blob: d784eb9ace4914aa259d1ddbd9c5e9f8abdf7e2a [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000091#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000092#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000093using namespace llvm;
94
Chandler Carruthf1221bd2014-04-22 02:48:03 +000095#define DEBUG_TYPE "scalar-evolution"
96
Chris Lattner57ef9422006-12-19 22:30:33 +000097STATISTIC(NumArrayLenItCounts,
98 "Number of trip counts computed with array length");
99STATISTIC(NumTripCountsComputed,
100 "Number of loops with predictable loop counts");
101STATISTIC(NumTripCountsNotComputed,
102 "Number of loops without predictable loop counts");
103STATISTIC(NumBruteForceTripCountsComputed,
104 "Number of loops with trip counts computed by force");
105
Dan Gohmand78c4002008-05-13 00:00:25 +0000106static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000107MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
108 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000109 "symbolically execute a constant "
110 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000111 cl::init(100));
112
Benjamin Kramer214935e2012-10-26 17:31:32 +0000113// FIXME: Enable this with XDEBUG when the test suite is clean.
114static cl::opt<bool>
115VerifySCEV("verify-scev",
116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
117
Chris Lattnerd934c702004-04-02 20:23:17 +0000118//===----------------------------------------------------------------------===//
119// SCEV class definitions
120//===----------------------------------------------------------------------===//
121
122//===----------------------------------------------------------------------===//
123// Implementation of the SCEV class.
124//
Dan Gohman3423e722009-06-30 20:13:32 +0000125
Manman Ren49d684e2012-09-12 05:06:18 +0000126#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000127void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000128 print(dbgs());
129 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000130}
Manman Renc3366cc2012-09-06 19:55:56 +0000131#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000132
Dan Gohman534749b2010-11-17 22:27:42 +0000133void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000134 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000135 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000137 return;
138 case scTruncate: {
139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140 const SCEV *Op = Trunc->getOperand();
141 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142 << *Trunc->getType() << ")";
143 return;
144 }
145 case scZeroExtend: {
146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147 const SCEV *Op = ZExt->getOperand();
148 OS << "(zext " << *Op->getType() << " " << *Op << " to "
149 << *ZExt->getType() << ")";
150 return;
151 }
152 case scSignExtend: {
153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154 const SCEV *Op = SExt->getOperand();
155 OS << "(sext " << *Op->getType() << " " << *Op << " to "
156 << *SExt->getType() << ")";
157 return;
158 }
159 case scAddRecExpr: {
160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161 OS << "{" << *AR->getOperand(0);
162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163 OS << ",+," << *AR->getOperand(i);
164 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000165 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000166 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000167 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000168 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNW) &&
170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000173 OS << ">";
174 return;
175 }
176 case scAddExpr:
177 case scMulExpr:
178 case scUMaxExpr:
179 case scSMaxExpr: {
180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000181 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000182 switch (NAry->getSCEVType()) {
183 case scAddExpr: OpStr = " + "; break;
184 case scMulExpr: OpStr = " * "; break;
185 case scUMaxExpr: OpStr = " umax "; break;
186 case scSMaxExpr: OpStr = " smax "; break;
187 }
188 OS << "(";
189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190 I != E; ++I) {
191 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000192 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000193 OS << OpStr;
194 }
195 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000196 switch (NAry->getSCEVType()) {
197 case scAddExpr:
198 case scMulExpr:
199 if (NAry->getNoWrapFlags(FlagNUW))
200 OS << "<nuw>";
201 if (NAry->getNoWrapFlags(FlagNSW))
202 OS << "<nsw>";
203 }
Dan Gohman534749b2010-11-17 22:27:42 +0000204 return;
205 }
206 case scUDivExpr: {
207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209 return;
210 }
211 case scUnknown: {
212 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000213 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000214 if (U->isSizeOf(AllocTy)) {
215 OS << "sizeof(" << *AllocTy << ")";
216 return;
217 }
218 if (U->isAlignOf(AllocTy)) {
219 OS << "alignof(" << *AllocTy << ")";
220 return;
221 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000222
Chris Lattner229907c2011-07-18 04:54:35 +0000223 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000224 Constant *FieldNo;
225 if (U->isOffsetOf(CTy, FieldNo)) {
226 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000227 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000228 OS << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Dan Gohman534749b2010-11-17 22:27:42 +0000232 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000233 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000234 return;
235 }
236 case scCouldNotCompute:
237 OS << "***COULDNOTCOMPUTE***";
238 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattner229907c2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000244 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000264 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000266}
267
Dan Gohmanbe928e32008-06-18 16:23:07 +0000268bool SCEV::isZero() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isZero();
271 return false;
272}
273
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000274bool SCEV::isOne() const {
275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276 return SC->getValue()->isOne();
277 return false;
278}
Chris Lattnerd934c702004-04-02 20:23:17 +0000279
Dan Gohman18a96bb2009-06-24 00:30:26 +0000280bool SCEV::isAllOnesValue() const {
281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282 return SC->getValue()->isAllOnesValue();
283 return false;
284}
285
Andrew Trick881a7762012-01-07 00:27:31 +0000286/// isNonConstantNegative - Return true if the specified scev is negated, but
287/// not a constant.
288bool SCEV::isNonConstantNegative() const {
289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290 if (!Mul) return false;
291
292 // If there is a constant factor, it will be first.
293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294 if (!SC) return false;
295
296 // Return true if the value is negative, this matches things like (-42 * V).
297 return SC->getValue()->getValue().isNegative();
298}
299
Owen Anderson04052ec2009-06-22 21:57:23 +0000300SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000302
Chris Lattnerd934c702004-04-02 20:23:17 +0000303bool SCEVCouldNotCompute::classof(const SCEV *S) {
304 return S->getSCEVType() == scCouldNotCompute;
305}
306
Dan Gohmanaf752342009-07-07 17:06:11 +0000307const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000308 FoldingSetNodeID ID;
309 ID.AddInteger(scConstant);
310 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000311 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000314 UniqueSCEVs.InsertNode(S, IP);
315 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000316}
Chris Lattnerd934c702004-04-02 20:23:17 +0000317
Nick Lewycky31eaca52014-01-27 10:04:03 +0000318const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000319 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000320}
321
Dan Gohmanaf752342009-07-07 17:06:11 +0000322const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000323ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000325 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000326}
327
Dan Gohman24ceda82010-06-18 19:54:20 +0000328SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000329 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000338}
Chris Lattnerd934c702004-04-02 20:23:17 +0000339
Dan Gohman24ceda82010-06-18 19:54:20 +0000340SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000341 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000342 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346}
347
Dan Gohman24ceda82010-06-18 19:54:20 +0000348SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000349 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000350 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000354}
355
Dan Gohman7cac9572010-08-02 23:49:30 +0000356void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000357 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000358 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000359
360 // Remove this SCEVUnknown from the uniquing map.
361 SE->UniqueSCEVs.RemoveNode(this);
362
363 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000364 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000365}
366
367void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000368 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000369 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370
371 // Remove this SCEVUnknown from the uniquing map.
372 SE->UniqueSCEVs.RemoveNode(this);
373
374 // Update this SCEVUnknown to point to the new value. This is needed
375 // because there may still be outstanding SCEVs which still point to
376 // this SCEVUnknown.
377 setValPtr(New);
378}
379
Chris Lattner229907c2011-07-18 04:54:35 +0000380bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000382 if (VCE->getOpcode() == Instruction::PtrToInt)
383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000384 if (CE->getOpcode() == Instruction::GetElementPtr &&
385 CE->getOperand(0)->isNullValue() &&
386 CE->getNumOperands() == 2)
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388 if (CI->isOne()) {
389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390 ->getElementType();
391 return true;
392 }
Dan Gohmancf913832010-01-28 02:15:55 +0000393
394 return false;
395}
396
Chris Lattner229907c2011-07-18 04:54:35 +0000397bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000399 if (VCE->getOpcode() == Instruction::PtrToInt)
400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000401 if (CE->getOpcode() == Instruction::GetElementPtr &&
402 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000403 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000405 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (!STy->isPacked() &&
407 CE->getNumOperands() == 3 &&
408 CE->getOperand(1)->isNullValue()) {
409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410 if (CI->isOne() &&
411 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000412 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 AllocTy = STy->getElementType(1);
414 return true;
415 }
416 }
417 }
Dan Gohmancf913832010-01-28 02:15:55 +0000418
419 return false;
420}
421
Chris Lattner229907c2011-07-18 04:54:35 +0000422bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000424 if (VCE->getOpcode() == Instruction::PtrToInt)
425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426 if (CE->getOpcode() == Instruction::GetElementPtr &&
427 CE->getNumOperands() == 3 &&
428 CE->getOperand(0)->isNullValue() &&
429 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000430 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432 // Ignore vector types here so that ScalarEvolutionExpander doesn't
433 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000434 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 CTy = Ty;
436 FieldNo = CE->getOperand(2);
437 return true;
438 }
439 }
440
441 return false;
442}
443
Chris Lattnereb3e8402004-06-20 06:23:15 +0000444//===----------------------------------------------------------------------===//
445// SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
451 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000452 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000453 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000454 public:
Dan Gohman992db002010-07-23 21:18:55 +0000455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000456
Dan Gohman27065672010-08-27 15:26:01 +0000457 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000458 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000459 return compare(LHS, RHS) < 0;
460 }
461
462 // Return negative, zero, or positive, if LHS is less than, equal to, or
463 // greater than RHS, respectively. A three-way result allows recursive
464 // comparisons to be more efficient.
465 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000466 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000468 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000469
Dan Gohman9ba542c2009-05-07 14:39:04 +0000470 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000473 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474
Dan Gohman24ceda82010-06-18 19:54:20 +0000475 // Aside from the getSCEVType() ordering, the particular ordering
476 // isn't very important except that it's beneficial to be consistent,
477 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000478 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000479 case scUnknown: {
480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000482
483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000485 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000486
487 // Order pointer values after integer values. This helps SCEVExpander
488 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000489 bool LIsPointer = LV->getType()->isPointerTy(),
490 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000491 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000492 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
494 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000495 unsigned LID = LV->getValueID(),
496 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000497 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000498 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000499
500 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000501 if (const Argument *LA = dyn_cast<Argument>(LV)) {
502 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000505 }
506
Dan Gohman27065672010-08-27 15:26:01 +0000507 // For instructions, compare their loop depth, and their operand
508 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000511
512 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000513 const BasicBlock *LParent = LInst->getParent(),
514 *RParent = RInst->getParent();
515 if (LParent != RParent) {
516 unsigned LDepth = LI->getLoopDepth(LParent),
517 RDepth = LI->getLoopDepth(RParent);
518 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000519 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000521
522 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000523 unsigned LNumOps = LInst->getNumOperands(),
524 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000525 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000526 }
527
Dan Gohman27065672010-08-27 15:26:01 +0000528 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000529 }
530
Dan Gohman27065672010-08-27 15:26:01 +0000531 case scConstant: {
532 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000534
535 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000536 const APInt &LA = LC->getValue()->getValue();
537 const APInt &RA = RC->getValue()->getValue();
538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000539 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000540 return (int)LBitWidth - (int)RBitWidth;
541 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 }
543
Dan Gohman27065672010-08-27 15:26:01 +0000544 case scAddRecExpr: {
545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000547
548 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550 if (LLoop != RLoop) {
551 unsigned LDepth = LLoop->getLoopDepth(),
552 RDepth = RLoop->getLoopDepth();
553 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000554 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000555 }
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Addrec complexity grows with operand count.
558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559 if (LNumOps != RNumOps)
560 return (int)LNumOps - (int)RNumOps;
561
562 // Lexicographically compare.
563 for (unsigned i = 0; i != LNumOps; ++i) {
564 long X = compare(LA->getOperand(i), RA->getOperand(i));
565 if (X != 0)
566 return X;
567 }
568
569 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000570 }
571
Dan Gohman27065672010-08-27 15:26:01 +0000572 case scAddExpr:
573 case scMulExpr:
574 case scSMaxExpr:
575 case scUMaxExpr: {
576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000578
579 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000581 if (LNumOps != RNumOps)
582 return (int)LNumOps - (int)RNumOps;
583
Dan Gohman5ae31022010-07-23 21:20:52 +0000584 for (unsigned i = 0; i != LNumOps; ++i) {
585 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000586 return 1;
587 long X = compare(LC->getOperand(i), RC->getOperand(i));
588 if (X != 0)
589 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000590 }
Dan Gohman27065672010-08-27 15:26:01 +0000591 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000592 }
593
Dan Gohman27065672010-08-27 15:26:01 +0000594 case scUDivExpr: {
595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000597
598 // Lexicographically compare udiv expressions.
599 long X = compare(LC->getLHS(), RC->getLHS());
600 if (X != 0)
601 return X;
602 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000603 }
604
Dan Gohman27065672010-08-27 15:26:01 +0000605 case scTruncate:
606 case scZeroExtend:
607 case scSignExtend: {
608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000610
611 // Compare cast expressions by operand.
612 return compare(LC->getOperand(), RC->getOperand());
613 }
614
Benjamin Kramer987b8502014-02-11 19:02:55 +0000615 case scCouldNotCompute:
616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000617 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000618 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000619 }
620 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000621}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000628/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000629/// results from this routine. In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
Dan Gohmanaf752342009-07-07 17:06:11 +0000633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000634 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000635 if (Ops.size() < 2) return; // Noop
636 if (Ops.size() == 2) {
637 // This is the common case, which also happens to be trivially simple.
638 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640 if (SCEVComplexityCompare(LI)(RHS, LHS))
641 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 return;
643 }
644
Dan Gohman24ceda82010-06-18 19:54:20 +0000645 // Do the rough sort by complexity.
646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648 // Now that we are sorted by complexity, group elements of the same
649 // complexity. Note that this is, at worst, N^2, but the vector is likely to
650 // be extremely short in practice. Note that we take this approach because we
651 // do not want to depend on the addresses of the objects we are grouping.
652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653 const SCEV *S = Ops[i];
654 unsigned Complexity = S->getSCEVType();
655
656 // If there are any objects of the same complexity and same value as this
657 // one, group them.
658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659 if (Ops[j] == S) { // Found a duplicate.
660 // Move it to immediately after i'th element.
661 std::swap(Ops[i+1], Ops[j]);
662 ++i; // no need to rescan it.
663 if (i == e-2) return; // Done!
664 }
665 }
666 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000667}
668
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000669namespace {
670struct FindSCEVSize {
671 int Size;
672 FindSCEVSize() : Size(0) {}
673
674 bool follow(const SCEV *S) {
675 ++Size;
676 // Keep looking at all operands of S.
677 return true;
678 }
679 bool isDone() const {
680 return false;
681 }
682};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000683}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000684
685// Returns the size of the SCEV S.
686static inline int sizeOfSCEV(const SCEV *S) {
687 FindSCEVSize F;
688 SCEVTraversal<FindSCEVSize> ST(F);
689 ST.visitAll(S);
690 return F.Size;
691}
692
693namespace {
694
David Majnemer4e879362014-12-14 09:12:33 +0000695struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000696public:
697 // Computes the Quotient and Remainder of the division of Numerator by
698 // Denominator.
699 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700 const SCEV *Denominator, const SCEV **Quotient,
701 const SCEV **Remainder) {
702 assert(Numerator && Denominator && "Uninitialized SCEV");
703
David Majnemer4e879362014-12-14 09:12:33 +0000704 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705
706 // Check for the trivial case here to avoid having to check for it in the
707 // rest of the code.
708 if (Numerator == Denominator) {
709 *Quotient = D.One;
710 *Remainder = D.Zero;
711 return;
712 }
713
714 if (Numerator->isZero()) {
715 *Quotient = D.Zero;
716 *Remainder = D.Zero;
717 return;
718 }
719
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000720 // A simple case when N/1. The quotient is N.
721 if (Denominator->isOne()) {
722 *Quotient = Numerator;
723 *Remainder = D.Zero;
724 return;
725 }
726
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000727 // Split the Denominator when it is a product.
728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
729 const SCEV *Q, *R;
730 *Quotient = Numerator;
731 for (const SCEV *Op : T->operands()) {
732 divide(SE, *Quotient, Op, &Q, &R);
733 *Quotient = Q;
734
735 // Bail out when the Numerator is not divisible by one of the terms of
736 // the Denominator.
737 if (!R->isZero()) {
738 *Quotient = D.Zero;
739 *Remainder = Numerator;
740 return;
741 }
742 }
743 *Remainder = D.Zero;
744 return;
745 }
746
747 D.visit(Numerator);
748 *Quotient = D.Quotient;
749 *Remainder = D.Remainder;
750 }
751
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000752 // Except in the trivial case described above, we do not know how to divide
753 // Expr by Denominator for the following functions with empty implementation.
754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760 void visitUnknown(const SCEVUnknown *Numerator) {}
761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762
David Majnemer4e879362014-12-14 09:12:33 +0000763 void visitConstant(const SCEVConstant *Numerator) {
764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765 APInt NumeratorVal = Numerator->getValue()->getValue();
766 APInt DenominatorVal = D->getValue()->getValue();
767 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769
770 if (NumeratorBW > DenominatorBW)
771 DenominatorVal = DenominatorVal.sext(NumeratorBW);
772 else if (NumeratorBW < DenominatorBW)
773 NumeratorVal = NumeratorVal.sext(DenominatorBW);
774
775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778 Quotient = SE.getConstant(QuotientVal);
779 Remainder = SE.getConstant(RemainderVal);
780 return;
781 }
782 }
783
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000786 if (!Numerator->isAffine())
787 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000790 // Bail out if the types do not match.
791 Type *Ty = Denominator->getType();
792 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000793 Ty != StepQ->getType() || Ty != StepR->getType())
794 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 }
800
801 void visitAddExpr(const SCEVAddExpr *Numerator) {
802 SmallVector<const SCEV *, 2> Qs, Rs;
803 Type *Ty = Denominator->getType();
804
805 for (const SCEV *Op : Numerator->operands()) {
806 const SCEV *Q, *R;
807 divide(SE, Op, Denominator, &Q, &R);
808
809 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000810 if (Ty != Q->getType() || Ty != R->getType())
811 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000812
813 Qs.push_back(Q);
814 Rs.push_back(R);
815 }
816
817 if (Qs.size() == 1) {
818 Quotient = Qs[0];
819 Remainder = Rs[0];
820 return;
821 }
822
823 Quotient = SE.getAddExpr(Qs);
824 Remainder = SE.getAddExpr(Rs);
825 }
826
827 void visitMulExpr(const SCEVMulExpr *Numerator) {
828 SmallVector<const SCEV *, 2> Qs;
829 Type *Ty = Denominator->getType();
830
831 bool FoundDenominatorTerm = false;
832 for (const SCEV *Op : Numerator->operands()) {
833 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000834 if (Ty != Op->getType())
835 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000836
837 if (FoundDenominatorTerm) {
838 Qs.push_back(Op);
839 continue;
840 }
841
842 // Check whether Denominator divides one of the product operands.
843 const SCEV *Q, *R;
844 divide(SE, Op, Denominator, &Q, &R);
845 if (!R->isZero()) {
846 Qs.push_back(Op);
847 continue;
848 }
849
850 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000851 if (Ty != Q->getType())
852 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000853
854 FoundDenominatorTerm = true;
855 Qs.push_back(Q);
856 }
857
858 if (FoundDenominatorTerm) {
859 Remainder = Zero;
860 if (Qs.size() == 1)
861 Quotient = Qs[0];
862 else
863 Quotient = SE.getMulExpr(Qs);
864 return;
865 }
866
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000867 if (!isa<SCEVUnknown>(Denominator))
868 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000869
870 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871 ValueToValueMap RewriteMap;
872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873 cast<SCEVConstant>(Zero)->getValue();
874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875
876 if (Remainder->isZero()) {
877 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879 cast<SCEVConstant>(One)->getValue();
880 Quotient =
881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882 return;
883 }
884
885 // Quotient is (Numerator - Remainder) divided by Denominator.
886 const SCEV *Q, *R;
887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000888 // This SCEV does not seem to simplify: fail the division here.
889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000891 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000892 if (R != Zero)
893 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000894 Quotient = Q;
895 }
896
897private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899 const SCEV *Denominator)
900 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000901 Zero = SE.getZero(Denominator->getType());
902 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000903
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000904 // We generally do not know how to divide Expr by Denominator. We
905 // initialize the division to a "cannot divide" state to simplify the rest
906 // of the code.
907 cannotDivide(Numerator);
908 }
909
910 // Convenience function for giving up on the division. We set the quotient to
911 // be equal to zero and the remainder to be equal to the numerator.
912 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000913 Quotient = Zero;
914 Remainder = Numerator;
915 }
916
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000917 ScalarEvolution &SE;
918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000919};
920
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000921}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000922
Chris Lattnerd934c702004-04-02 20:23:17 +0000923//===----------------------------------------------------------------------===//
924// Simple SCEV method implementations
925//===----------------------------------------------------------------------===//
926
Eli Friedman61f67622008-08-04 23:49:06 +0000927/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000928/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000929static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000930 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000931 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000932 // Handle the simplest case efficiently.
933 if (K == 1)
934 return SE.getTruncateOrZeroExtend(It, ResultTy);
935
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000936 // We are using the following formula for BC(It, K):
937 //
938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
939 //
Eli Friedman61f67622008-08-04 23:49:06 +0000940 // Suppose, W is the bitwidth of the return value. We must be prepared for
941 // overflow. Hence, we must assure that the result of our computation is
942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
943 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000944 //
Eli Friedman61f67622008-08-04 23:49:06 +0000945 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000946 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
948 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000949 //
Eli Friedman61f67622008-08-04 23:49:06 +0000950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000951 //
Eli Friedman61f67622008-08-04 23:49:06 +0000952 // This formula is trivially equivalent to the previous formula. However,
953 // this formula can be implemented much more efficiently. The trick is that
954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
955 // arithmetic. To do exact division in modular arithmetic, all we have
956 // to do is multiply by the inverse. Therefore, this step can be done at
957 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000958 //
Eli Friedman61f67622008-08-04 23:49:06 +0000959 // The next issue is how to safely do the division by 2^T. The way this
960 // is done is by doing the multiplication step at a width of at least W + T
961 // bits. This way, the bottom W+T bits of the product are accurate. Then,
962 // when we perform the division by 2^T (which is equivalent to a right shift
963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
964 // truncated out after the division by 2^T.
965 //
966 // In comparison to just directly using the first formula, this technique
967 // is much more efficient; using the first formula requires W * K bits,
968 // but this formula less than W + K bits. Also, the first formula requires
969 // a division step, whereas this formula only requires multiplies and shifts.
970 //
971 // It doesn't matter whether the subtraction step is done in the calculation
972 // width or the input iteration count's width; if the subtraction overflows,
973 // the result must be zero anyway. We prefer here to do it in the width of
974 // the induction variable because it helps a lot for certain cases; CodeGen
975 // isn't smart enough to ignore the overflow, which leads to much less
976 // efficient code if the width of the subtraction is wider than the native
977 // register width.
978 //
979 // (It's possible to not widen at all by pulling out factors of 2 before
980 // the multiplication; for example, K=2 can be calculated as
981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
982 // extra arithmetic, so it's not an obvious win, and it gets
983 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000984
Eli Friedman61f67622008-08-04 23:49:06 +0000985 // Protection from insane SCEVs; this bound is conservative,
986 // but it probably doesn't matter.
987 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000988 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000989
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000990 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000991
Eli Friedman61f67622008-08-04 23:49:06 +0000992 // Calculate K! / 2^T and T; we divide out the factors of two before
993 // multiplying for calculating K! / 2^T to avoid overflow.
994 // Other overflow doesn't matter because we only care about the bottom
995 // W bits of the result.
996 APInt OddFactorial(W, 1);
997 unsigned T = 1;
998 for (unsigned i = 3; i <= K; ++i) {
999 APInt Mult(W, i);
1000 unsigned TwoFactors = Mult.countTrailingZeros();
1001 T += TwoFactors;
1002 Mult = Mult.lshr(TwoFactors);
1003 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001004 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001005
Eli Friedman61f67622008-08-04 23:49:06 +00001006 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001007 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001008
Dan Gohman8b0a4192010-03-01 17:49:51 +00001009 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001011
1012 // Calculate the multiplicative inverse of K! / 2^T;
1013 // this multiplication factor will perform the exact division by
1014 // K! / 2^T.
1015 APInt Mod = APInt::getSignedMinValue(W+1);
1016 APInt MultiplyFactor = OddFactorial.zext(W+1);
1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1018 MultiplyFactor = MultiplyFactor.trunc(W);
1019
1020 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001022 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001024 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001026 Dividend = SE.getMulExpr(Dividend,
1027 SE.getTruncateOrZeroExtend(S, CalculationTy));
1028 }
1029
1030 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001032
1033 // Truncate the result, and divide by K! / 2^T.
1034
1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001037}
1038
Chris Lattnerd934c702004-04-02 20:23:17 +00001039/// evaluateAtIteration - Return the value of this chain of recurrences at
1040/// the specified iteration number. We can evaluate this recurrence by
1041/// multiplying each element in the chain by the binomial coefficient
1042/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1043///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001044/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001045///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001047///
Dan Gohmanaf752342009-07-07 17:06:11 +00001048const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001049 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001050 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001052 // The computation is correct in the face of overflow provided that the
1053 // multiplication is performed _after_ the evaluation of the binomial
1054 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001056 if (isa<SCEVCouldNotCompute>(Coeff))
1057 return Coeff;
1058
1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001060 }
1061 return Result;
1062}
1063
Chris Lattnerd934c702004-04-02 20:23:17 +00001064//===----------------------------------------------------------------------===//
1065// SCEV Expression folder implementations
1066//===----------------------------------------------------------------------===//
1067
Dan Gohmanaf752342009-07-07 17:06:11 +00001068const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001069 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001071 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001072 assert(isSCEVable(Ty) &&
1073 "This is not a conversion to a SCEVable type!");
1074 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001075
Dan Gohman3a302cb2009-07-13 20:50:19 +00001076 FoldingSetNodeID ID;
1077 ID.AddInteger(scTruncate);
1078 ID.AddPointer(Op);
1079 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001080 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1082
Dan Gohman3423e722009-06-30 20:13:32 +00001083 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001085 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001087
Dan Gohman79af8542009-04-22 16:20:48 +00001088 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001090 return getTruncateExpr(ST->getOperand(), Ty);
1091
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001094 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1095
1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1099
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001101 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1103 SmallVector<const SCEV *, 4> Operands;
1104 bool hasTrunc = false;
1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001107 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1108 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001109 Operands.push_back(S);
1110 }
1111 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001112 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001114 }
1115
Nick Lewycky5c901f32011-01-19 18:56:00 +00001116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001117 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1119 SmallVector<const SCEV *, 4> Operands;
1120 bool hasTrunc = false;
1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001123 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1124 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001125 Operands.push_back(S);
1126 }
1127 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001128 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001130 }
1131
Dan Gohman5a728c92009-06-18 16:24:47 +00001132 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001134 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001135 for (const SCEV *Op : AddRec->operands())
1136 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001138 }
1139
Dan Gohman89dd42a2010-06-25 18:47:08 +00001140 // The cast wasn't folded; create an explicit cast node. We can reuse
1141 // the existing insert position since if we get here, we won't have
1142 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1144 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001145 UniqueSCEVs.InsertNode(S, IP);
1146 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001147}
1148
Sanjoy Das4153f472015-02-18 01:47:07 +00001149// Get the limit of a recurrence such that incrementing by Step cannot cause
1150// signed overflow as long as the value of the recurrence within the
1151// loop does not exceed this limit before incrementing.
1152static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1153 ICmpInst::Predicate *Pred,
1154 ScalarEvolution *SE) {
1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1156 if (SE->isKnownPositive(Step)) {
1157 *Pred = ICmpInst::ICMP_SLT;
1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1159 SE->getSignedRange(Step).getSignedMax());
1160 }
1161 if (SE->isKnownNegative(Step)) {
1162 *Pred = ICmpInst::ICMP_SGT;
1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1164 SE->getSignedRange(Step).getSignedMin());
1165 }
1166 return nullptr;
1167}
1168
1169// Get the limit of a recurrence such that incrementing by Step cannot cause
1170// unsigned overflow as long as the value of the recurrence within the loop does
1171// not exceed this limit before incrementing.
1172static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1173 ICmpInst::Predicate *Pred,
1174 ScalarEvolution *SE) {
1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1176 *Pred = ICmpInst::ICMP_ULT;
1177
1178 return SE->getConstant(APInt::getMinValue(BitWidth) -
1179 SE->getUnsignedRange(Step).getUnsignedMax());
1180}
1181
1182namespace {
1183
1184struct ExtendOpTraitsBase {
1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1186};
1187
1188// Used to make code generic over signed and unsigned overflow.
1189template <typename ExtendOp> struct ExtendOpTraits {
1190 // Members present:
1191 //
1192 // static const SCEV::NoWrapFlags WrapType;
1193 //
1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1195 //
1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1197 // ICmpInst::Predicate *Pred,
1198 // ScalarEvolution *SE);
1199};
1200
1201template <>
1202struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1204
1205 static const GetExtendExprTy GetExtendExpr;
1206
1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1208 ICmpInst::Predicate *Pred,
1209 ScalarEvolution *SE) {
1210 return getSignedOverflowLimitForStep(Step, Pred, SE);
1211 }
1212};
1213
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001214const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1216
1217template <>
1218struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1220
1221 static const GetExtendExprTy GetExtendExpr;
1222
1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1224 ICmpInst::Predicate *Pred,
1225 ScalarEvolution *SE) {
1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1227 }
1228};
1229
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001230const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001232}
Sanjoy Das4153f472015-02-18 01:47:07 +00001233
1234// The recurrence AR has been shown to have no signed/unsigned wrap or something
1235// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1236// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1237// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1238// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1239// expression "Step + sext/zext(PreIncAR)" is congruent with
1240// "sext/zext(PostIncAR)"
1241template <typename ExtendOpTy>
1242static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1243 ScalarEvolution *SE) {
1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1246
1247 const Loop *L = AR->getLoop();
1248 const SCEV *Start = AR->getStart();
1249 const SCEV *Step = AR->getStepRecurrence(*SE);
1250
1251 // Check for a simple looking step prior to loop entry.
1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1253 if (!SA)
1254 return nullptr;
1255
1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1257 // subtraction is expensive. For this purpose, perform a quick and dirty
1258 // difference, by checking for Step in the operand list.
1259 SmallVector<const SCEV *, 4> DiffOps;
1260 for (const SCEV *Op : SA->operands())
1261 if (Op != Step)
1262 DiffOps.push_back(Op);
1263
1264 if (DiffOps.size() == SA->getNumOperands())
1265 return nullptr;
1266
1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1268 // `Step`:
1269
1270 // 1. NSW/NUW flags on the step increment.
1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1274
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1276 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001277 //
1278
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001279 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001282 return PreStart;
1283
1284 // 2. Direct overflow check on the step operation's expression.
1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1287 const SCEV *OperandExtendedStart =
1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1289 (SE->*GetExtendExpr)(Step, WideTy));
1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1291 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1296 }
1297 return PreStart;
1298 }
1299
1300 // 3. Loop precondition.
1301 ICmpInst::Predicate Pred;
1302 const SCEV *OverflowLimit =
1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1304
1305 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001307 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001308
Sanjoy Das4153f472015-02-18 01:47:07 +00001309 return nullptr;
1310}
1311
1312// Get the normalized zero or sign extended expression for this AddRec's Start.
1313template <typename ExtendOpTy>
1314static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1315 ScalarEvolution *SE) {
1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1317
1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1319 if (!PreStart)
1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1321
1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1323 (SE->*GetExtendExpr)(PreStart, Ty));
1324}
1325
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001326// Try to prove away overflow by looking at "nearby" add recurrences. A
1327// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1328// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1329//
1330// Formally:
1331//
1332// {S,+,X} == {S-T,+,X} + T
1333// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1334//
1335// If ({S-T,+,X} + T) does not overflow ... (1)
1336//
1337// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1338//
1339// If {S-T,+,X} does not overflow ... (2)
1340//
1341// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1342// == {Ext(S-T)+Ext(T),+,Ext(X)}
1343//
1344// If (S-T)+T does not overflow ... (3)
1345//
1346// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1347// == {Ext(S),+,Ext(X)} == LHS
1348//
1349// Thus, if (1), (2) and (3) are true for some T, then
1350// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1351//
1352// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1353// does not overflow" restricted to the 0th iteration. Therefore we only need
1354// to check for (1) and (2).
1355//
1356// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1357// is `Delta` (defined below).
1358//
1359template <typename ExtendOpTy>
1360bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1361 const SCEV *Step,
1362 const Loop *L) {
1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1364
1365 // We restrict `Start` to a constant to prevent SCEV from spending too much
1366 // time here. It is correct (but more expensive) to continue with a
1367 // non-constant `Start` and do a general SCEV subtraction to compute
1368 // `PreStart` below.
1369 //
1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1371 if (!StartC)
1372 return false;
1373
1374 APInt StartAI = StartC->getValue()->getValue();
1375
1376 for (unsigned Delta : {-2, -1, 1, 2}) {
1377 const SCEV *PreStart = getConstant(StartAI - Delta);
1378
1379 // Give up if we don't already have the add recurrence we need because
1380 // actually constructing an add recurrence is relatively expensive.
1381 const SCEVAddRecExpr *PreAR = [&]() {
1382 FoldingSetNodeID ID;
1383 ID.AddInteger(scAddRecExpr);
1384 ID.AddPointer(PreStart);
1385 ID.AddPointer(Step);
1386 ID.AddPointer(L);
1387 void *IP = nullptr;
1388 return static_cast<SCEVAddRecExpr *>(
NAKAMURA Takumi8f49dd32015-03-05 01:02:45 +00001389 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001390 }();
1391
1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1396 DeltaS, &Pred, this);
1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1398 return true;
1399 }
1400 }
1401
1402 return false;
1403}
1404
Dan Gohmanaf752342009-07-07 17:06:11 +00001405const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001406 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001408 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001409 assert(isSCEVable(Ty) &&
1410 "This is not a conversion to a SCEVable type!");
1411 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001412
Dan Gohman3423e722009-06-30 20:13:32 +00001413 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1415 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001417
Dan Gohman79af8542009-04-22 16:20:48 +00001418 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001420 return getZeroExtendExpr(SZ->getOperand(), Ty);
1421
Dan Gohman74a0ba12009-07-13 20:55:53 +00001422 // Before doing any expensive analysis, check to see if we've already
1423 // computed a SCEV for this Op and Ty.
1424 FoldingSetNodeID ID;
1425 ID.AddInteger(scZeroExtend);
1426 ID.AddPointer(Op);
1427 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001428 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1430
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001431 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1433 // It's possible the bits taken off by the truncate were all zero bits. If
1434 // so, we should be able to simplify this further.
1435 const SCEV *X = ST->getOperand();
1436 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001437 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1438 unsigned NewBits = getTypeSizeInBits(Ty);
1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001440 CR.zextOrTrunc(NewBits)))
1441 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001442 }
1443
Dan Gohman76466372009-04-27 20:16:15 +00001444 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001445 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001446 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001449 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001450 const SCEV *Start = AR->getStart();
1451 const SCEV *Step = AR->getStepRecurrence(*this);
1452 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1453 const Loop *L = AR->getLoop();
1454
Dan Gohman62ef6a72009-07-25 01:22:26 +00001455 // If we have special knowledge that this addrec won't overflow,
1456 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001457 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001458 return getAddRecExpr(
1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001461
Dan Gohman76466372009-04-27 20:16:15 +00001462 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1463 // Note that this serves two purposes: It filters out loops that are
1464 // simply not analyzable, and it covers the case where this code is
1465 // being called from within backedge-taken count analysis, such that
1466 // attempting to ask for the backedge-taken count would likely result
1467 // in infinite recursion. In the later case, the analysis code will
1468 // cope with a conservative value, and it will take care to purge
1469 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001472 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001473 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001474
1475 // Check whether the backedge-taken count can be losslessly casted to
1476 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001477 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001478 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001479 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1481 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001483 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1487 const SCEV *WideMaxBECount =
1488 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001489 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001490 getAddExpr(WideStart,
1491 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001492 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001493 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001494 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001496 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001497 return getAddRecExpr(
1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001500 }
Dan Gohman76466372009-04-27 20:16:15 +00001501 // Similar to above, only this time treat the step value as signed.
1502 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001503 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001504 getAddExpr(WideStart,
1505 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001506 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001507 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001508 // Cache knowledge of AR NW, which is propagated to this AddRec.
1509 // Negative step causes unsigned wrap, but it still can't self-wrap.
1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001511 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001512 return getAddRecExpr(
1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001515 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001516 }
1517
1518 // If the backedge is guarded by a comparison with the pre-inc value
1519 // the addrec is safe. Also, if the entry is guarded by a comparison
1520 // with the start value and the backedge is guarded by a comparison
1521 // with the post-inc value, the addrec is safe.
1522 if (isKnownPositive(Step)) {
1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1524 getUnsignedRange(Step).getUnsignedMax());
1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001528 AR->getPostIncExpr(*this), N))) {
1529 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001531 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001532 return getAddRecExpr(
1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001535 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001536 } else if (isKnownNegative(Step)) {
1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1538 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001542 AR->getPostIncExpr(*this), N))) {
1543 // Cache knowledge of AR NW, which is propagated to this AddRec.
1544 // Negative step causes unsigned wrap, but it still can't self-wrap.
1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1546 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001547 return getAddRecExpr(
1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001550 }
Dan Gohman76466372009-04-27 20:16:15 +00001551 }
1552 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001553
1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1556 return getAddRecExpr(
1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1559 }
Dan Gohman76466372009-04-27 20:16:15 +00001560 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001561
Dan Gohman74a0ba12009-07-13 20:55:53 +00001562 // The cast wasn't folded; create an explicit cast node.
1563 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001565 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1566 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001567 UniqueSCEVs.InsertNode(S, IP);
1568 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001569}
1570
Dan Gohmanaf752342009-07-07 17:06:11 +00001571const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001572 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001573 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001574 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001575 assert(isSCEVable(Ty) &&
1576 "This is not a conversion to a SCEVable type!");
1577 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001578
Dan Gohman3423e722009-06-30 20:13:32 +00001579 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001580 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1581 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001582 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001583
Dan Gohman79af8542009-04-22 16:20:48 +00001584 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001585 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001586 return getSignExtendExpr(SS->getOperand(), Ty);
1587
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001588 // sext(zext(x)) --> zext(x)
1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1590 return getZeroExtendExpr(SZ->getOperand(), Ty);
1591
Dan Gohman74a0ba12009-07-13 20:55:53 +00001592 // Before doing any expensive analysis, check to see if we've already
1593 // computed a SCEV for this Op and Ty.
1594 FoldingSetNodeID ID;
1595 ID.AddInteger(scSignExtend);
1596 ID.AddPointer(Op);
1597 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001598 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1600
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001601 // If the input value is provably positive, build a zext instead.
1602 if (isKnownNonNegative(Op))
1603 return getZeroExtendExpr(Op, Ty);
1604
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001605 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1606 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1607 // It's possible the bits taken off by the truncate were all sign bits. If
1608 // so, we should be able to simplify this further.
1609 const SCEV *X = ST->getOperand();
1610 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001611 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1612 unsigned NewBits = getTypeSizeInBits(Ty);
1613 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001614 CR.sextOrTrunc(NewBits)))
1615 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001616 }
1617
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001618 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001619 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001620 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001621 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1622 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001623 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001624 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001625 const APInt &C1 = SC1->getValue()->getValue();
1626 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001627 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001628 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001629 return getAddExpr(getSignExtendExpr(SC1, Ty),
1630 getSignExtendExpr(SMul, Ty));
1631 }
1632 }
1633 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001634
1635 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1636 if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
1637 // If the addition does not sign overflow then we can, by definition,
1638 // commute the sign extension with the addition operation.
1639 SmallVector<const SCEV *, 4> Ops;
1640 for (const auto *Op : SA->operands())
1641 Ops.push_back(getSignExtendExpr(Op, Ty));
1642 return getAddExpr(Ops, SCEV::FlagNSW);
1643 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001644 }
Dan Gohman76466372009-04-27 20:16:15 +00001645 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001646 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001647 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001648 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001649 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001650 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001651 const SCEV *Start = AR->getStart();
1652 const SCEV *Step = AR->getStepRecurrence(*this);
1653 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1654 const Loop *L = AR->getLoop();
1655
Dan Gohman62ef6a72009-07-25 01:22:26 +00001656 // If we have special knowledge that this addrec won't overflow,
1657 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001658 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001659 return getAddRecExpr(
1660 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1661 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001662
Dan Gohman76466372009-04-27 20:16:15 +00001663 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1664 // Note that this serves two purposes: It filters out loops that are
1665 // simply not analyzable, and it covers the case where this code is
1666 // being called from within backedge-taken count analysis, such that
1667 // attempting to ask for the backedge-taken count would likely result
1668 // in infinite recursion. In the later case, the analysis code will
1669 // cope with a conservative value, and it will take care to purge
1670 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001671 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001672 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001673 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001674 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001675
1676 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001677 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001678 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001679 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001680 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001681 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1682 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001683 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001684 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001685 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001686 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1687 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1688 const SCEV *WideMaxBECount =
1689 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001690 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001691 getAddExpr(WideStart,
1692 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001693 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001694 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001695 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1696 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001697 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001698 return getAddRecExpr(
1699 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1700 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001701 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001702 // Similar to above, only this time treat the step value as unsigned.
1703 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001704 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001705 getAddExpr(WideStart,
1706 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001707 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001708 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001709 // If AR wraps around then
1710 //
1711 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1712 // => SAdd != OperandExtendedAdd
1713 //
1714 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1715 // (SAdd == OperandExtendedAdd => AR is NW)
1716
1717 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1718
Dan Gohman8c129d72009-07-16 17:34:36 +00001719 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001720 return getAddRecExpr(
1721 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1722 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001723 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001724 }
1725
1726 // If the backedge is guarded by a comparison with the pre-inc value
1727 // the addrec is safe. Also, if the entry is guarded by a comparison
1728 // with the start value and the backedge is guarded by a comparison
1729 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001730 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001731 const SCEV *OverflowLimit =
1732 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001733 if (OverflowLimit &&
1734 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1735 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1736 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1737 OverflowLimit)))) {
1738 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1739 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001740 return getAddRecExpr(
1741 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1742 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001743 }
1744 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001745 // If Start and Step are constants, check if we can apply this
1746 // transformation:
1747 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001748 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1749 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001750 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001751 const APInt &C1 = SC1->getValue()->getValue();
1752 const APInt &C2 = SC2->getValue()->getValue();
1753 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1754 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001755 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001756 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1757 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001758 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1759 }
1760 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001761
1762 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1763 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1764 return getAddRecExpr(
1765 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1766 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1767 }
Dan Gohman76466372009-04-27 20:16:15 +00001768 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001769
Dan Gohman74a0ba12009-07-13 20:55:53 +00001770 // The cast wasn't folded; create an explicit cast node.
1771 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001772 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001773 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1774 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001775 UniqueSCEVs.InsertNode(S, IP);
1776 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001777}
1778
Dan Gohman8db2edc2009-06-13 15:56:47 +00001779/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1780/// unspecified bits out to the given type.
1781///
Dan Gohmanaf752342009-07-07 17:06:11 +00001782const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001783 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001784 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1785 "This is not an extending conversion!");
1786 assert(isSCEVable(Ty) &&
1787 "This is not a conversion to a SCEVable type!");
1788 Ty = getEffectiveSCEVType(Ty);
1789
1790 // Sign-extend negative constants.
1791 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1792 if (SC->getValue()->getValue().isNegative())
1793 return getSignExtendExpr(Op, Ty);
1794
1795 // Peel off a truncate cast.
1796 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001797 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001798 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1799 return getAnyExtendExpr(NewOp, Ty);
1800 return getTruncateOrNoop(NewOp, Ty);
1801 }
1802
1803 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001804 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001805 if (!isa<SCEVZeroExtendExpr>(ZExt))
1806 return ZExt;
1807
1808 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001809 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001810 if (!isa<SCEVSignExtendExpr>(SExt))
1811 return SExt;
1812
Dan Gohman51ad99d2010-01-21 02:09:26 +00001813 // Force the cast to be folded into the operands of an addrec.
1814 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1815 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001816 for (const SCEV *Op : AR->operands())
1817 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001818 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001819 }
1820
Dan Gohman8db2edc2009-06-13 15:56:47 +00001821 // If the expression is obviously signed, use the sext cast value.
1822 if (isa<SCEVSMaxExpr>(Op))
1823 return SExt;
1824
1825 // Absent any other information, use the zext cast value.
1826 return ZExt;
1827}
1828
Dan Gohman038d02e2009-06-14 22:58:51 +00001829/// CollectAddOperandsWithScales - Process the given Ops list, which is
1830/// a list of operands to be added under the given scale, update the given
1831/// map. This is a helper function for getAddRecExpr. As an example of
1832/// what it does, given a sequence of operands that would form an add
1833/// expression like this:
1834///
Tobias Grosserba49e422014-03-05 10:37:17 +00001835/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001836///
1837/// where A and B are constants, update the map with these values:
1838///
1839/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1840///
1841/// and add 13 + A*B*29 to AccumulatedConstant.
1842/// This will allow getAddRecExpr to produce this:
1843///
1844/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1845///
1846/// This form often exposes folding opportunities that are hidden in
1847/// the original operand list.
1848///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001849/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001850/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1851/// the common case where no interesting opportunities are present, and
1852/// is also used as a check to avoid infinite recursion.
1853///
1854static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001855CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001856 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001857 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001858 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001859 const APInt &Scale,
1860 ScalarEvolution &SE) {
1861 bool Interesting = false;
1862
Dan Gohman45073042010-06-18 19:12:32 +00001863 // Iterate over the add operands. They are sorted, with constants first.
1864 unsigned i = 0;
1865 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1866 ++i;
1867 // Pull a buried constant out to the outside.
1868 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1869 Interesting = true;
1870 AccumulatedConstant += Scale * C->getValue()->getValue();
1871 }
1872
1873 // Next comes everything else. We're especially interested in multiplies
1874 // here, but they're in the middle, so just visit the rest with one loop.
1875 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001876 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1877 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1878 APInt NewScale =
1879 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1880 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1881 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001882 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001883 Interesting |=
1884 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001885 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001886 NewScale, SE);
1887 } else {
1888 // A multiplication of a constant with some other value. Update
1889 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001890 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1891 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Das7a9f8bb2015-09-17 19:04:09 +00001892 auto Pair = M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001893 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001894 NewOps.push_back(Pair.first->first);
1895 } else {
1896 Pair.first->second += NewScale;
1897 // The map already had an entry for this value, which may indicate
1898 // a folding opportunity.
1899 Interesting = true;
1900 }
1901 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001902 } else {
1903 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001904 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001905 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001906 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001907 NewOps.push_back(Pair.first->first);
1908 } else {
1909 Pair.first->second += Scale;
1910 // The map already had an entry for this value, which may indicate
1911 // a folding opportunity.
1912 Interesting = true;
1913 }
1914 }
1915 }
1916
1917 return Interesting;
1918}
1919
1920namespace {
1921 struct APIntCompare {
1922 bool operator()(const APInt &LHS, const APInt &RHS) const {
1923 return LHS.ult(RHS);
1924 }
1925 };
1926}
1927
Sanjoy Das81401d42015-01-10 23:41:24 +00001928// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1929// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1930// can't-overflow flags for the operation if possible.
1931static SCEV::NoWrapFlags
1932StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1933 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001934 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001935 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001936 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001937
1938 bool CanAnalyze =
1939 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1940 (void)CanAnalyze;
1941 assert(CanAnalyze && "don't call from other places!");
1942
1943 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1944 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001945 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001946
1947 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1948 auto IsKnownNonNegative =
1949 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1950
1951 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1952 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001953 Flags =
1954 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001955
Sanjoy Das8f274152015-10-22 19:57:19 +00001956 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1957
1958 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1959 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1960
1961 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1962 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1963
1964 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue();
1965 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1966 auto NSWRegion =
1967 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1968 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1969 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1970 }
1971 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1972 auto NUWRegion =
1973 ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1974 OBO::NoUnsignedWrap);
1975 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1976 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1977 }
1978 }
1979
1980 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00001981}
1982
Dan Gohman4d5435d2009-05-24 23:45:28 +00001983/// getAddExpr - Get a canonical add expression, or something simpler if
1984/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001985const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001986 SCEV::NoWrapFlags Flags) {
1987 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1988 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001989 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001990 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001991#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001992 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001993 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001994 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001995 "SCEVAddExpr operand types don't match!");
1996#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001997
1998 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001999 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002000
Sanjoy Das64895612015-10-09 02:44:45 +00002001 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2002
Chris Lattnerd934c702004-04-02 20:23:17 +00002003 // If there are any constants, fold them together.
2004 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002005 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002006 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002007 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002008 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002009 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00002010 Ops[0] = getConstant(LHSC->getValue()->getValue() +
2011 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00002012 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002013 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002014 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002015 }
2016
2017 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002018 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002019 Ops.erase(Ops.begin());
2020 --Idx;
2021 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002022
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002023 if (Ops.size() == 1) return Ops[0];
2024 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002025
Dan Gohman15871f22010-08-27 21:39:59 +00002026 // Okay, check to see if the same value occurs in the operand list more than
2027 // once. If so, merge them together into an multiply expression. Since we
2028 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002029 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002030 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002031 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002032 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002033 // Scan ahead to count how many equal operands there are.
2034 unsigned Count = 2;
2035 while (i+Count != e && Ops[i+Count] == Ops[i])
2036 ++Count;
2037 // Merge the values into a multiply.
2038 const SCEV *Scale = getConstant(Ty, Count);
2039 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2040 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002041 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002042 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002043 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002044 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002045 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002046 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002047 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002048 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002049
Dan Gohman2e55cc52009-05-08 21:03:19 +00002050 // Check for truncates. If all the operands are truncated from the same
2051 // type, see if factoring out the truncate would permit the result to be
2052 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2053 // if the contents of the resulting outer trunc fold to something simple.
2054 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2055 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002056 Type *DstType = Trunc->getType();
2057 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002058 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002059 bool Ok = true;
2060 // Check all the operands to see if they can be represented in the
2061 // source type of the truncate.
2062 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2063 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2064 if (T->getOperand()->getType() != SrcType) {
2065 Ok = false;
2066 break;
2067 }
2068 LargeOps.push_back(T->getOperand());
2069 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002070 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002071 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002072 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002073 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2074 if (const SCEVTruncateExpr *T =
2075 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2076 if (T->getOperand()->getType() != SrcType) {
2077 Ok = false;
2078 break;
2079 }
2080 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002081 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002082 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002083 } else {
2084 Ok = false;
2085 break;
2086 }
2087 }
2088 if (Ok)
2089 LargeOps.push_back(getMulExpr(LargeMulOps));
2090 } else {
2091 Ok = false;
2092 break;
2093 }
2094 }
2095 if (Ok) {
2096 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002097 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002098 // If it folds to something simple, use it. Otherwise, don't.
2099 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2100 return getTruncateExpr(Fold, DstType);
2101 }
2102 }
2103
2104 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002105 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2106 ++Idx;
2107
2108 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002109 if (Idx < Ops.size()) {
2110 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002111 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002112 // If we have an add, expand the add operands onto the end of the operands
2113 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002114 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002115 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002116 DeletedAdd = true;
2117 }
2118
2119 // If we deleted at least one add, we added operands to the end of the list,
2120 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002121 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002122 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002123 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002124 }
2125
2126 // Skip over the add expression until we get to a multiply.
2127 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2128 ++Idx;
2129
Dan Gohman038d02e2009-06-14 22:58:51 +00002130 // Check to see if there are any folding opportunities present with
2131 // operands multiplied by constant values.
2132 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2133 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002134 DenseMap<const SCEV *, APInt> M;
2135 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002136 APInt AccumulatedConstant(BitWidth, 0);
2137 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002138 Ops.data(), Ops.size(),
2139 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002140 // Some interesting folding opportunity is present, so its worthwhile to
2141 // re-generate the operands list. Group the operands by constant scale,
2142 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002143 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002144 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002145 E = NewOps.end(); I != E; ++I)
2146 MulOpLists[M.find(*I)->second].push_back(*I);
2147 // Re-generate the operands list.
2148 Ops.clear();
2149 if (AccumulatedConstant != 0)
2150 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002151 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2152 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002153 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002154 Ops.push_back(getMulExpr(getConstant(I->first),
2155 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002156 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002157 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002158 if (Ops.size() == 1)
2159 return Ops[0];
2160 return getAddExpr(Ops);
2161 }
2162 }
2163
Chris Lattnerd934c702004-04-02 20:23:17 +00002164 // If we are adding something to a multiply expression, make sure the
2165 // something is not already an operand of the multiply. If so, merge it into
2166 // the multiply.
2167 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002168 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002169 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002170 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002171 if (isa<SCEVConstant>(MulOpSCEV))
2172 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002173 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002174 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002175 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002176 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002177 if (Mul->getNumOperands() != 2) {
2178 // If the multiply has more than two operands, we must get the
2179 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002180 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2181 Mul->op_begin()+MulOp);
2182 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002183 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002184 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002185 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002186 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002187 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002188 if (Ops.size() == 2) return OuterMul;
2189 if (AddOp < Idx) {
2190 Ops.erase(Ops.begin()+AddOp);
2191 Ops.erase(Ops.begin()+Idx-1);
2192 } else {
2193 Ops.erase(Ops.begin()+Idx);
2194 Ops.erase(Ops.begin()+AddOp-1);
2195 }
2196 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002197 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002198 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002199
Chris Lattnerd934c702004-04-02 20:23:17 +00002200 // Check this multiply against other multiplies being added together.
2201 for (unsigned OtherMulIdx = Idx+1;
2202 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2203 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002204 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002205 // If MulOp occurs in OtherMul, we can fold the two multiplies
2206 // together.
2207 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2208 OMulOp != e; ++OMulOp)
2209 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2210 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002211 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002212 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002213 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002214 Mul->op_begin()+MulOp);
2215 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002216 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002217 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002218 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002219 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002220 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002221 OtherMul->op_begin()+OMulOp);
2222 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002223 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002224 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002225 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2226 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002227 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002228 Ops.erase(Ops.begin()+Idx);
2229 Ops.erase(Ops.begin()+OtherMulIdx-1);
2230 Ops.push_back(OuterMul);
2231 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002232 }
2233 }
2234 }
2235 }
2236
2237 // If there are any add recurrences in the operands list, see if any other
2238 // added values are loop invariant. If so, we can fold them into the
2239 // recurrence.
2240 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2241 ++Idx;
2242
2243 // Scan over all recurrences, trying to fold loop invariants into them.
2244 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2245 // Scan all of the other operands to this add and add them to the vector if
2246 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002247 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002248 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002249 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002250 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002251 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002252 LIOps.push_back(Ops[i]);
2253 Ops.erase(Ops.begin()+i);
2254 --i; --e;
2255 }
2256
2257 // If we found some loop invariants, fold them into the recurrence.
2258 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002259 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002260 LIOps.push_back(AddRec->getStart());
2261
Dan Gohmanaf752342009-07-07 17:06:11 +00002262 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002263 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002264 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002265
Dan Gohman16206132010-06-30 07:16:37 +00002266 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002267 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002268 // Always propagate NW.
2269 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002270 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002271
Chris Lattnerd934c702004-04-02 20:23:17 +00002272 // If all of the other operands were loop invariant, we are done.
2273 if (Ops.size() == 1) return NewRec;
2274
Nick Lewyckydb66b822011-09-06 05:08:09 +00002275 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002276 for (unsigned i = 0;; ++i)
2277 if (Ops[i] == AddRec) {
2278 Ops[i] = NewRec;
2279 break;
2280 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002281 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002282 }
2283
2284 // Okay, if there weren't any loop invariants to be folded, check to see if
2285 // there are multiple AddRec's with the same loop induction variable being
2286 // added together. If so, we can fold them.
2287 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002288 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2289 ++OtherIdx)
2290 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2291 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2292 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2293 AddRec->op_end());
2294 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2295 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002296 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002297 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002298 if (OtherAddRec->getLoop() == AddRecLoop) {
2299 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2300 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002301 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002302 AddRecOps.append(OtherAddRec->op_begin()+i,
2303 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002304 break;
2305 }
Dan Gohman028c1812010-08-29 14:53:34 +00002306 AddRecOps[i] = getAddExpr(AddRecOps[i],
2307 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002308 }
2309 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002310 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002311 // Step size has changed, so we cannot guarantee no self-wraparound.
2312 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002313 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002314 }
2315
2316 // Otherwise couldn't fold anything into this recurrence. Move onto the
2317 // next one.
2318 }
2319
2320 // Okay, it looks like we really DO need an add expr. Check to see if we
2321 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002322 FoldingSetNodeID ID;
2323 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002324 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2325 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002326 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002327 SCEVAddExpr *S =
2328 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2329 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002330 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2331 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002332 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2333 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002334 UniqueSCEVs.InsertNode(S, IP);
2335 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002336 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002337 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002338}
2339
Nick Lewycky287682e2011-10-04 06:51:26 +00002340static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2341 uint64_t k = i*j;
2342 if (j > 1 && k / j != i) Overflow = true;
2343 return k;
2344}
2345
2346/// Compute the result of "n choose k", the binomial coefficient. If an
2347/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002348/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002349static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2350 // We use the multiplicative formula:
2351 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2352 // At each iteration, we take the n-th term of the numeral and divide by the
2353 // (k-n)th term of the denominator. This division will always produce an
2354 // integral result, and helps reduce the chance of overflow in the
2355 // intermediate computations. However, we can still overflow even when the
2356 // final result would fit.
2357
2358 if (n == 0 || n == k) return 1;
2359 if (k > n) return 0;
2360
2361 if (k > n/2)
2362 k = n-k;
2363
2364 uint64_t r = 1;
2365 for (uint64_t i = 1; i <= k; ++i) {
2366 r = umul_ov(r, n-(i-1), Overflow);
2367 r /= i;
2368 }
2369 return r;
2370}
2371
Nick Lewycky05044c22014-12-06 00:45:50 +00002372/// Determine if any of the operands in this SCEV are a constant or if
2373/// any of the add or multiply expressions in this SCEV contain a constant.
2374static bool containsConstantSomewhere(const SCEV *StartExpr) {
2375 SmallVector<const SCEV *, 4> Ops;
2376 Ops.push_back(StartExpr);
2377 while (!Ops.empty()) {
2378 const SCEV *CurrentExpr = Ops.pop_back_val();
2379 if (isa<SCEVConstant>(*CurrentExpr))
2380 return true;
2381
2382 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2383 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002384 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002385 }
2386 }
2387 return false;
2388}
2389
Dan Gohman4d5435d2009-05-24 23:45:28 +00002390/// getMulExpr - Get a canonical multiply expression, or something simpler if
2391/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002392const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002393 SCEV::NoWrapFlags Flags) {
2394 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2395 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002396 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002397 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002398#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002399 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002400 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002401 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002402 "SCEVMulExpr operand types don't match!");
2403#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002404
2405 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002406 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002407
Sanjoy Das64895612015-10-09 02:44:45 +00002408 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2409
Chris Lattnerd934c702004-04-02 20:23:17 +00002410 // If there are any constants, fold them together.
2411 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002412 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002413
2414 // C1*(C2+V) -> C1*C2 + C1*V
2415 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2417 // If any of Add's ops are Adds or Muls with a constant,
2418 // apply this transformation as well.
2419 if (Add->getNumOperands() == 2)
2420 if (containsConstantSomewhere(Add))
2421 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2422 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002423
Chris Lattnerd934c702004-04-02 20:23:17 +00002424 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002425 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002426 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002427 ConstantInt *Fold = ConstantInt::get(getContext(),
2428 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002429 RHSC->getValue()->getValue());
2430 Ops[0] = getConstant(Fold);
2431 Ops.erase(Ops.begin()+1); // Erase the folded element
2432 if (Ops.size() == 1) return Ops[0];
2433 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002434 }
2435
2436 // If we are left with a constant one being multiplied, strip it off.
2437 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2438 Ops.erase(Ops.begin());
2439 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002440 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002441 // If we have a multiply of zero, it will always be zero.
2442 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002443 } else if (Ops[0]->isAllOnesValue()) {
2444 // If we have a mul by -1 of an add, try distributing the -1 among the
2445 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002446 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002447 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2448 SmallVector<const SCEV *, 4> NewOps;
2449 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002450 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2451 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002452 const SCEV *Mul = getMulExpr(Ops[0], *I);
2453 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2454 NewOps.push_back(Mul);
2455 }
2456 if (AnyFolded)
2457 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002458 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002459 // Negation preserves a recurrence's no self-wrap property.
2460 SmallVector<const SCEV *, 4> Operands;
2461 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2462 E = AddRec->op_end(); I != E; ++I) {
2463 Operands.push_back(getMulExpr(Ops[0], *I));
2464 }
2465 return getAddRecExpr(Operands, AddRec->getLoop(),
2466 AddRec->getNoWrapFlags(SCEV::FlagNW));
2467 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002468 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002469 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002470
2471 if (Ops.size() == 1)
2472 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002473 }
2474
2475 // Skip over the add expression until we get to a multiply.
2476 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2477 ++Idx;
2478
Chris Lattnerd934c702004-04-02 20:23:17 +00002479 // If there are mul operands inline them all into this expression.
2480 if (Idx < Ops.size()) {
2481 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002482 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002483 // If we have an mul, expand the mul operands onto the end of the operands
2484 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002485 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002486 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002487 DeletedMul = true;
2488 }
2489
2490 // If we deleted at least one mul, we added operands to the end of the list,
2491 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002492 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002493 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002494 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002495 }
2496
2497 // If there are any add recurrences in the operands list, see if any other
2498 // added values are loop invariant. If so, we can fold them into the
2499 // recurrence.
2500 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2501 ++Idx;
2502
2503 // Scan over all recurrences, trying to fold loop invariants into them.
2504 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2505 // Scan all of the other operands to this mul and add them to the vector if
2506 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002507 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002508 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002509 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002510 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002511 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002512 LIOps.push_back(Ops[i]);
2513 Ops.erase(Ops.begin()+i);
2514 --i; --e;
2515 }
2516
2517 // If we found some loop invariants, fold them into the recurrence.
2518 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002519 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002520 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002521 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002522 const SCEV *Scale = getMulExpr(LIOps);
2523 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2524 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002525
Dan Gohman16206132010-06-30 07:16:37 +00002526 // Build the new addrec. Propagate the NUW and NSW flags if both the
2527 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002528 //
2529 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002530 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002531 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2532 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002533
2534 // If all of the other operands were loop invariant, we are done.
2535 if (Ops.size() == 1) return NewRec;
2536
Nick Lewyckydb66b822011-09-06 05:08:09 +00002537 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002538 for (unsigned i = 0;; ++i)
2539 if (Ops[i] == AddRec) {
2540 Ops[i] = NewRec;
2541 break;
2542 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002543 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002544 }
2545
2546 // Okay, if there weren't any loop invariants to be folded, check to see if
2547 // there are multiple AddRec's with the same loop induction variable being
2548 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002549
2550 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2551 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2552 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2553 // ]]],+,...up to x=2n}.
2554 // Note that the arguments to choose() are always integers with values
2555 // known at compile time, never SCEV objects.
2556 //
2557 // The implementation avoids pointless extra computations when the two
2558 // addrec's are of different length (mathematically, it's equivalent to
2559 // an infinite stream of zeros on the right).
2560 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002561 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002562 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002563 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002564 const SCEVAddRecExpr *OtherAddRec =
2565 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2566 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002567 continue;
2568
Nick Lewycky97756402014-09-01 05:17:15 +00002569 bool Overflow = false;
2570 Type *Ty = AddRec->getType();
2571 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2572 SmallVector<const SCEV*, 7> AddRecOps;
2573 for (int x = 0, xe = AddRec->getNumOperands() +
2574 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002575 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002576 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2577 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2578 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2579 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2580 z < ze && !Overflow; ++z) {
2581 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2582 uint64_t Coeff;
2583 if (LargerThan64Bits)
2584 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2585 else
2586 Coeff = Coeff1*Coeff2;
2587 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2588 const SCEV *Term1 = AddRec->getOperand(y-z);
2589 const SCEV *Term2 = OtherAddRec->getOperand(z);
2590 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002591 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002592 }
Nick Lewycky97756402014-09-01 05:17:15 +00002593 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002594 }
Nick Lewycky97756402014-09-01 05:17:15 +00002595 if (!Overflow) {
2596 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2597 SCEV::FlagAnyWrap);
2598 if (Ops.size() == 2) return NewAddRec;
2599 Ops[Idx] = NewAddRec;
2600 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2601 OpsModified = true;
2602 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2603 if (!AddRec)
2604 break;
2605 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002606 }
Nick Lewycky97756402014-09-01 05:17:15 +00002607 if (OpsModified)
2608 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002609
2610 // Otherwise couldn't fold anything into this recurrence. Move onto the
2611 // next one.
2612 }
2613
2614 // Okay, it looks like we really DO need an mul expr. Check to see if we
2615 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002616 FoldingSetNodeID ID;
2617 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002618 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2619 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002620 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002621 SCEVMulExpr *S =
2622 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2623 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002624 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2625 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002626 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2627 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002628 UniqueSCEVs.InsertNode(S, IP);
2629 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002630 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002631 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002632}
2633
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002634/// getUDivExpr - Get a canonical unsigned division expression, or something
2635/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002636const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2637 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002638 assert(getEffectiveSCEVType(LHS->getType()) ==
2639 getEffectiveSCEVType(RHS->getType()) &&
2640 "SCEVUDivExpr operand types don't match!");
2641
Dan Gohmana30370b2009-05-04 22:02:23 +00002642 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002643 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002644 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002645 // If the denominator is zero, the result of the udiv is undefined. Don't
2646 // try to analyze it, because the resolution chosen here may differ from
2647 // the resolution chosen in other parts of the compiler.
2648 if (!RHSC->getValue()->isZero()) {
2649 // Determine if the division can be folded into the operands of
2650 // its operands.
2651 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002652 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002653 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002654 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002655 // For non-power-of-two values, effectively round the value up to the
2656 // nearest power of two.
2657 if (!RHSC->getValue()->getValue().isPowerOf2())
2658 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002659 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002660 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2662 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002663 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2664 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2665 const APInt &StepInt = Step->getValue()->getValue();
2666 const APInt &DivInt = RHSC->getValue()->getValue();
2667 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002668 getZeroExtendExpr(AR, ExtTy) ==
2669 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2670 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002671 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002672 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002673 for (const SCEV *Op : AR->operands())
2674 Operands.push_back(getUDivExpr(Op, RHS));
2675 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002676 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002677 /// Get a canonical UDivExpr for a recurrence.
2678 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2679 // We can currently only fold X%N if X is constant.
2680 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2681 if (StartC && !DivInt.urem(StepInt) &&
2682 getZeroExtendExpr(AR, ExtTy) ==
2683 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2684 getZeroExtendExpr(Step, ExtTy),
2685 AR->getLoop(), SCEV::FlagAnyWrap)) {
2686 const APInt &StartInt = StartC->getValue()->getValue();
2687 const APInt &StartRem = StartInt.urem(StepInt);
2688 if (StartRem != 0)
2689 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2690 AR->getLoop(), SCEV::FlagNW);
2691 }
2692 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002693 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2694 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2695 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002696 for (const SCEV *Op : M->operands())
2697 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002698 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2699 // Find an operand that's safely divisible.
2700 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2701 const SCEV *Op = M->getOperand(i);
2702 const SCEV *Div = getUDivExpr(Op, RHSC);
2703 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2704 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2705 M->op_end());
2706 Operands[i] = Div;
2707 return getMulExpr(Operands);
2708 }
2709 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002710 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002711 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002712 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002713 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002714 for (const SCEV *Op : A->operands())
2715 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002716 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2717 Operands.clear();
2718 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2719 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2720 if (isa<SCEVUDivExpr>(Op) ||
2721 getMulExpr(Op, RHS) != A->getOperand(i))
2722 break;
2723 Operands.push_back(Op);
2724 }
2725 if (Operands.size() == A->getNumOperands())
2726 return getAddExpr(Operands);
2727 }
2728 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002729
Dan Gohmanacd700a2010-04-22 01:35:11 +00002730 // Fold if both operands are constant.
2731 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2732 Constant *LHSCV = LHSC->getValue();
2733 Constant *RHSCV = RHSC->getValue();
2734 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2735 RHSCV)));
2736 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002737 }
2738 }
2739
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002740 FoldingSetNodeID ID;
2741 ID.AddInteger(scUDivExpr);
2742 ID.AddPointer(LHS);
2743 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002744 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002745 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002746 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2747 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002748 UniqueSCEVs.InsertNode(S, IP);
2749 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002750}
2751
Nick Lewycky31eaca52014-01-27 10:04:03 +00002752static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2753 APInt A = C1->getValue()->getValue().abs();
2754 APInt B = C2->getValue()->getValue().abs();
2755 uint32_t ABW = A.getBitWidth();
2756 uint32_t BBW = B.getBitWidth();
2757
2758 if (ABW > BBW)
2759 B = B.zext(ABW);
2760 else if (ABW < BBW)
2761 A = A.zext(BBW);
2762
2763 return APIntOps::GreatestCommonDivisor(A, B);
2764}
2765
2766/// getUDivExactExpr - Get a canonical unsigned division expression, or
2767/// something simpler if possible. There is no representation for an exact udiv
2768/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2769/// We can't do this when it's not exact because the udiv may be clearing bits.
2770const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2771 const SCEV *RHS) {
2772 // TODO: we could try to find factors in all sorts of things, but for now we
2773 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2774 // end of this file for inspiration.
2775
2776 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2777 if (!Mul)
2778 return getUDivExpr(LHS, RHS);
2779
2780 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2781 // If the mulexpr multiplies by a constant, then that constant must be the
2782 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002783 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002784 if (LHSCst == RHSCst) {
2785 SmallVector<const SCEV *, 2> Operands;
2786 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2787 return getMulExpr(Operands);
2788 }
2789
2790 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2791 // that there's a factor provided by one of the other terms. We need to
2792 // check.
2793 APInt Factor = gcd(LHSCst, RHSCst);
2794 if (!Factor.isIntN(1)) {
2795 LHSCst = cast<SCEVConstant>(
2796 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2797 RHSCst = cast<SCEVConstant>(
2798 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2799 SmallVector<const SCEV *, 2> Operands;
2800 Operands.push_back(LHSCst);
2801 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2802 LHS = getMulExpr(Operands);
2803 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002804 Mul = dyn_cast<SCEVMulExpr>(LHS);
2805 if (!Mul)
2806 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002807 }
2808 }
2809 }
2810
2811 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2812 if (Mul->getOperand(i) == RHS) {
2813 SmallVector<const SCEV *, 2> Operands;
2814 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2815 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2816 return getMulExpr(Operands);
2817 }
2818 }
2819
2820 return getUDivExpr(LHS, RHS);
2821}
Chris Lattnerd934c702004-04-02 20:23:17 +00002822
Dan Gohman4d5435d2009-05-24 23:45:28 +00002823/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2824/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002825const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2826 const Loop *L,
2827 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002828 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002829 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002830 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002831 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002832 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002833 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002834 }
2835
2836 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002837 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002838}
2839
Dan Gohman4d5435d2009-05-24 23:45:28 +00002840/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2841/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002842const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002843ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002844 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002845 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002846#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002847 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002848 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002849 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002850 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002851 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002852 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002853 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002854#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002855
Dan Gohmanbe928e32008-06-18 16:23:07 +00002856 if (Operands.back()->isZero()) {
2857 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002858 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002859 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002860
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002861 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2862 // use that information to infer NUW and NSW flags. However, computing a
2863 // BE count requires calling getAddRecExpr, so we may not yet have a
2864 // meaningful BE count at this point (and if we don't, we'd be stuck
2865 // with a SCEVCouldNotCompute as the cached BE count).
2866
Sanjoy Das81401d42015-01-10 23:41:24 +00002867 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002868
Dan Gohman223a5d22008-08-08 18:33:12 +00002869 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002870 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002871 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002872 if (L->contains(NestedLoop)
2873 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2874 : (!NestedLoop->contains(L) &&
2875 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002876 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002877 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002878 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002879 // AddRecs require their operands be loop-invariant with respect to their
2880 // loops. Don't perform this transformation if it would break this
2881 // requirement.
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002882 bool AllInvariant =
2883 std::all_of(Operands.begin(), Operands.end(),
2884 [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2885
Dan Gohmancc030b72009-06-26 22:36:20 +00002886 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002887 // Create a recurrence for the outer loop with the same step size.
2888 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002889 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2890 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002891 SCEV::NoWrapFlags OuterFlags =
2892 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002893
2894 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002895 AllInvariant = std::all_of(
2896 NestedOperands.begin(), NestedOperands.end(),
2897 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); });
2898
Andrew Trick8b55b732011-03-14 16:50:06 +00002899 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002900 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002901 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002902 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2903 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002904 SCEV::NoWrapFlags InnerFlags =
2905 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002906 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2907 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002908 }
2909 // Reset Operands to its original state.
2910 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002911 }
2912 }
2913
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002914 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2915 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002916 FoldingSetNodeID ID;
2917 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002918 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2919 ID.AddPointer(Operands[i]);
2920 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002921 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002922 SCEVAddRecExpr *S =
2923 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2924 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2926 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002927 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2928 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002929 UniqueSCEVs.InsertNode(S, IP);
2930 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002931 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002932 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002933}
2934
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002935const SCEV *
2936ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2937 const SmallVectorImpl<const SCEV *> &IndexExprs,
2938 bool InBounds) {
2939 // getSCEV(Base)->getType() has the same address space as Base->getType()
2940 // because SCEV::getType() preserves the address space.
2941 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2942 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2943 // instruction to its SCEV, because the Instruction may be guarded by control
2944 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002945 // context. This can be fixed similarly to how these flags are handled for
2946 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002947 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2948
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002949 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002950 // The address space is unimportant. The first thing we do on CurTy is getting
2951 // its element type.
2952 Type *CurTy = PointerType::getUnqual(PointeeType);
2953 for (const SCEV *IndexExpr : IndexExprs) {
2954 // Compute the (potentially symbolic) offset in bytes for this index.
2955 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2956 // For a struct, add the member offset.
2957 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2958 unsigned FieldNo = Index->getZExtValue();
2959 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2960
2961 // Add the field offset to the running total offset.
2962 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2963
2964 // Update CurTy to the type of the field at Index.
2965 CurTy = STy->getTypeAtIndex(Index);
2966 } else {
2967 // Update CurTy to its element type.
2968 CurTy = cast<SequentialType>(CurTy)->getElementType();
2969 // For an array, add the element offset, explicitly scaled.
2970 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2971 // Getelementptr indices are signed.
2972 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2973
2974 // Multiply the index by the element size to compute the element offset.
2975 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2976
2977 // Add the element offset to the running total offset.
2978 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2979 }
2980 }
2981
2982 // Add the total offset from all the GEP indices to the base.
2983 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2984}
2985
Dan Gohmanabd17092009-06-24 14:49:00 +00002986const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2987 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002988 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002989 Ops.push_back(LHS);
2990 Ops.push_back(RHS);
2991 return getSMaxExpr(Ops);
2992}
2993
Dan Gohmanaf752342009-07-07 17:06:11 +00002994const SCEV *
2995ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002996 assert(!Ops.empty() && "Cannot get empty smax!");
2997 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002998#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002999 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003000 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003001 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003002 "SCEVSMaxExpr operand types don't match!");
3003#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003004
3005 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003006 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003007
3008 // If there are any constants, fold them together.
3009 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003010 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003011 ++Idx;
3012 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003013 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003014 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003015 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003016 APIntOps::smax(LHSC->getValue()->getValue(),
3017 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003018 Ops[0] = getConstant(Fold);
3019 Ops.erase(Ops.begin()+1); // Erase the folded element
3020 if (Ops.size() == 1) return Ops[0];
3021 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003022 }
3023
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003024 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003025 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3026 Ops.erase(Ops.begin());
3027 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003028 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3029 // If we have an smax with a constant maximum-int, it will always be
3030 // maximum-int.
3031 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003032 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003033
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003034 if (Ops.size() == 1) return Ops[0];
3035 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003036
3037 // Find the first SMax
3038 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3039 ++Idx;
3040
3041 // Check to see if one of the operands is an SMax. If so, expand its operands
3042 // onto our operand list, and recurse to simplify.
3043 if (Idx < Ops.size()) {
3044 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003045 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003046 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003047 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003048 DeletedSMax = true;
3049 }
3050
3051 if (DeletedSMax)
3052 return getSMaxExpr(Ops);
3053 }
3054
3055 // Okay, check to see if the same value occurs in the operand list twice. If
3056 // so, delete one. Since we sorted the list, these values are required to
3057 // be adjacent.
3058 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003059 // X smax Y smax Y --> X smax Y
3060 // X smax Y --> X, if X is always greater than Y
3061 if (Ops[i] == Ops[i+1] ||
3062 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3063 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3064 --i; --e;
3065 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003066 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3067 --i; --e;
3068 }
3069
3070 if (Ops.size() == 1) return Ops[0];
3071
3072 assert(!Ops.empty() && "Reduced smax down to nothing!");
3073
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003074 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003075 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003076 FoldingSetNodeID ID;
3077 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003078 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3079 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003080 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003082 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3083 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003084 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3085 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003086 UniqueSCEVs.InsertNode(S, IP);
3087 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003088}
3089
Dan Gohmanabd17092009-06-24 14:49:00 +00003090const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3091 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003092 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003093 Ops.push_back(LHS);
3094 Ops.push_back(RHS);
3095 return getUMaxExpr(Ops);
3096}
3097
Dan Gohmanaf752342009-07-07 17:06:11 +00003098const SCEV *
3099ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003100 assert(!Ops.empty() && "Cannot get empty umax!");
3101 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003102#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003103 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003104 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003105 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003106 "SCEVUMaxExpr operand types don't match!");
3107#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003108
3109 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003110 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003111
3112 // If there are any constants, fold them together.
3113 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003114 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003115 ++Idx;
3116 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003117 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003118 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003119 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003120 APIntOps::umax(LHSC->getValue()->getValue(),
3121 RHSC->getValue()->getValue()));
3122 Ops[0] = getConstant(Fold);
3123 Ops.erase(Ops.begin()+1); // Erase the folded element
3124 if (Ops.size() == 1) return Ops[0];
3125 LHSC = cast<SCEVConstant>(Ops[0]);
3126 }
3127
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003128 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003129 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3130 Ops.erase(Ops.begin());
3131 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003132 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3133 // If we have an umax with a constant maximum-int, it will always be
3134 // maximum-int.
3135 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003136 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003137
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003138 if (Ops.size() == 1) return Ops[0];
3139 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003140
3141 // Find the first UMax
3142 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3143 ++Idx;
3144
3145 // Check to see if one of the operands is a UMax. If so, expand its operands
3146 // onto our operand list, and recurse to simplify.
3147 if (Idx < Ops.size()) {
3148 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003149 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003150 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003151 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003152 DeletedUMax = true;
3153 }
3154
3155 if (DeletedUMax)
3156 return getUMaxExpr(Ops);
3157 }
3158
3159 // Okay, check to see if the same value occurs in the operand list twice. If
3160 // so, delete one. Since we sorted the list, these values are required to
3161 // be adjacent.
3162 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003163 // X umax Y umax Y --> X umax Y
3164 // X umax Y --> X, if X is always greater than Y
3165 if (Ops[i] == Ops[i+1] ||
3166 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3167 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3168 --i; --e;
3169 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003170 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3171 --i; --e;
3172 }
3173
3174 if (Ops.size() == 1) return Ops[0];
3175
3176 assert(!Ops.empty() && "Reduced umax down to nothing!");
3177
3178 // Okay, it looks like we really DO need a umax expr. Check to see if we
3179 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003180 FoldingSetNodeID ID;
3181 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003182 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3183 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003184 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003186 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3187 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003188 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3189 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003190 UniqueSCEVs.InsertNode(S, IP);
3191 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003192}
3193
Dan Gohmanabd17092009-06-24 14:49:00 +00003194const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3195 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003196 // ~smax(~x, ~y) == smin(x, y).
3197 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3198}
3199
Dan Gohmanabd17092009-06-24 14:49:00 +00003200const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3201 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003202 // ~umax(~x, ~y) == umin(x, y)
3203 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3204}
3205
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003206const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003207 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003208 // constant expression and then folding it back into a ConstantInt.
3209 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003210 return getConstant(IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003211 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003212}
3213
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003214const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3215 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003216 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003217 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003218 // constant expression and then folding it back into a ConstantInt.
3219 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003220 return getConstant(
3221 IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003222 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003223 FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003224}
3225
Dan Gohmanaf752342009-07-07 17:06:11 +00003226const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003227 // Don't attempt to do anything other than create a SCEVUnknown object
3228 // here. createSCEV only calls getUnknown after checking for all other
3229 // interesting possibilities, and any other code that calls getUnknown
3230 // is doing so in order to hide a value from SCEV canonicalization.
3231
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003232 FoldingSetNodeID ID;
3233 ID.AddInteger(scUnknown);
3234 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003235 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003236 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3237 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3238 "Stale SCEVUnknown in uniquing map!");
3239 return S;
3240 }
3241 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3242 FirstUnknown);
3243 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003244 UniqueSCEVs.InsertNode(S, IP);
3245 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003246}
3247
Chris Lattnerd934c702004-04-02 20:23:17 +00003248//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003249// Basic SCEV Analysis and PHI Idiom Recognition Code
3250//
3251
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003252/// isSCEVable - Test if values of the given type are analyzable within
3253/// the SCEV framework. This primarily includes integer types, and it
3254/// can optionally include pointer types if the ScalarEvolution class
3255/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003256bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003257 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003258 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003259}
3260
3261/// getTypeSizeInBits - Return the size in bits of the specified type,
3262/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003263uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003264 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003265 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003266}
3267
3268/// getEffectiveSCEVType - Return a type with the same bitwidth as
3269/// the given type and which represents how SCEV will treat the given
3270/// type, for which isSCEVable must return true. For pointer types,
3271/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003272Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003273 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3274
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003275 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003276 return Ty;
3277
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003278 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003279 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003280 return F.getParent()->getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003281}
Chris Lattnerd934c702004-04-02 20:23:17 +00003282
Dan Gohmanaf752342009-07-07 17:06:11 +00003283const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003284 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003285}
3286
Shuxin Yangefc4c012013-07-08 17:33:13 +00003287namespace {
3288 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3289 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3290 // is set iff if find such SCEVUnknown.
3291 //
3292 struct FindInvalidSCEVUnknown {
3293 bool FindOne;
3294 FindInvalidSCEVUnknown() { FindOne = false; }
3295 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003296 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003297 case scConstant:
3298 return false;
3299 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003300 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003301 FindOne = true;
3302 return false;
3303 default:
3304 return true;
3305 }
3306 }
3307 bool isDone() const { return FindOne; }
3308 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003309}
Shuxin Yangefc4c012013-07-08 17:33:13 +00003310
3311bool ScalarEvolution::checkValidity(const SCEV *S) const {
3312 FindInvalidSCEVUnknown F;
3313 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3314 ST.visitAll(S);
3315
3316 return !F.FindOne;
3317}
3318
Chris Lattnerd934c702004-04-02 20:23:17 +00003319/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3320/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003321const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003322 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003323
Jingyue Wu42f1d672015-07-28 18:22:40 +00003324 const SCEV *S = getExistingSCEV(V);
3325 if (S == nullptr) {
3326 S = createSCEV(V);
3327 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3328 }
3329 return S;
3330}
3331
3332const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3333 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3334
Shuxin Yangefc4c012013-07-08 17:33:13 +00003335 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3336 if (I != ValueExprMap.end()) {
3337 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003338 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003339 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003340 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003341 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003342 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003343}
3344
Dan Gohman0a40ad92009-04-16 03:18:22 +00003345/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3346///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003347const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3348 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003349 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003350 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003351 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003352
Chris Lattner229907c2011-07-18 04:54:35 +00003353 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003354 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003355 return getMulExpr(
3356 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003357}
3358
3359/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003360const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003361 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003362 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003363 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003364
Chris Lattner229907c2011-07-18 04:54:35 +00003365 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003366 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003367 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003368 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003369 return getMinusSCEV(AllOnes, V);
3370}
3371
Andrew Trick8b55b732011-03-14 16:50:06 +00003372/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003373const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003374 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003375 // Fast path: X - X --> 0.
3376 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003377 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003378
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003379 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3380 // makes it so that we cannot make much use of NUW.
3381 auto AddFlags = SCEV::FlagAnyWrap;
3382 const bool RHSIsNotMinSigned =
3383 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3384 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3385 // Let M be the minimum representable signed value. Then (-1)*RHS
3386 // signed-wraps if and only if RHS is M. That can happen even for
3387 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3388 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3389 // (-1)*RHS, we need to prove that RHS != M.
3390 //
3391 // If LHS is non-negative and we know that LHS - RHS does not
3392 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3393 // either by proving that RHS > M or that LHS >= 0.
3394 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3395 AddFlags = SCEV::FlagNSW;
3396 }
3397 }
3398
3399 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3400 // RHS is NSW and LHS >= 0.
3401 //
3402 // The difficulty here is that the NSW flag may have been proven
3403 // relative to a loop that is to be found in a recurrence in LHS and
3404 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3405 // larger scope than intended.
3406 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3407
3408 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003409}
3410
3411/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3412/// input value to the specified type. If the type must be extended, it is zero
3413/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003414const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003415ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3416 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003417 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3418 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003419 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003420 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003421 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003422 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003423 return getTruncateExpr(V, Ty);
3424 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003425}
3426
3427/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3428/// input value to the specified type. If the type must be extended, it is sign
3429/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003430const SCEV *
3431ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003432 Type *Ty) {
3433 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003434 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3435 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003436 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003437 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003438 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003439 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003440 return getTruncateExpr(V, Ty);
3441 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003442}
3443
Dan Gohmane712a2f2009-05-13 03:46:30 +00003444/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3445/// input value to the specified type. If the type must be extended, it is zero
3446/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003447const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003448ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3449 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003450 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3451 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003452 "Cannot noop or zero extend with non-integer arguments!");
3453 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3454 "getNoopOrZeroExtend cannot truncate!");
3455 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3456 return V; // No conversion
3457 return getZeroExtendExpr(V, Ty);
3458}
3459
3460/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3461/// input value to the specified type. If the type must be extended, it is sign
3462/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003463const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003464ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3465 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003466 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3467 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003468 "Cannot noop or sign extend with non-integer arguments!");
3469 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3470 "getNoopOrSignExtend cannot truncate!");
3471 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3472 return V; // No conversion
3473 return getSignExtendExpr(V, Ty);
3474}
3475
Dan Gohman8db2edc2009-06-13 15:56:47 +00003476/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3477/// the input value to the specified type. If the type must be extended,
3478/// it is extended with unspecified bits. The conversion must not be
3479/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003480const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003481ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3482 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003483 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3484 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003485 "Cannot noop or any extend with non-integer arguments!");
3486 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3487 "getNoopOrAnyExtend cannot truncate!");
3488 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3489 return V; // No conversion
3490 return getAnyExtendExpr(V, Ty);
3491}
3492
Dan Gohmane712a2f2009-05-13 03:46:30 +00003493/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3494/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003495const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003496ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3497 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003498 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3499 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003500 "Cannot truncate or noop with non-integer arguments!");
3501 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3502 "getTruncateOrNoop cannot extend!");
3503 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3504 return V; // No conversion
3505 return getTruncateExpr(V, Ty);
3506}
3507
Dan Gohman96212b62009-06-22 00:31:57 +00003508/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3509/// the types using zero-extension, and then perform a umax operation
3510/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003511const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3512 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003513 const SCEV *PromotedLHS = LHS;
3514 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003515
3516 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3517 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3518 else
3519 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3520
3521 return getUMaxExpr(PromotedLHS, PromotedRHS);
3522}
3523
Dan Gohman2bc22302009-06-22 15:03:27 +00003524/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3525/// the types using zero-extension, and then perform a umin operation
3526/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003527const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3528 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003529 const SCEV *PromotedLHS = LHS;
3530 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003531
3532 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3533 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3534 else
3535 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3536
3537 return getUMinExpr(PromotedLHS, PromotedRHS);
3538}
3539
Andrew Trick87716c92011-03-17 23:51:11 +00003540/// getPointerBase - Transitively follow the chain of pointer-type operands
3541/// until reaching a SCEV that does not have a single pointer operand. This
3542/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3543/// but corner cases do exist.
3544const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3545 // A pointer operand may evaluate to a nonpointer expression, such as null.
3546 if (!V->getType()->isPointerTy())
3547 return V;
3548
3549 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3550 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003551 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003552 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003553 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3554 I != E; ++I) {
3555 if ((*I)->getType()->isPointerTy()) {
3556 // Cannot find the base of an expression with multiple pointer operands.
3557 if (PtrOp)
3558 return V;
3559 PtrOp = *I;
3560 }
3561 }
3562 if (!PtrOp)
3563 return V;
3564 return getPointerBase(PtrOp);
3565 }
3566 return V;
3567}
3568
Dan Gohman0b89dff2009-07-25 01:13:03 +00003569/// PushDefUseChildren - Push users of the given Instruction
3570/// onto the given Worklist.
3571static void
3572PushDefUseChildren(Instruction *I,
3573 SmallVectorImpl<Instruction *> &Worklist) {
3574 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003575 for (User *U : I->users())
3576 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003577}
3578
3579/// ForgetSymbolicValue - This looks up computed SCEV values for all
3580/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003581/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003582/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003583void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003584ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003585 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003586 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003587
Dan Gohman0b89dff2009-07-25 01:13:03 +00003588 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003589 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003590 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003591 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003592 if (!Visited.insert(I).second)
3593 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003594
Sanjoy Das63914592015-10-18 00:29:20 +00003595 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003596 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003597 const SCEV *Old = It->second;
3598
Dan Gohman0b89dff2009-07-25 01:13:03 +00003599 // Short-circuit the def-use traversal if the symbolic name
3600 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003601 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003602 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003603
Dan Gohman0b89dff2009-07-25 01:13:03 +00003604 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003605 // structure, it's a PHI that's in the progress of being computed
3606 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3607 // additional loop trip count information isn't going to change anything.
3608 // In the second case, createNodeForPHI will perform the necessary
3609 // updates on its own when it gets to that point. In the third, we do
3610 // want to forget the SCEVUnknown.
3611 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003612 !isa<SCEVUnknown>(Old) ||
3613 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003614 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003615 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003616 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003617 }
3618
3619 PushDefUseChildren(I, Worklist);
3620 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003621}
Chris Lattnerd934c702004-04-02 20:23:17 +00003622
Sanjoy Das55015d22015-10-02 23:09:44 +00003623const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3624 const Loop *L = LI.getLoopFor(PN->getParent());
3625 if (!L || L->getHeader() != PN->getParent())
3626 return nullptr;
3627
3628 // The loop may have multiple entrances or multiple exits; we can analyze
3629 // this phi as an addrec if it has a unique entry value and a unique
3630 // backedge value.
3631 Value *BEValueV = nullptr, *StartValueV = nullptr;
3632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3633 Value *V = PN->getIncomingValue(i);
3634 if (L->contains(PN->getIncomingBlock(i))) {
3635 if (!BEValueV) {
3636 BEValueV = V;
3637 } else if (BEValueV != V) {
3638 BEValueV = nullptr;
3639 break;
3640 }
3641 } else if (!StartValueV) {
3642 StartValueV = V;
3643 } else if (StartValueV != V) {
3644 StartValueV = nullptr;
3645 break;
3646 }
3647 }
3648 if (BEValueV && StartValueV) {
3649 // While we are analyzing this PHI node, handle its value symbolically.
3650 const SCEV *SymbolicName = getUnknown(PN);
3651 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3652 "PHI node already processed?");
3653 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3654
3655 // Using this symbolic name for the PHI, analyze the value coming around
3656 // the back-edge.
3657 const SCEV *BEValue = getSCEV(BEValueV);
3658
3659 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3660 // has a special value for the first iteration of the loop.
3661
3662 // If the value coming around the backedge is an add with the symbolic
3663 // value we just inserted, then we found a simple induction variable!
3664 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3665 // If there is a single occurrence of the symbolic value, replace it
3666 // with a recurrence.
3667 unsigned FoundIndex = Add->getNumOperands();
3668 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3669 if (Add->getOperand(i) == SymbolicName)
3670 if (FoundIndex == e) {
3671 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003672 break;
3673 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003674
3675 if (FoundIndex != Add->getNumOperands()) {
3676 // Create an add with everything but the specified operand.
3677 SmallVector<const SCEV *, 8> Ops;
3678 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3679 if (i != FoundIndex)
3680 Ops.push_back(Add->getOperand(i));
3681 const SCEV *Accum = getAddExpr(Ops);
3682
3683 // This is not a valid addrec if the step amount is varying each
3684 // loop iteration, but is not itself an addrec in this loop.
3685 if (isLoopInvariant(Accum, L) ||
3686 (isa<SCEVAddRecExpr>(Accum) &&
3687 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3688 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3689
3690 // If the increment doesn't overflow, then neither the addrec nor
3691 // the post-increment will overflow.
3692 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3693 if (OBO->getOperand(0) == PN) {
3694 if (OBO->hasNoUnsignedWrap())
3695 Flags = setFlags(Flags, SCEV::FlagNUW);
3696 if (OBO->hasNoSignedWrap())
3697 Flags = setFlags(Flags, SCEV::FlagNSW);
3698 }
3699 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3700 // If the increment is an inbounds GEP, then we know the address
3701 // space cannot be wrapped around. We cannot make any guarantee
3702 // about signed or unsigned overflow because pointers are
3703 // unsigned but we may have a negative index from the base
3704 // pointer. We can guarantee that no unsigned wrap occurs if the
3705 // indices form a positive value.
3706 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3707 Flags = setFlags(Flags, SCEV::FlagNW);
3708
3709 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3710 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3711 Flags = setFlags(Flags, SCEV::FlagNUW);
3712 }
3713
3714 // We cannot transfer nuw and nsw flags from subtraction
3715 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3716 // for instance.
3717 }
3718
3719 const SCEV *StartVal = getSCEV(StartValueV);
3720 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3721
3722 // Since the no-wrap flags are on the increment, they apply to the
3723 // post-incremented value as well.
3724 if (isLoopInvariant(Accum, L))
3725 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3726
3727 // Okay, for the entire analysis of this edge we assumed the PHI
3728 // to be symbolic. We now need to go back and purge all of the
3729 // entries for the scalars that use the symbolic expression.
3730 ForgetSymbolicName(PN, SymbolicName);
3731 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3732 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003733 }
3734 }
Sanjoy Das63914592015-10-18 00:29:20 +00003735 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003736 // Otherwise, this could be a loop like this:
3737 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3738 // In this case, j = {1,+,1} and BEValue is j.
3739 // Because the other in-value of i (0) fits the evolution of BEValue
3740 // i really is an addrec evolution.
3741 if (AddRec->getLoop() == L && AddRec->isAffine()) {
3742 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003743
Sanjoy Das55015d22015-10-02 23:09:44 +00003744 // If StartVal = j.start - j.stride, we can use StartVal as the
3745 // initial step of the addrec evolution.
3746 if (StartVal ==
3747 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) {
3748 // FIXME: For constant StartVal, we should be able to infer
3749 // no-wrap flags.
3750 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1),
3751 L, SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00003752
Sanjoy Das55015d22015-10-02 23:09:44 +00003753 // Okay, for the entire analysis of this edge we assumed the PHI
3754 // to be symbolic. We now need to go back and purge all of the
3755 // entries for the scalars that use the symbolic expression.
3756 ForgetSymbolicName(PN, SymbolicName);
3757 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3758 return PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003759 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003760 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003761 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003762 }
3763
3764 return nullptr;
3765}
3766
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003767// Checks if the SCEV S is available at BB. S is considered available at BB
3768// if S can be materialized at BB without introducing a fault.
3769static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3770 BasicBlock *BB) {
3771 struct CheckAvailable {
3772 bool TraversalDone = false;
3773 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003774
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003775 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
3776 BasicBlock *BB = nullptr;
3777 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00003778
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003779 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3780 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00003781
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003782 bool setUnavailable() {
3783 TraversalDone = true;
3784 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003785 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003786 }
3787
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003788 bool follow(const SCEV *S) {
3789 switch (S->getSCEVType()) {
3790 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3791 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
3792 // These expressions are available if their operand(s) is/are.
Sanjoy Das55015d22015-10-02 23:09:44 +00003793 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003794
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003795 case scAddRecExpr: {
3796 // We allow add recurrences that are on the loop BB is in, or some
3797 // outer loop. This guarantees availability because the value of the
3798 // add recurrence at BB is simply the "current" value of the induction
3799 // variable. We can relax this in the future; for instance an add
3800 // recurrence on a sibling dominating loop is also available at BB.
3801 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3802 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00003803 return true;
3804
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003805 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00003806 }
3807
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003808 case scUnknown: {
3809 // For SCEVUnknown, we check for simple dominance.
3810 const auto *SU = cast<SCEVUnknown>(S);
3811 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00003812
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003813 if (isa<Argument>(V))
3814 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003815
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003816 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3817 return false;
3818
3819 return setUnavailable();
3820 }
3821
3822 case scUDivExpr:
3823 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003824 // We do not try to smart about these at all.
3825 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003826 }
3827 llvm_unreachable("switch should be fully covered!");
3828 }
3829
3830 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00003831 };
3832
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003833 CheckAvailable CA(L, BB, DT);
3834 SCEVTraversal<CheckAvailable> ST(CA);
3835
3836 ST.visitAll(S);
3837 return CA.Available;
3838}
3839
3840// Try to match a control flow sequence that branches out at BI and merges back
3841// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
3842// match.
3843static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3844 Value *&C, Value *&LHS, Value *&RHS) {
3845 C = BI->getCondition();
3846
3847 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3848 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3849
3850 if (!LeftEdge.isSingleEdge())
3851 return false;
3852
3853 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3854
3855 Use &LeftUse = Merge->getOperandUse(0);
3856 Use &RightUse = Merge->getOperandUse(1);
3857
3858 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3859 LHS = LeftUse;
3860 RHS = RightUse;
3861 return true;
3862 }
3863
3864 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3865 LHS = RightUse;
3866 RHS = LeftUse;
3867 return true;
3868 }
3869
3870 return false;
3871}
3872
3873const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003874 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003875 const Loop *L = LI.getLoopFor(PN->getParent());
3876
Sanjoy Das55015d22015-10-02 23:09:44 +00003877 // Try to match
3878 //
3879 // br %cond, label %left, label %right
3880 // left:
3881 // br label %merge
3882 // right:
3883 // br label %merge
3884 // merge:
3885 // V = phi [ %x, %left ], [ %y, %right ]
3886 //
3887 // as "select %cond, %x, %y"
3888
3889 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3890 assert(IDom && "At least the entry block should dominate PN");
3891
3892 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3893 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3894
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003895 if (BI && BI->isConditional() &&
3896 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3897 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3898 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00003899 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3900 }
3901
3902 return nullptr;
3903}
3904
3905const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3906 if (const SCEV *S = createAddRecFromPHI(PN))
3907 return S;
3908
3909 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3910 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00003911
Dan Gohmana9c205c2010-02-25 06:57:05 +00003912 // If the PHI has a single incoming value, follow that value, unless the
3913 // PHI's incoming blocks are in a different loop, in which case doing so
3914 // risks breaking LCSSA form. Instcombine would normally zap these, but
3915 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003916 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI,
3917 &DT, &AC))
3918 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003919 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003920
Chris Lattnerd934c702004-04-02 20:23:17 +00003921 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003922 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003923}
3924
Sanjoy Das55015d22015-10-02 23:09:44 +00003925const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
3926 Value *Cond,
3927 Value *TrueVal,
3928 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00003929 // Handle "constant" branch or select. This can occur for instance when a
3930 // loop pass transforms an inner loop and moves on to process the outer loop.
3931 if (auto *CI = dyn_cast<ConstantInt>(Cond))
3932 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
3933
Sanjoy Dasd0671342015-10-02 19:39:59 +00003934 // Try to match some simple smax or umax patterns.
3935 auto *ICI = dyn_cast<ICmpInst>(Cond);
3936 if (!ICI)
3937 return getUnknown(I);
3938
3939 Value *LHS = ICI->getOperand(0);
3940 Value *RHS = ICI->getOperand(1);
3941
3942 switch (ICI->getPredicate()) {
3943 case ICmpInst::ICMP_SLT:
3944 case ICmpInst::ICMP_SLE:
3945 std::swap(LHS, RHS);
3946 // fall through
3947 case ICmpInst::ICMP_SGT:
3948 case ICmpInst::ICMP_SGE:
3949 // a >s b ? a+x : b+x -> smax(a, b)+x
3950 // a >s b ? b+x : a+x -> smin(a, b)+x
3951 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
3952 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
3953 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
3954 const SCEV *LA = getSCEV(TrueVal);
3955 const SCEV *RA = getSCEV(FalseVal);
3956 const SCEV *LDiff = getMinusSCEV(LA, LS);
3957 const SCEV *RDiff = getMinusSCEV(RA, RS);
3958 if (LDiff == RDiff)
3959 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3960 LDiff = getMinusSCEV(LA, RS);
3961 RDiff = getMinusSCEV(RA, LS);
3962 if (LDiff == RDiff)
3963 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3964 }
3965 break;
3966 case ICmpInst::ICMP_ULT:
3967 case ICmpInst::ICMP_ULE:
3968 std::swap(LHS, RHS);
3969 // fall through
3970 case ICmpInst::ICMP_UGT:
3971 case ICmpInst::ICMP_UGE:
3972 // a >u b ? a+x : b+x -> umax(a, b)+x
3973 // a >u b ? b+x : a+x -> umin(a, b)+x
3974 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
3975 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
3976 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
3977 const SCEV *LA = getSCEV(TrueVal);
3978 const SCEV *RA = getSCEV(FalseVal);
3979 const SCEV *LDiff = getMinusSCEV(LA, LS);
3980 const SCEV *RDiff = getMinusSCEV(RA, RS);
3981 if (LDiff == RDiff)
3982 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3983 LDiff = getMinusSCEV(LA, RS);
3984 RDiff = getMinusSCEV(RA, LS);
3985 if (LDiff == RDiff)
3986 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3987 }
3988 break;
3989 case ICmpInst::ICMP_NE:
3990 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3991 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
3992 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
3993 const SCEV *One = getOne(I->getType());
3994 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
3995 const SCEV *LA = getSCEV(TrueVal);
3996 const SCEV *RA = getSCEV(FalseVal);
3997 const SCEV *LDiff = getMinusSCEV(LA, LS);
3998 const SCEV *RDiff = getMinusSCEV(RA, One);
3999 if (LDiff == RDiff)
4000 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4001 }
4002 break;
4003 case ICmpInst::ICMP_EQ:
4004 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4005 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4006 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4007 const SCEV *One = getOne(I->getType());
4008 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4009 const SCEV *LA = getSCEV(TrueVal);
4010 const SCEV *RA = getSCEV(FalseVal);
4011 const SCEV *LDiff = getMinusSCEV(LA, One);
4012 const SCEV *RDiff = getMinusSCEV(RA, LS);
4013 if (LDiff == RDiff)
4014 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4015 }
4016 break;
4017 default:
4018 break;
4019 }
4020
4021 return getUnknown(I);
4022}
4023
Dan Gohmanee750d12009-05-08 20:26:55 +00004024/// createNodeForGEP - Expand GEP instructions into add and multiply
4025/// operations. This allows them to be analyzed by regular SCEV code.
4026///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004027const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00004028 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00004029 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00004030 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004031 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004032
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004033 SmallVector<const SCEV *, 4> IndexExprs;
4034 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4035 IndexExprs.push_back(getSCEV(*Index));
4036 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
4037 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004038}
4039
Nick Lewycky3783b462007-11-22 07:59:40 +00004040/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4041/// guaranteed to end in (at every loop iteration). It is, at the same time,
4042/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4043/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004044uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004045ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004046 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00004047 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004048
Dan Gohmana30370b2009-05-04 22:02:23 +00004049 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004050 return std::min(GetMinTrailingZeros(T->getOperand()),
4051 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004052
Dan Gohmana30370b2009-05-04 22:02:23 +00004053 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004054 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4055 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4056 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004057 }
4058
Dan Gohmana30370b2009-05-04 22:02:23 +00004059 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004060 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4061 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4062 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004063 }
4064
Dan Gohmana30370b2009-05-04 22:02:23 +00004065 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004066 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004067 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004068 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004069 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004070 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004071 }
4072
Dan Gohmana30370b2009-05-04 22:02:23 +00004073 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004074 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004075 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4076 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004077 for (unsigned i = 1, e = M->getNumOperands();
4078 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004079 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004080 BitWidth);
4081 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004082 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004083
Dan Gohmana30370b2009-05-04 22:02:23 +00004084 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004085 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004086 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004087 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004088 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004089 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004090 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004091
Dan Gohmana30370b2009-05-04 22:02:23 +00004092 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004093 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004094 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004095 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004096 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004097 return MinOpRes;
4098 }
4099
Dan Gohmana30370b2009-05-04 22:02:23 +00004100 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004101 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004102 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004103 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004104 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004105 return MinOpRes;
4106 }
4107
Dan Gohmanc702fc02009-06-19 23:29:04 +00004108 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4109 // For a SCEVUnknown, ask ValueTracking.
4110 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004111 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004112 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(),
4113 0, &AC, nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004114 return Zeros.countTrailingOnes();
4115 }
4116
4117 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004118 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004119}
Chris Lattnerd934c702004-04-02 20:23:17 +00004120
Sanjoy Das1f05c512014-10-10 21:22:34 +00004121/// GetRangeFromMetadata - Helper method to assign a range to V from
4122/// metadata present in the IR.
4123static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4124 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00004125 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004126 ConstantRange TotalRange(
4127 cast<IntegerType>(I->getType())->getBitWidth(), false);
4128
4129 unsigned NumRanges = MD->getNumOperands() / 2;
4130 assert(NumRanges >= 1);
4131
4132 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00004133 ConstantInt *Lower =
4134 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
4135 ConstantInt *Upper =
4136 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00004137 ConstantRange Range(Lower->getValue(), Upper->getValue());
4138 TotalRange = TotalRange.unionWith(Range);
4139 }
4140
4141 return TotalRange;
4142 }
4143 }
4144
4145 return None;
4146}
4147
Sanjoy Das91b54772015-03-09 21:43:43 +00004148/// getRange - Determine the range for a particular SCEV. If SignHint is
4149/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4150/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004151///
4152ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004153ScalarEvolution::getRange(const SCEV *S,
4154 ScalarEvolution::RangeSignHint SignHint) {
4155 DenseMap<const SCEV *, ConstantRange> &Cache =
4156 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4157 : SignedRanges;
4158
Dan Gohman761065e2010-11-17 02:44:44 +00004159 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004160 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4161 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004162 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004163
4164 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00004165 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004166
Dan Gohman85be4332010-01-26 19:19:05 +00004167 unsigned BitWidth = getTypeSizeInBits(S->getType());
4168 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4169
Sanjoy Das91b54772015-03-09 21:43:43 +00004170 // If the value has known zeros, the maximum value will have those known zeros
4171 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004172 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004173 if (TZ != 0) {
4174 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4175 ConservativeResult =
4176 ConstantRange(APInt::getMinValue(BitWidth),
4177 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4178 else
4179 ConservativeResult = ConstantRange(
4180 APInt::getSignedMinValue(BitWidth),
4181 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4182 }
Dan Gohman85be4332010-01-26 19:19:05 +00004183
Dan Gohmane65c9172009-07-13 21:35:55 +00004184 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004185 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004186 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004187 X = X.add(getRange(Add->getOperand(i), SignHint));
4188 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004189 }
4190
4191 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004192 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004193 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004194 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4195 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004196 }
4197
4198 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004199 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004200 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004201 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4202 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004203 }
4204
4205 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004206 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004207 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004208 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4209 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004210 }
4211
4212 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004213 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4214 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4215 return setRange(UDiv, SignHint,
4216 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004217 }
4218
4219 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004220 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4221 return setRange(ZExt, SignHint,
4222 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004223 }
4224
4225 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004226 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4227 return setRange(SExt, SignHint,
4228 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004229 }
4230
4231 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004232 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4233 return setRange(Trunc, SignHint,
4234 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004235 }
4236
Dan Gohmane65c9172009-07-13 21:35:55 +00004237 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004238 // If there's no unsigned wrap, the value will never be less than its
4239 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00004240 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00004241 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004242 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00004243 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00004244 ConservativeResult.intersectWith(
4245 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004246
Dan Gohman51ad99d2010-01-21 02:09:26 +00004247 // If there's no signed wrap, and all the operands have the same sign or
4248 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00004249 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004250 bool AllNonNeg = true;
4251 bool AllNonPos = true;
4252 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4253 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4254 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4255 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004256 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004257 ConservativeResult = ConservativeResult.intersectWith(
4258 ConstantRange(APInt(BitWidth, 0),
4259 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004260 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004261 ConservativeResult = ConservativeResult.intersectWith(
4262 ConstantRange(APInt::getSignedMinValue(BitWidth),
4263 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004264 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004265
4266 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004267 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004268 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004269 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004270 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4271 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004272
4273 // Check for overflow. This must be done with ConstantRange arithmetic
4274 // because we could be called from within the ScalarEvolution overflow
4275 // checking code.
4276
Dan Gohmane65c9172009-07-13 21:35:55 +00004277 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004278 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4279 ConstantRange ZExtMaxBECountRange =
4280 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004281
4282 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004283 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004284 ConstantRange StepSRange = getSignedRange(Step);
4285 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004286
Sanjoy Das91b54772015-03-09 21:43:43 +00004287 ConstantRange StartURange = getUnsignedRange(Start);
4288 ConstantRange EndURange =
4289 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004290
Sanjoy Das91b54772015-03-09 21:43:43 +00004291 // Check for unsigned overflow.
4292 ConstantRange ZExtStartURange =
4293 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4294 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4295 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4296 ZExtEndURange) {
4297 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4298 EndURange.getUnsignedMin());
4299 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4300 EndURange.getUnsignedMax());
4301 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4302 if (!IsFullRange)
4303 ConservativeResult =
4304 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4305 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004306
Sanjoy Das91b54772015-03-09 21:43:43 +00004307 ConstantRange StartSRange = getSignedRange(Start);
4308 ConstantRange EndSRange =
4309 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4310
4311 // Check for signed overflow. This must be done with ConstantRange
4312 // arithmetic because we could be called from within the ScalarEvolution
4313 // overflow checking code.
4314 ConstantRange SExtStartSRange =
4315 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4316 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4317 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4318 SExtEndSRange) {
4319 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4320 EndSRange.getSignedMin());
4321 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4322 EndSRange.getSignedMax());
4323 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4324 if (!IsFullRange)
4325 ConservativeResult =
4326 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4327 }
Dan Gohmand261d272009-06-24 01:05:09 +00004328 }
Dan Gohmand261d272009-06-24 01:05:09 +00004329 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004330
Sanjoy Das91b54772015-03-09 21:43:43 +00004331 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004332 }
4333
Dan Gohmanc702fc02009-06-19 23:29:04 +00004334 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004335 // Check if the IR explicitly contains !range metadata.
4336 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4337 if (MDRange.hasValue())
4338 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4339
Sanjoy Das91b54772015-03-09 21:43:43 +00004340 // Split here to avoid paying the compile-time cost of calling both
4341 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4342 // if needed.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004343 const DataLayout &DL = F.getParent()->getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004344 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4345 // For a SCEVUnknown, ask ValueTracking.
4346 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004347 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004348 if (Ones != ~Zeros + 1)
4349 ConservativeResult =
4350 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4351 } else {
4352 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4353 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004354 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004355 if (NS > 1)
4356 ConservativeResult = ConservativeResult.intersectWith(
4357 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4358 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004359 }
4360
4361 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004362 }
4363
Sanjoy Das91b54772015-03-09 21:43:43 +00004364 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004365}
4366
Jingyue Wu42f1d672015-07-28 18:22:40 +00004367SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004368 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004369 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4370
4371 // Return early if there are no flags to propagate to the SCEV.
4372 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4373 if (BinOp->hasNoUnsignedWrap())
4374 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4375 if (BinOp->hasNoSignedWrap())
4376 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4377 if (Flags == SCEV::FlagAnyWrap) {
4378 return SCEV::FlagAnyWrap;
4379 }
4380
4381 // Here we check that BinOp is in the header of the innermost loop
4382 // containing BinOp, since we only deal with instructions in the loop
4383 // header. The actual loop we need to check later will come from an add
4384 // recurrence, but getting that requires computing the SCEV of the operands,
4385 // which can be expensive. This check we can do cheaply to rule out some
4386 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004387 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004388 if (innermostContainingLoop == nullptr ||
4389 innermostContainingLoop->getHeader() != BinOp->getParent())
4390 return SCEV::FlagAnyWrap;
4391
4392 // Only proceed if we can prove that BinOp does not yield poison.
4393 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4394
4395 // At this point we know that if V is executed, then it does not wrap
4396 // according to at least one of NSW or NUW. If V is not executed, then we do
4397 // not know if the calculation that V represents would wrap. Multiple
4398 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4399 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4400 // derived from other instructions that map to the same SCEV. We cannot make
4401 // that guarantee for cases where V is not executed. So we need to find the
4402 // loop that V is considered in relation to and prove that V is executed for
4403 // every iteration of that loop. That implies that the value that V
4404 // calculates does not wrap anywhere in the loop, so then we can apply the
4405 // flags to the SCEV.
4406 //
4407 // We check isLoopInvariant to disambiguate in case we are adding two
4408 // recurrences from different loops, so that we know which loop to prove
4409 // that V is executed in.
4410 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4411 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4412 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4413 const int OtherOpIndex = 1 - OpIndex;
4414 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4415 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4416 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4417 return Flags;
4418 }
4419 }
4420 return SCEV::FlagAnyWrap;
4421}
4422
4423/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4424/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004425///
Dan Gohmanaf752342009-07-07 17:06:11 +00004426const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004427 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004428 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004429
Dan Gohman05e89732008-06-22 19:56:46 +00004430 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004431 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004432 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004433
4434 // Don't attempt to analyze instructions in blocks that aren't
4435 // reachable. Such instructions don't matter, and they aren't required
4436 // to obey basic rules for definitions dominating uses which this
4437 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004438 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004439 return getUnknown(V);
4440 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004441 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004442 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4443 return getConstant(CI);
4444 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004445 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004446 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4447 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004448 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004449 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004450
Dan Gohman80ca01c2009-07-17 20:47:02 +00004451 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004452 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004453 case Instruction::Add: {
4454 // The simple thing to do would be to just call getSCEV on both operands
4455 // and call getAddExpr with the result. However if we're looking at a
4456 // bunch of things all added together, this can be quite inefficient,
4457 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4458 // Instead, gather up all the operands and make a single getAddExpr call.
4459 // LLVM IR canonical form means we need only traverse the left operands.
4460 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004461 for (Value *Op = U;; Op = U->getOperand(0)) {
4462 U = dyn_cast<Operator>(Op);
4463 unsigned Opcode = U ? U->getOpcode() : 0;
4464 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4465 assert(Op != V && "V should be an add");
4466 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004467 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004468 }
4469
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004470 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004471 AddOps.push_back(OpSCEV);
4472 break;
4473 }
4474
4475 // If a NUW or NSW flag can be applied to the SCEV for this
4476 // addition, then compute the SCEV for this addition by itself
4477 // with a separate call to getAddExpr. We need to do that
4478 // instead of pushing the operands of the addition onto AddOps,
4479 // since the flags are only known to apply to this particular
4480 // addition - they may not apply to other additions that can be
4481 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004482 const SCEV *RHS = getSCEV(U->getOperand(1));
4483 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4484 if (Flags != SCEV::FlagAnyWrap) {
4485 const SCEV *LHS = getSCEV(U->getOperand(0));
4486 if (Opcode == Instruction::Sub)
4487 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4488 else
4489 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4490 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004491 }
4492
Dan Gohman47308d52010-08-31 22:53:17 +00004493 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004494 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004495 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004496 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004497 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004498 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004499 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004500
Dan Gohmane5fb1032010-08-16 16:03:49 +00004501 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004502 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004503 for (Value *Op = U;; Op = U->getOperand(0)) {
4504 U = dyn_cast<Operator>(Op);
4505 if (!U || U->getOpcode() != Instruction::Mul) {
4506 assert(Op != V && "V should be a mul");
4507 MulOps.push_back(getSCEV(Op));
4508 break;
4509 }
4510
4511 if (auto *OpSCEV = getExistingSCEV(U)) {
4512 MulOps.push_back(OpSCEV);
4513 break;
4514 }
4515
4516 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4517 if (Flags != SCEV::FlagAnyWrap) {
4518 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4519 getSCEV(U->getOperand(1)), Flags));
4520 break;
4521 }
4522
Dan Gohmane5fb1032010-08-16 16:03:49 +00004523 MulOps.push_back(getSCEV(U->getOperand(1)));
4524 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004525 return getMulExpr(MulOps);
4526 }
Dan Gohman05e89732008-06-22 19:56:46 +00004527 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004528 return getUDivExpr(getSCEV(U->getOperand(0)),
4529 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004530 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004531 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4532 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004533 case Instruction::And:
4534 // For an expression like x&255 that merely masks off the high bits,
4535 // use zext(trunc(x)) as the SCEV expression.
4536 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004537 if (CI->isNullValue())
4538 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004539 if (CI->isAllOnesValue())
4540 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004541 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004542
4543 // Instcombine's ShrinkDemandedConstant may strip bits out of
4544 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004545 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004546 // knew about to reconstruct a low-bits mask value.
4547 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004548 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004549 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004550 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004551 computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004552 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004553
Nick Lewycky31eaca52014-01-27 10:04:03 +00004554 APInt EffectiveMask =
4555 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4556 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4557 const SCEV *MulCount = getConstant(
4558 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4559 return getMulExpr(
4560 getZeroExtendExpr(
4561 getTruncateExpr(
4562 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4563 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4564 U->getType()),
4565 MulCount);
4566 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004567 }
4568 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004569
Dan Gohman05e89732008-06-22 19:56:46 +00004570 case Instruction::Or:
4571 // If the RHS of the Or is a constant, we may have something like:
4572 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4573 // optimizations will transparently handle this case.
4574 //
4575 // In order for this transformation to be safe, the LHS must be of the
4576 // form X*(2^n) and the Or constant must be less than 2^n.
4577 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004578 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004579 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004580 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004581 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4582 // Build a plain add SCEV.
4583 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4584 // If the LHS of the add was an addrec and it has no-wrap flags,
4585 // transfer the no-wrap flags, since an or won't introduce a wrap.
4586 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4587 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004588 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4589 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004590 }
4591 return S;
4592 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004593 }
Dan Gohman05e89732008-06-22 19:56:46 +00004594 break;
4595 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004596 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004597 // If the RHS of the xor is a signbit, then this is just an add.
4598 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004599 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004600 return getAddExpr(getSCEV(U->getOperand(0)),
4601 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004602
4603 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004604 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004605 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004606
4607 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4608 // This is a variant of the check for xor with -1, and it handles
4609 // the case where instcombine has trimmed non-demanded bits out
4610 // of an xor with -1.
4611 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4612 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4613 if (BO->getOpcode() == Instruction::And &&
4614 LCI->getValue() == CI->getValue())
4615 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004616 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004617 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004618 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004619 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004620 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4621
Dan Gohman8b0a4192010-03-01 17:49:51 +00004622 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004623 // mask off the high bits. Complement the operand and
4624 // re-apply the zext.
4625 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4626 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4627
4628 // If C is a single bit, it may be in the sign-bit position
4629 // before the zero-extend. In this case, represent the xor
4630 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004631 APInt Trunc = CI->getValue().trunc(Z0TySize);
4632 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004633 Trunc.isSignBit())
4634 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4635 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004636 }
Dan Gohman05e89732008-06-22 19:56:46 +00004637 }
4638 break;
4639
4640 case Instruction::Shl:
4641 // Turn shift left of a constant amount into a multiply.
4642 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004643 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004644
4645 // If the shift count is not less than the bitwidth, the result of
4646 // the shift is undefined. Don't try to analyze it, because the
4647 // resolution chosen here may differ from the resolution chosen in
4648 // other parts of the compiler.
4649 if (SA->getValue().uge(BitWidth))
4650 break;
4651
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004652 // It is currently not resolved how to interpret NSW for left
4653 // shift by BitWidth - 1, so we avoid applying flags in that
4654 // case. Remove this check (or this comment) once the situation
4655 // is resolved. See
4656 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4657 // and http://reviews.llvm.org/D8890 .
4658 auto Flags = SCEV::FlagAnyWrap;
4659 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4660
Owen Andersonedb4a702009-07-24 23:12:02 +00004661 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004662 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004663 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004664 }
4665 break;
4666
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004667 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004668 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004669 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004670 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004671
4672 // If the shift count is not less than the bitwidth, the result of
4673 // the shift is undefined. Don't try to analyze it, because the
4674 // resolution chosen here may differ from the resolution chosen in
4675 // other parts of the compiler.
4676 if (SA->getValue().uge(BitWidth))
4677 break;
4678
Owen Andersonedb4a702009-07-24 23:12:02 +00004679 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004680 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004681 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004682 }
4683 break;
4684
Dan Gohman0ec05372009-04-21 02:26:00 +00004685 case Instruction::AShr:
4686 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4687 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004688 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004689 if (L->getOpcode() == Instruction::Shl &&
4690 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004691 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4692
4693 // If the shift count is not less than the bitwidth, the result of
4694 // the shift is undefined. Don't try to analyze it, because the
4695 // resolution chosen here may differ from the resolution chosen in
4696 // other parts of the compiler.
4697 if (CI->getValue().uge(BitWidth))
4698 break;
4699
Dan Gohmandf199482009-04-25 17:05:40 +00004700 uint64_t Amt = BitWidth - CI->getZExtValue();
4701 if (Amt == BitWidth)
4702 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004703 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004704 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004705 IntegerType::get(getContext(),
4706 Amt)),
4707 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004708 }
4709 break;
4710
Dan Gohman05e89732008-06-22 19:56:46 +00004711 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004712 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004713
4714 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004715 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004716
4717 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004718 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004719
4720 case Instruction::BitCast:
4721 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004722 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004723 return getSCEV(U->getOperand(0));
4724 break;
4725
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004726 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4727 // lead to pointer expressions which cannot safely be expanded to GEPs,
4728 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4729 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004730
Dan Gohmanee750d12009-05-08 20:26:55 +00004731 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004732 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004733
Dan Gohman05e89732008-06-22 19:56:46 +00004734 case Instruction::PHI:
4735 return createNodeForPHI(cast<PHINode>(U));
4736
4737 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00004738 // U can also be a select constant expr, which let fall through. Since
4739 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4740 // constant expressions cannot have instructions as operands, we'd have
4741 // returned getUnknown for a select constant expressions anyway.
4742 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00004743 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4744 U->getOperand(1), U->getOperand(2));
Dan Gohman05e89732008-06-22 19:56:46 +00004745
4746 default: // We cannot analyze this expression.
4747 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004748 }
4749
Dan Gohmanc8e23622009-04-21 23:15:49 +00004750 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004751}
4752
4753
4754
4755//===----------------------------------------------------------------------===//
4756// Iteration Count Computation Code
4757//
4758
Chandler Carruth6666c272014-10-11 00:12:11 +00004759unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4760 if (BasicBlock *ExitingBB = L->getExitingBlock())
4761 return getSmallConstantTripCount(L, ExitingBB);
4762
4763 // No trip count information for multiple exits.
4764 return 0;
4765}
4766
Andrew Trick2b6860f2011-08-11 23:36:16 +00004767/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004768/// normal unsigned value. Returns 0 if the trip count is unknown or not
4769/// constant. Will also return 0 if the maximum trip count is very large (>=
4770/// 2^32).
4771///
4772/// This "trip count" assumes that control exits via ExitingBlock. More
4773/// precisely, it is the number of times that control may reach ExitingBlock
4774/// before taking the branch. For loops with multiple exits, it may not be the
4775/// number times that the loop header executes because the loop may exit
4776/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004777unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4778 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004779 assert(ExitingBlock && "Must pass a non-null exiting block!");
4780 assert(L->isLoopExiting(ExitingBlock) &&
4781 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004782 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004783 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004784 if (!ExitCount)
4785 return 0;
4786
4787 ConstantInt *ExitConst = ExitCount->getValue();
4788
4789 // Guard against huge trip counts.
4790 if (ExitConst->getValue().getActiveBits() > 32)
4791 return 0;
4792
4793 // In case of integer overflow, this returns 0, which is correct.
4794 return ((unsigned)ExitConst->getZExtValue()) + 1;
4795}
4796
Chandler Carruth6666c272014-10-11 00:12:11 +00004797unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4798 if (BasicBlock *ExitingBB = L->getExitingBlock())
4799 return getSmallConstantTripMultiple(L, ExitingBB);
4800
4801 // No trip multiple information for multiple exits.
4802 return 0;
4803}
4804
Andrew Trick2b6860f2011-08-11 23:36:16 +00004805/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4806/// trip count of this loop as a normal unsigned value, if possible. This
4807/// means that the actual trip count is always a multiple of the returned
4808/// value (don't forget the trip count could very well be zero as well!).
4809///
4810/// Returns 1 if the trip count is unknown or not guaranteed to be the
4811/// multiple of a constant (which is also the case if the trip count is simply
4812/// constant, use getSmallConstantTripCount for that case), Will also return 1
4813/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004814///
4815/// As explained in the comments for getSmallConstantTripCount, this assumes
4816/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004817unsigned
4818ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4819 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004820 assert(ExitingBlock && "Must pass a non-null exiting block!");
4821 assert(L->isLoopExiting(ExitingBlock) &&
4822 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004823 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004824 if (ExitCount == getCouldNotCompute())
4825 return 1;
4826
4827 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004828 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004829 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4830 // to factor simple cases.
4831 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4832 TCMul = Mul->getOperand(0);
4833
4834 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4835 if (!MulC)
4836 return 1;
4837
4838 ConstantInt *Result = MulC->getValue();
4839
Hal Finkel30bd9342012-10-24 19:46:44 +00004840 // Guard against huge trip counts (this requires checking
4841 // for zero to handle the case where the trip count == -1 and the
4842 // addition wraps).
4843 if (!Result || Result->getValue().getActiveBits() > 32 ||
4844 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004845 return 1;
4846
4847 return (unsigned)Result->getZExtValue();
4848}
4849
Andrew Trick3ca3f982011-07-26 17:19:55 +00004850// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004851// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004852// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004853const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4854 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004855}
4856
Dan Gohman0bddac12009-02-24 18:55:53 +00004857/// getBackedgeTakenCount - If the specified loop has a predictable
4858/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4859/// object. The backedge-taken count is the number of times the loop header
4860/// will be branched to from within the loop. This is one less than the
4861/// trip count of the loop, since it doesn't count the first iteration,
4862/// when the header is branched to from outside the loop.
4863///
4864/// Note that it is not valid to call this method on a loop without a
4865/// loop-invariant backedge-taken count (see
4866/// hasLoopInvariantBackedgeTakenCount).
4867///
Dan Gohmanaf752342009-07-07 17:06:11 +00004868const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004869 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004870}
4871
4872/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4873/// return the least SCEV value that is known never to be less than the
4874/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004875const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004876 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004877}
4878
Dan Gohmandc191042009-07-08 19:23:34 +00004879/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4880/// onto the given Worklist.
4881static void
4882PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4883 BasicBlock *Header = L->getHeader();
4884
4885 // Push all Loop-header PHIs onto the Worklist stack.
4886 for (BasicBlock::iterator I = Header->begin();
4887 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4888 Worklist.push_back(PN);
4889}
4890
Dan Gohman2b8da352009-04-30 20:47:05 +00004891const ScalarEvolution::BackedgeTakenInfo &
4892ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004893 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004894 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004895 // update the value. The temporary CouldNotCompute value tells SCEV
4896 // code elsewhere that it shouldn't attempt to request a new
4897 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004898 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004899 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004900 if (!Pair.second)
4901 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004902
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004903 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00004904 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4905 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004906 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004907
4908 if (Result.getExact(this) != getCouldNotCompute()) {
4909 assert(isLoopInvariant(Result.getExact(this), L) &&
4910 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004911 "Computed backedge-taken count isn't loop invariant for loop!");
4912 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004913 }
4914 else if (Result.getMax(this) == getCouldNotCompute() &&
4915 isa<PHINode>(L->getHeader()->begin())) {
4916 // Only count loops that have phi nodes as not being computable.
4917 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004918 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004919
Chris Lattnera337f5e2011-01-09 02:16:18 +00004920 // Now that we know more about the trip count for this loop, forget any
4921 // existing SCEV values for PHI nodes in this loop since they are only
4922 // conservative estimates made without the benefit of trip count
4923 // information. This is similar to the code in forgetLoop, except that
4924 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004925 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004926 SmallVector<Instruction *, 16> Worklist;
4927 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004928
Chris Lattnera337f5e2011-01-09 02:16:18 +00004929 SmallPtrSet<Instruction *, 8> Visited;
4930 while (!Worklist.empty()) {
4931 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004932 if (!Visited.insert(I).second)
4933 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004934
Chris Lattnera337f5e2011-01-09 02:16:18 +00004935 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004936 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004937 if (It != ValueExprMap.end()) {
4938 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004939
Chris Lattnera337f5e2011-01-09 02:16:18 +00004940 // SCEVUnknown for a PHI either means that it has an unrecognized
4941 // structure, or it's a PHI that's in the progress of being computed
4942 // by createNodeForPHI. In the former case, additional loop trip
4943 // count information isn't going to change anything. In the later
4944 // case, createNodeForPHI will perform the necessary updates on its
4945 // own when it gets to that point.
4946 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4947 forgetMemoizedResults(Old);
4948 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004949 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004950 if (PHINode *PN = dyn_cast<PHINode>(I))
4951 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004952 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004953
4954 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004955 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004956 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004957
4958 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004959 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00004960 // recusive call to getBackedgeTakenInfo (on a different
4961 // loop), which would invalidate the iterator computed
4962 // earlier.
4963 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004964}
4965
Dan Gohman880c92a2009-10-31 15:04:55 +00004966/// forgetLoop - This method should be called by the client when it has
4967/// changed a loop in a way that may effect ScalarEvolution's ability to
4968/// compute a trip count, or if the loop is deleted.
4969void ScalarEvolution::forgetLoop(const Loop *L) {
4970 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004971 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4972 BackedgeTakenCounts.find(L);
4973 if (BTCPos != BackedgeTakenCounts.end()) {
4974 BTCPos->second.clear();
4975 BackedgeTakenCounts.erase(BTCPos);
4976 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004977
Dan Gohman880c92a2009-10-31 15:04:55 +00004978 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004979 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004980 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004981
Dan Gohmandc191042009-07-08 19:23:34 +00004982 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004983 while (!Worklist.empty()) {
4984 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004985 if (!Visited.insert(I).second)
4986 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004987
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004988 ValueExprMapType::iterator It =
4989 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004990 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004991 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004992 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004993 if (PHINode *PN = dyn_cast<PHINode>(I))
4994 ConstantEvolutionLoopExitValue.erase(PN);
4995 }
4996
4997 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004998 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004999
5000 // Forget all contained loops too, to avoid dangling entries in the
5001 // ValuesAtScopes map.
5002 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5003 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00005004}
5005
Eric Christopheref6d5932010-07-29 01:25:38 +00005006/// forgetValue - This method should be called by the client when it has
5007/// changed a value in a way that may effect its value, or which may
5008/// disconnect it from a def-use chain linking it to a loop.
5009void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005010 Instruction *I = dyn_cast<Instruction>(V);
5011 if (!I) return;
5012
5013 // Drop information about expressions based on loop-header PHIs.
5014 SmallVector<Instruction *, 16> Worklist;
5015 Worklist.push_back(I);
5016
5017 SmallPtrSet<Instruction *, 8> Visited;
5018 while (!Worklist.empty()) {
5019 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005020 if (!Visited.insert(I).second)
5021 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005022
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005023 ValueExprMapType::iterator It =
5024 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005025 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005026 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005027 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005028 if (PHINode *PN = dyn_cast<PHINode>(I))
5029 ConstantEvolutionLoopExitValue.erase(PN);
5030 }
5031
5032 PushDefUseChildren(I, Worklist);
5033 }
5034}
5035
Andrew Trick3ca3f982011-07-26 17:19:55 +00005036/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005037/// exits. A computable result can only be returned for loops with a single
5038/// exit. Returning the minimum taken count among all exits is incorrect
5039/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5040/// assumes that the limit of each loop test is never skipped. This is a valid
5041/// assumption as long as the loop exits via that test. For precise results, it
5042/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005043/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005044const SCEV *
5045ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5046 // If any exits were not computable, the loop is not computable.
5047 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5048
Andrew Trick90c7a102011-11-16 00:52:40 +00005049 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005050 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005051 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5052
Craig Topper9f008862014-04-15 04:59:12 +00005053 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005054 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005055 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005056
5057 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5058
5059 if (!BECount)
5060 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00005061 else if (BECount != ENT->ExactNotTaken)
5062 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005063 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00005064 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005065 return BECount;
5066}
5067
5068/// getExact - Get the exact not taken count for this loop exit.
5069const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005070ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005071 ScalarEvolution *SE) const {
5072 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005073 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005074
Andrew Trick77c55422011-08-02 04:23:35 +00005075 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005076 return ENT->ExactNotTaken;
5077 }
5078 return SE->getCouldNotCompute();
5079}
5080
5081/// getMax - Get the max backedge taken count for the loop.
5082const SCEV *
5083ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5084 return Max ? Max : SE->getCouldNotCompute();
5085}
5086
Andrew Trick9093e152013-03-26 03:14:53 +00005087bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5088 ScalarEvolution *SE) const {
5089 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5090 return true;
5091
5092 if (!ExitNotTaken.ExitingBlock)
5093 return false;
5094
5095 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005096 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00005097
5098 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5099 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5100 return true;
5101 }
5102 }
5103 return false;
5104}
5105
Andrew Trick3ca3f982011-07-26 17:19:55 +00005106/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5107/// computable exit into a persistent ExitNotTakenInfo array.
5108ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5109 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5110 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5111
5112 if (!Complete)
5113 ExitNotTaken.setIncomplete();
5114
5115 unsigned NumExits = ExitCounts.size();
5116 if (NumExits == 0) return;
5117
Andrew Trick77c55422011-08-02 04:23:35 +00005118 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005119 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5120 if (NumExits == 1) return;
5121
5122 // Handle the rare case of multiple computable exits.
5123 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5124
5125 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5126 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5127 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00005128 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005129 ENT->ExactNotTaken = ExitCounts[i].second;
5130 }
5131}
5132
5133/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5134void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005135 ExitNotTaken.ExitingBlock = nullptr;
5136 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005137 delete[] ExitNotTaken.getNextExit();
5138}
5139
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005140/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005141/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005142ScalarEvolution::BackedgeTakenInfo
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005143ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005144 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005145 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005146
Andrew Trick839e30b2014-05-23 19:47:13 +00005147 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005148 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005149 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005150 const SCEV *MustExitMaxBECount = nullptr;
5151 const SCEV *MayExitMaxBECount = nullptr;
5152
5153 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5154 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00005155 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005156 BasicBlock *ExitBB = ExitingBlocks[i];
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005157 ExitLimit EL = computeExitLimit(L, ExitBB);
Andrew Trick839e30b2014-05-23 19:47:13 +00005158
5159 // 1. For each exit that can be computed, add an entry to ExitCounts.
5160 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005161 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005162 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005163 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005164 CouldComputeBECount = false;
5165 else
Andrew Trick839e30b2014-05-23 19:47:13 +00005166 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005167
Andrew Trick839e30b2014-05-23 19:47:13 +00005168 // 2. Derive the loop's MaxBECount from each exit's max number of
5169 // non-exiting iterations. Partition the loop exits into two kinds:
5170 // LoopMustExits and LoopMayExits.
5171 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005172 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5173 // is a LoopMayExit. If any computable LoopMustExit is found, then
5174 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5175 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5176 // considered greater than any computable EL.Max.
5177 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005178 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005179 if (!MustExitMaxBECount)
5180 MustExitMaxBECount = EL.Max;
5181 else {
5182 MustExitMaxBECount =
5183 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005184 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005185 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5186 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5187 MayExitMaxBECount = EL.Max;
5188 else {
5189 MayExitMaxBECount =
5190 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5191 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005192 }
Dan Gohman96212b62009-06-22 00:31:57 +00005193 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005194 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5195 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005196 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005197}
5198
Andrew Trick3ca3f982011-07-26 17:19:55 +00005199ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005200ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005201
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005202 // Okay, we've chosen an exiting block. See what condition causes us to exit
5203 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005204 // lead to the loop header.
5205 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005206 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005207 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5208 SI != SE; ++SI)
5209 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005210 if (Exit) // Multiple exit successors.
5211 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005212 Exit = *SI;
5213 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005214 MustExecuteLoopHeader = false;
5215 }
Dan Gohmance973df2009-06-24 04:48:43 +00005216
Chris Lattner18954852007-01-07 02:24:26 +00005217 // At this point, we know we have a conditional branch that determines whether
5218 // the loop is exited. However, we don't know if the branch is executed each
5219 // time through the loop. If not, then the execution count of the branch will
5220 // not be equal to the trip count of the loop.
5221 //
5222 // Currently we check for this by checking to see if the Exit branch goes to
5223 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005224 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005225 // loop header. This is common for un-rotated loops.
5226 //
5227 // If both of those tests fail, walk up the unique predecessor chain to the
5228 // header, stopping if there is an edge that doesn't exit the loop. If the
5229 // header is reached, the execution count of the branch will be equal to the
5230 // trip count of the loop.
5231 //
5232 // More extensive analysis could be done to handle more cases here.
5233 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005234 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005235 // The simple checks failed, try climbing the unique predecessor chain
5236 // up to the header.
5237 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005238 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005239 BasicBlock *Pred = BB->getUniquePredecessor();
5240 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005241 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005242 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005243 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005244 if (PredSucc == BB)
5245 continue;
5246 // If the predecessor has a successor that isn't BB and isn't
5247 // outside the loop, assume the worst.
5248 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005249 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005250 }
5251 if (Pred == L->getHeader()) {
5252 Ok = true;
5253 break;
5254 }
5255 BB = Pred;
5256 }
5257 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005258 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005259 }
5260
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005261 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005262 TerminatorInst *Term = ExitingBlock->getTerminator();
5263 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5264 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5265 // Proceed to the next level to examine the exit condition expression.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005266 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
Benjamin Kramer5a188542014-02-11 15:44:32 +00005267 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005268 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005269 }
5270
5271 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005272 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005273 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005274
5275 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005276}
5277
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005278/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005279/// backedge of the specified loop will execute if its exit condition
5280/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005281///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005282/// @param ControlsExit is true if ExitCond directly controls the exit
5283/// branch. In this case, we can assume that the loop exits only if the
5284/// condition is true and can infer that failing to meet the condition prior to
5285/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005286ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005287ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005288 Value *ExitCond,
5289 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005290 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005291 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005292 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005293 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5294 if (BO->getOpcode() == Instruction::And) {
5295 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005296 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005297 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005298 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005299 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005300 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005301 const SCEV *BECount = getCouldNotCompute();
5302 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005303 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005304 // Both conditions must be true for the loop to continue executing.
5305 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005306 if (EL0.Exact == getCouldNotCompute() ||
5307 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005308 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005309 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005310 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5311 if (EL0.Max == getCouldNotCompute())
5312 MaxBECount = EL1.Max;
5313 else if (EL1.Max == getCouldNotCompute())
5314 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005315 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005316 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005317 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005318 // Both conditions must be true at the same time for the loop to exit.
5319 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005320 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005321 if (EL0.Max == EL1.Max)
5322 MaxBECount = EL0.Max;
5323 if (EL0.Exact == EL1.Exact)
5324 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005325 }
5326
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005327 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005328 }
5329 if (BO->getOpcode() == Instruction::Or) {
5330 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005331 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005332 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005333 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005334 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005335 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005336 const SCEV *BECount = getCouldNotCompute();
5337 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005338 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005339 // Both conditions must be false for the loop to continue executing.
5340 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005341 if (EL0.Exact == getCouldNotCompute() ||
5342 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005343 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005344 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005345 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5346 if (EL0.Max == getCouldNotCompute())
5347 MaxBECount = EL1.Max;
5348 else if (EL1.Max == getCouldNotCompute())
5349 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005350 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005351 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005352 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005353 // Both conditions must be false at the same time for the loop to exit.
5354 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005355 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005356 if (EL0.Max == EL1.Max)
5357 MaxBECount = EL0.Max;
5358 if (EL0.Exact == EL1.Exact)
5359 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005360 }
5361
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005362 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005363 }
5364 }
5365
5366 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005367 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005368 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005369 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005370
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005371 // Check for a constant condition. These are normally stripped out by
5372 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5373 // preserve the CFG and is temporarily leaving constant conditions
5374 // in place.
5375 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5376 if (L->contains(FBB) == !CI->getZExtValue())
5377 // The backedge is always taken.
5378 return getCouldNotCompute();
5379 else
5380 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005381 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005382 }
5383
Eli Friedmanebf98b02009-05-09 12:32:42 +00005384 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005385 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005386}
5387
Andrew Trick3ca3f982011-07-26 17:19:55 +00005388ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005389ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005390 ICmpInst *ExitCond,
5391 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005392 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005393 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005394
Reid Spencer266e42b2006-12-23 06:05:41 +00005395 // If the condition was exit on true, convert the condition to exit on false
5396 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005397 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005398 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005399 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005400 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005401
5402 // Handle common loops like: for (X = "string"; *X; ++X)
5403 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5404 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005405 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005406 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005407 if (ItCnt.hasAnyInfo())
5408 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005409 }
5410
Dan Gohmanaf752342009-07-07 17:06:11 +00005411 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5412 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005413
5414 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005415 LHS = getSCEVAtScope(LHS, L);
5416 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005417
Dan Gohmance973df2009-06-24 04:48:43 +00005418 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005419 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005420 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005421 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005422 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005423 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005424 }
5425
Dan Gohman81585c12010-05-03 16:35:17 +00005426 // Simplify the operands before analyzing them.
5427 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5428
Chris Lattnerd934c702004-04-02 20:23:17 +00005429 // If we have a comparison of a chrec against a constant, try to use value
5430 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005431 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5432 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005433 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005434 // Form the constant range.
5435 ConstantRange CompRange(
5436 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005437
Dan Gohmanaf752342009-07-07 17:06:11 +00005438 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005439 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005440 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005441
Chris Lattnerd934c702004-04-02 20:23:17 +00005442 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005443 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005444 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005445 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005446 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005447 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005448 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005449 case ICmpInst::ICMP_EQ: { // while (X == Y)
5450 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005451 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5452 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005453 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005454 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005455 case ICmpInst::ICMP_SLT:
5456 case ICmpInst::ICMP_ULT: { // while (X < Y)
5457 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005458 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005459 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005460 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005461 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005462 case ICmpInst::ICMP_SGT:
5463 case ICmpInst::ICMP_UGT: { // while (X > Y)
5464 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005465 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005466 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005467 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005468 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005469 default:
Chris Lattner09169212004-04-02 20:26:46 +00005470#if 0
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005471 dbgs() << "computeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005472 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005473 dbgs() << "[unsigned] ";
5474 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005475 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005476 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005477#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005478 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005479 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005480 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005481}
5482
Benjamin Kramer5a188542014-02-11 15:44:32 +00005483ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005484ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005485 SwitchInst *Switch,
5486 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005487 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005488 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5489
5490 // Give up if the exit is the default dest of a switch.
5491 if (Switch->getDefaultDest() == ExitingBlock)
5492 return getCouldNotCompute();
5493
5494 assert(L->contains(Switch->getDefaultDest()) &&
5495 "Default case must not exit the loop!");
5496 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5497 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5498
5499 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005500 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005501 if (EL.hasAnyInfo())
5502 return EL;
5503
5504 return getCouldNotCompute();
5505}
5506
Chris Lattnerec901cc2004-10-12 01:49:27 +00005507static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005508EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5509 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005510 const SCEV *InVal = SE.getConstant(C);
5511 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005512 assert(isa<SCEVConstant>(Val) &&
5513 "Evaluation of SCEV at constant didn't fold correctly?");
5514 return cast<SCEVConstant>(Val)->getValue();
5515}
5516
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005517/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005518/// 'icmp op load X, cst', try to see if we can compute the backedge
5519/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005520ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005521ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00005522 LoadInst *LI,
5523 Constant *RHS,
5524 const Loop *L,
5525 ICmpInst::Predicate predicate) {
5526
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005527 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005528
5529 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005530 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005531 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005532 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005533
5534 // Make sure that it is really a constant global we are gepping, with an
5535 // initializer, and make sure the first IDX is really 0.
5536 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005537 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005538 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5539 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005540 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005541
5542 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005543 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005544 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005545 unsigned VarIdxNum = 0;
5546 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5547 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5548 Indexes.push_back(CI);
5549 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005550 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005551 VarIdx = GEP->getOperand(i);
5552 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005553 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005554 }
5555
Andrew Trick7004e4b2012-03-26 22:33:59 +00005556 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5557 if (!VarIdx)
5558 return getCouldNotCompute();
5559
Chris Lattnerec901cc2004-10-12 01:49:27 +00005560 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5561 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005562 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005563 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005564
5565 // We can only recognize very limited forms of loop index expressions, in
5566 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005567 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005568 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005569 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5570 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005571 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005572
5573 unsigned MaxSteps = MaxBruteForceIterations;
5574 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005575 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005576 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005577 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005578
5579 // Form the GEP offset.
5580 Indexes[VarIdxNum] = Val;
5581
Chris Lattnere166a852012-01-24 05:49:24 +00005582 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5583 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005584 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005585
5586 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005587 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005588 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005589 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005590#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005591 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005592 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5593 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005594#endif
5595 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005596 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005597 }
5598 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005599 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005600}
5601
5602
Chris Lattnerdd730472004-04-17 22:58:41 +00005603/// CanConstantFold - Return true if we can constant fold an instruction of the
5604/// specified type, assuming that all operands were constants.
5605static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005606 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005607 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5608 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005609 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005610
Chris Lattnerdd730472004-04-17 22:58:41 +00005611 if (const CallInst *CI = dyn_cast<CallInst>(I))
5612 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005613 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005614 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005615}
5616
Andrew Trick3a86ba72011-10-05 03:25:31 +00005617/// Determine whether this instruction can constant evolve within this loop
5618/// assuming its operands can all constant evolve.
5619static bool canConstantEvolve(Instruction *I, const Loop *L) {
5620 // An instruction outside of the loop can't be derived from a loop PHI.
5621 if (!L->contains(I)) return false;
5622
5623 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005624 // We don't currently keep track of the control flow needed to evaluate
5625 // PHIs, so we cannot handle PHIs inside of loops.
5626 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005627 }
5628
5629 // If we won't be able to constant fold this expression even if the operands
5630 // are constants, bail early.
5631 return CanConstantFold(I);
5632}
5633
5634/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5635/// recursing through each instruction operand until reaching a loop header phi.
5636static PHINode *
5637getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005638 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005639
5640 // Otherwise, we can evaluate this instruction if all of its operands are
5641 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005642 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005643 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5644 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5645
5646 if (isa<Constant>(*OpI)) continue;
5647
5648 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005649 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005650
5651 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005652 if (!P)
5653 // If this operand is already visited, reuse the prior result.
5654 // We may have P != PHI if this is the deepest point at which the
5655 // inconsistent paths meet.
5656 P = PHIMap.lookup(OpInst);
5657 if (!P) {
5658 // Recurse and memoize the results, whether a phi is found or not.
5659 // This recursive call invalidates pointers into PHIMap.
5660 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5661 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005662 }
Craig Topper9f008862014-04-15 04:59:12 +00005663 if (!P)
5664 return nullptr; // Not evolving from PHI
5665 if (PHI && PHI != P)
5666 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005667 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005668 }
5669 // This is a expression evolving from a constant PHI!
5670 return PHI;
5671}
5672
Chris Lattnerdd730472004-04-17 22:58:41 +00005673/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5674/// in the loop that V is derived from. We allow arbitrary operations along the
5675/// way, but the operands of an operation must either be constants or a value
5676/// derived from a constant PHI. If this expression does not fit with these
5677/// constraints, return null.
5678static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005679 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005680 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005681
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00005682 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00005683 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00005684
Andrew Trick3a86ba72011-10-05 03:25:31 +00005685 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005686 DenseMap<Instruction *, PHINode *> PHIMap;
5687 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005688}
5689
5690/// EvaluateExpression - Given an expression that passes the
5691/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5692/// in the loop has the value PHIVal. If we can't fold this expression for some
5693/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005694static Constant *EvaluateExpression(Value *V, const Loop *L,
5695 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005696 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005697 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005698 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005699 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005700 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005701 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005702
Andrew Trick3a86ba72011-10-05 03:25:31 +00005703 if (Constant *C = Vals.lookup(I)) return C;
5704
Nick Lewyckya6674c72011-10-22 19:58:20 +00005705 // An instruction inside the loop depends on a value outside the loop that we
5706 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005707 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005708
5709 // An unmapped PHI can be due to a branch or another loop inside this loop,
5710 // or due to this not being the initial iteration through a loop where we
5711 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005712 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005713
Dan Gohmanf820bd32010-06-22 13:15:46 +00005714 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005715
5716 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005717 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5718 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005719 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005720 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005721 continue;
5722 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005723 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005724 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005725 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005726 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005727 }
5728
Nick Lewyckya6674c72011-10-22 19:58:20 +00005729 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005730 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005731 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005732 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5733 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005734 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005735 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005736 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005737 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005738}
5739
5740/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5741/// in the header of its containing loop, we know the loop executes a
5742/// constant number of times, and the PHI node is just a recurrence
5743/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005744Constant *
5745ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005746 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005747 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00005748 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00005749 if (I != ConstantEvolutionLoopExitValue.end())
5750 return I->second;
5751
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005752 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005753 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005754
5755 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5756
Andrew Trick3a86ba72011-10-05 03:25:31 +00005757 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005758 BasicBlock *Header = L->getHeader();
5759 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005760
Sanjoy Dasdd709962015-10-08 18:28:36 +00005761 BasicBlock *Latch = L->getLoopLatch();
5762 if (!Latch)
5763 return nullptr;
5764
5765 // Since the loop has one latch, the PHI node must have two entries. One
Chris Lattnerdd730472004-04-17 22:58:41 +00005766 // entry must be a constant (coming in from outside of the loop), and the
5767 // second must be derived from the same PHI.
Sanjoy Dasdd709962015-10-08 18:28:36 +00005768
5769 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0)
5770 ? PN->getIncomingBlock(1)
5771 : PN->getIncomingBlock(0);
5772
5773 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!");
5774
5775 // Note: not all PHI nodes in the same block have to have their incoming
5776 // values in the same order, so we use the basic block to look up the incoming
5777 // value, not an index.
5778
Sanjoy Das4493b402015-10-07 17:38:25 +00005779 for (auto &I : *Header) {
5780 PHINode *PHI = dyn_cast<PHINode>(&I);
5781 if (!PHI) break;
5782 auto *StartCST =
Sanjoy Dasdd709962015-10-08 18:28:36 +00005783 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch));
Craig Topper9f008862014-04-15 04:59:12 +00005784 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005785 CurrentIterVals[PHI] = StartCST;
5786 }
5787 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005788 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005789
Sanjoy Dasdd709962015-10-08 18:28:36 +00005790 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00005791
5792 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005793 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005794 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005795
Dan Gohman0bddac12009-02-24 18:55:53 +00005796 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005797 unsigned IterationNum = 0;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005798 const DataLayout &DL = F.getParent()->getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005799 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005800 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005801 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005802
Nick Lewyckya6674c72011-10-22 19:58:20 +00005803 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005804 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005805 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005806 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005807 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005808 if (!NextPHI)
5809 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005810 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005811
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005812 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5813
Nick Lewyckya6674c72011-10-22 19:58:20 +00005814 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5815 // cease to be able to evaluate one of them or if they stop evolving,
5816 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005817 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00005818 for (const auto &I : CurrentIterVals) {
5819 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005820 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00005821 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005822 }
5823 // We use two distinct loops because EvaluateExpression may invalidate any
5824 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00005825 for (const auto &I : PHIsToCompute) {
5826 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005827 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005828 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00005829 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005830 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005831 }
Sanjoy Das4493b402015-10-07 17:38:25 +00005832 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005833 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005834 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005835
5836 // If all entries in CurrentIterVals == NextIterVals then we can stop
5837 // iterating, the loop can't continue to change.
5838 if (StoppedEvolving)
5839 return RetVal = CurrentIterVals[PN];
5840
Andrew Trick3a86ba72011-10-05 03:25:31 +00005841 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005842 }
5843}
5844
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005845const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00005846 Value *Cond,
5847 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005848 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005849 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005850
Dan Gohman866971e2010-06-19 14:17:24 +00005851 // If the loop is canonicalized, the PHI will have exactly two entries.
5852 // That's the only form we support here.
5853 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5854
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005855 DenseMap<Instruction *, Constant *> CurrentIterVals;
5856 BasicBlock *Header = L->getHeader();
5857 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5858
Sanjoy Dasdd709962015-10-08 18:28:36 +00005859 BasicBlock *Latch = L->getLoopLatch();
5860 assert(Latch && "Should follow from NumIncomingValues == 2!");
5861
5862 // NonLatch is the preheader, or something equivalent.
5863 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0)
5864 ? PN->getIncomingBlock(1)
5865 : PN->getIncomingBlock(0);
5866
5867 // Note: not all PHI nodes in the same block have to have their incoming
5868 // values in the same order, so we use the basic block to look up the incoming
5869 // value, not an index.
5870
Sanjoy Das4493b402015-10-07 17:38:25 +00005871 for (auto &I : *Header) {
5872 PHINode *PHI = dyn_cast<PHINode>(&I);
5873 if (!PHI)
5874 break;
5875 auto *StartCST =
Sanjoy Dasdd709962015-10-08 18:28:36 +00005876 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch));
Craig Topper9f008862014-04-15 04:59:12 +00005877 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005878 CurrentIterVals[PHI] = StartCST;
5879 }
5880 if (!CurrentIterVals.count(PN))
5881 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005882
5883 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5884 // the loop symbolically to determine when the condition gets a value of
5885 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00005886 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005887 const DataLayout &DL = F.getParent()->getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005888 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00005889 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005890 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005891
Zhou Sheng75b871f2007-01-11 12:24:14 +00005892 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005893 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005894
Reid Spencer983e3b32007-03-01 07:25:48 +00005895 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005896 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005897 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005898 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005899
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005900 // Update all the PHI nodes for the next iteration.
5901 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005902
5903 // Create a list of which PHIs we need to compute. We want to do this before
5904 // calling EvaluateExpression on them because that may invalidate iterators
5905 // into CurrentIterVals.
5906 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00005907 for (const auto &I : CurrentIterVals) {
5908 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005909 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005910 PHIsToCompute.push_back(PHI);
5911 }
Sanjoy Das4493b402015-10-07 17:38:25 +00005912 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005913 Constant *&NextPHI = NextIterVals[PHI];
5914 if (NextPHI) continue; // Already computed!
5915
Sanjoy Dasdd709962015-10-08 18:28:36 +00005916 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005917 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005918 }
5919 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005920 }
5921
5922 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005923 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005924}
5925
Dan Gohman237d9e52009-09-03 15:00:26 +00005926/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005927/// at the specified scope in the program. The L value specifies a loop
5928/// nest to evaluate the expression at, where null is the top-level or a
5929/// specified loop is immediately inside of the loop.
5930///
5931/// This method can be used to compute the exit value for a variable defined
5932/// in a loop by querying what the value will hold in the parent loop.
5933///
Dan Gohman8ca08852009-05-24 23:25:42 +00005934/// In the case that a relevant loop exit value cannot be computed, the
5935/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005936const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005937 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005938 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5939 for (unsigned u = 0; u < Values.size(); u++) {
5940 if (Values[u].first == L)
5941 return Values[u].second ? Values[u].second : V;
5942 }
Craig Topper9f008862014-04-15 04:59:12 +00005943 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005944 // Otherwise compute it.
5945 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005946 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5947 for (unsigned u = Values2.size(); u > 0; u--) {
5948 if (Values2[u - 1].first == L) {
5949 Values2[u - 1].second = C;
5950 break;
5951 }
5952 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005953 return C;
5954}
5955
Nick Lewyckya6674c72011-10-22 19:58:20 +00005956/// This builds up a Constant using the ConstantExpr interface. That way, we
5957/// will return Constants for objects which aren't represented by a
5958/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5959/// Returns NULL if the SCEV isn't representable as a Constant.
5960static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005961 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005962 case scCouldNotCompute:
5963 case scAddRecExpr:
5964 break;
5965 case scConstant:
5966 return cast<SCEVConstant>(V)->getValue();
5967 case scUnknown:
5968 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5969 case scSignExtend: {
5970 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5971 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5972 return ConstantExpr::getSExt(CastOp, SS->getType());
5973 break;
5974 }
5975 case scZeroExtend: {
5976 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5977 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5978 return ConstantExpr::getZExt(CastOp, SZ->getType());
5979 break;
5980 }
5981 case scTruncate: {
5982 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5983 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5984 return ConstantExpr::getTrunc(CastOp, ST->getType());
5985 break;
5986 }
5987 case scAddExpr: {
5988 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5989 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005990 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5991 unsigned AS = PTy->getAddressSpace();
5992 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5993 C = ConstantExpr::getBitCast(C, DestPtrTy);
5994 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005995 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5996 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005997 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005998
5999 // First pointer!
6000 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006001 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006002 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006003 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006004 // The offsets have been converted to bytes. We can add bytes to an
6005 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006006 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006007 }
6008
6009 // Don't bother trying to sum two pointers. We probably can't
6010 // statically compute a load that results from it anyway.
6011 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006012 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006013
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006014 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6015 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006016 C2 = ConstantExpr::getIntegerCast(
6017 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006018 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006019 } else
6020 C = ConstantExpr::getAdd(C, C2);
6021 }
6022 return C;
6023 }
6024 break;
6025 }
6026 case scMulExpr: {
6027 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6028 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6029 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006030 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006031 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6032 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006033 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006034 C = ConstantExpr::getMul(C, C2);
6035 }
6036 return C;
6037 }
6038 break;
6039 }
6040 case scUDivExpr: {
6041 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6042 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6043 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6044 if (LHS->getType() == RHS->getType())
6045 return ConstantExpr::getUDiv(LHS, RHS);
6046 break;
6047 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006048 case scSMaxExpr:
6049 case scUMaxExpr:
6050 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006051 }
Craig Topper9f008862014-04-15 04:59:12 +00006052 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006053}
6054
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006055const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006056 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006057
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006058 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006059 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006060 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006061 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006062 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006063 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6064 if (PHINode *PN = dyn_cast<PHINode>(I))
6065 if (PN->getParent() == LI->getHeader()) {
6066 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006067 // to see if the loop that contains it has a known backedge-taken
6068 // count. If so, we may be able to force computation of the exit
6069 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006070 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006071 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006072 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006073 // Okay, we know how many times the containing loop executes. If
6074 // this is a constant evolving PHI node, get the final value at
6075 // the specified iteration number.
6076 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00006077 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00006078 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006079 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006080 }
6081 }
6082
Reid Spencere6328ca2006-12-04 21:33:23 +00006083 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006084 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006085 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006086 // result. This is particularly useful for computing loop exit values.
6087 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006088 SmallVector<Constant *, 4> Operands;
6089 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006090 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006091 if (Constant *C = dyn_cast<Constant>(Op)) {
6092 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006093 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006094 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006095
6096 // If any of the operands is non-constant and if they are
6097 // non-integer and non-pointer, don't even try to analyze them
6098 // with scev techniques.
6099 if (!isSCEVable(Op->getType()))
6100 return V;
6101
6102 const SCEV *OrigV = getSCEV(Op);
6103 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6104 MadeImprovement |= OrigV != OpV;
6105
Nick Lewyckya6674c72011-10-22 19:58:20 +00006106 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006107 if (!C) return V;
6108 if (C->getType() != Op->getType())
6109 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6110 Op->getType(),
6111 false),
6112 C, Op->getType());
6113 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006114 }
Dan Gohmance973df2009-06-24 04:48:43 +00006115
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006116 // Check to see if getSCEVAtScope actually made an improvement.
6117 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006118 Constant *C = nullptr;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006119 const DataLayout &DL = F.getParent()->getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006120 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006121 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006122 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006123 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6124 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006125 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006126 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006127 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006128 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006129 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006130 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006131 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006132 }
6133 }
6134
6135 // This is some other type of SCEVUnknown, just return it.
6136 return V;
6137 }
6138
Dan Gohmana30370b2009-05-04 22:02:23 +00006139 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006140 // Avoid performing the look-up in the common case where the specified
6141 // expression has no loop-variant portions.
6142 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006143 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006144 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006145 // Okay, at least one of these operands is loop variant but might be
6146 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006147 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6148 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006149 NewOps.push_back(OpAtScope);
6150
6151 for (++i; i != e; ++i) {
6152 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006153 NewOps.push_back(OpAtScope);
6154 }
6155 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006156 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006157 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006158 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006159 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006160 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006161 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006162 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006163 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006164 }
6165 }
6166 // If we got here, all operands are loop invariant.
6167 return Comm;
6168 }
6169
Dan Gohmana30370b2009-05-04 22:02:23 +00006170 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006171 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6172 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006173 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6174 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006175 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006176 }
6177
6178 // If this is a loop recurrence for a loop that does not contain L, then we
6179 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006180 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006181 // First, attempt to evaluate each operand.
6182 // Avoid performing the look-up in the common case where the specified
6183 // expression has no loop-variant portions.
6184 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6185 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6186 if (OpAtScope == AddRec->getOperand(i))
6187 continue;
6188
6189 // Okay, at least one of these operands is loop variant but might be
6190 // foldable. Build a new instance of the folded commutative expression.
6191 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6192 AddRec->op_begin()+i);
6193 NewOps.push_back(OpAtScope);
6194 for (++i; i != e; ++i)
6195 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6196
Andrew Trick759ba082011-04-27 01:21:25 +00006197 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006198 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006199 AddRec->getNoWrapFlags(SCEV::FlagNW));
6200 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006201 // The addrec may be folded to a nonrecurrence, for example, if the
6202 // induction variable is multiplied by zero after constant folding. Go
6203 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006204 if (!AddRec)
6205 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006206 break;
6207 }
6208
6209 // If the scope is outside the addrec's loop, evaluate it by using the
6210 // loop exit value of the addrec.
6211 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006212 // To evaluate this recurrence, we need to know how many times the AddRec
6213 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006214 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006215 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006216
Eli Friedman61f67622008-08-04 23:49:06 +00006217 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006218 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006219 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006220
Dan Gohman8ca08852009-05-24 23:25:42 +00006221 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006222 }
6223
Dan Gohmana30370b2009-05-04 22:02:23 +00006224 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006225 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006226 if (Op == Cast->getOperand())
6227 return Cast; // must be loop invariant
6228 return getZeroExtendExpr(Op, Cast->getType());
6229 }
6230
Dan Gohmana30370b2009-05-04 22:02:23 +00006231 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006232 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006233 if (Op == Cast->getOperand())
6234 return Cast; // must be loop invariant
6235 return getSignExtendExpr(Op, Cast->getType());
6236 }
6237
Dan Gohmana30370b2009-05-04 22:02:23 +00006238 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006239 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006240 if (Op == Cast->getOperand())
6241 return Cast; // must be loop invariant
6242 return getTruncateExpr(Op, Cast->getType());
6243 }
6244
Torok Edwinfbcc6632009-07-14 16:55:14 +00006245 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006246}
6247
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006248/// getSCEVAtScope - This is a convenience function which does
6249/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006250const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006251 return getSCEVAtScope(getSCEV(V), L);
6252}
6253
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006254/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6255/// following equation:
6256///
6257/// A * X = B (mod N)
6258///
6259/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6260/// A and B isn't important.
6261///
6262/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006263static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006264 ScalarEvolution &SE) {
6265 uint32_t BW = A.getBitWidth();
6266 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6267 assert(A != 0 && "A must be non-zero.");
6268
6269 // 1. D = gcd(A, N)
6270 //
6271 // The gcd of A and N may have only one prime factor: 2. The number of
6272 // trailing zeros in A is its multiplicity
6273 uint32_t Mult2 = A.countTrailingZeros();
6274 // D = 2^Mult2
6275
6276 // 2. Check if B is divisible by D.
6277 //
6278 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6279 // is not less than multiplicity of this prime factor for D.
6280 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006281 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006282
6283 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6284 // modulo (N / D).
6285 //
6286 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6287 // bit width during computations.
6288 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6289 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006290 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006291 APInt I = AD.multiplicativeInverse(Mod);
6292
6293 // 4. Compute the minimum unsigned root of the equation:
6294 // I * (B / D) mod (N / D)
6295 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6296
6297 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6298 // bits.
6299 return SE.getConstant(Result.trunc(BW));
6300}
Chris Lattnerd934c702004-04-02 20:23:17 +00006301
6302/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6303/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6304/// might be the same) or two SCEVCouldNotCompute objects.
6305///
Dan Gohmanaf752342009-07-07 17:06:11 +00006306static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006307SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006308 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006309 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6310 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6311 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006312
Chris Lattnerd934c702004-04-02 20:23:17 +00006313 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006314 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006315 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006316 return std::make_pair(CNC, CNC);
6317 }
6318
Reid Spencer983e3b32007-03-01 07:25:48 +00006319 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006320 const APInt &L = LC->getValue()->getValue();
6321 const APInt &M = MC->getValue()->getValue();
6322 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006323 APInt Two(BitWidth, 2);
6324 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006325
Dan Gohmance973df2009-06-24 04:48:43 +00006326 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006327 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006328 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006329 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6330 // The B coefficient is M-N/2
6331 APInt B(M);
6332 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006333
Reid Spencer983e3b32007-03-01 07:25:48 +00006334 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006335 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006336
Reid Spencer983e3b32007-03-01 07:25:48 +00006337 // Compute the B^2-4ac term.
6338 APInt SqrtTerm(B);
6339 SqrtTerm *= B;
6340 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006341
Nick Lewyckyfb780832012-08-01 09:14:36 +00006342 if (SqrtTerm.isNegative()) {
6343 // The loop is provably infinite.
6344 const SCEV *CNC = SE.getCouldNotCompute();
6345 return std::make_pair(CNC, CNC);
6346 }
6347
Reid Spencer983e3b32007-03-01 07:25:48 +00006348 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6349 // integer value or else APInt::sqrt() will assert.
6350 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006351
Dan Gohmance973df2009-06-24 04:48:43 +00006352 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006353 // The divisions must be performed as signed divisions.
6354 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006355 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006356 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006357 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006358 return std::make_pair(CNC, CNC);
6359 }
6360
Owen Anderson47db9412009-07-22 00:24:57 +00006361 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006362
6363 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006364 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006365 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006366 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006367
Dan Gohmance973df2009-06-24 04:48:43 +00006368 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006369 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006370 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006371}
6372
6373/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006374/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006375///
6376/// This is only used for loops with a "x != y" exit test. The exit condition is
6377/// now expressed as a single expression, V = x-y. So the exit test is
6378/// effectively V != 0. We know and take advantage of the fact that this
6379/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006380ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006381ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006382 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006383 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006384 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006385 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006386 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006387 }
6388
Dan Gohman48f82222009-05-04 22:30:44 +00006389 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006390 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006391 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006392
Chris Lattnerdff679f2011-01-09 22:39:48 +00006393 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6394 // the quadratic equation to solve it.
6395 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6396 std::pair<const SCEV *,const SCEV *> Roots =
6397 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006398 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6399 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006400 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006401#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006402 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006403 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006404#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006405 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006406 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006407 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6408 R1->getValue(),
6409 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006410 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006411 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006412
Chris Lattnerd934c702004-04-02 20:23:17 +00006413 // We can only use this value if the chrec ends up with an exact zero
6414 // value at this index. When solving for "X*X != 5", for example, we
6415 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006416 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006417 if (Val->isZero())
6418 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006419 }
6420 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006421 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006422 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006423
Chris Lattnerdff679f2011-01-09 22:39:48 +00006424 // Otherwise we can only handle this if it is affine.
6425 if (!AddRec->isAffine())
6426 return getCouldNotCompute();
6427
6428 // If this is an affine expression, the execution count of this branch is
6429 // the minimum unsigned root of the following equation:
6430 //
6431 // Start + Step*N = 0 (mod 2^BW)
6432 //
6433 // equivalent to:
6434 //
6435 // Step*N = -Start (mod 2^BW)
6436 //
6437 // where BW is the common bit width of Start and Step.
6438
6439 // Get the initial value for the loop.
6440 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6441 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6442
6443 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006444 //
6445 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6446 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6447 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6448 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006449 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006450 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006451 return getCouldNotCompute();
6452
Andrew Trick8b55b732011-03-14 16:50:06 +00006453 // For positive steps (counting up until unsigned overflow):
6454 // N = -Start/Step (as unsigned)
6455 // For negative steps (counting down to zero):
6456 // N = Start/-Step
6457 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006458 bool CountDown = StepC->getValue()->getValue().isNegative();
6459 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006460
6461 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006462 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6463 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006464 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6465 ConstantRange CR = getUnsignedRange(Start);
6466 const SCEV *MaxBECount;
6467 if (!CountDown && CR.getUnsignedMin().isMinValue())
6468 // When counting up, the worst starting value is 1, not 0.
6469 MaxBECount = CR.getUnsignedMax().isMinValue()
6470 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6471 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6472 else
6473 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6474 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006475 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006476 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006477
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006478 // As a special case, handle the instance where Step is a positive power of
6479 // two. In this case, determining whether Step divides Distance evenly can be
6480 // done by counting and comparing the number of trailing zeros of Step and
6481 // Distance.
6482 if (!CountDown) {
6483 const APInt &StepV = StepC->getValue()->getValue();
6484 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6485 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6486 // case is not handled as this code is guarded by !CountDown.
6487 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006488 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6489 // Here we've constrained the equation to be of the form
6490 //
6491 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6492 //
6493 // where we're operating on a W bit wide integer domain and k is
6494 // non-negative. The smallest unsigned solution for X is the trip count.
6495 //
6496 // (0) is equivalent to:
6497 //
6498 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6499 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6500 // <=> 2^k * Distance' - X = L * 2^(W - N)
6501 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6502 //
6503 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6504 // by 2^(W - N).
6505 //
6506 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6507 //
6508 // E.g. say we're solving
6509 //
6510 // 2 * Val = 2 * X (in i8) ... (3)
6511 //
6512 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6513 //
6514 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6515 // necessarily the smallest unsigned value of X that satisfies (3).
6516 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6517 // is i8 1, not i8 -127
6518
6519 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6520
6521 // Since SCEV does not have a URem node, we construct one using a truncate
6522 // and a zero extend.
6523
6524 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6525 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6526 auto *WideTy = Distance->getType();
6527
6528 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6529 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006530 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006531
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006532 // If the condition controls loop exit (the loop exits only if the expression
6533 // is true) and the addition is no-wrap we can use unsigned divide to
6534 // compute the backedge count. In this case, the step may not divide the
6535 // distance, but we don't care because if the condition is "missed" the loop
6536 // will have undefined behavior due to wrapping.
6537 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6538 const SCEV *Exact =
6539 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6540 return ExitLimit(Exact, Exact);
6541 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006542
Chris Lattnerdff679f2011-01-09 22:39:48 +00006543 // Then, try to solve the above equation provided that Start is constant.
6544 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6545 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6546 -StartC->getValue()->getValue(),
6547 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006548 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006549}
6550
6551/// HowFarToNonZero - Return the number of times a backedge checking the
6552/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006553/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006554ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006555ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006556 // Loops that look like: while (X == 0) are very strange indeed. We don't
6557 // handle them yet except for the trivial case. This could be expanded in the
6558 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006559
Chris Lattnerd934c702004-04-02 20:23:17 +00006560 // If the value is a constant, check to see if it is known to be non-zero
6561 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006562 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006563 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006564 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006565 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006566 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006567
Chris Lattnerd934c702004-04-02 20:23:17 +00006568 // We could implement others, but I really doubt anyone writes loops like
6569 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006570 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006571}
6572
Dan Gohmanf9081a22008-09-15 22:18:04 +00006573/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6574/// (which may not be an immediate predecessor) which has exactly one
6575/// successor from which BB is reachable, or null if no such block is
6576/// found.
6577///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006578std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006579ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006580 // If the block has a unique predecessor, then there is no path from the
6581 // predecessor to the block that does not go through the direct edge
6582 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006583 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006584 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006585
6586 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006587 // If the header has a unique predecessor outside the loop, it must be
6588 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006589 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006590 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006591
Dan Gohman4e3c1132010-04-15 16:19:08 +00006592 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006593}
6594
Dan Gohman450f4e02009-06-20 00:35:32 +00006595/// HasSameValue - SCEV structural equivalence is usually sufficient for
6596/// testing whether two expressions are equal, however for the purposes of
6597/// looking for a condition guarding a loop, it can be useful to be a little
6598/// more general, since a front-end may have replicated the controlling
6599/// expression.
6600///
Dan Gohmanaf752342009-07-07 17:06:11 +00006601static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006602 // Quick check to see if they are the same SCEV.
6603 if (A == B) return true;
6604
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006605 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6606 // Not all instructions that are "identical" compute the same value. For
6607 // instance, two distinct alloca instructions allocating the same type are
6608 // identical and do not read memory; but compute distinct values.
6609 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6610 };
6611
Dan Gohman450f4e02009-06-20 00:35:32 +00006612 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6613 // two different instructions with the same value. Check for this case.
6614 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6615 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6616 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6617 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006618 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00006619 return true;
6620
6621 // Otherwise assume they may have a different value.
6622 return false;
6623}
6624
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006625/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006626/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006627///
6628bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006629 const SCEV *&LHS, const SCEV *&RHS,
6630 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006631 bool Changed = false;
6632
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006633 // If we hit the max recursion limit bail out.
6634 if (Depth >= 3)
6635 return false;
6636
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006637 // Canonicalize a constant to the right side.
6638 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6639 // Check for both operands constant.
6640 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6641 if (ConstantExpr::getICmp(Pred,
6642 LHSC->getValue(),
6643 RHSC->getValue())->isNullValue())
6644 goto trivially_false;
6645 else
6646 goto trivially_true;
6647 }
6648 // Otherwise swap the operands to put the constant on the right.
6649 std::swap(LHS, RHS);
6650 Pred = ICmpInst::getSwappedPredicate(Pred);
6651 Changed = true;
6652 }
6653
6654 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006655 // addrec's loop, put the addrec on the left. Also make a dominance check,
6656 // as both operands could be addrecs loop-invariant in each other's loop.
6657 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6658 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006659 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006660 std::swap(LHS, RHS);
6661 Pred = ICmpInst::getSwappedPredicate(Pred);
6662 Changed = true;
6663 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006664 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006665
6666 // If there's a constant operand, canonicalize comparisons with boundary
6667 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6668 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6669 const APInt &RA = RC->getValue()->getValue();
6670 switch (Pred) {
6671 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6672 case ICmpInst::ICMP_EQ:
6673 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006674 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6675 if (!RA)
6676 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6677 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006678 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6679 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006680 RHS = AE->getOperand(1);
6681 LHS = ME->getOperand(1);
6682 Changed = true;
6683 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006684 break;
6685 case ICmpInst::ICMP_UGE:
6686 if ((RA - 1).isMinValue()) {
6687 Pred = ICmpInst::ICMP_NE;
6688 RHS = getConstant(RA - 1);
6689 Changed = true;
6690 break;
6691 }
6692 if (RA.isMaxValue()) {
6693 Pred = ICmpInst::ICMP_EQ;
6694 Changed = true;
6695 break;
6696 }
6697 if (RA.isMinValue()) goto trivially_true;
6698
6699 Pred = ICmpInst::ICMP_UGT;
6700 RHS = getConstant(RA - 1);
6701 Changed = true;
6702 break;
6703 case ICmpInst::ICMP_ULE:
6704 if ((RA + 1).isMaxValue()) {
6705 Pred = ICmpInst::ICMP_NE;
6706 RHS = getConstant(RA + 1);
6707 Changed = true;
6708 break;
6709 }
6710 if (RA.isMinValue()) {
6711 Pred = ICmpInst::ICMP_EQ;
6712 Changed = true;
6713 break;
6714 }
6715 if (RA.isMaxValue()) goto trivially_true;
6716
6717 Pred = ICmpInst::ICMP_ULT;
6718 RHS = getConstant(RA + 1);
6719 Changed = true;
6720 break;
6721 case ICmpInst::ICMP_SGE:
6722 if ((RA - 1).isMinSignedValue()) {
6723 Pred = ICmpInst::ICMP_NE;
6724 RHS = getConstant(RA - 1);
6725 Changed = true;
6726 break;
6727 }
6728 if (RA.isMaxSignedValue()) {
6729 Pred = ICmpInst::ICMP_EQ;
6730 Changed = true;
6731 break;
6732 }
6733 if (RA.isMinSignedValue()) goto trivially_true;
6734
6735 Pred = ICmpInst::ICMP_SGT;
6736 RHS = getConstant(RA - 1);
6737 Changed = true;
6738 break;
6739 case ICmpInst::ICMP_SLE:
6740 if ((RA + 1).isMaxSignedValue()) {
6741 Pred = ICmpInst::ICMP_NE;
6742 RHS = getConstant(RA + 1);
6743 Changed = true;
6744 break;
6745 }
6746 if (RA.isMinSignedValue()) {
6747 Pred = ICmpInst::ICMP_EQ;
6748 Changed = true;
6749 break;
6750 }
6751 if (RA.isMaxSignedValue()) goto trivially_true;
6752
6753 Pred = ICmpInst::ICMP_SLT;
6754 RHS = getConstant(RA + 1);
6755 Changed = true;
6756 break;
6757 case ICmpInst::ICMP_UGT:
6758 if (RA.isMinValue()) {
6759 Pred = ICmpInst::ICMP_NE;
6760 Changed = true;
6761 break;
6762 }
6763 if ((RA + 1).isMaxValue()) {
6764 Pred = ICmpInst::ICMP_EQ;
6765 RHS = getConstant(RA + 1);
6766 Changed = true;
6767 break;
6768 }
6769 if (RA.isMaxValue()) goto trivially_false;
6770 break;
6771 case ICmpInst::ICMP_ULT:
6772 if (RA.isMaxValue()) {
6773 Pred = ICmpInst::ICMP_NE;
6774 Changed = true;
6775 break;
6776 }
6777 if ((RA - 1).isMinValue()) {
6778 Pred = ICmpInst::ICMP_EQ;
6779 RHS = getConstant(RA - 1);
6780 Changed = true;
6781 break;
6782 }
6783 if (RA.isMinValue()) goto trivially_false;
6784 break;
6785 case ICmpInst::ICMP_SGT:
6786 if (RA.isMinSignedValue()) {
6787 Pred = ICmpInst::ICMP_NE;
6788 Changed = true;
6789 break;
6790 }
6791 if ((RA + 1).isMaxSignedValue()) {
6792 Pred = ICmpInst::ICMP_EQ;
6793 RHS = getConstant(RA + 1);
6794 Changed = true;
6795 break;
6796 }
6797 if (RA.isMaxSignedValue()) goto trivially_false;
6798 break;
6799 case ICmpInst::ICMP_SLT:
6800 if (RA.isMaxSignedValue()) {
6801 Pred = ICmpInst::ICMP_NE;
6802 Changed = true;
6803 break;
6804 }
6805 if ((RA - 1).isMinSignedValue()) {
6806 Pred = ICmpInst::ICMP_EQ;
6807 RHS = getConstant(RA - 1);
6808 Changed = true;
6809 break;
6810 }
6811 if (RA.isMinSignedValue()) goto trivially_false;
6812 break;
6813 }
6814 }
6815
6816 // Check for obvious equality.
6817 if (HasSameValue(LHS, RHS)) {
6818 if (ICmpInst::isTrueWhenEqual(Pred))
6819 goto trivially_true;
6820 if (ICmpInst::isFalseWhenEqual(Pred))
6821 goto trivially_false;
6822 }
6823
Dan Gohman81585c12010-05-03 16:35:17 +00006824 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6825 // adding or subtracting 1 from one of the operands.
6826 switch (Pred) {
6827 case ICmpInst::ICMP_SLE:
6828 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6829 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006830 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006831 Pred = ICmpInst::ICMP_SLT;
6832 Changed = true;
6833 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006834 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006835 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006836 Pred = ICmpInst::ICMP_SLT;
6837 Changed = true;
6838 }
6839 break;
6840 case ICmpInst::ICMP_SGE:
6841 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006842 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006843 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006844 Pred = ICmpInst::ICMP_SGT;
6845 Changed = true;
6846 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6847 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006848 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006849 Pred = ICmpInst::ICMP_SGT;
6850 Changed = true;
6851 }
6852 break;
6853 case ICmpInst::ICMP_ULE:
6854 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006855 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006856 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006857 Pred = ICmpInst::ICMP_ULT;
6858 Changed = true;
6859 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006860 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006861 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006862 Pred = ICmpInst::ICMP_ULT;
6863 Changed = true;
6864 }
6865 break;
6866 case ICmpInst::ICMP_UGE:
6867 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006868 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006869 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006870 Pred = ICmpInst::ICMP_UGT;
6871 Changed = true;
6872 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006873 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006874 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006875 Pred = ICmpInst::ICMP_UGT;
6876 Changed = true;
6877 }
6878 break;
6879 default:
6880 break;
6881 }
6882
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006883 // TODO: More simplifications are possible here.
6884
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006885 // Recursively simplify until we either hit a recursion limit or nothing
6886 // changes.
6887 if (Changed)
6888 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6889
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006890 return Changed;
6891
6892trivially_true:
6893 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006894 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006895 Pred = ICmpInst::ICMP_EQ;
6896 return true;
6897
6898trivially_false:
6899 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006900 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006901 Pred = ICmpInst::ICMP_NE;
6902 return true;
6903}
6904
Dan Gohmane65c9172009-07-13 21:35:55 +00006905bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6906 return getSignedRange(S).getSignedMax().isNegative();
6907}
6908
6909bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6910 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6911}
6912
6913bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6914 return !getSignedRange(S).getSignedMin().isNegative();
6915}
6916
6917bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6918 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6919}
6920
6921bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6922 return isKnownNegative(S) || isKnownPositive(S);
6923}
6924
6925bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6926 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006927 // Canonicalize the inputs first.
6928 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6929
Dan Gohman07591692010-04-11 22:16:48 +00006930 // If LHS or RHS is an addrec, check to see if the condition is true in
6931 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006932 // If LHS and RHS are both addrec, both conditions must be true in
6933 // every iteration of the loop.
6934 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6935 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6936 bool LeftGuarded = false;
6937 bool RightGuarded = false;
6938 if (LAR) {
6939 const Loop *L = LAR->getLoop();
6940 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6941 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6942 if (!RAR) return true;
6943 LeftGuarded = true;
6944 }
6945 }
6946 if (RAR) {
6947 const Loop *L = RAR->getLoop();
6948 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6949 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6950 if (!LAR) return true;
6951 RightGuarded = true;
6952 }
6953 }
6954 if (LeftGuarded && RightGuarded)
6955 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006956
Sanjoy Das7d910f22015-10-02 18:50:30 +00006957 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
6958 return true;
6959
Dan Gohman07591692010-04-11 22:16:48 +00006960 // Otherwise see what can be done with known constant ranges.
6961 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6962}
6963
Sanjoy Das5dab2052015-07-27 21:42:49 +00006964bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
6965 ICmpInst::Predicate Pred,
6966 bool &Increasing) {
6967 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
6968
6969#ifndef NDEBUG
6970 // Verify an invariant: inverting the predicate should turn a monotonically
6971 // increasing change to a monotonically decreasing one, and vice versa.
6972 bool IncreasingSwapped;
6973 bool ResultSwapped = isMonotonicPredicateImpl(
6974 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
6975
6976 assert(Result == ResultSwapped && "should be able to analyze both!");
6977 if (ResultSwapped)
6978 assert(Increasing == !IncreasingSwapped &&
6979 "monotonicity should flip as we flip the predicate");
6980#endif
6981
6982 return Result;
6983}
6984
6985bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
6986 ICmpInst::Predicate Pred,
6987 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00006988
6989 // A zero step value for LHS means the induction variable is essentially a
6990 // loop invariant value. We don't really depend on the predicate actually
6991 // flipping from false to true (for increasing predicates, and the other way
6992 // around for decreasing predicates), all we care about is that *if* the
6993 // predicate changes then it only changes from false to true.
6994 //
6995 // A zero step value in itself is not very useful, but there may be places
6996 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
6997 // as general as possible.
6998
Sanjoy Das366acc12015-08-06 20:43:41 +00006999 switch (Pred) {
7000 default:
7001 return false; // Conservative answer
7002
7003 case ICmpInst::ICMP_UGT:
7004 case ICmpInst::ICMP_UGE:
7005 case ICmpInst::ICMP_ULT:
7006 case ICmpInst::ICMP_ULE:
7007 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
7008 return false;
7009
7010 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007011 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007012
7013 case ICmpInst::ICMP_SGT:
7014 case ICmpInst::ICMP_SGE:
7015 case ICmpInst::ICMP_SLT:
7016 case ICmpInst::ICMP_SLE: {
7017 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
7018 return false;
7019
7020 const SCEV *Step = LHS->getStepRecurrence(*this);
7021
7022 if (isKnownNonNegative(Step)) {
7023 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7024 return true;
7025 }
7026
7027 if (isKnownNonPositive(Step)) {
7028 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7029 return true;
7030 }
7031
7032 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007033 }
7034
Sanjoy Das5dab2052015-07-27 21:42:49 +00007035 }
7036
Sanjoy Das366acc12015-08-06 20:43:41 +00007037 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007038}
7039
7040bool ScalarEvolution::isLoopInvariantPredicate(
7041 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7042 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7043 const SCEV *&InvariantRHS) {
7044
7045 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7046 if (!isLoopInvariant(RHS, L)) {
7047 if (!isLoopInvariant(LHS, L))
7048 return false;
7049
7050 std::swap(LHS, RHS);
7051 Pred = ICmpInst::getSwappedPredicate(Pred);
7052 }
7053
7054 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7055 if (!ArLHS || ArLHS->getLoop() != L)
7056 return false;
7057
7058 bool Increasing;
7059 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7060 return false;
7061
7062 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7063 // true as the loop iterates, and the backedge is control dependent on
7064 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7065 //
7066 // * if the predicate was false in the first iteration then the predicate
7067 // is never evaluated again, since the loop exits without taking the
7068 // backedge.
7069 // * if the predicate was true in the first iteration then it will
7070 // continue to be true for all future iterations since it is
7071 // monotonically increasing.
7072 //
7073 // For both the above possibilities, we can replace the loop varying
7074 // predicate with its value on the first iteration of the loop (which is
7075 // loop invariant).
7076 //
7077 // A similar reasoning applies for a monotonically decreasing predicate, by
7078 // replacing true with false and false with true in the above two bullets.
7079
7080 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7081
7082 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7083 return false;
7084
7085 InvariantPred = Pred;
7086 InvariantLHS = ArLHS->getStart();
7087 InvariantRHS = RHS;
7088 return true;
7089}
7090
Dan Gohman07591692010-04-11 22:16:48 +00007091bool
7092ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7093 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007094 if (HasSameValue(LHS, RHS))
7095 return ICmpInst::isTrueWhenEqual(Pred);
7096
Dan Gohman07591692010-04-11 22:16:48 +00007097 // This code is split out from isKnownPredicate because it is called from
7098 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007099 switch (Pred) {
7100 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00007101 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00007102 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007103 std::swap(LHS, RHS);
7104 case ICmpInst::ICMP_SLT: {
7105 ConstantRange LHSRange = getSignedRange(LHS);
7106 ConstantRange RHSRange = getSignedRange(RHS);
7107 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7108 return true;
7109 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7110 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007111 break;
7112 }
7113 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007114 std::swap(LHS, RHS);
7115 case ICmpInst::ICMP_SLE: {
7116 ConstantRange LHSRange = getSignedRange(LHS);
7117 ConstantRange RHSRange = getSignedRange(RHS);
7118 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7119 return true;
7120 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7121 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007122 break;
7123 }
7124 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007125 std::swap(LHS, RHS);
7126 case ICmpInst::ICMP_ULT: {
7127 ConstantRange LHSRange = getUnsignedRange(LHS);
7128 ConstantRange RHSRange = getUnsignedRange(RHS);
7129 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7130 return true;
7131 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7132 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007133 break;
7134 }
7135 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007136 std::swap(LHS, RHS);
7137 case ICmpInst::ICMP_ULE: {
7138 ConstantRange LHSRange = getUnsignedRange(LHS);
7139 ConstantRange RHSRange = getUnsignedRange(RHS);
7140 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7141 return true;
7142 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7143 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007144 break;
7145 }
7146 case ICmpInst::ICMP_NE: {
7147 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7148 return true;
7149 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7150 return true;
7151
7152 const SCEV *Diff = getMinusSCEV(LHS, RHS);
7153 if (isKnownNonZero(Diff))
7154 return true;
7155 break;
7156 }
7157 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00007158 // The check at the top of the function catches the case where
7159 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00007160 break;
7161 }
7162 return false;
7163}
7164
Sanjoy Das11231482015-10-22 19:57:29 +00007165bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7166 const SCEV *LHS,
7167 const SCEV *RHS) {
7168
7169 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7170 // Return Y via OutY.
7171 auto MatchBinaryAddToConst =
7172 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7173 SCEV::NoWrapFlags ExpectedFlags) {
7174 const SCEV *NonConstOp, *ConstOp;
7175 SCEV::NoWrapFlags FlagsPresent;
7176
7177 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7178 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7179 return false;
7180
7181 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue();
7182 return (FlagsPresent & ExpectedFlags) != 0;
7183 };
7184
7185 APInt C;
7186
7187 switch (Pred) {
7188 default:
7189 break;
7190
7191 case ICmpInst::ICMP_SGE:
7192 std::swap(LHS, RHS);
7193 case ICmpInst::ICMP_SLE:
7194 // X s<= (X + C)<nsw> if C >= 0
7195 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7196 return true;
7197
7198 // (X + C)<nsw> s<= X if C <= 0
7199 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7200 !C.isStrictlyPositive())
7201 return true;
7202
7203 case ICmpInst::ICMP_SGT:
7204 std::swap(LHS, RHS);
7205 case ICmpInst::ICMP_SLT:
7206 // X s< (X + C)<nsw> if C > 0
7207 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7208 C.isStrictlyPositive())
7209 return true;
7210
7211 // (X + C)<nsw> s< X if C < 0
7212 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7213 return true;
7214 }
7215
7216 return false;
7217}
7218
Sanjoy Das7d910f22015-10-02 18:50:30 +00007219bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7220 const SCEV *LHS,
7221 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007222 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007223 return false;
7224
7225 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7226 // the stack can result in exponential time complexity.
7227 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7228
7229 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7230 //
7231 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7232 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7233 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7234 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7235 // use isKnownPredicate later if needed.
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007236 if (isKnownNonNegative(RHS) &&
Sanjoy Das7d910f22015-10-02 18:50:30 +00007237 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7238 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS))
7239 return true;
7240
7241 return false;
7242}
7243
Dan Gohmane65c9172009-07-13 21:35:55 +00007244/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7245/// protected by a conditional between LHS and RHS. This is used to
7246/// to eliminate casts.
7247bool
7248ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7249 ICmpInst::Predicate Pred,
7250 const SCEV *LHS, const SCEV *RHS) {
7251 // Interpret a null as meaning no loop, where there is obviously no guard
7252 // (interprocedural conditions notwithstanding).
7253 if (!L) return true;
7254
Sanjoy Das1f05c512014-10-10 21:22:34 +00007255 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7256
Dan Gohmane65c9172009-07-13 21:35:55 +00007257 BasicBlock *Latch = L->getLoopLatch();
7258 if (!Latch)
7259 return false;
7260
7261 BranchInst *LoopContinuePredicate =
7262 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007263 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7264 isImpliedCond(Pred, LHS, RHS,
7265 LoopContinuePredicate->getCondition(),
7266 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7267 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007268
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007269 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007270 // -- that can lead to O(n!) time complexity.
7271 if (WalkingBEDominatingConds)
7272 return false;
7273
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007274 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007275
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007276 // See if we can exploit a trip count to prove the predicate.
7277 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7278 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7279 if (LatchBECount != getCouldNotCompute()) {
7280 // We know that Latch branches back to the loop header exactly
7281 // LatchBECount times. This means the backdege condition at Latch is
7282 // equivalent to "{0,+,1} u< LatchBECount".
7283 Type *Ty = LatchBECount->getType();
7284 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7285 const SCEV *LoopCounter =
7286 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7287 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7288 LatchBECount))
7289 return true;
7290 }
7291
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007292 // Check conditions due to any @llvm.assume intrinsics.
7293 for (auto &AssumeVH : AC.assumptions()) {
7294 if (!AssumeVH)
7295 continue;
7296 auto *CI = cast<CallInst>(AssumeVH);
7297 if (!DT.dominates(CI, Latch->getTerminator()))
7298 continue;
7299
7300 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7301 return true;
7302 }
7303
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007304 // If the loop is not reachable from the entry block, we risk running into an
7305 // infinite loop as we walk up into the dom tree. These loops do not matter
7306 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007307 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007308 return false;
7309
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007310 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7311 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007312
7313 assert(DTN && "should reach the loop header before reaching the root!");
7314
7315 BasicBlock *BB = DTN->getBlock();
7316 BasicBlock *PBB = BB->getSinglePredecessor();
7317 if (!PBB)
7318 continue;
7319
7320 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7321 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7322 continue;
7323
7324 Value *Condition = ContinuePredicate->getCondition();
7325
7326 // If we have an edge `E` within the loop body that dominates the only
7327 // latch, the condition guarding `E` also guards the backedge. This
7328 // reasoning works only for loops with a single latch.
7329
7330 BasicBlockEdge DominatingEdge(PBB, BB);
7331 if (DominatingEdge.isSingleEdge()) {
7332 // We're constructively (and conservatively) enumerating edges within the
7333 // loop body that dominate the latch. The dominator tree better agree
7334 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007335 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007336
7337 if (isImpliedCond(Pred, LHS, RHS, Condition,
7338 BB != ContinuePredicate->getSuccessor(0)))
7339 return true;
7340 }
7341 }
7342
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007343 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007344}
7345
Dan Gohmanb50349a2010-04-11 19:27:13 +00007346/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007347/// by a conditional between LHS and RHS. This is used to help avoid max
7348/// expressions in loop trip counts, and to eliminate casts.
7349bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007350ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7351 ICmpInst::Predicate Pred,
7352 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007353 // Interpret a null as meaning no loop, where there is obviously no guard
7354 // (interprocedural conditions notwithstanding).
7355 if (!L) return false;
7356
Sanjoy Das1f05c512014-10-10 21:22:34 +00007357 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7358
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007359 // Starting at the loop predecessor, climb up the predecessor chain, as long
7360 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007361 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007362 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007363 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007364 Pair.first;
7365 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007366
7367 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007368 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007369 if (!LoopEntryPredicate ||
7370 LoopEntryPredicate->isUnconditional())
7371 continue;
7372
Dan Gohmane18c2d62010-08-10 23:46:30 +00007373 if (isImpliedCond(Pred, LHS, RHS,
7374 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007375 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007376 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007377 }
7378
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007379 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007380 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007381 if (!AssumeVH)
7382 continue;
7383 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007384 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007385 continue;
7386
7387 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7388 return true;
7389 }
7390
Dan Gohman2a62fd92008-08-12 20:17:31 +00007391 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007392}
7393
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007394/// RAII wrapper to prevent recursive application of isImpliedCond.
7395/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7396/// currently evaluating isImpliedCond.
7397struct MarkPendingLoopPredicate {
7398 Value *Cond;
7399 DenseSet<Value*> &LoopPreds;
7400 bool Pending;
7401
7402 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7403 : Cond(C), LoopPreds(LP) {
7404 Pending = !LoopPreds.insert(Cond).second;
7405 }
7406 ~MarkPendingLoopPredicate() {
7407 if (!Pending)
7408 LoopPreds.erase(Cond);
7409 }
7410};
7411
Dan Gohman430f0cc2009-07-21 23:03:19 +00007412/// isImpliedCond - Test whether the condition described by Pred, LHS,
7413/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007414bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007415 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007416 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007417 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007418 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7419 if (Mark.Pending)
7420 return false;
7421
Dan Gohman8b0a4192010-03-01 17:49:51 +00007422 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007423 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007424 if (BO->getOpcode() == Instruction::And) {
7425 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007426 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7427 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007428 } else if (BO->getOpcode() == Instruction::Or) {
7429 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007430 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7431 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007432 }
7433 }
7434
Dan Gohmane18c2d62010-08-10 23:46:30 +00007435 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007436 if (!ICI) return false;
7437
Andrew Trickfa594032012-11-29 18:35:13 +00007438 // Now that we found a conditional branch that dominates the loop or controls
7439 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007440 ICmpInst::Predicate FoundPred;
7441 if (Inverse)
7442 FoundPred = ICI->getInversePredicate();
7443 else
7444 FoundPred = ICI->getPredicate();
7445
7446 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7447 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007448
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007449 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7450}
7451
7452bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7453 const SCEV *RHS,
7454 ICmpInst::Predicate FoundPred,
7455 const SCEV *FoundLHS,
7456 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007457 // Balance the types.
7458 if (getTypeSizeInBits(LHS->getType()) <
7459 getTypeSizeInBits(FoundLHS->getType())) {
7460 if (CmpInst::isSigned(Pred)) {
7461 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7462 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7463 } else {
7464 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7465 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7466 }
7467 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007468 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007469 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007470 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7471 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7472 } else {
7473 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7474 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7475 }
7476 }
7477
Dan Gohman430f0cc2009-07-21 23:03:19 +00007478 // Canonicalize the query to match the way instcombine will have
7479 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007480 if (SimplifyICmpOperands(Pred, LHS, RHS))
7481 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007482 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007483 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7484 if (FoundLHS == FoundRHS)
7485 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007486
7487 // Check to see if we can make the LHS or RHS match.
7488 if (LHS == FoundRHS || RHS == FoundLHS) {
7489 if (isa<SCEVConstant>(RHS)) {
7490 std::swap(FoundLHS, FoundRHS);
7491 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7492 } else {
7493 std::swap(LHS, RHS);
7494 Pred = ICmpInst::getSwappedPredicate(Pred);
7495 }
7496 }
7497
7498 // Check whether the found predicate is the same as the desired predicate.
7499 if (FoundPred == Pred)
7500 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7501
7502 // Check whether swapping the found predicate makes it the same as the
7503 // desired predicate.
7504 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7505 if (isa<SCEVConstant>(RHS))
7506 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7507 else
7508 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7509 RHS, LHS, FoundLHS, FoundRHS);
7510 }
7511
Sanjoy Das6e78b172015-10-22 19:57:34 +00007512 // Unsigned comparison is the same as signed comparison when both the operands
7513 // are non-negative.
7514 if (CmpInst::isUnsigned(FoundPred) &&
7515 CmpInst::getSignedPredicate(FoundPred) == Pred &&
7516 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7517 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7518
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007519 // Check if we can make progress by sharpening ranges.
7520 if (FoundPred == ICmpInst::ICMP_NE &&
7521 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7522
7523 const SCEVConstant *C = nullptr;
7524 const SCEV *V = nullptr;
7525
7526 if (isa<SCEVConstant>(FoundLHS)) {
7527 C = cast<SCEVConstant>(FoundLHS);
7528 V = FoundRHS;
7529 } else {
7530 C = cast<SCEVConstant>(FoundRHS);
7531 V = FoundLHS;
7532 }
7533
7534 // The guarding predicate tells us that C != V. If the known range
7535 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7536 // range we consider has to correspond to same signedness as the
7537 // predicate we're interested in folding.
7538
7539 APInt Min = ICmpInst::isSigned(Pred) ?
7540 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7541
7542 if (Min == C->getValue()->getValue()) {
7543 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7544 // This is true even if (Min + 1) wraps around -- in case of
7545 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7546
7547 APInt SharperMin = Min + 1;
7548
7549 switch (Pred) {
7550 case ICmpInst::ICMP_SGE:
7551 case ICmpInst::ICMP_UGE:
7552 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7553 // RHS, we're done.
7554 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7555 getConstant(SharperMin)))
7556 return true;
7557
7558 case ICmpInst::ICMP_SGT:
7559 case ICmpInst::ICMP_UGT:
7560 // We know from the range information that (V `Pred` Min ||
7561 // V == Min). We know from the guarding condition that !(V
7562 // == Min). This gives us
7563 //
7564 // V `Pred` Min || V == Min && !(V == Min)
7565 // => V `Pred` Min
7566 //
7567 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7568
7569 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7570 return true;
7571
7572 default:
7573 // No change
7574 break;
7575 }
7576 }
7577 }
7578
Dan Gohman430f0cc2009-07-21 23:03:19 +00007579 // Check whether the actual condition is beyond sufficient.
7580 if (FoundPred == ICmpInst::ICMP_EQ)
7581 if (ICmpInst::isTrueWhenEqual(Pred))
7582 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7583 return true;
7584 if (Pred == ICmpInst::ICMP_NE)
7585 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7586 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7587 return true;
7588
7589 // Otherwise assume the worst.
7590 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007591}
7592
Sanjoy Das1ed69102015-10-13 02:53:27 +00007593bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7594 const SCEV *&L, const SCEV *&R,
7595 SCEV::NoWrapFlags &Flags) {
7596 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7597 if (!AE || AE->getNumOperands() != 2)
7598 return false;
7599
7600 L = AE->getOperand(0);
7601 R = AE->getOperand(1);
7602 Flags = AE->getNoWrapFlags();
7603 return true;
7604}
7605
7606bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7607 const SCEV *More,
7608 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00007609 // We avoid subtracting expressions here because this function is usually
7610 // fairly deep in the call stack (i.e. is called many times).
7611
Sanjoy Das96709c42015-09-25 23:53:45 +00007612 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7613 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7614 const auto *MAR = cast<SCEVAddRecExpr>(More);
7615
7616 if (LAR->getLoop() != MAR->getLoop())
7617 return false;
7618
7619 // We look at affine expressions only; not for correctness but to keep
7620 // getStepRecurrence cheap.
7621 if (!LAR->isAffine() || !MAR->isAffine())
7622 return false;
7623
Sanjoy Das1ed69102015-10-13 02:53:27 +00007624 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00007625 return false;
7626
7627 Less = LAR->getStart();
7628 More = MAR->getStart();
7629
7630 // fall through
7631 }
7632
7633 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7634 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue();
7635 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue();
7636 C = M - L;
7637 return true;
7638 }
7639
7640 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007641 SCEV::NoWrapFlags Flags;
7642 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007643 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7644 if (R == More) {
7645 C = -(LC->getValue()->getValue());
7646 return true;
7647 }
7648
Sanjoy Das1ed69102015-10-13 02:53:27 +00007649 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007650 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7651 if (R == Less) {
7652 C = LC->getValue()->getValue();
7653 return true;
7654 }
7655
7656 return false;
7657}
7658
7659bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7660 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7661 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7662 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7663 return false;
7664
7665 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7666 if (!AddRecLHS)
7667 return false;
7668
7669 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7670 if (!AddRecFoundLHS)
7671 return false;
7672
7673 // We'd like to let SCEV reason about control dependencies, so we constrain
7674 // both the inequalities to be about add recurrences on the same loop. This
7675 // way we can use isLoopEntryGuardedByCond later.
7676
7677 const Loop *L = AddRecFoundLHS->getLoop();
7678 if (L != AddRecLHS->getLoop())
7679 return false;
7680
7681 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7682 //
7683 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7684 // ... (2)
7685 //
7686 // Informal proof for (2), assuming (1) [*]:
7687 //
7688 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7689 //
7690 // Then
7691 //
7692 // FoundLHS s< FoundRHS s< INT_MIN - C
7693 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7694 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7695 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7696 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7697 // <=> FoundLHS + C s< FoundRHS + C
7698 //
7699 // [*]: (1) can be proved by ruling out overflow.
7700 //
7701 // [**]: This can be proved by analyzing all the four possibilities:
7702 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7703 // (A s>= 0, B s>= 0).
7704 //
7705 // Note:
7706 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7707 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7708 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7709 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7710 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7711 // C)".
7712
7713 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007714 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7715 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00007716 LDiff != RDiff)
7717 return false;
7718
7719 if (LDiff == 0)
7720 return true;
7721
Sanjoy Das96709c42015-09-25 23:53:45 +00007722 APInt FoundRHSLimit;
7723
7724 if (Pred == CmpInst::ICMP_ULT) {
7725 FoundRHSLimit = -RDiff;
7726 } else {
7727 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00007728 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00007729 }
7730
7731 // Try to prove (1) or (2), as needed.
7732 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7733 getConstant(FoundRHSLimit));
7734}
7735
Dan Gohman430f0cc2009-07-21 23:03:19 +00007736/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007737/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007738/// and FoundRHS is true.
7739bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7740 const SCEV *LHS, const SCEV *RHS,
7741 const SCEV *FoundLHS,
7742 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007743 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7744 return true;
7745
Sanjoy Das96709c42015-09-25 23:53:45 +00007746 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7747 return true;
7748
Dan Gohman430f0cc2009-07-21 23:03:19 +00007749 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7750 FoundLHS, FoundRHS) ||
7751 // ~x < ~y --> x > y
7752 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7753 getNotSCEV(FoundRHS),
7754 getNotSCEV(FoundLHS));
7755}
7756
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007757
7758/// If Expr computes ~A, return A else return nullptr
7759static const SCEV *MatchNotExpr(const SCEV *Expr) {
7760 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007761 if (!Add || Add->getNumOperands() != 2 ||
7762 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007763 return nullptr;
7764
7765 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007766 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7767 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007768 return nullptr;
7769
7770 return AddRHS->getOperand(1);
7771}
7772
7773
7774/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7775template<typename MaxExprType>
7776static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7777 const SCEV *Candidate) {
7778 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7779 if (!MaxExpr) return false;
7780
7781 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7782 return It != MaxExpr->op_end();
7783}
7784
7785
7786/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7787template<typename MaxExprType>
7788static bool IsMinConsistingOf(ScalarEvolution &SE,
7789 const SCEV *MaybeMinExpr,
7790 const SCEV *Candidate) {
7791 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7792 if (!MaybeMaxExpr)
7793 return false;
7794
7795 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7796}
7797
Hal Finkela8d205f2015-08-19 01:51:51 +00007798static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7799 ICmpInst::Predicate Pred,
7800 const SCEV *LHS, const SCEV *RHS) {
7801
7802 // If both sides are affine addrecs for the same loop, with equal
7803 // steps, and we know the recurrences don't wrap, then we only
7804 // need to check the predicate on the starting values.
7805
7806 if (!ICmpInst::isRelational(Pred))
7807 return false;
7808
7809 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7810 if (!LAR)
7811 return false;
7812 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7813 if (!RAR)
7814 return false;
7815 if (LAR->getLoop() != RAR->getLoop())
7816 return false;
7817 if (!LAR->isAffine() || !RAR->isAffine())
7818 return false;
7819
7820 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
7821 return false;
7822
Hal Finkelff08a2e2015-08-19 17:26:07 +00007823 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
7824 SCEV::FlagNSW : SCEV::FlagNUW;
7825 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00007826 return false;
7827
7828 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
7829}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007830
7831/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7832/// expression?
7833static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7834 ICmpInst::Predicate Pred,
7835 const SCEV *LHS, const SCEV *RHS) {
7836 switch (Pred) {
7837 default:
7838 return false;
7839
7840 case ICmpInst::ICMP_SGE:
7841 std::swap(LHS, RHS);
7842 // fall through
7843 case ICmpInst::ICMP_SLE:
7844 return
7845 // min(A, ...) <= A
7846 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7847 // A <= max(A, ...)
7848 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7849
7850 case ICmpInst::ICMP_UGE:
7851 std::swap(LHS, RHS);
7852 // fall through
7853 case ICmpInst::ICMP_ULE:
7854 return
7855 // min(A, ...) <= A
7856 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7857 // A <= max(A, ...)
7858 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7859 }
7860
7861 llvm_unreachable("covered switch fell through?!");
7862}
7863
Dan Gohman430f0cc2009-07-21 23:03:19 +00007864/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007865/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007866/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007867bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007868ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7869 const SCEV *LHS, const SCEV *RHS,
7870 const SCEV *FoundLHS,
7871 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007872 auto IsKnownPredicateFull =
7873 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7874 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00007875 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
7876 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
7877 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007878 };
7879
Dan Gohmane65c9172009-07-13 21:35:55 +00007880 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007881 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7882 case ICmpInst::ICMP_EQ:
7883 case ICmpInst::ICMP_NE:
7884 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7885 return true;
7886 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007887 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007888 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007889 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7890 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007891 return true;
7892 break;
7893 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007894 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007895 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7896 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007897 return true;
7898 break;
7899 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007900 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007901 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7902 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007903 return true;
7904 break;
7905 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007906 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007907 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7908 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007909 return true;
7910 break;
7911 }
7912
7913 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007914}
7915
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007916/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7917/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7918bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7919 const SCEV *LHS,
7920 const SCEV *RHS,
7921 const SCEV *FoundLHS,
7922 const SCEV *FoundRHS) {
7923 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7924 // The restriction on `FoundRHS` be lifted easily -- it exists only to
7925 // reduce the compile time impact of this optimization.
7926 return false;
7927
7928 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7929 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7930 !isa<SCEVConstant>(AddLHS->getOperand(0)))
7931 return false;
7932
7933 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7934
7935 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7936 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7937 ConstantRange FoundLHSRange =
7938 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7939
7940 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7941 // for `LHS`:
7942 APInt Addend =
7943 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7944 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7945
7946 // We can also compute the range of values for `LHS` that satisfy the
7947 // consequent, "`LHS` `Pred` `RHS`":
7948 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7949 ConstantRange SatisfyingLHSRange =
7950 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7951
7952 // The antecedent implies the consequent if every value of `LHS` that
7953 // satisfies the antecedent also satisfies the consequent.
7954 return SatisfyingLHSRange.contains(LHSRange);
7955}
7956
Johannes Doerfert2683e562015-02-09 12:34:23 +00007957// Verify if an linear IV with positive stride can overflow when in a
7958// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007959// stride and the knowledge of NSW/NUW flags on the recurrence.
7960bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7961 bool IsSigned, bool NoWrap) {
7962 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007963
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007964 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007965 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00007966
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007967 if (IsSigned) {
7968 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7969 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7970 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7971 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007972
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007973 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7974 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007975 }
Dan Gohman01048422009-06-21 23:46:38 +00007976
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007977 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7978 APInt MaxValue = APInt::getMaxValue(BitWidth);
7979 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7980 .getUnsignedMax();
7981
7982 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7983 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7984}
7985
Johannes Doerfert2683e562015-02-09 12:34:23 +00007986// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007987// greater-than comparison, knowing the invariant term of the comparison,
7988// the stride and the knowledge of NSW/NUW flags on the recurrence.
7989bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7990 bool IsSigned, bool NoWrap) {
7991 if (NoWrap) return false;
7992
7993 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007994 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007995
7996 if (IsSigned) {
7997 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7998 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7999 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8000 .getSignedMax();
8001
8002 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8003 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8004 }
8005
8006 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8007 APInt MinValue = APInt::getMinValue(BitWidth);
8008 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8009 .getUnsignedMax();
8010
8011 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8012 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8013}
8014
8015// Compute the backedge taken count knowing the interval difference, the
8016// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008017const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008018 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008019 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008020 Delta = Equality ? getAddExpr(Delta, Step)
8021 : getAddExpr(Delta, getMinusSCEV(Step, One));
8022 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008023}
8024
Chris Lattner587a75b2005-08-15 23:33:51 +00008025/// HowManyLessThans - Return the number of times a backedge containing the
8026/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008027/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008028///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008029/// @param ControlsExit is true when the LHS < RHS condition directly controls
8030/// the branch (loops exits only if condition is true). In this case, we can use
8031/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008032ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008033ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008034 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008035 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008036 // We handle only IV < Invariant
8037 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008038 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008039
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008040 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00008041
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008042 // Avoid weird loops
8043 if (!IV || IV->getLoop() != L || !IV->isAffine())
8044 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008045
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008046 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008047 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008048
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008049 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008050
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008051 // Avoid negative or zero stride values
8052 if (!isKnownPositive(Stride))
8053 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008054
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008055 // Avoid proven overflow cases: this will ensure that the backedge taken count
8056 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008057 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008058 // behaviors like the case of C language.
8059 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8060 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008061
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008062 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8063 : ICmpInst::ICMP_ULT;
8064 const SCEV *Start = IV->getStart();
8065 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008066 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8067 const SCEV *Diff = getMinusSCEV(RHS, Start);
8068 // If we have NoWrap set, then we can assume that the increment won't
8069 // overflow, in which case if RHS - Start is a constant, we don't need to
8070 // do a max operation since we can just figure it out statically
8071 if (NoWrap && isa<SCEVConstant>(Diff)) {
8072 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8073 if (D.isNegative())
8074 End = Start;
8075 } else
8076 End = IsSigned ? getSMaxExpr(RHS, Start)
8077 : getUMaxExpr(RHS, Start);
8078 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008079
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008080 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008081
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008082 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8083 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008084
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008085 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8086 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008087
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008088 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8089 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8090 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008091
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008092 // Although End can be a MAX expression we estimate MaxEnd considering only
8093 // the case End = RHS. This is safe because in the other case (End - Start)
8094 // is zero, leading to a zero maximum backedge taken count.
8095 APInt MaxEnd =
8096 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8097 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8098
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008099 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008100 if (isa<SCEVConstant>(BECount))
8101 MaxBECount = BECount;
8102 else
8103 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8104 getConstant(MinStride), false);
8105
8106 if (isa<SCEVCouldNotCompute>(MaxBECount))
8107 MaxBECount = BECount;
8108
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008109 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008110}
8111
8112ScalarEvolution::ExitLimit
8113ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8114 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008115 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008116 // We handle only IV > Invariant
8117 if (!isLoopInvariant(RHS, L))
8118 return getCouldNotCompute();
8119
8120 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8121
8122 // Avoid weird loops
8123 if (!IV || IV->getLoop() != L || !IV->isAffine())
8124 return getCouldNotCompute();
8125
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008126 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008127 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8128
8129 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8130
8131 // Avoid negative or zero stride values
8132 if (!isKnownPositive(Stride))
8133 return getCouldNotCompute();
8134
8135 // Avoid proven overflow cases: this will ensure that the backedge taken count
8136 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008137 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008138 // behaviors like the case of C language.
8139 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8140 return getCouldNotCompute();
8141
8142 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8143 : ICmpInst::ICMP_UGT;
8144
8145 const SCEV *Start = IV->getStart();
8146 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008147 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8148 const SCEV *Diff = getMinusSCEV(RHS, Start);
8149 // If we have NoWrap set, then we can assume that the increment won't
8150 // overflow, in which case if RHS - Start is a constant, we don't need to
8151 // do a max operation since we can just figure it out statically
8152 if (NoWrap && isa<SCEVConstant>(Diff)) {
8153 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8154 if (!D.isNegative())
8155 End = Start;
8156 } else
8157 End = IsSigned ? getSMinExpr(RHS, Start)
8158 : getUMinExpr(RHS, Start);
8159 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008160
8161 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8162
8163 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8164 : getUnsignedRange(Start).getUnsignedMax();
8165
8166 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8167 : getUnsignedRange(Stride).getUnsignedMin();
8168
8169 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8170 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8171 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8172
8173 // Although End can be a MIN expression we estimate MinEnd considering only
8174 // the case End = RHS. This is safe because in the other case (Start - End)
8175 // is zero, leading to a zero maximum backedge taken count.
8176 APInt MinEnd =
8177 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8178 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8179
8180
8181 const SCEV *MaxBECount = getCouldNotCompute();
8182 if (isa<SCEVConstant>(BECount))
8183 MaxBECount = BECount;
8184 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008185 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008186 getConstant(MinStride), false);
8187
8188 if (isa<SCEVCouldNotCompute>(MaxBECount))
8189 MaxBECount = BECount;
8190
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008191 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00008192}
8193
Chris Lattnerd934c702004-04-02 20:23:17 +00008194/// getNumIterationsInRange - Return the number of iterations of this loop that
8195/// produce values in the specified constant range. Another way of looking at
8196/// this is that it returns the first iteration number where the value is not in
8197/// the condition, thus computing the exit count. If the iteration count can't
8198/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008199const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008200 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008201 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008202 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008203
8204 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008205 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008206 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008207 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008208 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008209 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008210 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008211 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008212 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00008213 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008214 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008215 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008216 }
8217
8218 // The only time we can solve this is when we have all constant indices.
8219 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008220 if (std::any_of(op_begin(), op_end(),
8221 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);}))
8222 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008223
8224 // Okay at this point we know that all elements of the chrec are constants and
8225 // that the start element is zero.
8226
8227 // First check to see if the range contains zero. If not, the first
8228 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008229 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008230 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008231 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008232
Chris Lattnerd934c702004-04-02 20:23:17 +00008233 if (isAffine()) {
8234 // If this is an affine expression then we have this situation:
8235 // Solve {0,+,A} in Range === Ax in Range
8236
Nick Lewycky52460262007-07-16 02:08:00 +00008237 // We know that zero is in the range. If A is positive then we know that
8238 // the upper value of the range must be the first possible exit value.
8239 // If A is negative then the lower of the range is the last possible loop
8240 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008241 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00008242 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
8243 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008244
Nick Lewycky52460262007-07-16 02:08:00 +00008245 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008246 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008247 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008248
8249 // Evaluate at the exit value. If we really did fall out of the valid
8250 // range, then we computed our trip count, otherwise wrap around or other
8251 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008252 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008253 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008254 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008255
8256 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008257 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008258 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008259 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008260 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008261 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008262 } else if (isQuadratic()) {
8263 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8264 // quadratic equation to solve it. To do this, we must frame our problem in
8265 // terms of figuring out when zero is crossed, instead of when
8266 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008267 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008268 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008269 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8270 // getNoWrapFlags(FlagNW)
8271 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008272
8273 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00008274 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00008275 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008276 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8277 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008278 if (R1) {
8279 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008280 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00008281 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00008282 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008283 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008284 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008285
Chris Lattnerd934c702004-04-02 20:23:17 +00008286 // Make sure the root is not off by one. The returned iteration should
8287 // not be in the range, but the previous one should be. When solving
8288 // for "X*X < 5", for example, we should not return a root of 2.
8289 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008290 R1->getValue(),
8291 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008292 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008293 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008294 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008295 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008296
Dan Gohmana37eaf22007-10-22 18:31:58 +00008297 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008298 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008299 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008300 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008301 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008302
Chris Lattnerd934c702004-04-02 20:23:17 +00008303 // If R1 was not in the range, then it is a good return value. Make
8304 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008305 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008306 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008307 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008308 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008309 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008310 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008311 }
8312 }
8313 }
8314
Dan Gohman31efa302009-04-18 17:58:19 +00008315 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008316}
8317
Sebastian Pop448712b2014-05-07 18:01:20 +00008318namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008319struct FindUndefs {
8320 bool Found;
8321 FindUndefs() : Found(false) {}
8322
8323 bool follow(const SCEV *S) {
8324 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8325 if (isa<UndefValue>(C->getValue()))
8326 Found = true;
8327 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8328 if (isa<UndefValue>(C->getValue()))
8329 Found = true;
8330 }
8331
8332 // Keep looking if we haven't found it yet.
8333 return !Found;
8334 }
8335 bool isDone() const {
8336 // Stop recursion if we have found an undef.
8337 return Found;
8338 }
8339};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008340}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008341
8342// Return true when S contains at least an undef value.
8343static inline bool
8344containsUndefs(const SCEV *S) {
8345 FindUndefs F;
8346 SCEVTraversal<FindUndefs> ST(F);
8347 ST.visitAll(S);
8348
8349 return F.Found;
8350}
8351
8352namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008353// Collect all steps of SCEV expressions.
8354struct SCEVCollectStrides {
8355 ScalarEvolution &SE;
8356 SmallVectorImpl<const SCEV *> &Strides;
8357
8358 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8359 : SE(SE), Strides(S) {}
8360
8361 bool follow(const SCEV *S) {
8362 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8363 Strides.push_back(AR->getStepRecurrence(SE));
8364 return true;
8365 }
8366 bool isDone() const { return false; }
8367};
8368
8369// Collect all SCEVUnknown and SCEVMulExpr expressions.
8370struct SCEVCollectTerms {
8371 SmallVectorImpl<const SCEV *> &Terms;
8372
8373 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8374 : Terms(T) {}
8375
8376 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008377 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008378 if (!containsUndefs(S))
8379 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008380
8381 // Stop recursion: once we collected a term, do not walk its operands.
8382 return false;
8383 }
8384
8385 // Keep looking.
8386 return true;
8387 }
8388 bool isDone() const { return false; }
8389};
Tobias Grosser374bce02015-10-12 08:02:00 +00008390
8391// Check if a SCEV contains an AddRecExpr.
8392struct SCEVHasAddRec {
8393 bool &ContainsAddRec;
8394
8395 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8396 ContainsAddRec = false;
8397 }
8398
8399 bool follow(const SCEV *S) {
8400 if (isa<SCEVAddRecExpr>(S)) {
8401 ContainsAddRec = true;
8402
8403 // Stop recursion: once we collected a term, do not walk its operands.
8404 return false;
8405 }
8406
8407 // Keep looking.
8408 return true;
8409 }
8410 bool isDone() const { return false; }
8411};
8412
8413// Find factors that are multiplied with an expression that (possibly as a
8414// subexpression) contains an AddRecExpr. In the expression:
8415//
8416// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8417//
8418// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8419// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8420// parameters as they form a product with an induction variable.
8421//
8422// This collector expects all array size parameters to be in the same MulExpr.
8423// It might be necessary to later add support for collecting parameters that are
8424// spread over different nested MulExpr.
8425struct SCEVCollectAddRecMultiplies {
8426 SmallVectorImpl<const SCEV *> &Terms;
8427 ScalarEvolution &SE;
8428
8429 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8430 : Terms(T), SE(SE) {}
8431
8432 bool follow(const SCEV *S) {
8433 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8434 bool HasAddRec = false;
8435 SmallVector<const SCEV *, 0> Operands;
8436 for (auto Op : Mul->operands()) {
8437 if (isa<SCEVUnknown>(Op)) {
8438 Operands.push_back(Op);
8439 } else {
8440 bool ContainsAddRec;
8441 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8442 visitAll(Op, ContiansAddRec);
8443 HasAddRec |= ContainsAddRec;
8444 }
8445 }
8446 if (Operands.size() == 0)
8447 return true;
8448
8449 if (!HasAddRec)
8450 return false;
8451
8452 Terms.push_back(SE.getMulExpr(Operands));
8453 // Stop recursion: once we collected a term, do not walk its operands.
8454 return false;
8455 }
8456
8457 // Keep looking.
8458 return true;
8459 }
8460 bool isDone() const { return false; }
8461};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008462}
Sebastian Pop448712b2014-05-07 18:01:20 +00008463
Tobias Grosser374bce02015-10-12 08:02:00 +00008464/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8465/// two places:
8466/// 1) The strides of AddRec expressions.
8467/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008468void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8469 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008470 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008471 SCEVCollectStrides StrideCollector(*this, Strides);
8472 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008473
8474 DEBUG({
8475 dbgs() << "Strides:\n";
8476 for (const SCEV *S : Strides)
8477 dbgs() << *S << "\n";
8478 });
8479
8480 for (const SCEV *S : Strides) {
8481 SCEVCollectTerms TermCollector(Terms);
8482 visitAll(S, TermCollector);
8483 }
8484
8485 DEBUG({
8486 dbgs() << "Terms:\n";
8487 for (const SCEV *T : Terms)
8488 dbgs() << *T << "\n";
8489 });
Tobias Grosser374bce02015-10-12 08:02:00 +00008490
8491 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8492 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008493}
8494
Sebastian Popb1a548f2014-05-12 19:01:53 +00008495static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008496 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008497 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008498 int Last = Terms.size() - 1;
8499 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008500
Sebastian Pop448712b2014-05-07 18:01:20 +00008501 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008502 if (Last == 0) {
8503 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008504 SmallVector<const SCEV *, 2> Qs;
8505 for (const SCEV *Op : M->operands())
8506 if (!isa<SCEVConstant>(Op))
8507 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008508
Sebastian Pope30bd352014-05-27 22:41:56 +00008509 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008510 }
8511
Sebastian Pope30bd352014-05-27 22:41:56 +00008512 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008513 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008514 }
8515
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008516 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008517 // Normalize the terms before the next call to findArrayDimensionsRec.
8518 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008519 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008520
8521 // Bail out when GCD does not evenly divide one of the terms.
8522 if (!R->isZero())
8523 return false;
8524
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008525 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008526 }
8527
Tobias Grosser3080cf12014-05-08 07:55:34 +00008528 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008529 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8530 return isa<SCEVConstant>(E);
8531 }),
8532 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008533
Sebastian Pop448712b2014-05-07 18:01:20 +00008534 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008535 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8536 return false;
8537
Sebastian Pope30bd352014-05-27 22:41:56 +00008538 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008539 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008540}
Sebastian Popc62c6792013-11-12 22:47:20 +00008541
Sebastian Pop448712b2014-05-07 18:01:20 +00008542namespace {
8543struct FindParameter {
8544 bool FoundParameter;
8545 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00008546
Sebastian Pop448712b2014-05-07 18:01:20 +00008547 bool follow(const SCEV *S) {
8548 if (isa<SCEVUnknown>(S)) {
8549 FoundParameter = true;
8550 // Stop recursion: we found a parameter.
8551 return false;
8552 }
8553 // Keep looking.
8554 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008555 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008556 bool isDone() const {
8557 // Stop recursion if we have found a parameter.
8558 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00008559 }
Sebastian Popc62c6792013-11-12 22:47:20 +00008560};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008561}
Sebastian Popc62c6792013-11-12 22:47:20 +00008562
Sebastian Pop448712b2014-05-07 18:01:20 +00008563// Returns true when S contains at least a SCEVUnknown parameter.
8564static inline bool
8565containsParameters(const SCEV *S) {
8566 FindParameter F;
8567 SCEVTraversal<FindParameter> ST(F);
8568 ST.visitAll(S);
8569
8570 return F.FoundParameter;
8571}
8572
8573// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8574static inline bool
8575containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8576 for (const SCEV *T : Terms)
8577 if (containsParameters(T))
8578 return true;
8579 return false;
8580}
8581
8582// Return the number of product terms in S.
8583static inline int numberOfTerms(const SCEV *S) {
8584 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8585 return Expr->getNumOperands();
8586 return 1;
8587}
8588
Sebastian Popa6e58602014-05-27 22:41:45 +00008589static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8590 if (isa<SCEVConstant>(T))
8591 return nullptr;
8592
8593 if (isa<SCEVUnknown>(T))
8594 return T;
8595
8596 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8597 SmallVector<const SCEV *, 2> Factors;
8598 for (const SCEV *Op : M->operands())
8599 if (!isa<SCEVConstant>(Op))
8600 Factors.push_back(Op);
8601
8602 return SE.getMulExpr(Factors);
8603 }
8604
8605 return T;
8606}
8607
8608/// Return the size of an element read or written by Inst.
8609const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8610 Type *Ty;
8611 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8612 Ty = Store->getValueOperand()->getType();
8613 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008614 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008615 else
8616 return nullptr;
8617
8618 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8619 return getSizeOfExpr(ETy, Ty);
8620}
8621
Sebastian Pop448712b2014-05-07 18:01:20 +00008622/// Second step of delinearization: compute the array dimensions Sizes from the
8623/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008624void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8625 SmallVectorImpl<const SCEV *> &Sizes,
8626 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008627
Sebastian Pop53524082014-05-29 19:44:05 +00008628 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008629 return;
8630
8631 // Early return when Terms do not contain parameters: we do not delinearize
8632 // non parametric SCEVs.
8633 if (!containsParameters(Terms))
8634 return;
8635
8636 DEBUG({
8637 dbgs() << "Terms:\n";
8638 for (const SCEV *T : Terms)
8639 dbgs() << *T << "\n";
8640 });
8641
8642 // Remove duplicates.
8643 std::sort(Terms.begin(), Terms.end());
8644 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8645
8646 // Put larger terms first.
8647 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8648 return numberOfTerms(LHS) > numberOfTerms(RHS);
8649 });
8650
Sebastian Popa6e58602014-05-27 22:41:45 +00008651 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8652
Tobias Grosser374bce02015-10-12 08:02:00 +00008653 // Try to divide all terms by the element size. If term is not divisible by
8654 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00008655 for (const SCEV *&Term : Terms) {
8656 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008657 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00008658 if (!Q->isZero())
8659 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00008660 }
8661
8662 SmallVector<const SCEV *, 4> NewTerms;
8663
8664 // Remove constant factors.
8665 for (const SCEV *T : Terms)
8666 if (const SCEV *NewT = removeConstantFactors(SE, T))
8667 NewTerms.push_back(NewT);
8668
Sebastian Pop448712b2014-05-07 18:01:20 +00008669 DEBUG({
8670 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008671 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008672 dbgs() << *T << "\n";
8673 });
8674
Sebastian Popa6e58602014-05-27 22:41:45 +00008675 if (NewTerms.empty() ||
8676 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008677 Sizes.clear();
8678 return;
8679 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008680
Sebastian Popa6e58602014-05-27 22:41:45 +00008681 // The last element to be pushed into Sizes is the size of an element.
8682 Sizes.push_back(ElementSize);
8683
Sebastian Pop448712b2014-05-07 18:01:20 +00008684 DEBUG({
8685 dbgs() << "Sizes:\n";
8686 for (const SCEV *S : Sizes)
8687 dbgs() << *S << "\n";
8688 });
8689}
8690
8691/// Third step of delinearization: compute the access functions for the
8692/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008693void ScalarEvolution::computeAccessFunctions(
8694 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8695 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008696
Sebastian Popb1a548f2014-05-12 19:01:53 +00008697 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008698 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008699 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008700
Sanjoy Das1195dbe2015-10-08 03:45:58 +00008701 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008702 if (!AR->isAffine())
8703 return;
8704
8705 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008706 int Last = Sizes.size() - 1;
8707 for (int i = Last; i >= 0; i--) {
8708 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008709 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008710
8711 DEBUG({
8712 dbgs() << "Res: " << *Res << "\n";
8713 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8714 dbgs() << "Res divided by Sizes[i]:\n";
8715 dbgs() << "Quotient: " << *Q << "\n";
8716 dbgs() << "Remainder: " << *R << "\n";
8717 });
8718
8719 Res = Q;
8720
Sebastian Popa6e58602014-05-27 22:41:45 +00008721 // Do not record the last subscript corresponding to the size of elements in
8722 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008723 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008724
8725 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008726 if (isa<SCEVAddRecExpr>(R)) {
8727 Subscripts.clear();
8728 Sizes.clear();
8729 return;
8730 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008731
Sebastian Pop448712b2014-05-07 18:01:20 +00008732 continue;
8733 }
8734
8735 // Record the access function for the current subscript.
8736 Subscripts.push_back(R);
8737 }
8738
8739 // Also push in last position the remainder of the last division: it will be
8740 // the access function of the innermost dimension.
8741 Subscripts.push_back(Res);
8742
8743 std::reverse(Subscripts.begin(), Subscripts.end());
8744
8745 DEBUG({
8746 dbgs() << "Subscripts:\n";
8747 for (const SCEV *S : Subscripts)
8748 dbgs() << *S << "\n";
8749 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008750}
8751
Sebastian Popc62c6792013-11-12 22:47:20 +00008752/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8753/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008754/// is the offset start of the array. The SCEV->delinearize algorithm computes
8755/// the multiples of SCEV coefficients: that is a pattern matching of sub
8756/// expressions in the stride and base of a SCEV corresponding to the
8757/// computation of a GCD (greatest common divisor) of base and stride. When
8758/// SCEV->delinearize fails, it returns the SCEV unchanged.
8759///
8760/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8761///
8762/// void foo(long n, long m, long o, double A[n][m][o]) {
8763///
8764/// for (long i = 0; i < n; i++)
8765/// for (long j = 0; j < m; j++)
8766/// for (long k = 0; k < o; k++)
8767/// A[i][j][k] = 1.0;
8768/// }
8769///
8770/// the delinearization input is the following AddRec SCEV:
8771///
8772/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8773///
8774/// From this SCEV, we are able to say that the base offset of the access is %A
8775/// because it appears as an offset that does not divide any of the strides in
8776/// the loops:
8777///
8778/// CHECK: Base offset: %A
8779///
8780/// and then SCEV->delinearize determines the size of some of the dimensions of
8781/// the array as these are the multiples by which the strides are happening:
8782///
8783/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8784///
8785/// Note that the outermost dimension remains of UnknownSize because there are
8786/// no strides that would help identifying the size of the last dimension: when
8787/// the array has been statically allocated, one could compute the size of that
8788/// dimension by dividing the overall size of the array by the size of the known
8789/// dimensions: %m * %o * 8.
8790///
8791/// Finally delinearize provides the access functions for the array reference
8792/// that does correspond to A[i][j][k] of the above C testcase:
8793///
8794/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8795///
8796/// The testcases are checking the output of a function pass:
8797/// DelinearizationPass that walks through all loads and stores of a function
8798/// asking for the SCEV of the memory access with respect to all enclosing
8799/// loops, calling SCEV->delinearize on that and printing the results.
8800
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008801void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008802 SmallVectorImpl<const SCEV *> &Subscripts,
8803 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008804 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008805 // First step: collect parametric terms.
8806 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008807 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008808
Sebastian Popb1a548f2014-05-12 19:01:53 +00008809 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008810 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008811
Sebastian Pop448712b2014-05-07 18:01:20 +00008812 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008813 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008814
Sebastian Popb1a548f2014-05-12 19:01:53 +00008815 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008816 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008817
Sebastian Pop448712b2014-05-07 18:01:20 +00008818 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008819 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00008820
Sebastian Pop28e6b972014-05-27 22:41:51 +00008821 if (Subscripts.empty())
8822 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008823
Sebastian Pop448712b2014-05-07 18:01:20 +00008824 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008825 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00008826 dbgs() << "ArrayDecl[UnknownSize]";
8827 for (const SCEV *S : Sizes)
8828 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00008829
Sebastian Pop444621a2014-05-09 22:45:02 +00008830 dbgs() << "\nArrayRef";
8831 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00008832 dbgs() << "[" << *S << "]";
8833 dbgs() << "\n";
8834 });
Sebastian Popc62c6792013-11-12 22:47:20 +00008835}
Chris Lattnerd934c702004-04-02 20:23:17 +00008836
8837//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00008838// SCEVCallbackVH Class Implementation
8839//===----------------------------------------------------------------------===//
8840
Dan Gohmand33a0902009-05-19 19:22:47 +00008841void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00008842 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00008843 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
8844 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008845 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00008846 // this now dangles!
8847}
8848
Dan Gohman7a066722010-07-28 01:09:07 +00008849void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00008850 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00008851
Dan Gohman48f82222009-05-04 22:30:44 +00008852 // Forget all the expressions associated with users of the old value,
8853 // so that future queries will recompute the expressions using the new
8854 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00008855 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00008856 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00008857 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00008858 while (!Worklist.empty()) {
8859 User *U = Worklist.pop_back_val();
8860 // Deleting the Old value will cause this to dangle. Postpone
8861 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008862 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00008863 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00008864 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00008865 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00008866 if (PHINode *PN = dyn_cast<PHINode>(U))
8867 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008868 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00008869 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00008870 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008871 // Delete the Old value.
8872 if (PHINode *PN = dyn_cast<PHINode>(Old))
8873 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008874 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008875 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00008876}
8877
Dan Gohmand33a0902009-05-19 19:22:47 +00008878ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00008879 : CallbackVH(V), SE(se) {}
8880
8881//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00008882// ScalarEvolution Class Implementation
8883//===----------------------------------------------------------------------===//
8884
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008885ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
8886 AssumptionCache &AC, DominatorTree &DT,
8887 LoopInfo &LI)
8888 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
8889 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00008890 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
8891 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
8892 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008893
8894ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
8895 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
8896 CouldNotCompute(std::move(Arg.CouldNotCompute)),
8897 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00008898 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008899 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
8900 ConstantEvolutionLoopExitValue(
8901 std::move(Arg.ConstantEvolutionLoopExitValue)),
8902 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
8903 LoopDispositions(std::move(Arg.LoopDispositions)),
8904 BlockDispositions(std::move(Arg.BlockDispositions)),
8905 UnsignedRanges(std::move(Arg.UnsignedRanges)),
8906 SignedRanges(std::move(Arg.SignedRanges)),
8907 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
8908 SCEVAllocator(std::move(Arg.SCEVAllocator)),
8909 FirstUnknown(Arg.FirstUnknown) {
8910 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00008911}
8912
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008913ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00008914 // Iterate through all the SCEVUnknown instances and call their
8915 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00008916 for (SCEVUnknown *U = FirstUnknown; U;) {
8917 SCEVUnknown *Tmp = U;
8918 U = U->Next;
8919 Tmp->~SCEVUnknown();
8920 }
Craig Topper9f008862014-04-15 04:59:12 +00008921 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00008922
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008923 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008924
8925 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
8926 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008927 for (auto &BTCI : BackedgeTakenCounts)
8928 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008929
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008930 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00008931 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00008932 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00008933}
8934
Dan Gohmanc8e23622009-04-21 23:15:49 +00008935bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008936 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008937}
8938
Dan Gohmanc8e23622009-04-21 23:15:49 +00008939static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008940 const Loop *L) {
8941 // Print all inner loops first
8942 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8943 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008944
Dan Gohmanbc694912010-01-09 18:17:45 +00008945 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008946 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008947 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008948
Dan Gohmancb0efec2009-12-18 01:14:11 +00008949 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008950 L->getExitBlocks(ExitBlocks);
8951 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008952 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008953
Dan Gohman0bddac12009-02-24 18:55:53 +00008954 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8955 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008956 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008957 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008958 }
8959
Dan Gohmanbc694912010-01-09 18:17:45 +00008960 OS << "\n"
8961 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008962 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008963 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008964
8965 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8966 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8967 } else {
8968 OS << "Unpredictable max backedge-taken count. ";
8969 }
8970
8971 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008972}
8973
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008974void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008975 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008976 // out SCEV values of all instructions that are interesting. Doing
8977 // this potentially causes it to create new SCEV objects though,
8978 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008979 // observable from outside the class though, so casting away the
8980 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008981 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008982
Dan Gohmanbc694912010-01-09 18:17:45 +00008983 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008984 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008985 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008986 for (Instruction &I : instructions(F))
8987 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
8988 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008989 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008990 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008991 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008992 if (!isa<SCEVCouldNotCompute>(SV)) {
8993 OS << " U: ";
8994 SE.getUnsignedRange(SV).print(OS);
8995 OS << " S: ";
8996 SE.getSignedRange(SV).print(OS);
8997 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008998
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008999 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009000
Dan Gohmanaf752342009-07-07 17:06:11 +00009001 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009002 if (AtUse != SV) {
9003 OS << " --> ";
9004 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009005 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9006 OS << " U: ";
9007 SE.getUnsignedRange(AtUse).print(OS);
9008 OS << " S: ";
9009 SE.getSignedRange(AtUse).print(OS);
9010 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009011 }
9012
9013 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009014 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009015 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009016 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009017 OS << "<<Unknown>>";
9018 } else {
9019 OS << *ExitValue;
9020 }
9021 }
9022
Chris Lattnerd934c702004-04-02 20:23:17 +00009023 OS << "\n";
9024 }
9025
Dan Gohmanbc694912010-01-09 18:17:45 +00009026 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009027 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009028 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009029 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009030 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009031}
Dan Gohmane20f8242009-04-21 00:47:46 +00009032
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009033ScalarEvolution::LoopDisposition
9034ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009035 auto &Values = LoopDispositions[S];
9036 for (auto &V : Values) {
9037 if (V.getPointer() == L)
9038 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009039 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009040 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009041 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009042 auto &Values2 = LoopDispositions[S];
9043 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9044 if (V.getPointer() == L) {
9045 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009046 break;
9047 }
9048 }
9049 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009050}
9051
9052ScalarEvolution::LoopDisposition
9053ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009054 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009055 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009056 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009057 case scTruncate:
9058 case scZeroExtend:
9059 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009060 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009061 case scAddRecExpr: {
9062 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9063
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009064 // If L is the addrec's loop, it's computable.
9065 if (AR->getLoop() == L)
9066 return LoopComputable;
9067
Dan Gohmanafd6db92010-11-17 21:23:15 +00009068 // Add recurrences are never invariant in the function-body (null loop).
9069 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009070 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009071
9072 // This recurrence is variant w.r.t. L if L contains AR's loop.
9073 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009074 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009075
9076 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9077 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009078 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009079
9080 // This recurrence is variant w.r.t. L if any of its operands
9081 // are variant.
9082 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
9083 I != E; ++I)
9084 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009085 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009086
9087 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009088 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009089 }
9090 case scAddExpr:
9091 case scMulExpr:
9092 case scUMaxExpr:
9093 case scSMaxExpr: {
9094 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009095 bool HasVarying = false;
9096 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
9097 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009098 LoopDisposition D = getLoopDisposition(*I, L);
9099 if (D == LoopVariant)
9100 return LoopVariant;
9101 if (D == LoopComputable)
9102 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009103 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009104 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009105 }
9106 case scUDivExpr: {
9107 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009108 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9109 if (LD == LoopVariant)
9110 return LoopVariant;
9111 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9112 if (RD == LoopVariant)
9113 return LoopVariant;
9114 return (LD == LoopInvariant && RD == LoopInvariant) ?
9115 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009116 }
9117 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009118 // All non-instruction values are loop invariant. All instructions are loop
9119 // invariant if they are not contained in the specified loop.
9120 // Instructions are never considered invariant in the function body
9121 // (null loop) because they are defined within the "loop".
9122 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9123 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9124 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009125 case scCouldNotCompute:
9126 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009127 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009128 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009129}
9130
9131bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9132 return getLoopDisposition(S, L) == LoopInvariant;
9133}
9134
9135bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9136 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009137}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009138
Dan Gohman8ea83d82010-11-18 00:34:22 +00009139ScalarEvolution::BlockDisposition
9140ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009141 auto &Values = BlockDispositions[S];
9142 for (auto &V : Values) {
9143 if (V.getPointer() == BB)
9144 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009145 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009146 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009147 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009148 auto &Values2 = BlockDispositions[S];
9149 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9150 if (V.getPointer() == BB) {
9151 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009152 break;
9153 }
9154 }
9155 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009156}
9157
Dan Gohman8ea83d82010-11-18 00:34:22 +00009158ScalarEvolution::BlockDisposition
9159ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009160 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009161 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009162 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009163 case scTruncate:
9164 case scZeroExtend:
9165 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009166 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009167 case scAddRecExpr: {
9168 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009169 // to test for proper dominance too, because the instruction which
9170 // produces the addrec's value is a PHI, and a PHI effectively properly
9171 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009172 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009173 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009174 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009175 }
9176 // FALL THROUGH into SCEVNAryExpr handling.
9177 case scAddExpr:
9178 case scMulExpr:
9179 case scUMaxExpr:
9180 case scSMaxExpr: {
9181 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009182 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009183 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00009184 I != E; ++I) {
9185 BlockDisposition D = getBlockDisposition(*I, BB);
9186 if (D == DoesNotDominateBlock)
9187 return DoesNotDominateBlock;
9188 if (D == DominatesBlock)
9189 Proper = false;
9190 }
9191 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009192 }
9193 case scUDivExpr: {
9194 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009195 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9196 BlockDisposition LD = getBlockDisposition(LHS, BB);
9197 if (LD == DoesNotDominateBlock)
9198 return DoesNotDominateBlock;
9199 BlockDisposition RD = getBlockDisposition(RHS, BB);
9200 if (RD == DoesNotDominateBlock)
9201 return DoesNotDominateBlock;
9202 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9203 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009204 }
9205 case scUnknown:
9206 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009207 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9208 if (I->getParent() == BB)
9209 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009210 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009211 return ProperlyDominatesBlock;
9212 return DoesNotDominateBlock;
9213 }
9214 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009215 case scCouldNotCompute:
9216 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009217 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009218 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009219}
9220
9221bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9222 return getBlockDisposition(S, BB) >= DominatesBlock;
9223}
9224
9225bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9226 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009227}
Dan Gohman534749b2010-11-17 22:27:42 +00009228
Andrew Trick365e31c2012-07-13 23:33:03 +00009229namespace {
9230// Search for a SCEV expression node within an expression tree.
9231// Implements SCEVTraversal::Visitor.
9232struct SCEVSearch {
9233 const SCEV *Node;
9234 bool IsFound;
9235
9236 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9237
9238 bool follow(const SCEV *S) {
9239 IsFound |= (S == Node);
9240 return !IsFound;
9241 }
9242 bool isDone() const { return IsFound; }
9243};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009244}
Andrew Trick365e31c2012-07-13 23:33:03 +00009245
Dan Gohman534749b2010-11-17 22:27:42 +00009246bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00009247 SCEVSearch Search(Op);
9248 visitAll(S, Search);
9249 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009250}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009251
9252void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9253 ValuesAtScopes.erase(S);
9254 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009255 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009256 UnsignedRanges.erase(S);
9257 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009258
9259 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9260 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9261 BackedgeTakenInfo &BEInfo = I->second;
9262 if (BEInfo.hasOperand(S, this)) {
9263 BEInfo.clear();
9264 BackedgeTakenCounts.erase(I++);
9265 }
9266 else
9267 ++I;
9268 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00009269}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009270
9271typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009272
Alp Tokercb402912014-01-24 17:20:08 +00009273/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009274static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9275 size_t Pos = 0;
9276 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9277 Str.replace(Pos, From.size(), To.data(), To.size());
9278 Pos += To.size();
9279 }
9280}
9281
Benjamin Kramer214935e2012-10-26 17:31:32 +00009282/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9283static void
9284getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9285 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
9286 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
9287
9288 std::string &S = Map[L];
9289 if (S.empty()) {
9290 raw_string_ostream OS(S);
9291 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009292
9293 // false and 0 are semantically equivalent. This can happen in dead loops.
9294 replaceSubString(OS.str(), "false", "0");
9295 // Remove wrap flags, their use in SCEV is highly fragile.
9296 // FIXME: Remove this when SCEV gets smarter about them.
9297 replaceSubString(OS.str(), "<nw>", "");
9298 replaceSubString(OS.str(), "<nsw>", "");
9299 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009300 }
9301 }
9302}
9303
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009304void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009305 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9306
9307 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9308 // FIXME: It would be much better to store actual values instead of strings,
9309 // but SCEV pointers will change if we drop the caches.
9310 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009311 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009312 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9313
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009314 // Gather stringified backedge taken counts for all loops using a fresh
9315 // ScalarEvolution object.
9316 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9317 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9318 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009319
9320 // Now compare whether they're the same with and without caches. This allows
9321 // verifying that no pass changed the cache.
9322 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9323 "New loops suddenly appeared!");
9324
9325 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9326 OldE = BackedgeDumpsOld.end(),
9327 NewI = BackedgeDumpsNew.begin();
9328 OldI != OldE; ++OldI, ++NewI) {
9329 assert(OldI->first == NewI->first && "Loop order changed!");
9330
9331 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9332 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009333 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009334 // means that a pass is buggy or SCEV has to learn a new pattern but is
9335 // usually not harmful.
9336 if (OldI->second != NewI->second &&
9337 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009338 NewI->second.find("undef") == std::string::npos &&
9339 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009340 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009341 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009342 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009343 << "' changed from '" << OldI->second
9344 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009345 std::abort();
9346 }
9347 }
9348
9349 // TODO: Verify more things.
9350}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009351
9352char ScalarEvolutionAnalysis::PassID;
9353
9354ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9355 AnalysisManager<Function> *AM) {
9356 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9357 AM->getResult<AssumptionAnalysis>(F),
9358 AM->getResult<DominatorTreeAnalysis>(F),
9359 AM->getResult<LoopAnalysis>(F));
9360}
9361
9362PreservedAnalyses
9363ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9364 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9365 return PreservedAnalyses::all();
9366}
9367
9368INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9369 "Scalar Evolution Analysis", false, true)
9370INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9371INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9372INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9373INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9374INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9375 "Scalar Evolution Analysis", false, true)
9376char ScalarEvolutionWrapperPass::ID = 0;
9377
9378ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9379 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9380}
9381
9382bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9383 SE.reset(new ScalarEvolution(
9384 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9385 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9386 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9387 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9388 return false;
9389}
9390
9391void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9392
9393void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9394 SE->print(OS);
9395}
9396
9397void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9398 if (!VerifySCEV)
9399 return;
9400
9401 SE->verify();
9402}
9403
9404void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9405 AU.setPreservesAll();
9406 AU.addRequiredTransitive<AssumptionCacheTracker>();
9407 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9408 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9409 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9410}