fnattrs">function attributes</a>, an optional section, an optional
949 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
950 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000951
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000952<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
953 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000954 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000955 <a href="#callingconv">calling convention</a>,
956 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000957 <a href="#paramattrs">parameter attribute</a> for the return type, a function
958 name, a possibly empty list of arguments, an optional alignment, and an
959 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000960
Chris Lattner67c37d12008-08-05 18:29:16 +0000961<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000962 (Control Flow Graph) for the function. Each basic block may optionally start
963 with a label (giving the basic block a symbol table entry), contains a list
964 of instructions, and ends with a <a href="#terminators">terminator</a>
965 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000966
Chris Lattnera59fb102007-06-08 16:52:14 +0000967<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000968 executed on entrance to the function, and it is not allowed to have
969 predecessor basic blocks (i.e. there can not be any branches to the entry
970 block of a function). Because the block can have no predecessors, it also
971 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000972
Chris Lattner662c8722005-11-12 00:45:07 +0000973<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000974 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000975
Chris Lattner54611b42005-11-06 08:02:57 +0000976<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000977 the alignment is set to zero, the alignment of the function is set by the
978 target to whatever it feels convenient. If an explicit alignment is
979 specified, the function is forced to have at least that much alignment. All
980 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000981
Rafael Espindola45e6c192011-01-08 16:42:36 +0000982<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
Bill Wendlingef3cdea2011-11-04 20:40:41 +0000983 be significant and two identical functions can be merged.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000984
Bill Wendling30235112009-07-20 02:39:26 +0000985<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000986<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000987define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000988 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
989 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
990 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
991 [<a href="#gc">gc</a>] { ... }
992</pre>
Devang Patel02256232008-10-07 17:48:33 +0000993
Chris Lattner6af02f32004-12-09 16:11:40 +0000994</div>
995
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000996<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000997<h3>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000998 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000999</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001000
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001001<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001002
1003<p>Aliases act as "second name" for the aliasee value (which can be either
1004 function, global variable, another alias or bitcast of global value). Aliases
1005 may have an optional <a href="#linkage">linkage type</a>, and an
1006 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +00001007
Bill Wendling30235112009-07-20 02:39:26 +00001008<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +00001009<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +00001010@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +00001011</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +00001012
1013</div>
1014
Chris Lattner91c15c42006-01-23 23:23:47 +00001015<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001016<h3>
Devang Pateld1a89692010-01-11 19:35:55 +00001017 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001018</h3>
Devang Pateld1a89692010-01-11 19:35:55 +00001019
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001020<div>
Devang Pateld1a89692010-01-11 19:35:55 +00001021
Chris Lattnerc2f8f162010-01-15 21:50:19 +00001022<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +00001023 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +00001024 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +00001025
1026<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +00001027<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +00001028; Some unnamed metadata nodes, which are referenced by the named metadata.
1029!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +00001030!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +00001031!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +00001032; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +00001033!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +00001034</pre>
Devang Pateld1a89692010-01-11 19:35:55 +00001035
1036</div>
1037
1038<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001039<h3>
1040 <a name="paramattrs">Parameter Attributes</a>
1041</h3>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001042
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001043<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001044
1045<p>The return type and each parameter of a function type may have a set of
1046 <i>parameter attributes</i> associated with them. Parameter attributes are
1047 used to communicate additional information about the result or parameters of
1048 a function. Parameter attributes are considered to be part of the function,
1049 not of the function type, so functions with different parameter attributes
1050 can have the same function type.</p>
1051
1052<p>Parameter attributes are simple keywords that follow the type specified. If
1053 multiple parameter attributes are needed, they are space separated. For
1054 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001055
Benjamin Kramer79698be2010-07-13 12:26:09 +00001056<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +00001057declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +00001058declare i32 @atoi(i8 zeroext)
1059declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +00001060</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001061
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001062<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1063 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001064
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001065<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001066
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001067<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001068 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001069 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichac106272011-03-16 22:20:18 +00001070 should be zero-extended to the extent required by the target's ABI (which
1071 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1072 parameter) or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001073
Bill Wendling7f4a3362009-11-02 00:24:16 +00001074 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001075 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich341c36d2011-03-17 14:21:58 +00001076 should be sign-extended to the extent required by the target's ABI (which
1077 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1078 return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001079
Bill Wendling7f4a3362009-11-02 00:24:16 +00001080 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001081 <dd>This indicates that this parameter or return value should be treated in a
1082 special target-dependent fashion during while emitting code for a function
1083 call or return (usually, by putting it in a register as opposed to memory,
1084 though some targets use it to distinguish between two different kinds of
1085 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001086
Bill Wendling7f4a3362009-11-02 00:24:16 +00001087 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001088 <dd><p>This indicates that the pointer parameter should really be passed by
1089 value to the function. The attribute implies that a hidden copy of the
1090 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001091 is made between the caller and the callee, so the callee is unable to
Chris Lattner747482c2012-05-30 00:40:23 +00001092 modify the value in the caller. This attribute is only valid on LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001093 pointer arguments. It is generally used to pass structs and arrays by
1094 value, but is also valid on pointers to scalars. The copy is considered
1095 to belong to the caller not the callee (for example,
1096 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1097 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001098 values.</p>
1099
1100 <p>The byval attribute also supports specifying an alignment with
1101 the align attribute. It indicates the alignment of the stack slot to
1102 form and the known alignment of the pointer specified to the call site. If
1103 the alignment is not specified, then the code generator makes a
1104 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001105
Dan Gohman3770af52010-07-02 23:18:08 +00001106 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001107 <dd>This indicates that the pointer parameter specifies the address of a
1108 structure that is the return value of the function in the source program.
1109 This pointer must be guaranteed by the caller to be valid: loads and
1110 stores to the structure may be assumed by the callee to not to trap. This
1111 may only be applied to the first parameter. This is not a valid attribute
1112 for return values. </dd>
1113
Dan Gohman3770af52010-07-02 23:18:08 +00001114 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001115 <dd>This indicates that pointer values
1116 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001117 value do not alias pointer values which are not <i>based</i> on it,
1118 ignoring certain "irrelevant" dependencies.
1119 For a call to the parent function, dependencies between memory
1120 references from before or after the call and from those during the call
1121 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1122 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001123 The caller shares the responsibility with the callee for ensuring that
1124 these requirements are met.
1125 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001126 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1127<br>
John McCall72ed8902010-07-06 21:07:14 +00001128 Note that this definition of <tt>noalias</tt> is intentionally
1129 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001130 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001131<br>
1132 For function return values, C99's <tt>restrict</tt> is not meaningful,
1133 while LLVM's <tt>noalias</tt> is.
1134 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001135
Dan Gohman3770af52010-07-02 23:18:08 +00001136 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001137 <dd>This indicates that the callee does not make any copies of the pointer
1138 that outlive the callee itself. This is not a valid attribute for return
1139 values.</dd>
1140
Dan Gohman3770af52010-07-02 23:18:08 +00001141 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001142 <dd>This indicates that the pointer parameter can be excised using the
1143 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1144 attribute for return values.</dd>
1145</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001146
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001147</div>
1148
1149<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001150<h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001151 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001152</h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001153
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001154<div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001155
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001156<p>Each function may specify a garbage collector name, which is simply a
1157 string:</p>
1158
Benjamin Kramer79698be2010-07-13 12:26:09 +00001159<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001160define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001161</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001162
1163<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001164 collector which will cause the compiler to alter its output in order to
1165 support the named garbage collection algorithm.</p>
1166
Gordon Henriksen71183b62007-12-10 03:18:06 +00001167</div>
1168
1169<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001170<h3>
Devang Patel9eb525d2008-09-26 23:51:19 +00001171 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001172</h3>
Devang Patelcaacdba2008-09-04 23:05:13 +00001173
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001174<div>
Devang Patel9eb525d2008-09-26 23:51:19 +00001175
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001176<p>Function attributes are set to communicate additional information about a
1177 function. Function attributes are considered to be part of the function, not
1178 of the function type, so functions with different parameter attributes can
1179 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001180
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001181<p>Function attributes are simple keywords that follow the type specified. If
1182 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001183
Benjamin Kramer79698be2010-07-13 12:26:09 +00001184<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001185define void @f() noinline { ... }
1186define void @f() alwaysinline { ... }
1187define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001188define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001189</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001190
Bill Wendlingb175fa42008-09-07 10:26:33 +00001191<dl>
Kostya Serebryanya5054ad2012-01-20 17:56:17 +00001192 <dt><tt><b>address_safety</b></tt></dt>
1193 <dd>This attribute indicates that the address safety analysis
1194 is enabled for this function. </dd>
1195
Charles Davisbe5557e2010-02-12 00:31:15 +00001196 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1197 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1198 the backend should forcibly align the stack pointer. Specify the
1199 desired alignment, which must be a power of two, in parentheses.
1200
Bill Wendling7f4a3362009-11-02 00:24:16 +00001201 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001202 <dd>This attribute indicates that the inliner should attempt to inline this
1203 function into callers whenever possible, ignoring any active inlining size
1204 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001205
Dan Gohman8bd11f12011-06-16 16:03:13 +00001206 <dt><tt><b>nonlazybind</b></tt></dt>
1207 <dd>This attribute suppresses lazy symbol binding for the function. This
1208 may make calls to the function faster, at the cost of extra program
1209 startup time if the function is not called during program startup.</dd>
1210
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001211 <dt><tt><b>inlinehint</b></tt></dt>
1212 <dd>This attribute indicates that the source code contained a hint that inlining
1213 this function is desirable (such as the "inline" keyword in C/C++). It
1214 is just a hint; it imposes no requirements on the inliner.</dd>
1215
Nick Lewycky14b58da2010-07-06 18:24:09 +00001216 <dt><tt><b>naked</b></tt></dt>
1217 <dd>This attribute disables prologue / epilogue emission for the function.
1218 This can have very system-specific consequences.</dd>
1219
1220 <dt><tt><b>noimplicitfloat</b></tt></dt>
1221 <dd>This attributes disables implicit floating point instructions.</dd>
1222
Bill Wendling7f4a3362009-11-02 00:24:16 +00001223 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001224 <dd>This attribute indicates that the inliner should never inline this
1225 function in any situation. This attribute may not be used together with
1226 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001227
Nick Lewycky14b58da2010-07-06 18:24:09 +00001228 <dt><tt><b>noredzone</b></tt></dt>
1229 <dd>This attribute indicates that the code generator should not use a red
1230 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001231
Bill Wendling7f4a3362009-11-02 00:24:16 +00001232 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001233 <dd>This function attribute indicates that the function never returns
1234 normally. This produces undefined behavior at runtime if the function
1235 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001236
Bill Wendling7f4a3362009-11-02 00:24:16 +00001237 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001238 <dd>This function attribute indicates that the function never returns with an
1239 unwind or exceptional control flow. If the function does unwind, its
1240 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001241
Nick Lewycky14b58da2010-07-06 18:24:09 +00001242 <dt><tt><b>optsize</b></tt></dt>
1243 <dd>This attribute suggests that optimization passes and code generator passes
1244 make choices that keep the code size of this function low, and otherwise
1245 do optimizations specifically to reduce code size.</dd>
1246
Bill Wendling7f4a3362009-11-02 00:24:16 +00001247 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001248 <dd>This attribute indicates that the function computes its result (or decides
1249 to unwind an exception) based strictly on its arguments, without
1250 dereferencing any pointer arguments or otherwise accessing any mutable
1251 state (e.g. memory, control registers, etc) visible to caller functions.
1252 It does not write through any pointer arguments
1253 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1254 changes any state visible to callers. This means that it cannot unwind
Bill Wendling3f6a3a22012-02-06 21:57:33 +00001255 exceptions by calling the <tt>C++</tt> exception throwing methods.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001256
Bill Wendling7f4a3362009-11-02 00:24:16 +00001257 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001258 <dd>This attribute indicates that the function does not write through any
1259 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1260 arguments) or otherwise modify any state (e.g. memory, control registers,
1261 etc) visible to caller functions. It may dereference pointer arguments
1262 and read state that may be set in the caller. A readonly function always
1263 returns the same value (or unwinds an exception identically) when called
1264 with the same set of arguments and global state. It cannot unwind an
Bill Wendling3f6a3a22012-02-06 21:57:33 +00001265 exception by calling the <tt>C++</tt> exception throwing methods.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001266
Bill Wendlingb437ab82011-12-05 21:27:54 +00001267 <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1268 <dd>This attribute indicates that this function can return twice. The
1269 C <code>setjmp</code> is an example of such a function. The compiler
1270 disables some optimizations (like tail calls) in the caller of these
1271 functions.</dd>
1272
Bill Wendling7f4a3362009-11-02 00:24:16 +00001273 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001274 <dd>This attribute indicates that the function should emit a stack smashing
1275 protector. It is in the form of a "canary"&mdash;a random value placed on
1276 the stack before the local variables that's checked upon return from the
1277 function to see if it has been overwritten. A heuristic is used to
1278 determine if a function needs stack protectors or not.<br>
1279<br>
1280 If a function that has an <tt>ssp</tt> attribute is inlined into a
1281 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1282 function will have an <tt>ssp</tt> attribute.</dd>
1283
Bill Wendling7f4a3362009-11-02 00:24:16 +00001284 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001285 <dd>This attribute indicates that the function should <em>always</em> emit a
1286 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001287 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1288<br>
1289 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1290 function that doesn't have an <tt>sspreq</tt> attribute or which has
1291 an <tt>ssp</tt> attribute, then the resulting function will have
1292 an <tt>sspreq</tt> attribute.</dd>
Rafael Espindola163d6752011-07-25 15:27:59 +00001293
1294 <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1295 <dd>This attribute indicates that the ABI being targeted requires that
1296 an unwind table entry be produce for this function even if we can
1297 show that no exceptions passes by it. This is normally the case for
1298 the ELF x86-64 abi, but it can be disabled for some compilation
1299 units.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001300</dl>
1301
Devang Patelcaacdba2008-09-04 23:05:13 +00001302</div>
1303
1304<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001305<h3>
Chris Lattner93564892006-04-08 04:40:53 +00001306 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001307</h3>
Chris Lattner91c15c42006-01-23 23:23:47 +00001308
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001309<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001310
1311<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1312 the GCC "file scope inline asm" blocks. These blocks are internally
1313 concatenated by LLVM and treated as a single unit, but may be separated in
1314 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001315
Benjamin Kramer79698be2010-07-13 12:26:09 +00001316<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001317module asm "inline asm code goes here"
1318module asm "more can go here"
1319</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001320
1321<p>The strings can contain any character by escaping non-printable characters.
1322 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001323 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001324
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001325<p>The inline asm code is simply printed to the machine code .s file when
1326 assembly code is generated.</p>
1327
Chris Lattner91c15c42006-01-23 23:23:47 +00001328</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001329
Reid Spencer50c723a2007-02-19 23:54:10 +00001330<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001331<h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001332 <a name="datalayout">Data Layout</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001333</h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001334
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001335<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001336
Reid Spencer50c723a2007-02-19 23:54:10 +00001337<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001338 data is to be laid out in memory. The syntax for the data layout is
1339 simply:</p>
1340
Benjamin Kramer79698be2010-07-13 12:26:09 +00001341<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001342target datalayout = "<i>layout specification</i>"
1343</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001344
1345<p>The <i>layout specification</i> consists of a list of specifications
1346 separated by the minus sign character ('-'). Each specification starts with
1347 a letter and may include other information after the letter to define some
1348 aspect of the data layout. The specifications accepted are as follows:</p>
1349
Reid Spencer50c723a2007-02-19 23:54:10 +00001350<dl>
1351 <dt><tt>E</tt></dt>
1352 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001353 bits with the most significance have the lowest address location.</dd>
1354
Reid Spencer50c723a2007-02-19 23:54:10 +00001355 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001356 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001357 the bits with the least significance have the lowest address
1358 location.</dd>
1359
Lang Hamesde7ab802011-10-10 23:42:08 +00001360 <dt><tt>S<i>size</i></tt></dt>
1361 <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1362 of stack variables is limited to the natural stack alignment to avoid
1363 dynamic stack realignment. The stack alignment must be a multiple of
Lang Hamesff2c52c2011-10-11 17:50:14 +00001364 8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1365 which does not prevent any alignment promotions.</dd>
Lang Hamesde7ab802011-10-10 23:42:08 +00001366
Reid Spencer50c723a2007-02-19 23:54:10 +00001367 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001368 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001369 <i>preferred</i> alignments. All sizes are in bits. Specifying
1370 the <i>pref</i> alignment is optional. If omitted, the
1371 preceding <tt>:</tt> should be omitted too.</dd>
1372
Reid Spencer50c723a2007-02-19 23:54:10 +00001373 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1374 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001375 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1376
Reid Spencer50c723a2007-02-19 23:54:10 +00001377 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001378 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001379 <i>size</i>.</dd>
1380
Reid Spencer50c723a2007-02-19 23:54:10 +00001381 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001382 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001383 <i>size</i>. Only values of <i>size</i> that are supported by the target
1384 will work. 32 (float) and 64 (double) are supported on all targets;
1385 80 or 128 (different flavors of long double) are also supported on some
1386 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001387
Reid Spencer50c723a2007-02-19 23:54:10 +00001388 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1389 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001390 <i>size</i>.</dd>
1391
Daniel Dunbar7921a592009-06-08 22:17:53 +00001392 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1393 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001394 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001395
1396 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1397 <dd>This specifies a set of native integer widths for the target CPU
1398 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1399 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001400 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001401 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001402</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001403
Reid Spencer50c723a2007-02-19 23:54:10 +00001404<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001405 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001406 specifications in the <tt>datalayout</tt> keyword. The default specifications
1407 are given in this list:</p>
1408
Reid Spencer50c723a2007-02-19 23:54:10 +00001409<ul>
1410 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001411 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001412 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1413 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1414 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1415 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001416 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001417 alignment of 64-bits</li>
1418 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1419 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1420 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1421 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1422 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001423 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001424</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001425
1426<p>When LLVM is determining the alignment for a given type, it uses the
1427 following rules:</p>
1428
Reid Spencer50c723a2007-02-19 23:54:10 +00001429<ol>
1430 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001431 specification is used.</li>
1432
Reid Spencer50c723a2007-02-19 23:54:10 +00001433 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001434 smallest integer type that is larger than the bitwidth of the sought type
1435 is used. If none of the specifications are larger than the bitwidth then
Sylvestre Ledru35521e22012-07-23 08:51:15 +00001436 the largest integer type is used. For example, given the default
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001437 specifications above, the i7 type will use the alignment of i8 (next
1438 largest) while both i65 and i256 will use the alignment of i64 (largest
1439 specified).</li>
1440
Reid Spencer50c723a2007-02-19 23:54:10 +00001441 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001442 largest vector type that is smaller than the sought vector type will be
1443 used as a fall back. This happens because &lt;128 x double&gt; can be
1444 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001445</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001446
Chris Lattner48797402011-10-11 23:01:39 +00001447<p>The function of the data layout string may not be what you expect. Notably,
1448 this is not a specification from the frontend of what alignment the code
1449 generator should use.</p>
1450
1451<p>Instead, if specified, the target data layout is required to match what the
1452 ultimate <em>code generator</em> expects. This string is used by the
1453 mid-level optimizers to
1454 improve code, and this only works if it matches what the ultimate code
1455 generator uses. If you would like to generate IR that does not embed this
1456 target-specific detail into the IR, then you don't have to specify the
1457 string. This will disable some optimizations that require precise layout
1458 information, but this also prevents those optimizations from introducing
1459 target specificity into the IR.</p>
1460
1461
1462
Reid Spencer50c723a2007-02-19 23:54:10 +00001463</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001464
Dan Gohman6154a012009-07-27 18:07:55 +00001465<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001466<h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001467 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001468</h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001469
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001470<div>
Dan Gohman6154a012009-07-27 18:07:55 +00001471
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001472<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001473with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001474is undefined. Pointer values are associated with address ranges
1475according to the following rules:</p>
1476
1477<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001478 <li>A pointer value is associated with the addresses associated with
1479 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001480 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001481 range of the variable's storage.</li>
1482 <li>The result value of an allocation instruction is associated with
1483 the address range of the allocated storage.</li>
1484 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001485 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001486 <li>An integer constant other than zero or a pointer value returned
1487 from a function not defined within LLVM may be associated with address
1488 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001489 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001490 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001491</ul>
1492
1493<p>A pointer value is <i>based</i> on another pointer value according
1494 to the following rules:</p>
1495
1496<ul>
1497 <li>A pointer value formed from a
1498 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1499 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1500 <li>The result value of a
1501 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1502 of the <tt>bitcast</tt>.</li>
1503 <li>A pointer value formed by an
1504 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1505 pointer values that contribute (directly or indirectly) to the
1506 computation of the pointer's value.</li>
1507 <li>The "<i>based</i> on" relationship is transitive.</li>
1508</ul>
1509
1510<p>Note that this definition of <i>"based"</i> is intentionally
1511 similar to the definition of <i>"based"</i> in C99, though it is
1512 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001513
1514<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001515<tt><a href="#i_load">load</a></tt> merely indicates the size and
1516alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001517interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001518<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1519and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001520
1521<p>Consequently, type-based alias analysis, aka TBAA, aka
1522<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1523LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1524additional information which specialized optimization passes may use
1525to implement type-based alias analysis.</p>
1526
1527</div>
1528
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001529<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001530<h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001531 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001532</h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001533
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001534<div>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001535
1536<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1537href="#i_store"><tt>store</tt></a>s, and <a
1538href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1539The optimizers must not change the number of volatile operations or change their
1540order of execution relative to other volatile operations. The optimizers
1541<i>may</i> change the order of volatile operations relative to non-volatile
1542operations. This is not Java's "volatile" and has no cross-thread
1543synchronization behavior.</p>
1544
1545</div>
1546
Eli Friedman35b54aa2011-07-20 21:35:53 +00001547<!-- ======================================================================= -->
1548<h3>
1549 <a name="memmodel">Memory Model for Concurrent Operations</a>
1550</h3>
1551
1552<div>
1553
1554<p>The LLVM IR does not define any way to start parallel threads of execution
1555or to register signal handlers. Nonetheless, there are platform-specific
1556ways to create them, and we define LLVM IR's behavior in their presence. This
1557model is inspired by the C++0x memory model.</p>
1558
Eli Friedman95f69a42011-08-22 21:35:27 +00001559<p>For a more informal introduction to this model, see the
1560<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1561
Eli Friedman35b54aa2011-07-20 21:35:53 +00001562<p>We define a <i>happens-before</i> partial order as the least partial order
1563that</p>
1564<ul>
1565 <li>Is a superset of single-thread program order, and</li>
1566 <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1567 <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1568 by platform-specific techniques, like pthread locks, thread
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001569 creation, thread joining, etc., and by atomic instructions.
1570 (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1571 </li>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001572</ul>
1573
1574<p>Note that program order does not introduce <i>happens-before</i> edges
1575between a thread and signals executing inside that thread.</p>
1576
1577<p>Every (defined) read operation (load instructions, memcpy, atomic
1578loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1579(defined) write operations (store instructions, atomic
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001580stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1581initialized globals are considered to have a write of the initializer which is
1582atomic and happens before any other read or write of the memory in question.
1583For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1584any write to the same byte, except:</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001585
1586<ul>
1587 <li>If <var>write<sub>1</sub></var> happens before
1588 <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1589 before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001590 does not see <var>write<sub>1</sub></var>.
Bill Wendling537603b2011-07-31 06:45:03 +00001591 <li>If <var>R<sub>byte</sub></var> happens before
1592 <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1593 see <var>write<sub>3</sub></var>.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001594</ul>
1595
1596<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1597<ul>
Eli Friedman95f69a42011-08-22 21:35:27 +00001598 <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1599 is supposed to give guarantees which can support
1600 <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1601 addresses which do not behave like normal memory. It does not generally
1602 provide cross-thread synchronization.)
1603 <li>Otherwise, if there is no write to the same byte that happens before
Eli Friedman35b54aa2011-07-20 21:35:53 +00001604 <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns
1605 <tt>undef</tt> for that byte.
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001606 <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
Eli Friedman35b54aa2011-07-20 21:35:53 +00001607 <var>R<sub>byte</sub></var> returns the value written by that
1608 write.</li>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001609 <li>Otherwise, if <var>R</var> is atomic, and all the writes
1610 <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001611 values written. See the <a href="#ordering">Atomic Memory Ordering
1612 Constraints</a> section for additional constraints on how the choice
1613 is made.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001614 <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1615</ul>
1616
1617<p><var>R</var> returns the value composed of the series of bytes it read.
1618This implies that some bytes within the value may be <tt>undef</tt>
1619<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1620defines the semantics of the operation; it doesn't mean that targets will
1621emit more than one instruction to read the series of bytes.</p>
1622
1623<p>Note that in cases where none of the atomic intrinsics are used, this model
1624places only one restriction on IR transformations on top of what is required
1625for single-threaded execution: introducing a store to a byte which might not
Eli Friedman4bc9f3c2011-08-02 01:15:34 +00001626otherwise be stored is not allowed in general. (Specifically, in the case
1627where another thread might write to and read from an address, introducing a
1628store can change a load that may see exactly one write into a load that may
1629see multiple writes.)</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001630
1631<!-- FIXME: This model assumes all targets where concurrency is relevant have
1632a byte-size store which doesn't affect adjacent bytes. As far as I can tell,
1633none of the backends currently in the tree fall into this category; however,
1634there might be targets which care. If there are, we want a paragraph
1635like the following:
1636
1637Targets may specify that stores narrower than a certain width are not
1638available; on such a target, for the purposes of this model, treat any
1639non-atomic write with an alignment or width less than the minimum width
1640as if it writes to the relevant surrounding bytes.
1641-->
1642
1643</div>
1644
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001645<!-- ======================================================================= -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001646<h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001647 <a name="ordering">Atomic Memory Ordering Constraints</a>
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001648</h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001649
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001650<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001651
1652<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
Eli Friedman59b66882011-08-09 23:02:53 +00001653<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1654<a href="#i_fence"><code>fence</code></a>,
1655<a href="#i_load"><code>atomic load</code></a>, and
Eli Friedman75362532011-08-09 23:26:12 +00001656<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001657that determines which other atomic instructions on the same address they
1658<i>synchronize with</i>. These semantics are borrowed from Java and C++0x,
1659but are somewhat more colloquial. If these descriptions aren't precise enough,
Eli Friedman95f69a42011-08-22 21:35:27 +00001660check those specs (see spec references in the
Nick Lewycky75499f52012-01-23 08:47:21 +00001661<a href="Atomics.html#introduction">atomics guide</a>).
Eli Friedman95f69a42011-08-22 21:35:27 +00001662<a href="#i_fence"><code>fence</code></a> instructions
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001663treat these orderings somewhat differently since they don't take an address.
1664See that instruction's documentation for details.</p>
1665
Eli Friedman95f69a42011-08-22 21:35:27 +00001666<p>For a simpler introduction to the ordering constraints, see the
1667<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1668
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001669<dl>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001670<dt><code>unordered</code></dt>
1671<dd>The set of values that can be read is governed by the happens-before
1672partial order. A value cannot be read unless some operation wrote it.
1673This is intended to provide a guarantee strong enough to model Java's
1674non-volatile shared variables. This ordering cannot be specified for
1675read-modify-write operations; it is not strong enough to make them atomic
1676in any interesting way.</dd>
1677<dt><code>monotonic</code></dt>
1678<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1679total order for modifications by <code>monotonic</code> operations on each
1680address. All modification orders must be compatible with the happens-before
1681order. There is no guarantee that the modification orders can be combined to
1682a global total order for the whole program (and this often will not be
1683possible). The read in an atomic read-modify-write operation
1684(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1685<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1686reads the value in the modification order immediately before the value it
1687writes. If one atomic read happens before another atomic read of the same
1688address, the later read must see the same value or a later value in the
1689address's modification order. This disallows reordering of
1690<code>monotonic</code> (or stronger) operations on the same address. If an
1691address is written <code>monotonic</code>ally by one thread, and other threads
1692<code>monotonic</code>ally read that address repeatedly, the other threads must
Eli Friedman95f69a42011-08-22 21:35:27 +00001693eventually see the write. This corresponds to the C++0x/C1x
1694<code>memory_order_relaxed</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001695<dt><code>acquire</code></dt>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001696<dd>In addition to the guarantees of <code>monotonic</code>,
Eli Friedman0cb3b562011-08-24 20:28:39 +00001697a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1698operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1699<dt><code>release</code></dt>
1700<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1701writes a value which is subsequently read by an <code>acquire</code> operation,
1702it <i>synchronizes-with</i> that operation. (This isn't a complete
1703description; see the C++0x definition of a release sequence.) This corresponds
1704to the C++0x/C1x <code>memory_order_release</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001705<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
Eli Friedman95f69a42011-08-22 21:35:27 +00001706<code>acquire</code> and <code>release</code> operation on its address.
1707This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001708<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1709<dd>In addition to the guarantees of <code>acq_rel</code>
1710(<code>acquire</code> for an operation which only reads, <code>release</code>
1711for an operation which only writes), there is a global total order on all
1712sequentially-consistent operations on all addresses, which is consistent with
1713the <i>happens-before</i> partial order and with the modification orders of
1714all the affected addresses. Each sequentially-consistent read sees the last
Eli Friedman95f69a42011-08-22 21:35:27 +00001715preceding write to the same address in this global order. This corresponds
1716to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001717</dl>
1718
1719<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1720it only <i>synchronizes with</i> or participates in modification and seq_cst
1721total orderings with other operations running in the same thread (for example,
1722in signal handlers).</p>
1723
1724</div>
1725
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001726</div>
1727
Chris Lattner2f7c9632001-06-06 20:29:01 +00001728<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001729<h2><a name="typesystem">Type System</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00001730<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001731
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001732<div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001733
Misha Brukman76307852003-11-08 01:05:38 +00001734<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001735 intermediate representation. Being typed enables a number of optimizations
1736 to be performed on the intermediate representation directly, without having
1737 to do extra analyses on the side before the transformation. A strong type
1738 system makes it easier to read the generated code and enables novel analyses
1739 and transformations that are not feasible to perform on normal three address
1740 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001741
Chris Lattner2f7c9632001-06-06 20:29:01 +00001742<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001743<h3>
1744 <a name="t_classifications">Type Classifications</a>
1745</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001746
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001747<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001748
1749<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001750
1751<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001752 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001753 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001754 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001755 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001756 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001757 </tr>
1758 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001759 <td><a href="#t_floating">floating point</a></td>
Dan Gohman518cda42011-12-17 00:04:22 +00001760 <td><tt>half, float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001761 </tr>
1762 <tr>
1763 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001764 <td><a href="#t_integer">integer</a>,
1765 <a href="#t_floating">floating point</a>,
1766 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001767 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001768 <a href="#t_struct">structure</a>,
1769 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001770 <a href="#t_label">label</a>,
1771 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001772 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001773 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001774 <tr>
1775 <td><a href="#t_primitive">primitive</a></td>
1776 <td><a href="#t_label">label</a>,
1777 <a href="#t_void">void</a>,
Tobias Grosser4c8c95b2010-12-28 20:29:31 +00001778 <a href="#t_integer">integer</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001779 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001780 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001781 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001782 </tr>
1783 <tr>
1784 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001785 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001786 <a href="#t_function">function</a>,
1787 <a href="#t_pointer">pointer</a>,
1788 <a href="#t_struct">structure</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001789 <a href="#t_vector">vector</a>,
1790 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001791 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001792 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001793 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001794</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001795
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001796<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1797 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001798 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001799
Misha Brukman76307852003-11-08 01:05:38 +00001800</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001801
Chris Lattner2f7c9632001-06-06 20:29:01 +00001802<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001803<h3>
1804 <a name="t_primitive">Primitive Types</a>
1805</h3>
Chris Lattner43542b32008-01-04 04:34:14 +00001806
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001807<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001808
Chris Lattner7824d182008-01-04 04:32:38 +00001809<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001810 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001811
1812<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001813<h4>
1814 <a name="t_integer">Integer Type</a>
1815</h4>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001816
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001817<div>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001818
1819<h5>Overview:</h5>
1820<p>The integer type is a very simple type that simply specifies an arbitrary
1821 bit width for the integer type desired. Any bit width from 1 bit to
1822 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1823
1824<h5>Syntax:</h5>
1825<pre>
1826 iN
1827</pre>
1828
1829<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1830 value.</p>
1831
1832<h5>Examples:</h5>
1833<table class="layout">
1834 <tr class="layout">
1835 <td class="left"><tt>i1</tt></td>
1836 <td class="left">a single-bit integer.</td>
1837 </tr>
1838 <tr class="layout">
1839 <td class="left"><tt>i32</tt></td>
1840 <td class="left">a 32-bit integer.</td>
1841 </tr>
1842 <tr class="layout">
1843 <td class="left"><tt>i1942652</tt></td>
1844 <td class="left">a really big integer of over 1 million bits.</td>
1845 </tr>
1846</table>
1847
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001848</div>
1849
1850<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001851<h4>
1852 <a name="t_floating">Floating Point Types</a>
1853</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001854
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001855<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001856
1857<table>
1858 <tbody>
1859 <tr><th>Type</th><th>Description</th></tr>
Dan Gohman518cda42011-12-17 00:04:22 +00001860 <tr><td><tt>half</tt></td><td>16-bit floating point value</td></tr>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001861 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1862 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1863 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1864 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1865 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1866 </tbody>
1867</table>
1868
Chris Lattner7824d182008-01-04 04:32:38 +00001869</div>
1870
1871<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001872<h4>
1873 <a name="t_x86mmx">X86mmx Type</a>
1874</h4>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001875
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001876<div>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001877
1878<h5>Overview:</h5>
1879<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1880
1881<h5>Syntax:</h5>
1882<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001883 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001884</pre>
1885
1886</div>
1887
1888<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001889<h4>
1890 <a name="t_void">Void Type</a>
1891</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001892
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001893<div>
Bill Wendling30235112009-07-20 02:39:26 +00001894
Chris Lattner7824d182008-01-04 04:32:38 +00001895<h5>Overview:</h5>
1896<p>The void type does not represent any value and has no size.</p>
1897
1898<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001899<pre>
1900 void
1901</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001902
Chris Lattner7824d182008-01-04 04:32:38 +00001903</div>
1904
1905<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001906<h4>
1907 <a name="t_label">Label Type</a>
1908</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001909
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001910<div>
Bill Wendling30235112009-07-20 02:39:26 +00001911
Chris Lattner7824d182008-01-04 04:32:38 +00001912<h5>Overview:</h5>
1913<p>The label type represents code labels.</p>
1914
1915<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001916<pre>
1917 label
1918</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001919
Chris Lattner7824d182008-01-04 04:32:38 +00001920</div>
1921
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001922<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001923<h4>
1924 <a name="t_metadata">Metadata Type</a>
1925</h4>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001926
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001927<div>
Bill Wendling30235112009-07-20 02:39:26 +00001928
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001929<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001930<p>The metadata type represents embedded metadata. No derived types may be
1931 created from metadata except for <a href="#t_function">function</a>
1932 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001933
1934<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001935<pre>
1936 metadata
1937</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001938
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001939</div>
1940
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001941</div>
Chris Lattner7824d182008-01-04 04:32:38 +00001942
1943<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001944<h3>
1945 <a name="t_derived">Derived Types</a>
1946</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00001947
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001948<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001949
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001950<p>The real power in LLVM comes from the derived types in the system. This is
1951 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001952 useful types. Each of these types contain one or more element types which
1953 may be a primitive type, or another derived type. For example, it is
1954 possible to have a two dimensional array, using an array as the element type
1955 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001956
Chris Lattner392be582010-02-12 20:49:41 +00001957<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001958<h4>
1959 <a name="t_aggregate">Aggregate Types</a>
1960</h4>
Chris Lattner392be582010-02-12 20:49:41 +00001961
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001962<div>
Chris Lattner392be582010-02-12 20:49:41 +00001963
1964<p>Aggregate Types are a subset of derived types that can contain multiple
Duncan Sands9aaec152011-12-14 15:44:20 +00001965 member types. <a href="#t_array">Arrays</a> and
1966 <a href="#t_struct">structs</a> are aggregate types.
1967 <a href="#t_vector">Vectors</a> are not considered to be aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001968
1969</div>
1970
Reid Spencer138249b2007-05-16 18:44:01 +00001971<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001972<h4>
1973 <a name="t_array">Array Type</a>
1974</h4>
Chris Lattner74d3f822004-12-09 17:30:23 +00001975
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001976<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001977
Chris Lattner2f7c9632001-06-06 20:29:01 +00001978<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001979<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001980 sequentially in memory. The array type requires a size (number of elements)
1981 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001982
Chris Lattner590645f2002-04-14 06:13:44 +00001983<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001984<pre>
1985 [&lt;# elements&gt; x &lt;elementtype&gt;]
1986</pre>
1987
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001988<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1989 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001990
Chris Lattner590645f2002-04-14 06:13:44 +00001991<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001992<table class="layout">
1993 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001994 <td class="left"><tt>[40 x i32]</tt></td>
1995 <td class="left">Array of 40 32-bit integer values.</td>
1996 </tr>
1997 <tr class="layout">
1998 <td class="left"><tt>[41 x i32]</tt></td>
1999 <td class="left">Array of 41 32-bit integer values.</td>
2000 </tr>
2001 <tr class="layout">
2002 <td class="left"><tt>[4 x i8]</tt></td>
2003 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002004 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002005</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002006<p>Here are some examples of multidimensional arrays:</p>
2007<table class="layout">
2008 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00002009 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
2010 <td class="left">3x4 array of 32-bit integer values.</td>
2011 </tr>
2012 <tr class="layout">
2013 <td class="left"><tt>[12 x [10 x float]]</tt></td>
2014 <td class="left">12x10 array of single precision floating point values.</td>
2015 </tr>
2016 <tr class="layout">
2017 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
2018 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002019 </tr>
2020</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00002021
Dan Gohmanc74bc282009-11-09 19:01:53 +00002022<p>There is no restriction on indexing beyond the end of the array implied by
2023 a static type (though there are restrictions on indexing beyond the bounds
2024 of an allocated object in some cases). This means that single-dimension
2025 'variable sized array' addressing can be implemented in LLVM with a zero
2026 length array type. An implementation of 'pascal style arrays' in LLVM could
2027 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00002028
Misha Brukman76307852003-11-08 01:05:38 +00002029</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002030
Chris Lattner2f7c9632001-06-06 20:29:01 +00002031<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002032<h4>
2033 <a name="t_function">Function Type</a>
2034</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002035
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002036<div>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002037
Chris Lattner2f7c9632001-06-06 20:29:01 +00002038<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002039<p>The function type can be thought of as a function signature. It consists of
2040 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00002041 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00002042
Chris Lattner2f7c9632001-06-06 20:29:01 +00002043<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002044<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002045 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00002046</pre>
2047
John Criswell4c0cf7f2005-10-24 16:17:18 +00002048<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002049 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
2050 which indicates that the function takes a variable number of arguments.
2051 Variable argument functions can access their arguments with
2052 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00002053 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00002054 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002055
Chris Lattner2f7c9632001-06-06 20:29:01 +00002056<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002057<table class="layout">
2058 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00002059 <td class="left"><tt>i32 (i32)</tt></td>
2060 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002061 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00002062 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00002063 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00002064 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002065 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00002066 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2067 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00002068 </td>
2069 </tr><tr class="layout">
2070 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002071 <td class="left">A vararg function that takes at least one
2072 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2073 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00002074 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002075 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00002076 </tr><tr class="layout">
2077 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002078 <td class="left">A function taking an <tt>i32</tt>, returning a
2079 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00002080 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002081 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002082</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002083
Misha Brukman76307852003-11-08 01:05:38 +00002084</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002085
Chris Lattner2f7c9632001-06-06 20:29:01 +00002086<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002087<h4>
2088 <a name="t_struct">Structure Type</a>
2089</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002090
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002091<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002092
Chris Lattner2f7c9632001-06-06 20:29:01 +00002093<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002094<p>The structure type is used to represent a collection of data members together
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002095 in memory. The elements of a structure may be any type that has a size.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002096
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00002097<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2098 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2099 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2100 Structures in registers are accessed using the
2101 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2102 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002103
2104<p>Structures may optionally be "packed" structures, which indicate that the
2105 alignment of the struct is one byte, and that there is no padding between
Chris Lattner190552d2011-08-12 17:31:02 +00002106 the elements. In non-packed structs, padding between field types is inserted
2107 as defined by the TargetData string in the module, which is required to match
Chris Lattner7bd0ea32011-10-11 23:02:17 +00002108 what the underlying code generator expects.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002109
Chris Lattner190552d2011-08-12 17:31:02 +00002110<p>Structures can either be "literal" or "identified". A literal structure is
2111 defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2112 types are always defined at the top level with a name. Literal types are
2113 uniqued by their contents and can never be recursive or opaque since there is
Chris Lattner32531732011-08-12 18:12:40 +00002114 no way to write one. Identified types can be recursive, can be opaqued, and are
Chris Lattner190552d2011-08-12 17:31:02 +00002115 never uniqued.
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002116</p>
2117
Chris Lattner2f7c9632001-06-06 20:29:01 +00002118<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002119<pre>
Chris Lattner190552d2011-08-12 17:31:02 +00002120 %T1 = type { &lt;type list&gt; } <i>; Identified normal struct type</i>
2121 %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Identified packed struct type</i>
Bill Wendling30235112009-07-20 02:39:26 +00002122</pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002123
Chris Lattner2f7c9632001-06-06 20:29:01 +00002124<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002125<table class="layout">
2126 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002127 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2128 <td class="left">A triple of three <tt>i32</tt> values</td>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002129 </tr>
2130 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002131 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2132 <td class="left">A pair, where the first element is a <tt>float</tt> and the
2133 second element is a <a href="#t_pointer">pointer</a> to a
2134 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2135 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002136 </tr>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002137 <tr class="layout">
2138 <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2139 <td class="left">A packed struct known to be 5 bytes in size.</td>
2140 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002141</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002142
Misha Brukman76307852003-11-08 01:05:38 +00002143</div>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002144
Chris Lattner2f7c9632001-06-06 20:29:01 +00002145<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002146<h4>
Chris Lattner2a843822011-07-23 19:59:08 +00002147 <a name="t_opaque">Opaque Structure Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002148</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002149
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002150<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002151
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002152<h5>Overview:</h5>
Chris Lattner2a843822011-07-23 19:59:08 +00002153<p>Opaque structure types are used to represent named structure types that do
2154 not have a body specified. This corresponds (for example) to the C notion of
2155 a forward declared structure.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002156
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002157<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002158<pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002159 %X = type opaque
2160 %52 = type opaque
Bill Wendling30235112009-07-20 02:39:26 +00002161</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002162
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002163<h5>Examples:</h5>
2164<table class="layout">
2165 <tr class="layout">
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002166 <td class="left"><tt>opaque</tt></td>
2167 <td class="left">An opaque type.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002168 </tr>
2169</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002170
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002171</div>
2172
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002173
2174
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002175<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002176<h4>
2177 <a name="t_pointer">Pointer Type</a>
2178</h4>
Chris Lattner4a67c912009-02-08 19:53:29 +00002179
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002180<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002181
2182<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00002183<p>The pointer type is used to specify memory locations.
2184 Pointers are commonly used to reference objects in memory.</p>
2185
2186<p>Pointer types may have an optional address space attribute defining the
2187 numbered address space where the pointed-to object resides. The default
2188 address space is number zero. The semantics of non-zero address
2189 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002190
2191<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2192 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00002193
Chris Lattner590645f2002-04-14 06:13:44 +00002194<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002195<pre>
2196 &lt;type&gt; *
2197</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002198
Chris Lattner590645f2002-04-14 06:13:44 +00002199<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002200<table class="layout">
2201 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00002202 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002203 <td class="left">A <a href="#t_pointer">pointer</a> to <a
2204 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2205 </tr>
2206 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00002207 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002208 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002209 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00002210 <tt>i32</tt>.</td>
2211 </tr>
2212 <tr class="layout">
2213 <td class="left"><tt>i32 addrspace(5)*</tt></td>
2214 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2215 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002216 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00002217</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002218
Misha Brukman76307852003-11-08 01:05:38 +00002219</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002220
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002221<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002222<h4>
2223 <a name="t_vector">Vector Type</a>
2224</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002225
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002226<div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002227
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002228<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002229<p>A vector type is a simple derived type that represents a vector of elements.
2230 Vector types are used when multiple primitive data are operated in parallel
2231 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00002232 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002233 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002234
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002235<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002236<pre>
2237 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2238</pre>
2239
Chris Lattnerf11031a2010-10-10 18:20:35 +00002240<p>The number of elements is a constant integer value larger than 0; elementtype
Nadav Rotem3924cb02011-12-05 06:29:09 +00002241 may be any integer or floating point type, or a pointer to these types.
2242 Vectors of size zero are not allowed. </p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002243
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002244<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002245<table class="layout">
2246 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00002247 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2248 <td class="left">Vector of 4 32-bit integer values.</td>
2249 </tr>
2250 <tr class="layout">
2251 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2252 <td class="left">Vector of 8 32-bit floating-point values.</td>
2253 </tr>
2254 <tr class="layout">
2255 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2256 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002257 </tr>
Nadav Rotem3924cb02011-12-05 06:29:09 +00002258 <tr class="layout">
2259 <td class="left"><tt>&lt;4 x i64*&gt;</tt></td>
2260 <td class="left">Vector of 4 pointers to 64-bit integer values.</td>
2261 </tr>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002262</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002263
Misha Brukman76307852003-11-08 01:05:38 +00002264</div>
2265
Bill Wendlingae8b5ea2011-07-31 06:47:33 +00002266</div>
2267
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00002268</div>
2269
Chris Lattner74d3f822004-12-09 17:30:23 +00002270<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002271<h2><a name="constants">Constants</a></h2>
Chris Lattner74d3f822004-12-09 17:30:23 +00002272<!-- *********************************************************************** -->
2273
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002274<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002275
2276<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002277 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002278
Chris Lattner74d3f822004-12-09 17:30:23 +00002279<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002280<h3>
2281 <a name="simpleconstants">Simple Constants</a>
2282</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002283
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002284<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002285
2286<dl>
2287 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002288 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002289 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002290
2291 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002292 <dd>Standard integers (such as '4') are constants of
2293 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2294 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002295
2296 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002297 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002298 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2299 notation (see below). The assembler requires the exact decimal value of a
2300 floating-point constant. For example, the assembler accepts 1.25 but
2301 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2302 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002303
2304 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002305 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002306 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002307</dl>
2308
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002309<p>The one non-intuitive notation for constants is the hexadecimal form of
2310 floating point constants. For example, the form '<tt>double
2311 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2312 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2313 constants are required (and the only time that they are generated by the
2314 disassembler) is when a floating point constant must be emitted but it cannot
2315 be represented as a decimal floating point number in a reasonable number of
2316 digits. For example, NaN's, infinities, and other special values are
2317 represented in their IEEE hexadecimal format so that assembly and disassembly
2318 do not cause any bits to change in the constants.</p>
2319
Dan Gohman518cda42011-12-17 00:04:22 +00002320<p>When using the hexadecimal form, constants of types half, float, and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002321 represented using the 16-digit form shown above (which matches the IEEE754
Dan Gohman518cda42011-12-17 00:04:22 +00002322 representation for double); half and float values must, however, be exactly
2323 representable as IEE754 half and single precision, respectively.
2324 Hexadecimal format is always used
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002325 for long double, and there are three forms of long double. The 80-bit format
2326 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2327 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2328 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2329 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2330 currently supported target uses this format. Long doubles will only work if
Tobias Grosser6b31d172012-05-24 15:59:06 +00002331 they match the long double format on your target. The IEEE 16-bit format
2332 (half precision) is represented by <tt>0xH</tt> followed by 4 hexadecimal
2333 digits. All hexadecimal formats are big-endian (sign bit at the left).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002334
Dale Johannesen33e5c352010-10-01 00:48:59 +00002335<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002336</div>
2337
2338<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002339<h3>
Bill Wendling972b7202009-07-20 02:32:41 +00002340<a name="aggregateconstants"></a> <!-- old anchor -->
2341<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002342</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002343
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002344<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002345
Chris Lattner361bfcd2009-02-28 18:32:25 +00002346<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002347 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002348
2349<dl>
2350 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002351 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002352 type definitions (a comma separated list of elements, surrounded by braces
2353 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2354 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2355 Structure constants must have <a href="#t_struct">structure type</a>, and
2356 the number and types of elements must match those specified by the
2357 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002358
2359 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002360 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002361 definitions (a comma separated list of elements, surrounded by square
2362 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2363 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2364 the number and types of elements must match those specified by the
2365 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002366
Reid Spencer404a3252007-02-15 03:07:05 +00002367 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002368 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002369 definitions (a comma separated list of elements, surrounded by
2370 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2371 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2372 have <a href="#t_vector">vector type</a>, and the number and types of
2373 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002374
2375 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002376 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002377 value to zero of <em>any</em> type, including scalar and
2378 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002379 This is often used to avoid having to print large zero initializers
2380 (e.g. for large arrays) and is always exactly equivalent to using explicit
2381 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002382
2383 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002384 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002385 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2386 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2387 be interpreted as part of the instruction stream, metadata is a place to
2388 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002389</dl>
2390
2391</div>
2392
2393<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002394<h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002395 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002396</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002397
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002398<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002399
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002400<p>The addresses of <a href="#globalvars">global variables</a>
2401 and <a href="#functionstructure">functions</a> are always implicitly valid
2402 (link-time) constants. These constants are explicitly referenced when
2403 the <a href="#identifiers">identifier for the global</a> is used and always
2404 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2405 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002406
Benjamin Kramer79698be2010-07-13 12:26:09 +00002407<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002408@X = global i32 17
2409@Y = global i32 42
2410@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002411</pre>
2412
2413</div>
2414
2415<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002416<h3>
2417 <a name="undefvalues">Undefined Values</a>
2418</h3>
2419
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002420<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002421
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002422<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002423 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002424 Undefined values may be of any type (other than '<tt>label</tt>'
2425 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002426
Chris Lattner92ada5d2009-09-11 01:49:31 +00002427<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002428 program is well defined no matter what value is used. This gives the
2429 compiler more freedom to optimize. Here are some examples of (potentially
2430 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002431
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002432
Benjamin Kramer79698be2010-07-13 12:26:09 +00002433<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002434 %A = add %X, undef
2435 %B = sub %X, undef
2436 %C = xor %X, undef
2437Safe:
2438 %A = undef
2439 %B = undef
2440 %C = undef
2441</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002442
2443<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002444 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002445
Benjamin Kramer79698be2010-07-13 12:26:09 +00002446<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002447 %A = or %X, undef
2448 %B = and %X, undef
2449Safe:
2450 %A = -1
2451 %B = 0
2452Unsafe:
2453 %A = undef
2454 %B = undef
2455</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002456
2457<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002458 For example, if <tt>%X</tt> has a zero bit, then the output of the
2459 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2460 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2461 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2462 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2463 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2464 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2465 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002466
Benjamin Kramer79698be2010-07-13 12:26:09 +00002467<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002468 %A = select undef, %X, %Y
2469 %B = select undef, 42, %Y
2470 %C = select %X, %Y, undef
2471Safe:
2472 %A = %X (or %Y)
2473 %B = 42 (or %Y)
2474 %C = %Y
2475Unsafe:
2476 %A = undef
2477 %B = undef
2478 %C = undef
2479</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002480
Bill Wendling6bbe0912010-10-27 01:07:41 +00002481<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2482 branch) conditions can go <em>either way</em>, but they have to come from one
2483 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2484 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2485 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2486 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2487 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2488 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002489
Benjamin Kramer79698be2010-07-13 12:26:09 +00002490<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002491 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002492
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002493 %B = undef
2494 %C = xor %B, %B
2495
2496 %D = undef
2497 %E = icmp lt %D, 4
2498 %F = icmp gte %D, 4
2499
2500Safe:
2501 %A = undef
2502 %B = undef
2503 %C = undef
2504 %D = undef
2505 %E = undef
2506 %F = undef
2507</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002508
Bill Wendling6bbe0912010-10-27 01:07:41 +00002509<p>This example points out that two '<tt>undef</tt>' operands are not
2510 necessarily the same. This can be surprising to people (and also matches C
2511 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2512 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2513 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2514 its value over its "live range". This is true because the variable doesn't
2515 actually <em>have a live range</em>. Instead, the value is logically read
2516 from arbitrary registers that happen to be around when needed, so the value
2517 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2518 need to have the same semantics or the core LLVM "replace all uses with"
2519 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002520
Benjamin Kramer79698be2010-07-13 12:26:09 +00002521<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002522 %A = fdiv undef, %X
2523 %B = fdiv %X, undef
2524Safe:
2525 %A = undef
2526b: unreachable
2527</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002528
2529<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002530 value</em> and <em>undefined behavior</em>. An undefined value (like
2531 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2532 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2533 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2534 defined on SNaN's. However, in the second example, we can make a more
2535 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2536 arbitrary value, we are allowed to assume that it could be zero. Since a
2537 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2538 the operation does not execute at all. This allows us to delete the divide and
2539 all code after it. Because the undefined operation "can't happen", the
2540 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002541
Benjamin Kramer79698be2010-07-13 12:26:09 +00002542<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002543a: store undef -> %X
2544b: store %X -> undef
2545Safe:
2546a: &lt;deleted&gt;
2547b: unreachable
2548</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002549
Bill Wendling6bbe0912010-10-27 01:07:41 +00002550<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2551 undefined value can be assumed to not have any effect; we can assume that the
2552 value is overwritten with bits that happen to match what was already there.
2553 However, a store <em>to</em> an undefined location could clobber arbitrary
2554 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002555
Chris Lattner74d3f822004-12-09 17:30:23 +00002556</div>
2557
2558<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002559<h3>
Dan Gohman9a2a0932011-12-06 03:18:47 +00002560 <a name="poisonvalues">Poison Values</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002561</h3>
2562
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002563<div>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002564
Dan Gohman9a2a0932011-12-06 03:18:47 +00002565<p>Poison values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohman32772f72011-12-06 03:35:58 +00002566 they also represent the fact that an instruction or constant expression which
2567 cannot evoke side effects has nevertheless detected a condition which results
2568 in undefined behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002569
Dan Gohman9a2a0932011-12-06 03:18:47 +00002570<p>There is currently no way of representing a poison value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002571 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002572 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002573
Dan Gohman9a2a0932011-12-06 03:18:47 +00002574<p>Poison value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002575
Dan Gohman2f1ae062010-04-28 00:49:41 +00002576<ul>
2577<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2578 their operands.</li>
2579
2580<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2581 to their dynamic predecessor basic block.</li>
2582
2583<li>Function arguments depend on the corresponding actual argument values in
2584 the dynamic callers of their functions.</li>
2585
2586<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2587 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2588 control back to them.</li>
2589
Dan Gohman7292a752010-05-03 14:55:22 +00002590<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
Bill Wendling3f6a3a22012-02-06 21:57:33 +00002591 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_resume"><tt>resume</tt></a>,
Dan Gohman7292a752010-05-03 14:55:22 +00002592 or exception-throwing call instructions that dynamically transfer control
2593 back to them.</li>
2594
Dan Gohman2f1ae062010-04-28 00:49:41 +00002595<li>Non-volatile loads and stores depend on the most recent stores to all of the
2596 referenced memory addresses, following the order in the IR
2597 (including loads and stores implied by intrinsics such as
2598 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2599
Dan Gohman3513ea52010-05-03 14:59:34 +00002600<!-- TODO: In the case of multiple threads, this only applies if the store
2601 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002602
Dan Gohman2f1ae062010-04-28 00:49:41 +00002603<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002604
Dan Gohman2f1ae062010-04-28 00:49:41 +00002605<li>An instruction with externally visible side effects depends on the most
2606 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002607 the order in the IR. (This includes
2608 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002609
Dan Gohman7292a752010-05-03 14:55:22 +00002610<li>An instruction <i>control-depends</i> on a
2611 <a href="#terminators">terminator instruction</a>
2612 if the terminator instruction has multiple successors and the instruction
2613 is always executed when control transfers to one of the successors, and
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002614 may not be executed when control is transferred to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002615
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002616<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2617 instruction if the set of instructions it otherwise depends on would be
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002618 different if the terminator had transferred control to a different
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002619 successor.</li>
2620
Dan Gohman2f1ae062010-04-28 00:49:41 +00002621<li>Dependence is transitive.</li>
2622
2623</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002624
Dan Gohman32772f72011-12-06 03:35:58 +00002625<p>Poison Values have the same behavior as <a href="#undefvalues">undef values</a>,
2626 with the additional affect that any instruction which has a <i>dependence</i>
2627 on a poison value has undefined behavior.</p>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002628
2629<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002630
Benjamin Kramer79698be2010-07-13 12:26:09 +00002631<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002632entry:
Dan Gohman9a2a0932011-12-06 03:18:47 +00002633 %poison = sub nuw i32 0, 1 ; Results in a poison value.
Dan Gohman32772f72011-12-06 03:35:58 +00002634 %still_poison = and i32 %poison, 0 ; 0, but also poison.
Dan Gohman9a2a0932011-12-06 03:18:47 +00002635 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
Dan Gohman32772f72011-12-06 03:35:58 +00002636 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
Dan Gohman2f1ae062010-04-28 00:49:41 +00002637
Dan Gohman32772f72011-12-06 03:35:58 +00002638 store i32 %poison, i32* @g ; Poison value stored to memory.
2639 %poison2 = load i32* @g ; Poison value loaded back from memory.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002640
Dan Gohman9a2a0932011-12-06 03:18:47 +00002641 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002642
2643 %narrowaddr = bitcast i32* @g to i16*
2644 %wideaddr = bitcast i32* @g to i64*
Dan Gohman9a2a0932011-12-06 03:18:47 +00002645 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2646 %poison4 = load i64* %wideaddr ; Returns a poison value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002647
Dan Gohman5f115a72011-12-06 03:31:14 +00002648 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2649 br i1 %cmp, label %true, label %end ; Branch to either destination.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002650
2651true:
Dan Gohman5f115a72011-12-06 03:31:14 +00002652 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2653 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002654 br label %end
2655
2656end:
2657 %p = phi i32 [ 0, %entry ], [ 1, %true ]
Dan Gohman5f115a72011-12-06 03:31:14 +00002658 ; Both edges into this PHI are
2659 ; control-dependent on %cmp, so this
2660 ; always results in a poison value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002661
Dan Gohman5f115a72011-12-06 03:31:14 +00002662 store volatile i32 0, i32* @g ; This would depend on the store in %true
2663 ; if %cmp is true, or the store in %entry
2664 ; otherwise, so this is undefined behavior.
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002665
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002666 br i1 %cmp, label %second_true, label %second_end
Dan Gohman5f115a72011-12-06 03:31:14 +00002667 ; The same branch again, but this time the
2668 ; true block doesn't have side effects.
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002669
2670second_true:
2671 ; No side effects!
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002672 ret void
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002673
2674second_end:
Dan Gohman5f115a72011-12-06 03:31:14 +00002675 store volatile i32 0, i32* @g ; This time, the instruction always depends
2676 ; on the store in %end. Also, it is
2677 ; control-equivalent to %end, so this is
Dan Gohman32772f72011-12-06 03:35:58 +00002678 ; well-defined (ignoring earlier undefined
2679 ; behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002680</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002681
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002682</div>
2683
2684<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002685<h3>
2686 <a name="blockaddress">Addresses of Basic Blocks</a>
2687</h3>
2688
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002689<div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002690
Chris Lattneraa99c942009-11-01 01:27:45 +00002691<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002692
2693<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002694 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002695 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002696
Chris Lattnere4801f72009-10-27 21:01:34 +00002697<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002698 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2699 comparisons against null. Pointer equality tests between labels addresses
2700 results in undefined behavior &mdash; though, again, comparison against null
2701 is ok, and no label is equal to the null pointer. This may be passed around
2702 as an opaque pointer sized value as long as the bits are not inspected. This
2703 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2704 long as the original value is reconstituted before the <tt>indirectbr</tt>
2705 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002706
Bill Wendling6bbe0912010-10-27 01:07:41 +00002707<p>Finally, some targets may provide defined semantics when using the value as
2708 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002709
2710</div>
2711
2712
2713<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002714<h3>
2715 <a name="constantexprs">Constant Expressions</a>
2716</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002717
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002718<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002719
2720<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002721 to be used as constants. Constant expressions may be of
2722 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2723 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002724 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002725
2726<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002727 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002728 <dd>Truncate a constant to another type. The bit size of CST must be larger
2729 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002730
Dan Gohmand6a6f612010-05-28 17:07:41 +00002731 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002732 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002733 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002734
Dan Gohmand6a6f612010-05-28 17:07:41 +00002735 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002736 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002737 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002738
Dan Gohmand6a6f612010-05-28 17:07:41 +00002739 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002740 <dd>Truncate a floating point constant to another floating point type. The
2741 size of CST must be larger than the size of TYPE. Both types must be
2742 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002743
Dan Gohmand6a6f612010-05-28 17:07:41 +00002744 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002745 <dd>Floating point extend a constant to another type. The size of CST must be
2746 smaller or equal to the size of TYPE. Both types must be floating
2747 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002748
Dan Gohmand6a6f612010-05-28 17:07:41 +00002749 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002750 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002751 constant. TYPE must be a scalar or vector integer type. CST must be of
2752 scalar or vector floating point type. Both CST and TYPE must be scalars,
2753 or vectors of the same number of elements. If the value won't fit in the
2754 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002755
Dan Gohmand6a6f612010-05-28 17:07:41 +00002756 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002757 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002758 constant. TYPE must be a scalar or vector integer type. CST must be of
2759 scalar or vector floating point type. Both CST and TYPE must be scalars,
2760 or vectors of the same number of elements. If the value won't fit in the
2761 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002762
Dan Gohmand6a6f612010-05-28 17:07:41 +00002763 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002764 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002765 constant. TYPE must be a scalar or vector floating point type. CST must be
2766 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2767 vectors of the same number of elements. If the value won't fit in the
2768 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002769
Dan Gohmand6a6f612010-05-28 17:07:41 +00002770 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002771 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002772 constant. TYPE must be a scalar or vector floating point type. CST must be
2773 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2774 vectors of the same number of elements. If the value won't fit in the
2775 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002776
Dan Gohmand6a6f612010-05-28 17:07:41 +00002777 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002778 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002779 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2780 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2781 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002782
Dan Gohmand6a6f612010-05-28 17:07:41 +00002783 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Sylvestre Ledru4fb32b12012-07-25 22:01:31 +00002784 <dd>Convert an integer constant to a pointer constant. TYPE must be a pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002785 type. CST must be of integer type. The CST value is zero extended,
2786 truncated, or unchanged to make it fit in a pointer size. This one is
2787 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002788
Dan Gohmand6a6f612010-05-28 17:07:41 +00002789 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002790 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2791 are the same as those for the <a href="#i_bitcast">bitcast
2792 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002793
Dan Gohmand6a6f612010-05-28 17:07:41 +00002794 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2795 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002796 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002797 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2798 instruction, the index list may have zero or more indexes, which are
2799 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002800
Dan Gohmand6a6f612010-05-28 17:07:41 +00002801 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002802 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002803
Dan Gohmand6a6f612010-05-28 17:07:41 +00002804 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002805 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2806
Dan Gohmand6a6f612010-05-28 17:07:41 +00002807 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002808 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002809
Dan Gohmand6a6f612010-05-28 17:07:41 +00002810 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002811 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2812 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002813
Dan Gohmand6a6f612010-05-28 17:07:41 +00002814 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002815 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2816 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002817
Dan Gohmand6a6f612010-05-28 17:07:41 +00002818 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002819 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2820 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002821
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002822 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2823 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2824 constants. The index list is interpreted in a similar manner as indices in
2825 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2826 index value must be specified.</dd>
2827
2828 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2829 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2830 constants. The index list is interpreted in a similar manner as indices in
2831 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2832 index value must be specified.</dd>
2833
Dan Gohmand6a6f612010-05-28 17:07:41 +00002834 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002835 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2836 be any of the <a href="#binaryops">binary</a>
2837 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2838 on operands are the same as those for the corresponding instruction
2839 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002840</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002841
Chris Lattner74d3f822004-12-09 17:30:23 +00002842</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002843
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002844</div>
2845
Chris Lattner2f7c9632001-06-06 20:29:01 +00002846<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002847<h2><a name="othervalues">Other Values</a></h2>
Chris Lattner98f013c2006-01-25 23:47:57 +00002848<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002849<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002850<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002851<h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002852<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002853</h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002854
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002855<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002856
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002857<p>LLVM supports inline assembler expressions (as opposed
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002858 to <a href="#moduleasm">Module-Level Inline Assembly</a>) through the use of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002859 a special value. This value represents the inline assembler as a string
2860 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002861 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002862 expression has side effects, and a flag indicating whether the function
2863 containing the asm needs to align its stack conservatively. An example
2864 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002865
Benjamin Kramer79698be2010-07-13 12:26:09 +00002866<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002867i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002868</pre>
2869
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002870<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
Nuno Lopesacd85352012-07-17 23:51:33 +00002871 a <a href="#i_call"><tt>call</tt></a> or an
2872 <a href="#i_invoke"><tt>invoke</tt></a> instruction.
2873 Thus, typically we have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002874
Benjamin Kramer79698be2010-07-13 12:26:09 +00002875<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002876%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002877</pre>
2878
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002879<p>Inline asms with side effects not visible in the constraint list must be
2880 marked as having side effects. This is done through the use of the
2881 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002882
Benjamin Kramer79698be2010-07-13 12:26:09 +00002883<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002884call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002885</pre>
2886
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002887<p>In some cases inline asms will contain code that will not work unless the
2888 stack is aligned in some way, such as calls or SSE instructions on x86,
2889 yet will not contain code that does that alignment within the asm.
2890 The compiler should make conservative assumptions about what the asm might
2891 contain and should generate its usual stack alignment code in the prologue
2892 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002893
Benjamin Kramer79698be2010-07-13 12:26:09 +00002894<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002895call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002896</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002897
2898<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2899 first.</p>
2900
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002901<!--
Chris Lattner98f013c2006-01-25 23:47:57 +00002902<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002903 documented here. Constraints on what can be done (e.g. duplication, moving,
2904 etc need to be documented). This is probably best done by reference to
2905 another document that covers inline asm from a holistic perspective.</p>
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002906 -->
Chris Lattner51065562010-04-07 05:38:05 +00002907
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002908<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002909<h4>
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002910 <a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002911</h4>
Chris Lattner51065562010-04-07 05:38:05 +00002912
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002913<div>
Chris Lattner51065562010-04-07 05:38:05 +00002914
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002915<p>The call instructions that wrap inline asm nodes may have a
2916 "<tt>!srcloc</tt>" MDNode attached to it that contains a list of constant
2917 integers. If present, the code generator will use the integer as the
2918 location cookie value when report errors through the <tt>LLVMContext</tt>
2919 error reporting mechanisms. This allows a front-end to correlate backend
2920 errors that occur with inline asm back to the source code that produced it.
2921 For example:</p>
Chris Lattner51065562010-04-07 05:38:05 +00002922
Benjamin Kramer79698be2010-07-13 12:26:09 +00002923<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002924call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2925...
2926!42 = !{ i32 1234567 }
2927</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002928
2929<p>It is up to the front-end to make sense of the magic numbers it places in the
Bill Wendlingad8b58b2011-11-30 21:52:43 +00002930 IR. If the MDNode contains multiple constants, the code generator will use
Chris Lattner79ffdc72010-11-17 08:20:42 +00002931 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002932
2933</div>
2934
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002935</div>
2936
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002937<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002938<h3>
2939 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2940</h3>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002941
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002942<div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002943
2944<p>LLVM IR allows metadata to be attached to instructions in the program that
2945 can convey extra information about the code to the optimizers and code
2946 generator. One example application of metadata is source-level debug
2947 information. There are two metadata primitives: strings and nodes. All
2948 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2949 preceding exclamation point ('<tt>!</tt>').</p>
2950
2951<p>A metadata string is a string surrounded by double quotes. It can contain
Bill Wendlingb6c22202011-11-30 21:43:43 +00002952 any character by escaping non-printable characters with "<tt>\xx</tt>" where
2953 "<tt>xx</tt>" is the two digit hex code. For example:
2954 "<tt>!"test\00"</tt>".</p>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002955
2956<p>Metadata nodes are represented with notation similar to structure constants
2957 (a comma separated list of elements, surrounded by braces and preceded by an
Bill Wendlingb6c22202011-11-30 21:43:43 +00002958 exclamation point). Metadata nodes can have any values as their operand. For
2959 example:</p>
2960
2961<div class="doc_code">
2962<pre>
2963!{ metadata !"test\00", i32 10}
2964</pre>
2965</div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002966
2967<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2968 metadata nodes, which can be looked up in the module symbol table. For
Bill Wendlingb6c22202011-11-30 21:43:43 +00002969 example:</p>
2970
2971<div class="doc_code">
2972<pre>
2973!foo = metadata !{!4, !3}
2974</pre>
2975</div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002976
Devang Patel9984bd62010-03-04 23:44:48 +00002977<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Bill Wendlingb6c22202011-11-30 21:43:43 +00002978 function is using two metadata arguments:</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002979
Bill Wendlingc0e10672011-03-02 02:17:11 +00002980<div class="doc_code">
2981<pre>
2982call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2983</pre>
2984</div>
Devang Patel9984bd62010-03-04 23:44:48 +00002985
2986<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Bill Wendlingb6c22202011-11-30 21:43:43 +00002987 attached to the <tt>add</tt> instruction using the <tt>!dbg</tt>
2988 identifier:</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002989
Bill Wendlingc0e10672011-03-02 02:17:11 +00002990<div class="doc_code">
2991<pre>
2992%indvar.next = add i64 %indvar, 1, !dbg !21
2993</pre>
2994</div>
2995
Peter Collingbourneec9ff672011-10-27 19:19:07 +00002996<p>More information about specific metadata nodes recognized by the optimizers
2997 and code generator is found below.</p>
2998
Bill Wendlingb6c22202011-11-30 21:43:43 +00002999<!-- _______________________________________________________________________ -->
Peter Collingbourneec9ff672011-10-27 19:19:07 +00003000<h4>
3001 <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
3002</h4>
3003
3004<div>
3005
3006<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
3007 suitable for doing TBAA. Instead, metadata is added to the IR to describe
3008 a type system of a higher level language. This can be used to implement
3009 typical C/C++ TBAA, but it can also be used to implement custom alias
3010 analysis behavior for other languages.</p>
3011
3012<p>The current metadata format is very simple. TBAA metadata nodes have up to
3013 three fields, e.g.:</p>
3014
3015<div class="doc_code">
3016<pre>
3017!0 = metadata !{ metadata !"an example type tree" }
3018!1 = metadata !{ metadata !"int", metadata !0 }
3019!2 = metadata !{ metadata !"float", metadata !0 }
3020!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
3021</pre>
3022</div>
3023
3024<p>The first field is an identity field. It can be any value, usually
3025 a metadata string, which uniquely identifies the type. The most important
3026 name in the tree is the name of the root node. Two trees with
3027 different root node names are entirely disjoint, even if they
3028 have leaves with common names.</p>
3029
3030<p>The second field identifies the type's parent node in the tree, or
3031 is null or omitted for a root node. A type is considered to alias
3032 all of its descendants and all of its ancestors in the tree. Also,
3033 a type is considered to alias all types in other trees, so that
3034 bitcode produced from multiple front-ends is handled conservatively.</p>
3035
3036<p>If the third field is present, it's an integer which if equal to 1
3037 indicates that the type is "constant" (meaning
3038 <tt>pointsToConstantMemory</tt> should return true; see
3039 <a href="AliasAnalysis.html#OtherItfs">other useful
3040 <tt>AliasAnalysis</tt> methods</a>).</p>
3041
3042</div>
3043
Bill Wendlingb6c22202011-11-30 21:43:43 +00003044<!-- _______________________________________________________________________ -->
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003045<h4>
Duncan Sands34bd91a2012-04-14 12:36:06 +00003046 <a name="fpmath">'<tt>fpmath</tt>' Metadata</a>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003047</h4>
3048
3049<div>
3050
Duncan Sands34bd91a2012-04-14 12:36:06 +00003051<p><tt>fpmath</tt> metadata may be attached to any instruction of floating point
Duncan Sands05f4df82012-04-16 16:28:59 +00003052 type. It can be used to express the maximum acceptable error in the result of
3053 that instruction, in ULPs, thus potentially allowing the compiler to use a
Duncan Sands9af62982012-04-16 19:39:33 +00003054 more efficient but less accurate method of computing it. ULP is defined as
3055 follows:</p>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003056
Bill Wendling302d7ce2011-11-09 19:33:56 +00003057<blockquote>
3058
3059<p>If <tt>x</tt> is a real number that lies between two finite consecutive
3060 floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one
3061 of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the
3062 distance between the two non-equal finite floating-point numbers nearest
3063 <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p>
3064
3065</blockquote>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003066
Duncan Sands05f4df82012-04-16 16:28:59 +00003067<p>The metadata node shall consist of a single positive floating point number
Duncan Sands9af62982012-04-16 19:39:33 +00003068 representing the maximum relative error, for example:</p>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003069
3070<div class="doc_code">
3071<pre>
Duncan Sands05f4df82012-04-16 16:28:59 +00003072!0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003073</pre>
3074</div>
3075
NAKAMURA Takumic9d9b922012-03-27 11:25:16 +00003076</div>
3077
Rafael Espindolaef9f5502012-03-24 00:14:51 +00003078<!-- _______________________________________________________________________ -->
3079<h4>
3080 <a name="range">'<tt>range</tt>' Metadata</a>
3081</h4>
3082
3083<div>
3084<p><tt>range</tt> metadata may be attached only to loads of integer types. It
3085 expresses the possible ranges the loaded value is in. The ranges are
3086 represented with a flattened list of integers. The loaded value is known to
3087 be in the union of the ranges defined by each consecutive pair. Each pair
3088 has the following properties:</p>
3089<ul>
3090 <li>The type must match the type loaded by the instruction.</li>
3091 <li>The pair <tt>a,b</tt> represents the range <tt>[a,b)</tt>.</li>
3092 <li>Both <tt>a</tt> and <tt>b</tt> are constants.</li>
3093 <li>The range is allowed to wrap.</li>
3094 <li>The range should not represent the full or empty set. That is,
3095 <tt>a!=b</tt>. </li>
3096</ul>
Rafael Espindolae3c5f3e2012-05-31 16:04:26 +00003097<p> In addition, the pairs must be in signed order of the lower bound and
3098 they must be non-contiguous.</p>
Rafael Espindolaef9f5502012-03-24 00:14:51 +00003099
3100<p>Examples:</p>
3101<div class="doc_code">
3102<pre>
3103 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3104 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
3105 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
Rafael Espindola97d77872012-05-31 13:45:46 +00003106 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
Rafael Espindolaef9f5502012-03-24 00:14:51 +00003107...
3108!0 = metadata !{ i8 0, i8 2 }
3109!1 = metadata !{ i8 255, i8 2 }
3110!2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
Rafael Espindola97d77872012-05-31 13:45:46 +00003111!3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
Rafael Espindolaef9f5502012-03-24 00:14:51 +00003112</pre>
3113</div>
3114</div>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00003115</div>
3116
Chris Lattnerc2f8f162010-01-15 21:50:19 +00003117</div>
3118
Chris Lattnerae76db52009-07-20 05:55:19 +00003119<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003120<h2>
Bill Wendling911fdf42012-02-11 11:59:36 +00003121 <a name="module_flags">Module Flags Metadata</a>
3122</h2>
3123<!-- *********************************************************************** -->
3124
3125<div>
3126
3127<p>Information about the module as a whole is difficult to convey to LLVM's
3128 subsystems. The LLVM IR isn't sufficient to transmit this
3129 information. The <tt>llvm.module.flags</tt> named metadata exists in order to
3130 facilitate this. These flags are in the form of key / value pairs &mdash;
3131 much like a dictionary &mdash; making it easy for any subsystem who cares
3132 about a flag to look it up.</p>
3133
3134<p>The <tt>llvm.module.flags</tt> metadata contains a list of metadata
3135 triplets. Each triplet has the following form:</p>
3136
3137<ul>
3138 <li>The first element is a <i>behavior</i> flag, which specifies the behavior
3139 when two (or more) modules are merged together, and it encounters two (or
3140 more) metadata with the same ID. The supported behaviors are described
3141 below.</li>
3142
3143 <li>The second element is a metadata string that is a unique ID for the
3144 metadata. How each ID is interpreted is documented below.</li>
3145
3146 <li>The third element is the value of the flag.</li>
3147</ul>
3148
3149<p>When two (or more) modules are merged together, the resulting
3150 <tt>llvm.module.flags</tt> metadata is the union of the
3151 modules' <tt>llvm.module.flags</tt> metadata. The only exception being a flag
3152 with the <i>Override</i> behavior, which may override another flag's value
3153 (see below).</p>
3154
3155<p>The following behaviors are supported:</p>
3156
3157<table border="1" cellspacing="0" cellpadding="4">
3158 <tbody>
3159 <tr>
3160 <th>Value</th>
3161 <th>Behavior</th>
3162 </tr>
3163 <tr>
3164 <td>1</td>
3165 <td align="left">
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003166 <dl>
3167 <dt><b>Error</b></dt>
3168 <dd>Emits an error if two values disagree. It is an error to have an ID
3169 with both an Error and a Warning behavior.</dd>
3170 </dl>
Bill Wendling911fdf42012-02-11 11:59:36 +00003171 </td>
3172 </tr>
3173 <tr>
3174 <td>2</td>
3175 <td align="left">
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003176 <dl>
3177 <dt><b>Warning</b></dt>
3178 <dd>Emits a warning if two values disagree.</dd>
3179 </dl>
Bill Wendling911fdf42012-02-11 11:59:36 +00003180 </td>
3181 </tr>
3182 <tr>
3183 <td>3</td>
3184 <td align="left">
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003185 <dl>
3186 <dt><b>Require</b></dt>
3187 <dd>Emits an error when the specified value is not present or doesn't
3188 have the specified value. It is an error for two (or more)
3189 <tt>llvm.module.flags</tt> with the same ID to have the Require
3190 behavior but different values. There may be multiple Require flags
3191 per ID.</dd>
3192 </dl>
Bill Wendling911fdf42012-02-11 11:59:36 +00003193 </td>
3194 </tr>
3195 <tr>
3196 <td>4</td>
3197 <td align="left">
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003198 <dl>
3199 <dt><b>Override</b></dt>
3200 <dd>Uses the specified value if the two values disagree. It is an
3201 error for two (or more) <tt>llvm.module.flags</tt> with the same
3202 ID to have the Override behavior but different values.</dd>
3203 </dl>
Bill Wendling911fdf42012-02-11 11:59:36 +00003204 </td>
3205 </tr>
3206 </tbody>
3207</table>
3208
3209<p>An example of module flags:</p>
3210
3211<pre class="doc_code">
3212!0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3213!1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3214!2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3215!3 = metadata !{ i32 3, metadata !"qux",
3216 metadata !{
3217 metadata !"foo", i32 1
3218 }
3219}
3220!llvm.module.flags = !{ !0, !1, !2, !3 }
3221</pre>
3222
3223<ul>
3224 <li><p>Metadata <tt>!0</tt> has the ID <tt>!"foo"</tt> and the value '1'. The
3225 behavior if two or more <tt>!"foo"</tt> flags are seen is to emit an
3226 error if their values are not equal.</p></li>
3227
3228 <li><p>Metadata <tt>!1</tt> has the ID <tt>!"bar"</tt> and the value '37'. The
3229 behavior if two or more <tt>!"bar"</tt> flags are seen is to use the
3230 value '37' if their values are not equal.</p></li>
3231
3232 <li><p>Metadata <tt>!2</tt> has the ID <tt>!"qux"</tt> and the value '42'. The
3233 behavior if two or more <tt>!"qux"</tt> flags are seen is to emit a
3234 warning if their values are not equal.</p></li>
3235
3236 <li><p>Metadata <tt>!3</tt> has the ID <tt>!"qux"</tt> and the value:</p>
3237
3238<pre class="doc_code">
3239metadata !{ metadata !"foo", i32 1 }
3240</pre>
Bill Wendling73462772012-02-16 01:10:50 +00003241
Bill Wendling911fdf42012-02-11 11:59:36 +00003242 <p>The behavior is to emit an error if the <tt>llvm.module.flags</tt> does
3243 not contain a flag with the ID <tt>!"foo"</tt> that has the value
3244 '1'. If two or more <tt>!"qux"</tt> flags exist, then they must have
3245 the same value or an error will be issued.</p></li>
3246</ul>
3247
Bill Wendling73462772012-02-16 01:10:50 +00003248
3249<!-- ======================================================================= -->
3250<h3>
3251<a name="objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a>
3252</h3>
3253
3254<div>
3255
3256<p>On the Mach-O platform, Objective-C stores metadata about garbage collection
3257 in a special section called "image info". The metadata consists of a version
3258 number and a bitmask specifying what types of garbage collection are
3259 supported (if any) by the file. If two or more modules are linked together
3260 their garbage collection metadata needs to be merged rather than appended
3261 together.</p>
3262
3263<p>The Objective-C garbage collection module flags metadata consists of the
3264 following key-value pairs:</p>
3265
3266<table border="1" cellspacing="0" cellpadding="4">
Bill Wendling4fa13cc2012-03-06 09:23:25 +00003267 <col width="30%">
Bill Wendling73462772012-02-16 01:10:50 +00003268 <tbody>
3269 <tr>
Bill Wendlingd672d9c2012-03-06 09:17:04 +00003270 <th>Key</th>
Bill Wendling73462772012-02-16 01:10:50 +00003271 <th>Value</th>
3272 </tr>
3273 <tr>
3274 <td><tt>Objective-C&nbsp;Version</tt></td>
3275 <td align="left"><b>[Required]</b> &mdash; The Objective-C ABI
3276 version. Valid values are 1 and 2.</td>
3277 </tr>
3278 <tr>
3279 <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Version</tt></td>
3280 <td align="left"><b>[Required]</b> &mdash; The version of the image info
3281 section. Currently always 0.</td>
3282 </tr>
3283 <tr>
3284 <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Section</tt></td>
3285 <td align="left"><b>[Required]</b> &mdash; The section to place the
3286 metadata. Valid values are <tt>"__OBJC, __image_info, regular"</tt> for
3287 Objective-C ABI version 1, and <tt>"__DATA,__objc_imageinfo, regular,
3288 no_dead_strip"</tt> for Objective-C ABI version 2.</td>
3289 </tr>
3290 <tr>
3291 <td><tt>Objective-C&nbsp;Garbage&nbsp;Collection</tt></td>
3292 <td align="left"><b>[Required]</b> &mdash; Specifies whether garbage
3293 collection is supported or not. Valid values are 0, for no garbage
3294 collection, and 2, for garbage collection supported.</td>
3295 </tr>
3296 <tr>
3297 <td><tt>Objective-C&nbsp;GC&nbsp;Only</tt></td>
3298 <td align="left"><b>[Optional]</b> &mdash; Specifies that only garbage
3299 collection is supported. If present, its value must be 6. This flag
3300 requires that the <tt>Objective-C Garbage Collection</tt> flag have the
3301 value 2.</td>
3302 </tr>
3303 </tbody>
3304</table>
3305
3306<p>Some important flag interactions:</p>
3307
3308<ul>
3309 <li>If a module with <tt>Objective-C Garbage Collection</tt> set to 0 is
3310 merged with a module with <tt>Objective-C Garbage Collection</tt> set to
3311 2, then the resulting module has the <tt>Objective-C Garbage
3312 Collection</tt> flag set to 0.</li>
3313
3314 <li>A module with <tt>Objective-C Garbage Collection</tt> set to 0 cannot be
3315 merged with a module with <tt>Objective-C GC Only</tt> set to 6.</li>
3316</ul>
3317
3318</div>
3319
Bill Wendling911fdf42012-02-11 11:59:36 +00003320</div>
3321
3322<!-- *********************************************************************** -->
3323<h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003324 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003325</h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003326<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003327<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003328<p>LLVM has a number of "magic" global variables that contain data that affect
3329code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00003330of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
3331section and all globals that start with "<tt>llvm.</tt>" are reserved for use
3332by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003333
3334<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003335<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003336<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003337</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003338
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003339<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003340
3341<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
3342href="#linkage_appending">appending linkage</a>. This array contains a list of
3343pointers to global variables and functions which may optionally have a pointer
3344cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
3345
Bill Wendling1654bb22011-11-08 00:32:45 +00003346<div class="doc_code">
Chris Lattnerae76db52009-07-20 05:55:19 +00003347<pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003348@X = global i8 4
3349@Y = global i32 123
Chris Lattnerae76db52009-07-20 05:55:19 +00003350
Bill Wendling1654bb22011-11-08 00:32:45 +00003351@llvm.used = appending global [2 x i8*] [
3352 i8* @X,
3353 i8* bitcast (i32* @Y to i8*)
3354], section "llvm.metadata"
Chris Lattnerae76db52009-07-20 05:55:19 +00003355</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003356</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003357
3358<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
Bill Wendling1654bb22011-11-08 00:32:45 +00003359 compiler, assembler, and linker are required to treat the symbol as if there
3360 is a reference to the global that it cannot see. For example, if a variable
3361 has internal linkage and no references other than that from
3362 the <tt>@llvm.used</tt> list, it cannot be deleted. This is commonly used to
3363 represent references from inline asms and other things the compiler cannot
3364 "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003365
3366<p>On some targets, the code generator must emit a directive to the assembler or
Bill Wendling1654bb22011-11-08 00:32:45 +00003367 object file to prevent the assembler and linker from molesting the
3368 symbol.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003369
3370</div>
3371
3372<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003373<h3>
3374 <a name="intg_compiler_used">
3375 The '<tt>llvm.compiler.used</tt>' Global Variable
3376 </a>
3377</h3>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003378
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003379<div>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003380
3381<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
Bill Wendling1654bb22011-11-08 00:32:45 +00003382 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
3383 touching the symbol. On targets that support it, this allows an intelligent
3384 linker to optimize references to the symbol without being impeded as it would
3385 be by <tt>@llvm.used</tt>.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003386
3387<p>This is a rare construct that should only be used in rare circumstances, and
Bill Wendling1654bb22011-11-08 00:32:45 +00003388 should not be exposed to source languages.</p>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003389
3390</div>
3391
3392<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003393<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003394<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003395</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003396
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003397<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003398
3399<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003400<pre>
3401%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003402@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003403</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003404</div>
3405
3406<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
3407 functions and associated priorities. The functions referenced by this array
3408 will be called in ascending order of priority (i.e. lowest first) when the
3409 module is loaded. The order of functions with the same priority is not
3410 defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003411
3412</div>
3413
3414<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003415<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003416<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003417</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003418
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003419<div>
Bill Wendling1654bb22011-11-08 00:32:45 +00003420
3421<div class="doc_code">
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003422<pre>
3423%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003424@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003425</pre>
Bill Wendling1654bb22011-11-08 00:32:45 +00003426</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003427
Bill Wendling1654bb22011-11-08 00:32:45 +00003428<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
3429 and associated priorities. The functions referenced by this array will be
3430 called in descending order of priority (i.e. highest first) when the module
3431 is loaded. The order of functions with the same priority is not defined.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003432
3433</div>
3434
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003435</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003436
Chris Lattner98f013c2006-01-25 23:47:57 +00003437<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003438<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00003439<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00003440
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003441<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003442
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003443<p>The LLVM instruction set consists of several different classifications of
3444 instructions: <a href="#terminators">terminator
3445 instructions</a>, <a href="#binaryops">binary instructions</a>,
3446 <a href="#bitwiseops">bitwise binary instructions</a>,
3447 <a href="#memoryops">memory instructions</a>, and
3448 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003449
Chris Lattner2f7c9632001-06-06 20:29:01 +00003450<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003451<h3>
3452 <a name="terminators">Terminator Instructions</a>
3453</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00003454
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003455<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003456
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003457<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3458 in a program ends with a "Terminator" instruction, which indicates which
3459 block should be executed after the current block is finished. These
3460 terminator instructions typically yield a '<tt>void</tt>' value: they produce
3461 control flow, not values (the one exception being the
3462 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3463
Chris Lattnerd3d65ab2011-08-02 20:29:13 +00003464<p>The terminator instructions are:
3465 '<a href="#i_ret"><tt>ret</tt></a>',
3466 '<a href="#i_br"><tt>br</tt></a>',
3467 '<a href="#i_switch"><tt>switch</tt></a>',
3468 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3469 '<a href="#i_invoke"><tt>invoke</tt></a>',
Chris Lattnerd3d65ab2011-08-02 20:29:13 +00003470 '<a href="#i_resume"><tt>resume</tt></a>', and
3471 '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003472
Chris Lattner2f7c9632001-06-06 20:29:01 +00003473<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003474<h4>
3475 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3476</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003477
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003478<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003479
Chris Lattner2f7c9632001-06-06 20:29:01 +00003480<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003481<pre>
3482 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003483 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003484</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003485
Chris Lattner2f7c9632001-06-06 20:29:01 +00003486<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003487<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3488 a value) from a function back to the caller.</p>
3489
3490<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3491 value and then causes control flow, and one that just causes control flow to
3492 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003493
Chris Lattner2f7c9632001-06-06 20:29:01 +00003494<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003495<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3496 return value. The type of the return value must be a
3497 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003498
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003499<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3500 non-void return type and contains a '<tt>ret</tt>' instruction with no return
3501 value or a return value with a type that does not match its type, or if it
3502 has a void return type and contains a '<tt>ret</tt>' instruction with a
3503 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003504
Chris Lattner2f7c9632001-06-06 20:29:01 +00003505<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003506<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3507 the calling function's context. If the caller is a
3508 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3509 instruction after the call. If the caller was an
3510 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3511 the beginning of the "normal" destination block. If the instruction returns
3512 a value, that value shall set the call or invoke instruction's return
3513 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003514
Chris Lattner2f7c9632001-06-06 20:29:01 +00003515<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003516<pre>
3517 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003518 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00003519 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003520</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003521
Misha Brukman76307852003-11-08 01:05:38 +00003522</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003523<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003524<h4>
3525 <a name="i_br">'<tt>br</tt>' Instruction</a>
3526</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003527
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003528<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003529
Chris Lattner2f7c9632001-06-06 20:29:01 +00003530<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003531<pre>
Bill Wendling16b86742011-07-26 10:41:15 +00003532 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3533 br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003534</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003535
Chris Lattner2f7c9632001-06-06 20:29:01 +00003536<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003537<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3538 different basic block in the current function. There are two forms of this
3539 instruction, corresponding to a conditional branch and an unconditional
3540 branch.</p>
3541
Chris Lattner2f7c9632001-06-06 20:29:01 +00003542<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003543<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3544 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
3545 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3546 target.</p>
3547
Chris Lattner2f7c9632001-06-06 20:29:01 +00003548<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00003549<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003550 argument is evaluated. If the value is <tt>true</tt>, control flows to the
3551 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
3552 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3553
Chris Lattner2f7c9632001-06-06 20:29:01 +00003554<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00003555<pre>
3556Test:
3557 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3558 br i1 %cond, label %IfEqual, label %IfUnequal
3559IfEqual:
3560 <a href="#i_ret">ret</a> i32 1
3561IfUnequal:
3562 <a href="#i_ret">ret</a> i32 0
3563</pre>
3564
Misha Brukman76307852003-11-08 01:05:38 +00003565</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003566
Chris Lattner2f7c9632001-06-06 20:29:01 +00003567<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003568<h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003569 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003570</h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003571
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003572<div>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003573
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003574<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003575<pre>
3576 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3577</pre>
3578
Chris Lattner2f7c9632001-06-06 20:29:01 +00003579<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003580<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003581 several different places. It is a generalization of the '<tt>br</tt>'
3582 instruction, allowing a branch to occur to one of many possible
3583 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003584
Chris Lattner2f7c9632001-06-06 20:29:01 +00003585<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003586<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003587 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3588 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3589 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003590
Chris Lattner2f7c9632001-06-06 20:29:01 +00003591<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003592<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003593 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3594 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00003595 transferred to the corresponding destination; otherwise, control flow is
3596 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003597
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003598<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003599<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003600 <tt>switch</tt> instruction, this instruction may be code generated in
3601 different ways. For example, it could be generated as a series of chained
3602 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003603
3604<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003605<pre>
3606 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003607 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00003608 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003609
3610 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003611 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003612
3613 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00003614 switch i32 %val, label %otherwise [ i32 0, label %onzero
3615 i32 1, label %onone
3616 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00003617</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003618
Misha Brukman76307852003-11-08 01:05:38 +00003619</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003620
Chris Lattner3ed871f2009-10-27 19:13:16 +00003621
3622<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003623<h4>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003624 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003625</h4>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003626
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003627<div>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003628
3629<h5>Syntax:</h5>
3630<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003631 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003632</pre>
3633
3634<h5>Overview:</h5>
3635
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003636<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00003637 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00003638 "<tt>address</tt>". Address must be derived from a <a
3639 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003640
3641<h5>Arguments:</h5>
3642
3643<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3644 rest of the arguments indicate the full set of possible destinations that the
3645 address may point to. Blocks are allowed to occur multiple times in the
3646 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003647
Chris Lattner3ed871f2009-10-27 19:13:16 +00003648<p>This destination list is required so that dataflow analysis has an accurate
3649 understanding of the CFG.</p>
3650
3651<h5>Semantics:</h5>
3652
3653<p>Control transfers to the block specified in the address argument. All
3654 possible destination blocks must be listed in the label list, otherwise this
3655 instruction has undefined behavior. This implies that jumps to labels
3656 defined in other functions have undefined behavior as well.</p>
3657
3658<h5>Implementation:</h5>
3659
3660<p>This is typically implemented with a jump through a register.</p>
3661
3662<h5>Example:</h5>
3663<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003664 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003665</pre>
3666
3667</div>
3668
3669
Chris Lattner2f7c9632001-06-06 20:29:01 +00003670<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003671<h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003672 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003673</h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003674
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003675<div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003676
Chris Lattner2f7c9632001-06-06 20:29:01 +00003677<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003678<pre>
Devang Patel02256232008-10-07 17:48:33 +00003679 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003680 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003681</pre>
3682
Chris Lattnera8292f32002-05-06 22:08:29 +00003683<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003684<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003685 function, with the possibility of control flow transfer to either the
3686 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3687 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3688 control flow will return to the "normal" label. If the callee (or any
Bill Wendling3f6a3a22012-02-06 21:57:33 +00003689 indirect callees) returns via the "<a href="#i_resume"><tt>resume</tt></a>"
3690 instruction or other exception handling mechanism, control is interrupted and
3691 continued at the dynamically nearest "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003692
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003693<p>The '<tt>exception</tt>' label is a
3694 <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3695 exception. As such, '<tt>exception</tt>' label is required to have the
3696 "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
Chad Rosierc28f3e92011-12-09 02:00:44 +00003697 the information about the behavior of the program after unwinding
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003698 happens, as its first non-PHI instruction. The restrictions on the
3699 "<tt>landingpad</tt>" instruction's tightly couples it to the
3700 "<tt>invoke</tt>" instruction, so that the important information contained
3701 within the "<tt>landingpad</tt>" instruction can't be lost through normal
3702 code motion.</p>
3703
Chris Lattner2f7c9632001-06-06 20:29:01 +00003704<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003705<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003706
Chris Lattner2f7c9632001-06-06 20:29:01 +00003707<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003708 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3709 convention</a> the call should use. If none is specified, the call
3710 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003711
3712 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003713 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3714 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003715
Chris Lattner0132aff2005-05-06 22:57:40 +00003716 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003717 function value being invoked. In most cases, this is a direct function
3718 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3719 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003720
3721 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003722 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003723
3724 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003725 signature argument types and parameter attributes. All arguments must be
3726 of <a href="#t_firstclass">first class</a> type. If the function
3727 signature indicates the function accepts a variable number of arguments,
3728 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003729
3730 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003731 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003732
Bill Wendling3f6a3a22012-02-06 21:57:33 +00003733 <li>'<tt>exception label</tt>': the label reached when a callee returns via
3734 the <a href="#i_resume"><tt>resume</tt></a> instruction or other exception
3735 handling mechanism.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003736
Devang Patel02256232008-10-07 17:48:33 +00003737 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003738 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3739 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003740</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003741
Chris Lattner2f7c9632001-06-06 20:29:01 +00003742<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003743<p>This instruction is designed to operate as a standard
3744 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3745 primary difference is that it establishes an association with a label, which
3746 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003747
3748<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003749 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3750 exception. Additionally, this is important for implementation of
3751 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003752
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003753<p>For the purposes of the SSA form, the definition of the value returned by the
3754 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3755 block to the "normal" label. If the callee unwinds then no return value is
3756 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003757
Chris Lattner2f7c9632001-06-06 20:29:01 +00003758<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003759<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003760 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003761 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003762 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003763 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003764</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003765
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003766</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003767
Bill Wendlingf891bf82011-07-31 06:30:59 +00003768 <!-- _______________________________________________________________________ -->
3769
3770<h4>
3771 <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3772</h4>
3773
3774<div>
3775
3776<h5>Syntax:</h5>
3777<pre>
3778 resume &lt;type&gt; &lt;value&gt;
3779</pre>
3780
3781<h5>Overview:</h5>
3782<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3783 successors.</p>
3784
3785<h5>Arguments:</h5>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003786<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
Bill Wendlingc5a13612011-08-03 18:37:32 +00003787 same type as the result of any '<tt>landingpad</tt>' instruction in the same
3788 function.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003789
3790<h5>Semantics:</h5>
3791<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3792 (in-flight) exception whose unwinding was interrupted with
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003793 a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003794
3795<h5>Example:</h5>
3796<pre>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003797 resume { i8*, i32 } %exn
Bill Wendlingf891bf82011-07-31 06:30:59 +00003798</pre>
3799
3800</div>
3801
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003802<!-- _______________________________________________________________________ -->
3803
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003804<h4>
3805 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3806</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003807
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003808<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003809
3810<h5>Syntax:</h5>
3811<pre>
3812 unreachable
3813</pre>
3814
3815<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003816<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003817 instruction is used to inform the optimizer that a particular portion of the
3818 code is not reachable. This can be used to indicate that the code after a
3819 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003820
3821<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003822<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003823
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003824</div>
3825
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003826</div>
3827
Chris Lattner2f7c9632001-06-06 20:29:01 +00003828<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003829<h3>
3830 <a name="binaryops">Binary Operations</a>
3831</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003832
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003833<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003834
3835<p>Binary operators are used to do most of the computation in a program. They
3836 require two operands of the same type, execute an operation on them, and
3837 produce a single value. The operands might represent multiple data, as is
3838 the case with the <a href="#t_vector">vector</a> data type. The result value
3839 has the same type as its operands.</p>
3840
Misha Brukman76307852003-11-08 01:05:38 +00003841<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842
Chris Lattner2f7c9632001-06-06 20:29:01 +00003843<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003844<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003845 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003846</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003847
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003848<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003849
Chris Lattner2f7c9632001-06-06 20:29:01 +00003850<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003851<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003852 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003853 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3854 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3855 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003856</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003857
Chris Lattner2f7c9632001-06-06 20:29:01 +00003858<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003859<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003860
Chris Lattner2f7c9632001-06-06 20:29:01 +00003861<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003862<p>The two arguments to the '<tt>add</tt>' instruction must
3863 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3864 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003865
Chris Lattner2f7c9632001-06-06 20:29:01 +00003866<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003867<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003868
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003869<p>If the sum has unsigned overflow, the result returned is the mathematical
3870 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003871
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003872<p>Because LLVM integers use a two's complement representation, this instruction
3873 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003874
Dan Gohman902dfff2009-07-22 22:44:56 +00003875<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3876 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3877 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohman9a2a0932011-12-06 03:18:47 +00003878 is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003879 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003880
Chris Lattner2f7c9632001-06-06 20:29:01 +00003881<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003882<pre>
3883 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003884</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003885
Misha Brukman76307852003-11-08 01:05:38 +00003886</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003887
Chris Lattner2f7c9632001-06-06 20:29:01 +00003888<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003889<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003890 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003891</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003892
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003893<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003894
3895<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003896<pre>
3897 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3898</pre>
3899
3900<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003901<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3902
3903<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003904<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003905 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3906 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003907
3908<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003909<p>The value produced is the floating point sum of the two operands.</p>
3910
3911<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003912<pre>
3913 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3914</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003915
Dan Gohmana5b96452009-06-04 22:49:04 +00003916</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003917
Dan Gohmana5b96452009-06-04 22:49:04 +00003918<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003919<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003920 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003921</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003922
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003923<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003924
Chris Lattner2f7c9632001-06-06 20:29:01 +00003925<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003926<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003927 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003928 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3929 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3930 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003931</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003932
Chris Lattner2f7c9632001-06-06 20:29:01 +00003933<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003934<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003935 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003936
3937<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003938 '<tt>neg</tt>' instruction present in most other intermediate
3939 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003940
Chris Lattner2f7c9632001-06-06 20:29:01 +00003941<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003942<p>The two arguments to the '<tt>sub</tt>' instruction must
3943 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3944 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003945
Chris Lattner2f7c9632001-06-06 20:29:01 +00003946<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003947<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003948
Dan Gohmana5b96452009-06-04 22:49:04 +00003949<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003950 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3951 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003952
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003953<p>Because LLVM integers use a two's complement representation, this instruction
3954 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003955
Dan Gohman902dfff2009-07-22 22:44:56 +00003956<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3957 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3958 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohman9a2a0932011-12-06 03:18:47 +00003959 is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003960 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003961
Chris Lattner2f7c9632001-06-06 20:29:01 +00003962<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003963<pre>
3964 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003965 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003966</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003967
Misha Brukman76307852003-11-08 01:05:38 +00003968</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003969
Chris Lattner2f7c9632001-06-06 20:29:01 +00003970<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003971<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003972 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003973</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003974
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003975<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003976
3977<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003978<pre>
3979 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3980</pre>
3981
3982<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003983<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003984 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003985
3986<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003987 '<tt>fneg</tt>' instruction present in most other intermediate
3988 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003989
3990<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003991<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003992 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3993 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003994
3995<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003996<p>The value produced is the floating point difference of the two operands.</p>
3997
3998<h5>Example:</h5>
3999<pre>
4000 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
4001 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
4002</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004003
Dan Gohmana5b96452009-06-04 22:49:04 +00004004</div>
4005
4006<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004007<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004008 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004009</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004010
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004011<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004012
Chris Lattner2f7c9632001-06-06 20:29:01 +00004013<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004014<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00004015 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00004016 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4017 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4018 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004019</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004020
Chris Lattner2f7c9632001-06-06 20:29:01 +00004021<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004022<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004023
Chris Lattner2f7c9632001-06-06 20:29:01 +00004024<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004025<p>The two arguments to the '<tt>mul</tt>' instruction must
4026 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4027 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00004028
Chris Lattner2f7c9632001-06-06 20:29:01 +00004029<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00004030<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004031
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004032<p>If the result of the multiplication has unsigned overflow, the result
4033 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
4034 width of the result.</p>
4035
4036<p>Because LLVM integers use a two's complement representation, and the result
4037 is the same width as the operands, this instruction returns the correct
4038 result for both signed and unsigned integers. If a full product
4039 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
4040 be sign-extended or zero-extended as appropriate to the width of the full
4041 product.</p>
4042
Dan Gohman902dfff2009-07-22 22:44:56 +00004043<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
4044 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
4045 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohman9a2a0932011-12-06 03:18:47 +00004046 is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00004047 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00004048
Chris Lattner2f7c9632001-06-06 20:29:01 +00004049<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004050<pre>
4051 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004052</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004053
Misha Brukman76307852003-11-08 01:05:38 +00004054</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004055
Chris Lattner2f7c9632001-06-06 20:29:01 +00004056<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004057<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00004058 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004059</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00004060
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004061<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00004062
4063<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004064<pre>
4065 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00004066</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004067
Dan Gohmana5b96452009-06-04 22:49:04 +00004068<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004069<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00004070
4071<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00004072<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004073 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4074 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00004075
4076<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00004077<p>The value produced is the floating point product of the two operands.</p>
4078
4079<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004080<pre>
4081 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00004082</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004083
Dan Gohmana5b96452009-06-04 22:49:04 +00004084</div>
4085
4086<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004087<h4>
4088 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
4089</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004090
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004091<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004092
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004093<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004094<pre>
Chris Lattner35315d02011-02-06 21:44:57 +00004095 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4096 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004097</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004098
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004099<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004100<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004101
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004102<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004103<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004104 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4105 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004106
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004107<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00004108<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004109
Chris Lattner2f2427e2008-01-28 00:36:27 +00004110<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004111 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
4112
Chris Lattner2f2427e2008-01-28 00:36:27 +00004113<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004114
Chris Lattner35315d02011-02-06 21:44:57 +00004115<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004116 <tt>udiv</tt> is a <a href="#poisonvalues">poison value</a> if %op1 is not a
Chris Lattner35315d02011-02-06 21:44:57 +00004117 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
4118
4119
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004120<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004121<pre>
4122 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004123</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004124
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004125</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004126
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004127<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004128<h4>
4129 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
4130</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004131
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004132<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004133
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004134<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004135<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00004136 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00004137 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004138</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004139
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004140<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004141<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004142
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004143<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004144<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004145 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4146 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004147
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004148<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004149<p>The value produced is the signed integer quotient of the two operands rounded
4150 towards zero.</p>
4151
Chris Lattner2f2427e2008-01-28 00:36:27 +00004152<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004153 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
4154
Chris Lattner2f2427e2008-01-28 00:36:27 +00004155<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004156 undefined behavior; this is a rare case, but can occur, for example, by doing
4157 a 32-bit division of -2147483648 by -1.</p>
4158
Dan Gohman71dfd782009-07-22 00:04:19 +00004159<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004160 <tt>sdiv</tt> is a <a href="#poisonvalues">poison value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00004161 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00004162
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004163<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004164<pre>
4165 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004166</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004167
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004168</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004169
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004170<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004171<h4>
4172 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
4173</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004174
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004175<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004176
Chris Lattner2f7c9632001-06-06 20:29:01 +00004177<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004178<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004179 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004180</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004181
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004182<h5>Overview:</h5>
4183<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004184
Chris Lattner48b383b02003-11-25 01:02:51 +00004185<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004186<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004187 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4188 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004189
Chris Lattner48b383b02003-11-25 01:02:51 +00004190<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00004191<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004192
Chris Lattner48b383b02003-11-25 01:02:51 +00004193<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004194<pre>
4195 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004196</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004197
Chris Lattner48b383b02003-11-25 01:02:51 +00004198</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004199
Chris Lattner48b383b02003-11-25 01:02:51 +00004200<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004201<h4>
4202 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
4203</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004204
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004205<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004206
Reid Spencer7eb55b32006-11-02 01:53:59 +00004207<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004208<pre>
4209 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004210</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004211
Reid Spencer7eb55b32006-11-02 01:53:59 +00004212<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004213<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
4214 division of its two arguments.</p>
4215
Reid Spencer7eb55b32006-11-02 01:53:59 +00004216<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004217<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004218 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4219 values. Both arguments must have identical types.</p>
4220
Reid Spencer7eb55b32006-11-02 01:53:59 +00004221<h5>Semantics:</h5>
4222<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004223 This instruction always performs an unsigned division to get the
4224 remainder.</p>
4225
Chris Lattner2f2427e2008-01-28 00:36:27 +00004226<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004227 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
4228
Chris Lattner2f2427e2008-01-28 00:36:27 +00004229<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004230
Reid Spencer7eb55b32006-11-02 01:53:59 +00004231<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004232<pre>
4233 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004234</pre>
4235
4236</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004237
Reid Spencer7eb55b32006-11-02 01:53:59 +00004238<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004239<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004240 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004241</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004242
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004243<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004244
Chris Lattner48b383b02003-11-25 01:02:51 +00004245<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004246<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004247 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004248</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004249
Chris Lattner48b383b02003-11-25 01:02:51 +00004250<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004251<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
4252 division of its two operands. This instruction can also take
4253 <a href="#t_vector">vector</a> versions of the values in which case the
4254 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00004255
Chris Lattner48b383b02003-11-25 01:02:51 +00004256<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004257<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004258 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4259 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004260
Chris Lattner48b383b02003-11-25 01:02:51 +00004261<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004262<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sands2769c6e2011-03-07 09:12:24 +00004263 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
4264 <i>modulo</i> operator (where the result is either zero or has the same sign
4265 as the divisor, <tt>op2</tt>) of a value.
4266 For more information about the difference,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004267 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
4268 Math Forum</a>. For a table of how this is implemented in various languages,
4269 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
4270 Wikipedia: modulo operation</a>.</p>
4271
Chris Lattner2f2427e2008-01-28 00:36:27 +00004272<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004273 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
4274
Chris Lattner2f2427e2008-01-28 00:36:27 +00004275<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004276 Overflow also leads to undefined behavior; this is a rare case, but can
4277 occur, for example, by taking the remainder of a 32-bit division of
4278 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
4279 lets srem be implemented using instructions that return both the result of
4280 the division and the remainder.)</p>
4281
Chris Lattner48b383b02003-11-25 01:02:51 +00004282<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004283<pre>
4284 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004285</pre>
4286
4287</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004288
Reid Spencer7eb55b32006-11-02 01:53:59 +00004289<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004290<h4>
4291 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
4292</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004293
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004294<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004295
Reid Spencer7eb55b32006-11-02 01:53:59 +00004296<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004297<pre>
4298 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004299</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004300
Reid Spencer7eb55b32006-11-02 01:53:59 +00004301<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004302<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
4303 its two operands.</p>
4304
Reid Spencer7eb55b32006-11-02 01:53:59 +00004305<h5>Arguments:</h5>
4306<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004307 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4308 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004309
Reid Spencer7eb55b32006-11-02 01:53:59 +00004310<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004311<p>This instruction returns the <i>remainder</i> of a division. The remainder
4312 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004313
Reid Spencer7eb55b32006-11-02 01:53:59 +00004314<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004315<pre>
4316 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004317</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004318
Misha Brukman76307852003-11-08 01:05:38 +00004319</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00004320
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004321</div>
4322
Reid Spencer2ab01932007-02-02 13:57:07 +00004323<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004324<h3>
4325 <a name="bitwiseops">Bitwise Binary Operations</a>
4326</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004327
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004328<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004329
4330<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
4331 program. They are generally very efficient instructions and can commonly be
4332 strength reduced from other instructions. They require two operands of the
4333 same type, execute an operation on them, and produce a single value. The
4334 resulting value is the same type as its operands.</p>
4335
Reid Spencer04e259b2007-01-31 21:39:12 +00004336<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004337<h4>
4338 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
4339</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004340
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004341<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004342
Reid Spencer04e259b2007-01-31 21:39:12 +00004343<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004344<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004345 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4346 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4347 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4348 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004349</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004350
Reid Spencer04e259b2007-01-31 21:39:12 +00004351<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004352<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
4353 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004354
Reid Spencer04e259b2007-01-31 21:39:12 +00004355<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004356<p>Both arguments to the '<tt>shl</tt>' instruction must be the
4357 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4358 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00004359
Reid Spencer04e259b2007-01-31 21:39:12 +00004360<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004361<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
4362 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
4363 is (statically or dynamically) negative or equal to or larger than the number
4364 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4365 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4366 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004367
Chris Lattnera676c0f2011-02-07 16:40:21 +00004368<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
Dan Gohman9a2a0932011-12-06 03:18:47 +00004369 <a href="#poisonvalues">poison value</a> if it shifts out any non-zero bits. If
Chris Lattnerf10dfdc2011-02-09 16:44:44 +00004370 the <tt>nsw</tt> keyword is present, then the shift produces a
Dan Gohman9a2a0932011-12-06 03:18:47 +00004371 <a href="#poisonvalues">poison value</a> if it shifts out any bits that disagree
Chris Lattnera676c0f2011-02-07 16:40:21 +00004372 with the resultant sign bit. As such, NUW/NSW have the same semantics as
4373 they would if the shift were expressed as a mul instruction with the same
4374 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
4375
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004376<h5>Example:</h5>
4377<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00004378 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
4379 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
4380 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004381 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004382 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004383</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004384
Reid Spencer04e259b2007-01-31 21:39:12 +00004385</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004386
Reid Spencer04e259b2007-01-31 21:39:12 +00004387<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004388<h4>
4389 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4390</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004391
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004392<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004393
Reid Spencer04e259b2007-01-31 21:39:12 +00004394<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004395<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004396 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4397 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004398</pre>
4399
4400<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004401<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4402 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004403
4404<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004405<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004406 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4407 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004408
4409<h5>Semantics:</h5>
4410<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004411 significant bits of the result will be filled with zero bits after the shift.
4412 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4413 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4414 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4415 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004416
Chris Lattnera676c0f2011-02-07 16:40:21 +00004417<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004418 <tt>lshr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
Chris Lattnera676c0f2011-02-07 16:40:21 +00004419 shifted out are non-zero.</p>
4420
4421
Reid Spencer04e259b2007-01-31 21:39:12 +00004422<h5>Example:</h5>
4423<pre>
4424 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
4425 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
4426 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
4427 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004428 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004429 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004430</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004431
Reid Spencer04e259b2007-01-31 21:39:12 +00004432</div>
4433
Reid Spencer2ab01932007-02-02 13:57:07 +00004434<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004435<h4>
4436 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4437</h4>
4438
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004439<div>
Reid Spencer04e259b2007-01-31 21:39:12 +00004440
4441<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004442<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004443 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4444 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004445</pre>
4446
4447<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004448<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4449 operand shifted to the right a specified number of bits with sign
4450 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004451
4452<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004453<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004454 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4455 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004456
4457<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004458<p>This instruction always performs an arithmetic shift right operation, The
4459 most significant bits of the result will be filled with the sign bit
4460 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
4461 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4462 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4463 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004464
Chris Lattnera676c0f2011-02-07 16:40:21 +00004465<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00004466 <tt>ashr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
Chris Lattnera676c0f2011-02-07 16:40:21 +00004467 shifted out are non-zero.</p>
4468
Reid Spencer04e259b2007-01-31 21:39:12 +00004469<h5>Example:</h5>
4470<pre>
4471 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
4472 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
4473 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
4474 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004475 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004476 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004477</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004478
Reid Spencer04e259b2007-01-31 21:39:12 +00004479</div>
4480
Chris Lattner2f7c9632001-06-06 20:29:01 +00004481<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004482<h4>
4483 <a name="i_and">'<tt>and</tt>' Instruction</a>
4484</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004485
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004486<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004487
Chris Lattner2f7c9632001-06-06 20:29:01 +00004488<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004489<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004490 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004491</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004492
Chris Lattner2f7c9632001-06-06 20:29:01 +00004493<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004494<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4495 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004496
Chris Lattner2f7c9632001-06-06 20:29:01 +00004497<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004498<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004499 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4500 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004501
Chris Lattner2f7c9632001-06-06 20:29:01 +00004502<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004503<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004504
Misha Brukman76307852003-11-08 01:05:38 +00004505<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00004506 <tbody>
4507 <tr>
Bill Wendling4517fe52011-12-09 22:41:40 +00004508 <th>In0</th>
4509 <th>In1</th>
4510 <th>Out</th>
Chris Lattner48b383b02003-11-25 01:02:51 +00004511 </tr>
4512 <tr>
4513 <td>0</td>
4514 <td>0</td>
4515 <td>0</td>
4516 </tr>
4517 <tr>
4518 <td>0</td>
4519 <td>1</td>
4520 <td>0</td>
4521 </tr>
4522 <tr>
4523 <td>1</td>
4524 <td>0</td>
4525 <td>0</td>
4526 </tr>
4527 <tr>
4528 <td>1</td>
4529 <td>1</td>
4530 <td>1</td>
4531 </tr>
4532 </tbody>
4533</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004534
Chris Lattner2f7c9632001-06-06 20:29:01 +00004535<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004536<pre>
4537 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004538 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
4539 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004540</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004541</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004542<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004543<h4>
4544 <a name="i_or">'<tt>or</tt>' Instruction</a>
4545</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004546
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004547<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004548
4549<h5>Syntax:</h5>
4550<pre>
4551 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4552</pre>
4553
4554<h5>Overview:</h5>
4555<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4556 two operands.</p>
4557
4558<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004559<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004560 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4561 values. Both arguments must have identical types.</p>
4562
Chris Lattner2f7c9632001-06-06 20:29:01 +00004563<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004564<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004565
Chris Lattner48b383b02003-11-25 01:02:51 +00004566<table border="1" cellspacing="0" cellpadding="4">
4567 <tbody>
4568 <tr>
Bill Wendling4517fe52011-12-09 22:41:40 +00004569 <th>In0</th>
4570 <th>In1</th>
4571 <th>Out</th>
Chris Lattner48b383b02003-11-25 01:02:51 +00004572 </tr>
4573 <tr>
4574 <td>0</td>
4575 <td>0</td>
4576 <td>0</td>
4577 </tr>
4578 <tr>
4579 <td>0</td>
4580 <td>1</td>
4581 <td>1</td>
4582 </tr>
4583 <tr>
4584 <td>1</td>
4585 <td>0</td>
4586 <td>1</td>
4587 </tr>
4588 <tr>
4589 <td>1</td>
4590 <td>1</td>
4591 <td>1</td>
4592 </tr>
4593 </tbody>
4594</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004595
Chris Lattner2f7c9632001-06-06 20:29:01 +00004596<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004597<pre>
4598 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004599 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4600 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004601</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004602
Misha Brukman76307852003-11-08 01:05:38 +00004603</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004604
Chris Lattner2f7c9632001-06-06 20:29:01 +00004605<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004606<h4>
4607 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4608</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004609
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004610<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004611
Chris Lattner2f7c9632001-06-06 20:29:01 +00004612<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004613<pre>
4614 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004615</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004616
Chris Lattner2f7c9632001-06-06 20:29:01 +00004617<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004618<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4619 its two operands. The <tt>xor</tt> is used to implement the "one's
4620 complement" operation, which is the "~" operator in C.</p>
4621
Chris Lattner2f7c9632001-06-06 20:29:01 +00004622<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004623<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004624 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4625 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004626
Chris Lattner2f7c9632001-06-06 20:29:01 +00004627<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004628<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004629
Chris Lattner48b383b02003-11-25 01:02:51 +00004630<table border="1" cellspacing="0" cellpadding="4">
4631 <tbody>
4632 <tr>
Bill Wendling4517fe52011-12-09 22:41:40 +00004633 <th>In0</th>
4634 <th>In1</th>
4635 <th>Out</th>
Chris Lattner48b383b02003-11-25 01:02:51 +00004636 </tr>
4637 <tr>
4638 <td>0</td>
4639 <td>0</td>
4640 <td>0</td>
4641 </tr>
4642 <tr>
4643 <td>0</td>
4644 <td>1</td>
4645 <td>1</td>
4646 </tr>
4647 <tr>
4648 <td>1</td>
4649 <td>0</td>
4650 <td>1</td>
4651 </tr>
4652 <tr>
4653 <td>1</td>
4654 <td>1</td>
4655 <td>0</td>
4656 </tr>
4657 </tbody>
4658</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004659
Chris Lattner2f7c9632001-06-06 20:29:01 +00004660<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004661<pre>
4662 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004663 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4664 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4665 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004666</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004667
Misha Brukman76307852003-11-08 01:05:38 +00004668</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004669
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004670</div>
4671
Chris Lattner2f7c9632001-06-06 20:29:01 +00004672<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004673<h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004674 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004675</h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004676
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004677<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004678
4679<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004680 target-independent manner. These instructions cover the element-access and
4681 vector-specific operations needed to process vectors effectively. While LLVM
4682 does directly support these vector operations, many sophisticated algorithms
4683 will want to use target-specific intrinsics to take full advantage of a
4684 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004685
Chris Lattnerce83bff2006-04-08 23:07:04 +00004686<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004687<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004688 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004689</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004690
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004691<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004692
4693<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004694<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004695 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004696</pre>
4697
4698<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004699<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4700 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004701
4702
4703<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004704<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4705 of <a href="#t_vector">vector</a> type. The second operand is an index
4706 indicating the position from which to extract the element. The index may be
4707 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004708
4709<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004710<p>The result is a scalar of the same type as the element type of
4711 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4712 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4713 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004714
4715<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004716<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004717 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004718</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004719
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004720</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004721
4722<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004723<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004724 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004725</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004726
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004727<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004728
4729<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004730<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004731 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004732</pre>
4733
4734<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004735<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4736 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004737
4738<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004739<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4740 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4741 whose type must equal the element type of the first operand. The third
4742 operand is an index indicating the position at which to insert the value.
4743 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004744
4745<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004746<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4747 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4748 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4749 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004750
4751<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004752<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004753 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004754</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004755
Chris Lattnerce83bff2006-04-08 23:07:04 +00004756</div>
4757
4758<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004759<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004760 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004761</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004762
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004763<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004764
4765<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004766<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004767 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004768</pre>
4769
4770<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004771<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4772 from two input vectors, returning a vector with the same element type as the
4773 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004774
4775<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004776<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
Duncan Sandsbe3d3a62012-06-14 14:58:28 +00004777 with the same type. The third argument is a shuffle mask whose
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004778 element type is always 'i32'. The result of the instruction is a vector
4779 whose length is the same as the shuffle mask and whose element type is the
4780 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004781
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004782<p>The shuffle mask operand is required to be a constant vector with either
4783 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004784
4785<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004786<p>The elements of the two input vectors are numbered from left to right across
4787 both of the vectors. The shuffle mask operand specifies, for each element of
4788 the result vector, which element of the two input vectors the result element
4789 gets. The element selector may be undef (meaning "don't care") and the
4790 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004791
4792<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004793<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004794 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004795 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004796 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004797 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004798 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004799 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004800 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004801 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004802</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004803
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004804</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004805
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004806</div>
4807
Chris Lattnerce83bff2006-04-08 23:07:04 +00004808<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004809<h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004810 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004811</h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004812
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004813<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004814
Chris Lattner392be582010-02-12 20:49:41 +00004815<p>LLVM supports several instructions for working with
4816 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004817
Dan Gohmanb9d66602008-05-12 23:51:09 +00004818<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004819<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004820 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004821</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004822
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004823<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004824
4825<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004826<pre>
4827 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4828</pre>
4829
4830<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004831<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4832 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004833
4834<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004835<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004836 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004837 <a href="#t_array">array</a> type. The operands are constant indices to
4838 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004839 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004840 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4841 <ul>
4842 <li>Since the value being indexed is not a pointer, the first index is
4843 omitted and assumed to be zero.</li>
4844 <li>At least one index must be specified.</li>
4845 <li>Not only struct indices but also array indices must be in
4846 bounds.</li>
4847 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004848
4849<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004850<p>The result is the value at the position in the aggregate specified by the
4851 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004852
4853<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004854<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004855 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004856</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004857
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004858</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004859
4860<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004861<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004862 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004863</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004864
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004865<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004866
4867<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004868<pre>
Bill Wendlingf6a91cf2011-07-26 20:42:28 +00004869 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}* <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004870</pre>
4871
4872<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004873<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4874 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004875
4876<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004877<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004878 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004879 <a href="#t_array">array</a> type. The second operand is a first-class
4880 value to insert. The following operands are constant indices indicating
4881 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004882 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004883 value to insert must have the same type as the value identified by the
4884 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004885
4886<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004887<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4888 that of <tt>val</tt> except that the value at the position specified by the
4889 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004890
4891<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004892<pre>
Chris Lattnerc2e85402011-05-22 07:18:08 +00004893 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4894 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4895 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004896</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004897
Dan Gohmanb9d66602008-05-12 23:51:09 +00004898</div>
4899
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004900</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004901
4902<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004903<h3>
Chris Lattner6ab66722006-08-15 00:45:58 +00004904 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004905</h3>
Chris Lattner54611b42005-11-06 08:02:57 +00004906
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004907<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004908
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004909<p>A key design point of an SSA-based representation is how it represents
4910 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004911 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004912 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004913
Chris Lattner2f7c9632001-06-06 20:29:01 +00004914<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004915<h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004916 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004917</h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004918
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004919<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004920
Chris Lattner2f7c9632001-06-06 20:29:01 +00004921<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004922<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004923 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004924</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004925
Chris Lattner2f7c9632001-06-06 20:29:01 +00004926<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004927<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004928 currently executing function, to be automatically released when this function
4929 returns to its caller. The object is always allocated in the generic address
4930 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004931
Chris Lattner2f7c9632001-06-06 20:29:01 +00004932<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004933<p>The '<tt>alloca</tt>' instruction
4934 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4935 runtime stack, returning a pointer of the appropriate type to the program.
4936 If "NumElements" is specified, it is the number of elements allocated,
4937 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4938 specified, the value result of the allocation is guaranteed to be aligned to
4939 at least that boundary. If not specified, or if zero, the target can choose
4940 to align the allocation on any convenient boundary compatible with the
4941 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004942
Misha Brukman76307852003-11-08 01:05:38 +00004943<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004944
Chris Lattner2f7c9632001-06-06 20:29:01 +00004945<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004946<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004947 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4948 memory is automatically released when the function returns. The
4949 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4950 variables that must have an address available. When the function returns
4951 (either with the <tt><a href="#i_ret">ret</a></tt>
Bill Wendling3f6a3a22012-02-06 21:57:33 +00004952 or <tt><a href="#i_resume">resume</a></tt> instructions), the memory is
Nick Lewyckyefe5e2e2012-02-29 08:26:44 +00004953 reclaimed. Allocating zero bytes is legal, but the result is undefined.
4954 The order in which memory is allocated (ie., which way the stack grows) is
Nick Lewyckyf70a2bd2012-03-18 09:35:50 +00004955 not specified.</p>
Nick Lewyckyefe5e2e2012-02-29 08:26:44 +00004956
4957<p>
Chris Lattner54611b42005-11-06 08:02:57 +00004958
Chris Lattner2f7c9632001-06-06 20:29:01 +00004959<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004960<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004961 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4962 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4963 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4964 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004965</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004966
Misha Brukman76307852003-11-08 01:05:38 +00004967</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004968
Chris Lattner2f7c9632001-06-06 20:29:01 +00004969<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004970<h4>
4971 <a name="i_load">'<tt>load</tt>' Instruction</a>
4972</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004973
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004974<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004975
Chris Lattner095735d2002-05-06 03:03:22 +00004976<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004977<pre>
Pete Cooper13e082d2012-02-10 18:13:54 +00004978 &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;][, !invariant.load !&lt;index&gt;]
Eli Friedman02e737b2011-08-12 22:50:01 +00004979 &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004980 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004981</pre>
4982
Chris Lattner095735d2002-05-06 03:03:22 +00004983<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004984<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004985
Chris Lattner095735d2002-05-06 03:03:22 +00004986<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004987<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4988 from which to load. The pointer must point to
4989 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4990 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004991 number or order of execution of this <tt>load</tt> with other <a
4992 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004993
Eli Friedman59b66882011-08-09 23:02:53 +00004994<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
4995 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4996 argument. The <code>release</code> and <code>acq_rel</code> orderings are
4997 not valid on <code>load</code> instructions. Atomic loads produce <a
4998 href="#memorymodel">defined</a> results when they may see multiple atomic
4999 stores. The type of the pointee must be an integer type whose bit width
5000 is a power of two greater than or equal to eight and less than or equal
5001 to a target-specific size limit. <code>align</code> must be explicitly
5002 specified on atomic loads, and the load has undefined behavior if the
5003 alignment is not set to a value which is at least the size in bytes of
5004 the pointee. <code>!nontemporal</code> does not have any defined semantics
5005 for atomic loads.</p>
5006
Bill Wendlingbc4024f2010-02-25 21:23:24 +00005007<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005008 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00005009 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005010 alignment for the target. It is the responsibility of the code emitter to
5011 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00005012 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005013 produce less efficient code. An alignment of 1 is always safe.</p>
5014
Bill Wendlingbc4024f2010-02-25 21:23:24 +00005015<p>The optional <tt>!nontemporal</tt> metadata must reference a single
5016 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00005017 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00005018 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
5019 and code generator that this load is not expected to be reused in the cache.
5020 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00005021 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00005022
Pete Cooper13e082d2012-02-10 18:13:54 +00005023<p>The optional <tt>!invariant.load</tt> metadata must reference a single
5024 metatadata name &lt;index&gt; corresponding to a metadata node with no
5025 entries. The existence of the <tt>!invariant.load</tt> metatadata on the
5026 instruction tells the optimizer and code generator that this load address
5027 points to memory which does not change value during program execution.
5028 The optimizer may then move this load around, for example, by hoisting it
5029 out of loops using loop invariant code motion.</p>
5030
Chris Lattner095735d2002-05-06 03:03:22 +00005031<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005032<p>The location of memory pointed to is loaded. If the value being loaded is of
5033 scalar type then the number of bytes read does not exceed the minimum number
5034 of bytes needed to hold all bits of the type. For example, loading an
5035 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
5036 <tt>i20</tt> with a size that is not an integral number of bytes, the result
5037 is undefined if the value was not originally written using a store of the
5038 same type.</p>
5039
Chris Lattner095735d2002-05-06 03:03:22 +00005040<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005041<pre>
5042 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
5043 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005044 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00005045</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005046
Misha Brukman76307852003-11-08 01:05:38 +00005047</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005048
Chris Lattner095735d2002-05-06 03:03:22 +00005049<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005050<h4>
5051 <a name="i_store">'<tt>store</tt>' Instruction</a>
5052</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005053
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005054<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005055
Chris Lattner095735d2002-05-06 03:03:22 +00005056<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005057<pre>
Bill Wendling4517fe52011-12-09 22:41:40 +00005058 store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
5059 store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt; <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00005060</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005061
Chris Lattner095735d2002-05-06 03:03:22 +00005062<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005063<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005064
Chris Lattner095735d2002-05-06 03:03:22 +00005065<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005066<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
5067 and an address at which to store it. The type of the
5068 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
5069 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00005070 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
5071 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
5072 order of execution of this <tt>store</tt> with other <a
5073 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005074
Eli Friedman59b66882011-08-09 23:02:53 +00005075<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
5076 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
5077 argument. The <code>acquire</code> and <code>acq_rel</code> orderings aren't
5078 valid on <code>store</code> instructions. Atomic loads produce <a
5079 href="#memorymodel">defined</a> results when they may see multiple atomic
5080 stores. The type of the pointee must be an integer type whose bit width
5081 is a power of two greater than or equal to eight and less than or equal
5082 to a target-specific size limit. <code>align</code> must be explicitly
5083 specified on atomic stores, and the store has undefined behavior if the
5084 alignment is not set to a value which is at least the size in bytes of
5085 the pointee. <code>!nontemporal</code> does not have any defined semantics
5086 for atomic stores.</p>
5087
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005088<p>The optional constant "align" argument specifies the alignment of the
5089 operation (that is, the alignment of the memory address). A value of 0 or an
5090 omitted "align" argument means that the operation has the preferential
5091 alignment for the target. It is the responsibility of the code emitter to
5092 ensure that the alignment information is correct. Overestimating the
5093 alignment results in an undefined behavior. Underestimating the alignment may
5094 produce less efficient code. An alignment of 1 is always safe.</p>
5095
David Greene9641d062010-02-16 20:50:18 +00005096<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00005097 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00005098 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00005099 instruction tells the optimizer and code generator that this load is
5100 not expected to be reused in the cache. The code generator may
5101 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00005102 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00005103
5104
Chris Lattner48b383b02003-11-25 01:02:51 +00005105<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005106<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
5107 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
5108 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
5109 does not exceed the minimum number of bytes needed to hold all bits of the
5110 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
5111 writing a value of a type like <tt>i20</tt> with a size that is not an
5112 integral number of bytes, it is unspecified what happens to the extra bits
5113 that do not belong to the type, but they will typically be overwritten.</p>
5114
Chris Lattner095735d2002-05-06 03:03:22 +00005115<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005116<pre>
5117 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00005118 store i32 3, i32* %ptr <i>; yields {void}</i>
5119 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00005120</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005121
Reid Spencer443460a2006-11-09 21:15:49 +00005122</div>
5123
Chris Lattner095735d2002-05-06 03:03:22 +00005124<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005125<h4>
5126<a name="i_fence">'<tt>fence</tt>' Instruction</a>
5127</h4>
Eli Friedmanfee02c62011-07-25 23:16:38 +00005128
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005129<div>
Eli Friedmanfee02c62011-07-25 23:16:38 +00005130
5131<h5>Syntax:</h5>
5132<pre>
5133 fence [singlethread] &lt;ordering&gt; <i>; yields {void}</i>
5134</pre>
5135
5136<h5>Overview:</h5>
5137<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
5138between operations.</p>
5139
5140<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
5141href="#ordering">ordering</a> argument which defines what
5142<i>synchronizes-with</i> edges they add. They can only be given
5143<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
5144<code>seq_cst</code> orderings.</p>
5145
5146<h5>Semantics:</h5>
5147<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
5148semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
5149<code>acquire</code> ordering semantics if and only if there exist atomic
5150operations <var>X</var> and <var>Y</var>, both operating on some atomic object
5151<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
5152<var>X</var> modifies <var>M</var> (either directly or through some side effect
5153of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
5154<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
5155<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
5156than an explicit <code>fence</code>, one (but not both) of the atomic operations
5157<var>X</var> or <var>Y</var> might provide a <code>release</code> or
5158<code>acquire</code> (resp.) ordering constraint and still
5159<i>synchronize-with</i> the explicit <code>fence</code> and establish the
5160<i>happens-before</i> edge.</p>
5161
5162<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
5163having both <code>acquire</code> and <code>release</code> semantics specified
5164above, participates in the global program order of other <code>seq_cst</code>
5165operations and/or fences.</p>
5166
5167<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
5168specifies that the fence only synchronizes with other fences in the same
5169thread. (This is useful for interacting with signal handlers.)</p>
5170
Eli Friedmanfee02c62011-07-25 23:16:38 +00005171<h5>Example:</h5>
5172<pre>
5173 fence acquire <i>; yields {void}</i>
5174 fence singlethread seq_cst <i>; yields {void}</i>
5175</pre>
5176
5177</div>
5178
5179<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005180<h4>
5181<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
5182</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005183
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005184<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005185
5186<h5>Syntax:</h5>
5187<pre>
Bill Wendling4517fe52011-12-09 22:41:40 +00005188 cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005189</pre>
5190
5191<h5>Overview:</h5>
5192<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
5193It loads a value in memory and compares it to a given value. If they are
5194equal, it stores a new value into the memory.</p>
5195
5196<h5>Arguments:</h5>
5197<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
5198address to operate on, a value to compare to the value currently be at that
5199address, and a new value to place at that address if the compared values are
5200equal. The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
5201bit width is a power of two greater than or equal to eight and less than
5202or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
5203'<var>&lt;new&gt;</var>' must have the same type, and the type of
5204'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
5205<code>cmpxchg</code> is marked as <code>volatile</code>, then the
5206optimizer is not allowed to modify the number or order of execution
5207of this <code>cmpxchg</code> with other <a href="#volatile">volatile
5208operations</a>.</p>
5209
5210<!-- FIXME: Extend allowed types. -->
5211
5212<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
5213<code>cmpxchg</code> synchronizes with other atomic operations.</p>
5214
5215<p>The optional "<code>singlethread</code>" argument declares that the
5216<code>cmpxchg</code> is only atomic with respect to code (usually signal
5217handlers) running in the same thread as the <code>cmpxchg</code>. Otherwise the
5218cmpxchg is atomic with respect to all other code in the system.</p>
5219
5220<p>The pointer passed into cmpxchg must have alignment greater than or equal to
5221the size in memory of the operand.
5222
5223<h5>Semantics:</h5>
5224<p>The contents of memory at the location specified by the
5225'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
5226'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
5227'<tt>&lt;new&gt;</tt>' is written. The original value at the location
5228is returned.
5229
5230<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
5231purpose of identifying <a href="#release_sequence">release sequences</a>. A
5232failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
5233parameter determined by dropping any <code>release</code> part of the
5234<code>cmpxchg</code>'s ordering.</p>
5235
5236<!--
5237FIXME: Is compare_exchange_weak() necessary? (Consider after we've done
5238optimization work on ARM.)
5239
5240FIXME: Is a weaker ordering constraint on failure helpful in practice?
5241-->
5242
5243<h5>Example:</h5>
5244<pre>
5245entry:
Bill Wendling4517fe52011-12-09 22:41:40 +00005246 %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered <i>; yields {i32}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005247 <a href="#i_br">br</a> label %loop
5248
5249loop:
5250 %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
5251 %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
Bill Wendling4517fe52011-12-09 22:41:40 +00005252 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared <i>; yields {i32}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005253 %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
5254 <a href="#i_br">br</a> i1 %success, label %done, label %loop
5255
5256done:
5257 ...
5258</pre>
5259
5260</div>
5261
5262<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005263<h4>
5264<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
5265</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005266
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00005267<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005268
5269<h5>Syntax:</h5>
5270<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00005271 atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00005272</pre>
5273
5274<h5>Overview:</h5>
5275<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
5276
5277<h5>Arguments:</h5>
5278<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
5279operation to apply, an address whose value to modify, an argument to the
5280operation. The operation must be one of the following keywords:</p>
5281<ul>
5282 <li>xchg</li>
5283 <li>add</li>
5284 <li>sub</li>
5285 <li>and</li>
5286 <li>nand</li>
5287 <li>or</li>
5288 <li>xor</li>
5289 <li>max</li>
5290 <li>min</li>
5291 <li>umax</li>
5292 <li>umin</li>
5293</ul>
5294
5295<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
5296bit width is a power of two greater than or equal to eight and less than
5297or equal to a target-specific size limit. The type of the
5298'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
5299If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
5300optimizer is not allowed to modify the number or order of execution of this
5301<code>atomicrmw</code> with other <a href="#volatile">volatile
5302 operations</a>.</p>
5303
5304<!-- FIXME: Extend allowed types. -->
5305
5306<h5>Semantics:</h5>
5307<p>The contents of memory at the location specified by the
5308'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
5309back. The original value at the location is returned. The modification is
5310specified by the <var>operation</var> argument:</p>
5311
5312<ul>
5313 <li>xchg: <code>*ptr = val</code></li>
5314 <li>add: <code>*ptr = *ptr + val</code></li>
5315 <li>sub: <code>*ptr = *ptr - val</code></li>
5316 <li>and: <code>*ptr = *ptr &amp; val</code></li>
5317 <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
5318 <li>or: <code>*ptr = *ptr | val</code></li>
5319 <li>xor: <code>*ptr = *ptr ^ val</code></li>
5320 <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
5321 <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
5322 <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5323 <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5324</ul>
5325
5326<h5>Example:</h5>
5327<pre>
5328 %old = atomicrmw add i32* %ptr, i32 1 acquire <i>; yields {i32}</i>
5329</pre>
5330
5331</div>
5332
5333<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005334<h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005335 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005336</h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005337
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005338<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005339
Chris Lattner590645f2002-04-14 06:13:44 +00005340<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005341<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005342 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00005343 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Nadav Rotem3924cb02011-12-05 06:29:09 +00005344 &lt;result&gt; = getelementptr &lt;ptr vector&gt; ptrval, &lt;vector index type&gt; idx
Chris Lattner33fd7022004-04-05 01:30:49 +00005345</pre>
5346
Chris Lattner590645f2002-04-14 06:13:44 +00005347<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005348<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00005349 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
5350 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005351
Chris Lattner590645f2002-04-14 06:13:44 +00005352<h5>Arguments:</h5>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005353<p>The first argument is always a pointer or a vector of pointers,
5354 and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00005355 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005356 elements of the aggregate object are indexed. The interpretation of each
5357 index is dependent on the type being indexed into. The first index always
5358 indexes the pointer value given as the first argument, the second index
5359 indexes a value of the type pointed to (not necessarily the value directly
5360 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00005361 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00005362 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00005363 can never be pointers, since that would require loading the pointer before
5364 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005365
5366<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00005367 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00005368 integer <b>constants</b> are allowed. When indexing into an array, pointer
5369 or vector, integers of any width are allowed, and they are not required to be
Eli Friedmand8874dc2011-08-12 23:37:55 +00005370 constant. These integers are treated as signed values where relevant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005371
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005372<p>For example, let's consider a C code fragment and how it gets compiled to
5373 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005374
Benjamin Kramer79698be2010-07-13 12:26:09 +00005375<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00005376struct RT {
5377 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00005378 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00005379 char C;
5380};
5381struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00005382 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00005383 double Y;
5384 struct RT Z;
5385};
Chris Lattner33fd7022004-04-05 01:30:49 +00005386
Chris Lattnera446f1b2007-05-29 15:43:56 +00005387int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005388 return &amp;s[1].Z.B[5][13];
5389}
Chris Lattner33fd7022004-04-05 01:30:49 +00005390</pre>
5391
Bill Wendling7ad1f362011-12-13 01:07:07 +00005392<p>The LLVM code generated by Clang is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005393
Benjamin Kramer79698be2010-07-13 12:26:09 +00005394<pre class="doc_code">
Bill Wendling7ad1f362011-12-13 01:07:07 +00005395%struct.RT = <a href="#namedtypes">type</a> { i8, [10 x [20 x i32]], i8 }
5396%struct.ST = <a href="#namedtypes">type</a> { i32, double, %struct.RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00005397
Bill Wendling7ad1f362011-12-13 01:07:07 +00005398define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005399entry:
Bill Wendling7ad1f362011-12-13 01:07:07 +00005400 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5401 ret i32* %arrayidx
Bill Wendling3716c5d2007-05-29 09:04:49 +00005402}
Chris Lattner33fd7022004-04-05 01:30:49 +00005403</pre>
5404
Chris Lattner590645f2002-04-14 06:13:44 +00005405<h5>Semantics:</h5>
Bill Wendling7ad1f362011-12-13 01:07:07 +00005406<p>In the example above, the first index is indexing into the
5407 '<tt>%struct.ST*</tt>' type, which is a pointer, yielding a
5408 '<tt>%struct.ST</tt>' = '<tt>{ i32, double, %struct.RT }</tt>' type, a
5409 structure. The second index indexes into the third element of the structure,
5410 yielding a '<tt>%struct.RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], i8 }</tt>'
5411 type, another structure. The third index indexes into the second element of
5412 the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an array. The
5413 two dimensions of the array are subscripted into, yielding an '<tt>i32</tt>'
5414 type. The '<tt>getelementptr</tt>' instruction returns a pointer to this
5415 element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005416
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005417<p>Note that it is perfectly legal to index partially through a structure,
5418 returning a pointer to an inner element. Because of this, the LLVM code for
5419 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005420
Bill Wendling7ad1f362011-12-13 01:07:07 +00005421<pre class="doc_code">
5422define i32* @foo(%struct.ST* %s) {
5423 %t1 = getelementptr %struct.ST* %s, i32 1 <i>; yields %struct.ST*:%t1</i>
5424 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 <i>; yields %struct.RT*:%t2</i>
5425 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
5426 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
5427 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
5428 ret i32* %t5
5429}
Chris Lattnera8292f32002-05-06 22:08:29 +00005430</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00005431
Dan Gohman1639c392009-07-27 21:53:46 +00005432<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman9a2a0932011-12-06 03:18:47 +00005433 <tt>getelementptr</tt> is a <a href="#poisonvalues">poison value</a> if the
Dan Gohman57255802010-04-23 15:23:32 +00005434 base pointer is not an <i>in bounds</i> address of an allocated object,
5435 or if any of the addresses that would be formed by successive addition of
5436 the offsets implied by the indices to the base address with infinitely
Eli Friedmand8874dc2011-08-12 23:37:55 +00005437 precise signed arithmetic are not an <i>in bounds</i> address of that
5438 allocated object. The <i>in bounds</i> addresses for an allocated object
5439 are all the addresses that point into the object, plus the address one
Nadav Rotem3924cb02011-12-05 06:29:09 +00005440 byte past the end.
5441 In cases where the base is a vector of pointers the <tt>inbounds</tt> keyword
5442 applies to each of the computations element-wise. </p>
Dan Gohman1639c392009-07-27 21:53:46 +00005443
5444<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
Eli Friedmand8874dc2011-08-12 23:37:55 +00005445 the base address with silently-wrapping two's complement arithmetic. If the
5446 offsets have a different width from the pointer, they are sign-extended or
5447 truncated to the width of the pointer. The result value of the
5448 <tt>getelementptr</tt> may be outside the object pointed to by the base
5449 pointer. The result value may not necessarily be used to access memory
5450 though, even if it happens to point into allocated storage. See the
5451 <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5452 information.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005453
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005454<p>The getelementptr instruction is often confusing. For some more insight into
5455 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00005456
Chris Lattner590645f2002-04-14 06:13:44 +00005457<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005458<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005459 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005460 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5461 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005462 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005463 <i>; yields i8*:eptr</i>
5464 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00005465 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00005466 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00005467</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005468
Nadav Rotem3924cb02011-12-05 06:29:09 +00005469<p>In cases where the pointer argument is a vector of pointers, only a
5470 single index may be used, and the number of vector elements has to be
5471 the same. For example: </p>
5472<pre class="doc_code">
5473 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5474</pre>
5475
Chris Lattner33fd7022004-04-05 01:30:49 +00005476</div>
Reid Spencer443460a2006-11-09 21:15:49 +00005477
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005478</div>
5479
Chris Lattner2f7c9632001-06-06 20:29:01 +00005480<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005481<h3>
5482 <a name="convertops">Conversion Operations</a>
5483</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005484
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005485<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005486
Reid Spencer97c5fa42006-11-08 01:18:52 +00005487<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005488 which all take a single operand and a type. They perform various bit
5489 conversions on the operand.</p>
5490
Chris Lattnera8292f32002-05-06 22:08:29 +00005491<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005492<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005493 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005494</h4>
5495
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005496<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005497
5498<h5>Syntax:</h5>
5499<pre>
5500 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5501</pre>
5502
5503<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005504<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5505 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005506
5507<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005508<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5509 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5510 of the same number of integers.
5511 The bit size of the <tt>value</tt> must be larger than
5512 the bit size of the destination type, <tt>ty2</tt>.
5513 Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005514
5515<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005516<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5517 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5518 source size must be larger than the destination size, <tt>trunc</tt> cannot
5519 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005520
5521<h5>Example:</h5>
5522<pre>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005523 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
5524 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
5525 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
5526 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005527</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005528
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005529</div>
5530
5531<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005532<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005533 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005534</h4>
5535
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005536<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005537
5538<h5>Syntax:</h5>
5539<pre>
5540 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5541</pre>
5542
5543<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005544<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005545 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005546
5547
5548<h5>Arguments:</h5>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005549<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5550 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5551 of the same number of integers.
5552 The bit size of the <tt>value</tt> must be smaller than
5553 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005554 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005555
5556<h5>Semantics:</h5>
5557<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005558 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005559
Reid Spencer07c9c682007-01-12 15:46:11 +00005560<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005561
5562<h5>Example:</h5>
5563<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005564 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005565 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005566 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005567</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005568
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005569</div>
5570
5571<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005572<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005573 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005574</h4>
5575
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005576<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005577
5578<h5>Syntax:</h5>
5579<pre>
5580 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5581</pre>
5582
5583<h5>Overview:</h5>
5584<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5585
5586<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005587<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5588 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5589 of the same number of integers.
5590 The bit size of the <tt>value</tt> must be smaller than
5591 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005592 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005593
5594<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005595<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5596 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5597 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005598
Reid Spencer36a15422007-01-12 03:35:51 +00005599<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005600
5601<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005602<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005603 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005604 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005605 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005606</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005607
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005608</div>
5609
5610<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005611<h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005612 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005613</h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005614
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005615<div>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005616
5617<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005618<pre>
5619 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5620</pre>
5621
5622<h5>Overview:</h5>
5623<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005624 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005625
5626<h5>Arguments:</h5>
5627<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005628 point</a> value to cast and a <a href="#t_floating">floating point</a> type
5629 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00005630 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005631 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005632
5633<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005634<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00005635 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005636 <a href="#t_floating">floating point</a> type. If the value cannot fit
5637 within the destination type, <tt>ty2</tt>, then the results are
5638 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005639
5640<h5>Example:</h5>
5641<pre>
5642 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
5643 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
5644</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005645
Reid Spencer2e2740d2006-11-09 21:48:10 +00005646</div>
5647
5648<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005649<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005650 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005651</h4>
5652
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005653<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005654
5655<h5>Syntax:</h5>
5656<pre>
5657 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5658</pre>
5659
5660<h5>Overview:</h5>
5661<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005662 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005663
5664<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005665<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005666 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5667 a <a href="#t_floating">floating point</a> type to cast it to. The source
5668 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005669
5670<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005671<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005672 <a href="#t_floating">floating point</a> type to a larger
5673 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5674 used to make a <i>no-op cast</i> because it always changes bits. Use
5675 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005676
5677<h5>Example:</h5>
5678<pre>
Nick Lewycky9feca672011-03-31 18:20:19 +00005679 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
5680 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005681</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005682
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005683</div>
5684
5685<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005686<h4>
Reid Spencer2eadb532007-01-21 00:29:26 +00005687 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005688</h4>
5689
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005690<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005691
5692<h5>Syntax:</h5>
5693<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005694 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005695</pre>
5696
5697<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00005698<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005699 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005700
5701<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005702<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5703 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5704 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5705 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5706 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005707
5708<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005709<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005710 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5711 towards zero) unsigned integer value. If the value cannot fit
5712 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005713
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005714<h5>Example:</h5>
5715<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005716 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005717 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005718 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005719</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005720
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005721</div>
5722
5723<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005724<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005725 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005726</h4>
5727
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005728<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005729
5730<h5>Syntax:</h5>
5731<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005732 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005733</pre>
5734
5735<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005736<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005737 <a href="#t_floating">floating point</a> <tt>value</tt> to
5738 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005739
Chris Lattnera8292f32002-05-06 22:08:29 +00005740<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005741<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5742 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5743 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5744 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5745 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005746
Chris Lattnera8292f32002-05-06 22:08:29 +00005747<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005748<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005749 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5750 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5751 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005752
Chris Lattner70de6632001-07-09 00:26:23 +00005753<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005754<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005755 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005756 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005757 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005758</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005759
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005760</div>
5761
5762<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005763<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005764 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005765</h4>
5766
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005767<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005768
5769<h5>Syntax:</h5>
5770<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005771 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005772</pre>
5773
5774<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005775<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005776 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005777
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005778<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005779<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005780 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5781 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5782 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5783 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005784
5785<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005786<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005787 integer quantity and converts it to the corresponding floating point
5788 value. If the value cannot fit in the floating point value, the results are
5789 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005790
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005791<h5>Example:</h5>
5792<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005793 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005794 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005795</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005796
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005797</div>
5798
5799<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005800<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005801 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005802</h4>
5803
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005804<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005805
5806<h5>Syntax:</h5>
5807<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005808 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005809</pre>
5810
5811<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005812<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5813 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005814
5815<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005816<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005817 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5818 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5819 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5820 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005821
5822<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005823<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5824 quantity and converts it to the corresponding floating point value. If the
5825 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005826
5827<h5>Example:</h5>
5828<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005829 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005830 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005831</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005832
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005833</div>
5834
5835<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005836<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005837 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005838</h4>
5839
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005840<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005841
5842<h5>Syntax:</h5>
5843<pre>
5844 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5845</pre>
5846
5847<h5>Overview:</h5>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005848<p>The '<tt>ptrtoint</tt>' instruction converts the pointer or a vector of
5849 pointers <tt>value</tt> to
5850 the integer (or vector of integers) type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005851
5852<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005853<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Nadav Rotem3924cb02011-12-05 06:29:09 +00005854 must be a a value of type <a href="#t_pointer">pointer</a> or a vector of
5855 pointers, and a type to cast it to
5856 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> or a vector
5857 of integers type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005858
5859<h5>Semantics:</h5>
5860<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005861 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5862 truncating or zero extending that value to the size of the integer type. If
5863 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5864 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5865 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5866 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005867
5868<h5>Example:</h5>
5869<pre>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005870 %X = ptrtoint i32* %P to i8 <i>; yields truncation on 32-bit architecture</i>
5871 %Y = ptrtoint i32* %P to i64 <i>; yields zero extension on 32-bit architecture</i>
5872 %Z = ptrtoint &lt;4 x i32*&gt; %P to &lt;4 x i64&gt;<i>; yields vector zero extension for a vector of addresses on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005873</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005874
Reid Spencerb7344ff2006-11-11 21:00:47 +00005875</div>
5876
5877<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005878<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005879 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005880</h4>
5881
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005882<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005883
5884<h5>Syntax:</h5>
5885<pre>
5886 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5887</pre>
5888
5889<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005890<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5891 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005892
5893<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00005894<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005895 value to cast, and a type to cast it to, which must be a
5896 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005897
5898<h5>Semantics:</h5>
5899<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005900 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5901 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5902 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5903 than the size of a pointer then a zero extension is done. If they are the
5904 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005905
5906<h5>Example:</h5>
5907<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005908 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005909 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5910 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005911 %Z = inttoptr &lt;4 x i32&gt; %G to &lt;4 x i8*&gt;<i>; yields truncation of vector G to four pointers</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005912</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005913
Reid Spencerb7344ff2006-11-11 21:00:47 +00005914</div>
5915
5916<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005917<h4>
Reid Spencer5b950642006-11-11 23:08:07 +00005918 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005919</h4>
5920
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005921<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005922
5923<h5>Syntax:</h5>
5924<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00005925 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005926</pre>
5927
5928<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005929<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005930 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005931
5932<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005933<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5934 non-aggregate first class value, and a type to cast it to, which must also be
5935 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5936 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5937 identical. If the source type is a pointer, the destination type must also be
5938 a pointer. This instruction supports bitwise conversion of vectors to
5939 integers and to vectors of other types (as long as they have the same
5940 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005941
5942<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005943<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005944 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5945 this conversion. The conversion is done as if the <tt>value</tt> had been
Nadav Rotem3924cb02011-12-05 06:29:09 +00005946 stored to memory and read back as type <tt>ty2</tt>.
5947 Pointer (or vector of pointers) types may only be converted to other pointer
5948 (or vector of pointers) types with this instruction. To convert
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005949 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5950 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005951
5952<h5>Example:</h5>
5953<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005954 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005955 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Nadav Rotem3924cb02011-12-05 06:29:09 +00005956 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
5957 %Z = bitcast &lt;2 x i32*&gt; %V to &lt;2 x i64*&gt; <i>; yields &lt;2 x i64*&gt;</i>
Chris Lattner70de6632001-07-09 00:26:23 +00005958</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005959
Misha Brukman76307852003-11-08 01:05:38 +00005960</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005961
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005962</div>
5963
Reid Spencer97c5fa42006-11-08 01:18:52 +00005964<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005965<h3>
5966 <a name="otherops">Other Operations</a>
5967</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005968
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005969<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005970
5971<p>The instructions in this category are the "miscellaneous" instructions, which
5972 defy better classification.</p>
5973
Reid Spencerc828a0e2006-11-18 21:50:54 +00005974<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005975<h4>
5976 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5977</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005978
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005979<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005980
Reid Spencerc828a0e2006-11-18 21:50:54 +00005981<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005982<pre>
5983 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005984</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005985
Reid Spencerc828a0e2006-11-18 21:50:54 +00005986<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005987<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
Nadav Rotem3924cb02011-12-05 06:29:09 +00005988 boolean values based on comparison of its two integer, integer vector,
5989 pointer, or pointer vector operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005990
Reid Spencerc828a0e2006-11-18 21:50:54 +00005991<h5>Arguments:</h5>
5992<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005993 the condition code indicating the kind of comparison to perform. It is not a
5994 value, just a keyword. The possible condition code are:</p>
5995
Reid Spencerc828a0e2006-11-18 21:50:54 +00005996<ol>
5997 <li><tt>eq</tt>: equal</li>
5998 <li><tt>ne</tt>: not equal </li>
5999 <li><tt>ugt</tt>: unsigned greater than</li>
6000 <li><tt>uge</tt>: unsigned greater or equal</li>
6001 <li><tt>ult</tt>: unsigned less than</li>
6002 <li><tt>ule</tt>: unsigned less or equal</li>
6003 <li><tt>sgt</tt>: signed greater than</li>
6004 <li><tt>sge</tt>: signed greater or equal</li>
6005 <li><tt>slt</tt>: signed less than</li>
6006 <li><tt>sle</tt>: signed less or equal</li>
6007</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006008
Chris Lattnerc0f423a2007-01-15 01:54:13 +00006009<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006010 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
6011 typed. They must also be identical types.</p>
6012
Reid Spencerc828a0e2006-11-18 21:50:54 +00006013<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006014<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
6015 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00006016 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006017 result, as follows:</p>
6018
Reid Spencerc828a0e2006-11-18 21:50:54 +00006019<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00006020 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006021 <tt>false</tt> otherwise. No sign interpretation is necessary or
6022 performed.</li>
6023
Eric Christopher455c5772009-12-05 02:46:03 +00006024 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006025 <tt>false</tt> otherwise. No sign interpretation is necessary or
6026 performed.</li>
6027
Reid Spencerc828a0e2006-11-18 21:50:54 +00006028 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006029 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6030
Reid Spencerc828a0e2006-11-18 21:50:54 +00006031 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006032 <tt>true</tt> if <tt>op1</tt> is greater than or equal
6033 to <tt>op2</tt>.</li>
6034
Reid Spencerc828a0e2006-11-18 21:50:54 +00006035 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006036 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
6037
Reid Spencerc828a0e2006-11-18 21:50:54 +00006038 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006039 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6040
Reid Spencerc828a0e2006-11-18 21:50:54 +00006041 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006042 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6043
Reid Spencerc828a0e2006-11-18 21:50:54 +00006044 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006045 <tt>true</tt> if <tt>op1</tt> is greater than or equal
6046 to <tt>op2</tt>.</li>
6047
Reid Spencerc828a0e2006-11-18 21:50:54 +00006048 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006049 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
6050
Reid Spencerc828a0e2006-11-18 21:50:54 +00006051 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006052 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006053</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006054
Reid Spencerc828a0e2006-11-18 21:50:54 +00006055<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006056 values are compared as if they were integers.</p>
6057
6058<p>If the operands are integer vectors, then they are compared element by
6059 element. The result is an <tt>i1</tt> vector with the same number of elements
6060 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006061
6062<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006063<pre>
6064 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006065 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
6066 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
6067 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
6068 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
6069 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006070</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00006071
6072<p>Note that the code generator does not yet support vector types with
6073 the <tt>icmp</tt> instruction.</p>
6074
Reid Spencerc828a0e2006-11-18 21:50:54 +00006075</div>
6076
6077<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006078<h4>
6079 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
6080</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006081
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006082<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006083
Reid Spencerc828a0e2006-11-18 21:50:54 +00006084<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006085<pre>
6086 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006087</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006088
Reid Spencerc828a0e2006-11-18 21:50:54 +00006089<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006090<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
6091 values based on comparison of its operands.</p>
6092
6093<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00006094(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006095
6096<p>If the operands are floating point vectors, then the result type is a vector
6097 of boolean with the same number of elements as the operands being
6098 compared.</p>
6099
Reid Spencerc828a0e2006-11-18 21:50:54 +00006100<h5>Arguments:</h5>
6101<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006102 the condition code indicating the kind of comparison to perform. It is not a
6103 value, just a keyword. The possible condition code are:</p>
6104
Reid Spencerc828a0e2006-11-18 21:50:54 +00006105<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00006106 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006107 <li><tt>oeq</tt>: ordered and equal</li>
6108 <li><tt>ogt</tt>: ordered and greater than </li>
6109 <li><tt>oge</tt>: ordered and greater than or equal</li>
6110 <li><tt>olt</tt>: ordered and less than </li>
6111 <li><tt>ole</tt>: ordered and less than or equal</li>
6112 <li><tt>one</tt>: ordered and not equal</li>
6113 <li><tt>ord</tt>: ordered (no nans)</li>
6114 <li><tt>ueq</tt>: unordered or equal</li>
6115 <li><tt>ugt</tt>: unordered or greater than </li>
6116 <li><tt>uge</tt>: unordered or greater than or equal</li>
6117 <li><tt>ult</tt>: unordered or less than </li>
6118 <li><tt>ule</tt>: unordered or less than or equal</li>
6119 <li><tt>une</tt>: unordered or not equal</li>
6120 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00006121 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006122</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006123
Jeff Cohen222a8a42007-04-29 01:07:00 +00006124<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006125 <i>unordered</i> means that either operand may be a QNAN.</p>
6126
6127<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
6128 a <a href="#t_floating">floating point</a> type or
6129 a <a href="#t_vector">vector</a> of floating point type. They must have
6130 identical types.</p>
6131
Reid Spencerc828a0e2006-11-18 21:50:54 +00006132<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00006133<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006134 according to the condition code given as <tt>cond</tt>. If the operands are
6135 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00006136 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006137 follows:</p>
6138
Reid Spencerc828a0e2006-11-18 21:50:54 +00006139<ol>
6140 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006141
Eric Christopher455c5772009-12-05 02:46:03 +00006142 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006143 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
6144
Reid Spencerf69acf32006-11-19 03:00:14 +00006145 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00006146 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006147
Eric Christopher455c5772009-12-05 02:46:03 +00006148 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006149 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
6150
Eric Christopher455c5772009-12-05 02:46:03 +00006151 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006152 <tt>op1</tt> is less than <tt>op2</tt>.</li>
6153
Eric Christopher455c5772009-12-05 02:46:03 +00006154 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006155 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6156
Eric Christopher455c5772009-12-05 02:46:03 +00006157 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006158 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
6159
Reid Spencerf69acf32006-11-19 03:00:14 +00006160 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006161
Eric Christopher455c5772009-12-05 02:46:03 +00006162 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006163 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
6164
Eric Christopher455c5772009-12-05 02:46:03 +00006165 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006166 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6167
Eric Christopher455c5772009-12-05 02:46:03 +00006168 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006169 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
6170
Eric Christopher455c5772009-12-05 02:46:03 +00006171 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006172 <tt>op1</tt> is less than <tt>op2</tt>.</li>
6173
Eric Christopher455c5772009-12-05 02:46:03 +00006174 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006175 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6176
Eric Christopher455c5772009-12-05 02:46:03 +00006177 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006178 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
6179
Reid Spencerf69acf32006-11-19 03:00:14 +00006180 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006181
Reid Spencerc828a0e2006-11-18 21:50:54 +00006182 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
6183</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006184
6185<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006186<pre>
6187 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00006188 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
6189 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
6190 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00006191</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00006192
6193<p>Note that the code generator does not yet support vector types with
6194 the <tt>fcmp</tt> instruction.</p>
6195
Reid Spencerc828a0e2006-11-18 21:50:54 +00006196</div>
6197
Reid Spencer97c5fa42006-11-08 01:18:52 +00006198<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006199<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006200 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006201</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006202
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006203<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006204
Reid Spencer97c5fa42006-11-08 01:18:52 +00006205<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006206<pre>
6207 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
6208</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006209
Reid Spencer97c5fa42006-11-08 01:18:52 +00006210<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006211<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
6212 SSA graph representing the function.</p>
6213
Reid Spencer97c5fa42006-11-08 01:18:52 +00006214<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006215<p>The type of the incoming values is specified with the first type field. After
6216 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
6217 one pair for each predecessor basic block of the current block. Only values
6218 of <a href="#t_firstclass">first class</a> type may be used as the value
6219 arguments to the PHI node. Only labels may be used as the label
6220 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006221
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006222<p>There must be no non-phi instructions between the start of a basic block and
6223 the PHI instructions: i.e. PHI instructions must be first in a basic
6224 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006225
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006226<p>For the purposes of the SSA form, the use of each incoming value is deemed to
6227 occur on the edge from the corresponding predecessor block to the current
6228 block (but after any definition of an '<tt>invoke</tt>' instruction's return
6229 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00006230
Reid Spencer97c5fa42006-11-08 01:18:52 +00006231<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006232<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006233 specified by the pair corresponding to the predecessor basic block that
6234 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006235
Reid Spencer97c5fa42006-11-08 01:18:52 +00006236<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00006237<pre>
6238Loop: ; Infinite loop that counts from 0 on up...
6239 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6240 %nextindvar = add i32 %indvar, 1
6241 br label %Loop
6242</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006243
Reid Spencer97c5fa42006-11-08 01:18:52 +00006244</div>
6245
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006246<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006247<h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006248 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006249</h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006250
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006251<div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006252
6253<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006254<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00006255 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
6256
Dan Gohmanef9462f2008-10-14 16:51:45 +00006257 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006258</pre>
6259
6260<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006261<p>The '<tt>select</tt>' instruction is used to choose one value based on a
6262 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006263
6264
6265<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006266<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
6267 values indicating the condition, and two values of the
6268 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
6269 vectors and the condition is a scalar, then entire vectors are selected, not
6270 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006271
6272<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006273<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
6274 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006275
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006276<p>If the condition is a vector of i1, then the value arguments must be vectors
6277 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006278
6279<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006280<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00006281 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006282</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00006283
Chris Lattnerb53c28d2004-03-12 05:50:16 +00006284</div>
6285
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00006286<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006287<h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00006288 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006289</h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00006290
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006291<div>
Chris Lattnere23c1392005-05-06 05:47:36 +00006292
Chris Lattner2f7c9632001-06-06 20:29:01 +00006293<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006294<pre>
Devang Patel02256232008-10-07 17:48:33 +00006295 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00006296</pre>
6297
Chris Lattner2f7c9632001-06-06 20:29:01 +00006298<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006299<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006300
Chris Lattner2f7c9632001-06-06 20:29:01 +00006301<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006302<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006303
Chris Lattnera8292f32002-05-06 22:08:29 +00006304<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006305 <li>The optional "tail" marker indicates that the callee function does not
6306 access any allocas or varargs in the caller. Note that calls may be
6307 marked "tail" even if they do not occur before
6308 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
6309 present, the function call is eligible for tail call optimization,
6310 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00006311 optimized into a jump</a>. The code generator may optimize calls marked
6312 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
6313 sibling call optimization</a> when the caller and callee have
6314 matching signatures, or 2) forced tail call optimization when the
6315 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006316 <ul>
6317 <li>Caller and callee both have the calling
6318 convention <tt>fastcc</tt>.</li>
6319 <li>The call is in tail position (ret immediately follows call and ret
6320 uses value of call or is void).</li>
6321 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00006322 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006323 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
6324 constraints are met.</a></li>
6325 </ul>
6326 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006327
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006328 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
6329 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006330 defaults to using C calling conventions. The calling convention of the
6331 call must match the calling convention of the target function, or else the
6332 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006333
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006334 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
6335 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
6336 '<tt>inreg</tt>' attributes are valid here.</li>
6337
6338 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
6339 type of the return value. Functions that return no value are marked
6340 <tt><a href="#t_void">void</a></tt>.</li>
6341
6342 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
6343 being invoked. The argument types must match the types implied by this
6344 signature. This type can be omitted if the function is not varargs and if
6345 the function type does not return a pointer to a function.</li>
6346
6347 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
6348 be invoked. In most cases, this is a direct function invocation, but
6349 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
6350 to function value.</li>
6351
6352 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00006353 signature argument types and parameter attributes. All arguments must be
6354 of <a href="#t_firstclass">first class</a> type. If the function
6355 signature indicates the function accepts a variable number of arguments,
6356 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006357
6358 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
6359 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
6360 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00006361</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00006362
Chris Lattner2f7c9632001-06-06 20:29:01 +00006363<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006364<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
6365 a specified function, with its incoming arguments bound to the specified
6366 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
6367 function, control flow continues with the instruction after the function
6368 call, and the return value of the function is bound to the result
6369 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006370
Chris Lattner2f7c9632001-06-06 20:29:01 +00006371<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006372<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00006373 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006374 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00006375 %X = tail call i32 @foo() <i>; yields i32</i>
6376 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
6377 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00006378
6379 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00006380 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00006381 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
6382 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00006383 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00006384 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00006385</pre>
6386
Dale Johannesen68f971b2009-09-24 18:38:21 +00006387<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00006388standard C99 library as being the C99 library functions, and may perform
6389optimizations or generate code for them under that assumption. This is
6390something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00006391freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00006392
Misha Brukman76307852003-11-08 01:05:38 +00006393</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006394
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006395<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006396<h4>
Chris Lattner33337472006-01-13 23:26:01 +00006397 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006398</h4>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006399
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006400<div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006401
Chris Lattner26ca62e2003-10-18 05:51:36 +00006402<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006403<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006404 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00006405</pre>
6406
Chris Lattner26ca62e2003-10-18 05:51:36 +00006407<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006408<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006409 the "variable argument" area of a function call. It is used to implement the
6410 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006411
Chris Lattner26ca62e2003-10-18 05:51:36 +00006412<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006413<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6414 argument. It returns a value of the specified argument type and increments
6415 the <tt>va_list</tt> to point to the next argument. The actual type
6416 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006417
Chris Lattner26ca62e2003-10-18 05:51:36 +00006418<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006419<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6420 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6421 to the next argument. For more information, see the variable argument
6422 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006423
6424<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006425 take a variable number of arguments, for example, the <tt>vfprintf</tt>
6426 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006427
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006428<p><tt>va_arg</tt> is an LLVM instruction instead of
6429 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6430 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006431
Chris Lattner26ca62e2003-10-18 05:51:36 +00006432<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006433<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6434
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006435<p>Note that the code generator does not yet fully support va_arg on many
6436 targets. Also, it does not currently support va_arg with aggregate types on
6437 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00006438
Misha Brukman76307852003-11-08 01:05:38 +00006439</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006440
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006441<!-- _______________________________________________________________________ -->
6442<h4>
6443 <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6444</h4>
6445
6446<div>
6447
6448<h5>Syntax:</h5>
6449<pre>
Duncan Sandsdf9d7812012-01-13 19:59:16 +00006450 &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6451 &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
Bill Wendling49bfb122011-08-08 08:06:05 +00006452
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006453 &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
Bill Wendlingfae14752011-08-12 20:24:12 +00006454 &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006455</pre>
6456
6457<h5>Overview:</h5>
6458<p>The '<tt>landingpad</tt>' instruction is used by
6459 <a href="ExceptionHandling.html#overview">LLVM's exception handling
6460 system</a> to specify that a basic block is a landing pad &mdash; one where
6461 the exception lands, and corresponds to the code found in the
6462 <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6463 defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6464 re-entry to the function. The <tt>resultval</tt> has the
Duncan Sandsdf9d7812012-01-13 19:59:16 +00006465 type <tt>resultty</tt>.</p>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006466
6467<h5>Arguments:</h5>
6468<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6469 function associated with the unwinding mechanism. The optional
6470 <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6471
6472<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
Bill Wendlingfae14752011-08-12 20:24:12 +00006473 or <tt>filter</tt> &mdash; and contains the global variable representing the
6474 "type" that may be caught or filtered respectively. Unlike the
6475 <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6476 its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6477 throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006478 one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6479
6480<h5>Semantics:</h5>
6481<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6482 personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6483 therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6484 calling conventions, how the personality function results are represented in
6485 LLVM IR is target specific.</p>
6486
Bill Wendling0524b8d2011-08-03 17:17:06 +00006487<p>The clauses are applied in order from top to bottom. If two
6488 <tt>landingpad</tt> instructions are merged together through inlining, the
Duncan Sandsdf9d7812012-01-13 19:59:16 +00006489 clauses from the calling function are appended to the list of clauses.
6490 When the call stack is being unwound due to an exception being thrown, the
6491 exception is compared against each <tt>clause</tt> in turn. If it doesn't
6492 match any of the clauses, and the <tt>cleanup</tt> flag is not set, then
6493 unwinding continues further up the call stack.</p>
Bill Wendling0524b8d2011-08-03 17:17:06 +00006494
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006495<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6496
6497<ul>
6498 <li>A landing pad block is a basic block which is the unwind destination of an
6499 '<tt>invoke</tt>' instruction.</li>
6500 <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6501 first non-PHI instruction.</li>
6502 <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6503 pad block.</li>
6504 <li>A basic block that is not a landing pad block may not include a
6505 '<tt>landingpad</tt>' instruction.</li>
6506 <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6507 personality function.</li>
6508</ul>
6509
6510<h5>Example:</h5>
6511<pre>
6512 ;; A landing pad which can catch an integer.
6513 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6514 catch i8** @_ZTIi
6515 ;; A landing pad that is a cleanup.
6516 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
Bill Wendlingfae14752011-08-12 20:24:12 +00006517 cleanup
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006518 ;; A landing pad which can catch an integer and can only throw a double.
6519 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6520 catch i8** @_ZTIi
Bill Wendlingfae14752011-08-12 20:24:12 +00006521 filter [1 x i8**] [@_ZTId]
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006522</pre>
6523
6524</div>
6525
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006526</div>
6527
6528</div>
6529
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006530<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006531<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00006532<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00006533
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006534<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006535
6536<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006537 well known names and semantics and are required to follow certain
6538 restrictions. Overall, these intrinsics represent an extension mechanism for
6539 the LLVM language that does not require changing all of the transformations
6540 in LLVM when adding to the language (or the bitcode reader/writer, the
6541 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006542
John Criswell88190562005-05-16 16:17:45 +00006543<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006544 prefix is reserved in LLVM for intrinsic names; thus, function names may not
6545 begin with this prefix. Intrinsic functions must always be external
6546 functions: you cannot define the body of intrinsic functions. Intrinsic
6547 functions may only be used in call or invoke instructions: it is illegal to
6548 take the address of an intrinsic function. Additionally, because intrinsic
6549 functions are part of the LLVM language, it is required if any are added that
6550 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006551
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006552<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6553 family of functions that perform the same operation but on different data
6554 types. Because LLVM can represent over 8 million different integer types,
6555 overloading is used commonly to allow an intrinsic function to operate on any
6556 integer type. One or more of the argument types or the result type can be
6557 overloaded to accept any integer type. Argument types may also be defined as
6558 exactly matching a previous argument's type or the result type. This allows
6559 an intrinsic function which accepts multiple arguments, but needs all of them
6560 to be of the same type, to only be overloaded with respect to a single
6561 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006562
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006563<p>Overloaded intrinsics will have the names of its overloaded argument types
6564 encoded into its function name, each preceded by a period. Only those types
6565 which are overloaded result in a name suffix. Arguments whose type is matched
6566 against another type do not. For example, the <tt>llvm.ctpop</tt> function
6567 can take an integer of any width and returns an integer of exactly the same
6568 integer width. This leads to a family of functions such as
6569 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6570 %val)</tt>. Only one type, the return type, is overloaded, and only one type
6571 suffix is required. Because the argument's type is matched against the return
6572 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006573
Eric Christopher455c5772009-12-05 02:46:03 +00006574<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006575 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006576
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006577<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006578<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006579 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006580</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006581
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006582<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006583
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006584<p>Variable argument support is defined in LLVM with
6585 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6586 intrinsic functions. These functions are related to the similarly named
6587 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006588
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006589<p>All of these functions operate on arguments that use a target-specific value
6590 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
6591 not define what this type is, so all transformations should be prepared to
6592 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006593
Chris Lattner30b868d2006-05-15 17:26:46 +00006594<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006595 instruction and the variable argument handling intrinsic functions are
6596 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006597
Benjamin Kramer79698be2010-07-13 12:26:09 +00006598<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006599define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00006600 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00006601 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006602 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006603 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006604
6605 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00006606 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00006607
6608 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00006609 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006610 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00006611 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006612 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006613
6614 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006615 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006616 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00006617}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006618
6619declare void @llvm.va_start(i8*)
6620declare void @llvm.va_copy(i8*, i8*)
6621declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00006622</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00006623
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006624<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006625<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006626 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006627</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006628
6629
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006630<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006631
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006632<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006633<pre>
6634 declare void %llvm.va_start(i8* &lt;arglist&gt;)
6635</pre>
6636
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006637<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006638<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6639 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006640
6641<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006642<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006643
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006644<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006645<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006646 macro available in C. In a target-dependent way, it initializes
6647 the <tt>va_list</tt> element to which the argument points, so that the next
6648 call to <tt>va_arg</tt> will produce the first variable argument passed to
6649 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6650 need to know the last argument of the function as the compiler can figure
6651 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006652
Misha Brukman76307852003-11-08 01:05:38 +00006653</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006654
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006655<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006656<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006657 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006658</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006659
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006660<div>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006661
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006662<h5>Syntax:</h5>
6663<pre>
6664 declare void @llvm.va_end(i8* &lt;arglist&gt;)
6665</pre>
6666
6667<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006668<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006669 which has been initialized previously
6670 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6671 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006672
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006673<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006674<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006675
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006676<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006677<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006678 macro available in C. In a target-dependent way, it destroys
6679 the <tt>va_list</tt> element to which the argument points. Calls
6680 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6681 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6682 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006683
Misha Brukman76307852003-11-08 01:05:38 +00006684</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006685
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006686<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006687<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006688 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006689</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006690
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006691<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006692
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006693<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006694<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006695 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006696</pre>
6697
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006698<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006699<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006700 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006701
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006702<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006703<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006704 The second argument is a pointer to a <tt>va_list</tt> element to copy
6705 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006706
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006707<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006708<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006709 macro available in C. In a target-dependent way, it copies the
6710 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6711 element. This intrinsic is necessary because
6712 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6713 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006714
Misha Brukman76307852003-11-08 01:05:38 +00006715</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006716
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006717</div>
6718
Chris Lattnerfee11462004-02-12 17:01:32 +00006719<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006720<h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006721 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006722</h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006723
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006724<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006725
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006726<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00006727Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006728intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6729roots on the stack</a>, as well as garbage collector implementations that
6730require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6731barriers. Front-ends for type-safe garbage collected languages should generate
6732these intrinsics to make use of the LLVM garbage collectors. For more details,
6733see <a href="GarbageCollection.html">Accurate Garbage Collection with
6734LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006735
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006736<p>The garbage collection intrinsics only operate on objects in the generic
6737 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006738
Chris Lattner757528b0b2004-05-23 21:06:01 +00006739<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006740<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006741 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006742</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006743
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006744<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006745
6746<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006747<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006748 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006749</pre>
6750
6751<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00006752<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006753 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006754
6755<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006756<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006757 root pointer. The second pointer (which must be either a constant or a
6758 global value address) contains the meta-data to be associated with the
6759 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006760
6761<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00006762<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006763 location. At compile-time, the code generator generates information to allow
6764 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6765 intrinsic may only be used in a function which <a href="#gc">specifies a GC
6766 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006767
6768</div>
6769
Chris Lattner757528b0b2004-05-23 21:06:01 +00006770<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006771<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006772 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006773</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006774
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006775<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006776
6777<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006778<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006779 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006780</pre>
6781
6782<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006783<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006784 locations, allowing garbage collector implementations that require read
6785 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006786
6787<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006788<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006789 allocated from the garbage collector. The first object is a pointer to the
6790 start of the referenced object, if needed by the language runtime (otherwise
6791 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006792
6793<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006794<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006795 instruction, but may be replaced with substantially more complex code by the
6796 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6797 may only be used in a function which <a href="#gc">specifies a GC
6798 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006799
6800</div>
6801
Chris Lattner757528b0b2004-05-23 21:06:01 +00006802<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006803<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006804 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006805</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006806
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006807<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006808
6809<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006810<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006811 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006812</pre>
6813
6814<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006815<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006816 locations, allowing garbage collector implementations that require write
6817 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006818
6819<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006820<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006821 object to store it to, and the third is the address of the field of Obj to
6822 store to. If the runtime does not require a pointer to the object, Obj may
6823 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006824
6825<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006826<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006827 instruction, but may be replaced with substantially more complex code by the
6828 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6829 may only be used in a function which <a href="#gc">specifies a GC
6830 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006831
6832</div>
6833
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006834</div>
6835
Chris Lattner757528b0b2004-05-23 21:06:01 +00006836<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006837<h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006838 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006839</h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006840
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006841<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006842
6843<p>These intrinsics are provided by LLVM to expose special features that may
6844 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006845
Chris Lattner3649c3a2004-02-14 04:08:35 +00006846<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006847<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006848 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006849</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006850
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006851<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006852
6853<h5>Syntax:</h5>
6854<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006855 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006856</pre>
6857
6858<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006859<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6860 target-specific value indicating the return address of the current function
6861 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006862
6863<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006864<p>The argument to this intrinsic indicates which function to return the address
6865 for. Zero indicates the calling function, one indicates its caller, etc.
6866 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006867
6868<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006869<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6870 indicating the return address of the specified call frame, or zero if it
6871 cannot be identified. The value returned by this intrinsic is likely to be
6872 incorrect or 0 for arguments other than zero, so it should only be used for
6873 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006874
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006875<p>Note that calling this intrinsic does not prevent function inlining or other
6876 aggressive transformations, so the value returned may not be that of the
6877 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006878
Chris Lattner3649c3a2004-02-14 04:08:35 +00006879</div>
6880
Chris Lattner3649c3a2004-02-14 04:08:35 +00006881<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006882<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006883 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006884</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006885
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006886<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006887
6888<h5>Syntax:</h5>
6889<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006890 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006891</pre>
6892
6893<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006894<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6895 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006896
6897<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006898<p>The argument to this intrinsic indicates which function to return the frame
6899 pointer for. Zero indicates the calling function, one indicates its caller,
6900 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006901
6902<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006903<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6904 indicating the frame address of the specified call frame, or zero if it
6905 cannot be identified. The value returned by this intrinsic is likely to be
6906 incorrect or 0 for arguments other than zero, so it should only be used for
6907 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006908
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006909<p>Note that calling this intrinsic does not prevent function inlining or other
6910 aggressive transformations, so the value returned may not be that of the
6911 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006912
Chris Lattner3649c3a2004-02-14 04:08:35 +00006913</div>
6914
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006915<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006916<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006917 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006918</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006919
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006920<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006921
6922<h5>Syntax:</h5>
6923<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006924 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00006925</pre>
6926
6927<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006928<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6929 of the function stack, for use
6930 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6931 useful for implementing language features like scoped automatic variable
6932 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006933
6934<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006935<p>This intrinsic returns a opaque pointer value that can be passed
6936 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6937 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6938 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6939 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6940 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6941 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006942
6943</div>
6944
6945<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006946<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006947 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006948</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006949
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006950<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006951
6952<h5>Syntax:</h5>
6953<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006954 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00006955</pre>
6956
6957<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006958<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6959 the function stack to the state it was in when the
6960 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6961 executed. This is useful for implementing language features like scoped
6962 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006963
6964<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006965<p>See the description
6966 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006967
6968</div>
6969
Chris Lattner2f0f0012006-01-13 02:03:13 +00006970<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006971<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006972 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006973</h4>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006974
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006975<div>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006976
6977<h5>Syntax:</h5>
6978<pre>
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006979 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006980</pre>
6981
6982<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006983<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6984 insert a prefetch instruction if supported; otherwise, it is a noop.
6985 Prefetches have no effect on the behavior of the program but can change its
6986 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006987
6988<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006989<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6990 specifier determining if the fetch should be for a read (0) or write (1),
6991 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006992 locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6993 specifies whether the prefetch is performed on the data (1) or instruction (0)
6994 cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6995 must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006996
6997<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006998<p>This intrinsic does not modify the behavior of the program. In particular,
6999 prefetches cannot trap and do not produce a value. On targets that support
7000 this intrinsic, the prefetch can provide hints to the processor cache for
7001 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00007002
7003</div>
7004
Andrew Lenharthb4427912005-03-28 20:05:49 +00007005<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007006<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007007 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007008</h4>
Andrew Lenharthb4427912005-03-28 20:05:49 +00007009
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007010<div>
Andrew Lenharthb4427912005-03-28 20:05:49 +00007011
7012<h5>Syntax:</h5>
7013<pre>
Chris Lattner12477732007-09-21 17:30:40 +00007014 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00007015</pre>
7016
7017<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007018<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
7019 Counter (PC) in a region of code to simulators and other tools. The method
7020 is target specific, but it is expected that the marker will use exported
7021 symbols to transmit the PC of the marker. The marker makes no guarantees
7022 that it will remain with any specific instruction after optimizations. It is
7023 possible that the presence of a marker will inhibit optimizations. The
7024 intended use is to be inserted after optimizations to allow correlations of
7025 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00007026
7027<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007028<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00007029
7030<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007031<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00007032 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00007033
7034</div>
7035
Andrew Lenharth01aa5632005-11-11 16:47:30 +00007036<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007037<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007038 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007039</h4>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00007040
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007041<div>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00007042
7043<h5>Syntax:</h5>
7044<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007045 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00007046</pre>
7047
7048<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007049<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
7050 counter register (or similar low latency, high accuracy clocks) on those
7051 targets that support it. On X86, it should map to RDTSC. On Alpha, it
7052 should map to RPCC. As the backing counters overflow quickly (on the order
7053 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00007054
7055<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007056<p>When directly supported, reading the cycle counter should not modify any
7057 memory. Implementations are allowed to either return a application specific
7058 value or a system wide value. On backends without support, this is lowered
7059 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00007060
7061</div>
7062
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007063</div>
7064
Chris Lattner3649c3a2004-02-14 04:08:35 +00007065<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007066<h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00007067 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007068</h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00007069
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007070<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007071
7072<p>LLVM provides intrinsics for a few important standard C library functions.
7073 These intrinsics allow source-language front-ends to pass information about
7074 the alignment of the pointer arguments to the code generator, providing
7075 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007076
Chris Lattnerfee11462004-02-12 17:01:32 +00007077<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007078<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007079 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007080</h4>
Chris Lattnerfee11462004-02-12 17:01:32 +00007081
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007082<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00007083
7084<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007085<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00007086 integer bit width and for different address spaces. Not all targets support
7087 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007088
Chris Lattnerfee11462004-02-12 17:01:32 +00007089<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007090 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007091 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007092 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007093 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00007094</pre>
7095
7096<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007097<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
7098 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007099
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007100<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007101 intrinsics do not return a value, takes extra alignment/isvolatile arguments
7102 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007103
7104<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007105
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007106<p>The first argument is a pointer to the destination, the second is a pointer
7107 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007108 number of bytes to copy, the fourth argument is the alignment of the
7109 source and destination locations, and the fifth is a boolean indicating a
7110 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007111
Dan Gohmana269a0a2010-03-01 17:41:39 +00007112<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007113 then the caller guarantees that both the source and destination pointers are
7114 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00007115
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00007116<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7117 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
7118 The detailed access behavior is not very cleanly specified and it is unwise
7119 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007120
Chris Lattnerfee11462004-02-12 17:01:32 +00007121<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007122
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007123<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
7124 source location to the destination location, which are not allowed to
7125 overlap. It copies "len" bytes of memory over. If the argument is known to
7126 be aligned to some boundary, this can be specified as the fourth argument,
7127 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00007128
Chris Lattnerfee11462004-02-12 17:01:32 +00007129</div>
7130
Chris Lattnerf30152e2004-02-12 18:10:10 +00007131<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007132<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007133 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007134</h4>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007135
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007136<div>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007137
7138<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00007139<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00007140 width and for different address space. Not all targets support all bit
7141 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007142
Chris Lattnerf30152e2004-02-12 18:10:10 +00007143<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007144 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007145 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007146 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007147 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00007148</pre>
7149
7150<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007151<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
7152 source location to the destination location. It is similar to the
7153 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
7154 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007155
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007156<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007157 intrinsics do not return a value, takes extra alignment/isvolatile arguments
7158 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007159
7160<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007161
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007162<p>The first argument is a pointer to the destination, the second is a pointer
7163 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007164 number of bytes to copy, the fourth argument is the alignment of the
7165 source and destination locations, and the fifth is a boolean indicating a
7166 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007167
Dan Gohmana269a0a2010-03-01 17:41:39 +00007168<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007169 then the caller guarantees that the source and destination pointers are
7170 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00007171
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00007172<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7173 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
7174 The detailed access behavior is not very cleanly specified and it is unwise
7175 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007176
Chris Lattnerf30152e2004-02-12 18:10:10 +00007177<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007178
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007179<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
7180 source location to the destination location, which may overlap. It copies
7181 "len" bytes of memory over. If the argument is known to be aligned to some
7182 boundary, this can be specified as the fourth argument, otherwise it should
7183 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00007184
Chris Lattnerf30152e2004-02-12 18:10:10 +00007185</div>
7186
Chris Lattner3649c3a2004-02-14 04:08:35 +00007187<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007188<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007189 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007190</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007191
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007192<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007193
7194<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00007195<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00007196 width and for different address spaces. However, not all targets support all
7197 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007198
Chris Lattner3649c3a2004-02-14 04:08:35 +00007199<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007200 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00007201 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00007202 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00007203 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00007204</pre>
7205
7206<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007207<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
7208 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007209
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007210<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00007211 intrinsic does not return a value and takes extra alignment/volatile
7212 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007213
7214<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007215<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00007216 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007217 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00007218 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007219
Dan Gohmana269a0a2010-03-01 17:41:39 +00007220<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007221 then the caller guarantees that the destination pointer is aligned to that
7222 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007223
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00007224<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7225 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
7226 The detailed access behavior is not very cleanly specified and it is unwise
7227 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00007228
Chris Lattner3649c3a2004-02-14 04:08:35 +00007229<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007230<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
7231 at the destination location. If the argument is known to be aligned to some
7232 boundary, this can be specified as the fourth argument, otherwise it should
7233 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00007234
Chris Lattner3649c3a2004-02-14 04:08:35 +00007235</div>
7236
Chris Lattner3b4f4372004-06-11 02:28:03 +00007237<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007238<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007239 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007240</h4>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007241
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007242<div>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007243
7244<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007245<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
7246 floating point or vector of floating point type. Not all targets support all
7247 types however.</p>
7248
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007249<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00007250 declare float @llvm.sqrt.f32(float %Val)
7251 declare double @llvm.sqrt.f64(double %Val)
7252 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7253 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7254 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007255</pre>
7256
7257<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007258<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
7259 returning the same value as the libm '<tt>sqrt</tt>' functions would.
7260 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
7261 behavior for negative numbers other than -0.0 (which allows for better
7262 optimization, because there is no need to worry about errno being
7263 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007264
7265<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007266<p>The argument and return value are floating point numbers of the same
7267 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007268
7269<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007270<p>This function returns the sqrt of the specified operand if it is a
7271 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007272
Chris Lattner8a8f2e52005-07-21 01:29:16 +00007273</div>
7274
Chris Lattner33b73f92006-09-08 06:34:02 +00007275<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007276<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007277 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007278</h4>
Chris Lattner33b73f92006-09-08 06:34:02 +00007279
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007280<div>
Chris Lattner33b73f92006-09-08 06:34:02 +00007281
7282<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007283<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
7284 floating point or vector of floating point type. Not all targets support all
7285 types however.</p>
7286
Chris Lattner33b73f92006-09-08 06:34:02 +00007287<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00007288 declare float @llvm.powi.f32(float %Val, i32 %power)
7289 declare double @llvm.powi.f64(double %Val, i32 %power)
7290 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7291 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7292 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00007293</pre>
7294
7295<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007296<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
7297 specified (positive or negative) power. The order of evaluation of
7298 multiplications is not defined. When a vector of floating point type is
7299 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00007300
7301<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007302<p>The second argument is an integer power, and the first is a value to raise to
7303 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00007304
7305<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007306<p>This function returns the first value raised to the second power with an
7307 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00007308
Chris Lattner33b73f92006-09-08 06:34:02 +00007309</div>
7310
Dan Gohmanb6324c12007-10-15 20:30:11 +00007311<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007312<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007313 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007314</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007315
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007316<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007317
7318<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007319<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
7320 floating point or vector of floating point type. Not all targets support all
7321 types however.</p>
7322
Dan Gohmanb6324c12007-10-15 20:30:11 +00007323<pre>
7324 declare float @llvm.sin.f32(float %Val)
7325 declare double @llvm.sin.f64(double %Val)
7326 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7327 declare fp128 @llvm.sin.f128(fp128 %Val)
7328 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7329</pre>
7330
7331<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007332<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007333
7334<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007335<p>The argument and return value are floating point numbers of the same
7336 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007337
7338<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007339<p>This function returns the sine of the specified operand, returning the same
7340 values as the libm <tt>sin</tt> functions would, and handles error conditions
7341 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007342
Dan Gohmanb6324c12007-10-15 20:30:11 +00007343</div>
7344
7345<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007346<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007347 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007348</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007349
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007350<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007351
7352<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007353<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
7354 floating point or vector of floating point type. Not all targets support all
7355 types however.</p>
7356
Dan Gohmanb6324c12007-10-15 20:30:11 +00007357<pre>
7358 declare float @llvm.cos.f32(float %Val)
7359 declare double @llvm.cos.f64(double %Val)
7360 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7361 declare fp128 @llvm.cos.f128(fp128 %Val)
7362 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7363</pre>
7364
7365<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007366<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007367
7368<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007369<p>The argument and return value are floating point numbers of the same
7370 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007371
7372<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007373<p>This function returns the cosine of the specified operand, returning the same
7374 values as the libm <tt>cos</tt> functions would, and handles error conditions
7375 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007376
Dan Gohmanb6324c12007-10-15 20:30:11 +00007377</div>
7378
7379<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007380<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007381 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007382</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007383
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007384<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007385
7386<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007387<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
7388 floating point or vector of floating point type. Not all targets support all
7389 types however.</p>
7390
Dan Gohmanb6324c12007-10-15 20:30:11 +00007391<pre>
7392 declare float @llvm.pow.f32(float %Val, float %Power)
7393 declare double @llvm.pow.f64(double %Val, double %Power)
7394 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7395 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7396 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7397</pre>
7398
7399<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007400<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
7401 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007402
7403<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007404<p>The second argument is a floating point power, and the first is a value to
7405 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007406
7407<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007408<p>This function returns the first value raised to the second power, returning
7409 the same values as the libm <tt>pow</tt> functions would, and handles error
7410 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007411
Dan Gohmanb6324c12007-10-15 20:30:11 +00007412</div>
7413
Dan Gohman911fa902011-05-23 21:13:03 +00007414<!-- _______________________________________________________________________ -->
7415<h4>
7416 <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7417</h4>
7418
7419<div>
7420
7421<h5>Syntax:</h5>
7422<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7423 floating point or vector of floating point type. Not all targets support all
7424 types however.</p>
7425
7426<pre>
7427 declare float @llvm.exp.f32(float %Val)
7428 declare double @llvm.exp.f64(double %Val)
7429 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7430 declare fp128 @llvm.exp.f128(fp128 %Val)
7431 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7432</pre>
7433
7434<h5>Overview:</h5>
7435<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7436
7437<h5>Arguments:</h5>
7438<p>The argument and return value are floating point numbers of the same
7439 type.</p>
7440
7441<h5>Semantics:</h5>
7442<p>This function returns the same values as the libm <tt>exp</tt> functions
7443 would, and handles error conditions in the same way.</p>
7444
7445</div>
7446
7447<!-- _______________________________________________________________________ -->
7448<h4>
7449 <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7450</h4>
7451
7452<div>
7453
7454<h5>Syntax:</h5>
7455<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7456 floating point or vector of floating point type. Not all targets support all
7457 types however.</p>
7458
7459<pre>
7460 declare float @llvm.log.f32(float %Val)
7461 declare double @llvm.log.f64(double %Val)
7462 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7463 declare fp128 @llvm.log.f128(fp128 %Val)
7464 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7465</pre>
7466
7467<h5>Overview:</h5>
7468<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7469
7470<h5>Arguments:</h5>
7471<p>The argument and return value are floating point numbers of the same
7472 type.</p>
7473
7474<h5>Semantics:</h5>
7475<p>This function returns the same values as the libm <tt>log</tt> functions
7476 would, and handles error conditions in the same way.</p>
7477
Nick Lewyckycd196f62011-10-31 01:32:21 +00007478</div>
7479
7480<!-- _______________________________________________________________________ -->
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007481<h4>
7482 <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7483</h4>
7484
7485<div>
7486
7487<h5>Syntax:</h5>
7488<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7489 floating point or vector of floating point type. Not all targets support all
7490 types however.</p>
7491
7492<pre>
7493 declare float @llvm.fma.f32(float %a, float %b, float %c)
7494 declare double @llvm.fma.f64(double %a, double %b, double %c)
7495 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7496 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7497 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7498</pre>
7499
7500<h5>Overview:</h5>
Cameron Zwaricha32fd212011-07-08 22:13:55 +00007501<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007502 operation.</p>
7503
7504<h5>Arguments:</h5>
7505<p>The argument and return value are floating point numbers of the same
7506 type.</p>
7507
7508<h5>Semantics:</h5>
7509<p>This function returns the same values as the libm <tt>fma</tt> functions
7510 would.</p>
7511
Dan Gohman911fa902011-05-23 21:13:03 +00007512</div>
7513
Peter Collingbourne2165cf62012-07-03 12:25:40 +00007514<!-- _______________________________________________________________________ -->
7515<h4>
7516 <a name="int_fabs">'<tt>llvm.fabs.*</tt>' Intrinsic</a>
7517</h4>
7518
7519<div>
7520
7521<h5>Syntax:</h5>
7522<p>This is an overloaded intrinsic. You can use <tt>llvm.fabs</tt> on any
7523 floating point or vector of floating point type. Not all targets support all
7524 types however.</p>
7525
7526<pre>
7527 declare float @llvm.fabs.f32(float %Val)
7528 declare double @llvm.fabs.f64(double %Val)
7529 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7530 declare fp128 @llvm.fabs.f128(fp128 %Val)
7531 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7532</pre>
7533
7534<h5>Overview:</h5>
7535<p>The '<tt>llvm.fabs.*</tt>' intrinsics return the absolute value of
7536 the operand.</p>
7537
7538<h5>Arguments:</h5>
7539<p>The argument and return value are floating point numbers of the same
7540 type.</p>
7541
7542<h5>Semantics:</h5>
7543<p>This function returns the same values as the libm <tt>fabs</tt> functions
7544 would, and handles error conditions in the same way.</p>
7545
7546</div>
7547
Dan Gohman0b3d7822012-07-26 17:43:27 +00007548<!-- _______________________________________________________________________ -->
7549<h4>
7550 <a name="int_floor">'<tt>llvm.floor.*</tt>' Intrinsic</a>
7551</h4>
7552
7553<div>
7554
7555<h5>Syntax:</h5>
7556<p>This is an overloaded intrinsic. You can use <tt>llvm.floor</tt> on any
7557 floating point or vector of floating point type. Not all targets support all
7558 types however.</p>
7559
7560<pre>
7561 declare float @llvm.floor.f32(float %Val)
7562 declare double @llvm.floor.f64(double %Val)
7563 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7564 declare fp128 @llvm.floor.f128(fp128 %Val)
7565 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7566</pre>
7567
7568<h5>Overview:</h5>
7569<p>The '<tt>llvm.floor.*</tt>' intrinsics return the floor of
7570 the operand.</p>
7571
7572<h5>Arguments:</h5>
7573<p>The argument and return value are floating point numbers of the same
7574 type.</p>
7575
7576<h5>Semantics:</h5>
7577<p>This function returns the same values as the libm <tt>floor</tt> functions
7578 would, and handles error conditions in the same way.</p>
7579
7580</div>
7581
NAKAMURA Takumia35cdd62011-10-31 13:04:26 +00007582</div>
7583
Andrew Lenharth1d463522005-05-03 18:01:48 +00007584<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007585<h3>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007586 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007587</h3>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007588
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007589<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007590
7591<p>LLVM provides intrinsics for a few important bit manipulation operations.
7592 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007593
Andrew Lenharth1d463522005-05-03 18:01:48 +00007594<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007595<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007596 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007597</h4>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007598
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007599<div>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007600
7601<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007602<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007603 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7604
Nate Begeman0f223bb2006-01-13 23:26:38 +00007605<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007606 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7607 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7608 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00007609</pre>
7610
7611<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007612<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7613 values with an even number of bytes (positive multiple of 16 bits). These
7614 are useful for performing operations on data that is not in the target's
7615 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007616
7617<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007618<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7619 and low byte of the input i16 swapped. Similarly,
7620 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7621 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7622 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7623 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7624 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7625 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007626
7627</div>
7628
7629<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007630<h4>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00007631 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007632</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007633
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007634<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007635
7636<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007637<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007638 width, or on any vector with integer elements. Not all targets support all
7639 bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007640
Andrew Lenharth1d463522005-05-03 18:01:48 +00007641<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007642 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007643 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007644 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007645 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7646 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007647 declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007648</pre>
7649
7650<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007651<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7652 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007653
7654<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007655<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007656 integer type, or a vector with integer elements.
7657 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007658
7659<h5>Semantics:</h5>
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007660<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7661 element of a vector.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007662
Andrew Lenharth1d463522005-05-03 18:01:48 +00007663</div>
7664
7665<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007666<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007667 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007668</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007669
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007670<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007671
7672<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007673<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007674 integer bit width, or any vector whose elements are integers. Not all
7675 targets support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007676
Andrew Lenharth1d463522005-05-03 18:01:48 +00007677<pre>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007678 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7679 declare i16 @llvm.ctlz.i16 (i16 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7680 declare i32 @llvm.ctlz.i32 (i32 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7681 declare i64 @llvm.ctlz.i64 (i64 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7682 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7683 declase &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007684</pre>
7685
7686<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007687<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7688 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007689
7690<h5>Arguments:</h5>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007691<p>The first argument is the value to be counted. This argument may be of any
7692 integer type, or a vectory with integer element type. The return type
7693 must match the first argument type.</p>
7694
7695<p>The second argument must be a constant and is a flag to indicate whether the
7696 intrinsic should ensure that a zero as the first argument produces a defined
7697 result. Historically some architectures did not provide a defined result for
7698 zero values as efficiently, and many algorithms are now predicated on
7699 avoiding zero-value inputs.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007700
7701<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007702<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007703 zeros in a variable, or within each element of the vector.
7704 If <tt>src == 0</tt> then the result is the size in bits of the type of
7705 <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7706 For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007707
Andrew Lenharth1d463522005-05-03 18:01:48 +00007708</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00007709
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007710<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007711<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007712 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007713</h4>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007714
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007715<div>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007716
7717<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007718<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007719 integer bit width, or any vector of integer elements. Not all targets
7720 support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007721
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007722<pre>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007723 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7724 declare i16 @llvm.cttz.i16 (i16 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7725 declare i32 @llvm.cttz.i32 (i32 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7726 declare i64 @llvm.cttz.i64 (i64 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7727 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7728 declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007729</pre>
7730
7731<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007732<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7733 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007734
7735<h5>Arguments:</h5>
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007736<p>The first argument is the value to be counted. This argument may be of any
7737 integer type, or a vectory with integer element type. The return type
7738 must match the first argument type.</p>
7739
7740<p>The second argument must be a constant and is a flag to indicate whether the
7741 intrinsic should ensure that a zero as the first argument produces a defined
7742 result. Historically some architectures did not provide a defined result for
7743 zero values as efficiently, and many algorithms are now predicated on
7744 avoiding zero-value inputs.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007745
7746<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007747<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007748 zeros in a variable, or within each element of a vector.
Chandler Carruthf6bb2782011-12-12 04:36:04 +00007749 If <tt>src == 0</tt> then the result is the size in bits of the type of
7750 <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7751 For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007752
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007753</div>
7754
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007755</div>
7756
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007757<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007758<h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007759 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007760</h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007761
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007762<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007763
7764<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007765
Bill Wendlingf4d70622009-02-08 01:40:31 +00007766<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007767<h4>
7768 <a name="int_sadd_overflow">
7769 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7770 </a>
7771</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007772
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007773<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007774
7775<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007776<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007777 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007778
7779<pre>
7780 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7781 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7782 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7783</pre>
7784
7785<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007786<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007787 a signed addition of the two arguments, and indicate whether an overflow
7788 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007789
7790<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007791<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007792 be of integer types of any bit width, but they must have the same bit
7793 width. The second element of the result structure must be of
7794 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7795 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007796
7797<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007798<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007799 a signed addition of the two variables. They return a structure &mdash; the
7800 first element of which is the signed summation, and the second element of
7801 which is a bit specifying if the signed summation resulted in an
7802 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007803
7804<h5>Examples:</h5>
7805<pre>
7806 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7807 %sum = extractvalue {i32, i1} %res, 0
7808 %obit = extractvalue {i32, i1} %res, 1
7809 br i1 %obit, label %overflow, label %normal
7810</pre>
7811
7812</div>
7813
7814<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007815<h4>
7816 <a name="int_uadd_overflow">
7817 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7818 </a>
7819</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007820
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007821<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007822
7823<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007824<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007825 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007826
7827<pre>
7828 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7829 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7830 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7831</pre>
7832
7833<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007834<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007835 an unsigned addition of the two arguments, and indicate whether a carry
7836 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007837
7838<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007839<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007840 be of integer types of any bit width, but they must have the same bit
7841 width. The second element of the result structure must be of
7842 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7843 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007844
7845<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007846<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007847 an unsigned addition of the two arguments. They return a structure &mdash;
7848 the first element of which is the sum, and the second element of which is a
7849 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007850
7851<h5>Examples:</h5>
7852<pre>
7853 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7854 %sum = extractvalue {i32, i1} %res, 0
7855 %obit = extractvalue {i32, i1} %res, 1
7856 br i1 %obit, label %carry, label %normal
7857</pre>
7858
7859</div>
7860
7861<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007862<h4>
7863 <a name="int_ssub_overflow">
7864 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7865 </a>
7866</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007867
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007868<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007869
7870<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007871<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007872 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007873
7874<pre>
7875 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7876 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7877 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7878</pre>
7879
7880<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007881<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007882 a signed subtraction of the two arguments, and indicate whether an overflow
7883 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007884
7885<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007886<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007887 be of integer types of any bit width, but they must have the same bit
7888 width. The second element of the result structure must be of
7889 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7890 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007891
7892<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007893<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007894 a signed subtraction of the two arguments. They return a structure &mdash;
7895 the first element of which is the subtraction, and the second element of
7896 which is a bit specifying if the signed subtraction resulted in an
7897 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007898
7899<h5>Examples:</h5>
7900<pre>
7901 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7902 %sum = extractvalue {i32, i1} %res, 0
7903 %obit = extractvalue {i32, i1} %res, 1
7904 br i1 %obit, label %overflow, label %normal
7905</pre>
7906
7907</div>
7908
7909<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007910<h4>
7911 <a name="int_usub_overflow">
7912 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7913 </a>
7914</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007915
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007916<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007917
7918<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007919<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007920 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007921
7922<pre>
7923 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7924 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7925 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7926</pre>
7927
7928<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007929<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007930 an unsigned subtraction of the two arguments, and indicate whether an
7931 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007932
7933<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007934<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007935 be of integer types of any bit width, but they must have the same bit
7936 width. The second element of the result structure must be of
7937 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7938 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007939
7940<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007941<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007942 an unsigned subtraction of the two arguments. They return a structure &mdash;
7943 the first element of which is the subtraction, and the second element of
7944 which is a bit specifying if the unsigned subtraction resulted in an
7945 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007946
7947<h5>Examples:</h5>
7948<pre>
7949 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7950 %sum = extractvalue {i32, i1} %res, 0
7951 %obit = extractvalue {i32, i1} %res, 1
7952 br i1 %obit, label %overflow, label %normal
7953</pre>
7954
7955</div>
7956
7957<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007958<h4>
7959 <a name="int_smul_overflow">
7960 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
7961 </a>
7962</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007963
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007964<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007965
7966<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007967<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007968 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007969
7970<pre>
7971 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7972 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7973 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7974</pre>
7975
7976<h5>Overview:</h5>
7977
7978<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007979 a signed multiplication of the two arguments, and indicate whether an
7980 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007981
7982<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007983<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007984 be of integer types of any bit width, but they must have the same bit
7985 width. The second element of the result structure must be of
7986 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7987 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007988
7989<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007990<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007991 a signed multiplication of the two arguments. They return a structure &mdash;
7992 the first element of which is the multiplication, and the second element of
7993 which is a bit specifying if the signed multiplication resulted in an
7994 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007995
7996<h5>Examples:</h5>
7997<pre>
7998 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7999 %sum = extractvalue {i32, i1} %res, 0
8000 %obit = extractvalue {i32, i1} %res, 1
8001 br i1 %obit, label %overflow, label %normal
8002</pre>
8003
Reid Spencer5bf54c82007-04-11 23:23:49 +00008004</div>
8005
Bill Wendlingb9a73272009-02-08 23:00:09 +00008006<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008007<h4>
8008 <a name="int_umul_overflow">
8009 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
8010 </a>
8011</h4>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008012
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008013<div>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008014
8015<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008016<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008017 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008018
8019<pre>
8020 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8021 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8022 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8023</pre>
8024
8025<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008026<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008027 a unsigned multiplication of the two arguments, and indicate whether an
8028 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008029
8030<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008031<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008032 be of integer types of any bit width, but they must have the same bit
8033 width. The second element of the result structure must be of
8034 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
8035 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008036
8037<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008038<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008039 an unsigned multiplication of the two arguments. They return a structure
8040 &mdash; the first element of which is the multiplication, and the second
8041 element of which is a bit specifying if the unsigned multiplication resulted
8042 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00008043
8044<h5>Examples:</h5>
8045<pre>
8046 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8047 %sum = extractvalue {i32, i1} %res, 0
8048 %obit = extractvalue {i32, i1} %res, 1
8049 br i1 %obit, label %overflow, label %normal
8050</pre>
8051
8052</div>
8053
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008054</div>
8055
Chris Lattner941515c2004-01-06 05:31:32 +00008056<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008057<h3>
Lang Hamesa59100c2012-06-05 19:07:46 +00008058 <a name="spec_arithmetic">Specialised Arithmetic Intrinsics</a>
8059</h3>
8060
8061<!-- _______________________________________________________________________ -->
8062
8063<h4>
8064 <a name="fmuladd">'<tt>llvm.fmuladd.*</tt>' Intrinsic</a>
8065</h4>
8066
8067<div>
8068
8069<h5>Syntax:</h5>
8070<pre>
8071 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8072 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8073</pre>
8074
8075<h5>Overview:</h5>
8076<p>The '<tt>llvm.fmuladd.*</tt>' intrinsic functions represent multiply-add
8077expressions that can be fused if the code generator determines that the fused
8078expression would be legal and efficient.</p>
8079
8080<h5>Arguments:</h5>
8081<p>The '<tt>llvm.fmuladd.*</tt>' intrinsics each take three arguments: two
8082multiplicands, a and b, and an addend c.</p>
8083
8084<h5>Semantics:</h5>
8085<p>The expression:</p>
8086<pre>
8087 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8088</pre>
8089<p>is equivalent to the expression a * b + c, except that rounding will not be
8090performed between the multiplication and addition steps if the code generator
8091fuses the operations. Fusion is not guaranteed, even if the target platform
8092supports it. If a fused multiply-add is required the corresponding llvm.fma.*
8093intrinsic function should be used instead.</p>
8094
8095<h5>Examples:</h5>
8096<pre>
8097 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8098</pre>
8099
8100</div>
8101
8102<!-- ======================================================================= -->
8103<h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008104 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008105</h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008106
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008107<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008108
Tobias Grosser6b31d172012-05-24 15:59:06 +00008109<p>For most target platforms, half precision floating point is a storage-only
8110 format. This means that it is
Chris Lattner022a9fb2010-03-15 04:12:21 +00008111 a dense encoding (in memory) but does not support computation in the
8112 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00008113
Chris Lattner022a9fb2010-03-15 04:12:21 +00008114<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00008115 value as an i16, then convert it to float with <a
8116 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
8117 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00008118 double etc). To store the value back to memory, it is first converted to
8119 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00008120 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
8121 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008122
8123<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008124<h4>
8125 <a name="int_convert_to_fp16">
8126 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
8127 </a>
8128</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008129
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008130<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008131
8132<h5>Syntax:</h5>
8133<pre>
8134 declare i16 @llvm.convert.to.fp16(f32 %a)
8135</pre>
8136
8137<h5>Overview:</h5>
8138<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
8139 a conversion from single precision floating point format to half precision
8140 floating point format.</p>
8141
8142<h5>Arguments:</h5>
8143<p>The intrinsic function contains single argument - the value to be
8144 converted.</p>
8145
8146<h5>Semantics:</h5>
8147<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
8148 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00008149 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00008150 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008151
8152<h5>Examples:</h5>
8153<pre>
8154 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8155 store i16 %res, i16* @x, align 2
8156</pre>
8157
8158</div>
8159
8160<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008161<h4>
8162 <a name="int_convert_from_fp16">
8163 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
8164 </a>
8165</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008166
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008167<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008168
8169<h5>Syntax:</h5>
8170<pre>
8171 declare f32 @llvm.convert.from.fp16(i16 %a)
8172</pre>
8173
8174<h5>Overview:</h5>
8175<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
8176 a conversion from half precision floating point format to single precision
8177 floating point format.</p>
8178
8179<h5>Arguments:</h5>
8180<p>The intrinsic function contains single argument - the value to be
8181 converted.</p>
8182
8183<h5>Semantics:</h5>
8184<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00008185 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00008186 precision floating point format. The input half-float value is represented by
8187 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008188
8189<h5>Examples:</h5>
8190<pre>
8191 %a = load i16* @x, align 2
8192 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8193</pre>
8194
8195</div>
8196
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008197</div>
8198
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00008199<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008200<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00008201 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008202</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00008203
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008204<div>
Chris Lattner941515c2004-01-06 05:31:32 +00008205
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008206<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
8207 prefix), are described in
8208 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
8209 Level Debugging</a> document.</p>
8210
8211</div>
Chris Lattner941515c2004-01-06 05:31:32 +00008212
Jim Laskey2211f492007-03-14 19:31:19 +00008213<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008214<h3>
Jim Laskey2211f492007-03-14 19:31:19 +00008215 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008216</h3>
Jim Laskey2211f492007-03-14 19:31:19 +00008217
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008218<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008219
8220<p>The LLVM exception handling intrinsics (which all start with
8221 <tt>llvm.eh.</tt> prefix), are described in
8222 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
8223 Handling</a> document.</p>
8224
Jim Laskey2211f492007-03-14 19:31:19 +00008225</div>
8226
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008227<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008228<h3>
Duncan Sandsa0984362011-09-06 13:37:06 +00008229 <a name="int_trampoline">Trampoline Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008230</h3>
Duncan Sands644f9172007-07-27 12:58:54 +00008231
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008232<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008233
Duncan Sandsa0984362011-09-06 13:37:06 +00008234<p>These intrinsics make it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00008235 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
8236 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008237 function pointer lacking the nest parameter - the caller does not need to
8238 provide a value for it. Instead, the value to use is stored in advance in a
8239 "trampoline", a block of memory usually allocated on the stack, which also
8240 contains code to splice the nest value into the argument list. This is used
8241 to implement the GCC nested function address extension.</p>
8242
8243<p>For example, if the function is
8244 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
8245 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
8246 follows:</p>
8247
Benjamin Kramer79698be2010-07-13 12:26:09 +00008248<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00008249 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8250 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Duncan Sandsa0984362011-09-06 13:37:06 +00008251 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8252 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
Duncan Sands86e01192007-09-11 14:10:23 +00008253 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00008254</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008255
Dan Gohmand6a6f612010-05-28 17:07:41 +00008256<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
8257 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008258
Duncan Sands644f9172007-07-27 12:58:54 +00008259<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008260<h4>
8261 <a name="int_it">
8262 '<tt>llvm.init.trampoline</tt>' Intrinsic
8263 </a>
8264</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008265
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008266<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008267
Duncan Sands644f9172007-07-27 12:58:54 +00008268<h5>Syntax:</h5>
8269<pre>
Duncan Sandsa0984362011-09-06 13:37:06 +00008270 declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00008271</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008272
Duncan Sands644f9172007-07-27 12:58:54 +00008273<h5>Overview:</h5>
Duncan Sandsa0984362011-09-06 13:37:06 +00008274<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
8275 turning it into a trampoline.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008276
Duncan Sands644f9172007-07-27 12:58:54 +00008277<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008278<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
8279 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
8280 sufficiently aligned block of memory; this memory is written to by the
8281 intrinsic. Note that the size and the alignment are target-specific - LLVM
8282 currently provides no portable way of determining them, so a front-end that
8283 generates this intrinsic needs to have some target-specific knowledge.
8284 The <tt>func</tt> argument must hold a function bitcast to
8285 an <tt>i8*</tt>.</p>
8286
Duncan Sands644f9172007-07-27 12:58:54 +00008287<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008288<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsa0984362011-09-06 13:37:06 +00008289 dependent code, turning it into a function. Then <tt>tramp</tt> needs to be
8290 passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
8291 which can be <a href="#int_trampoline">bitcast (to a new function) and
8292 called</a>. The new function's signature is the same as that of
8293 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
8294 removed. At most one such <tt>nest</tt> argument is allowed, and it must be of
8295 pointer type. Calling the new function is equivalent to calling <tt>func</tt>
8296 with the same argument list, but with <tt>nval</tt> used for the missing
8297 <tt>nest</tt> argument. If, after calling <tt>llvm.init.trampoline</tt>, the
8298 memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
8299 to the returned function pointer is undefined.</p>
8300</div>
8301
8302<!-- _______________________________________________________________________ -->
8303<h4>
8304 <a name="int_at">
8305 '<tt>llvm.adjust.trampoline</tt>' Intrinsic
8306 </a>
8307</h4>
8308
8309<div>
8310
8311<h5>Syntax:</h5>
8312<pre>
8313 declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
8314</pre>
8315
8316<h5>Overview:</h5>
8317<p>This performs any required machine-specific adjustment to the address of a
8318 trampoline (passed as <tt>tramp</tt>).</p>
8319
8320<h5>Arguments:</h5>
8321<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
8322 filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
8323 </a>.</p>
8324
8325<h5>Semantics:</h5>
8326<p>On some architectures the address of the code to be executed needs to be
8327 different to the address where the trampoline is actually stored. This
8328 intrinsic returns the executable address corresponding to <tt>tramp</tt>
8329 after performing the required machine specific adjustments.
8330 The pointer returned can then be <a href="#int_trampoline"> bitcast and
8331 executed</a>.
8332</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008333
Duncan Sands644f9172007-07-27 12:58:54 +00008334</div>
8335
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008336</div>
8337
Duncan Sands644f9172007-07-27 12:58:54 +00008338<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008339<h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008340 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008341</h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008342
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008343<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008344
8345<p>This class of intrinsics exists to information about the lifetime of memory
8346 objects and ranges where variables are immutable.</p>
8347
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008348<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008349<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008350 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008351</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008352
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008353<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008354
8355<h5>Syntax:</h5>
8356<pre>
8357 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8358</pre>
8359
8360<h5>Overview:</h5>
8361<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
8362 object's lifetime.</p>
8363
8364<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00008365<p>The first argument is a constant integer representing the size of the
8366 object, or -1 if it is variable sized. The second argument is a pointer to
8367 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008368
8369<h5>Semantics:</h5>
8370<p>This intrinsic indicates that before this point in the code, the value of the
8371 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00008372 never be used and has an undefined value. A load from the pointer that
8373 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008374 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
8375
8376</div>
8377
8378<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008379<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008380 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008381</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008382
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008383<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008384
8385<h5>Syntax:</h5>
8386<pre>
8387 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8388</pre>
8389
8390<h5>Overview:</h5>
8391<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
8392 object's lifetime.</p>
8393
8394<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00008395<p>The first argument is a constant integer representing the size of the
8396 object, or -1 if it is variable sized. The second argument is a pointer to
8397 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008398
8399<h5>Semantics:</h5>
8400<p>This intrinsic indicates that after this point in the code, the value of the
8401 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
8402 never be used and has an undefined value. Any stores into the memory object
8403 following this intrinsic may be removed as dead.
8404
8405</div>
8406
8407<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008408<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008409 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008410</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008411
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008412<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008413
8414<h5>Syntax:</h5>
8415<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00008416 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008417</pre>
8418
8419<h5>Overview:</h5>
8420<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
8421 a memory object will not change.</p>
8422
8423<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00008424<p>The first argument is a constant integer representing the size of the
8425 object, or -1 if it is variable sized. The second argument is a pointer to
8426 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008427
8428<h5>Semantics:</h5>
8429<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
8430 the return value, the referenced memory location is constant and
8431 unchanging.</p>
8432
8433</div>
8434
8435<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008436<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008437 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008438</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008439
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008440<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008441
8442<h5>Syntax:</h5>
8443<pre>
8444 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8445</pre>
8446
8447<h5>Overview:</h5>
8448<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
8449 a memory object are mutable.</p>
8450
8451<h5>Arguments:</h5>
8452<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00008453 The second argument is a constant integer representing the size of the
8454 object, or -1 if it is variable sized and the third argument is a pointer
8455 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00008456
8457<h5>Semantics:</h5>
8458<p>This intrinsic indicates that the memory is mutable again.</p>
8459
8460</div>
8461
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008462</div>
8463
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00008464<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008465<h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008466 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008467</h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008468
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008469<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008470
8471<p>This class of intrinsics is designed to be generic and has no specific
8472 purpose.</p>
8473
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008474<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008475<h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008476 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008477</h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008478
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008479<div>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008480
8481<h5>Syntax:</h5>
8482<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008483 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008484</pre>
8485
8486<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008487<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008488
8489<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008490<p>The first argument is a pointer to a value, the second is a pointer to a
8491 global string, the third is a pointer to a global string which is the source
8492 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008493
8494<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008495<p>This intrinsic allows annotation of local variables with arbitrary strings.
8496 This can be useful for special purpose optimizations that want to look for
John Criswellf0d536a2011-08-19 16:57:55 +00008497 these annotations. These have no other defined use; they are ignored by code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008498 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008499
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008500</div>
8501
Tanya Lattner293c0372007-09-21 22:59:12 +00008502<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008503<h4>
Tanya Lattner0186a652007-09-21 23:57:59 +00008504 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008505</h4>
Tanya Lattner293c0372007-09-21 22:59:12 +00008506
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008507<div>
Tanya Lattner293c0372007-09-21 22:59:12 +00008508
8509<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008510<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8511 any integer bit width.</p>
8512
Tanya Lattner293c0372007-09-21 22:59:12 +00008513<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008514 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8515 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8516 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8517 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8518 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00008519</pre>
8520
8521<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008522<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008523
8524<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008525<p>The first argument is an integer value (result of some expression), the
8526 second is a pointer to a global string, the third is a pointer to a global
8527 string which is the source file name, and the last argument is the line
8528 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008529
8530<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008531<p>This intrinsic allows annotations to be put on arbitrary expressions with
8532 arbitrary strings. This can be useful for special purpose optimizations that
John Criswellf0d536a2011-08-19 16:57:55 +00008533 want to look for these annotations. These have no other defined use; they
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008534 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008535
Tanya Lattner293c0372007-09-21 22:59:12 +00008536</div>
Jim Laskey2211f492007-03-14 19:31:19 +00008537
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008538<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008539<h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008540 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008541</h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008542
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008543<div>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008544
8545<h5>Syntax:</h5>
8546<pre>
Chris Lattnerff9e08b2012-05-27 23:20:41 +00008547 declare void @llvm.trap() noreturn nounwind
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008548</pre>
8549
8550<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008551<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008552
8553<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008554<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008555
8556<h5>Semantics:</h5>
John Criswell4e711922012-05-16 00:26:51 +00008557<p>This intrinsic is lowered to the target dependent trap instruction. If the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008558 target does not have a trap instruction, this intrinsic will be lowered to
John Criswell4e711922012-05-16 00:26:51 +00008559 a call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008560
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008561</div>
8562
Bill Wendling14313312008-11-19 05:56:17 +00008563<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008564<h4>
Dan Gohman164fe182012-05-14 18:58:10 +00008565 <a name="int_debugtrap">'<tt>llvm.debugtrap</tt>' Intrinsic</a>
Dan Gohmandfab4432012-05-11 00:19:32 +00008566</h4>
8567
8568<div>
8569
8570<h5>Syntax:</h5>
8571<pre>
Chris Lattnerff9e08b2012-05-27 23:20:41 +00008572 declare void @llvm.debugtrap() nounwind
Dan Gohmandfab4432012-05-11 00:19:32 +00008573</pre>
8574
8575<h5>Overview:</h5>
Dan Gohman164fe182012-05-14 18:58:10 +00008576<p>The '<tt>llvm.debugtrap</tt>' intrinsic.</p>
Dan Gohmandfab4432012-05-11 00:19:32 +00008577
8578<h5>Arguments:</h5>
8579<p>None.</p>
8580
8581<h5>Semantics:</h5>
8582<p>This intrinsic is lowered to code which is intended to cause an execution
8583 trap with the intention of requesting the attention of a debugger.</p>
8584
8585</div>
8586
8587<!-- _______________________________________________________________________ -->
8588<h4>
Misha Brukman50de2b22008-11-22 23:55:29 +00008589 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008590</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008591
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008592<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008593
Bill Wendling14313312008-11-19 05:56:17 +00008594<h5>Syntax:</h5>
8595<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008596 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00008597</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008598
Bill Wendling14313312008-11-19 05:56:17 +00008599<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008600<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8601 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8602 ensure that it is placed on the stack before local variables.</p>
8603
Bill Wendling14313312008-11-19 05:56:17 +00008604<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008605<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8606 arguments. The first argument is the value loaded from the stack
8607 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8608 that has enough space to hold the value of the guard.</p>
8609
Bill Wendling14313312008-11-19 05:56:17 +00008610<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008611<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8612 the <tt>AllocaInst</tt> stack slot to be before local variables on the
8613 stack. This is to ensure that if a local variable on the stack is
8614 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00008615 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008616 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8617 function.</p>
8618
Bill Wendling14313312008-11-19 05:56:17 +00008619</div>
8620
Eric Christopher73484322009-11-30 08:03:53 +00008621<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008622<h4>
Eric Christopher73484322009-11-30 08:03:53 +00008623 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008624</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008625
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008626<div>
Eric Christopher73484322009-11-30 08:03:53 +00008627
8628<h5>Syntax:</h5>
8629<pre>
Nuno Lopesad40c0a2012-05-22 15:25:31 +00008630 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;min&gt;)
8631 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;min&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00008632</pre>
8633
8634<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008635<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8636 the optimizers to determine at compile time whether a) an operation (like
8637 memcpy) will overflow a buffer that corresponds to an object, or b) that a
8638 runtime check for overflow isn't necessary. An object in this context means
8639 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008640
8641<h5>Arguments:</h5>
Nuno Lopesad40c0a2012-05-22 15:25:31 +00008642<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00008643 argument is a pointer to or into the <tt>object</tt>. The second argument
Nuno Lopesad40c0a2012-05-22 15:25:31 +00008644 is a boolean and determines whether <tt>llvm.objectsize</tt> returns 0 (if
8645 true) or -1 (if false) when the object size is unknown.
8646 The second argument only accepts constants.</p>
Eric Christopher31e39bd2009-12-23 00:29:49 +00008647
Eric Christopher73484322009-11-30 08:03:53 +00008648<h5>Semantics:</h5>
Nuno Lopes01547b32012-05-09 15:52:43 +00008649<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to a constant representing
8650 the size of the object concerned. If the size cannot be determined at compile
Nuno Lopesad40c0a2012-05-22 15:25:31 +00008651 time, <tt>llvm.objectsize</tt> returns <tt>i32/i64 -1 or 0</tt>
8652 (depending on the <tt>min</tt> argument).</p>
Eric Christopher73484322009-11-30 08:03:53 +00008653
8654</div>
Jakub Staszak5fef7922011-12-04 18:29:26 +00008655<!-- _______________________________________________________________________ -->
8656<h4>
8657 <a name="int_expect">'<tt>llvm.expect</tt>' Intrinsic</a>
8658</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008659
Jakub Staszak5fef7922011-12-04 18:29:26 +00008660<div>
8661
8662<h5>Syntax:</h5>
8663<pre>
8664 declare i32 @llvm.expect.i32(i32 &lt;val&gt;, i32 &lt;expected_val&gt;)
8665 declare i64 @llvm.expect.i64(i64 &lt;val&gt;, i64 &lt;expected_val&gt;)
8666</pre>
8667
8668<h5>Overview:</h5>
8669<p>The <tt>llvm.expect</tt> intrinsic provides information about expected (the
8670 most probable) value of <tt>val</tt>, which can be used by optimizers.</p>
8671
8672<h5>Arguments:</h5>
8673<p>The <tt>llvm.expect</tt> intrinsic takes two arguments. The first
8674 argument is a value. The second argument is an expected value, this needs to
8675 be a constant value, variables are not allowed.</p>
8676
8677<h5>Semantics:</h5>
8678<p>This intrinsic is lowered to the <tt>val</tt>.</p>
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008679</div>
8680
Nuno Lopes4d6c8322012-07-05 17:37:07 +00008681<!-- _______________________________________________________________________ -->
8682<h4>
8683 <a name="int_donothing">'<tt>llvm.donothing</tt>' Intrinsic</a>
8684</h4>
8685
8686<div>
8687
8688<h5>Syntax:</h5>
8689<pre>
8690 declare void @llvm.donothing() nounwind readnone
8691</pre>
8692
8693<h5>Overview:</h5>
8694<p>The <tt>llvm.donothing</tt> intrinsic doesn't perform any operation. It's the
8695only intrinsic that can be called with an invoke instruction.</p>
8696
8697<h5>Arguments:</h5>
8698<p>None.</p>
8699
8700<h5>Semantics:</h5>
8701<p>This intrinsic does nothing, and it's removed by optimizers and ignored by
8702codegen.</p>
8703</div>
8704
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008705</div>
8706
Jakub Staszak5fef7922011-12-04 18:29:26 +00008707</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00008708<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00008709<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00008710<address>
8711 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008712 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008713 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008714 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008715
8716 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumica46f5a2011-04-09 02:13:37 +00008717 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00008718 Last modified: $Date$
8719</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00008720
Misha Brukman76307852003-11-08 01:05:38 +00008721</body>
8722</html>